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ABSTRACT OF THE THESIS

A Programming Model for Automated Decomposition on

Heterogeneous Clusters of Multiprocessors

by

Sean Philip Peisert

Master of Science in Computer Science

University of California, San Diego, 2000

Professor Scott B. Baden, Chair

Clusters of multiprocessor nodes are becoming common in scientific com-

puting. As a result of the expandability of clusters, faster nodes are frequently

added and older nodes are gradually removed, making the cluster heterogeneous.

As heterogeneity increases, traditional methods for programming clusters of mul-

tiprocessors become less optimal, because they do not account for the fact that

a cluster will only run as fast as the slowest node. Sputnik is a programming

methodology and software library that addresses the problem of heterogeneity on

a dedicated cluster of multiprocessors.

Sputnik uses a two-stage process for running applications on a cluster of

multiprocessors. The first stage assesses the relative performance of each node by

running the program individually on each node, determining from the run times

both the performance and application-specific optimization. Using the timings

obtained from stage one, the second stage partitions the dataset non-uniformly,

according to the relative speed of each node. All future runs of the program use

the optimal partitionings and number of threads per node.

Sputnik is implemented on top of the KeLP infrastructure to handle ir-

regular decomposition and data motion. It enables code to be written for a het-

erogeneous cluster as if the cluster is homogeneous. Sputnik can run scientific

xv



applications on a heterogeneous cluster faster, with improved utilization, than a

nearly identical program written in KeLP alone. Experimental results from a pair

of SGI Origin2000’s indicate that Sputnik can improve run-time of an iterative

solver for Poisson’s equation by 35 percent.
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Chapter I

Introduction

I.A Motivation

The computer hardware used for scientific and technical computing is

continually evolving. In the most recent generations of supercomputing hardware,

there have been vector supercomputers, made by companies including Cray as

well as multicomputer -style massively parallel processors (MPPs) made by many

companies, including Cray, IBM, Intel, Hewlett-Packard and SGI. Clusters of mul-

tiprocessors, however, are increasing in popularity, replacing older mainframes. As

a result of mass-production of the components used, monetary costs for purchas-

ing clusters of multiprocessors are dropping and therefore, use of the technology

has been spreading from business computing to scientific and technical computing,

replacing vector supercomputers and multicomputer MPPs in science where they

replaced mainframes in industry.

Unfortunately, although multiprocessors and multiprocessor clusters are

attractive to organizations with a need for large-scale parallel computation, well-

established techniques used to program multicomputer MPPs and vector machines

are not always the optimal techniques to program multiprocessors or multiproces-

sor clusters. Further, since one of the appealing aspects of clusters of multiproces-

sors is that many of their components can be built from readily-available, commer-

1
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cial hardware solutions, such as Sun, IBM or SGI multiprocessor workstations, it

can be cost-effective to add in or swap out systems in the cluster at will, replacing

old components gradually. The result is that what was originally a homogeneous

cluster of multiprocessors can easily become heterogeneous over time, with the

addition of newer systems with different processor speeds, number of processors,

memory sizes, cache sizes and network speeds, an example of which is shown in

figure I.1.

Network Hub or Switch

...
Multiprocessor

Node 0
...

Multiprocessor
Node 1 ...

Multiprocessor
Node 2

Processors Nodes with varying numbers
of processors.

Figure I.1: Diagram of a heterogeneous cluster of multiprocessor nodes

In a heterogeneous cluster, a uniform partitioning of data across the clus-

ter is not optimal because some of the nodes will finish before others, leaving parts

of the cluster idle until the slower nodes terminate. This problem can generally be

stated to say that a cluster will only run as fast as the slowest component node.

Thus, to the degree that any node finishes early and idles while waiting, we will

under-utilize the hardware and nodes will be forced to idle rather than spending

their time productively computing. Ideally, therefore, we want all nodes to finish

at the same time.

Though the techniques for programming multiprocessors and homoge-

neous clusters of multiprocessors have been explored in detail and have achieved

some level of sophistication, programming heterogeneous clusters of multipro-

cessors for use with scientific computation is still a difficult challenge [8][9][10]

[11][12][13][14][23][24][25][26][27][35][42]. Existing software technologies may be
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used to program heterogeneous clusters of multiprocessors, however, the process

of doing so and still achieving good performance through load-balancing can be

extremely difficult.

The goal of my research presented in this thesis is to investigate a way

to enable scientific programs to run faster and effectively utilize a heterogeneous

cluster of multiprocessors while allowing the user to write the program as if they

were running on a homogeneous cluster.

This thesis introduces an API called Sputnik designed to assist in greater

performance and utilization on a heterogeneous cluster for certain types of appli-

cations. Current applications for which Sputnik has been proven to function well

with include stencil-based programs. Applications with extremely finely-grained

communication might be inappropriate for the current iteration of the API because

extremely tight communication imposes a kind of synchronization on the program

that might negate the speedup that Sputnik can provide.

The API is packaged as a C++ library and is built on top of the KeLP

infrastructure [23][35]. The library allows users to write scientific programs that

run effectively on heterogeneous clusters of multiprocessors where the component

nodes may all run at different speeds. It is intended as something of a “proof of

concept” about what steps are needed to make heterogeneous clusters run more

efficiently. I also present a broader theory of which the API is merely a subset. The

broader theory, the Sputnik Model, is not limited to multiprocessors, stencil-type

applications, or an just two optimization techniques.

This thesis introduces a two-stage process for optimizing performance on

a heterogeneous cluster. Though Sputnik has been targeted for multiprocessors,

some or all of the nodes may be uniprocessors.

The first stage, the ClusterDiscovery stage, performs a resource discovery

to understand how the application, or perhaps a part of the application, runs on

each individual node in the cluster. The second stage, ClusterOptimization, makes

specific optimizations based on what the first stage has discovered. Depending on



4

the hardware and the type of problem, there can be many possible types of opti-

mizations. In this thesis, I make one specific application study with two different

types of optimizations: repartitioning the amount of data each node works on and

adjusting the number of threads that run on each node.

This thesis does not attempt to solve the problem of scheduling hetero-

geneous clusters of multiprocessors that are networked over a heavily-trafficked

wide-area network, including grids. Such problems are best solved through dif-

ferent methods, including dynamic load-balancing by use of the Globus, Legion,

Network Weather Service or AppLeS [30][39][66][69]. Blending one or more of these

technologies with my API is beyond the scope of this thesis.

The thesis also does not attempt to tackle the problem of machines with a

deeper hierarchy than two tiers (processor and node). A deeper hierarchy might be

a “cluster of clusters.” Additionally, this thesis and the API it presents are specif-

ically focusing on clusters of multiprocessors. It is not looking at the added level

of detail of what happens when several completely different architecture types are

clustered together, such as vector and multicomputer-style MPP supercomputers,

and parts of the computation run better on different architectures.

Optimizations including the ones I have just mentioned, in addition to

many others, are possible optimizations that could be done in ClusterOptimization.

A process whereby the ClusterOptimizer does nothing more than vary the tiling of

the problem to fit in level 1 or level 2 cache of varied sizes is certainly also possible.

The emphasis is, however, that the ClusterDiscovery and ClusterOptimization are

separate processes that can function in tandem easily and are not just limited to

multiprocessors. Other architectures and possible optimizations are beyond the

scope of this thesis and are not addressed in this incarnation of the API that I

have developed.

Finally, I make certain assumptions about the condition of the cluster:

1. Multiprocessor nodes are connected by a uniform, local, dedicated network.
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2. The program running has dedicated access to the cluster hardware.

3. The cluster is set up to have many more processors per node, on average, than

nodes in the whole cluster. A cluster with many nodes of very few processors

(including ASCI Blue Pacific) may be better off with a single-tiered approach

including MPI because the shared memory aspect of Sputnik will be much

less relevant.

4. No node in the cluster runs less than half as fast as any other node in the

cluster.

5. The problem does not fit, in entirety, into memory cache on any of the

processors.

I.B Heterogeneity

I take the concept of some of the existing API’s for programming clusters

of multiprocessors one step further by directly supporting heterogeneous clusters.

Acting on the assumption that clusters of multiprocessors are the immediate future

of high-performance parallel computing, I decided that programming clusters of

multiprocessors was a problem worth investigating.

I decided that I could build my API on top of either two existing API’s —

one that could handle message-passing between nodes and one that could handle

shared-memory communication within a node — or one existing API that already

supported multi-tier communication.

In choosing a basis for my API, I decided to use KeLP1 as my message-

passing layer because, unlike MPI and PVM, it has built-in support for data de-

scription and general blocked decomposition as well as transparent message-passing

communication. This makes the job of the programmer using the API much easier

for complex parallel programming [23][35]. Such levels of abstraction have been

shown to come without a performance penalty [11]. The question then was what
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technology would be best used to take advantage of the shared-memory architec-

ture for intra-node communication. I use OpenMP as my shared-memory layer to

handle intra-node parallelization because at the moment, it is the easiest technol-

ogy to use and is an emerging standard as an alternative to Pthreads. My API is

built on top of KeLP and OpenMP. KeLP itself is built on top of MPI. OpenMP,

can be based on a variety of sub-technologies, depending on the particular vendor’s

implementation. The Origin2000, which I run on, uses SGI’s “sprocs,” though the

IBM SP systems build OpenMP on top of Pthreads [48].

Hopefully by extending KeLP1’s API instead of simply MPI’s, I have not

only introduced a method for improved performance, but reduced the complexity

to do multi-tier programming.

Most importantly, Sputnik targets heterogeneous clusters. As clusters

of multiprocessors age, unless a cluster is completely replaced, at high cost, as

opposed to being upgraded, being able to utilize an entire cluster without having

an entire node or parts of several nodes remain idle is desirable. No programmer,

researcher, or owner of the cluster will want to waste precious time on a costly, high-

maintenance piece of computing hardware. To that end, Sputnik does irregular

partitionings and regulates the amount of OpenMP threads that are used within

each node.

I.C Organization of the Thesis

This thesis discusses the structure of and problems associated with pro-

gramming a heterogeneous cluster of multiprocessors.

Chapter 2 presents background information on multiprocessors, clusters

of multiprocessors and tools for programming both.

Chapter 3 introduces a variety of methods for programming clusters of

multiprocessors and also discusses a variety of experiments that I ran which led

up to my conclusion that the API I had in mind would work.
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Chapter 4 discusses the most important aspect of this thesis and my

research — the theory of operation of the Sputnik Model. In addition, chpater 4

also looks at a few implementation details.

Chapter 5 discusses the results of the Sputnik API in an application study.

Chapter 6 presents my conclusions along with future work possibilities.

The appendices contain source code and present a user’s guide to the

Sputnik API.



Chapter II

Clusters of Multiprocessors

II.A Multiprocessors

A multiprocessor is a machine with two or more processors that all share

the same main memory, as shown in Figure II.1. Some multiprocessors contain

processors that are equidistant from the main memory. This is referred to specif-

ically as a symmetric multiprocessor or SMP which has uniform-memory access

or UMA. By contrast, some multiprocessors, including the SGI Origin2000, have

internal networks which cause the processors to have non-uniform-memory access

or NUMA because the amount of time it takes for a processor to retrieve mem-

ory from two other processors might differ. The SGI Origin2000 actually has a

NUMA variation called cache-coherent NUMA or ccNUMA. Typically although

main memory is shared on a multiprocessor, each processor in the node is sepa-

rated from main memory by one, two or sometimes even three levels of individual

cache.

Multiprocessors are starkly different from their vector supercomputer and

massively parallel multicomputer ancestors. First, by definition, a multiproces-

sor uses shared memory, whereas in an multicomputer, all processors have their

own, separate main memories, making them distributed-memory (also called shared

nothing). (The SGI Origin2000, the principle machine used in obtaining the re-

8
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Figure II.1: Diagram of a multiprocessor

sults presented in this thesis might be considered a hybrid between the multipro-

cessor and multicomputer because it uses distributed shared-memory.) Second, the

multiprocessors that compete in today’s market with modern multicomputers are

typically built partially from commodity parts for the purpose of reducing cost by

means of increased economies of scale. A recent multiprocessor incarnation from

IBM, for instance, forms the basis of each node comprising the the ASCI Blue

Pacific machine at Lawrence Livermore National Labs and Blue Horizon at the

San Diego Supercomputer Center [37][62]. These machines use hundreds of IBM’s

PowerPC processors - a chip family that powers all modern Apple Macintosh com-

puters [33][37][38]. Similarly, the chip inside Sun’s Enterprise servers, the Sparc,

also powers every Sun workstation that comes off the line [67][68]. The large IBM

systems, despite being massively parallel, are still essentially large clusters of mul-

tiprocessors. As discussed below, many multicomputers are built using expensive,

specialty communications hardware significantly more complex than that of an

multiprocessor.
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In a multiprocessor, parallel programs can typically be run either using

message passing across the bus that connects the processors or by interacting using

their shared memory. The latter is often accomplished by way of using a threads

library such as Pthreads (short for POSIX Threads — a POSIX-compliant thread

library) that supports mutual exclusion on pieces of memory so that one thread

can hold exclusive access to a piece of memory while it is writing to that piece

so that other threads get only the final value when the thread that has the lock

is finished writing to it [6][15][50][51][52]. The API calls for Pthreads are starkly

different from MPI. Instead of “communication primitives,” there are commands

that do thread manipulation (e.g. create, fork and join) and commands that do

memory “locking” so that no more than one thread has access to a critical section

of code simultaneously (e.g. pthread_mutex_lock and pthread_mutex_unlock).

A program running on a multiprocessor using shared memory can often achieve

significantly better timing results because it is specifically using the shared mem-

ory hardware that a multiprocessor is designed to use, rather than a congested

processor bus.

It is possible to simulate message-passing with shared-memory and also

possible to simulate shared-memory with message-passing. Machines that are

called distributed shared memory-type machines are often examples of the lat-

ter. A distributed shared memory machine is one that would have a library that

would allow “shared memory”-style calls even though the memory may or may not

necessarily be physically shared on the hardware. This means that one processor

might be able to access the memory of a processor on a completely different ma-

chine because the software has been built to allow that style of access. This is

called a non-uniform memory access or NUMA.

One of the principle challenges in future development of multiprocessors

is determining what an optimal configuration is. Due to the nature of the con-

struction of a multiprocessor, it is possible that putting too many processors in

one multiprocessor could cause congestion on the bus. Additionally, too many
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threads all trying to perform read and write accesses to the same place in mem-

ory can create a bottleneck due to each process having to wait for other process’s

mutex locks to unlock before they can go and set their own mutex lock. [21][44][45]

II.B Multicomputers

In parallel programs where one processor works on data and then needs

to exchange data with another processor, there must be communication between

processors. In a shared nothing architecture (distributed-memory machine with-

out shared memory), the only way to do this is to pass messages between the

processors. In message passing, one processor communicates with other proces-

sors through a basic set of message-passing primitives, including send, receive,

broadcast, scatter, and gather. Using send and receive, one processor sends a mes-

sage across the communications network while the other receives it. In broadcast

and scatter methods, one processor sends a message to all other processors in the

network. In the gather method, all processors send to a single processor in the net-

work. It is clear that as more messages are being passed, the more congested the

network becomes and the more complex the solutions needed to solve the problem

of building a low-latency, high-bandwidth network.

An example of a distributed memory machine can be seen in Figure II.2.

An extremely basic example of a simple distributed-memory machine might use

a bus to pass messages. The problem with this particular design is that the bus

that messages travel on is often a bottleneck and would therefore not scale well

to larger number of processors due to competing demands on the bus. For this

reason, large machines typically use a more scalable interconnect.

The advantages of topologies like the crossbar, the hypercube, or the

toroidal mesh, as is used in the SGI-Cray T3E, is that it makes for an extremely fast

network and is very expandable to a large numbers of processors. Unfortunately,

toroidal meshes or crossbars are among technologies that are very expensive to
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Figure II.2: Diagram of a distributed-memory machine

construct. Using a crossbar switch, for instance, would involve connecting every

processor to every other processor directly. As the number of processors grows,

the number of connections grows by:

p(p− 1)

2
(II.1)

Number of Processors Number of Connections
2 1
3 3
4 6
5 10
6 15
7 21

Table II.1: Growth of connections in a crossbar-switched machine
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II.C Clusters of Multiprocessors

A cluster of multiprocessors is the composite of two distinct hardware

technologies for building parallel machines: multicomputers and multiprocessors.

A cluster of multiprocessors is a possible solution to the lack of expand-

ability of a lone multiprocessor and the expensive nature of expanding a multi-

computer. This solution has been adopted in high-end server lines and even super-

computers from nearly all major computer hardware manufacturers including Sun,

IBM, HP, and Compaq/DEC. SGI has created a machine called the “Origin2000”

which uses shared memory but has a very advanced hypercube interconnection

structure to support scalability of up to 256 processors per Origin2000. An image

of what the Origin2000’s architecture looks like can be seen in figure II.3. Some of

the computers with the highest theoretical peak speed in the world, such as ASCI

Red at Sandia National Labs (Intel), ASCI Blue Pacific at Lawrence Livermore Na-

tional Labs (IBM) and the Blue Horizon machine at the San Diego Supercomputer

Center (IBM) are all essentially clusters of multiprocessors. [33][62]

Clusters of multiprocessors are also sometimes called hierarchical ma-

chines or multi-tier machines because one level of communication is possible within

the node, generally shared-memory, and one level of communication is possible be-

tween nodes themselves. The two tiers of processor and node-level communication

is why they are considered to be hierarchical. It is certainly possible to take the

model beyond two tiers as well, to three or more, by connecting a two-tiered cluster

of multiprocessors to another two-tiered cluster of multiprocessors, thus creating a

three-tiered cluster of multiprocessors, or a cluster of clusters of multiprocessors.

Clusters of more than two tiers are outside of the scope of this thesis.

Clusters of multiprocessors are attractive because the manufacturers are

able to scale the systems to large number of processors much easier and more

inexpensively than if they tried to solve the problem of networking every processor

together (as in a multicomputer) or share memory between all processors (as in an
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multiprocessor).

The principal downside of a cluster of multiprocessors is that they are

difficult to program. Memory within a node is only “shared” between processors

within a given multiprocessor node. Therefore, a shared memory program cannot

be used across the entire cluster. Message passing can be used across the entire

cluster, but this does not take advantage of the unique shared-memory hardware

that exists within a multiprocessor, which is is what often makes communication

in a multiprocessor fast. So message passing throughout the entire cluster is not

optimal either.

The solution currently being adopted to program clusters of multipro-

cessors is to use a dual-tier approach of combining message passing and shared-

memory programming, as if blending multicomputer and multiprocessor program-

ming techniques, respectively. In this manner, within a multiprocessor (intranode),

communication can be achieved through shared-memory (Pthreads, OpenMP) and

between multiprocessor nodes (internode), communication can be achieved through

message-passing (e.g. MPI and PVM)[15][50][52][51][6]. One can either hand-write

the code that combines one method from each paradigm or use a library that specif-

ically supports multi-tier machines, including KeLP2 or SIMPLE [35][23][14]. Since

programming a piece of software with MPI in mind can easily double the size of

the code, and programming and debugging in Pthreads can be a challenging task

as well, the prospect of combining both technologies to form a highly-tuned piece

of parallel code can be daunting. For this reason, using a library with multi-tier

support built in can make programming an application significantly easier than

when using its component technologies, MPI and Pthreads — by hand — with-

out sacrificing performance [23]. I will discuss various programming libraries and

methods in the next chapter.



Chapter III

Heterogeneous Multi-Tier

Programming

III.A Previous Work

Significant progress has already been made in programming homogeneous

multi-tier machines, but the issue is still an open problem. Software APIs have

been developed which can specifically address a multi-tier machine. In the simplest

approach, at least one vendor has implemented MPI on their machines so that if

a message is to go to another processor on-node, it gets converted into a native

shared memory call. If it goes off-node, it gets converted into a native messaging-

layer call. Finally, if it goes off-machine, it is sent via TCP/IP. A standardized

technology exists based on this concept called Multiprotocol Active Messages and

additionally Sun has implemented similar technology in their version of MPI that

runs on the Sun Enterprise 6500 and Enterprise 10000 servers [42]. Other vendors

are working on their own implementations.

16
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III.A.1 Multi-Protocol MPI

Multi-protocol active messages are a technology that have been developed

to allow different messaging protocols depending on where the message is in the

machine. If the message needs to be passed within an SMP, for instance, the

message is “passed” using shared memory. Within an MPP, the message is passed

using a native messaging layer. Outside the MPP, between MPPs, the message is

passed using TCP/IP. Lumetta finds that the shared memory protocol can achieve

five times the bandwidth of the networking protocol, for instance.

While multi-method or multiprotocol communication, especially when

running across MPI, can theoretically run effectively on a heterogeneous cluster,

there is also a strong possibility that it may underperform an API that has been

specifically designed in a multi-tier fashion. The reason for this is that although the

multiprotocol-capable API can use all of the processors and even take advantage

of whatever special shared memory and networking hardware exists in the cluster,

it is entirely possible that the runtime system will distribute the MPI processes

in an nonoptimal manner that requires significantly more communication than is

necessary. An API that has been specifically designed to partition on two levels,

as the machine itself is built on a hardware level, can specify exactly how all the

processes should be arranged. For example, the MPI processes may be scattered

throughout the entire cluster when the program executes. Some processes might

be able to share memory within the cluster, but there is no guarantee that those

processes even need to communicate with each other. One wants to make sure, for

instance, that the processes or threads are as close by as possible to the others that

they communicate with. Whereas a multi-tier API can ensure an order to the dis-

tribution of the processes or threads, a scattering of MPI processes cannot. Culler

[42], Fink & Baden [24][26], and Fink [23] employ higher-dimensional partitionings

to solve this problem.

Finally, and most importantly, although multiprotocol MPI can use all

the processors and thus make some heterogeneous clusters function as if they are
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homogeneous, this is only true when all processors are the same speed. If the

processors are all different speeds, then merely utilizing all the processors and

the shared memory hardware is not enough. One needs to make sure that slower

processors are processing less data.

Although multiprotocol MPI is reasonable for a programmer to use to

quickly run existing MPI-based parallel software on a cluster of multiprocessors

and realize improved performance, starting from the ground up with a multi-tier

program written in Sputnik (or migrated from KeLP to Sputnik), the programmer

can avoid the problems that I have just mentioned.

III.A.2 Multi-Tier APIs

SIMPLE

SIMPLE is an API that is based on two lower-level technologies [14] and

primarily addresses collective communication. One is a message passing layer and

the other is an SMP node layer. The principle requirement is that the message

passing library implements a collection of eleven message passing primitives and

the node library implements three shared-memory primitives. These combine to

implement a final set of eight SIMPLE primitives (barrier, reduce, broadcast,

allreduce, alltoall, alltoallv, gather, and scatter. Although MPI (includ-

ing MPICH) works as a messaging layer, the architects of SIMPLE discovered that

the Internode Communication Library (ICL) provided superior performance. They

also decided to use Pthreads as the SMP node layer, although as they describe, a

faster library, possibly something vendor-specific, might work even better.

The calls in the SIMPLE library allow the programmer to work across

multiple SMPs seamlessly instead of having to partition the dataset twice manually

– a primary partition to determine which data segment runs on each SMP and a

secondary partition to determine which part of each data segment runs on each

individual processor of each SMP.
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KeLP2

Expanding upon the KeLP1 API that already made programming SMPs

easier with support for region calculus and data motion, among other parallel pro-

gramming abstractions, KeLP2 supports the unique multi-tier structure of clusters

of SMPs [23][26][12][8]. While KeLP1 aids programmers in making parallel code

easier to write without suffering performance penalties, KeLP2 does the same thing

for multi-tier machines. Essentially, KeLP2 opened up a whole new and more pow-

erful class of machines for parallel programmers to use the KeLP-style technology

on.

Whereas KeLP1 was an interface on top of the MPI [6] technology un-

derneath, KeLP2 was an interface on top of both MPI and Pthreads, as shown

in Figure III.1. As described previously, the idea was that although MPI could

be used for both inter- and intra-node communication, in theory, this is not the

optimal communication method because MPI does not utilize the shared-memory

hardware. Instead the designers of KeLP2 decided that MPI would be used for

inter-node communication and Pthreads would communicate within an SMP node

using fast, fine-grained, shared-memory accesses that Pthreads are particularly

good for. KeLP2 adds support the multi-tier nature of a cluster of SMPs, if the

SMP nodes are different, however, one sees inefficiencies. The program will only

run as fast as the slowest node and so if one node finishes in 13 seconds and another

in 5, the program will take 13 seconds to run.

Although KeLP2 is a very good multi-tier implementation, at the time

of writing the Sputnik API, it was not running on my platform of choice, the

Origin2000, so I built my Sputnik API on top of KeLP1 (MPI) instead of KeLP2

(multi-tier with MPI and Pthreads).



20

KeLP

MPI

PThreads

KeLP2

User Program

Figure III.1: Hierarchy of software layers for KeLP2

III.A.3 Heterogeneity Work

Grid-Enabled MPI

In Grid-Enabled MPI, Foster attempts to reduce communication time

inherent in sending large, frequent communications over a network with high con-

tention and varying latencies. He proposes that collective MPI operations, such

as MPI Reduce, “might well first reduce within each SMP node, then within each

MPP, and finally across MPPs.” [28]

Non-Uniform 2-D Grid Partitioning

Crandall investigates different partitioning schemes for heterogeneous com-

puting [19][20]. Unlike the Sputnik API, which does a one-dimensional decompo-

sition, Crandall’s work suggests a multi-dimensional decomposition using a variety

of different schemes including block, strip and “Fair Binary Recursive Decomposi-

tion.” The advantage of this work, over a plain one-dimensional strip decomposi-

tion, is that the cache-miss rate can theoretically be improved. In a simple block

decomposition, for instance, by adjusting the dimensions of the block’s edges, one

can attempt to fit the rows (or columns, depending on the programming language
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used) in cache, thus improving the performance by reducing the number of expen-

sive cache misses occurring. Also, the amount of data that needs to be transmitted,

but not necessarily the amount of sends and receives, can be constrained. Crandall

claims that this trade-off can lead to an overall savings in communication time.

Whereas strip decomposition might be extremely straightforward, irregular blocks

can be much more complicated, however.

Crandall also works with a “decomposition advisory system” which func-

tions like Sputnik in some respects, choosing an optimal decomposition system

based on pre-known aspects of the computational demands.

Zoom

Anglano, Schopf, Wolski and Berman investigated a method for describ-

ing heterogeneous applications in terms of structure, implementation and data.

The motivation is that not every machine existing (e.g. multicomputers, vector

supercomputers, multiprocessors) is adept at solving all problems. The Zoom rep-

resentation attempts to solve this problem by allowing the user to abstract the

program such that each particular segment in the abstraction can be sent to the

machine or class of machine that it is best suited for [5]. Such a technology would

be a fantastic improvement to Sputnik in the future. See the Proceedings of the

Heterogeneous Computing Workshop (1995) and Proceedings of the 1992 Hetero-

geneous Workshop (IEEE CS Press) for more information on related technology.

III.B Heterogeneous Multi-Tier Programming

III.B.1 Problem

1. As discussed previously, the goal of my research, presented in this thesis, is

to find a way to make scientific programs run faster and improve utilization

on heterogeneous clusters of multiprocessors and still allow the user to write
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the program as if they were running on a homogeneous cluster.

2. The problem is that they currently have imbalanced loads if running homo-

geneous partitions on heterogeneous multiprocessor nodes.

3. Therefore, the solution is to partition the dataset in a way that the nodes

would each finish their runs at the same time.

4. The problem of how to partition the dataset to do this was then created.

5. The solution to the partitioning, I decided, was to find the relative speeds

of each multiprocessor node and calculate the fraction of the power of the

whole cluster that each individual multiprocessor node had. Then, one would

assign the same fraction of the dataset to a node as the fraction of power of

the node has in the whole cluster. “Power” for a node is defined to be the

inverse of the time that a node takes to run a benchmark relative to the sum

of the inverses of the timings of the same benchmark on every node in the

cluster.

III.B.2 Requirements

As I have discussed, existing programs that use a hybrid of a message-

passing and shared-memory model as tools to program multi-tier machines 1, do

not work effectively on heterogeneous machines. The feasibility studies I made

and how they were modified, in some cases, from existing programs, to support

heterogeneous clusters, follow in the next section.

An MPI-based messaging library was an obvious choice to use as the inter-

node messaging component. The reason is that MPI is standardized across all of

the multiprocessor platforms, with each vendor creating their own implementation

adhering to the MPI standard [6]. Not only does each vendor specifically have a

1The currently recommended method for many current cutting-edge clusters of multiproces-
sors, including the IBM Blue Horizon machine at the San Diego Supercomputer Center and ASCI
Blue Pacific at Lawrence Livermore National Labs [37][62].
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finely-tuned implementation of MPI for running optimally on their hardware, but

there are freely available versions of MPI as well, including MPICH [7].

Of further interest beyond MPI, however, was to be able to use a message-

passing library that supports both heterogeneity and block decomposition and also

assists in hiding most of the details of heterogeneity, especially data decomposition.

KeLP is a library that supports these requirements and has its communication

mechanisms built on top of MPI [10].

The experiments that lead up to my combination of OpenMP — a thread

library easier to use than Pthreads that is programmed with compiler directives

and API calls — and KeLP follow.

The first question I attempted to answer in the following experiments was

whether or not the idea of repartitioning the data helped address the heterogeneous

cluster. I did this by first working with a benchmark built with MPI and Pthreads

combined to work on a multi-tier machine. The second question I wanted to

answer was whether MPI and OpenMP — the two underlying technologies that

I ultimately wanted to use — were interoperable. At the same time, I wanted to

assess the scalability of OpenMP on the Origin2000. Finally, I tested KeLP and

OpenMP together to make sure that by using KeLP instead of MPI (even though

KeLP is built on top of MPI) there were no new incompatibilities of performance

bugs when used with OpenMP.

III.C Multi-Tier Experiments

III.C.1 MPI and Pthreads

In order to determine whether a heterogeneous API for KeLP might work,

I decided to use a hand-coded multi-tier program in a simulated, heterogeneous

hardware environment. To do this, I used a piece of software called “Red-Black

3D” (hereafter referred to as rb3D or redblack3D) [23][11]. According to its own

documentation: “The rb3D program is a 3D iterative solver which solves Poisson’s
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equation using Gauss-Seidel’s method with Red/Black ordering [58].” The program

is described in more detail in chapter 5.

This particular implementation of the rb3D algorithm is hand coded using

MPI and Pthreads. This implementation partitions the data twice — once for the

node level and once for the processor level. MPI is used to pass messages between

multiprocessors and Pthreads are used to communicate within a multiprocessor

node via shared memory. The Pthread model is different than the one OpenMP

uses in many ways, but one important issue is what happens to the threads dur-

ing the run of the program between iterations. Pthreads uses “parked threads,”

meaning that instead of the threads being destroyed between iterations or sections

of the program, they are temporarily parked for future use. The benefit of this

is that there is less time overhead in continually creating and destroying threads.

The downside is that the threads are using system resources when other system

processes might need a spare moment on a CPU.

Instead of a simple, static, uniform partitioning where each node n of N

is assigned the fraction n/N of the work, my version uses two partitioning schemes.

The first is an optimized, non-uniform partitioning, based the partitioning on the

total number of processors, as opposed to nodes. It calculates the total number

of processors available on all nodes, P , the total number of nodes, N , and how

many processors each individual node has, p0 · · · pn−1. It then assigns work chunks

of the total data set, W , equal to the fraction of processing power each node

has, w0 · · ·wn−1 = (p0 · · · pn−1)/P . Therefore, as long as everything is equal in a

machine, especially the processing power of each individual processor, except the

number of processors in a node, the problem workload will remain balanced and

the problem will run optimally fast based on the configuration of the cluster of

multiprocessors.

One cannot be guaranteed an optimal problem as in the first partitioning

scheme, however. More than likely, speeds of processors will differ, speeds of

memory and networks will differ, and cache sizes and other important machine
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characteristics will differ. Therefore, by having the user issue the proper flag to

the program to initiate balanced, non-uniform partitioning, and have a previously-

generated file containing the timing results prepared, the program can partition

based on any arbitrary data. The idea is that the program would be run on each

individual multiprocessor, the times would be recorded, in order, and put into the

file. Then, in the future, the program could be run without re-running the resource

discovery part of the program.

The results of this implementation are shown in figure III.2 and table III.1.

As can be seen, with the exception of the first trial, the results are positive and the

heterogeneous version performs better than the homogeneous version and close to

the theoretical best. Essentially, the code works by first being told that it has three

nodes and that one node can run the program twice as fast as the other two. Instead

of breaking the problem into three equal partitions, one for each multiprocessor, as

would normally happen, the program divides up the data such that node 0 gets half

of the work (since it has half of the combined processors of the cluster) and nodes

1 and 2 each get a quarter of the work. Node 1 and 2 then can work on their parts

of the workload without spawning off extra threads and can communicate with

each-other and node 0 with MPI. Node 0 first spawns two threads and performs

shared-memory communication with Pthreads to communicate between the two

threads and MPI to communicate with nodes 1 and 2. In this manner, the program

has been able to be sped up via heterogeneous partitioning.

Original Balanced Theoretical Balanced Speedup Theoretical Speedup
136.978 173.233 182.637333 26.47% 33.33%

Table III.1: redblack3D MFLOPS rates with heterogeneous partitioning using

hand-coded MPI and Pthreads. N=300, PE0 has 2 processors and PE1 and PE2

have 1 each.

To analyze what the theoretical best possible speedup might be through

heterogeneous decomposition, consider N to be the total amount of data in the
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problem. In the homogeneous run, each processor gets N/3 data. Node 0 finishes

in time T while nodes 1 and 2 finish in time 2 ∗ T because they only run half as

fast. So two processors are wasted for a time of T . If the data is repartitioned

optimally, so that node 0 gets N/2 data and nodes 1 and 2 get N/4 data each, then

the time that each node would take is T ∗(N/2)/(N/3) = (3/2)T , assuming optimal

efficiency (the equations for obtaining the new times are described in chapter 5).

Although the timings did not indicate optimal efficiency, they approached it and at

least gave indications that not only that MPI and Pthreads worked well together,

but more importantly, that the repartitioning concept is valid.

0

20

40

60

80

100

120

140

160

180

200

M
F

LO
P

S

REDBLACK−3D − MPI+PTHREADS

Original
Balanced
Theoretical Balanced

Figure III.2: redblack3D with heterogeneous partitioning using hand-coded MPI

and Pthreads. N=300, PE0 has 2 threads and PE1 and PE2 have 1 each.
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III.C.2 MPI and OpenMP

Following successful results with MPI and Pthreads, I combined MPI

and OpenMP in a single program. The idea, if successful, would make it easier

for programmers to create multi-tier programs, since OpenMP is inherently easier

to program with than Pthreads, due to its higher-level constructs. I was not

certain, however, if thread binding in OpenMP and compatibility with MPI would

function properly on the Origin 2000 system. Also, based on the fork-join model

that OpenMP is built on (as opposed to the “parked threads” concept that I

discussed earlier in relation to Pthreads), I was not sure that the MPI-OpenMP

combination would work with all of the different kernels I wanted it to. A fork-join

model has the threads fork at the beginning of the parallel region declared with

compiler directives and join at the end. Thus if the parallel region is called many

times, there might be a significant amount of overhead involved in creating and

cleaning up threads.

Because of the way some kernels are written, I suspected that there might

be problems with this fork-join model. For instance, a tiny amount of computation

in a Fortran kernel which is itself inside many nested C++ loops would cause a

problem because the machine would be inefficient due to the cost of forks and joins

at the beginning of the parallel region inside the Fortran code with each iteration

of the C++ loops. An example of this is shown in Figure III.3

Finally, there was the issue of Fortran and C++ OpenMP compatibility

since there were Fortran directives recognized separately by each language’s com-

piler. I wrote a small microkernel to test OpenMP scaling as well as C++, Fortran,

OpenMP and MPI compatibility on the Origin 2000 as shown in Figure III.4. The

microkernel was written to avoid compiler optimization and precomputation as

much as possible.
The program runs two heavyweight processes. One process keeps running

just the inner loop for every iteration:

for(i = 0; i < LONG; i++)

arr[i] = arr[i-1] * i * 1.0001;
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...

for (int i = 0; i < 40000; i++)

times = kernel(x,y,z);

...

double kernel(double x, double y, double z) {

// Every time that kernel() is called, the following

// pragma is called as well. If kernel() is called

// 40,000 times, as shown in this example, overhead

// of generating threads will be incurred 40,000

// times.

#pragma omp parallel shared(x,y,z)

#pragma omp for schedule(static)

for(int i = 0; i < MAX_INT; i++) {

...

<mathematical calculations>

...

}

}

Figure III.3: OpenMP Fork-Join Example

The other process, for each iteration of the outer loop, runs with a dif-

ferent number of threads, set with OpenMP commands. The program starts at

64 threads and halves the number of threads each time through, all the way down

to 1. If the program scales well, the time should double with each iteration, since

half the number of processors are working on the problem.

As can be seen from the charts in Figure III.5, figure III.6, and table III.2,

for at least up to 8 threads, the kernel scales very well, but for this size problem,

does not improve significantly with 16 or 32 threads. Scaling is good but not

great, but MPI and OpenMP are shown by the results to interoperate without any

problems.

After I ran experiments to determine whether MPI and OpenMP as well

as C++ and Fortran OpenMP directives would coexist and function correctly, I

set out to obtain timings to see how well OpenMP would parallelize scientific code

to see if OpenMP would be close to Pthreads in terms of efficiency, since it already
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for (j = 64; j > 0; j=j/2) {

if (myid != 0) {

omp_set_num_threads(j);

start = MPI_Wtime();

#pragma omp parallel shared(numthreads)

{

if( 0 == omp_get_thread_num() )

numthreads = omp_get_num_threads();

#pragma omp for schedule(static)

for(i = 0; i < LONG; i++)

arr[i] = arr[i-1] * i * 1.0001;

}

finish = MPI_Wtime();

}

else {

start = MPI_Wtime();

numthreads = omp_get_num_threads();

for(i = 0; i < LONG; i++)

arr[i] = arr[i-1] * i * 1.0001;

finish = MPI_Wtime();

}

cout << "PE " << myid << " threads " << numthreads

<< " time " << finish - start

<< " j " << j << "\n" ;

MPI_Barrier(MPI_COMM_WORLD);

}

Figure III.4: OpenMP scalability-test code
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Threads Node 0 Node 1 Speedup

32 1.8800 0.2417 7.8182
16 1.8867 0.2611 7.2263
8 1.8807 0.3280 5.7342
4 1.8733 0.5378 3.4833
2 1.8768 0.9297 2.0186
1 1.8677 1.7462 1.0696

Table III.2: Table of OpenMP Scaling Test Speedup for an SGI Origin2000 with

250 MHz Processors

had an advantage in ease of programming.

III.C.3 KeLP and OpenMP

Finally, because MPI (one of the component technologies that KeLP is

built on) functioned properly with OpenMP, I assumed that KeLP would function

properly with OpenMP. However, prior to adding an API to KeLP directly, I

decided to test both KeLP and OpenMP’s compatibility and also the efficiency

of programs built using both technologies. I went back to rb3D this time, but

instead of starting with a hand-coded MPI and Pthreads version, I began with a

KeLP 2 version, then added OpenMP directives and code to have the two interact

(which would be later replaced by calls directly to the new Sputnik API if the

experiment was successful). After seeing that the program compiled and appeared

to run successfully, I had all of the elements in place to write the Sputnik API and

begin gathering data on its effectiveness.

2KeLP Web Page: <http://www-cse.ucsd.edu/groups/hpcl/scg/kelp/>



Chapter IV

The Sputnik Model and Theory

of Operation

IV.A Introduction

Using the experience gained from experiments with hand-modifying var-

ious combinations of MPI, KeLP, OpenMP and Pthreads programs, I extended

the API and functionality of KeLP in a new set of routines called Sputnik. These

routines that I implemented perform two steps that work in tandem to achieve

efficiency on heterogeneous clusters.

Although the Sputnik Model allows for any sort of shared-memory mul-

tiprocessor and any sort of optimizations to be done, in theory, the Sputnik API

has been written with a specific focus. The API has been written with two of

the many possible optimizations, that are validated as good optimizations for the

redblack3D benchmark in the next chapter. The order of events for the Sputnik

Model, which the API based on, is:

1. ClusterDiscovery : Runs the kernel of the program repeatedly on each sep-

arate node to determine the timings and relative performance, changing

program parameters over several runs to determine the configuration that

33
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achieves optimal performance.

2. ClusterOptimization: Using the parameters which the program estimates to

be optimal from ClusterDiscovery, decomposes the data non-uniformly based

on the relative powers of the nodes.

3. Runs the program one last time using the optimizations and decompositions

from ClusterDiscovery and ClusterOptimization.

IV.B Sputnik Model

IV.B.1 ClusterDiscovery

The ClusterDiscovery performs an estimation. It searches the param-

eter space, somewhat intelligently, for the available optimizations, and seeks a

performance gain in the program it is optimizing. The ClusterDiscovery works

transparently to the user. Since one of the goals of the Sputnik Model is to allow

the user to program as if the cluster is heterogeneous, the ClusterDiscovery runs

through the possible optimizations automatically and finds the best optimizations

and the timings for those runs using the optimizations. The kernel runs inside

a kind of “shell” so that Sputnik has access to running it whenever it needs to.

Not only does the ClusterDiscovery save the user from manually searching for all

the optimal configuration parameters, but there is no firm limit on the amount

of permutations that can be searched since the search all happens transparently

inside its shell.

Optimizations could include adjusting the number of OpenMP threads

(as is done in the Sputnik API), doing cache tiling, sending vectorizable code to a

vector computer in the cluster and parallelizable code to an MPP in the cluster;

and a huge number of other possible variations in the entire parameter space of

possible optimizations for scientific code.
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This shell is run separately on each separate node in the cluster so that

each node is optimized individually with a distinct parameter set and timing results

are returned to the shell for those optimizations.

One does not need to know anything about the characteristics of each

node in the cluster, which may or may not even be multiprocessors, prior to running

a program written using the Sputnik Model.

IV.B.2 ClusterOptimizer

The ClusterOptimizer uses the optimizations found in the ClusterDiscov-

ery stage and the best timings of each node to decompose the computation of the

problem according to the performance of each node in the cluster. A node discov-

ered to have better performance than other nodes will therefore work on a larger

chunk of the problem. Depending on the size of the problem as a whole, the cache

sizes, and the amount of communication taking place, there are a variety of differ-

ent decomposition schemes available, which are described below. The important

thing, however, is to make sure that which ever decomposition scheme is used,

computation must be balanced out so that each node finishes at the same time.

Finally, one must make sure that after decomposition, communication does not

overwhelm computation. To the degree that the original problem does not have

this issue and we insist that no node is slower than half the speed of the fastest

node, there should not necessarily be any inherent restrictions on which type of

decomposing to use to partition the data for the heterogeneous cluster.

IV.B.3 Running

Given the optimal parameters and partitioning, we know enough to run

the program on a heterogeneous cluster and can expect it to utilize the cluster

and perform significantly better. Because results of ClusterDiscovery are saved on

disk, future runs of the program on the same cluster will not have to “re-discover”
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the cluster each time and can simply run with the optimal settings.

IV.C Sputnik API

IV.C.1 Goals

The Sputnik API is based on the Sputnik Model. It implements a specific

subset of the ideas generalized in the Model.

1. ClusterDiscovery : Runs the kernel of the program repeatedly on each sep-

arate node to determine the timings and relative performance, varying the

threads per node given to determine the optimal number of threads per node.

2. ClusterOptimization: Using the parameters which the program estimates

to be optimal from ClusterDiscovery, it decomposes the data non-uniformly

based on the relative powers of the nodes.

3. Runs the program one last time using the optimizations and decompositions

from ClusterDiscovery and ClusterOptimization.

The first optimization that Sputnik performs is the determination of the

optimal number of OpenMP threads per node to run with. The optimal number

of threads might be equal to the number of processors in the node but may be less

if the problem is not large enough to warrant the overhead and costs of shared-

memory communication for that many threads. More threads would not speed up

communication and may in fact slow it down because two or more threads would

be competing for one processor’s time and memory.

The second optimization that Sputnik performs is decomposition. One of

the appealing aspects of using KeLP, aside from the fact that it is based on MPI,

which has a standardized interface across all major parallel platforms, is that it

supports block decomposition.
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IV.D Decomposition

IV.D.1 Block Decomposition

Block decomposition allows for manipulating certain types of data in a

much easier way than with standard C++ datatypes. Also, rather than describing

data in terms of C++ arrays and having to program complex MPI communi-

cations, in KeLP, one can describe the domain of the data, called a Grid and

multidimensional blocks within the domain called Regions. Rather than forcing

the application programmer to write long sequences of loops to pass ghost cells

(boundary conditions between the blocks) between processors, KeLP handles this

automatically with built-in functions to expand and shrink any given Region.

Further, a Region can be intersected with another Region and since it is merely a

subset of the overall Grid, it can overlap with another Region and cover a domain

which may as a whole be very irregular, with neat, individual blocks.

Block decomposition facilitates the implementation of features including

tiling for cache and repartitioning. The Sputnik Model is different from the Sputnik

API. In the Sputnik Model, I discuss how an API like KeLP can discover resources

and act appropriately to refine the program to run heterogeneously. In my API, I

have made specific choices and assumptions about what to implement. Although,

as I have mentioned, many possible optimizations could have been made, I specif-

ically chose repartitioning and thread adjustment as methods for optimizing for

heterogeneous clusters.

IV.D.2 Heterogeneous Partitioning

KeLP provides a mechanism for doing automated decomposition of a

Grid object into Domain objects and further into FloorPlan objects, which include

assignments of each Region to processors. This mechanism is contained in a library

called DOCK (DecOmposition Classes for KeLP). Among other uses, DOCK will

take a Grid and partition it into equal size Regions, with slight tolerance and
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variation when the number of Regions to divide the Grid into does not evenly

divide the amount of columns or rows index to be partitioned. Since a Region

or Grid can be multi-dimensional, DOCK can partition in multiple dimensions as

well. Roughly, the one-dimensional partitioning of a two-dimensional Grid into

three two-dimensional Regions might look like the partitioning in figure IV.1.

Figure IV.1: Two-dimensional dataset partitioned into three equal two-dimensional

blocks.

Thus, each block, or Region, would have one-third of the dataset, which

would in turn get assigned to a cluster (where each node gets only one MPI pro-

cess). However, a question this thesis addresses is: What happens if each node

is not equal in processing power? What if instead of the processing power of the

cluster being as evenly divided as the data is in figure IV.1, such that node 0 is

twice as powerful as the other two nodes and so therefore can run in 10 seconds

whatever nodes 1 or 2 can run in 20 seconds. In this case, the partitioning of the

dataset should look like the one in figure IV.2.

By modifying the DOCK library so that the domain is partitioned non-

uniformly, according to how well each node really performs, rather than a uniform

partitioning, the program can be run on the cluster more optimally.

In the previous chapter, I discussed this partitioning scheme for use with

the redblack3D version that runs with hand-tuned MPI and Pthreads and described
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Node 0 Node 1 Node 2

Figure IV.2: Two-dimensional dataset partitioned so that node 0 gets twice as

much data to work with as either node 1 or node 2.

how the relative power of a node can be determined by comparing the inverse of

its time with the sum of the inverse of the times, forming a ratio. This ratio is

multiplied by the total amount of work available to determine the size of the block

to give to a particular node.

IV.E API Design

The API is designed so that the main() routine of a program is moved,

mostly, to a user-defined routine called SputnikMain(). The real main() does

initialization and calls a routine called SputnikGo(). SputnikGo() acts as a kind

of “shell” that calls SputnikMain() over and over to determine the optimal number

of threads per node, and make the final run with the optimized configuration. The

repartitioning, one of the primary features of the Sputnik API is a modification

of the distribution functions in the DOCK library. Although no new functions

are added, the distribution functions are mostly rewritten to support non-uniform
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partitioning.

IV.F Assumptions and Limitations

There are assumptions this API makes. First, it assumes that no node

is more than twice as fast as another node. This assumption also helps to ensure

that communication time does not overwhelm a particular node because it is doing

so much less computation than another node. Second, because the API is running

the entire kernel on each separate node, it assumes that the speed of the node

will not change when the node is given only a portion of the entire computational

domain to run, as is done after the repartitioning, for the final run. Finally, the

repartitioning that Sputnik does is only one-dimensional. Although DOCK (and

therefore KeLP) support multi-dimensional decomposition, for simplicity, Sputnik

does not.

One reason to support multi-dimensional decomposition is if Sputnik will

be running on a cluster with a huge number of nodes so that memory and cache

tiling could be built into the decomposition and message-passing communication

could be made automatically more efficient. Since the initial release of the API has

focused on much smaller clusters with 2-4 nodes, I assumed that one-dimensional

decomposition was adequate and the possible downsides would be negligible.

The Sputnik API also requires that the application is written in C++, at

least as a wrapper, though the kernel(s) of the program may be written in either

C, C++, or Fortran and linked in. Finally, Sputnik depends on the fact that

the cluster has a thread-safe implementation of MPI installed as well as OpenMP

for both Fortran and C/C++ and all technical requirements for both MPI and

OpenMP programs to run are adhered to.

The validation of these results and of the model appear in the next chap-

ter.



Chapter V

Validation

V.A Introduction

Redblack3D was the program I chose to run on a pair of SGI Origin2000

supercomputers at the National Center for Supercomputing Applications (NCSA)

to determine the success of the performances aspect of the Sputnik API [48][47].

Whether it succeeds also in its goal of being able to allow the user to program a

heterogeneous cluster as if it is homogeneous is much harder to measure, although

there are not very many changes that have to be made, and I estimate that someone

familiar with OpenMP could make the modifications to a program that already

runs in KeLP in an hour. As already discovered in several papers, however, some

scientific codes optimizes better than others [21][44][45].

V.A.1 Red-Black 3D

Redblack3D it is a scientific program written using Sputnik, which itself

comprised of MPI, KeLP and OpenMP. It is mostly in C++, except for the kernel

of the program, which is written in Fortran and linked in with the rest of the code.

The OpenMP directives are in the Fortran part of the code. The program itself

solves Poisson’s equation (a differential equation) using the Gauss-Seidel method.
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Each run was done with one MPI process per Origin2000 and varying numbers of

OpenMP threads within each system. The program alternates between running

a kernel on the “black” points and the “red” points, which are arranged in a

three-dimensional grid. The reason for this is that redblack3D operates by doing

a 7-point stencil calculation (right, left, front, back, top, bottom, and itself) and

needs to make sure that the values next to it don’t change in a given iteration.

So the grid alternates with every-other point being a red point and all the others

being black with no red immediately adjacent to a black point (though orthogonal

is fine). The entire source code for redblack3D and the kernel, both modified with

the Sputnik API, are in Appendices B and C.

V.B Hardware

The Origin2000 is somewhat different than the typical multiprocessor

which inspired this thesis because it uses distributed shared memory. Each node

on the Origin2000 consists of two processors which have locally shared memory.

The nodes are all connected together in a complex structure to achieve 128 to 256

processors per system. A diagram of this is shown in figure II.3. This large system,

since it has distributed shared memory, can be used to simulate a multiprocessor,

although one could argue that an Origin2000 itself is really a collection of tightly

coupled SMPs. Therefore, since in these test cases, I used a large part of the

Origin2000 and a node is only a small part of the system, in this results chapter, I

will refer specifically to a “system” where I have referred interchangeably to either

a node or multiprocessor in previous chapters. Likewise, since before, I ran with

one MPI process per multiprocessor node, here, I will run with one MPI process

per Origin2000 system. Unlike an SMP, this distributed shared memory system

is not an UMA machine. Instead, it is a NUMA derivative called cache-coherent,

non-uniform memory access or ccNUMA.

I obtained my results by performing experiments on the two machines,
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balder and aegir, shown in Table V.1.

balder aegir

Processor Type and Clock Speed 250 MIPS R10000
Cycle Time 4.0 ns

Processor Peak Performance 500 MFLOPS
L1 Cache Size 32 KB
L2 Cache Size 4 MB

Operating System IRIX 6.5
Compilers and Linkers Native SGI Fortran and C++

Processors 256 128
Main Memory 128 GB 64 GB

Peak Theoretical Performance 128 GFLOPS 64 GFLOPS

Table V.1: Specifications for the two Origin2000 machines, balder and aegir.

Although I experimented with a variety of environment variables in many

possible combinations, I found the optimal settings for “ DSM MIGRATION” to

be “ALL ON” and “ DSM PLACEMENT” to be “ROUND ROBIN.” The system

software configurations that I used, and their versions, are shown in table V.2. The

two Origin2000 machines were connected by an SGI “Gigabyte System Network

(GSN)” interconnect that support a maximum bandwidth 800 MB per second

and have a theoretical latency of less than 30 microseconds. Experimental results

showed that the actual latency might be much closer to 140 microseconds and the

bandwidth less than 100 MB per second.

Version Special Flags

Operating System IRIX 6.5
MIPSpro f77 7.3.1m -mp -O3 -mips4 -r10000 -64
MIPSpro CC 7.3.1m -mp -lmpi -lm -lftn -lcomplex -O3 -r10000 -64

KeLP 1.3a

Table V.2: Software configurations
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V.C Predicted Results

Generically, the optimal speedup can be computed from the following

equations, where T is total time. For all cases, both with heterogeneous and

homogeneous partitioning, the total time for the program is only as fast as the

slowest node:

Tprogram = Tslowestnode (V.1)

Thus, for a cluster, if one node runs faster than the rest, the fastest node

is wasting time while it waits for the slower nodes to finish. Thus the wasted time

can be computed as follows, where N is the total number of nodes and the times

for the nodes are ranked from 0 to N − 1:

Ti = TimeOnNodei (V.2)

Twasted = MAX(Ti)−
N−1∑

i=0

Ti
N

(V.3)

Therefore, the solution is to repartition the data. After optimally repar-

titioning, the program will run in a time in-between that of the faster and slower

nodes:

Toptimal = Ti,orig ∗
newamountofdatafornodei

originalamountofdatafornodei
≈

N−1∑

i=0

Ti
N

(V.4)

Therefore, the speedup will be:

Speedup =
Twasted
Toptimal

=
MAX(Ti)

Toptimal
− 1 (V.5)

This speedup is based on a repartitioning of the dataset. Where in a

homogeneously partitioned run, each node would be assigned 1/N work, in a het-

erogeneously partitioned run, the work assigned is a bit more complex. If the node

originally ran in time Ti,orig then first we want to find out what the speed of this



45

node is relative to all the others and the total. We can do this by assigning a power

P to the node equal to the inverse of the time. We can use this then to produce a

power ratio R.

Pi =

∑N−1
j=0 Tj

Ti,orig
(V.6)

Ptotalcluster =
N−1∑

k=0

Pk =
N−1∑

k=0

∑N−1
j=0 Tj

Tk,orig
(V.7)

Ri =
Pi

Ptotalcluster
=

∑N−1
j=0 Tj

Ti,orig
/
N−1∑

k=0

∑N−1
j=0 Tj

Tk,orig
(V.8)

The goal of the software is to assign a percentage of the total work of the

problem to a node such that the node has the same percentage of work to be done

relative to the total amount of work as the power of the node is relative to the

total power of the cluster. Thus,

R =
Ti,orig
Ttotal,orig

=
worki
worktotal

(V.9)

and so finally the amount of work we give to each node is:

worki = Ri ∗ worktotal. (V.10)

In the case of round-off issues, some work chunks will have 1 added to

them to make sure all data is accounted for.

Plugging this back into our original equation for predicting the new time,

Toptimal = Ti,orig ∗
newamountofdatafornodei

originalamountofdatafornodei
(V.11)

= Ti,orig ∗
worki,new
worki,orig

(V.12)

= Ti,orig ∗
Ri ∗ worktotal
worki,orig

(V.13)

= Ti,orig ∗
Pi

Ptotal
∗ worktotal

worki,orig
(V.14)
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= Ti,orig ∗

∑N−1

j=0
Tj

Ti,orig

∑N−1
k=0

∑N−1

j=0
Tj

Tk,orig

∗ worktotal
worki,orig

(V.15)

= Ti,orig ∗
worktotal
worki,orig

∗
∑N−1
j=0 Tj

Ti,orig ∗
∑N−1
k=0

∑N−1

j=0
Tj

Tk,orig

(V.16)

=
worktotal
worki,orig

∗
∑N−1
j=0 Tj

∑N−1
k=0

∑N−1

j=0
Tj

Tk,orig

(V.17)

V.D Experiments

The purpose of each of the experiments that I ran was to determine

how close to the optimal time that the run could come by repartitioning with the

Sputnik library, regardless of the numbers of threads actually used or the size of

the problem. The experiment is designed to establish, artificially, various levels of

heterogeneity, in order to detect any sensitivity in Sputnik. The results showed

that Sputnik was insensitive to this parameter and so the degree of heterogeneity,

as long as no node is less than half as fast as any other node, is not relevant.

As I have said, Sputnik can find the optimal number of OpenMP threads

per system to use. Alternatively, these can be manually and individually set.

Principally, I manually set the amount of OpenMP threads per system so as to focus

more on finding the right partition than finding the right number of threads per

system. I ran with many different configurations of threads per system, however,

so in effect, I was able to manually try to find the optimal number of threads per

system. The reason for this is that using a system with 128-256 threads per system,

one might have to do 30 or more runs to find the optimal number of threads per

system and the time on the Origin2000’s was not available.

Additionally, do to scaling issues, I did not use the full number of proces-

sors on each Origin2000. By manually setting the number of threads, I created a

“virtual cluster.” The virtual cluster had the effect of simulating a heterogeneous

cluster since the full Origin2000 cluster could not be used and no other “commodity
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clusters,” as the Sputnik API was designed for, were available.

To that end, I ran with several different values. First, I fixed the size

of the problem to N=761 (761x761x761 unknowns) and the number of threads on

balder to 32. I then ran redblack3D once for each different number of threads for

aegir that I wanted to test with. For aegir, I started with 16 threads and ran

again with 20, 24, 28 and 32. The reason that I started with 16 is that I made the

decision ahead of time that if one system was less than half as powerful as the other

that it probably would not even be worth using the slower system. Therefore, I

scaled my problem from one-half of the fixed number of threads on balder up to

the same number of threads on aegir.

After doing the experiments with 32 threads on balder, I ran with the

identical problem size with 48 threads on balder, this time scaling from 24 to 30,

36, 42 and 48. Finally, I ran just a few very large problem sizes, with up to 128

threads on balder and 96 on aegir, as I will discuss below.

In the tables and graphs that follow, I include many different types of

times. Although one can compare the original and new total times (communication

plus computation) to get the most realistic “real-world” times, comparing the

computation times alone shows the results better. The reason for this, as I will

show in a few limited runs, is that when times are observed when communication

is measured for homogeneously partitioned runs, the times for both nodes will be

nearly identical. The reason for this is that they need to synchronize at various

points and so both maintain a sort of lock-step with each other at certain barriers.

Even though the times are similar, however, they are both very high. They are

clearly demonstrating the fact that a program can run only as fast as its slowest

node. It is more interesting and informational, however, to see the times for

exclusively computation.



48

V.E Results of redblack3D

V.E.1 Up to 32 threads per system

Threads Original Compute New Total New Compute
aegir balder aegir balder aegir balder aegir
16 47.7 87.7 66.415 65.7 65 60.4183
20 48.4 74.4 63.0848 63.8 61.3 58.0324
24 51 62.7 58.4 59.5019 56 55.4033
28 50 55.6 54.409 53.8 50.3 51.4442
32 51.2 48.7 51.6 52.5732 48 50.5865

Table V.3: Complete redblack3D timings with 32 threads on balder and varying

numbers of threads on aegir

Threads New Compute Predicted Speedup Theoretical
balder aegir balder aegir Speedup

32 16 65 60.4138 61.7916 1.3492 1.4193
32 20 61.3 58.0324 58.6476 1.2137 1.2686
32 24 56 55.4033 56.2480 1.1196 1.1147
32 28 50.3 51.4442 52.6515 1.0808 1.056
32 32 48 50.5865 49.9187 1.012 1.0257

Table V.4: Speedup and predicted timings for redblack3D with 32 threads on

balder and varying numbers of threads on aegir

Figure V.1, table V.3, and table V.4 show the results for the runs of

redblack3D with 32 threads on balder and 16 to 32 threads on aegir. The important

numbers to compare are the slowest of the original times for computation to the

slowest of the new times for computation. This is because, as mentioned before,

the program only runs as fast as the slowest system. Therefore the time for the

slowest system is also the time for the whole program. The goal of Sputnik is

to make the program run faster. A side benefit of this is that it also increases

machine utilization by not having a system or systems remain idle while waiting

for the slower system or systems to catch up. In table V.3, we can see the original,
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Figure V.1: Important redblack3D timings with 32 threads on balder and varying

numbers of threads on aegir

unmodified run with 16 threads on aegir causing balder to remain idle for up to

40 seconds while waiting for aegir to catch up.

As can be seen clearly from figure V.2, Sputnik does provide a speedup

over the version of the program without the heterogeneous Sputnik partitioning.

As expected, the speedup tapers off as the number of threads per system becomes

closer together on the pair of Origin2000’s. Not only does Sputnik provide, but

as shown, it demonstrates improved system utilization because one system does

not remain idle for nearly as long as it originally had. At its best, Sputnik shows

a 34.9% speedup when 32 threads are used on balder and 16 threads are used on

aegir. This speedup is good, though still 7% less than the theoretical best for the

thread configuration with 32 threads on balder and 16 threads on aegir.

The “New Compute” timings for each system should be close to identi-

cal. As the timings from table V.3 indicate, the speeds are not perfectly identical.

The reasons for this are not completely clear, but there are a number of possible

explanations. First, speed on the Origin2000 depends highly on thread scheduling
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Figure V.2: Speedup for redblack3D with 32 threads on balder and varying num-

bers of threads on aegir, using the Sputnik library

and memory placement, both of which seem to be massive issues affecting per-

formance and can vary widely even within the run of a program, as in this case.

Since memory is stored throughout the entire machine within the two-processor

nodes, a poor distribution could certainly affect the timings and cause the kind of

variation that we see in table V.3. Because these timings were done in a dedicated

environment, competition for processor, memory, or network bandwidth is not an

issue.

Based on the equations presented above, we can predict, from the original

timings and the number of threads per system that we are using, the theoretical

or predicted time for a re-partitioned and balanced run of the program. At its

worst, the runs with a maximum of 32 threads per system are 5.19% worse than

the predicted results. At best, the actual runs are 2.29% better than the predicted

results. Again this variance is presumably due to the same conditions that cause

a discrepancy between the timings of the nodes after their workloads have been

re-balanced.
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V.E.2 Up to 48 threads per system

Threads Original Compute New Total New Compute
aegir balder aegir balder aegir balder aegir
24 37.6 62.9 50.6 49.8617 43.8 46.3449
30 37.6 50.1 45.498 45.5 43.4 42.687
36 36.1 43.5 42.2992 42.3 37.8 39.675
42 36.5 38.4 40.5622 40.7 36.8 35.4458
48 37.4 34.3 41.4 42.3218 33.3 36.2054

Table V.5: Complete redblack3D timings with 48 threads on balder and varying

numbers of threads on aegir

Threads New Compute Predicted Speedup Theoretical
balder aegir balder aegir Speedup

48 24 43.8 46.3449 47.0655 1.3572 1.3364
48 30 43.4 42.687 42.9592 1.1544 1.1662
48 36 37.8 39.675 39.4560 1.0964 1.1025
48 42 36.8 35.4458 37.4259 1.0435 1.0260
48 48 33.3 36.2054 35.7830 1.0330 1.0452

Table V.6: Speedup and predicted timings for redblack3D with 48 threads on

balder and varying numbers of threads on aegir

As with the runs with a maximum of 32 threads per system, runs with

a maximum of 48 threads per system also scaled well. In this case, I varied the

number of threads on aegir from 24 up to 48. Table V.5 shows the complete list

of timings, as does figure V.3. The important timings, showing only the slowest

system from each run, are indicated in figure V.4. The speedup, which is very

good is shown in figure V.5 and table V.6. In this case, the results for running

with 48 threads on balder and 24 threads on aegir, are even slightly better than

the case with 32 and 16, showing 35.7% speedup.

As with the runs with a 32-thread maximum per system, these runs also

differed from the predicted runs somewhat, but to a lesser extent. In the cases

when I ran with 48 threads per system, at best, Sputnik produced results 1.67%
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Figure V.3: Complete timings for redblack3D with 48 threads on balder and vary-

ing numbers of threads on aegir, using the Sputnik library

better than predicted and at worst, it produced results 1.03% worse than predicted.

V.E.3 Large numbers of threads per system

With the very large numbers of threads per Origin2000 system, I increased

the problem size because I was not finding good scaling with N=761. Therefore

for the case with 64 and 32 threads, I had N=949. For 128/64 and 128/96 threads,

I used N=1163.

As seen from the timings in table V.7 and especially from the speedups

in table V.8, Sputnik performed well with large numbers of threads per system

as well, showing more than 34% improvement after repartitioning for either the

64/32 threads case or the 128/64 threads case. As expected, when the numbers

of threads per node narrows (and as the number of threads in total grows), the

speedup gains decline, indicated by only a 6.77% improvement with the 128/96

threads case.
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Figure V.4: Important redblack3D timings with 48 threads on balder and varying

numbers of threads on aegir, using the Sputnik library

Threads Original Compute New Total New Compute
balder aegir balder aegir balder aegir balder aegir

62 32 57.1 99.3 74.6 74.6085 71.5 71.8537
128 64 59.6 108 83.2697 83.7 80.3 75.5464
128 96 65.6 73.5 72.9498 72.7 65.5 68.841

Table V.7: Complete redblack3D timings for large numbers of threads per system

V.E.4 Anomalies

There were some strange things that occurred in the course of gathering

results for redblack3D modified with the KeLP/OpenMP/Sputnik API libraries.

All of them appear to stem from anomalies either with OpenMP in general, or

perhaps the specific OpenMP implementation on the Origin2000 machines. Specif-

ically, I found that MPI processes appear to run significantly faster than OpenMP

threads. For example, when I ran with one MPI process with between 2 and 64

threads spawned by that MPI process, it ran significantly slower than if I ran with

between 2 and 64 MPI processes with 1 OpenMP thread per process. Despite
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Figure V.5: Speedup for redblack3D with 48 threads on balder and varying num-

bers of threads on aegir, using the Sputnik library

Threads New Compute Predicted Speedup Theoretical
balder aegir balder aegir Speedup

62 32 71.5 71.8537 72.5068 1.3820 1.3695
128 64 80.3 75.5464 76.8115 1.345 1.4060
128 96 65.5 68.841 69.3257 1.0677 1.0602

Table V.8: Speedup and predicted timings for redblack3D with large numbers of

threads per system

speaking with the NCSA Consultants, who in turn contacted SGI engineers, as

well as performing a variety of experiments myself, the precise cause of this was

never solved. It was speculated that this too had something to do with memory

distribution as well as thread distribution (having all threads spawned on the same

processor). On the Origin 2000, threads and memory can be distributed through-

out the system. There may be processors spawned on one part and memory placed

on another, using OpenMP. Despite memory and thread migration and round-robin

memory distribution, having all the OpenMP threads realize good memory access

speed does not seem to be trivial.
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Due to the fact that the program did improve with greater numbers of

threads, the thread distribution idea could be discounted. What was left was

memory distribution and this was never solved.

I decided in the end, though, that since Sputnik demonstrated the results

of my thesis — that performance results could be analyzed and that action could

be taken, in the case of Sputnik, adjusting the number of threads per system and

re-partitioning the dataset according to “processing power” — that my thesis had

been proven. The Sputnik API is currently designed to work with a commodity

cluster with a good MPI and OpenMP implementation. It will take more work

on other vendors’ systems with other vendors’ implementations of OpenMP to

determine exactly what the cause of the problems with OpenMP on the Origin2000

are.

Another problem, presumably related to the OpenMP issues as well, had

to do with scaling. First, it turned out that the loop that was most obviously the

one to put the OpenMP directives around did not produce any parallel speedup

at all. Second, it turned out that only when the program’s built-in cache tiling

mechanism was disabled by using two specific options (-si 1 -sj 1), did the pro-

gram produce any scaling as well. (And then, as I mentioned before, it performed

several times worse than KeLP (which uses MPI exclusively) alone.

Again, since the repartitioning increased the utilization of the cluster and

speed of the program, I did not feel that this affected the validity of my results. I

am confident that experiments on a true commodity cluster of multiprocessors, as

Sputnik was designed for, will resolve the OpenMP scaling and speedup issues.



Chapter VI

Conclusions and Future Work

The results that Sputnik produced with the application study of red-

black3D indicate strongly that as part of the ClusterOptimization step discussed

in chapter 1, repartitioning the load to balance out the time that each Origin2000

system spends running so that both nodes finish at the same time, works.

The speedup over running unoptimized with uniform partitioning, though

not completely linear, is good, and works well for medium-sized problems to very

large ones. The most dramatic results came with the example of 48 threads on

balder and 24 threads on aegir where the repartitioning revealed a speedup of

35.7%. This speedup is actually 2.1% better than the equations predict for the

theoretical results. This is shown despite OpenMP anomalies encountered. In fact,

all of the results show that Sputnik gives a speedup within 5.2% of the theoretical

optimum and the majority of the results are within 2%. Some, in fact, are up to

2.3% better than the theoretical optimum. Figure V.5 shows graphically really

how close Sputnik comes to perfect speedup with the available optimizations.

An application written with KeLP can be converted to Sputnik very easily

as long as a good OpenMP implementation exists and the kernel that one is trying

to parallelize can in fact be taken and optimized by OpenMP well. As noted

by other researchers, this is not always possible [21][44][45]. This makes code for

heterogeneous clusters almost as easy to program as homogeneous clusters by using

56
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Sputnik instead of KeLP, which was one of my primary goals.

Following the Sputnik Model, the Sputnik API library could certainly be

adapted to work with different component technologies. For instance, instead of

KeLP1 and OpenMP, it could be built on top of the one of the already-existing

multi-tier API’s described in my related work section. The intent would be to

continue to make developing Sputnik-based scientific code supporting heteroge-

neous clusters of multiprocessors even easier than Sputnik currently provides, while

still achieving at least the speedup that was demonstrated on the Origin2000’s at

NCSA.

Regardless of the component technologies used, however, the idea of a

ClusterDiscovery and ClusterOptimization component appears to work. This can

certainly be extended in the future to function well with problems that may benefit

not only from a partitioning or balancing of the problem, but possibly from other

optimizations including cache tiling or focusing specific sections of the program on

specific machines that have unique characteristics from which the sections would

benefit.

The idea could certainly also be adapted to work in a dynamic environ-

ment as well, where instead of sampling just once, at the beginning, testing and

sampling could happen continuously throughout the run of the program to opti-

mally execute long-running programs, tuning throughout the run of the program.

The Model might also be brought to address nodes of multiple architec-

tures in the same cluster. For example, if we define our “cluster” to be an SGI-Cray

T3E, an SGI-Cray T90, and IBM SP, connected by a high-bandwidth, low-latency

network, we will have a phenomenally heterogeneous cluster or PHC (as opposed

to a slightly heterogenous cluster or SHC ). A problem that is able to make use

of all of these machines and their unique characteristics would be rare, but it is

entirely possible that a program might have some loops that are easily vectoriz-

able and should best be directed to the T90 and parts of the program that simply

should be farmed out to as many processors as possible on the T3E and SP [5]. A
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possible step for the ClusterDiscovery stage would be to recognize this and direct

the ClusterOptimizer to divide not necessarily just the data or the computation

as a whole but to separate the problem into specific tasks that could be assigned

to each unique hardware architecture according to the machines’ specialties.

I would like the readers of this thesis to bring away with them, the fol-

lowing points:

1. Sputnik is an API which demonstrates that heterogeneous clusters of multi-

processors need not be difficult to program. As clusters of multiprocessors

appear to be the near-term future for supercomputing, ways are needed to

address the evolution of these machines. Sputnik is one of these ways.

2. Sputnik is an API which demonstrates that programs need not waste any

available processing power on a heterogeneous cluster of multiprocessors. By

adjusting the number of threads per multiprocessors and repartitioning the

problem so that each multiprocessors node is time-balanced, the program

can run as if the entire cluster was homogeneous.

3. Sputnik can be extended in the future, as I intend to do myself in many ways

in future research with the San Diego Supercomputer Center, including, but

not limited to:

(a) Running on a variety of vendor platforms.

(b) Performing dynamic optimizations.

(c) Running on clusters of varying architectures (including vector machines

and MPPs), not just varying speed, memory, network, or cache size of

multiprocessors.

(d) Performing varying types of optimizations — more than just reparti-

tioning or adjusting the number of threads.

(e) Working with many other different types applications.
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Appendix A

User’s Guide

A.A Introduction

Sputnik runs in two stages. In the first stage, the routines gather in-

formation about how the program actually runs on each multiprocessor node.

Once it gets timings for each separate node, it calculates the fraction of the

workload that each multiprocessor node should run. This ratio looks like this:

timen/total time = workn/total work in a cluster with N multiprocessor nodes.

Additionally, the first stage determines the optimal number of OpenMP threads to

run per node. This particular optimization of the ideal number of threads per node

to run is only one possible optimization that we could be doing. Other possible

optimizations might include tiling for cache and making predictions about dynamic

optimizations that the program might need after the original partitioning.

In the second stage, the routines partition the problem based on the

calculated fractions, and finally make a final run of the program at the peak speed

possible based on the chosen partition.

Sputnik expands upon KeLP1 by adding to the API with two new func-

tions and one new technology, OpenMP. Further, Sputnik modifies the existing

KeLP distribution by adding new partitioning algorithms to the distribute and

distributeBlock1 functions in the DOCK DecompositionX class. The goal of the
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Figure A.1: Hierarchy of software layers for Sputnik

API, designed to be consistent with the original KeLP1 goals of making scientific

program easier while making the overall performance greater has resulted in an

API that requires only a few minor modifications to an existing KeLP1 program

to work in Sputnik. A good progression for writing a Sputnik program would be

to first write the serial program, then modify it to be a KeLP1 program, then add

OpenMP directives, and then finally modify the KeLP1 program to be a Sputnik

program using the Sputnik API calls.

A.B Major Changes in Usage from KeLP1

The two new routines are as follows (which are described in detail later

in this chapter):

void SputnikGo(int argc, char **argv)

double SputnikMain(int argc, char **argv, double * SputnikTimes)

Sputnik accepts more arguments than those that may just be passed into

the application or to MPI. A typical MPI program, called mpiprog in this example,

is started like this on four nodes: mpirun -np 4 mpiprog.

Sputnik takes four additional arguments:
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1. testSMPS: If equal to the integer “1”, this tells the program that it should

pay attention to the “maxthreads” argument, ignore the “numthreads” and

“hetero” arguments and that it should test the speed of each individual

multiprocessor node before making a final run with the optimal number of

threads per node. If equal to the integer “0”, the “hetero” argument is

checked. If “hetero” is equal to “1,” then the “.stats” file is read for its timing

information and threads are allocated to the nodes based on the timings from

“.stats” and the value of “maxthreads.” If “hetero” is equal to 0, then the

“.stats” file and “maxthreads” are ignored and “numthreads” threads per

node are used rather than reading the timings from the “.stats” file. All

other conditions will produce an error.

2. hetero: Whether or not to run heterogeneously, based on the “.stats” file, if

the multiprocessor nodes are not tested individually.

3. maxthreads: If given, is the maximum number of threads to be used on each

node. If not given, a default value is used.

4. numthreads: The number of threads per node to allocate if testSMPS is 0

(false).

A.C Examples of Command-Line Options

An example of each possible running mode with the Sputnik command-

line arguments follows. Each example runs an MPI program mpiprog with a certain

number of threads on two multiprocessor nodes.

1. mpirun -np 2 mpiprog -testSMPS 1 -maxthreads 10

• With a maximum number of 10 threads on both nodes, Sputnik will

test each node with the kernel of the program to determine the optimal

number of threads for each node. When it has found the optimal times,
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it writes them to a file called “.stats” and makes a final run of the

program using the optimal number of threads per node and the optimal

decomposition.

• The -hetero argument is ignored.

2. mpirun -np 2 mpiprog -testSMPS 1 -maxthr0 10 -maxthr1 20

• With a maximum number of 10 threads on node 0 and 20 threads on

node 1, Sputnik will test each node with the kernel of the program to

determine the optimal number of threads for each node. When it has

found the optimal times, it writes them to a file called “.stats” and

makes a final run of the program using the optimal number of threads

per node and the optimal decomposition.

• The -hetero argument is ignored.

3. mpirun -np 2 mpiprog -testSMPS 0 -hetero 0 -numthreads 10

• Sputnik runs on 2 nodes with exactly 10 threads per node with homo-

geneous decomposition.

4. mpirun -np 2 mpiprog -testSMPS 0 -hetero 0

-numthr0 10 -numthr1 20

• Sputnik runs on 2 nodes with exactly 10 threads on node 0 and 20

threads on node 1 with homogeneous decomposition. Use of this set of

options is comparable to running with KeLP2.

5. mpirun -np 2 mpiprog -testSMPS 1 -hetero 0

-numthr0 10 -numthr1 20

• Sputnik runs on 2 nodes with exactly 10 threads on node 0 and 20

threads on node 1, but with heterogeneous decomposition based on a

single test run made before the final run.
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6. mpirun -np 2 mpiprog -testSMPS 0 -hetero 1 -numthreads 10

• Sputnik runs on 2 nodes with exactly 10 threads per node with hetero-

geneous decomposition based on the times stored in the “.stats” file.

7. mpirun -np 2 mpiprog -testSMPS 0 -hetero 1

-numthr0 10 -numthr1 20

• Sputnik runs on 2 nodes with exactly 10 threads on node 0 and 20

threads on node 1 with heterogeneous decomposition based on the times

stored in the “.stats” file.

A.D Example of Intra-Node Parallelism

Additionally, OpenMP directives must be put around the loops that the

programmer wishes to parallelize. The directives function either in C/C++ or

Fortran kernels and can be as simple as those used in this code from a KeLP

version of Red-Black 3D:

!$OMP PARALLEL PRIVATE(jj,ii,k,j,i,jk)

do jj = ul1+1, uh1-1, sj

do ii = ul0+1, uh0-1, si

!$OMP DO SCHEDULE(STATIC)

do k = ul2+1, uh2-1

do j = jj, min(jj+sj-1,uh1-1)

jk = mod(j+k,2)

do i = ii+jk, min(ii+jk+si-1,uh0-1), 2

u(i,j,k) = c *

2 ((u(i-1,j,k) + u(i+1,j,k)) + (u(i,j-1,k) +

3 u(i,j+1,k)) + (u(i,j,k+1) + u(i,j,k-1) -

4 c2*rhs(i,j,k)))
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end do

end do

end do

!$OMP END DO

end do

end do

!$OMP END PARALLEL

The code, above, scales well and with the OpenMP directives in place

can show parallelism well, depending on the size of the problem.

A.E Sputnik Usage

Sputnik works in this manner:

1. Initialize MPI and KeLP

2. Set the number of threads on each multiprocessor node and run the kernel of

the program repeatedly on each individual multiprocessor node, varying the

number of threads, until the optimal number of threads per node is reached.

The kernel runs in a kind of “shell” that Sputnik creates using SputnikMain()

(described below).

3. Run the kernel with the optimal number of thread per node.

In order to use the Sputnik library, there are three principle changes that

need to be made to the KeLP code in addition to adding OpenMP directives.

First, a new function needs to be defined by the programmer, SputnikMain().

Second, all calls to the distribute function from the user code need to have an

additional argument added. Finally, the main Sputnik function, SputnikGo, needs

to be called by the programmer from within main.
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A.E.1 SputnikMain()

SputnikMain() is the code that is called over and over again while trying

to find the optimal number of threads per multiprocessor node. It is not just the

kernel of the program, but is also everything that the program needs to call before

running the kernel, such as the initialization of values in arrays. SputnikMain

returns a double. The value of that double should be the time it takes for the

kernel to run. For example:

double SputnikMain(int argc,char ** argv, double * SputnikTimes) {

double start, finish;

...

<declaraitions, initializations>

...

start = MPI_Wtime(); // start timing

kernel(); // call the kernel function

finish = MPI_Wtime(); // finish timing

...

return finish-start;

}

Essentially everything that was in main() can now be in SputnikMain()

with the addition of timing calls. A bare-bones main() might now look like this:

int main(int argc, char **argv)

{

MPI_Init(&argc, &argv); // Initialize MPI

InitKeLP(argc,argv); // Initialize KeLP

// Call Sputnik’s main routine, which in turn will
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// then call SputnikMain().

SputnikGo(argc,argv);

MPI_Finalize(); // Close off MPI

return (0);

}

The call that sets the number of threads per node to use is actually

set in SputnikGo() and so does not need to be used by the programmer. The

number of threads actually being used in a loop should be tested by using the

OMP GET MAX THREADS() call. In this way, the programmer can determine

whether OpenMP is doing a good job of parallelizing the kernel that the program-

mer would like to speed up. A number of factors can affect OpenMP’s paralleliza-

tion, including striding of loops and data dependencies.

A.F Sputnik Implementation

The overall process of what Sputnik does has been discussed previously

in this thesis. I will discuss the specifics here. Sputnik has many command-

line options, but in this following section, I will discuss just the part where we

test the strength of the multiprocessor nodes (-testSMPS = 1), which is the most

important and unique part of Sputnik’s functionality.

After SputnikGo() is called (probably from within main()), the program

follows something similar to this outline in pseudo-code:

// Until we have hit the user-defined limit of the maximum number

// of threads or until the time we get by increasing the number of

// threads is higher (worse performance) than the lower number of

// threads, keep increasing the number of threads and running the
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// kernel of the program, as contained in SputnikMain(), without

// communication. This way, we can get the individual timings for

// each multiprocessor node.

while(i < MAX_THREADS

&& time[last iteration] < time[second-to-last iteration])

{

omp_set_num_threads(i);

// By passing in NULL for the times, we are telling the

// routine inside the DecompositionX class not to do any

// special modifications.

time[i] = SputnikMain(int argc, char **argv, NULL);

i = i * 2;

}

i = iteration before the best we found in the previous loop;

// During the first loop, we move quickly to find the optimal

// solution by doubling i each time. This time, we only

// increment by 1, starting with the best estimate from the

// first while loop.

while (time[last iteration] < time[second-to-last iteration])

{

omp_set_num_threads(i);

time[i] = SputnikMain(int argc, char **argv, NULL);

i = i + 1;

}

// Set the optimal number of threads. Each node may have a
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// different optimal value.

omp_set_num_threads(optimal number);

// This time, pass in the best times and let the DecompositionX

// routines do partitioning based on the best times for each node.

// This way, not only does each node run with an optimal number

// of threads per node (it may not be the maximum available), but

// also with an optimal division of work.

time[i] = SputnikMain(int argc, char **argv, bestTimes);



Appendix B

Source Code to Sputnik

B.A DecompositionX.h.m4

/****************************************************************

* DecompositionX.h.m4 *

* *

* Author: Stephen Fink *

* Modified for Sputnik: Sean Peisert *

* *

* Class DecompositionX represents a distributed index space *

* with a regular block decomposition *

*****************************************************************/

#include "ArrayX.h"

#include "ProcessorsX.h"

#include "GhostPlanX.h"

#include "menagerie.h"

#define BLOCK1 1

#define BLOCK2 2

/****************************************************************

* Class DecompositionX is a first-class dynamic template *

*****************************************************************/

class DecompositionX: public GhostPlanX {

RegionX _domain; /* Global region of DecompositionX */

PointX _distType; /* Distribution directive in each

dimension */

ArrayX<int> _Map; /* maps virtual proc array to 1-d

70
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floorplan */

public:

/********************************/

/* constructors and destructors */

/********************************/

DecompositionX() {}

DecompositionX(ArrayIndexArguments):

_domain(PointX(1),PointX(ArrayIndices)) {}

DecompositionX(const RegionX& R): _domain(R) {}

DecompositionX(const DecompositionX& D);

DecompositionX& operator = (const DecompositionX& D);

/********************************/

/* simple access functions */

/********************************/

const PointX& distributionRules() const {return _distType;}

const RegionX& domain() const {return _domain;}

int domainEmpty() const {return _domain.empty();}

int domainLower(const int dim) const

{return _domain.lower(dim);}

int domainUpper(const int dim) const

{return _domain.upper(dim);}

int domainExtents(const int dim) const

{return _domain.extents(dim);}

int domainSize() const {return _domain.size();}

// query functions about the virtual processor array

int pLower(const int dim) const {return _Map.lower(dim); }

int pUpper(const int dim) const {return _Map.upper(dim); }

int pExtents(const int dim) const {return _Map.extents(dim); }

int pMap(const PointX& P) const { return _Map(P); }

// query functions about the global index domain

int pIndex(const int dim, const int gIndex) const;

int pOwner(const PointX& P) const;

RegionX pRegion(const RegionX& R) const;

const XObjectX& operator () (const int i) const

{ return FloorPlanX::operator() (i); }

const XObjectX& operator () (const PointX& P) const

{ return (*this)(pMap(P)); }
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void setowner(const int i, const int proc)

{ FloorPlanX::setowner(i,proc); }

void setowner(const PointX& P, const int proc)

{ FloorPlanX::setowner(pMap(P),proc); }

void setDomain(const RegionX& D)

{ _domain = D; }

/********************************/

/* distribution methods */

/********************************/

void distribute(const PointX& D,const ProcessorsX& P,

double * Times);

void distribute(ArrayIndexArguments, const ProcessorsX& P,

double * Times)

{ distribute(PointX(ArrayIndices),P,Times); }

void distribute(const PointX& D, double * Times)

{ distribute(D,ProcessorsX(),Times); }

void distribute(ArrayIndexArguments, double * Times)

{ distribute(PointX(ArrayIndices),ProcessorsX(),Times); }

private:

/* simple access functions */

int procExtents(int dim) const

{return _Map.extents(dim);}

int procLower(int dim) const

{return _Map.lower(dim);}

/* distribution functions */

void distributeBlock1(int dim, double * Times);

void distributeBlock2(int dim);

};

#endif

B.B DecompositionX.C.m4

B.B.1 distribute

/****************************************************************

* void DecompositionX::distribute(const PointX& D, *

* const ProcessorsX& P) *

* *
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* Distribute a decomposition across the logical processor array.*

*****************************************************************/

void DecompositionX::distribute(const PointX& D,

const ProcessorsX& P,

double * Times)

{

/* initialize the _Map array */

_Map.resize(P.region());

resize(_Map.size());

int i = 0;

for_point_X(p,_Map)

_Map(p) = i;

i++;

end_for

if (domainEmpty()) return;

for (int dim=0;dim<NDIM;dim++) {

switch(D(dim)) {

case BLOCK1:

distributeBlock1(dim, Times);

break;

case BLOCK2:

distributeBlock2(dim);

break;

default:

break;

}

}

/* do processor assignments */

for_point_X(p,_Map)

setowner(_Map(p),P(p));

end_for

}

B.B.2 distributeBlock1

/****************************************************************

* void DecompositionX::distributeBlock1(int dim) *

* *
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* In a BLOCK1 distribution, each procesor gets exactly *

* ceiling(N/P) elements. If N doesn’t divide P, this will *

* result in a load imbalance. *

*****************************************************************/

void DecompositionX::distributeBlock1(int dim, double * Times)

{

int N = domainExtents(dim);

int P = pExtents(dim);

int PLower = pLower(dim);

int dimOffset, low;

int ceiling;

int i;

double tTotal=0.0;

double * invTimes = new double[P];

int * ceilings = new int[P];

int * aHigh = new int[P];

if (Times != NULL && P > 1) {

for (i = 0; i < P; i++) {

/* Get the inverses of the total times */

tTotal += 1.0/Times[i];

invTimes[i] = 1.0/Times[i];

}

for (i = 0; i < P; i++) {

/* Get the ratios and even it out, if necessary */

ceilings[i] = floor((invTimes[i]/tTotal)*N);

if (N%P == 0)

ceilings[i] += 1;

}

}

else {

ceiling = (N%P)? (N/P)+1 : N/P;

}

_distType(dim) = BLOCK1;

i = 0;

for_point_X(p,_Map)

dimOffset = p(dim) - PLower;
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if (Times != NULL && P > 1) {

ceiling = ceilings[i];

if (i > 0) {

low = aHigh[i-1] + 1;

}

else {

low = domainLower(dim) + ceiling * dimOffset;

}

aHigh[i] = low + ceiling - 1;

i++;

}

else {

low = domainLower(dim) + ceiling * dimOffset;

}

setlower(_Map(p),dim,low);

setupper(_Map(p),dim,MIN(low + ceiling - 1,

domainUpper(dim)));

end_for

}

B.C Sputnik.h

void SputnikGo(int argc, char **argv);

double SputnikMain(int argc, char **argv, int testSMPS,

double * SputnikTimes);

B.D Sputnik.C

#include <iostream.h>

#include "Sputnik.h"

#include <omp.h>

#include <mpi.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <assert.h>

#define def_numThreads 10;

#define def_maxThreads 0;

#define def_testSMPS 0;

#define def_hetero 0;
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void SputnikGo(int argc, char **argv) {

int numThreads;

int hetero;

int maxThreads;

int testSMPS;

int maxThr[2], numThr[2];

int i, j, k;

int myid, nodes;

char procName[80];

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Comm_size(MPI_COMM_WORLD,&nodes);

if (myid == 0) {

testSMPS = def_testSMPS;

testSMPS = def_hetero;

numThreads = def_numThreads;

maxThreads = def_maxThreads;

maxThr[0] = 0;

maxThr[1] = 0;

numThr[0] = 0;

numThr[1] = 0;

for (int arg = 1; arg < argc; arg++) {

if (!strcmp("-testSMPS",argv[arg]))

testSMPS = atoi(argv[++arg]);

else if (!strcmp("-hetero",argv[arg]))

hetero = atoi(argv[++arg]);

else if (!strcmp("-numthreads",argv[arg]))

numThreads = atoi(argv[++arg]);

else if (!strcmp("-maxthreads",argv[arg]))

maxThreads = atoi(argv[++arg]);

else if (!strcmp("-maxthr0",argv[arg]))

maxThr[0] = atoi(argv[++arg]);

else if (!strcmp("-maxthr1",argv[arg]))

maxThr[1] = atoi(argv[++arg]);

else if (!strcmp("-numthr0",argv[arg]))

numThr[0] = atoi(argv[++arg]);

else if (!strcmp("-numthr1",argv[arg]))

numThr[1] = atoi(argv[++arg]);

}

cout << "INPUTS: " << endl;

cout << "\ttestSMPS: " << testSMPS << endl;
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cout << "\thetero: " << hetero << endl;

cout << "\tnumthreads: " << numThreads << endl;

cout << "\tmaxthreads: " << maxThreads << endl;

cout << "\tmaxthreads for SMP 0: " << maxThr[0] << endl;

cout << "\tmaxthreads for SMP 1: " << maxThr[1] << endl;

cout << "\tnumthreads for SMP 0: " << numThr[0] << endl;

cout << "\tnumthreads for SMP 1: " << numThr[1] << endl;

for (i = 0; i < nodes; i++) {

k = MPI_Get_processor_name(procName,&j);

if(!k)

cout << "\tname of SMP " << i << ": "

<< procName << endl;

}

if (testSMPS == 1 && maxThreads > 0) {

cout << "TEST MODE ON\n";

if (maxThr[0] != 0 && maxThr[1] != 0) {

cout << "MAX THREADS SET INDIVIDUALLY\n";

}

else

cout << "MAX THREADS SET AS A GROUP\n";

}

else if (testSMPS == 1

&& (numThreads > 0 || numThr[0] > 0)

&& maxThreads == 0) {

cout << "TEST MODE ON\n";

if (numThr[0] != 0 && numThr[1] != 0)

cout << "SPECIFIC NUM THREADS SET INDIVIDUALLY\n";

else

cout << "SPECIFIC NUM THREADS SET AS A GROUP\n";

}

else {

cout << "FIXED NUMBER OF THREADS\n";

if (numThr[0] != 0 && numThr[1] != 0)

cout << "SPECFIC NUM THREADS SET INDIVIDUALLY\n";

else

cout << "SPECIFIC NUM THREADS SET AS A GROUP\n";

}

}

k = MPI_Get_processor_name(procName,&j);

if(!k)

cout << "\tname of SMP " << myid << ": "



78

<< procName << endl;

int bestRun;

double bestTime;

double final;

double * bestTimes = new double[nodes];

double * staticTimes = new double[nodes];

int * bestRuns = new int[nodes];

FILE * stats;

MPI_Barrier(MPI_COMM_WORLD);

// MPI problem: only root process gets argv correctly

// must broadcast ring size to other processes

MPI_Bcast(&testSMPS,1,MPI_INT,0,MPI_COMM_WORLD);

MPI_Bcast(&hetero,1,MPI_INT,0,MPI_COMM_WORLD);

MPI_Bcast(&numThreads,1,MPI_INT,0,MPI_COMM_WORLD);

MPI_Bcast(&maxThreads,1,MPI_INT,0,MPI_COMM_WORLD);

MPI_Bcast(&maxThr,2,MPI_INT,0,MPI_COMM_WORLD);

MPI_Bcast(&numThr,2,MPI_INT,0,MPI_COMM_WORLD);

if (maxThr[0] != 0 && maxThr[1] != 0)

maxThreads = maxThr[myid];

int maxMax = maxThreads;

// Get the biggest number of threads on all nodes

for (i = 0; i < nodes; i++) {

if (maxMax < maxThr[i])

maxMax = maxThr[i];

}

if (testSMPS == 1 && maxThreads > 0) {

double * timings = new double[maxMax+1];

// Initialize Values to Zero. We can’t use zero

// threads, so we go all the way up to maxThreads

for (i = 0; i <= maxMax; i++) {

timings[i] = 0.0;

}

int gotit = 0;

int * a_gotit = new int[nodes];

int * a_min = new int[nodes];

int * a_max = new int[nodes];



79

int * a_iter = new int[nodes];

int minMin=1;

for (i = 0; i < nodes; i++) {

bestTimes[i] = 0.0;

bestRuns[i] = 0;

a_gotit[i] = 0;

a_min[i] = 0;

a_max[i] = 0;

}

i = 1;

// Find the Max and Min times that the best

// is in-between

while (i <= maxMax) {

cout << "PE "<< myid << ": Running with "

<< i << " threads.\n";

MPI_Barrier(MPI_COMM_WORLD);

a_iter[myid] = i;

for (j = 0; j < nodes; j++) {

MPI_Bcast((void *) &a_iter[j],1,

MPI_INT,j,MPI_COMM_WORLD);

assert(a_iter[j] == i);

}

omp_set_num_threads(i);

// Initial run

timings[i] = SputnikMain(argc, argv,

testSMPS, NULL);

// Store the best time for the first run

// or a lower time

if ((timings[i] <= bestTime || i == 1)

&& gotit == 0

&& i <= maxThr[myid]) {

bestRun = i;

bestTime = timings[i];

}

// If the time goes up

if ((timings[i] > bestTime) && gotit == 0){

a_min[myid] = i/4;
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a_max[myid] = i;

gotit = 1;

a_gotit[myid] = 1;

}

//keep increasing number of threads

if (i*2 > maxMax && i != maxMax) {

if (gotit == 0) {

// 2nd-highest power of 2

// before maxMax

a_min[myid] = i/2;

//maxMax

a_max[myid] = maxMax;

}

i = maxMax;

}

else {

i*=2;

}

// Check to see if everyone’s time went up

int allgotit = 0;

for (j = 0; j < nodes; j++) {

MPI_Bcast((void *) &a_gotit[j],1,

MPI_INT,j,MPI_COMM_WORLD);

allgotit +=a_gotit[j];

}

if (a_max[myid] == maxThr[myid]) {

a_min[myid] = maxThr[myid]/2;

gotit = 1;

a_gotit[myid] = 1;

}

}

minMin = a_min[myid];

maxMax = a_max[myid];

for (j = 0; j < nodes; j++) {

MPI_Bcast((void *) &a_min[j],1,MPI_INT,

j,MPI_COMM_WORLD);

if (a_min[j] < minMin)

minMin = a_min[j];
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}

for (j = 0; j < nodes; j++) {

MPI_Bcast((void *) &a_max[j],1,MPI_INT,

j,MPI_COMM_WORLD);

if (a_max[j] > maxMax)

maxMax = a_max[j];

}

if (minMin <= 0)

minMin = 1;

i = minMin;

// Step through from the min to the max

// to find the best

while (i <= maxMax) {

if (timings[i] != 0.0) {

i++;

continue;

}

cout << "PE "<< myid << ": Running with "

<< i << " threads.\n";

omp_set_num_threads(i);

timings[i] = SputnikMain(argc, argv,

testSMPS, NULL);

if ((timings[i] <= bestTime)

&& i <= maxThr[myid]) {

bestTime = timings[i];

bestRun = i;

}

i++;

}

MPI_Barrier(MPI_COMM_WORLD);

bestTimes[myid] = bestTime;

bestRuns[myid] = bestRun;

for (i = 0; i < nodes; i++) {
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MPI_Bcast((void *) &bestTimes[i],1,

MPI_DOUBLE,i,MPI_COMM_WORLD);

MPI_Bcast((void *) &bestRuns[i],1,

MPI_INT,i,MPI_COMM_WORLD);

}

if (myid == 0) {

stats = fopen("StatPut","w");

for (i = 0; i < nodes; i++) {

fprintf(stats,"%f\n",bestTimes[i]);

cout << "bestRuns (node " << i

<< "): " << bestRuns[i] << endl;

cout << "bestTimes (node " << i

<< "): " << bestTimes[i] << endl;

}

for (i = 0; i < maxThreads+1; i++)

fprintf(stats,

"Time for %d threads: %f\n",

i,timings[i]);

fclose(stats);

}

MPI_Barrier(MPI_COMM_WORLD);

testSMPS = 0;

omp_set_num_threads(bestRuns[myid]);

final = SputnikMain(argc, argv,

testSMPS, bestTimes);

}

else if (testSMPS == 1

&& (numThreads > 0 || numThr[0] > 0)

&& maxThreads == 0) {

if (numThr[0] != 0) {

omp_set_num_threads(numThr[myid]);

cout << "SETTING ID THREADS " << myid << ","

<< numThr[myid] << endl;

}

else {

omp_set_num_threads(numThreads);

cout << "SETTING ID THREADS " << myid << ","

<< numThreads << endl;

}
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MPI_Barrier(MPI_COMM_WORLD);

bestTimes[myid] = SputnikMain(argc, argv,

testSMPS, NULL);

MPI_Barrier(MPI_COMM_WORLD);

for (i = 0; i < nodes; i++) {

MPI_Bcast((void *) &bestTimes[i],1,

MPI_DOUBLE,i,MPI_COMM_WORLD);

}

if (myid == 0) {

for (i = 0; i < nodes; i++) {

cout << "bestTimes (node " << i

<< "): " << bestTimes[i] << endl;

}

}

MPI_Barrier(MPI_COMM_WORLD);

testSMPS = 0;

final = SputnikMain(argc, argv, testSMPS, bestTimes);

}

else { // testSMPS == 0

if (numThr[0] != 0)

omp_set_num_threads(numThr[myid]);

else

omp_set_num_threads(numThreads);

if(hetero) {

if (myid == 0)

cout << "TIMES TO PARTITION FOR:\n";

stats = fopen("StatPut","r");

for (j = 0; j < nodes; j++) {

fscanf(stats, "%lf\n",

&(staticTimes[j]));

if (myid == 0)

cout << staticTimes[j]

<< " seconds\n";

}

fclose(stats);

final = SputnikMain(argc, argv,

testSMPS, staticTimes);
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}

else {

// Run "unaltered"

final = SputnikMain(argc, argv,

testSMPS, NULL);

}

}

MPI_Barrier(MPI_COMM_WORLD);

cout << "Final (" << myid << "): " << final << endl;

cout << "Done." << endl;

cout.flush();

MPI_Barrier(MPI_COMM_WORLD);

}



Appendix C

Source code to redblack3D with
Sputnik

C.A rb.F

c****************************************************************

c subroutine rb7rrelax(u,ul0,ul1,ul2,uh0,uh1,uh2)

c integer ul0, ul1,uh0, uh1, ul2, uh2

c double precision u(ul0:uh0,ul1:uh1,ul2:uh2)

c

c peform 7-point red/black relaxation for Poissons’s

c equation with h=1.0

c

c Originally written by Stephen J. Fink,

c Modified by Scott B. Baden for 3D RB

c Converted to 3D

c Blocked for Cache

c RB ordering

c****************************************************************

c Smooth the Red Points

subroutine rb7rrelax(u,ul0,ul1,ul2,uh0,uh1,uh2,si,sj,rhs)

integer ul0, ul1,uh0, uh1, ul2, uh2, si, sj

double precision u(ul0:uh0,ul1:uh1,ul2:uh2)

double precision rhs(ul0:uh0,ul1:uh1,ul2:uh2)

double precision c,h,c2

integer i, j, k, ii, jj, jk

c= (1.0d0/6.0d0)

h=1.0d0

85
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c2=h*h

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(jj,ii,k,j,i,jk)

!$OMP DO SCHEDULE(STATIC)

do jj = ul1+1, uh1-1, sj

do ii = ul0+1, uh0-1, si

do k = ul2+1, uh2-1

do j = jj, min(jj+sj-1,uh1-1)

jk = mod(j+k,2)

do i = ii+jk, min(ii+jk+si-1,uh0-1), 2

u(i,j,k) = c *

2 ((u(i-1,j,k) + u(i+1,j,k)) +

3 (u(i,j-1,k) + u(i,j+1,k)) +

4 (u(i,j,k+1) + u(i,j,k-1) -

5 c2*rhs(i,j,k)))

end do

end do

end do

end do

end do

!$OMP END DO NOWAIT

!$OMP END PARALLEL

return

end

c Smooth the black points

subroutine rb7brelax(u,ul0,ul1,ul2,uh0,uh1,uh2,si,sj,rhs)

integer ul0, ul1,uh0, uh1, ul2, uh2, si, sj

double precision u(ul0:uh0,ul1:uh1,ul2:uh2)

double precision rhs(ul0:uh0,ul1:uh1,ul2:uh2)

double precision c,c2,h

integer i, j, k, ii, jj, jk

c= (1.0d0/6.0d0)

h=1.0d0

c2=h*h

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(jj,ii,k,j,i,jk)

!$OMP DO SCHEDULE(STATIC)

do jj = ul1+1, uh1-1, sj

do ii = ul0+1, uh0-1, si

do k = ul2+1, uh2-1
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do j = jj, min(jj+sj-1,uh1-1)

jk = 1 - mod(j+k,2)

do i = ii+jk, min(ii+jk+si-1,uh0-1), 2

u(i,j,k) = c *

2 ((u(i-1,j,k) + u(i+1,j,k)) +

3 (u(i,j-1,k) + u(i,j+1,k)) +

4 (u(i,j,k+1) + u(i,j,k-1) -

5 c2*rhs(i,j,k)))

end do

end do

end do

end do

end do

!$OMP END DO NOWAIT

!$OMP END PARALLEL

return

end

C.B rb3D.C

/****************************************************************

* rb3D.C *

* *

* program that solves Poisson’s equation on a unit cube *

* using Red/Black ordering *

* We should never solve Poisson’s equation this way; *

* this kernel is intended to be used in multigrid *

* *

* *

* This version uses a modified custom MotionPlan to send *

* contiguous messages where possible. *

* It also optimizes communication still further using the *

* the Manhattan class to avoid communicating corner and *

* edge ghost cells; the solver uses a 7 point stencil so *

* there is no need to send these extra points. *

* If you use this code as a starting point for another *

* applcation, and you need the corner or edge points, do not *

* use the Manhattan class: use an IrregularGrid3 instead. *

* The code may be easily modified to this end *

* Replace Manhattan by IrregularGrid3 and be sure to uncomment *

* the code that sets up the Mover and MotionPlan objects *
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* *

* Uncomment the following Mover member function calls: *

* execute() *

* *

* Comment out the following Manhattan member function calls *

* fillGhost() *

* Optimze() *

* *

* Original 2D code was written by Stephen J. Fink *

* Extensively modified for benchmarking by Scott B. Baden *

* Deptartment of Computer Science and Engineering, *

* University of California, San Diego *

* *

*****************************************************************/

#include "Sputnik.h"

#include "j3D.h"

#include "XArray3.h"

#include "Grid3.h"

#include "Mover3.h"

#include "timer.h"

#include "manhattan.h"

#include <omp.h>

//extern int testSMPS;

void cmdLine(int argc, char **argv,

int&L, int& M, int& N, double& eps, int& niter,

int& chk_freq, int& reps, int& si, int& sj, int&gi,

int&gj);

void ReportTimings(double times[],double timesLoc [],

int reps, int chk_freq, int niter, int N,

int si, int sj, int gi, int gj);

void InitGrid(IrregularGrid3& grid)

{

grid.fill(1.0);

grid.assignGhost(0.0);

}
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void ComputeLocal(IrregularGrid3& grid,

int si, int sj, const int color,

IrregularGrid3& rhs);

/****************************************************************

* main() *

* *

* main() takes one argument: N: the number of points *

* along each axis *

*****************************************************************/

int main(int argc,char **argv)

{

MPI_Init(&argc, &argv);

SputnikGo(argc,argv);

MPI_Finalize();

return (0);

}

double SputnikMain(int argc,char ** argv,

int testSMPS, double * SputnikTimes) {

double start, finish, middle;

middle = 0.0;

try {

InitKeLP(argc,argv);

KelpConfig(CONTIG_MSG_IN_PLACE,TRUE);

int L,M,N, chk_freq, niter, reps, si, sj, gi, gj;

double eps;

cmdLine(argc, argv, L,M, N, eps, niter,chk_freq, reps,

si, sj, gi, gj);

Region3 domain(1,1,1,N,N,N);

/* Print header information*/

OUTPUT("rb3D run on P = " << mpNodes()

<< " nodes with N = " << N

<< endl);

OUTPUT("Processors geometry: "<< gi << " x " << gj << " x "

<< mpNodes()/(gi*gj) << " Blocking factors: " << si
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<< " x " << sj << endl);

OUTPUT("# Iter = " << niter << " # Reps: " << reps << endl);

if (chk_freq <= niter)

OUTPUT(" Convg check every " << chk_freq

<< " Iterations");

/* Allocate space for the local part of the problem */

/* Use the dock library to help with the partitioning */

const Region3 STRIP_V(1,1,1,gi,gj,mpNodes()/(gi*gj));

Processors3 P(STRIP_V);

OUTPUT(P << endl);

Decomposition3 T(domain);

T.distribute(BLOCK1,BLOCK1,BLOCK1,P, SputnikTimes);

OUTPUT(T << endl);

T.addGhost(1);

Manhattan grid(T);

IrregularGrid3 rhs(T);

// Initialize the local grid

InitGrid(grid);

rhs.fill(0.0);

IrregularGrid3 *U = &grid;

double stop = 1.0;

double* times = new double[reps];

double* timesLoc = new double[reps];

const int RED = 0 , BLK = 1;

//

// Do the computation

// We actually do it twice: once with communication,

// and once without

//

if (mpNodes() > 1 && !testSMPS){

for (int k = 0 ; k < reps; k++){

STATS_RESET();

STATS_START(STATS_ITERATION);
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if (k != 0) {

start = MPI_Wtime();

}

for (int i= 1; i<=niter; i++) {

// Exchange boundary data with neighboring

// processors

U->fillGhost();

// Perform the local smoothing operation on the

// RED Points

ComputeLocal(*U,si,sj,RED,rhs);

// Exchange boundary data with neighboring

// processors

U->fillGhost();

// Perform the local smoothing operation on the

// RED Points

// Perform the local smoothing operation on the

// BLK Points

ComputeLocal(*U,si,sj,BLK,rhs);

}

if (k != 0) {

finish = MPI_Wtime();

middle = finish - start + middle;

}

STATS_STOP(STATS_ITERATION);

times[k] = STATS_TIME(STATS_ITERATION);

}

if(!testSMPS)

cout << "SPUTNIK TIME WITH COMMUNICATION: "

<< middle << endl;

}

middle = 0.0;

for (int k = 0 ; k < reps; k++){

STATS_RESET();

STATS_START(STATS_LOCAL);

if (k != 0) {
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start = MPI_Wtime();

}

for (int i= 1; i<=niter; i++) {

// Perform the local smoothing on the RED Points

ComputeLocal(*U,si,sj,RED,rhs);

// Perform the local smoothing on the BLACK Points

ComputeLocal(*U,si,sj,BLK,rhs);

}

STATS_STOP(STATS_LOCAL);

timesLoc[k] = STATS_TIME(STATS_LOCAL);

if (k != 0) {

finish = MPI_Wtime();

middle = finish - start + middle;

}

}

ReportTimings(times,timesLoc , reps, chk_freq, niter, N,

si, sj, gi, gj);

}

catch (KelpErr & ke) {

ke.abort();

}

return(middle);

}
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