
User's manual for CLUSTERnGO

CLUSTERnGO (CnG) is a graphical user interface for applying the model-based clustering

and GO-term analysis process described in [1]. It takes a dataset of entity profiles

(examples of which are time-series gene or protein expression or metabolome data) as

its input, and gives clusters of entities and the corresponding GO-term enrichments

(whenever applicable) as its output in the end. The source codes and the GUI

applications for the CnG software can be accessed free of charge and licensed under GNU

GPL v3 at http://www.cmpe.boun.edu.tr/content/CnG. The folder needs to be

decompressed prior to execution and the input files need to be placed in the .cng folders.

The output files will also be generated in the .cng folders once the analysis is conducted.

The four phases; A, B, C, and D of the algorithm that are employed by the platform are

summarized in Figure 1. The graphical user interface of the CnG platform is displayed in

Figure 2. In this document, we describe the operations in each of these phases, their

inputs, parameters and outputs along with some examples of the file types used in these

operations.

Figure 1. Inputs, outputs, operations and parameters for each of the four phases

Figure 2. CnG graphical user interface

The input, intermediate, and output file formats used in different phases of the algorithm

will be described along with the operations carried out in each phase. The variables used

in these descriptions are: N, the number of entities; M, the number of time points for

each entity profile; S, the number of segments of time points for the PLS model.

Loading the dataset

The numerical data should be loaded as a comma-separated values file (.csv extension)

with rows corresponding to entities such as genes, proteins, or metabolites and columns

corresponding to individual time points in the series. The identifiers for both the columns

and the rows should be omitted. If replicate values are available for the entities, they

should be provided in separate rows (Hint: A spreadsheet can be saved with a .csv

extension).

The following sample dataset file screenshot shows N lines, each of which contains a

gene expression profile with M time points. Line indices in this file correspond to the gene

indices from 1 to N.

The identifiers corresponding to the entity profiles are loaded separately as a systematic

name file (.sn extension). The replicates for each entity should be tagged with the same

systematic name identifier followed by “__a, __b, __c, etc.” for the 1st, 2nd and the 3rd

replicates (Hint: The extension of a text file can be replaced with .sn). Please note that

the replicates are indicated with a double underscore. The systematic names should

match those provided in GO Project if the algorithm will also be used for GO Term

enrichment analysis. If the systematic names for replicates are not indicated with double

underscore followed by lower case letters starting from a, the different replicate entries

for the same entity will be considered as different individual entities. In case it is of

interest to investigate how the replicates for the entities cluster together or separately,

this may be the preferred option.

The following sample systematic name file screenshot shows N lines each of which

contain the systematic name of the corresponding gene.

The software then automatically detects if the data were provided in replicates or not. In

the absence of replicates the GUI interacts with the following message:

If replicate entities are detected, the option for reducing replicates to average values will

be highlighted as follows:

Once the data is loaded, it is ready for Phase A.

IMPORTANT NOTE: Right clicking on the file location on the GUI after loading a file on

that location will refresh the populated contents and the newly added file will appear in

the dropdown menu.

Context switching:

CLUSTERnGO generates a number of files in each run. In order to be able to keep track

of the analyses run on different datasets, it uses a directory-based context switching

system for working on multiple datasets analyzed using different parameter settings.

Each ‘.cng’ directory is a CnG context that contains its own dataset files, stores its own

results and remembers its own state of operations. CnG contexts can be transferred by

copying their ‘.cng’ directories from one CLUSTERnGO to another. The program will

recognize them automatically. To start a new ‘.cng’ context, <new cng context> option

can be selected from the dropdown menu.

A. Configuration Phase

The purpose of this phase is to decide on the piecewise linear sequence (PLS) model that

will be used in phase B; the inference phase. To decide on the PLS model, a temporal

segmentation (TS) operation is applied to the given input to determine groups of time

points that show correlated behavior. Since TS applies hierarchical agglomerative

clustering (HAC) to the time points of the dataset as described in [1], the produced

dendrogram needs to be cut by a threshold to determine the extent of segmentation.

Once the operation is completed after Phase A is run, the user can slide the cursor on

Segm Thr to select a suitable model. The time points in the provided series are

represented as consecutive numbers and the segments formed at different thresholds

can be monitored. A sample model with the following segments (1 2 3 4) (5 6 7 8 9) (10

11 12 13 14) (15) is given below:

Alternatively, the user can also specify the segmentation manually without running a TS

operation and can load the segmentation as an SEGM file. This file begins with M and S

and continues by a line that matches the M time points to the S segments (Hint: The

extension of a text file can be replaced with .segm). The following example screenshot

dictates that the 15 time points comprise 7 segments in total and the Segment number

for each time point is defined in row 2.

Inputs

– Dataset file: CSV file that contains the gene expression profiles to be analyzed.

– SEGM file: Manually specified segmentation (optional).

Parameters

– Segmentation threshold: A parameter that determines the extent of segmentation

after TS operation.

Command line tools

– ts.exe: Used for applying temporal segmentation (TS) to a dataset file.

Instructions for automatic segmentation

– Choose the input dataset file

– Go to Phase A and click “Run..”

– Pick a segmentation threshold

– Segmentation file will be automatically created: generated.segm

Instructions for manual segmentation

– Choose the input dataset file

– Go to Phase A and choose your SEGM file

Outputs

– tstree.txt, tsrange.txt: Files created by ts.exe that contain dendrogram tree

structure, as well as the minimum and maximum values for the segmentation

threshold. The range file contains M and minimum and maximum values for the

segmentation threshold. The tree file contains the dendrogram structure produced

in the TS operation. Examples for both file formats are provided below:

– SEGM file: TS operation creates a file called generated.segm. User can also

manually specify segmentation by choosing a SEGM file that will be used in phase

B.

B. Inference Phase

The purpose of this phase is to determine similarities among the genes in the given

dataset by modeling the gene expression profiles using a probabilistic model: infinite

mixture of piecewise linear sequences (IMPLS). For inferring the posterior probabilities, a

Markov Chain Monte Carlo (MCMC) operation specific to this model is used in the

implementation. IMPLS model and its MCMC inference method is described in [1]. As

input, this operation takes a PLS model (specified by the SEGM file from phase A) as well

as initial hyperparameters, and three operational parameters: iter, skip, chains.

The initial hyperparameters are already provided in the software bundle as initial.hyp.

Once it is loaded, the interface communicates the following message and is ready for

running Phase B:

Inputs

– Dataset file: CSV file that contains the gene expression profiles to be analyzed.

– SEGM file: Temporal segmentation that determines the PLS model that is used in

inference.

– HYP file: It contains these values:  hyp_skip. The first four are initial

values for MCMC operations where they will remain unchanged for the first

hyp_skip iterations. The screenshot for the initial.hyp file is provided below:

–

Parameters

– Iter: Number of iterations for a single MCMC operation.

– Skip: Number of initial iterations to skip in analysis (burn-in period).

– Chains: Number of chains, each chain being a single MCMC operation.

Command line tools

– mcmc.exe: Runs a single MCMC operation.

– mcmc2.exe: Collects outputs of several chains, each chain being a single MCMC

operation.

Instructions

– Once Phase A is complete either by automatic or manual segmentation, go to

Phase B and choose a HYP file

– Set the parameter values: iter, skip, chains

– Click “Run..” and wait until MCMC operations are complete

– Once complete, the following dialogue will appear:

Outputs

– chain# folders: Each folder contains results of a single MCMC inference operation.

MCMC chain result files

These files are organized in folders “chain1”, “chain2”, etc. In each folder, these

files are created:

o dpm_assignments.csv: All component assignments through the iterations.

o dpm_comp_log_likelihood.csv: Contribution of each component to the log

likelihood.

o dpm_comp_means.csv: Component means through the iterations, column

vectors in M-line matrices.

o dpm_comp_sizes.csv: Size of each component through the iterations.

o dpm_comp_variances.csv: Component variances through the iterations.

o dpm_hyperparams.csv: Hyperparameters through the iterations.

o dpm_K.csv: Number of components through the iterations.

o dpm_log_confidences.csv: Total log confidence for each of the iterations.

o dpm_log_joint.csv: Log of joint probability through the iterations.

o dpm_log_likelihood.csv: Log of likelihood through the iterations.

o dpm_log_prior_alpha.csv: Log of prior probability of alpha through the

iterations

o dpm_log_prior_l.csv: Log of prior probability of precisions through the

iterations

o dpm_log_prior_mu.csv: Log of prior probability of mean values through the

iterations

o dpm_log_prior_z.csv: Log of prior probability of assignments through the

iterations

o incidence_comp_mean.csv: Pairwise expected mean matrix over the

iterations.

o incidence_comp_var.csv: Pairwise expected variance matrix over the

iterations.

o incidence_matrix.csv: Pairwise similarity matrix over the iterations.

– pairwise_similarity_matrix.csv: It counts the number of co-occurrences for each

possible gene pair. This is a CSV file that contains NxN matrix of comma-separated

occurrence values for gene pairs and an example screenshot is provided below:

– pairwise_expected_variance_matrix.csv: This matrix contains expected variance

values for all gene pairs. It will be used in phase C to sort the clusters with

ascending expected variances. This is a CSV file that contains NxN matrix of

comma-separated expected variances for gene pairs and an example screenshot is

provided below:

–

–

C. Clustering Phase

The purpose of this phase is to process the pairwise similarity matrix and determine

particular clusters of genes that will enter GO-term analysis in phase D. It uses Two-

Stage Clustering (TSC) operation; the two stages being the merge stage and the

extension stage as described in [1]. The algorithm produces unique clusters of genes,

based on the given similarity matrix and two threshold parameter values for its two

stages.

The only parameters that need to be determined in Phase C are the merge and the

extension thresholds. The default settings for each of these parameters are kept as 0.5.

The details regarding the selection of default parameters are discussed in [1]. However,

as a general guideline, it can be noted that increasing the merge threshold increases the

number of clusters identified by the algorithm. Increasing the extension threshold

increases the number of single member clusters and reduces cluster size.

In addition, an option "Run B, then C .." is supplied for the user to run the stages B and

C of the algorithm consecutively without any breaks in between.

Inputs

– pairwise_similarity_matrix.csv: This is the similarity matrix from phase B.

– pairwise_expected_variance_matrix.csv: This matrix is used in sorting the clusters

in output.

– THR file: This is for running several TSC operations by specifying several threshold

alternatives. This file begins with two numbers for merge and extension threshold

alternatives. The second line contains merge threshold alternatives, and the third

line contains extension threshold alternatives. An example screenshot is provided

below:

Parameters

– Merge threshold: A larger value tells TSC to stop earlier while merging clusters in

stage 1.

– Extension threshold: A larger value tells TSC to stop earlier while extending

clusters in stage 2.

Command line tools

– tsc.exe: Runs a single TSC operation for a given threshold pair.

– tsc2.exe: Runs several TSC operations for a given THR file.

Instructions

– Once Phase A is complete either by automatic or manual segmentation and Phase

B is complete by running MCMC operations

– Go to Phase C and pick merge and extension thresholds (or pick a THR file for

several consecutively executed operations).

– Click “Run..” and wait until the TSC operation is finished.

– You should see a status message in Phase C as the one displayed below:

Outputs

– clusters_stage1-m#.csv: These files contain the clusters formed after TSC stage 1.

– clusters_stage2-m#_e#.csv: These files contain the clusters formed after TSC

stage 2. In this file, each line (row) denotes a cluster that contains the genes

given by comma-separated indices (or consecutive cells if opened as a calculation

worksheet) with the first number always indicating the number of members for

that cluster and the gene identified by its row number on the .sn file. An example

output screenshot is provided below:

– clusters_list.txt: A list of “clusters_stage2-*” CSV files that will enter GO-term

analysis. This is simply a list of several clusters files, each of which will be

processed in GO-term analysis and an example output screenshot is provided

below:

D. Evaluation Phase

The purpose of this phase is to finalize analysis by assigning GO-term associations to the

clusters. It applies multiple hypothesis testing (as described in [1]) to each of the

clusters obtained to determine significant associations of GO-terms.

Inputs

– Clusters list file: A list of “clusters_stage2-*” CSV files produced in phase C.

– OBO file: A file that contains the hierarchical structure of all possible GO terms.

The most recent GO ontology file can be accessed from

http://purl.obolibrary.org/obo/go/go-basic.obo.

– SGD / MGI file: A file that matches systematic names of genes to their GO-term

ids. The most recent organism-specific version can be accessed from

http://geneontology.org/page/download-annotations.

– SN file: Enumerates the systematic names of the genes in the dataset.

– Background SN file: Enumerates the systematic names of the genes in the

background distribution. Unless the user specifies a larger set of background genes,

this will be the same with the SN file.

Parameters

– Alpha: Genes that produce p-values smaller than alpha are considered to be significant

(see [1]). The default value is 0.01.

Multiple hypothesis testing is carried out by either selecting Benjamini-Hochberg

(BenjHoch) correction to control the false discovery rate at the given threshold (indicated

as alpha) or Bonferroni (Bon) correction to control the familywise error rate. Bonferroni

correction, imposing a stricter correction, is selected as the default option.

Command line tools

– evallist.exe: It runs multiple hypothesis testing operation for a given clusters list file.

Instructions

– After completing Phases A, B, and C, go to Phase D and pick OBO and SGD/MGI

files; pick a BG SN file if needed

– Enter alpha value, select multiple testing correction method, click “Run..” and wait

until operations are finished

– You should see a status message as follows:

http://purl.obolibrary.org/obo/go/go-basic.obo
http://geneontology.org/page/download-annotations

Outputs

– eval_enrch_alpha#_clusters_stage2-m#-e#.csv: CSV files that enumerate GO-term

enrichments for each of the clusters files obtained in phase C. A screenshot of an

example output file is displayed below:

Auxiliary tools:

The graphical interface uses several command line tools in its four phases. Most of these

tools were indicated in the instructions above. There are also some additional auxiliary

tools that we describe here, which would make it useful to familiarize with.

– repavg.exe: This tool is used to reduce the replicates, which are recognized in the

input data file, to their average values. Creates a new SN file in which “__a, __b,

__c, …” are removed.

– SNGO file: It is a file that matches systematic names to GO IDs, which is used in

phase D.

– sgd2sngo.exe: This command is used to convert an SGD file to an SNGO file.

– mgi2sngo.exe: This command is used to convert an MGI file to an SNGO file.

– match.exe: This command is used to create a CSV match file that matches the

elements of a dataset with their GO IDs.

Execution Time

The execution time for each phase of the algorithm was tested using three different

datasets of varying size. There are 372, 1151 and 3089 entities in the tested Dataset 1

(DS1), Dataset2 (DS2) and Dataset3 (DS3), respectively. DS3 was available in triplicates,

and a replicate reduction step was required prior to analysis. The average execution

times, which were recorded for each phase of the algorithm using the merge-extension

threshold pairs spanning the allowable range of threshold combinations as well as those

for the default setting (M=E=0.5), are displayed in Table 1 below.

Table 1 Execution times for the phases of the algorithm for the 3 test cases

Dataset ID

(size)

Average

execution time

Default

execution time

Replicate

reduction

DS1 (372) - -

DS2 (1151) - -

DS3 (3089) 4min 4min

Phase A

DS1 (372) < 1min < 1min

DS2 (1151) < 1min < 1min

DS3 (3089) 1min 1min

Phase B

DS1 (372) 64h 64h

DS2 (1151) 141h 141h

DS3 (3089) 160h 160h

Phase C

DS1 (372) < 10s <1s

DS2 (1151) 8min < 1min

DS3 (3089) 1.2h < 10min

Phase D

DS1 (372) < 1min < 1min

DS2 (1151) 2.5 min < 1min

DS3 (3089) 1min < 1min

References

[1] Fidaner, IB; Cankorur-Cetinkaya, A; Dikicioglu, D; Oliver, SG; Kırdar, B; Cemgil, AT

(2015) "CLUSTERnGO: A user-defined non-linear modelling platform for two-stage

clustering of time-series data", Manuscript in submission.

