
 APPLICATION NOTE

R01AN1423EJ0101 Rev. 1.01 Page 1 of 36
July 1, 2014

RX210, RX21A, and RX220 Groups
Asynchronous Communication Using the SCI

Abstract
This document describes the method to perform asynchronous serial transmission and reception using the serial
communication interface (SCI) in the RX210, RX21A, and RX220 Groups.

Products
- RX210, RX21A, and RX220 Groups

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1423EJ0101
Rev. 1.01

July 1, 2014

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 2 of 36
July 1, 2014

Contents

1. Specifications ... 3

2. Operation Confirmation Conditions .. 4

3. Reference Application Note .. 4

4. Hardware .. 5
4.1 Pins Used ... 5

5. Software ... 6
5.1 Operation Overview ... 7

5.1.1 Serial Transmission .. 7
5.1.2 Serial Reception ... 8

5.2 File Composition .. 9
5.3 Option-Setting Memory .. 9
5.4 Constants ... 10
5.5 Structure/Union List ... 16
5.6 Variables .. 16
5.7 Functions .. 17
5.8 Function Specifications .. 17
5.9 Flowcharts .. 22

5.9.1 Main Processing ... 22
5.9.2 Port Initialization ... 23
5.9.3 Peripheral Function Initialization ... 23
5.9.4 Callback Function (SCI Transmit End) ... 23
5.9.5 Callback Function (SCI Receive End) .. 24
5.9.6 Callback Function (SCI Receive Error) ... 24
5.9.7 User Interface Function (SCI Initialization) ... 25
5.9.8 User Interface Function (SCI Receive Start) .. 27
5.9.9 User Interface Function (SCI Transmit Start) ... 28
5.9.10 User Interface Function (SCI State Obtain)... 29
5.9.11 Transmit Data Empty Interrupt .. 29
5.9.12 Transmit End Interrupt ... 30
5.9.13 Receive Data Full Interrupt .. 31
5.9.14 Receive Error Interrupt .. 32
5.9.15 SCI.ERI Interrupt Handling .. 33
5.9.16 SCI.RXI Interrupt Handling .. 33
5.9.17 SCI.TXI Interrupt Handling .. 34
5.9.18 SCI.TEI Interrupt Handling .. 34

6. Applying This Application Note to the RX21A or RX220 Group ... 35

7. Sample Code .. 36

8. Reference Documents .. 36

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 3 of 36
July 1, 2014

1. Specifications
Asynchronous serial transmission and reception are performed using the SCI.

After a reset, transmission and reception are performed only once each. 12 bytes of character code spelling out "Hello
world!" is transmitted from the transmit buffer. When the 12-byte transmission is completed, LED0 is turned on. The
12-byte data is received and stored in the receive buffer. When the 12-byte reception is completed, LED1 is turned on.
If an error occurs during reception, the receive operation is terminated and LED2 is turned on.

The SCI channel used is selected in the configuration file. Channel 0 (SCI0) is selected in the sample code.

- Transfer rate: 57600 bps

- Data length: 8 bits

- Stop bit: 2 bits

- Parity: None

- Hardware flow control: None

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows a Usage Example.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
SCI (selectable from 0, 1, 5, 6, 8, 9, and 12) Asynchronous serial transmission and reception
I/O ports Turn on LEDs

RX210 Group

Computer
TXD
RXD

RS232C

Hello world!

Terminal software

Renesas Starter Kit for RX210

P14
P15
P16

LED0 output
LED1 output
LED2 output

Figure 1.1 Usage Example

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 4 of 36
July 1, 2014

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used R5F52108ADFP (RX210 Group)

Operating frequencies

- Main clock: 20 MHz
- PLL: 100 MHz (main clock divided by 2 and multiplied by 10)
- System clock (ICLK): 50 MHz (PLL divided by 2)
- Peripheral module clock B (PCLKB): 25 MHz (PLL divided by 4)

Operating voltage 5.0 V
Integrated development
environment

Renesas Electronics Corporation
 High-performance Embedded Workshop Version 4.09.01

C compiler

Renesas Electronics Corporation
C/C++ Compiler Package for RX Family V.1.02 Release 01

Compile options
-cpu=rx200 -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -nologo

(The default setting is used in the integrated development environment.)
iodefine.h version Version 1.2A
Endian Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Renesas Starter Kit for RX210 (product part no.: R0K505210C000BE)
Tool used Terminal software

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.

- RX210 Group Initial Setting Rev. 2.00 (R01AN1002EJ)
- RX21A Group Initial Setting Rev. 1.10 (R01AN1486EJ)
- RX220 Group Initial Setting Rev. 1.10 (R01AN1494EJ)

The initial setting functions in the reference application notes are used in the sample code in this application note. The
revision numbers of the reference application notes are current as of when this application note was made. However the
latest version is always recommended. Visit the Renesas Electronics Corporation website to check and download the
latest version.

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 5 of 36
July 1, 2014

4. Hardware

4.1 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

The number of pins in the sample code is set for the 100-pin package. When using products with less than 100 pins,
select pins appropriate to the package used.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function
P14 Output LED0 output (completion of SCI transmission)
P15 Output LED1 output (completion of SCI reception)
P16 Output LED2 output (SCI reception error)
P21/RXD0 Input Input pin for SCI0 receive data (1)
P20/TXD0 Output Output pin for SCI0 transmit data (1)
P15/RXD1 Input Input pin for SCI1 receive data (1)
P16/TXD1 Output Output pin for SCI1 transmit data (1)
PA3/RXD5 Input Input pin for SCI5 receive data (1)
PA4/TXD5 Output Output pin for SCI5 transmit data (1)
PB0/RXD6 Input Input pin for SCI6 receive data (1)
PB1/TXD6 Output Output pin for SCI6 transmit data (1)
PC6/RXD8 Input Input pin for SCI8 receive data (1)
PC7/TXD8 Output Output pin for SCI8 transmit data (1)
PB6/RXD9 Input Input pin for SCI9 receive data (1)
PB7/TXD9 Output Output pin for SCI9 transmit data (1)
PE2/RXD12 Input Input pin for SCI12 receive data (1)
PE1/TXD12 Output Output pin for SCI12 transmit data (1)
Note:

1. The SCI pins used depend on the SCI channel selected in the configuration file. Unused SCI pins can
be used as general I/O ports.

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 6 of 36
July 1, 2014

5. Software
After a reset, the user interface function (SCI initialization) is called to initialize the SCI.

When the user interface function (SCI receive start) is called, receive operation is enabled. When data for the specified
number of bytes have been received, the SCI receive operation is disabled and the callback function (SCI receive end) is
called. LED1 is turned on with the callback function (SCI receive end).

When a receive error occurs, the SCI receive operation is disabled and the callback function (SCI reception error) is
called. LED2 is turned on with the callback function (SCI receive error).

When the user interface function (SCI transmit start) is called, the transmit operation is enabled. When data for the
specified number of bytes have been transmitted, the SCI transmit operation is disabled and the callback function (SCI
transmit end) is called. LED0 is turned on with the callback function (SCI transmit end).

Peripheral function settings are shown below and Figure 5.1 shows the Software Configuration.

SCI

- Serial communication mode: Asynchronous operation
- Transfer rate: 57600 bps
- Clock source: PCLKB (25 MHz)
- Data length: 8 bits
- Stop bit: 2 bits
- Parity: None
- Interrupts: Receive error interrupt (ERI) enabled
 Receive data full interrupt (RXI) enabled

Transmit data empty interrupt (TXI) enabled
Transmit end interrupt (TEI) enabled

Main processing (main.c)

User interface function
(SCI initialization)

Callback function (SCI transmit end)

Callback function (SCI receive end)

Callback function (SCI receive error)

Asynchronous communication (sci.c)

Main function

Transmit end interrupt function

Receive data full interrupt function

Receive error interrupt function

Calls functions

Transmit data empty interrupt
function

Internal function
(static)

External function
(global)

User interface function
(SCI receive start)

User interface function
(SCI transmit start)

User interface function
(SCI state obtain)

Figure 5.1 Software Configuration

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 7 of 36
July 1, 2014

5.1 Operation Overview
5.1.1 Serial Transmission
Figure 5.2 shows the Timing of Serial Transmission and (1) to (4) in the figure correspond to numbers in the operation
descriptions below.

(1) Initialization
Initializes the SCI using the user interface function (SCI initialization) and switches the output level on the TXD
pin to high.

(2) Starting a transmission
Verifies the transmit busy flag (B_TX_BUSY) using the user interface function (SCI transmit start). When the flag
is 1 (transmission busy), SCI_BUSY (SCI transmission being processed) is returned. When the flag is 0
(transmission ready), sets the transmit busy flag to 1, the SCR.TIE bit to 1 (a TXI interrupt request is enabled), and
the SCR.TE bit to 1 (serial transmission is enabled). When the TE bit is set to 1, the TXD pin becomes enabled.
Then sets the TXD pin mode control bit to 1 (use pin as I/O port for peripheral functions) to switch the pin function
to TXD output. When the IEN bit for the TXI interrupt is set to 1 (interrupt request is enabled), the TXI interrupt
request is generated.

(3) Transmitting data
In the TXI interrupt handling, the value in the transmit buffer is written to the TDR register. When the last data is
written, sets the TIE bit to 0 (a TXI interrupt request is disabled) and the SCR.TEIE bit to 1 (a TEI interrupt request
is enabled).

(4) Completing the transmission
When the last data has been transmitted, a TEI interrupt request is generated. In the TEI interrupt handling, sets the
TXD pin mode control bit to 0 (use pin as general I/O port), the TE bit to 0 (serial transmission is disabled), and the
TEIE bit to 0 (a TEI interrupt request is disabled). Sets the transmit busy flag to 0 and calls the callback function
(SCI transmit end).

Hi-Z

Sets to 0 by a program

Sets the TXD pin mode
control bit to 0 and then

sets the TE bit to 0

(4)

0

1

0

1

(2)

0

1

0

1

0

1

0

1

0

1

0

1

(3)

SCR.TIE bit

IEN bit for the TXI interrupt

IEN bit for the TEI interrupt

IR flag for the TEI interrupt

Transmit busy flag

SCR.TE bit

SCR.TEIE bit

IR flag for the TXI interrupt

TXD pin mode control bit
(PMR register) (1)

0

1

TXD pin dH !l
Low

High

General
output port

General
output port

Transmit data (Hello world!)

Sets to 1 by a program

Sets to 1 by a program Sets to 0 by a program

Sets the TE bit to 1 and
then sets the TXD pin
mode control bit to 1

General
input port

(1)

Becomes 0 by an interrupt
acceptance

Note:
1. The bit specified depends on the SCI channel selected.

TXD output

Becomes 0 by an
interrupt acceptance

Figure 5.2 Timing of Serial Transmission

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 8 of 36
July 1, 2014

5.1.2 Serial Reception
Figure 5.3 shows the Timing of Serial Reception and (1) to (4) in the figure correspond to numbers in the operation
descriptions below.

(1) Initialization
Initializes the SCI using the user interface function (SCI initialization) and switches the RXD pin function to RXD
input.

(2) Starting a reception
Verifies the receive busy flag (B_RX_BUSY) using the user interface function (SCI receive start). When the flag is
1 (reception busy), SCI_BUSY (SCI reception being processed) is returned. When the flag is 0 (reception ready),
sets the receive busy flag to 1 and clears the error flags. Sets the SCR.RIE bit to 1 (RXI and ERI interrupt requests
are enabled), the SCR.RE bit to 1 (serial reception is enabled), and the IEN bit for the RXI and ERI interrupts to 1
(interrupt request is enabled).

(3) Receiving data
When data is received, an RXI interrupt request is generated. In the RXI interrupt handling, stores the RDR register
value in the receive buffer.
When a reception error occurs, an ERI interrupt request is generated. In the ERI interrupt handling, sets the error
flag variable and dummy reads the RDR register. Sets the RE bit to 0 and clears the error flags in the SSR register.
Sets the RIE bit to 0, the receive busy flag to 0, and calls the callback function (SCI reception error).

(4) Completing the reception
When the last data has been received, in the RXI interrupt handling, sets the RE bit to 0 (serial reception is
disabled) and RIE bit to 0 (RXI and ERI interrupt requests are disabled). Sets the receive busy flag to 0 and calls
the callback function (SCI receive end).

Sets to 1 by a program
Sets to 0 by a program

Data 10Data 0 Data 1 Data 11Data 9

Receive data

0

1

0

1

(2)

0

1

0

1

0

1

(3)

SCR.RIE bit

IEN bit for the RXI interrupt

Reception busy flag

SCR.RE bit

IR flag for the RXI interrupt

Hi-Z

0

1

RXD pin
Low

High

General
input port

(4)

Becomes 0 by an interrupt acceptance

(1)

RXD pin mode control bit
(PMR register) (1)

RXD input

Note:
1. The bit specified depends on the SCI channel selected.

Figure 5.3 Timing of Serial Reception

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 9 of 36
July 1, 2014

5.2 File Composition
Table 5.1 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 5.1 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing

r_init_stop_module.c Stop processing for active peripheral functions after a
reset

r_init_stop_module.h Header file for r_init_stop_module.c
r_init_non_existent_port.c Nonexistent port initialization
r_init_non_existent_port.h Header file for r_init_non_existent_port.c
r_init_clock.c Clock initialization
r_init_clock.h Header file for r_init_clock.c
sci.c Asynchronous communication
sci.h Header file for sci.c
sci_cfg.h Header file for sci.c configuration file SCI channel selection

5.3 Option-Setting Memory
Table 5.2 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 5.2 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents

OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh The IWDT is stopped after a reset.
The WDT is stopped after a reset.

OFS1 FFFF FF8Bh to FFFF FF88h FFFF FFFFh
The voltage monitor 0 reset is disabled
after a reset.
HOCO oscillation is disabled after a reset.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 10 of 36
July 1, 2014

5.4 Constants
Table 5.3 to Table 5.12 list the Constants Used in the Sample Code.

Table 5.3 Constants Used in the Sample Code (main.c)

Constant Name Setting Value Contents
LED0_REG_PODR PORT1.PODR.BIT.B4 LED0 output data store bit
LED0_REG_PDR PORT1.PDR.BIT.B4 LED0 I/O select bit
LED0_REG_PMR PORT1.PMR.BIT.B4 LED0 pin mode control bit
LED1_REG_PODR PORT1.PODR.BIT.B5 LED1 output data store bit
LED1_REG_PDR PORT1.PDR.BIT.B5 LED1 I/O select bit
LED1_REG_PMR PORT1.PMR.BIT.B5 LED1 pin mode control bit
LED2_REG_PODR PORT1.PODR.BIT.B6 LED2 output data store bit
LED2_REG_PDR PORT1.PDR.BIT.B6 LED2 I/O select bit
LED2_REG_PMR PORT1.PMR.BIT.B6 LED2 pin mode control bit
LED_ON 0 LED output data: Turned on
LED_OFF 1 LED output data: Turned off
BUF_SIZE 12 Buffer size
NULL_SIZE 1 NULL code size

SCI_B_TX_BUSY sci_state.bit.b_tx_busy
Transmit busy flag
0: Transmission ready
1: Transmission busy

SCI_B_RX_BUSY sci_state.bit.b_rx_busy
Receive busy flag
0: Reception ready
1: Reception busy

SCI_B_RX_ORER sci_state.bit.b_rx_orer
Overrun error flag
0: Overrun error not occurred
1: Overrun error occurred

SCI_B_RX_FER sci_state.bit.b_rx_fer
Framing error flag
0: Framing error not occurred
1: Framing error occurred

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 11 of 36
July 1, 2014

Table 5.4 Constants Used in the Sample Code (sci.c)

Constant Name Setting Value Contents
SSR_ERROR_FLAGS 38h Bit pattern of an error flag in the SCI.SSR register

B_TX_BUSY state.bit.b_tx_busy
Transmit busy flag
0: Transmission ready
1: Transmission busy

B_RX_BUSY state.bit.b_rx_busy
Receive busy flag
0: Reception ready
1: Reception busy

B_RX_ORER state.bit.b_rx_orer
Overrun error flag
0: Overrun error not occurred
1: Overrun error occurred

B_RX_FER state.bit.b_rx_fer
Framing error flag
0: Framing error not occurred
1: Framing error occurred

Table 5.5 Constants Used in the Sample Code (sci.h)

Constant Name Setting Value Contents

SCI_OK 00h
Return value of the SCI_StartTransmit and SCI_StartReceive
functions:
SCI transmit/receive start

SCI_BUSY 01h
Return value of the SCI_StartTransmit and SCI_StartReceive
functions:
SCI transmission or reception being processed

SCI_NG 02h
Return value of the SCI_StartTransmit and SCI_StartReceive
functions:
Argument error (number of bytes to be transmitted/received is 0)

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 12 of 36
July 1, 2014

Table 5.6 Constants Used in the Sample Code (when SELECT_SCI0 is Selected in sci_cfg.h) (1)

Constant Name Setting Value Contents
SCIn SCI0 SCI channel: SCI0
MSTP_SCIn MSTP(SCI0) SCI0 module stop setting bit
IPR_SCIn IPR(SCI0,) SCI0 interrupt priority level setting bit
IR_SCIn_ERIn IR(SCI0,ERI0) SCI0.ERI0 interrupt status flag
IR_SCIn_RXIn IR(SCI0,RXI0) SCI0.RXI0 interrupt status flag
IR_SCIn_TXIn IR(SCI0,TXI0) SCI0.TXI0 interrupt status flag
IR_SCIn_TEIn IR(SCI0,TEI0) SCI0.TEI0 interrupt status flag
IEN_SCIn_ERIn IEN(SCI0,ERI0) SCI0.ERI0 interrupt request enable bit
IEN_SCIn_RXIn IEN(SCI0,RXI0) SCI0.RXI0 interrupt request enable bit
IEN_SCIn_TXIn IEN(SCI0,TXI0) SCI0.TXI0 interrupt request enable bit
IEN_SCIn_TEIn IEN(SCI0,TEI0) SCI0.TEI0 interrupt request enable bit
RXDn_PDR PORT2.PDR.BIT.B1 P21 I/O select bit
RXDn_PMR PORT2.PMR.BIT.B1 P21 pin mode control bit
RXDnPFS P21PFS P21 pin function control register
TXDn_PODR PORT2.PODR.BIT.B0 P20 output data store bit
TXDn_PDR PORT2.PDR.BIT.B0 P20 I/O select bit
TXDn_PMR PORT2.PMR.BIT.B0 P20 pin mode control bit
TXDnPFS P20PFS P20 pin function control register
PSEL_SETTING 0Ah Setting value of the pin function select bit: RXD0, TXD0
Note:

1. SCI0 is not available in 48-pin and 64-pin products.

Table 5.7 Constants Used in the Sample Code (when SELECT_SCI1 is Selected in sci_cfg.h)

Constant Name Setting Value Contents
SCIn SCI1 SCI channel: SCI1
MSTP_SCIn MSTP(SCI1) SCI1 module stop setting bit
IPR_SCIn IPR(SCI1,) SCI1 interrupt priority level setting bit
IR_SCIn_ERIn IR(SCI1,ERI1) SCI1.ERI1 interrupt status flag
IR_SCIn_RXIn IR(SCI1,RXI1) SCI1.RXI1 interrupt status flag
IR_SCIn_TXIn IR(SCI1,TXI1) SCI1.TXI1 interrupt status flag
IR_SCIn_TEIn IR(SCI1,TEI1) SCI1.TEI1 interrupt status flag
IEN_SCIn_ERIn IEN(SCI1,ERI1) SCI1.ERI1 interrupt request enable bit
IEN_SCIn_RXIn IEN(SCI1,RXI1) SCI1.RXI1 interrupt request enable bit
IEN_SCIn_TXIn IEN(SCI1,TXI1) SCI1.TXI1 interrupt request enable bit
IEN_SCIn_TEIn IEN(SCI1,TEI1) SCI1.TEI1 interrupt request enable bit
RXDn_PDR PORT1.PDR.BIT.B5 P15 I/O select bit
RXDn_PMR PORT1.PMR.BIT.B5 P15 pin mode control bit
RXDnPFS P15PFS P15 pin function control register
TXDn_PODR PORT1.PODR.BIT.B6 P16 output data store bit
TXDn_PDR PORT1.PDR.BIT.B6 P16 I/O select bit
TXDn_PMR PORT1.PMR.BIT.B6 P16 pin mode control bit
TXDnPFS P16PFS P16 pin function control register
PSEL_SETTING 0Ah Setting value of the pin function select bit: RXD1, TXD1

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 13 of 36
July 1, 2014

Table 5.8 Constants Used in the Sample Code (when SELECT_SCI5 is Selected in sci_cfg.h)

Constant Name Setting Value Contents
SCIn SCI5 SCI channel: SCI5
MSTP_SCIn MSTP(SCI5) SCI5 module stop setting bit
IPR_SCIn IPR(SCI5,) SCI5 interrupt priority level setting bit
IR_SCIn_ERIn IR(SCI5,ERI5) SCI5.ERI5 interrupt status flag
IR_SCIn_RXIn IR(SCI5,RXI5) SCI5.RXI5 interrupt status flag
IR_SCIn_TXIn IR(SCI5,TXI5) SCI5.TXI5 interrupt status flag
IR_SCIn_TEIn IR(SCI5,TEI5) SCI5.TEI5 interrupt status flag
IEN_SCIn_ERIn IEN(SCI5,ERI5) SCI5.ERI5 interrupt request enable bit
IEN_SCIn_RXIn IEN(SCI5,RXI5) SCI5.RXI5 interrupt request enable bit
IEN_SCIn_TXIn IEN(SCI5,TXI5) SCI5.TXI5 interrupt request enable bit
IEN_SCIn_TEIn IEN(SCI5,TEI5) SCI5.TEI5 interrupt request enable bit
RXDn_PDR PORTA.PDR.BIT.B3 PA3 I/O select bit
RXDn_PMR PORTA.PMR.BIT.B3 PA3 pin mode control bit
RXDnPFS PA3PFS PA3 pin function control register
TXDn_PODR PORTA.PODR.BIT.B4 PA4 output data store bit
TXDn_PDR PORTA.PDR.BIT.B4 PA4 I/O select bit
TXDn_PMR PORTA.PMR.BIT.B4 PA4 pin mode control bit
TXDnPFS PA4PFS PA4 pin function control register
PSEL_SETTING 0Ah Setting value of the pin function select bit: RXD5, TXD5

Table 5.9 Constants Used in the Sample Code (when SELECT_SCI6 is Selected in sci_cfg.h)

Constant Name Setting Value Contents
SCIn SCI6 SCI channel: SCI6
MSTP_SCIn MSTP(SCI6) SCI6 module stop setting bit
IPR_SCIn IPR(SCI6,) SCI6 interrupt priority level setting bit
IR_SCIn_ERIn IR(SCI6,ERI6) SCI6.ERI6 interrupt status flag
IR_SCIn_RXIn IR(SCI6,RXI6) SCI6.RXI6 interrupt status flag
IR_SCIn_TXIn IR(SCI6,TXI6) SCI6.TXI6 interrupt status flag
IR_SCIn_TEIn IR(SCI6,TEI6) SCI6.TEI6 interrupt status flag
IEN_SCIn_ERIn IEN(SCI6,ERI6) SCI6.ERI6 interrupt request enable bit
IEN_SCIn_RXIn IEN(SCI6,RXI6) SCI6.RXI6 interrupt request enable bit
IEN_SCIn_TXIn IEN(SCI6,TXI6) SCI6.TXI6 interrupt request enable bit
IEN_SCIn_TEIn IEN(SCI6,TEI6) SCI6.TEI6 interrupt request enable bit
RXDn_PDR PORTB.PDR.BIT.B0 PB0 I/O select bit
RXDn_PMR PORTB.PMR.BIT.B0 PB0 pin mode control bit
RXDnPFS PB0PFS PB0 pin function control register
TXDn_PODR PORTB.PODR.BIT.B1 PB1 output data store bit
TXDn_PDR PORTB.PDR.BIT.B1 PB1 I/O select bit
TXDn_PMR PORTB.PMR.BIT.B1 PB1 pin mode control bit
TXDnPFS PB1PFS PB1 pin function control register
PSEL_SETTING 0Bh Setting value of the pin function select bit: RXD6, TXD6

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 14 of 36
July 1, 2014

Table 5.10 Constants Used in the Sample Code (when SELECT_SCI8 is Selected in sci_cfg.h)

Constant Name Setting Value Contents
SCIn SCI8 SCI channel: SCI8
MSTP_SCIn MSTP(SCI8) SCI8 module stop setting bit
IPR_SCIn IPR(SCI8,) SCI8 interrupt priority level setting bit
IR_SCIn_ERIn IR(SCI8,ERI8) SCI8.ERI8 interrupt status flag
IR_SCIn_RXIn IR(SCI8,RXI8) SCI8.RXI8 interrupt status flag
IR_SCIn_TXIn IR(SCI8,TXI8) SCI8.TXI8 interrupt status flag
IR_SCIn_TEIn IR(SCI8,TEI8) SCI8.TEI8 interrupt status flag
IEN_SCIn_ERIn IEN(SCI8,ERI8) SCI8.ERI8 interrupt request enable bit
IEN_SCIn_RXIn IEN(SCI8,RXI8) SCI8.RXI8 interrupt request enable bit
IEN_SCIn_TXIn IEN(SCI8,TXI8) SCI8.TXI8 interrupt request enable bit
IEN_SCIn_TEIn IEN(SCI8,TEI8) SCI8.TEI8 interrupt request enable bit
RXDn_PDR PORTC.PDR.BIT.B6 PC6 I/O select bit
RXDn_PMR PORTC.PMR.BIT.B6 PC6 pin mode control bit
RXDnPFS PC6PFS PC6 pin function control register
TXDn_PODR PORTC.PODR.BIT.B7 PC7 output data store bit
TXDn_PDR PORTC.PDR.BIT.B7 PC7 I/O select bit
TXDn_PMR PORTC.PMR.BIT.B7 PC7 pin mode control bit
TXDnPFS PC7PFS PC7 pin function control register
PSEL_SETTING 0Ah Setting value of the pin function select bit: RXD8, TXD8

Table 5.11 Constants Used in the Sample Code (when SELECT_SCI9 is Selected in sci_cfg.h) (1)

Constant Name Setting Value Contents
SCIn SCI9 SCI channel: SCI9
MSTP_SCIn MSTP(SCI9) SCI9 module stop setting bit
IPR_SCIn IPR(SCI9,) SCI9 interrupt priority level setting bit
IR_SCIn_ERIn IR(SCI9,ERI9) SCI9.ERI9 interrupt status flag
IR_SCIn_RXIn IR(SCI9,RXI9) SCI9.RXI9 interrupt status flag
IR_SCIn_TXIn IR(SCI9,TXI9) SCI9.TXI9 interrupt status flag
IR_SCIn_TEIn IR(SCI9,TEI9) SCI9.TEI9 interrupt status flag
IEN_SCIn_ERIn IEN(SCI9,ERI9) SCI9.ERI9 interrupt request enable bit
IEN_SCIn_RXIn IEN(SCI9,RXI9) SCI9.RXI9 interrupt request enable bit
IEN_SCIn_TXIn IEN(SCI9,TXI9) SCI9.TXI9 interrupt request enable bit
IEN_SCIn_TEIn IEN(SCI9,TEI9) SCI9.TEI9 interrupt request enable bit
RXDn_PDR PORTB.PDR.BIT.B6 PB6 I/O select bit
RXDn_PMR PORTB.PMR.BIT.B6 PB6 pin mode control bit
RXDnPFS PB6PFS PB6 pin function control register
TXDn_PODR PORTB.PODR.BIT.B7 PB7 output data store bit
TXDn_PDR PORTB.PDR.BIT.B7 PB7 I/O select bit
TXDn_PMR PORTB.PMR.BIT.B7 PB7 pin mode control bit
TXDnPFS PB7PFS PB7 pin function control register
PSEL_SETTING 0Ah Setting value of the pin function select bit: RXD9, TXD9
Note:

1. SCI9 is not available in 48-pin products.

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 15 of 36
July 1, 2014

Table 5.12 Constants Used in the Sample Code (when SELECT_SCI12 is Selected in sci_cfg.h)

Constant Name Setting Value Contents
SCIn SCI12 SCI channel: SCI12
MSTP_SCIn MSTP(SCI12) SCI12 module stop setting bit
IPR_SCIn IPR(SCI12,) SCI12 interrupt priority level setting bit
IR_SCIn_ERIn IR(SCI12,ERI12) SCI12.ERI12 interrupt status flag
IR_SCIn_RXIn IR(SCI12,RXI12) SCI12.RXI12 interrupt status flag
IR_SCIn_TXIn IR(SCI12,TXI12) SCI12.TXI12 interrupt status flag
IR_SCIn_TEIn IR(SCI12,TEI12) SCI12.TEI12 interrupt status flag
IEN_SCIn_ERIn IEN(SCI12,ERI12) SCI12.ERI12 interrupt request enable bit
IEN_SCIn_RXIn IEN(SCI12,RXI12) SCI12.RXI12 interrupt request enable bit
IEN_SCIn_TXIn IEN(SCI12,TXI12) SCI12.TXI12 interrupt request enable bit
IEN_SCIn_TEIn IEN(SCI12,TEI12) SCI12.TEI12 interrupt request enable bit
RXDn_PDR PORTE.PDR.BIT.B2 PE2 I/O select bit
RXDn_PMR PORTE.PMR.BIT.B2 PE2 pin mode control bit
RXDnPFS PE2PFS PE2 pin function control register
TXDn_PODR PORTE.PODR.BIT.B1 PE1 output data store bit
TXDn_PDR PORTE.PDR.BIT.B1 PE1 I/O select bit
TXDn_PMR PORTE.PMR.BIT.B1 PE1 pin mode control bit
TXDnPFS PE1PFS PE1 pin function control register
PSEL_SETTING 0Ch Setting value of the pin function select bit: RXD12, TXD12

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 16 of 36
July 1, 2014

5.5 Structure/Union List
Figure 5.4 shows the Structure/Union Used in the Sample Code.

#pragma bit_order left /* Bit field order: The bit field members are allocated from upper bits */
#pragma unpack /* The boundary alignment value for structure members: Alignment by member type */
typedef union
{

uint8_t byte;
struct
{

uint8_t b_tx_busy :1; /* Transmit busy flag 0: Transmission ready 1: Transmission busy */
uint8_t b_rx_busy :1; /* Receive busy flag 0: Reception ready 1: Reception busy */
uint8_t b_rx_orer :1; /* Overrun error flag 0: Overrun error not occurred 1: Overrun error occurred */
uint8_t b_rx_fer :1; /* Framing error flag 0: Framing error not occurred 1: Framing error occurred */
uint8_t :4; /* Not used */

} bit;
} sci_state_t;
#pragma packoption /* End of specification for the boundary alignment value for structure members */
#pragma bit_order /* End of specification for the bit field order */

Figure 5.4 Structure/Union Used in the Sample Code

5.6 Variables
Table 5.13 lists the static Variables.

Table 5.13 static Variables

Type Variable Name Contents Function Used
static uint8_t rx_buf[BUF_SIZE] Receive buffer main
static uint8_t tx_buf[] Transmit buffer main
static sci_state_t sci_state SCI state cb_sci_rx_error
static const uint8_t * pbuf_tx Pointer to the transmit buffer SCI_StartTransmit

sci_txi_isr static uint8_t tx_cnt Transmit counter
static uint8_t * pbuf_rx Pointer to the reception buffer SCI_StartReceive

sci_rxi_isr static uint8_t rx_cnt Receive counter

static sci_state_t state SCI state

SCI_StartReceive
SCI_StartTransmit
SCI_GetState
sci_tei_isr
sci_rxi_isr
sci_eri_isr

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 17 of 36
July 1, 2014

5.7 Functions
Table 5.14 lists the Functions Used in the Sample Code.

Table 5.14 Functions Used in the Sample Code

Function Name Outline
main Main processing
port_init Port initialization
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_NonExistentPort Nonexistent port initialization
R_INIT_Clock Clock initialization
peripheral_init Peripheral function initialization
cb_sci_tx_end Callback function (SCI transmit end)
cb_sci_rx_end Callback function (SCI receive end)
cb_sci_rx_error Callback function (SCI receive error)
SCI_Init User interface function (SCI initialization)
SCI_StartReceive User interface function (SCI receive start)
SCI_StartTransmit User interface function (SCI transmit start)
SCI_GetState User interface function (SCI state obtain)
sci_txi_isr Transmit data empty interrupt
sci_tei_isr Transmit end interrupt
sci_rxi_isr Receive data full interrupt
sci_eri_isr Receive error interrupt
Excep_SCIn_ERIn SCI.ERI interrupt handling
Excep_SCIn_RXIn SCI.RXI interrupt handling
Excep_SCIn_TXIn SCI.TXI interrupt handling
Excep_SCIn_TEIn SCI.TEI interrupt handling

5.8 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header None
Declaration void main(void)
Description After initialization, starts SCI reception and then starts transmission.
Arguments None
Return Value None

port_init
Outline Port initialization
Header None
Declaration static void port_init(void)
Description Initializes the ports.
Arguments None
Return Value None

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 18 of 36
July 1, 2014

R_INIT_StopModule
Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h
Declaration void R_INIT_StopModule(void)
Description Configures the setting to enter the module stop state.
Arguments None
Return Value None
Remarks Transition to the module stop state is not performed in the sample code. For details

on this function, refer to the Initial Setting application note for the product used.

R_INIT_NonExistentPort
Outline Nonexistent port initialization
Header r_init_non_existent_port.h
Declaration void R_INIT_NonExistentPort(void)
Description Initializes port direction registers for ports that do not exist in products with less than

100 pins.
Arguments None
Return Value None
Remarks The number of pins in the sample code is set for the 100-pin package

(PIN_SIZE=100). After this function is called, when writing in byte units to the PDR
registers or PODR registers which have nonexistent ports, set the corresponding bits
for nonexistent ports as follows: set the I/O select bits in the PDR registers to 1 and
set the output data store bits in the PODR registers to 0.
For details on this function, refer to the Initial Setting application note for the product
used.

R_INIT_Clock
Outline Clock initialization
Header r_init_clock.h
Declaration void R_INIT_Clock(void)
Description Initializes the clock.
Arguments None
Return Value None
Remarks The sample code selects processing which uses PLL as the system clock without

using the sub-clock.
For details on this function, refer to the Initial Setting application note for the product
used.

peripheral_init
Outline Peripheral function initialization
Header None
Declaration static void peripheral_init (void)
Description Initializes peripheral functions used.
Arguments None
Return Value None

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 19 of 36
July 1, 2014

cb_sci_tx_end
Outline Callback function (SCI transmit end)
Header None
Declaration static void cb_sci_tx_end(void)
Description This function is called when the SCI transmission has been completed.
Arguments None
Return Value None

cb_sci_rx_end
Outline Callback function (SCI receive end)
Header None
Declaration static void cb_sci_rx_end(void)
Description This function is called when the SCI reception has been completed.
Arguments None
Return Value None

cb_sci_rx_error
Outline Callback function (SCI receive error)
Header None
Declaration static void cb_sci_rx_error(void)
Description This function is called when the SCI receive error occurs.
Arguments None
Return Value None
Remarks Error processing is not performed in the sample code. Add a program as required.

SCI_Init
Outline User interface function (SCI initialization)
Header sci.h
Declaration void SCI_Init(void)
Description Initializes the SCI.
Arguments None
Return Value None

SCI_StartReceive

Outline User interface function (SCI receive start)
Header sci.h
Declaration uint8_t SCI_StartReceive(uint8_t * pbuf, uint8_t num, CallBackFunc pcb_rx_end,

CallBackFunc pcb_rx_error)
Description Starts SCI reception.
Arguments uint8_t * pbuf: Pointer to the receive data storage

uint8_t num: Number of bytes to be received
CallBackFunc pcb_rx_end: Pointer to the callback function (SCI receive end)
CallBackFunc pcb_rx_error: Pointer to the callback function (SCI receive error)

Return Value SCI_NG: Argument error (number of bytes to be received is 0)
SCI_BUSY: SCI reception being processed
SCI_OK: SCI reception started

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 20 of 36
July 1, 2014

SCI_StartTransmit

Outline User interface function (SCI transmit start)
Header sci.h
Declaration uint8_t SCI_StartTransmit(const uint8_t * pbuf, uint8_t num, CallBackFunc

pcb_tx_end)
Description Starts SCI transmission.
Arguments const uint8_t * pbuf: Pointer to the transmit data storage

uint8_t num: Number of bytes to be transmitted
CallBackFunc pcb_tx_end: Pointer to the callback function (transmit end)

Return Value SCI_NG: Argument error (number of bytes to be transmitted is 0)
SCI_BUSY: SCI transmission being processed
SCI_OK: SCI transmission started

SCI_GetState
Outline User interface function (SCI state obtain)
Header sci.h
Declaration sci_state_t SCI_GetState(void)
Description Returns the SCI state.
Arguments None
Return Value sci_state_t.bit.b_tx_busy: Transmit busy flag

0: Transmission ready
1: Transmission busy

sci_state_t.bit.b_rx_busy: Receive busy flag
0: Reception ready
1: Reception busy

sci_state_t.bit.b_rx_orer: Overrun error flag
0: Overrun error not occurred
1: Overrun error occurred

sci_state_t.bit.b_rx_fer: Framing error flag
0: Framing error not occurred
1: Framing error occurred

sci_txi_isr
Outline Transmit data empty interrupt
Header None
Declaration static void sci_txi_isr(void)
Description This function is called in the SCI.TXI interrupt handling. Writes the transmit data.

After transmitting the last data, disables the TXI interrupt request and enables TEI
interrupt request.

Arguments None
Return Value None

sci_tei_isr
Outline Transmit end interrupt
Header None
Declaration static void sci_tei_isr(void)
Description This function is called in the SCI.TEI interrupt handling. Disables the serial

transmission and calls the callback function (SCI transmit end).
Arguments None
Return Value None

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 21 of 36
July 1, 2014

sci_rxi_isr
Outline Receive data full interrupt
Header None
Declaration static void sci_rxi_isr(void)
Description This function is called in the SCI.RXI interrupt handling. Stores the receive data. After

receiving the last data, disables the serial reception and calls the callback function
(SCI receive end).

Arguments None
Return Value None

sci_eri_isr
Outline Receive error interrupt
Header None
Declaration static void sci_eri_isr(void)
Description This function is called in the SCI.ERI interrupt handling. Disables the serial reception

and calls the callback function (SCI receive error).
Arguments None
Return Value None

Excep_SCIn_ERIn
Outline SCI.ERI interrupt handling
Header None
Declaration static void Excep_SCIn_ERIn(void)
Description Performs processing for the receive error interrupt.
Arguments None
Return Value None

Excep_SCIn_RXIn
Outline SCI.RXI interrupt handling
Header None
Declaration static void Excep_SCIn_RXIn(void)
Description Performs processing for the reception data full interrupt.
Arguments None
Return Value None

Excep_SCIn_TXIn
Outline SCI.TXI interrupt handling
Header None
Declaration static void Excep_SCIn_TXIn(void)
Description Performs processing for the transmit data empty interrupt.
Arguments None
Return Value None

Excep_SCIn_TEIn
Outline SCI.TEI interrupt handling
Header None
Declaration static void Excep_SCIn_TEIn(void)
Description Performs processing for the transmit end interrupt.
Arguments None
Return Value None

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 22 of 36
July 1, 2014

5.9 Flowcharts
5.9.1 Main Processing
Figure 5.5 shows the Main Processing.

main

Initialize the RAM Sets 00h to the receive buffer

Has SCI reception
started?

SCI reception started or an argument error occurred

I flag ← 0

Has SCI
transmission started?

SCI reception being processed

Stop processing for active
peripheral functions after a reset

R_INIT_StopModule()

Disable maskable interrupts

Port initialization
port_init()

Peripheral function initialization
peripheral_init()

Enable maskable interrupts I flag ← 1

Clock initialization
R_INIT_Clock()

Nonexistent port initialization
R_INIT_NonExistentPort()

User interface function
(SCI receive start)

SCI_StartReceive()

User interface function
(SCI transmit start)
SCI_StartTransmit()

SCI transmission being processed

SCI transmission started or an argument error occurred

Figure 5.5 Main Processing

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 23 of 36
July 1, 2014

5.9.2 Port Initialization
Figure 5.6 shows the Port Initialization.

port_init

return

Set port output data PORT1.PODR register
 B4 bit ← 1: LED0: Turned off
 B5 bit ← 1: LED1: Turned off
 B6 bit ← 1: LED2: Turned off

Set port directions

Set port modes

PORT1.PDR register
 B4 bit ← 1: LED0: Output
 B5 bit ← 1: LED1: Output
 B6 bit ← 1: LED2: Output

PORT1.PMR register
 B4 bit ← 0: LED0: Uses pin as general I/O port.
 B5 bit ← 0: LED1: Uses pin as general I/O port.
 B6 bit ← 0: LED2: Uses pin as general I/O port.

Figure 5.6 Port Initialization

5.9.3 Peripheral Function Initialization
Figure 5.7 shows the Peripheral Function Initialization.

peripheral_init

User interface function
(SCI initialization)

SCI_Init()

return

Figure 5.7 Peripheral Function Initialization

5.9.4 Callback Function (SCI Transmit End)
Figure 5.8 shows the Callback Function (SCI Transmit End).

cb_sci_tx_end

return

Turn on LED0 PORT1.PODR register
 B4 bit ← 0

Figure 5.8 Callback Function (SCI Transmit End)

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 24 of 36
July 1, 2014

5.9.5 Callback Function (SCI Receive End)
Figure 5.9 shows the Callback Function (SCI Receive End).

cb_sci_rx_end

return

Turn on LED1 PORT1.PODR register
 B5 bit ← 0

Figure 5.9 Callback Function (SCI Receive End)

5.9.6 Callback Function (SCI Receive Error)
Figure 5.10 shows the Callback Function (SCI Receive Error).

cb_sci_rx_error

User interface function
(SCI state obtain)
SCI_GetState()

return

Turn on LED2 PORT1.PODR register
 B6 bit ← 0

Has an overrun
error occurred?

Yes

No Processing when an overrun
error occurs (1)

Has a framing
error occurred?

Yes

No Processing when a framing
error occurs (1)

Note:
1. Error processing is not performed in the sample code. Add a program as required.

Figure 5.10 Callback Function (SCI Receive Error)

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 25 of 36
July 1, 2014

5.9.7 User Interface Function (SCI Initialization)
Figure 5.11 and Figure 5.12 show the User Interface Function (SCI Initialization).

SCI_Init

Cancel the module stop state PRCR register ← A502h
 PRC1 bit = 1: Enables writing to registers related to the operation.
MSTPCRB register (1)

 MSTPB31 bit ← 0: The module stop state is canceled for the SCI0 module.
PRCR register ← A500h
 PRC1 bit = 0: Disables writing to registers related to the operation.

Disable transmission/reception and
disable interrupt requests (3)

Disable the SCIn interrupt request

SCIn.SCR register ← 00h
 TEIE bit = 0: A TEI interrupt request is disabled.
 RE bit = 0: Serial reception is disabled.
 TE bit = 0: Serial transmission is disabled.
 RIE bit = 0: RXI and ERI interrupt requests are disabled.
 TIE bit = 0: A TXI interrupt request is disabled.

IER1A register (1)

 IEN6 bit ← 0: SCI0.ERI0 interrupt request is disabled.
 IEN7 bit ← 0: SCI0.RXI0 interrupt request is disabled.
IER1B register (1)

 IEN0 bit ← 0: SCI0.TXI0 interrupt request is disabled.
 IEN1 bit ← 0: SCI0.TEI0 interrupt request is disabled.

Set port directions PORT2.PDR register (1)

 B0 bit ← 1: TXD0: Output
 B1 bit ← 0: RXD0: Input

Set port modes PORT2.PMR register (1)

 B0 bit ← 0: Uses the TXD0 pin as general I/O port.
 B1 bit ← 0: Uses the RXD0 pin as general I/O port.

Enable writing to the PFSWE bit MPC.PWPR register
 B0WI bit ← 0

Enable writing to the PFS register MPC.PWPR register
 PFSWE bit ← 1

Select pin functions MPC.P20PFS register ← 0Ah (1, 2)

 PSEL[3:0] bits = 1010b: TXD0

Disable writing to the PFS register MPC.PWPR register
 PFSWE bit ← 0

Disable writing to the PFSWE bit MPC.PWPR register
 B0WI bit ← 1

Set the port output data PORT2.PODR register (1)

 B0 bit ← 1: TXD0: High level

Set the port mode PORT2.PMR register (1)

 B1 bit ← 1: Uses the pin as I/O port for peripheral function.

A

MPC.P21PFS register ← 0Ah (1, 2)

 PSEL[3:0] bits = 1010b: RXD0

Notes:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O registers specified depend on the SCI channel selected in the configuration file.
2. The setting value described here is the value when SCI channel 0 is selected.

The setting values specified depend on the SCI channel selected in the configuration file.
3. After writing values to bits RE, TE, RIE and TIE, read these bits to confirm that the written values can be read.

Figure 5.11 User Interface Function (SCI Initialization) (1/2)

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 26 of 36
July 1, 2014

return

Clear the SCIn interrupt request IR215 register (1)

 IR flag ← 0: No SCI0.RXI0 interrupt request is generated.
IR216 register (1)

 IR flag ← 0: No SCI0.TXI0 interrupt request is generated.

Select the clock SCIn.SCR register
 CKE[1:0] bits ← 00b: On-chip baud rate generator

Set the transmit/receive format SCIn.SMR register ← 08h
 CKS[1:0] bits = 00b: PCLK clock
 MP bit = 0: Multi-processor communications function is disabled.
 STOP bit = 1: 2 stop bits
 PE bit = 0: Parity bit addition is not performed.
 CHR bit = 0: Selects 8 bits as the data length.
 CM bit = 0: Asynchronous mode

SCIn.SCMR register ← F2h
 SMIF bit = 0: Serial communications interface mode
 SINV bit = 0: TDR contents are transmitted as they are.
 Receive data is stored as it is in RDR.
 SDIR bit = 0: Transfer with LSB-first

SCIn.SEMR register ← 00h
 ABCS bit = 0: Selects 16 base clock cycles for 1-bit period.
 NFEN bit = 0: Noise cancellation function for the RXDn input signal is disabled.

Set the bit rate SCIn.BRR register ← 13: (25 MHz ÷ (64 × 2-1 × 57600 bps)) - 1 = 12.56

Set the SCIn interrupt priority level IPR214 register (1)

 IPR[3:0] bits ← 0001b: Level 1

A

Note:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O registers specified depend on the SCI channel selected in the configuration file.

Figure 5.12 User Interface Function (SCI Initialization) (2/2)

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 27 of 36
July 1, 2014

5.9.8 User Interface Function (SCI Receive Start)
Figure 5.13 shows the User Interface Function (SCI Receive Start).

SCI_StartReceive Arguments
 uint8_t * pbuf: Pointer to the receive data storage
 uint8_t num: Number of bytes to be received
 CallBackFunc pcb_rx_end: Pointer to the callback function (SCI receive end)
 CallBackFunc pcb_rx_error: Pointer to the callback function (SCI receive error)

return (return_value)

Set the arguments to the RAM pbuf_rx ← pbuf
rx_cnt ← num
pcb_sci_rx_end ← pcb_rx_end
pcb_sci_rx_error ← pcb_rx_error

Is the number of bytes
to be received 0?

Is the reception
status busy?

return (return_value)

Yes

No

Yes

No

Set the return value
(SCI reception started)

return_value ← SCI_OK

Set the return value
(argument error)

return_value ← SCI_NG

Set the receive busy flag B_RX_BUSY ← 1

Clear the receive error flags
B_RX_ORER ← 0
B_RX_FER ← 0

Enable RXI and ERI
interrupt requests

Enable serial reception

Enable SCIn.RXIn and
SCIn.ERIn interrupt requests

SCIn.SCR register
 RIE bit ← 1

SCIn.SCR register
 RE bit ← 1

IER1A register (1)

 IEN6 bit ← 1
 IEN7 bit ← 1

Set the return value
(SCI reception being processed)

return_value ← SCI_BUSY

Reads B_RX_BUSY: 0: Reception ready
 : 1: Reception busy

Note:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O register specified depends on the SCI channel selected in the configuration file.

Figure 5.13 User Interface Function (SCI Receive Start)

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 28 of 36
July 1, 2014

5.9.9 User Interface Function (SCI Transmit Start)
Figure 5.14 shows the User Interface Function (SCI Transmit Start).

SCI_StartTransmit

return (return_value)

Set the arguments to the RAM pbuf_tx ← pbuf
tx_cnt ← num
pcb_sci_tx_end ← pcb_tx_end

Is the number of bytes
 to be transmitted 0?

Is the transmission
status busy?

return (return_value)

Yes

No

Yes

No

return_value ← SCI_OK

return_value ← SCI_NG

Set the transmit busy flag B_TX_BUSY ← 1

Enable the TXI interrupt request

Enable serial transmission

Enable the SCIn.TXIn
interrupt request

SCIn.SCR register
 TIE bit ← 1

SCIn.SCR register
 TE bit ← 1

IER1B register (1)

 IEN0 bit ← 1

return_value ← SCI_BUSY

Set the port mode

Reads B_TX_BUSY: 0: Transmission ready
 : 1: Transmission busy

Arguments
 uint8_t * pbuf: Pointer to the transmit data storage
 uint8_t num: Number of bytes to be transmitted
 CallBackFunc pcb_tx_end: Pointer to the callback function (SCI transmit end)

Set the return value
(argument error)

Set the return value
(SCI transmission being processed)

Note:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O registers specified depend on the SCI channel selected in the configuration file.

PORT2.PMR register (1)

 B0 bit ← 1: Uses the pin as I/O port for peripheral function.

Set the return value
(SCI transmission started)

Figure 5.14 User Interface Function (SCI Transmit Start)

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 29 of 36
July 1, 2014

5.9.10 User Interface Function (SCI State Obtain)
Figure 5.15 shows the User Interface Function (SCI State Obtain).

SCI_GetState

return (state)

Set the SCI state as the return value

Figure 5.15 User Interface Function (SCI State Obtain)

5.9.11 Transmit Data Empty Interrupt
Figure 5.16 shows the Transmit Data Empty Interrupt.

sci_txi_isr

return

Is the data
transmitted

 the last data?

Yes

No

Set the transmit data SCIn.TDR register ← *pbuf_tx

Dummy read the SSR register Reads the SCIn.SSR register and performs calculations.

Pointer to the transmit buffer + 1 pbuf_tx ← pbuf_tx + 1

Transmit counter - 1 tx_cnt ← tx_cnt - 1

Disable the SCIn.TXIn
interrupt request

IER1B register (1)

 IEN0 bit ← 0

Disable the TXI interrupt request (2) SCIn.SCR register
 TIE bit ← 0

Clear the SCIn.TXIn
interrupt request

IR216 register (1)

 IR flag ← 0

Enable the SCIn.TEIn
interrupt request

IER1B register (1)

 IEN1 bit ← 1

Enable the TEI interrupt request SCIn.SCR register
 TEIE bit ← 1

Reads tx_cnt.

Notes:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O registers specified depend on the SCI channel selected in the configuration file.
2. After writing a value to the TIE bit, read the bit to confirm that the written value can be read.

Figure 5.16 Transmit Data Empty Interrupt

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 30 of 36
July 1, 2014

5.9.12 Transmit End Interrupt
Figure 5.17 shows the Transmit End Interrupt.

sci_tei_isr

return

Set the port mode PORT2.PMR register (1)

 B0 bit ← 0: Uses the TXD0 pin as general I/O port.

Disable serial transmission SCIn.SCR register
 TE bit ← 0

Disable the TXI interrupt request SCIn.SCR register
 TIE bit ← 0

Disable the SCIn.TEIn
interrupt request

IER1B register (1)

 IEN1 bit ← 0

Disable the TEI interrupt request (2) SCIn.SCR register
 TEIE bit ← 0

Clear the transmit busy flag B_TX_BUSY ← 0

Callback function
(SCI transmit end)
pcb_sci_tx_end()

Notes:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O registers specified depend on the SCI channel selected in the configuration file.
2. After writing a value to the TEIE bit, read the bit to confirm that the written value can be read.

Figure 5.17 Transmit End Interrupt

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 31 of 36
July 1, 2014

5.9.13 Receive Data Full Interrupt
Figure 5.18 shows the Receive Data Full Interrupt.

sci_rxi_isr

return

Has the last data
been received?

Yes

No

Store the receive data *pbuf_rx ← SCIn.RDR register

Pointer to the receive buffer + 1 pbuf_rx ← pbuf_rx + 1

Receive counter - 1 rx_cnt ← rx_cnt - 1

Reads rx_cnt.

Disable serial reception (2) SCIn.SCR register
 RE bit ← 0

Disable SCIn.RXIn and
SCIn.ERIn interrupt requests

IER1A register (1)

 IEN6 bit ← 0
 IEN7 bit ← 0

Disable the RXI and ERI interrupt
requests (2)

SCIn.SCR register
 RIE bit ← 0

Clear the SCIn.RXIn
interrupt request

IR215 register (1)

 IR flag ← 0

Clear the receive busy flag B_RX_BUSY ← 0

Callback function
(SCI receive end)
pcb_sci_rx_end()

Notes:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O registers specified depend on the SCI channel selected in the configuration file.
2. After writing values to bits RE and RIE, read these bits to confirm that the written values can be read.

Figure 5.18 Receive Data Full Interrupt

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 32 of 36
July 1, 2014

5.9.14 Receive Error Interrupt
Figure 5.19 shows the Receive Error Interrupt.

sci_eri_isr

return

Has an overrun
error occurred?

Yes

No

Disable serial reception (2) SCIn.SCR register
 RE bit ← 0

Disable the SCIn.RXIn and
SCIn.ERIn interrupt requests

IER1A register (1)

 IEN6 bit ← 0
 IEN7 bit ← 0

Disable the RXI and ERI
interrupt requests (2)

SCIn.SCR register
 RIE bit ← 0

Clear the SCIn.RXIn
interrupt request

IR215 register (1)

 IR flag ← 0

Clear the receive busy flag B_RX_BUSY ← 0

Callback function
(SCI receive error)
pcb_sci_rx_error()

Reads the SCIn.SSR register.
 ORER flag: 0: No overrun error occurred
 1: An overrun error occurred

Set the overrun error flag B_RX_ORER ← 1

Has a framing
error occurred?

Yes

No Reads the SCIn.SSR register.
 FER flag: 0: No framing error occurred
 1: A framing error occurred

Set the framing error flag B_RX_FER ← 1

Dummy read the RDR register Reads the SCIn.RDR register.

Clear error flags (2) SCIn.SSR register ← (SCIn.SSR register & C7h) | C0h
 PER flag = 0: No parity error occurred
 FER flag = 0: No framing error occurred
 ORER flag = 0: No overrun error occurred

Notes:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O registers specified depend on the SCI channel selected in the configuration file.
2. After writing values to bits RE and RIE, and flags PER, FER and ORER, read these bits and flags to

confirm that the written values can be read.

Figure 5.19 Receive Error Interrupt

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 33 of 36
July 1, 2014

5.9.15 SCI.ERI Interrupt Handling
Figure 5.20 shows the SCI.ERI Interrupt Handling.

Excep_SCIn_ERIn

return

Determine
the interrupt request

source

Receive error interrupt
sci_eri_isr()

Verify the IR flag

IR = 0

IR = 1 Reads the IR214 register (1)

 IR flag: 0: No interrupt request is generated.
 1: Interrupt request is generated.

Reads the SCIn.SCR register
 RIE bit: 0: RXI and ERI interrupt requests are disabled.
 1: RXI and ERI interrupt requests are enabled.
Reads the SCIn.SSR register
 PER flag: 0: No parity error occurred
 1: A parity error has occurred
 FER flag: 0: No framing error occurred
 1: A framing error has occurred
 ORER flag: 0: No overrun error occurred
 1: An overrun error has occurred

Interrupt
requested

Interrupt not
requested

Note:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O register read depends on the SCI channel selected in the configuration file.

Figure 5.20 SCI.ERI Interrupt Handling

5.9.16 SCI.RXI Interrupt Handling
Figure 5.21 shows the SCI.RXI Interrupt Handling.

Excep_SCIn_RXIn

return

Receive data full interrupt
sci_rxi_isr()

Figure 5.21 SCI.RXI Interrupt Handling

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 34 of 36
July 1, 2014

5.9.17 SCI.TXI Interrupt Handling
Figure 5.22 shows the SCI.TXI Interrupt Handling.

Excep_SCIn_TXIn

return

Transmit data empty
interrupt

sci_txi_isr()

Figure 5.22 SCI.TXI Interrupt Handling

5.9.18 SCI.TEI Interrupt Handling
Figure 5.23 shows the SCI.TEI Interrupt Handling.

Excep_SCIn_TEIn

return

Determine
the interrupt request

source

Transmit end interrupt
sci_tei_isr()

Verify the IR flag

IR = 0

IR = 1 Reads the IR217 register (1)

 IR flag: 0: No interrupt request is generated.
 1: Interrupt request is generated.

Reads the SCIn.SCR register
 TEIE bit: 0: A TEI interrupt request is disabled.
 1: A TEI interrupt request is enabled.
Reads the SCIn.SSR register
 TEND flag: 0: A character is being transmitted.
 1: Character transfer has been completed.

Interrupt
requested

Interrupt not
requested

Note:
1. The I/O register described here is the register used when SCI channel 0 is selected (SCIn = SCI0).

The I/O register read depends on the SCI channel selected in the configuration file.

Figure 5.23 SCI.TEI Interrupt Handling

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 35 of 36
July 1, 2014

6. Applying This Application Note to the RX21A or RX220 Group
The sample code accompanying this application note has been confirmed to operate with the RX210 Group. To make
the sample code operate with the RX21A or RX220 Group, use this application note in conjunction with the Initial
Setting application note for each group.

For details on using this application note with the RX21A and RX220 Groups, refer to “5. Applying the RX210 Group
Application Note to the RX21A Group” in the RX21A Group Initial Setting application note, and “4. Applying the
RX210 Group Application Note to the RX220 Group” in the RX220 Group Initial Setting application note.

Note: • When using the RX21A Group, SCI0 and SCI12 are not available. Use SCI1, SCI5, SCI6, SCI8, or
SCI9.
When using the RX220 Group, SCI0, SCI8, and SCI12 are not available. Use SCI1, SCI5, SCI6, or
SCI9.

RX210, RX21A, and RX220 Groups Asynchronous Communication Using the SCI

R01AN1423EJ0101 Rev. 1.01 Page 36 of 36
July 1, 2014

7. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

8. Reference Documents
User’s Manual: Hardware

RX210 Group User's Manual: Hardware Rev.1.50 (R01UH0037EJ)
RX21A Group User's Manual: Hardware Rev.1.00 (R01UH0251EJ)
RX220 Group User's Manual: Hardware Rev.1.10 (R01UH0292EJ)
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User’s Manual Rev.1.00 (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY RX210, RX21A, and RX220 Groups Application Note
Asynchronous Communication Using the SCI

Rev. Date
Description

Page Summary
1.00 July 1, 2013 — First edition issued
1.01 July 1, 2014 1 Products: Added the RX21A and RX220 Groups.

 4 3. Reference Application Notes: Added the Initial Setting application
notes for the RX21A and RX220 Groups.

 18
Modified the description of reference application note in the
following functions: R_INIT_StopModule, R_INIT_NonExistentPort,
and R_INIT_Clock.

 35 6. Applying This Application Note to the RX21A or RX220 Group:
Added.

 36 8. Reference Documents: Added the User’s Manual: Hardware for
the RX21A and RX220 Groups.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	Abstract
	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Hardware
	4.1 Pins Used

	5. Software
	5.1 Operation Overview
	5.1.1 Serial Transmission
	5.1.2 Serial Reception

	5.2 File Composition
	5.3 Option-Setting Memory
	5.4 Constants
	5.5 Structure/Union List
	5.6 Variables
	5.7 Functions
	5.8 Function Specifications
	5.9 Flowcharts
	5.9.1 Main Processing
	5.9.2 Port Initialization
	5.9.3 Peripheral Function Initialization
	5.9.4 Callback Function (SCI Transmit End)
	5.9.5 Callback Function (SCI Receive End)
	5.9.6 Callback Function (SCI Receive Error)
	5.9.7 User Interface Function (SCI Initialization)
	5.9.8 User Interface Function (SCI Receive Start)
	5.9.9 User Interface Function (SCI Transmit Start)
	5.9.10 User Interface Function (SCI State Obtain)
	5.9.11 Transmit Data Empty Interrupt
	5.9.12 Transmit End Interrupt
	5.9.13 Receive Data Full Interrupt
	5.9.14 Receive Error Interrupt
	5.9.15 SCI.ERI Interrupt Handling
	5.9.16 SCI.RXI Interrupt Handling
	5.9.17 SCI.TXI Interrupt Handling
	5.9.18 SCI.TEI Interrupt Handling

	6. Applying This Application Note to the RX21A or RX220 Group
	7. Sample Code
	8. Reference Documents

