~Technical documentation
Tricopter with stabilized camera

Version 1.0

Author: Karl-Johan Barsk
Date: December 12, 2011

triforce

Status
Reviewed | Karl-Johan Barsk 111206
Approved | Fredrik Lindsten 111208
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Project Identity
Group E-mail:
Homepage:

Orderer:

Customer:

Course Responsible:

Project Manager:
Adyvisors:

Group Members

tsrt10.tricopter@gmail.com
http://www.isy.liu.se/edu/projekt /tsrt10/2011 /trikopter/
Fredrik Lindsten, Linkoping University

Phone: +46 13 - 28 13 65, E-mail: lindsten@isy.liu.se
David Toérnqvist, Linkoping University

Phone: +46 13 - 28 18 82 , E-mail: tornqvist@isy.liu.se
David Térnqvist, Linkoping University

Phone: +46 13 - 28 18 82, E-mail: tornqvist@Qisy.liu.se
Josefin Kemppainen

Manon Kok, Linkoping University

Phone: +46 13 - 28 40 43 , E-mail: manon.kok@isy.liu.se

Name Responsibility Phone E-mail
(@student.liu.se)

Josefin Kemppainen Project Manager 070 - 866 56 75 joske208
Karl-Johan Barsk Documents 070 - 788 95 48 karba878
Joakim Hallqvist Firmware 070 - 571 37 64 joahaT738

Patrik Johansson Hardware 070 - 299 47 48 patjo855
Rasmus Jonsson Software 070 - 999 30 19 rasjo160

Johan Larsson Tests 070 - 747 87 78 johla342

Mattis Lorentzon Information 070 - 592 32 66 matlo622

Bjorn Rodseth Designer 070 - 274 52 20 bjoro826

Document History

’ Version \ Date \ Changes made \ Sign \ Reviewer
0.1 111130 | First draft. KJB | Karl-Johan Barsk
1.0 111208 | Second draft. KJB | Karl-Johan Barsk
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Contents

I TIniroduciion

P TDefinifiond

w

= I R B S

© O © © w

10
12
13

13
14
14
15
15
15
15
15
16
16

17
17
17
19

B4 T Functionality] e 22
BZ2TonSole PIOZTAI . . « .« « v v v v v v e v e e e e e e e e e e 22

A o AP N NISSION ETANNER 2 2

A W g diag 26

27

35

38
I Firmware modifications to support sending/receiving virtual box size and target po-q

Eifion 44

.. 44

I VA s T = I Y T2 45

[APNM Mission Planner codd 47

FT Box size functionality]« . . v vttt e e e e e e e 47

2 Target functionality] o L e 49

EF3Box and target shared TUNCTIONAIIEY - - « - =« « « ¢« v v v v e e e e e e e e e e 51

4 Modified map funcfionality oL oo s 52

5 Video functionality] oL e 56

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 1

1 Introduction

During the course of the project the group has constructed a surveillance system made up
of a UAV (Unmanned Aerial Vehicle) with a mounted camera. The user is able to specify
a flying route along with a specific point of interest for surveillance and the UAV will then
perform the surveillance mission. This will be referred to as the autonomous flight mode.
During the flight a video stream from the camera will be broadcasted to a ground station
with the optional addition to record it.

Additional to the autonomous flight mode there will be a manual flight mode. The manual
mode is for manual control of the tricopter with two optional safety features to prevent
accidents. This will allow for unexperienced pilots to try out the equipment without
risking damage to it. These are:

1. A virtual box with pre-specified boundaries. If this feature is enabled and the user
breaches the boundaries, an auto-pilot will take control of the tricopter and fly it
back to the center of the virtual box.

2. Easy-control, which when enabled translates the user control signals to direction
commands in a fixed coordinate system instead of directly forwarding the signals to
the rotors.

For more information on the safety features, see section B=3.

2 Definitions

APM ArduPilot Mega
ArduCopter Open source control system for multicopters
ArduPilot The autopilot of the tricopter

ArduPilot board The ArduPilot and IMUcopter together as one unit
AV Audio video

EEPROM Electrically Erasable Programmable Read-Only Memory

ESC Electronic Speed Controller

GPS Global Positioning System

GUI Graphical User Interface

IMU Inertial Measurement Unit

IMUcamera IMU-module with an IMU and a processor mounted on the Gimbal

IMUcopter An IMU-shield connected to the ArduPilot

IMU-shield Sensor module with accelerometers, gyroscopes, magneto-
meters and a barometer

I2C Inter-Integrated Circuit

RC Radio Control

UAV Unmanned Aerial Vehicle

XBee Wireless modem

2.1 Signal definitions

Tricopter heading: The heading of the tricoper in degrees from the magnetometer to
compensate for the drift in the raw gyro on the GPS and the IMUcopter.

Tricopter orientation: The roll, pitch and yaw of the tricopter in degrees.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 2

Target location: The latitude and longitude of the target in degrees and the altitude
in dm.

GPS data: The tricopter’s position specified in latitude and longitude (degrees), the
altitude® in dm and the speed of the tricopter in cm/s.

2.2 Orientation

If the tricopter is seen from above and the arm with the tail pan servo is pointing south,
then the arm pointing north-east will be called right and the one pointing north-west will
be called left, see figure .

North

Figure 1: Right/Left orientation for the system

3 System overview

The UAV consists of a tricopter with an ArduCopter platform. ArduCopter is based
on the open source autopilot ArduPilot and is one of the most sophisticated IMU-based
autopilots on the market. It provides, among other things, full UAV functionality with
scripted waypoints and manual RC control.

The tricopter consists of a Ground Station, a Flight unit, a Surveillance unit, a Sensor
unit and a Communication unit. The relation of these subsystems can be seen in figure .

For more information about the ArduPilot, see [].

1Due to the fact that a barometer and sonar sensor will be used to decide the altitude this information
will be redundant.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 3

Right rotor
Left rotor
ArduPilot
Tail rotor

Tail pan servo

IMUcopter Flight unit

Pan servo

Tilt servo

Figure 2: Block diagram for the system. For further descriptions of the subsystems, see
section B for the Ground station, section B for the Flight unit, section B for the Surveillance
unit, section B for the Sensor unit and section @ for the Communication unit.

3.1 I*C

In the interface sections of the Flight unit, the Surveillance unit and the Sensor unit (sec-
tions B2, B2 and B2 respectively) the I2C bus is mentioned. On this bus, the ArduPilot
will be acting as master. It is written in C using the ARDUINO Wire library.

I?C uses two bidirectional lines named Serial Data Line (SDA) and Serial Clock (SCL)
with pull-up resistors. As the name suggests, the former is used for sending the data and
the latter for the clock.

Since the bus is the same as the one used by the barometer, section G4, the given
barometer code on the ArduPilot initializes the bus and sets the ArduPilot to master.
This is done in the file APM_BMP085. cpp.

The protocol on the bus, namely the communication between the ArduPilot and the
IMUcamera, can be seen in table 0 below.

Table 1: I2C protocol for communication between ArduPilot and IMUcamera.

Type byte 1: packet | byte 2: | byte 3 to end: packet
size flag

Current location 12 1 Lat, Ing, alt

Camera target 12 2 Lat, Ing, alt

Tricopter heading 12 3 Roll, pitch, yaw

Gimbal servo angles | 2 4 Pan, tilt

The fourth package - servo angles to the gimbal - is for testing purposes only.

The implementation can be seen in appendix 0. There the variable busy_bus is used
to make sure that the bus is not overrun with transmissions. Each package will be sent

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 4

according to its send rate, which is equal to number of runs through the loop() (the
main function). A (constant) variable, aptly named send_rate_offset, is used to further
handle possible conflicts on the bus by offsetting the transmissions a number of runs.

4 Flight unit

The purpose of the flight unit is to fly the tricopter according to the commands received
from the Ground station. It manages the sensor data from the Sensor unit, see section B
and controls the Gimbal, see section BT It consists of three rotors, one tail pan servo,
IMUcopter and the ArduPilot chipset. Note that though the GPS is mounted on the
ArduPilot chipset, it is considered a part of the Sensor unit, see section B. See figure B
for the outline of the unit.

Serial link
(Xbee,
Communication unit)

Right rotor

Serial links . EEma £
(Receiver,
Communication unit)

Seriallink |

(GPS,

Sensoryﬂg):
rc ; Flight unit
(Barometer, 1
Sensor unit) T T e

Serial lin|
(Sonar,
Sensor unit)

EC
(IMUcamera
Surveillance unit,

c
(Maanetometer.
Sensor unit)

Figure 3: Block diagram for the Flight unit with ingoing and outgoing signals.

4.1 Hardware

The Flight unit consists of:
¢ ArduPilot Mega - Arduino Compatible UAV Controller w/ ATMega2560
e Three rotors and a tail pan servo

e EM-406/uBlox/MTK Adapter Cable 5 cm
e ArduPilot Mega IMU Shield/OilPan Rev-H (With Pins) [IMUcopter]

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter)

The ArduPilot Mega, which is an IMU-based open source autopilot, is used to control the
tricopter by sending signals to both the servo on the tail and to the three ESCs which
control the three rotors. The main board, which is designed with an ATMega2560 micro
controller, is placed as close as possible to the tricopter’s center of mass. The IMUCopter
is mounted on the ArduPilot and with help of the Sensor unit, see section B, the ArduPilot
Mega is a fully functional autopilot for a UAV.

The ArduPilot IMU on the Flight unit, called IMUcopter, is used to take measurements
of the acceleration and the angular velocity of the tricopter for the ArduPilot Mega. The
processor on ArduPilot Mega is used to process the measurements from IMUcopter as
well as measurements from the barometer, magnetometer, sonar and GPS, which are part
of the sensor unit. The IMUcopter consists of the regular functionality of an IMU, which
has a triple axis accelerometer and a triple axis gyro.

The ArduPilot Mega and IMUcopter will be considered as one device as described in
section B2

4.2 Interface

This section describes the communication of the Flight unit.

Signals in

e GPS data, see definition in section I, from the Sensor unit via the serial port on
the ArduPilot.

e Tricopter heading, see definition in section E, from the magnetometer in Sensor
unit via the I2C bus and serial ports.

e Altitude from the sonar sensor, see section B, in the Sensor unit via the port
marked pitot tube on IMUcopter.

e Altitude from the barometer, see section EI4, in the Sensor unit via the I2C bus
and serial ports.

e Control signals from the Communication unit.

e Route/target coordinates from the Communication unit.

Signals out

e Updated UAV flight data, i.e. tricopter orientation and GPS data according to
section I, to the Communication unit.

e The Flight unit provides the Surveillance unit with heading and GPS position data
via an 12C bus.

4.2.1 Internal communication

The communication between IMUcopter and ArduPilot is serial and has not been modified
further. Henceforth, IMUcopter and ArduPilot will be considered as one device in terms
of communication with other components.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 6

4.3 Firmware

The firmware on the flight unit is run on the ArduPilot board which is responsible for:

e Processing all sensor data from IMUcopter.
e Processing the flight commands.
e Sending control signals to the tricopter’s rotors and servo.

e Sending data to IMUcamera.

4.3.1 ArduPilot

The ArduPilot is a complete control system running on an Arduino base. It receives
commands from the ground station and uses the information from the IMUcopter to
stabilize the tricopter while performing these commands. It is also responsible for the
autonomous flight mode. Its output signals are control signals for the rotors, tail pan
servo and flight information to the ground station.

The board is delivered with open source firmware that fuses sensor information from the
IMUcopter to get estimates of the tricopter’s position, velocity and orientation.

Most of the ArduPilot’s functionality already exists in the firmware but some things have
been added:

e Functionality to send target coordinates to the IMUcamera over I?C bus.

¢ Functionality to send position and orientation estimates to the IMUcamera over 12C
bus.

e Functionality for virtual box feature in manual mode.

Autonomous mode

Performing autonomous flight is a matter of translating route information to control
signals for the rotors and tail pan servo. The route information consists of predefined
waypoints that the tricopter should pass through. Using sensor information to estimate
position, velocity and orientation, it is possible to adjust the control signals to steer the
tricopter in the desired direction. The sensor information is hardware filtered on the
IMUcopter and then fused on the ArduPilot to get the estimates.

The autonomous flight mode will be performed using already existing functionality in the
ArduPilot firmware.

Autonomous landing: In the given code there is an implemented command for au-
tonomous landing. By setting a land command in the APM MISSION PLANNER the
tricopter will perform landing. At three meter altitude the tricopter will hold the
current GPS position in longitudinal and lateral direction and then descend. When
the tricopter is either 40 cm above the ground or has the speed 0 m/s the engines
will be turned off and the tricopter will fall freely from this point. This command
has been tested in a simulation environment and it works but it does not perform
a very smooth landing. Therefore this command has not been implemented in the
final product because of the risk of damaging the components.

Figure @ shows an example of how a route specification looks like when the landing
command land in the simulation. Primarily the tricopter will fly autonomously to

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 7

waypoint 1 and then further to waypoint 2. The third waypoint is not an actual
waypoint because the command has been changed to a landing command. Therefore
the next thing to do is to land at the location of waypoint 2 and the simulated
tricopter will not fly to the third waypoint as seen in the figure. The location of
waypoint 3 (the landing command) can be chosen arbitrarily.

|| Triforce Planner 1.3.37 Build By Michael Obome;Triforce gr

WAYPOINT
WAYPO INT
LAN D 0

Figure 4: Exampel of a route with autonomous landing.

Manual mode
In manual mode the user controls the tricopter using an RC controller. How the control
signals are interpreted depends on the feature that has been enabled.

Virtual box feature: The virtual box feature is used to confine the flight space for the
tricopter. The box default size is 20 x 20 x 20 [m], but can be altered. The box
cannot be too small due to inaccuracy in the GPS, thus a box size of the default
one, = 1 or 2 meters is recommended. The center point of the box is determined by
the tricopter’s position when the feature is activated. To prevent the tricopter from
crashing because the box is placed too close to the ground, the box is automatically
elevated to a safe height. This height is by default 3 meters. The box is oriented so
that the sides are parallel to the longitude and latitude lines.

To calculate the boundaries B;, the following equations have been used. The
longitude and latitude are in degrees 107 and sizepos, altitudericopter, safeHeight
and 7egren 1D meters.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

AA

Tricopter

Sizepoy 180-107 1

By = latitude +

S12€hox

a Tearth

180-107 1

Bg = latitude — 5

™ Tearth

Sizepoy 180107 1

Bw = longitude — 5

7T Tearth

Sizepos 180-107 1

Bg = longitude + 5

_ altitudeiricopter +
T safeHeight 4+ sizepoy

By — {altitudemcopte7- —

safeHeight

7T Tearth

SiZ€pox
2

else

StZ€pox

else

if altitudetricopter > safeHeight +

if altitudetricopter > safeHeight +

SiZ€pox

StZ€phox

The subscripts i, B;, refers to North, South, West, East, Top and Bottom respec-

tively.

When a boundary is broken the tricopter will fly back autonomously to the middle
in a proximity of 5 x 5 x 5 [m]. The control of the tricopter will be given back to
the user when it is back in the middle.

To calculate the boundaries of the middle of the box the equations (W) above will
be used but the sizep,, is replaced by the wanted size,;qqie, which is 5 meters by

default.

This mode is activated by switching AUX1 on the RC controller to the lower level,

see section B2.

The code for the implementation can be seen in appendix O.

Easy control feature: When this feature is activated a fixed coordinate system is used
which was created and aligned to the tricopter’s orientation when it was armed. As
long as this feature is active all control commands are interpreted as desired flight
directions in this coordinate system and will be converted to rotor commands to

follow them.

This mode is activated by switching AUX2 on the RC controller to the lower level,

see section B2.

5 Surveillance unit

The function of the Surveillance unit is to calculate the orientation of the Gimbal and
then control the camera. The purpose of the camera and the Gimbal is covered in the

introduction, see section .

Course name: Control Project

Project group: Triforce
Course code: TSRT10
Project: Tricopter

E-mail:

Document responsible:
Author’s E-mail:
Document name:

tsrt10.tricopter@gmail.com
Karl-Johan Barsk
karba878@student.liu.se

Technical documentation tricopter.pdf

Tricopter 9

Wireless video link
(Ground station)

12C
(Flight unit)

Pan servo

IMUcamera

Tilt servo

Surveillance unit

Figure 5: Block diagram for the Surveillande unit.

5.1 Hardware

The Surveillance unit consists of:

e Camera
e Gimbal
e Ardulmu+V2 [IMUcameral

5.1.1 Gimbal

The Gimbal is the device on which the camera is mounted. It consists of two servos,
one to perform a panning movement and one to perform a tilting movement. This makes
it possible to rotate the camera relative to the UAV so that it focuses on the target
coordinates.

5.1.2 IMUCamera

IMUcamera is connected to ArduPilot via the I2C -bus (section B1) from which it receives
the target’s location and the tricopter’s position and orientation. With this information
IMUcamera calculates the desired angles for the gimbal servos, see section b=32.

Note that this unit is used as s processor only, since the sensor are not used. See section
b2,

5.2 Interface

The interface between the surveillance unit and the other units, the Ground station and
Flight unit, will be presented below.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 10

Signals in:

e Tricopter orientation and target location, see definition in section P, from the
ArduPilot in the Flight unit. The signals are transmitted via the I?C bus. The
IMUcamera will have address 2 on the bus.

Signals out:

e Video to Laptop 1 in the Ground station via the Video link.

e Reference signal from IMUcamera to the gimbal servos.

5.3 Firmware

The firmware for the unit is run on IMUcamera and is used to communicate with ArduPilot
and to calculate the gimbal servo angles.

5.3.1 Angle calculation

The first thing IMUcamera does in order to calculate the desired camera angles is to
calculate the distance between the tricopter and the target in the ground plane and the
bearing relative to north, see equations (B2)-(8). The longitudes and latitudes received from
ArduPilot are given in degrees x10” and the altitudes are given in cm. The calculated
bearing is given in degrees x102. The cartesian coordinates for the target, in a coordinate
system with its center at the tricopter’s position see figure [[a, are given by equations
(@)-(9). These are in m.

At = tricopter;q; — target;q; (2)
target; .
Ajong = COS(TM) - (tricopteriong — targetiong) (3)
Aqir = tricoptery; — targetq (4)
., 2 2 T Tearth
dist = Alat + Along ’ 1780 107 (5)

~Biong y 18000
Alat i

(6)

bearing = 9000 + arctan(

The factor 9000 in (B) is to turn the bearing 90° towards north.

EN|
~—

xp = dist - cos(bearing) (

o g
~

yg = dist - sin(bearing) (
ZE = Aalt/100

—~~
e
~

These equations are a good approximation for coordinates close to each other but are not
completely accurate. In the equations for A;,,, we assume that both the target and the
tricopter have the same latitude. A more graphical explanation of the equations (@) - (H)
can be seen i figure B.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

“ Tricopter 11

Tricopter
JIIEILart
'\‘ - }
~. “Bearin X
\ _) g
N \\\
ist >, ®Target North
dist \\= g —_
N
A 4
¥ z

Figure 6: A graphical interpretation of the transformation from the tricopter’s coordinate
system to the earth’s.

To compensate for the tricopter’s heading, a three dimensional rotation matrix with the
pitch (p), roll (r) and yaw (y) angles is used, see equation (IM), to transfer the target to
the tricopter’s coordinate system, see figure [7H.

xr cos(r) —sin(r) 0] |1 0 0 cos(y) 0 sin(y)| [zg

yr| = |sin(r) cos(r) 0| |0 cos(p) —sin(p) 0 1 0 YE

2T 0 0 1| |0 sin(p) cos(p) —sin(y) 0 cos(y) ZE(|
10

The desired gimbal angles relative to the tricopter are then given by equations (I)-(I2).

T
angle; = arctan(—— 11
glea (L) ()
xrT
anglepq, = arctan(—) (12)
yr
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

AA Tricopter 12

(a) Earth coordinate sys-(b) Tricopter coordinate sys-(c) Gimbal coordinate sys-
tem (E). tem (T). tem (G).

Figure 7: Coordinate systems.

The implementation of this can be seen in appendix B.

5.3.2 Servo input

The servos used for this project are pulse-width-modulated and the servo control code
available in Arduino is used to generate the pulses given a specific angle. The servo code
takes a value between 0 and 180 and generates a pulse between 0.5 and 2.5 ms. It is
important to disable interrupts from the bus code during the pulse generation otherwise
the pulse may stay high for too long. An offset was added so if both calculated angles
are zero the camera will be pointing straight ahead. To prevent the servos from taking
damage, some limitations on the servo output were implemented to correspond to the
restrictions of the gimbal.

If you look at figure B you can suspect that the transfer from the tilt servo angle to the
actual tilt of the camera is not linear because of the joints shaded in the figure. Because
of this, a non-linear transfer function had to be calculated.

Figure 8: Gimbal sketch.

To see the relationship between the servo and gimbal angle, see figure B. As seen by the
transfer function the maximum difference between the two angles is around 5°.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

“ Tricopter 13

60 T T T T T T T
Gimbal angle

— — — Servo angle ||

50

[degrees]

-30 1 1 1 1
-30 =20 -10 0 10 20 30 40 50

Servo angle [degrees]

Figure 9: Gimbal transfer function. The red line represents the servo angle and the blue
line the gimbal angle.

For the implementation of the gimbal transfer function, see appendix B.

5.4 Complications

Before the work on the tricopter started, the plan was to use the sensors on the IMUcamera
to control and correct for eventual reference errors, e.g. drift errors. But after some testing
it was concluded that the readings from the IMUcamera were so inaccurate that it was
impossible to use them for the project’s purpose. On the other hand, the gimbal servos
were accurate enough for the IMUcamera’s sensors not to be needed.

6 Sensor unit
To be able to fulfill the requirements specified by the project, additional sensors needed

to be placed on the tricopter. These sensors will be described in this section. See figure
@ for the outline of the unit.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 14

Serial link
(Flight unit)
1°C g A o
(Flight unit) Serial link
(Flight unit)

1

’C
(Flight unit)

Figure 10: Block diagram for the Sensor unit with ingoing and outgoing signals.

6.1 Hardware

The Sensor unit consists of:

MB1200 XL-MaxSonar-EZ0 High Performance Ultrasonic Range Finder

GS407 U-Blox5 GPS 4Hz (New Antenna & Free uBlox Adapter Basic)

HMC5H883L - Triple Axis Magnetometer

A built-in barometer

6.1.1 Sonar

Since autonomous landing was a secondary requirement in this project, a sonar sensor
was mounted on the tricopter for accurate altitude determination when the tricopter is
close to ground level.

If the built-in barometer (section EI4) gets a height reading below eight meters the
ArduPilot will start using a combined height measurement from both the sonar and the
barometer. The AutoPilot uses the sonar data to create a scale variable, varying between
0 and 1, which decreases the closer the tricopter gets to the ground. Based on this it
calculates its current height as presented in equation 3.

current height = scale variablexbarometer readings+(1—scale variable)xsonar readings

(13)
This sensor is placed on the main frame of the tricopter, facing the ground, with at least
a distance of eight centimetres from the body to prevent the sonar sensor from picking up
electrical disturbances.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 15

6.1.2 GPS

To determine the position of the tricopter and enable waypoint navigation, a GPS mod-
ule is mounted on the tricopter. This GPS module is connected to the ArduPilot board
through the GPS port.

6.1.3 Magnetometer

Since the tricopter is able to hover, no heading from GPS to compensate for IMU yaw drift.
To compensate for this, a magnetometer is used the magnetic field to provide a heading
of the tricopter for the Flight unit and the Surveillance unit. Since the magnetic field’s
declination varies depending on location, this has to be accounted for in the ArduPilot.
This declination which can easily be obtained online at [d], can then be set in the APM
Planner, see the User manual [6].

The magnetometer is mounted on IMUcopter via an 12C cable.

6.1.4 Barometer

The barometer is used to determine the altitude of the tricopter, which is done by mea-
suring the air pressure. When the tricopter gets armed, the ArduPilot saves its current
barometer reading, then uses that as a reference value during flight to estimate the tri-
copter’s current altitude.

The barometer is physically mounted on IMUcopter.

6.2 Interface

This section describes the communication of the Sensor unit.

Signals in

This unit has no signals in.

Signals out

e GPS data serially, see definition in section B, to the Flight unit via the serial port
on the ArduPilot board.

e Magnetometer acquired signals to the Flight unit via an I?C bus with address 0x1E
on the ArduPilot board.

e Sonar sensor acquired signals to the Flight unit via the port marked pitot tube on
the ArduPilot board.

e Barometer acquired signals to the Flight unit via the I?C bus with address 0x77 on
the ArduPilot board.

6.3 Complications

During the course of the project, a few critical issues arose. These will be listed below.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 16

6.3.1 Magnetometer

While performing tests on the magnetometer, large offsets were measured regarding the
orientation, along all axis, of the tricopter. Initially it was suspected that the electronics
mounted on the tricopter were the cause of the bad compass readings. However, after
further tests and investigations, it was conclusive that the offset calibration performed by
the Arducopter was not well suited for a location with a relatively large vertical component
of the earth’s magnetic field, which Sweden is affected by.

A few data collection sessions revealed that the offsets in the magnetometer reading were
stationary and therefore could be compensated for with stationary offset values. To find
these offsets the collected magnetometer readings were plotted up in MATLAB. The earths
magnetic field is measured as three orthogonal vector components which correspond to
the three axis in the plotted figures. The length of these components combined should
be constant since the measured field is approximately stationary. Therefore the plotted
values should resemble a sphere centered around the origin. Raw magnetometer data
revealed a sphere that was centered around an offset point from the origin. The location
of this point is the offset needed to fix the incorrect magnetometer readings.

The plotted magnetometer readings can be seen in figure I

0
-200 -200
v 400 ~400 Y 400 ~400

-200
X

(a) Raw magnetometer data. (b) Corrected magnetometer data plotted with a fit-
ted sphere.

Figure 11: Magnetometer calibration.

6.3.2 GPS

At the end of the project, a rather unexpected error occured that caused the ArduPilot
to not get GPS lock. Given the shortage of time to further inverstigate this issue, a
conclusion could not be made. However, suspicions pointed to, that this issue was due
to the communication between the ArduPilot and IMUcamera over the I?C -bus, which
interrupted the communication between the ArduPilot and the GPS device. Although
this error has not been resolved, it can easily be worked around by first disconnecting the
camera, starting the tricopter and waiting for the ArduPilot to get GPS lock. After this
is done, reconnect the camera and reset the ArduPilot.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A Tricopter 17

7 Communication unit

This section covers the wireless communication between the tricopter and the ground
station. Figure [below is an overview of the communication unit.

Wireless serial link
(Ground station)

Radio signals
(Ground station)

Serial link
(Flight unit)

Serial links

Receiver (Flight unit)

Figure 12: Block diagram for the Communication unit with ingoing and outgoing signals.

7.1 Hardware

The Communication unit consists of:

e XBee Pro 900 Wire Ant
XBee Pro 900 RP-SMA Ant

Multiplex Royal 9 evo
AR7000 DSM2 7-Channel Receiver

7.1.1 XBee

The XBee will be connected to the ArduPilot and communicate while airborne with the
XBee on the ground, connected to Laptop 2 which is part of the Ground station. It will
be used for updating parameters, tracking sensor outputs, setting flight paths and target
coordinates.

The first thing to do to get the XBee to work is to load the latest firmware using a DIGI
software called X-CTU [R] and set the correct baud rate. APM-planner will connect to the
XBee on the baud rate 57600. This is done with the unit installed on the product.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 18

The XBee is a very sensitive unit and must be used carefully. The XBee must be
connected to the ArduPilot board after the board is supplied with power
from the battery. Then it must be disconnected before the battery power is
broken. It is very important to follow these steps otherwise the XBee will be reset and
the unbricking procedure described on the ArduCopter web page [must be performed.

Hence, the recommended starting procedure is

1. Supply the tricopter with power from the battery.

2. Wait for the initialization to finish, after the status LEDs on the ArduCopter stop
flashing rapidly.

3. Supply the XBee module on the tricopter with power, i.e. the outer of the two
switches, see figure 3.

4. Wait two seconds.
5. Turn on the RX/TX switch, i.e. the inner one, see figure 3.

6. You are good to go, i.e. connect through APM PLANNER.
and the corresponding shutdown procedure is

1. Turn of the RX/TX switch, see figure 3.
2. Turn of the XBee power, see figure [3.

3. Shut down the tricopter.

Figure 13: The three switches related to the XBee module on the tricopter.

The switch on the XBee module should be in master mode at all time, see figure [3

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 19

7.2 Interface

The interface between the Communication unit and the other units, Ground station and
Flight unit, will be presented below.

Signals in:
e Control signals from the RC control in the Ground station.

e Updated route/target coordinates over XBee from the Ground station.

Signals out:

e Control signals to the ArduPilot in the Flight unit from the RC.

e Updated route/target coordinates to the ArduPilot in the Flight unit over XBee.

8 Ground station

The Ground station consists of two computers and one Radio Controller (RC). The Ground
station is primarily used to control the tricopter from the ground, either with the RC
(in manual mode) or the autonomous mode. It will also receive the orientation of the
tricopter from the Communication unit, see section @. One of the computers is dedicated
to receiving the analogue video signal from the camera, named Laptop 1. The other is
equipped with the software APM MissION PLANNER and communicates with the tricopter
via XBee, see section [T. This computer is named Laptop 2.

See figure @ for the outline of the unit.

Radio signals Wireless serial link
(Communication unit) (Communication unit) Wireless video link
(Surveillance unit)

Figure 14: Block diagram for the Ground station with ingoing and outgoing signals.

8.1 Hardware

The Ground station consists of:

e iTheater glasses

Wireless AV receiver

e Two laptops
e RC
XBee module

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 20

e Dazzle*Tv video converter

The wireless AV receiver will receive analogue video signals from the wireless video link
at the tricopter. To watch this video, iTheater glasses or a video converter connected to
a laptop can be used. By using the video converter and a composite video cable, Laptop
2 can play back the video signal from Laptop 1.

For laptop to tricopter communication, the Xbee module will be used connected to Laptop
2 through an USB-port. It will send and receive signals to and from the Xbee on the
tricopter. For more information on the XBee, see section [Tl

8.2 Radio controller

The RC-controller that was used during the project was a Royal 9 Evo, as seen in figure
[E. Tt is communicating with a AR7000 DSM2 7-Channel RC-receiver on the back arm
on the tricopter. It uses a 2.4 GHz band frequency and a DSM2 modulation. Figure 3
shows which stick is controlling which command, note that some flight modes may change
the function of the stick or disable it.

Figure 15: Radio controller and its different control sticks

AUX1 controls

e Upper level: Autonomous mode
e Middle level: Manual mode

e Lower level: Virtual box
AUX2 controls

e Upper level: Not specified

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 21

¢ Middle level: Not specified

e Lower level: Easy control

8.3 Interface

The interface between the Ground station and the other units, namely the Communication
unit, and the Surveillance unit, is described here.

Signals in
e Analogue video signal from the video link in the Surveillance unit.
e Tricopter heading, orientation and position via XBee/USB.
e Waypoint coordinates (longitude, latitude, altitude) via XBee/USB.
e Target coordinates (longitude, latitude, altitude) via XBee/USB.
¢ PI parameters via XBee/USB.

e Size of the virtual box via XBee/USB.

e Other parameters e.g flight modes via XBee/USB.

Signals out

e Control signals to the Communication unit via the RC.

Waypoint coordinates (longitude, latitude, altitude) via XBee/USB.
e Target coordinates (longitude, latitude, altitude) via XBee/USB.

¢ PI parameters via XBee/USB.

Size of the virtual box via XBee/USB.
¢ Flight modes via XBee/USB.

8.4 Software

For the required functionality of the project, there was a need to create software for
handling transmission of data and parameters, playback of video, and also for logging
of the data. There already existed an open source program with a graphic interface for
simulation and programming of already existed an open source program with a graphi-
cal interface for simulation and programming of the ArduCopter chipset. This program
is called APM MIsSSION PLANNER, [2], and was modified to fit our specific goals and
purposes, while it maintained a user-friendly environment. The software is executed on
Laptop 2.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
AA Tricopter 92

8.4.1 Functionality

The functionality of the software can be divided into and listed in two parts, one with
required functionality and one with optional. The required functionalities are linked to
the contents of the requirement specification, [5], representing priority 1 requirements of
the ground station. The optional functionalities correspond to priority 2 requirements.

Table 2: Required functionality

’ Functionality \ Description ‘
Waypoints via XBee. Send waypoints of the flight route over the XBee.
Target point via XBee. Send the position of the target over the XBee.
Tricopter position and orienta- | Receive data about the tricopter’s position and ori-
tion via XBee entation over the XBee.

Playback of video Display the video feed in VLC player on computer.
Size of the box Set the size of the Virtual Box offline.

Table 3: Optional functionality

’ Functionality \ Description ‘
Size of the Box (wireless) Send and receive parameters that determine the size
of the Virtual Box via XBee.
Flight mode Display or change the mode of the tricopter. Au-

tonomous or manual mode.
Virtual Box/Easy control fea- | Display or change which features are active.
tures

The attributes, required functionality, presented above, were first implemented as func-
tions in an application that can be executed from a terminal window. When all the
functionality worked, the next step was to modify the APM MISSION PLANNER to han-
dle the functions, which removed the need for the external application.

8.4.2 Console program

The purpose of the console program is to have a simple software that fulfils the priority
1 requirements for the ground station. The console program has the following functions:

e connect() - Connect the laptop to the tricopter, with XBee or USB-cable
e get_orientation() - Receive the orientation of the tricopter

e get_location() - Receive the position of the tricopter

o set_box _size() - Send the size of the virtual box to the tricopter

e set_target() - Send the target coordinates to the tricopter

e get_target() - Receive the target coordinates of the tricopter

e set_waypoint() - Send the coordinate of a specific waypoint to the tricopter

¢ add_waypoint() - Send the coordinate of a new waypoint to the tricopter

8.4.3 APM MIisSION PLANNER

The APM MIissiON PLANNER Vv1.0.66 is an off-the-shelf software with much of the func-
tionality required for the project already at hand, such as updating the firmware, setting
controller parameters and as the name suggests, planning waypoints for a flight route.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 23

The software was modified to fit the requirements such as setting and displaying the tar-
get location, set the box size and display the video feed. The interesting parts of the
off-the-shelf software are the "Flight Data” and ”Flight Planner” tab. If there is a need
to move a waypoint, left-click on the waypoint and drag it to the desired location while
holding down the left mouse button.

More about how to use the modified version of the APM MisstoN PLANNER V1.0.66, is
described in the User manual, [6].

The modifications that were made to APM MISSION PLANNER can be found in appendix
[, except graphical modification which were made with MICROSOFT VISUAL STUDIO’S de-
signer. The designer automatically generates code, so it is hard to track the exact changes.
The generated code is located in the designer files e.g. FlightData.Designer.cs. Among
these changes were the exchange of the map representation of the multicopter, from a
quadcopter to a tricopter, see figure I3

Modifications in Flight Planner tab

The Flight Planner tab, see figure IH, is used for defining an intended flight route by
using waypoints and for defining the target that the camera should lock on. The off-
the-shelf software was only able to define the route as waypoints and the project also
required a waypoint for the target that the camera should look at. The target waypoint
was implemented in ”Flight planner” as a red marker so the user can differ the target
from route waypoint, which is green, see figure [A.

The coordinates for the target can not be written with ”Flight planner” because there
were some problems with the change of layout, so the reading and writing functionality
to the tricopter is implemented in ”Flight data”.

{__/ Triforce Planner 1.3.37 Build By Michael Obome/Triforce group =N eh==

Delete WP

Loiter

Jump

Measure Distance
Rotate Map

Grid

Clear Mission

Jtatus: loz

Load WP File
Save WP File

WAYFOINT

WAYPOINT

Figure 16: The modified Flight Planner tab.

Modifications in Flight Data tab

The Flight Data tab is used for displaying real-time data from the tricopter, see figure 3.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 24

In the off-the-shelf software there were some functionalities that had to be implemented to
fulfil the requirements of the software. These functionalities were displaying the location
of the target and setting the virtual box size.

Sending the target coordinates, was implemented in ”"Flight data” instead of ”Flight
planner” because of problems with editing the layout. That and setting the box size
functionality were implemented in the tab ”Set Box & Target”, which was included in the
parameter box, see figure [3.

When there was some time over, the video feed box was implemented in ”Flight data”.
The user can use this box to display the video feedback from the tricopter, if there is
a video receiver connected to the laptop and the set up has been done according to the
”User manual”, [G]. In the non-modified version of APM MISSION PLANNER it is possible
to display the video broadcast in the attitude window, but because the camera is not
fixed in the tricopter it was decided to split up the attitude and video into two separate
windows. It was also done due to the desire to be able to record the video feedback and
the attitude indicator separately. Because of the implementation of the window for the
video broadcast, the parameter box was moved to the left.

The intended flight trajectory and the position of the tricopter are presented on a map.
Representation of a target was implemented in the same way as in ”Flight planner”. A
red marker shows the coordinates of the target. The real-time position indicator for the
multicopter in ”Flight data” was changed from a quad copter to a tricopter.

The difference between the modified and the non-modified APM MIiSSION PLANNER, can
be seen in figures [¥ 4, respectively.

(7 APM Planner 1.0.74 Build By Michael Obome i I T =

ArduPlane

0=0

GRS No GP

0 0 0 M Tuing B AtoPan Zoom 20 B

Figure 17: The non-modified Flight Data tab.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 25

" —
(" Triforce Planner 13,37 Build By Michael Obomne/Triforce group.

ArduCopter2

M Tuning [Auto Pan Zoom [19.5 Bl

Figure 18: The modified Flight Data tab.

The numbering in the figures above:

#1 Menu bar

#2 Connection bar
#3 Parameter box
#4 Video window
#5 Map window

#6 Attitude window

Modifications to firmware related to APM MIisSION PLANNER

To be able to send and receive target position and virtual box size between the tricopter
and APM MIsSSION PLANNER, and also for the sent values to be saved to the EEPROM
on the ArduPilot, some modifications hade to be made to the firmware. These can be
found in appendix [E.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

26

Tricopter

m

iagram

d

iring

tsrt10.tricopter@gmail.com
Technical documentation tricopter.pdf

Karl-Johan Barsk
karba878@student.liu.se

L Jo | abed LL0T ‘22 Jequieides 0} uoIsney
o
HOLId
31LLO¥HL
josILAIN Buideyur] AS| VA
v ezis abed we.belp Jinauio Jejdoou). (YowmsspoW) 1 XNV
(doyexnv
[YEE
UAITLLOYH,
47083
Tas3 Yafts
goB3 lo_‘__c L
I
ONH3s 13
NO3moIL PPNy
UATTLLOYHL $EE0)
ago 1qa b
st odat sty %0 Joapey oY
ane v envhenenh znen T€CT £el £V €5 28 €41 281 T8
S
aaia sud .:9:07 7 suid jndu| V_M_._w,_mv
Ll
X BIBWEDNNAI
—e'ano \S
‘NS “ans
no M1
u Hodweppl Sdo
o410 anNo AgE 198
Jongnps
“aND
—$aN© Suld 02l - Ag
NS e
[Jindurseuog | 2am 1ond ﬁ wodozl| yas
. [g, Tgsvgs
>m oTAS TBIACONINT
aANO
Jeuog
ot o
TTILONSS NVJOAT
[}
15
— — — <
LN s
n <
€N N[TN €N LN | Zzn| €en N | Zen | e _nm_.r.
s A 1o oo A [ELS7 CLE T ELEZ T Y] °©
Sdo BlawWeQ
1 oneg BIy~0s3 ye1 083 ¥oeg os3 ANSAL kL 03pIA
<mw AL ALL AL}
NG
anoy———
I03PIA
7 _o_os; 7 10101 7 7 Jojoly 7 7 Kiayeg 7

A W

Document responsible:
Author’s E-mail:
Document name:

E-mail:

Control Project

Triforce
Tricopter

TSRT10

Project group:
Course code:

Course name:
Project:

Tricopter

27

B Swurveillance unit code

In arduimu.pde:

/1l
// Gimbal code

//

#include <Wire.h>

#include <Servo.h>

//
// Macros
//

#define
#define

// Servo

ToRad (x)
ToDeg(x)

//
/] 12C

//

#define
#define
#define
#define

CURRENT_LOCATION 1
TARGET LOCATION 2
TRICOPTER_HEADING 3
GIMBAL_SERVO_ANGLES 4
#define

/1l
// Gimbal

//
#define OFFSET.TILT
(degrees)
#define OFFSET PAN
(degrees)
#define OFFSET_THETA
(degrees)
#define MAX TILT
(degrees, w.o
#define MIN_TILT
(degrees, w.o
#define MAXPAN
(degrees, w.o
#define MIN_PAN
(degrees, w.o

215.0f
80.0f
24.0f

30
offset)
—65
offset)
90
offset)
-90
offset)

/1l

// Current angles

//

static float angle_tilt
offset)

static float angle_pan
offset)

0.0f;

0.0f;

/1l
// Servo

I2C MAX MESSAGE LENGTH 32

// I2C library
#include <Waypoints.h> // Used for

library

((x)%0.01745329252)
((x)*57.2957795131)

//
//
//
//
//
//
//

//
//

location

struct

Package ID
- H N

Max message length in bytes

Tilt offset to level gimbal

Pan offset to level gimbal <

Theta offset to level tilt <«

Maximum tilt servo output

Minimum tilt servo output
Maximum pan servo output

Minimum pan servo output

Gimbal tilt angle (w.o <«

Gimbal pan angle (w.o <«

Course name: Control Project E-mail:

Project group: Triforce
Course code: TSRT10 Author
Project: Tricopter

Document responsible:

’s E-mail:

Document name:

tsrt10.tricopter@gmail.com
Karl-Johan Barsk
karba878@student.liu.se

Technical documentation tricopter.pdf

Tricopter

28

//

Servo servo_tilt;
Servo servo_pan;

/1l

// Locations and orientation

//

//
//

Tilt servo object
Pan servo object

Waypoints:: WP target; // Target location in (Ing ,+
lat , alt)

Waypoints:: WP tricopter_pos; // Tricopter location in (lng, <+
lat , alt)

long tricopter_roll = 0; // Tricopter roll angle (+
degreesx100)

long tricopter_pitch = 0; // Tricopter pitch angle (+
degrees x100)

long tricopter_yaw = 0; // Tricopter yaw angle (<

degreesx100)

New orientation data has <«

//

false; //

static bool new_orientation =
been received?
static bool target_in_sight =

/1l

// 12C received data

/!

byte received_data[I2C_MAX_MESSAGE_LENGTH |;

/1l

// Setup — Run once at startup

/!

void setup() {

//

// Gimbal servo setup

/!

servo_tilt.attach(10); // analog pin 1
servo_tilt.setMaximumPulse (2450);
servo_tilt.setMinimumPulse (450);

false;

Target is in sight?

servo_pan.attach(9); // analog pin 0
servo_pan.setMaximumPulse (2450);
servo_pan.setMinimumPulse (450);

/1l

// Set angles to zero at start
//

angle_tilt = 0;

angle_pan = 0;
setServoAngles () ;

/1l

// Reset locations
//

target.lat =
target.lng =
target.alt =

(soccer field outside B-house)
583982430;
155789512;

0;

Course name:
Project group:
Course code:
Project:

Control Project
Triforce
TSRT10
Tricopter

E-mail:

Document responsible:
Author’s E-mail:
Document name:

tsrt10.tricopter@gmail.com
Karl-Johan Barsk
karba878@student.liu.se

Technical documentation tricopter.pdf

A
“ Tricopter 29

}

/!
/1l
/!

tricopter_pos.lat = 583979029;
tricopter_pos.lng = 155789512;
tricopter_pos.alt 0;

/1l

// Initialize I12C

/!

for (uint8_t i=0; i<I2C_MAX_MESSAGE_LENGTH; i++)
received_data[i] = 0;

Wire.begin(0x02); // Address 2 on the bus
Wire.onReceive (receiveEvent);

Wire.onRequest (requestEvent);

Main loop

void loop() {

}

/1l
/1l
//

/1l
// Update angles when new orientation has been received
/1l
if (new_orientation) {
cli();
calculateAngles () ;
setServoAngles () ;

new_orientation = false;
sei();
}
//
// Refresh servos ~ every 20 ms (disable interrupts!)
//
cli();
Servo::refresh();
sei();
12C — receive event

void receiveEvent(int howMany) {

// At least two bytes sent
int8_t payload = Wire.receive();
int8_t flag = Wire.receive();

// Get all data

while (Wire.available()) {
int i = payload — Wire.available();
byte data_byte = Wire.receive();
received_data[i] = data_byte;

}

// Interpret message

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter

30
switch(flag) {
// New tricopter location
case CURRENT_LOCATION:
tricopter_pos.lat = (long) convertToint32_t(received_data<
)
tricopter_pos.lng = (long) convertToint32_t(received_data¢+>
+4);
tricopter_pos.alt = (long) convertToint32_t(received_data<+
+8);
break;

// New target location
case TARGET_LOCATION:
target.lat
)5
target.lng
+4);
target.alt
+8);
break;

// New tricopter heading
case TRICOPTER_HEADING:

(long) convertToint32_t(received_data<
(long) convertToint32_t(received_data<

(long) convertToint32_t(received_data¢>

tricopter_roll = (long) convertToint32_t(received_data<
)5

tricopter_pitch = (long) convertToint32_t(received_data<
+4);

tricopter_yaw = (long) convertToint32_t(received_data<
+8);

new_orientation = true;

break;

// New requested gimbal angles
case GIMBAL_SERVO_ANGLES:

angle_pan = float(int8_t(received_data[0]));
angle_tilt = float(int8_t(received_data[l]));

setServoAngles () ;
break;

}
/1l

// I12C — request event

//

void requestEvent () {

// Only one type of request — Target in sight?

if (target_in_sight)
Wire.send(1);
else
Wire.send (0);

}
/1l

// Convert 4 bytes to int32

//

Course name: Control Project E-mail:
Project group: Triforce Document responsible:
Course code: TSRT10 Author’s E-mail:

Project: Tricopter Document name:

tsrt10.tricopter@gmail.com
Karl-Johan Barsk
karba878@student.liu.se

Technical documentation tricopter.pdf

A
“ Tricopter 31

int32_t convertToint32_t(bytex data) {
return int32_t ((uint32_t(data[3]) << 4%6) + (uint32_t(data[2]) <<
4%4) + (uint32_t(data[l]) << 4%2) + uint32_t(data[0]));

}
/1l

// Clamp servo angles to [—180, 180]
//
void clampServoAngles () {
// Get right angle interval
while(angle_pan < —180.0f) angle_pan += 360.0f;
while(angle_pan > 180.0f) angle_pan —= 360.0f;
while(angle_tilt < —180.0f) angle_tilt += 360.0f;
while(angle_tilt > 180.0f) angle_tilt —= 360.0f;

// Clamp servo angles

if (angle_pan < MIN_PAN) angle_pan = MIN_PAN;
if (angle_pan > MAX_PAN) angle_pan = MAX_PAN;
if(angle_tilt < MIN_TILT) angle_tilt = MIN_TILT;
if (angle_tilt > MAX_TILT) angle_tilt = MAX_TILT;

}
/1l

// Set out desired angles to servos

/!

void setServoAngles () {

// Clamp angles to valid interval
clampServoAngles () ;

/!
Compensate for non—linearity in tilt angle output.
p Y g I
// See technical documentation for more details.

/!

// Parameters
#define GIMBAL_A 12 // (mm)
#define GIMBAL_B 12
#define GIMBAL_C 27
#define GIMBAL_D 22
#define GIMBAL_F 6
#define GIMBAL_G 11
#define GIMBAL_PHI 0.49934672 // atan(F/G)
#ifndef PI

#define PI 3.1415927
#endif

// Calculate theta and add offset for leveling tilt
float theta = ToRad(angle_tilt + OFFSET_THETA);

// Calculate alpha from theta and parameters

float psi = PI — GIMBAL_PHI — theta;
float i = sqrt (GIMBAL_B*GIMBAL_B + GIMBAL_D%*GIMBAL_D — 2x¢
GIMBAL_B*GIMBAL_Dxcos(psi));
float alpha_l = acos((i%i + GIMBAL_A%GIMBAL_A — GIMBAL_Cx<¢
GIMBAL_C)/(2%xGIMBAL_Axi));
float alpha_2 = acos((i*i + GIMBAL_B*GIMBAL_B — GIMBAL_Dx<¢>
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 32

GIMBAL_D) /(2*GIMBAL_Bxi));
float alpha = alpha_1 + alpha_2;

// Get servo angle from alpha
float tilt_out = OFFSET_TILT — ToDeg(alpha);

// Write servo angle
servo_tilt.writef (tilt_out);

// Set pan angle (no non—linearity)
servo_pan.writef (OFFSET_PAN — angle_pan);

/* // Debug
Serial.print (” Tilt in: 7); Serial.print(angle_tilt);
Serial.print(” Theta: ”); Serial.print(ToDeg(theta));
Serial.print(” (7); Serial.print(theta); Serial.print(”) 7);
Serial.print (” Alpha: 7); Serial.print(ToDeg(alpha));
Serial.print(” (”); Serial.print(alpha); Serial.print(”) 7);
Serial.print(” Tilt out: ”); Serial.print(tilt_out);
*/
}

/1l

// Get distance in ground plane between to locations

//

long get_distance(Waypoints::WP xlocl, Waypoints::WP xloc2) {

// Valid input?

if (loci—>lat = 0 || locl—>lng = 0)
return —1;
if (loc2—>lat =— 0 || loc2—>lng =— 0)

return —1;

// Latitude of loc2 in radians
float rads = (abs(loc2—>lat) / 10000000) % 0.0174532925;

// Get longitude scalings from latitude
float _scalelLongDown = cos(rads);
float _scaleLonglUp = 1.0f/cos(rads);

// Get angle differences
float dlat = (float)(loc2—>lat — locl—>lat);
float dlong = ((float)(loc2—>lng — locl—>lng)) % _scaleLongDown;

// Get distance from angle difference
return sqrt(sq(dlat) + sq(dlong)) * .01113195;

}
/1l

// Get bearing from locl to loc2

/!

long get_bearing(Waypoints::WP xlocl, Waypoints::WP xloc2) {

// Valid input?

if (loci—>lat = 0 || locl—>lng = 0)
return —1;
if (loc2—>lat =— 0 || loc2—>lng =— 0)
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 33

}

/1l
/1l
/!

return —1;

// Latitude of loc2 in radians
float rads = (abs(loc2—>lat) / 10000000) % 0.0174532925;

// Get longitude scalings from latitude
float _scalelLongDown = cos(rads);
float _scalelLongUp = 1.0f / cos(rads);

// Get longitude difference
long off_x = loc2-—>1lng — locl—>Ilng;

// Get latitude difference
long off_y = (loc2—>lat — locl—>lat) * _scaleLongUp;

// Get bearing from differences
long bearing = 9000 + atan2(—off_y, off_x) * 5729.57795;

// Wrap bearing if necessary
if (bearing < 0)

bearing += 36000;
return bearing;

Calculate gimbal angles

void calculateAngles () {

// Get tricopter orientation in radians

float roll_rad = ToRad(tricopter_roll /100.0f);
float pitch_rad = ToRad(tricopter_pitch/100.0f);
float yaw_rad = ToRad(tricopter_yaw /100.0f);

// Calculate cos and sin values

float cos_roll = cos(—roll_rad);
float sin_roll = sin(—roll_rad);
float cos_pitch = cos(—pitch_rad);
float sin_pitch = sin(—pitch_rad);
float cos_yaw = cos(—yaw_rad);
float sin_yaw = sin(—yaw_rad);

// Calculate distance and bearing from tricopter to target

float dist = (float)get_distance(&tricopter_pos, &target);

float bearing = (float)ToRad(get_bearing(&tricopter_pos, &target)+
/100.0%) ;

// Get relative coordinates in world system

float x = dist*cos(bearing);

float y = distxsin(bearing);

float z = —(target.alt — tricopter_pos.alt)/100.0f; // cm to m

// Rotate relative coordinates according to tricopter orientation
float y_p = x*cos_pitchxcos_yaw — y*cos_pitchxsin_yaw + zx<>
sin_pitch;
float x_p = xx*(cos_yawxsin_pitch#sin_roll4cos_rollxsin_yaw) + y<
*(cos_roll+cos_yaw—sin_pitch#sin_roll*sin_yaw) — z*cos_pitch«

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com

Project group: Triforce Document responsible: ~ Karl-Johan Barsk

Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter

34

*sin_roll;

float z_p = —(x#(sin_rollssin_yaw—cos_roll*cos_yaw*sin_pitch) + «

yx(cos_yawxsin_roll+cos_rollssin_pitch*sin_yaw) + z*<
cos_pitch#cos_roll);

// Get resulting angles
angle_tilt = ToDeg(atan2(z_p, abs(dist)));
angle_pan = ToDeg(atan2(x_p, y_p));

// Target in sight?
if (angle_tilt > MAX_TILT |
angle_tilt < MIN_TILT |
angle_pan > MAX_PAN |
angle_pan < MIN_PAN) {
target_in_sight = fa

1se;
}
else{
target_in_sight = true;
}

/* // Debug

Serial.print (7 !l 7);

Serial.print (” Tilt: ”);Serial.print(angle_tilt);
Serial.print(” Pan: ”);Serial.print(angle_pan);
Serial.print (” Dist: 7);Serial.print(dist);

Serial.print (” Bearing: 7);Serial.print(bearing);
Serial.print Tri.lng: 7);Serial.print(tricopter_pos.Ing);

(
(
(
(
(
(
Serial.print (
(
(
(
(
(

”

(
7 Tri.lat: 7);Serial.print(tricopter_pos.lat);
7 Tar.lng: 7);Serial.print(target.lng);
7 Tar.lat: 7);Serial.print(target.lat);
7 x: 7);Serial.print(x);
y: 7);Serial.print(y);
7 z: 7);Serial.print(z);x*/

Serial.print
Serial.print
Serial.print
Serial.print
Serial.print

9

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com

Project group: Triforce Document responsible: ~ Karl-Johan Barsk

Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 35

C I2C code

In defines.h:

/1l

// 12C parameters

#define IMU.CAMERA_ADRESS 0x02
#define CURRENT_LOCATION_PACKET SIZE 12
#define CURRENT_LOCATIONFLAG 1
#define CAMERA_TARGET _LOCATION_PACKET_SIZE 12
#define CAMERA_TARGET_LOCATIONFLAG 2
#define TRICOPTER HEADING_PACKET_SIZE 12
#define TRICOPTER_HEADINGFLAG 3
#define GIMBAL_SERVO_ANGLES_PACKET-SIZE 2
#define GIMBAL.SERVO_ANGLESFLAG 4

// A send rate of 0 equals no sending over the bus
// The send rate is sends per runs through 'loop()'

#define CURRENT_LOCATION_SEND RATE 4000
#define CAMERA TARGET LOCATION_SENDRATE 6000
#define TRICOPTER HEADING_SEND RATE 1000
#define GIMBAL_SERVO_ANGLES_SEND RATE 0

/1l

In ArduCopter.pde:

//

// 12C variables

// The offset of the sent packages are send_rate_offset runs through«
"loop () '

static int busy_bus = 0;

static const int send_rate_offset = 200;

static int update_current_location = send_rate_offset *3;
static int update_camera_target_location = send_rate_offset%2;
static int update_tricopter_heading = send_rate_offset;
static int update_gimbal_servo_angles = 0;

static int32_t angle_pan = 0;

static int32_t angle_tilt = 0;

/!

In loop() in ArduCopter.pde:

// Sending tricopter location over I2C bus

#if CURRENT_LOCATION_SEND_RATE != 0
if (busy_bus = 0 && update_current_location =— <
CURRENT_LOCATION_SEND_RATE)
{
update_current_location = O0;
busy_bus = send_rate_offset;
Wire.beginTransmission (IMU_CAMERA_ADRESS);
Wire.send (CURRENT_LOCATION_PACKET_SIZE);
Wire.send (CURRENT_LOCATION_FLAG);
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 36

Wire.send ((uint8_t*) (makeCurrentLocationSendVector()), «
CURRENT_LOCATION_PACKET_SIZE);
Wire.endTransmission();
}
if(update_current_location < CURRENT_LOCATIDN_SEND_RATE)
update_current_location++;
#endif

// Sending camera target location over I1°2C bus
#if CAMERA_TARGET_LOCATION_SEND_RATE != 0
if (busy_bus = 0 && new_camera_target && «
update_camera_target_location =— <«
CAMERA_TARGET_LOCATION_SEND_RATE)

update_camera_target_location = 0;
busy_bus = send_rate_offset;

Wire.beginTransmission (IMU_CAMERA_ADRESS);
Wire.send (CAMERA_TARGET_LOCATION_PACKET_SIZE);
Wire.send (CAMERA_TARGET_LOCATION_FLAG);
Wire.send ((uint8_t) (makeCameraTargetLocationSendVector ()) ,«
CAMERA_TARGET_LOCATION_PACKET_SIZE);

Wire.endTransmission();

}

if(update_camera_target_location <
CAMERA_TARGET_LOCATION_SEND_RATE)
update_camera_target_location++;

Hendif

// Sending tricopter heading over I2C bus
#if TRICOPTER_HEADING_SEND_RATE != 0
if(busy_bus — 0 &&:update_tricopter_heading =
TRICOPTER_HEADING_SEND_RATE)
{

update_tricopter_heading = O0;
busy_bus = send_rate_offset;

Wire.beginTransmission (IMU_CAMERA_ADRESS);
Wire.send (TRICOPTER_HEADING_PACKET_SIZE);
Wire.send (TRICOPTER_HEADING_FLAG);
Wire.send ((uint8_tx)(makeTricopterOrientationSendVector()) ,«
TRICOPTER_HEADING_PACKET_SIZE);

Wire.endTransmission();

}

if (update_tricopter_heading < TRICOPTER_HEADING_SEND_RATE)
update_tricopter_heading-++;

#endif

// Sending gimbal servo angles over I2C bus

#if GIMBAL_SERVO_ANGLES_SEND_RATE != 0
if (busy_bus = 0 && update_gimbal_servo_angles =— <
GIMBAL_SERVO_ANGLES_SEND_RATE)
{
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

“ Tricopter 37

update_gimbal_servo_angles = 0;
busy_bus = send_rate_offset;

Wire.beginTransmission (IMU_CAMERA_ADRESS);
Wire.send (GIMBAL_SERVO_ANGLES_PACKET_SIZE);
Wire.send (GIMBAL_SERVO_ANGLES_FLAG);
Wire.send(angle_pan);
Wire.send(angle_tilt);
Wire.endTransmission();

}

if (update_gimbal_servo_angles < GIMBAL_SERVO_ANGLES_SEND_RATE)
update_gimbal_servo_angles++;

#endif

if (busy_bus > 0)
busy_bus ——;

// Making a vector with the current location to send over the I2C <«
bus
static long# makeCurrentLocationSendVector ()

{

long send_vector [3];

send_vector [0] = current_loc.lat;
send_vector [1] = current_loc.lng;
send_vector [2] = current_loc.alt;

return send_vector;

// Making a vector with the target location to send over the I2C bus
static longx makeCameraTargetLocationSendVector ()

{

long send_vector [3];

send_vector [0] = camera_target.lat;
send_vector [1] = camera_target.lng;
send_vector [2] = camera_target.alt;

return send_vector;

// Making a vector with the tricopter orientation to send over the <«
I12C bus
static longx makeTricopterOrientationSendVector ()

{

long send_vector [3];

send_vector [0] = dcm.roll_sensor;
send_vector [1] = dcm.pitch_sensor;
send_vector [2] = dcm.yaw_sensor;

return send_vector;

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 38

D Virtual box code

In defines.h:

//Virual box parameters
//
#define BOX_SIZE 20

// A box that is BOXSIZE x BOX.SIZE x BOX.SIZE [m], default size
#define BOXHEIGHT ABOVE.GROUND 3

// The box height above the ground in [m)]

#define MIDDLE_SIZE 5

// The resolution of the middle in the box, in [m]

#define WEST 1
#define EAST 2
#define NORTH 3
#define SOUTH 4
#define PREVIOUSLY BROKEN 1
#define PREVIOUSLY_UN_BROKEN 0
#define VIRTUALBOX.UPDATERATE 10000
#define LOITER.COUNTERRATE 4
#define BOX_BOUNDARIES 10
#define MIDDLEBOUNDARIES 11

//

In ArduCopter.pde:

//Virtual box parameters
static struct Location middle_box;
static struct Location start_loc;

static int virtual_box_counter = 0;
//Counter that controls how often we check if the boundaries are <«
broken.

static byte boundaries = PREVIOUSLY_UN_BROKEN;
//A variable that says if the boundaries previously been broken or «
unbroken

static bool box_created = false;
//A bool that check if the box been created or not
static int32_t boundary_west; //Boundaries for the box

static int32_t boundary_east;

static int32_t boundary_north;

static int32_t boundary_south;

static int32_t boundary_top;

static int32_t boundary_bottom;
static int32_t middle_boundary_west;
// Boundaries for the middle—box
static int32_t middle_boundary_east;
static int32_t middle_boundary_north;
static int32_t middle_boundary_south;
static int32_t middle_boundary_top;
static int32_t middle_boundary_bottom;

static int current_box_size = BOX_SIZE;
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 39

// Determines the size of the box

/1l

In loop() in ArduCopter.pde:

if (box_created && virtual_box_counter — VIRTUAL_BOX_UPDATE_RATE)

{

virtual_box_counter = 0;

#ifndef GO_TO_LOITER_BEFORE_GUIDED
// If the boundaries not been broken but it breaks now, the<«
we will go to guided and fly back to the middle of the<«
box
if ((boundaries —— PREVIOUSLY_UN_BROKEN && <«
boundaries_breaks()))

boundaries = PREVIOUSLY_BROKEN; // Set the param <«
to previously broken

old_guided_WP = guided_WP;

guided_WP = middle_box; // Set the waypoint<«
to the middle of the box

set_mode (GUIDED) ; // Return to middle

#else
if ((boundaries = PREVIOUSLY_UN_BROKEN && «+
boundaries_breaks()) || control_mode = LOITER)

set_mode (LOITER);

if (loiter_counter = LOITER_COUNTER_RATE)
{
loiter_counter = 0;
boundaries = PREVIOUSLY_BROKEN;
old_guided_WP = guided_WP;
guided_WP = middle_box;
set_mode (GUIDED); //Return to middle

if (loiter_counter < LOITER_COUNTER_RATE)
loiter_counter++;

}

#endif

// The boundaries been broken and we arrive to the middle, <«
then the control is given back to the user and the box—
mode is turned on.

if (boundaries — PREVIOUSLY_BROKEN && in_middle())

{

#ifdef VIRTUAL_BOX_PRINT
Serial.println("#*+NOTE: In middle!");

#endif

boundaries = PREVIOUSLY_UN_BROKEN;

guided_WP = old_guided_WP;

set_mode (BOX) ;

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A

“ Tricopter 40

}

}

if (virtual_box_counter < VIRTUAL_BOX_UPDATE_RATE)
virtual_box_counter4+;

/

/Functions that controls if the boundaries breaks

static bool boundaries_breaks ()

{

if (current_loc.lat > boundary_north)
{
#ifdef VIRTUAL_BOX_PRINT
Serial.println("boundary_north BROKEN!");
#endif
return true;

}

else if (current_loc.lat < boundary_south)
{
#ifdef VIRTUAL_BOX_PRINT
Serial.println("boundary_south BROKEN!");
#endif
return true;

}

else if (current_loc.lng > boundary_east)
{
#ifdef VIRTUAL_BOX_PRINT
Serial.println("boundary_east BROKEN!");
#endif
return true;

}

else if (current_loc.lng < boundary_west)
{
#ifdef VIRTUAL_BOX_PRINT
Serial.println("boundary_west BROKEN!");
#endif
return true;

}

// 2D box in longitude and latitude
#ifndef IGNORE_HIGHT
else if (current_loc.alt < boundary_bottom)
{
#ifdef VIRTUAL_BOX_PRINT
Serial.println("boundary_bottom BROKEN!");
#endif
return true;

}

else if (current_loc.alt > boundary_top)
{
#ifdef VIRTUAL_BOX_PRINT
Serial.println("boundary_top BROKEN!");
#endif
return true;

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 41

}

#endif

else

{

#ifdef VIRTUAL_BOX_PRINT
Serial.println("boundary NOT BROKEN!");

Serial .print("current_box_size: ");
Serial.println(current_box_size);
#endif

return false;

//Controls if the tricopter is back in the middle—box, either in 2D <«
or 3D.
static bool in_middle()
{
#ifndef IGNORE_HEIGHT
return((current_loc.lat < middle_boundary_north)
(current_loc.lat > middle_boundary_south)
(current_loc.lng middle_boundary_east)
(current_loc.lng middle_boundary_west)
(current_loc.alt middle_boundary_top)
(current_loc.alt middle_boundary_bottom)

EEEEER

<
>
<
>

~—

#else
return (current_loc.lat < middle_boundary_north)

current_loc.lat > middle_boundary_south)

current_loc.lng < middle_boundary_east)

current_loc.lng > middle_boundary_west));

EEE

(
(
(
(

#endif

In system.pde:

// This function creates the virtual box and the middle — box <«
boundaries .
static void create_virtual_box ()
if (current_box_size = 0)
current_box_size = BOX_SIZE;

middle_box = current_loc; //The middle in the box will be the<
current position
start_loc = current_loc; //The start_loc will be the current«

position

)

WEST, BOX_BOUNDARIES)

EAST, BOX_BOUNDARIES);
NORTH, BOX_BOUNDARIES);
SOUTH, BOX_BOUNDARIES)

boundary_west = get_boundary
boundary_east = get_boundary
boundary_north = get_boundary
boundary_south = get_boundary

Py

)

if (start_loc.alt < (current_box_size/2+BOX_HEIGHT_ABOVE_GROUND)+«

x100)
{
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

AA

A

Tricopter 42

boundary_top (current_box_size/2+BOX_HEIGHT_ABOVE_GROUND)*100 ++
current_box_size*100/2;

boundary_bottom (current_box_size/24+BOX_HEIGHT_ABOVE_GROUND)<+
*100 — current_box_size*100/2;

middle_box.alt (boundary_top + boundary_bottom) /2;

}

else

{

start_loc.alt + current_box_size*lOO/Q;
start_loc.alt — current_box_sizex100/2;

boundary_top
boundary_bottom

get_boundary (WEST, MIDDLE_BOUNDARIES);
get_boundary (EAST, MIDDLE_BOUNDARIES);
get_boundary (NORTH, MIDDLE_BOUNDARIES);
get_boundary (SOUTH, MIDDLE_BOUNDARIES);
middle_box.alt + MIDDLE_SIZE/2%100;
middle_box.alt — MIDDLE_SIZE/2%100;

middle_boundary_west
middle_boundary_east
middle_boundary_north
middle_boundary_south
middle_boundary_top
middle_boundary_bottom

)

/

/ Calculates the boundaries with aid of the start location.

static int32_t get_boundary(byte compass_direction, byte <

{

boundary_type)

if (start_loc.lat = 0 || start_loc.lng =— 0)
return —1;

int32_t boundary = 0;

int boundary_size = 0;

int32_t start_loc_lat_abs

start_loc.lat;

if (start_loc_lat_abs < 0)
start_loc_lat_abs —start_loc_lat_abs;

float rads_temp
0.0174532925;

float scalelLongDown_temp

float scalelLongUp_temp

float awesome_constant

float super_awesome_constant

(start_loc_lat_abs/10000000.0) * <«

cos(rads_temp);
1.0f / cos(rads_temp);
.01113195;

1.0f/awesome_constant;

if (boundary_type BOX_BOUNDARIES)

{
}
else

{
}

boundary_size current_box_size;

boundary_size MIDDLE_SIZE;

switch (compass_direction)

{

case NORTH:
boundary (start_loc.latxawesome_constant+boundary_size<«
*0.5)*super_awesome_constant;

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com

Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se
Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 43

break;
case SOUTH:
boundary = (start_loc.latxawesome_constant—boundary_size<
x0.5)*super_awesome_constant;
break;
case WEST:
boundary = start_loc.lng — int32_t ((boundary_size=*0.5) (<«
super_awesome_constant*scaleLongUp_temp));
break;
case EAST:
boundary = start_loc.lng + int32_t ((boundary_size*0.5) (<
super_awesome_constant*scaleLongUp_temp));
break;

}

return boundary;

In set_mode() in system.pde:

// A mode that creates a virtual box if the box—mode is turned on.
When the tricopter is inside the box the streering functionality<«
is like stabilize.

case BOX:

if (! box_created)

{

#ifdef VIRTUAL_BOX_PRINT
Serial.println("#**NOTE: BOX CREATED (like a boss)");

#endif

create_virtual_box () ;

box_created = true;
}
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_STABLE;
throttle_mode = THROTTLE_MANUAL;
reset_hold_I();
break;

The following code has been added in every mode i set_modein system.pde to remove
the box when box mode is deactivated.

// If a virtual box has been created, un—make the box
if (box_created)

{

box_created = false;
boundaries = PREVIOUSLY_UN_BROKEN;

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
AA Tricopter 44

E Firmware modifications to support sending/receiv-
ing virtual box size and target position

E.1 Target position

In Parameters.h:

k_param_camera_target_alt = 230,
k_param_camera_target_lat,
k_param_camera_target_1lng,

AP_Int32 camera_target_alt;
AP_Int32 camera_target_lat;
AP_Int32 camera_target_1lng;

camera_target_alt (0, k_param_camera_target_alt, PSTR("CAMERA_ALT"))<+>

)

camera_target_lat (0, k_param_camera_target_lat, PSTR("CAMERA_LAT"))<+

)

camera_target_lng (0, k_param_camera_target_lng, PSTR("CAMERA_LNG")),

In ArduCopter.pde:

static struct Location camera_target; // camera target waypoint.
static bool new_camera_target; // Flag to tell us if a new camera <>
target is received.

// If new target has been sent to tricopter, save it to eeprom and
// print to console that new target position has been received.
void update_camera_target ()

{

if (((g.camera_target_alt != camera_target.alt) ||
(g.camera_target_lat != camera_target.lat) ||
(g.camera_target_lng != camera_target.lng)) &&

!new_camera_target)

g.camera_target_alt.save();

camera_target.alt = g.camera_target_alt;
g.camera_target_lat.save();
camera_target.lat = g.camera_target_lat;
g.camera_target_lng.save();
camera_target.lng = g.camera_target_lng;
new_camera_target = true;

}

else if (new_camera_target)

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: =~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

“ Tricopter 45

Serial .print ("***NEW TARGET*** latitude: ");
Serial.print ((float)camera_target.lat/10000000);
Serial.print(" longitude: ");

Serial.print ((float)camera_target.lng/10000000);
Serial.print(" altitude: ");
Serial.println((float)camera_target.alt/100);
Serial3.print ("#**NEW TARGET#*** latitude: ");
Serial3.print ((float)camera_target.lat/10000000);
Serial3.print(" longitude: ");

Serial3.print ((float)camera_target.lng/10000000);
Serial3.print (" altitude: ");
Serial3.println((float)camera_target.alt/100);
new_camera_target = false;

At line 1248 in function slow_loop():

// If target is not hardcoded, check if new has been received.
#ifndef HARD CODED_.CAMERA TARGET

update_camera_target ();
#endif

E.2 Virtual box size

In Parameters.h:

k_param_box_size,

AP_Int16 box_size;

box_size (20, k_param_box_size, PSTR("BOX_SIZE")),

In ArduCopter.pde:

static bool box_size_changed = false; // Flag if new box size has <
been received.

// If new box size has been sent to tricopter , save it to eeprom and
// print to console that new size has been changed.
void update_current_box_size ()

{

if ((g.box_size != current_box_size) && !box_size_changed)

{

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter

46

current_box_size g.box_size;

box_size_changed = true;

}

else if (box_size_changed)

{

");

Serial.print ("***NOTE: Box size changed!! New size ");
Serial.println(current_box_size);
Serial3.print("#**NOTE: Box size changed!! New size
Serial3.println(current_box_size);

box_size_changed = false;

At line 1240 in function slow_loop():

// Check if new box size has been received and
// update the virtual box size if that is the case.
update_current_box_size();
if (box_size_changed) {
update_virtual_box_size();

box_size_changed = false;
}
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter

47

F APM Mission Planner code

F.1 Box size functionality

In Common.cs:

// Modified to be consistent with changes made in the arducopter

code
// (simple is no longer a mode). Also, Box mode is added.
public enum ac2modes

{

STABILIZE = 0, // hold level position

ACRO = 1, // rate control

//SIMPLE = 2, //

ALT_HOLD = 2, // AUTO control //+sxchangedxx*x

AUTO = 3, // AUTO control //#sxchangedxxx

GUIDED = 4, // AUTO control //#*%changedsx*sx

LOITER = 5, // Hold a single location //#*x*xchangedsxx
RTL = 6, // AUTO control //#sxchangedxx

CIRCLE = 7, //xxxchangedsxx
POSITION = 8, //#xxaddedsxx
BOX = 9 // #xxadded*xx

In CurrentState.cs, at line 270 in function UpdateCurrentSettings(...):

// Modified to be consistent with changes made in the arducopter <«

code
// (simple is no longer a mode). Also, Box mode is added.
switch (sysstatus.mode)

{

/xcase (byte)102:

mode = ” Simple”;
break;*/
case (byte)102: //sxxschangedsxx
mode = "Alt Hold";
break;
case (byte)103: //#xxschangedsxx
mode = "Auto";
break;
case (byte)104: //sxxschangedsxx
mode = "Guided";
break;
case (byte)105: //#xxschangedsxx
mode = "Loiter";
break;
case (byte)106: //#xxschangedsxx
mode = "RTL";
break;
case (byte)1l07: //#xxsxchangedssxx
mode = "Circle";
break;
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 48

case (byte)108: //xxxaddedsxx

mode = "Position";
break;
case (byte)109: //xxsxaddedsxx
mode = "Box";
break;

In FlightData.cs:

// Box size variables.
public static float BoxSize = 20;
public static float CurrentBoxSize = 20;

// Run when typing in the virtual box size text box.
private void textBoxl_TextChanged(object sender, EventArgs e)

{

try

{

if (sizeBox.Text != "")

{

if (int.Parse(sizeBox.Text) > 0)

{
}

else

{

BoxSize = float.Parse(sizeBox.Text);

MessageBox.Show("Box size can not be zero!");
sizeBox.Text = "";

}

catch

{

MessageBox.Show("Invalid box size!!!");
sizeBox.Text = "";

// Update local virtual box size and display it.
public void UpdateBoxSize(float size)

{

CurrentBoxSize = size;
label2.Text = "Size: " 4 CurrentBoxSize;

// Run when clicking the ”send” button for the virtual box size.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 49

private void SendBoxSize(object sender, EventArgs e)

{

if (comPort.BaseStream.IsOpen)
{
if (BoxSize < 0 || BoxSize > 255)
Console.WriteLine("Invalid size");
else if (MainV2.comPort.BaseStream.IsOpen)
{

try {
MainV2.comPort.setParam("BOX_SIZE", BoxSize);

MessageBox.Show("New box size set!");

}

catch (Exception ex) { Console.WritelLine(ex); }

try

{

MainV2.comPort.param = MainV2.comPort.getParamList () ;
UpdateBoxSize ((float)MainV2.comPort.param|["BOX_SIZE"]);

}

catch (Exception ex) { Comsole.WriteLine(ex); }

}

else
MessageBox.Show("Tricopter is not connected!");

F.2 Target functionality

In FlightData.cs:

// Target Vars

static public string tar_lat="";
static public string tar_lng = "";
// Current target

static float Clat = 58.39845f;
static float Clng = 15.57792f;
static float Calt = 1f;

// Run when typing in the target altitude text box.
private void TarAlt_TextChanged(object sender, EventArgs e)

{

try

{

if (TarAlt.Text != "")

{

if (int.Parse(TarAlt.Text) >= 0){}

}

catch

{

MessageBox.Show("Invalid altitude!!!");
TarAlt.Text = "";

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

“ Tricopter 50

// Update local target position and display it.
public void UpdateCurrentTarget(float lat, float lng, float alt)

{

Clat = lat;

Clng = 1ng;

Calt = alt;

Ctar_lat.Text = "Lat: " + Clat.ToString();
Ctar_long.Text = "Long: " + Clng.ToString();
Ctar_alt.Text = "Alt: " + Calt.ToString();

// Run when clicking the ”send” button for the target position.
private void SendTarget(object sender, EventArgs e)

{
if (comPort.BaseStream.IsOpen)
{
int templat = (int)(10000000xfloat.Parse(tar_lat));
int templng = (int)(10000000%float.Parse(tar_lng));
int tempalt = (int)(100%float.Parse(TarAlt.Text));
if (tempalt < 0)
MessageBox.Show("Bad altitude");
else if (templat =— 0 || templat >= 1800000000 || templat < «
—1800000000)
MessageBox.Show("Bad latitude");
else if (templng — 0 || templat > 900000000 || templat < ¢
—900000000)
MessageBox.Show("Bad longitude");
else if (MainV2.comPort.BaseStream.IsOpen)
{
try
{
MainV2.comPort.setParam("CAMERA_LAT", templat);
MainV2.comPort.setParam("CAMERA_LNG", templng);
MainV2.comPort.setParam("CAMERA_ALT", tempalt);
}
catch (Exception ex) { Console.WritelLine(ex); }
}
try
{
MainV2.comPort.param = MainV2.comPort.getParamList();
UpdateCurrentTarget (((float)MainV2.comPort.param| "+
CAMERA_LAT"]) / 10000000,
((float)MainV2.comPort.param|"<+>
CAMERA_LNG"]) / 10000000,
((float)MainV2. comPort.param["<
CAMERA_ALT"]) / 100);
float tempmsgl = ((float)MainV2.comPort.param|"+
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

“ Tricopter 51

CAMERA_LAT"]) / 10000000;

float tempmsg2 = ((float)MainV2.comPort.param|["<>
CAMERA_LNG"]) / 10000000;

float tempmsg3 = ((float)MainV2.comPort.param|"<+>
CAMERA_ALT"]) / 100;

string tempfinalmsg = "Lat: " + tempmsgl.ToString() + "<
long: " 4 tempmsg2.ToString() + "alt: " + tempmsg3.<
ToString();

MessageBox.Show(tempfinalmsg);

}

catch (Exception ex) { Comsole.WriteLine(ex); }

}

else
MessageBox.Show("Tricopter is not connected!");

At line 383 in MainLoop():

// Updating lat/long displayed text.
TarLat.Text = "Lat: " 4 tar_lat;
TarLng.Text = "Long: " + tar_1lng;

F.3 Box and target shared functionality

In FlightData.cs:

// Run when clicking the button to get current values for
// target position and virtual box size from the tricopter.
private void click_getBoxTar (object sender, EventArgs e)

{
if (MainV2.comPort.BaseStream.IsOpen)
{
try
{
UpdateBoxSize ((float)MainV2.comPort.param|["BOX_SIZE"]);
UpdateCurrentTarget (((float)MainV2.comPort.param|"+>
CAMERA_LAT"]) / 10000000,
((float)MainV2.comPort.param| "<
CAMERA_LNG"]) / 10000000,
((float)MainV2.comPort.param| "+
CAMERA_ALT"]) / 100);
}
catch (Exception ex) { Console.WritelLine(ex); }
¥
}
Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 52

F.4 Modified map functionality

In FlightData.cs and FlightPlanner.cs:

//Modified function to support drawing target marker.

// Last parameter ”isred” added to notify if the marker added should«
be red instead of green.

private void addpolygonmarker (string tag, double lng, double lat, <«
int alt, bool isred = false)

{

try

{
PointLatLng point = new PointLatLng(lat, lng);
//#+x+xadded codexxx
// Red marker for the target
GMapMarkerGoogleRed m2 = new GMapMarkerGoogleRed(point);
m2.ToolTipMode = MarkerTooltipMode.Always;
m2.ToolTipText = tag;
m2.Tag = tag;
//*++xadded code ends*x*x
GMapMarkerGoogleGreen m = new GMapMarkerGoogleGreen(point);
m.ToolTipMode = MarkerTooltipMode.Always;
m.ToolTipText = tag;
m.Tag = tag;

//ArdupilotMega . GMapMarkerRectWPRad mBorders = new <
ArdupilotMega . GMapMarkerRect WPRad (point , (int) float .+
Parse (TXT_-WPRad. Text) , MainMap) ;

GMapMarkerRect mBorders = new GMapMarkerRect (point);

{
mBorders . InnerMarker = m;
mBorders.wprad = (int)float.Parse(TXT_WPRad.Text);
mBorders .MainMap = MainMap;

}

// Check if adding a green or red (target) marker.
//#x+xadded codexxx
if (isred)
objects.Markers.Add(m2);
else

//*+xadded code ends**x
objects.Markers.Add(m);
objects.Markers.Add (mBorders);

} //*xxadded Dbracket xxx

catch (Exception) { }

In FlightPlanner.cs

// Added booleans.

static bool addtarget = false; // True if adding target and not WP

static bool onTargetMarker = false; //True if mouse over the target <
marker and not WP marker.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 53

void MainMap_OnMarkerLeave (GMapMarker item)
{
if (!isMouseDown)
{
//#xxcode addedsx=x
// Test if targetmarker.
if (item.Tag.ToString() = "Target")

{
}

else
//#++xadded code ends*xsx
if (item is GMapMarkerRect)

{

onTargetMarker = false;

CurentRectMarker = null;

GMapMarkerRect rc = item as GMapMarkerRect;
rc.Pen.Color = Color.Blue;
MainMap.Invalidate(false);

void MainMap_OnMarkerEnter (GMapMarker item)

{

if (!isMouseDown)
{
//#xxcode addedsx=x
// Test if target marker.
if (item.Tag.ToString() = "Target")

{
}

else
//*+xadded code ends*x*x
if (item is GMapMarkerRect)

{

onTargetMarker = true;

GMapMarkerRect rc = item as GMapMarkerRect;
rc.Pen.Color = Color.Red;
MainMap.Invalidate(false);

CurentRectMarker = rc;

void MainMap_MouseUp(object sender, MouseEventArgs e)

{

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 54

if (isMouseDown) // mouse down on some other object and dragged <
to here.

if (e.Button = MouseButtons.Left)
{
}
//#+xcode addedsxx
// Test if target marker
if (onTargetMarker)

onTargetMarker = false;
//**+xadded code endss*x

isMouseDown = false;

if (!isMouseDraging)

{

if (CurentRectMarker != null)

{
}

//*xxcode addedsxx

// Place target on the map if left—click while shift is <«
held down.

else if (addtarget && Control.ModifierKeys — Keys.Shift<«

)
{

// cant add WP in existing rect

targetloc.lat = (int)(currentMarker.Position.Lat<
¥10000000) ;

targetloc.lng = (int)(currentMarker.Position.Lng«
x10000000) ;

writeKML () ;

FlightData.tar_lat = currentMarker.Position.Lat.<«>

ToString () ;
FlightData.tar_lng = currentMarker.Position.Lng.<>
ToString () ;
addtarget = false;
}
//#++xadded code endx*x*x
else
{
callMe (currentMarker .Position.Lat, currentMarker.<«
Position.Lng, 0);

else

void MainMap_MouseDown(object sender, MouseEventArgs e)

{

start = MainMap.FromLocalToLatLng(e.X, e.Y);

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 55

if (e.Button = MouseButtons.Left && Control.ModifierKeys !|= «
Keys.Alt)
{

isMouseDown = true;

isMouseDraging = false;

//**xxcode added##*#

// Place target on map if left—click while shift is held <«
down .

if (Control.ModifierKeys = Keys.Shift)

{
}

/*xxadded code endsxx*/
if (currentMarker.IsVisible)

{

addtarget = true;

currentMarker .Position = MainMap.FromLocalToLatLng(e.X, «
e.Y);

// move current marker with left holding
void MainMap_MouseMove (object sender, MouseEventArgs e)

{

//draging
if (e.Button = MouseButtons.Left && isMouseDown)
{

isMouseDraging = true;

//#*xcode addedsxx

// Moving the target marker.

if (onTargetMarker)

{

targetloc.lat = (int)(currentMarker.Position.Lat % <
10000000) ;

targetloc.lng = (int)(currentMarker.Position.Lng * <
10000000) ;

FlightData.tar_lat = currentMarker.Position.Lat.ToString«>

OF

FlightData.tar_lng = currentMarker.Position.Lng.ToString«>

0);

writeKML () ;

}

else
//#++xadded code ends*x*x
if (CurentRectMarker == null) // left click pan
}
}

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com

Project group: Triforce Document responsible: ~ Karl-Johan Barsk

Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 56

At line 394 in function FlightPlanner ():

// Target initial position on map.
targetloc.lat = (int)(58.39845%x10000000);
targetloc.lng = (int)(15.57792x10000000);
targetloc.alt = (int)(1%100);

At line 865 in function WriteKML():

// Line added for drawing the target marker on the map.
addpolygonmarker ("Target", (double)targetloc.lng / 10000000, (double¢
)targetloc.lat / 10000000, 0, true);

In FlightData.cs, at line 401 in function MainLoop ()

// Draw target marker on the map.
addpolygonmarker ("Target", (double)Clng, (double)Clat, (int)(Calt x <«
100), true);

F.5 Video functionality

In FlightData.cs:

// Booleans to show if recording is active and if recording video <«
window or attitude window.

static bool recording = false;

static bool recordcam = false;

// Video window

public static hud.HUD mycam = null;

// Signal that it is the attitude window we are starting to record.
private void hud_mouseover (object sender, EventArgs e)
{
if (!recording)
recordcam = false;

}

// Signal that it is the video window we are starting to record.
private void cam_mouseover (object sender, EventArgs e)
if (!recording)
recordcam = true;

In function FlightData():

// hud2 is video window object in the graphic design.
mycam = hud2;

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 57

At line 262 in function Mainloop():

//**xxcode addedxx*x

// Condition added to decide if to record attitude window or video «
window .

if (recordcam)

{
hud2.streamjpgenable = true;
aviwriter.avi_add(hud2.streamjpg.ToArray (), (uint)hud2.streamjpg«

.Length);
aviwriter.avi_end(hud2.Width, hud2.Height, 10);

}

else//*xxadded else cond(contains the original code though)*xx

{
// Original code.
hudl.streamjpgenable = true;

// add a frame

aviwriter.avi_add(hudl.streamjpg.ToArray (), (uint)hudl.streamjpg¢«
.Length);

// write header — so even partial files will play

aviwriter.avi_end(hudl.Width, hudl.Height, 10);

}

//#+xadded code ends*x

At line 859 in function cam_camimage(. . .):

// Display video in the appropriate window.
hud2.bgimage = camimage; //#sxmodifiedxx*x

At line 1229 in function recordHudToAVIToolStripMenultem_Click(...):

// Line added to show that recording is on.
recording = true;

At line 1248 in function stopRecordToolStripMenultem_Click(...):

// Line added to show that recording is off.
recording = false;

In Configuration.cs:

// Boolean to show if camera window is active.
public static bool is_camera_on = false;

At line 75 in function Configuration_Load(...):

// This line was changed so that the configuration setting
// for hud overlay is applied to the video window and not
// the attitude window.

CHK_hudshow.Checked = GCSViews.FlightData.mycam.hudon;

At line 629 in function BUT_videostart_Click(...):

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

Tricopter 58

// Line added to signal that the camera window is active.
is_camera_on = true;

At line 646 in function BUT_videostop_Click(...):

// Line added to signal that the camera window is not active.
is_camera_on = false;

At line 665 in function CHK_hudshow_CheckedChanged(...):

// This line was changed so that the configuration setting
// for hud overlay is applied to the video window and not
// the attitude window.

GCSViews.FlightData.mycam.hudon = CHK_hudshow.Checked;

In HUD.cs:
At line 624 in doPaint ():

// Original code has been commented/inactivated .
/#*if (hudon == false)

{
return;
} b/
// Added condition to only draw attitude(”hud”) overlay if it is <
activated in ” Configuration” tab.
if (hudon)

{

¥
// Else draw an image.
else if (!ArdupilotMega.GCSViews.Configuration.is_camera_on)
{
_bgimage = global:: ArdupilotMega.Properties.Resources.<+>
camera_image;

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

A
“ Tricopter 59

References

[1] v/a, arducopter — Arduino-based autopilot for mulitrotor craft, from quadcopters to
traditional helis. http://code.google.com/p/arducopter/, 2011-09-02.

[2] v/a, ardupilot-mega - Official ArduPilot Mega repository.
http://code.google.com/p/ardupilot-mega/wiki/Mission, 2011-09-05.

[3] v/a, FlightGear — sophisticated, professional, open-source flight simulation.
http://www .flightgear.org/, 2011-09-09.

[4] Atmel, 8-bit Atmel Microcontroller with 64K/128K/256K Bytes In-System Pro-
grammable Flash. http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf,
may 2011.

[5] Barsk, Karl-Johan, Requirement specification - Tricopter with stabilized camera version
1.1. oct 2011.

[6] Barsk, Karl-Johan, User manual - Tricopter with stabilized camera version 1.0 .

[7] v/a, Quad Telemetry — XBee. http://code.google.com/p/arducopter/wiki/Quad_TelemetryPage,

2011-11-14.

[8] v/a, Knowledge Base Article - X-CTU (XCTU) software - Support - Digi Interna-
tional. http://www.digi.com/support/kbase/kbaseresultdetl.jsp?kb=125, 2011-11-17.

[9] v/a, NOAA- National Geophysical Data Center.
http://www.ngde.noaa.gov/geomagmodels/Declination.jsp, 2011-12-06.

Course name: Control Project E-mail: tsrt10.tricopter@gmail.com
Project group: Triforce Document responsible: ~ Karl-Johan Barsk
Course code: TSRT10 Author’s E-mail: karba878@student.liu.se

Project: Tricopter Document name: Technical documentation tricopter.pdf

	Introduction
	Definitions
	Signal definitions
	Orientation

	System overview
	I2C

	Flight unit
	Hardware
	Interface
	Internal communication

	Firmware
	ArduPilot

	Surveillance unit
	Hardware
	Gimbal
	IMUCamera

	Interface
	Firmware
	Angle calculation
	Servo input

	Complications

	Sensor unit
	Hardware
	Sonar
	GPS
	Magnetometer
	Barometer

	Interface
	Complications
	Magnetometer
	GPS

	Communication unit
	Hardware
	XBee

	Interface

	Ground station
	Hardware
	Radio controller
	Interface
	Software
	Functionality
	Console program
	 APM Mission Planner

	Wiring diagram
	Surveillance unit code
	I2C code
	Virtual box code
	Firmware modifications to support sending/receiving virtual box size and target position
	Target position
	Virtual box size

	APM Mission Planner code
	Box size functionality
	Target functionality
	Box and target shared functionality
	Modified map functionality
	Video functionality

