
Talkwalker API

Talkwalker | 16, Avenue Monterey | L-2163 Luxembourg

Updated November 2015

Table of Contents
Talkwalker API Overview . 1

Talkwalker Search API Overview & Example . 1

Talkwalker Streaming API Overview & Example . 3

Talkwalker Search API . 6

Talkwalker Search Results API . 6

Talkwalker Search Histogram API . 7

Talkwalker Search API and Talkwalker Projects . 12

Modifiying documents with the Talkwalker API . 15

Talkwalker Streaming API . 17

Source . 17

How it works . 17

Managing Streams . 21

Matching of Streams, Rules and Panels . 27

Quota on Streams. 28

Temporarily Disable Streams . 30

Talkwalker Streaming API and Talkwalker Projects . 30

Talkwalker Single Sign-on API . 31

Source . 31

Talkwalker Login Url . 31

Logout . 32

User List . 32

Project List . 34

View List. 36

Channelmonitoring suggest . 36

Fetch query . 37

Talkwalker Query Syntax . 38

Special Transformations . 38

Boolean Operators . 38

Advanced Search Options: . 40

Url based Search . 41

Metric (Minimum / Maximum) Restrictions . 41

Geographic Restrictions . 42

Special Query Modifiers . 42

Fields . 43

Images. 46

Videos . 47

Attributes . 47

Evolution and stability of document fields . 50

Streaming. 50

Protocols, Encodings and Value Field Options . 50

Protocols and Encodings . 51

Evolution of JSON fields . 51

Value options . 51

API Account . 57

Access Token . 57

OAuth 2.0 . 57

Credits / Pricing . 58

FAQ . 58

How to stream all documents from a Talkwalker project? . 58

How to stream all documents from a Talkwalker project for a specific month? . 61

How to get the documents of the last hour of a Talkwalker project? . 62

How to stream all documents from Talkwalker Page Monitoring . 62

How to eliminate retweets or comments from a stream? . 62

How to get only documents of a Talkwalker project that include special keywords . 62

How to use a single stream for multiple applications / clients? . 63

How to get the number of results grouped by media types?. 63

How to get the ids of Talkwalker Topics? . 64

Code Examples . 65

Streaming Client Examples . 65

Throubleshooting . 77

Error Codes . 77

Error Handling . 79

Talkwalker API Overview

Talkwalker Search API Overview & Example

How it works

The Talkwalker Search API allows you to retrieve up to 500 sorted results for a given timeframe within the last 30 days.

In addition, a histogram of the number of results can also be returned. You can sort the results by publication time,

indexing time, engagement or other metrics. A single search query can support up to 50 operands. To create complex

queries, operands may be combined using Boolean operators.

A few words about the results

Search results can be sorted by engagement, time or other metrics and be restricted to specific attribute value ranges

(for example only return results published in a certain timerange). When no special filters are applied, a single search

request will return results from all media types and all languages over the past 30 days sorted by engagement by

default. You don’t need to execute one search request for each language and media type separately. To get a smaller set

of results, you can either get only the highest ranked results or get a random sample set.

A brief example (Search)

The Talkwalker API search results endpoint (https://api.talkwalker.com/api/v1/search/results) is used to search on the

Talkwalker API. (For testing purpose the access_token demo can be used. Setting the variable pretty=true will return formatted

results)

command:

 curl 'https://api.talkwalker.com/api/v1/search/results?access_token=demo&q=cats&pretty=true'

response (all responses are UTF-8):

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v1/search/results?access_token=demo&q=cats&pretty=true",

 "pagination" : {

 "next" : "GET /api/v1/search/results?access_token=demo&q=cats&pretty=true&offset=10",

 "total" : 298138

 },

 "result_content" : {

 "data" : [{

 "data" : {

 "url" : "http://annukcreations.blogspot.com/2014/12/sunny-rings.html",

 "indexed" : 1417999367498,

 "search_indexed" : 1417999504832,

 "published" : 1417999319393,

 "title" : "Color and Light Inspirations in Jewelry: SUNNY RINGS :)",

 "content" : "Welcome to my colorful little island! This blog is about sharing my colorful world, my

sources of inspiration and all what fuels my imagination... Islands and kitties, beauty and art, nature and

love, and creative souls who inspire me! Thank you for following me on my journey!\n\nI am an artist and

jewelry maker from Turin, Italy and I am half Italian and half German. I have a background in Language studies

and a University degree in German and English, but I have always been fascinated by handmade objects, art,

creativity and color. This resulted in my passion for handmade jewelry! Like many jewelry makers and artists,

my first jewels were made with beads, but soon I discovered the potentials of so many materials and I

developed my very personal style. I would describe myself as a mixed-media and eclectic artist. My favorite

materials include glass, polymer clay, metal sheets and wood, but as I love experimenting the possibilities

are endless! What I love most about the creative process is the modeling and combining of materials. I

especially make rings and pendants, but you will find some pins and earrings as well. All my pieces are one-

of-a-kind, so no two pieces are the same! I love traveling and much of my work reflects the memories of places

I love. I also like to bring back from my trips beautiful and unique glass and ceramic beads and cabochons,

and found pieces such as ceramic shards and beach pottery to incorporate in my work or use as focal pieces. In

recent years,...",

 "title_snippet" : "Color and Light Inspirations in Jewelry: SUNNY RINGS :)",

 "root_url" : "http://annukcreations.blogspot.com/",

 "domain_url" : "http://blogspot.com/",

 "host_url" : "http://annukcreations.blogspot.com/",

 "parent_url" : "http://annukcreations.blogspot.com/2014/12/sunny-rings.html",

 "lang" : "en",

 "porn_level" : 0,

 "fluency_level" : 90,

 "spam_level" : 20,

 "sentiment" : 5,

 "source_type" : ["BLOG", "BLOG_OTHER"],

 "post_type" : ["TEXT"],

 "tokens_title" : ["and Light Inspirations", "Light Inspirations", "Light Inspirations", "SUNNY

RINGS", "SUNNY RINGS", "and Light", "Inspirations", "Inspirations", "RINGS", "RINGS", "Light", "Light",

"Jewelry", "Jewelry", "Color", "Color", "SUNNY", "SUNNY"],

 "tokens_content" : ["Bead Hoarder Blog", "Bead Hoarder Blog"],

 "tokens_mention" : ["@yahoo"],

 "tags_internal" : ["isQuestion"],

 "article_extended_attributes" : {

 "num_comments" : 3

 },

 "source_extended_attributes" : {

 "alexa_pageviews" : 0

 },

 "extra_article_attributes" : {

 "world_data" : { }

 },

 "extra_author_attributes" : {

 "world_data" : { },

 "id" : "ex:annukcreations.blogspot.com-698904645",

 "name" : "view my complete profile",

 "gender" : "MALE"

 },

 "extra_source_attributes" : {

 "world_data" : {

 "continent" : "North America",

 "country" : "United States",

 "region" : "District of Columbia",

 "city" : "Washington, D.C.",

 "longitude" : -77.0094185808,

 "latitude" : 38.8995493765,

 "country_code" : "us"

 },

 "id" : "ex:annukcreations.blogspot.com",

 "name" : "http://annukcreations.blogspot.com/"

 },

 "engagement" : 3,

 "reach" : 0

 }

 }, {

 "data" : {

 "url" : "http://slshoeicidal.wordpress.com/2014/12/06/high-rez-snobbery-715-winter-trend-ice/",

 ... // truncated

more on the Talkwalker Search API

Talkwalker Streaming API Overview & Example

How it works

The Talkwalker Streaming API delivers real-time data through a persistent connection to our servers. Configure your

stream with a set of filtering rules, connect to the stream and new results will be delivered in real time, as soon as they

are found by our crawlers. You will not need to do any polling to receive new data.

You setup and configure the Streaming API by defining rules (Boolean query, language, media types, etc.). The Streaming

API then finds and collects all relevant data and adds it to your data stream, with individually highlighted snippets per

matched rule. This feature allows you to gather data from many rules through a single stream while easily matching the

results back to your predefined rules.

Each rule allows filtering by title, content, author, language, URL, country, media type, and more parameters, using the

same syntax as in our Talkwalker Search interface. You can also apply a list of sources to be included or excluded from

the stream, to give you even further possibilities to narrow down the results you will get. A single rule can support up to

50 operands. To create complex rules, operands may be combined using Boolean Operators.

The documents are streamed in the order they are found by our crawlers and added to Talkwalker (i.e. by search_indexed

timestamp). Custom sorting is not possible with the Streaming API (however this can be done with the Search API). The

documents are grouped in timeframes which contain all documents that were indexed between the given start and end

time of the timeframe.

Each result (independent on how many rules match) will be counted as 1 credit.

/api/search_api.adoc

A brief example (Streaming)

The Talkwalker API streaming endpoint (https://api.talkwalker.com/api/v2/stream) is used to stream results from Talkwalker.

Creating a Stream

Command:

curl -XPUT https://api.talkwalker.com/api/v2/stream/s/teststream?access_token=demo -d '{ "rules" : [{

"rule_id": "rule-1", "query": "cats" }] }' -H 'Content-Type: application/json; charset=UTF-8'

Response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "PUT /api/v2/stream/s/teststream?access_token=demo",

 "result_stream" : {

 "data" : [{

 "stream_id" : "teststream",

 "rules" : [{

 "rule_id" : "rule-1",

 "query" : "cats"

 }]

 }]

 }

}

Streaming

Example:

curl https://api.talkwalker.com/api/v2/stream/s/teststream/results?access_token=demo

The response is a stream of chunks, chunks contain meta data (CT_CONTROL) on the Talkwalker stream or search results

(CT_RESULT).

response:

{

 "chunk_type" : "CT_CONTROL",

 "chunk_control" : {

 "timeframe_start" : 1430201017166,

 "timeframe_end" : 1430201040000,

 "stream" : [{

 "id" : "teststream",

 "status" : "active"

 }]

 }

}

{

 "chunk_type": "CT_RESULT",

 "chunk_result": {

 "data" : [{

 "data" : {

 "url" : "http://annukcreations.blogspot.com/2014/12/sunny-rings.html",

 "indexed" : 1417999367498,

 "search_indexed" : 1417999504832,

 "published" : 1417999319393,

 "title" : "Color and Light Inspirations in Jewelry: SUNNY RINGS :)",

 "content" : "Welcome to my colorful little island! This blog is about sharing my colorful world, my

sources of inspiration and all what fuels my imagination... Islands and kitties, beauty and art, nature and

love, and creative souls who inspire me! Thank you for following me on my journey!\n\nI am an artist and

jewelry maker from Turin, Italy and I am half Italian and half German. I have a background in Language studies

and a University degree in German and English, but I have always been fascinated by handmade objects, art,

creativity and color. This resulted in my passion for handmade jewelry! Like many jewelry makers and artists,

my first jewels were made with beads, but soon I discovered the potentials of so many materials and I

developed my very personal style. I would describe myself as a mixed-media and eclectic artist. My favorite

materials include glass, polymer clay, metal sheets and wood, but as I love experimenting the possibilities

are endless! What I love most about the creative process is the modeling and combining of materials. I

especially make rings and pendants, but you will find some pins and earrings as well. All my pieces are one-

of-a-kind, so no two pieces are the same! I love traveling and much of my work reflects the memories of places

I love. I also like to bring back from my trips beautiful and unique glass and ceramic beads and cabochons,

and found pieces such as ceramic shards and beach pottery to incorporate in my work or use as focal pieces. In

recent years,...",

 "title_snippet" : "Color and Light Inspirations in Jewelry: SUNNY RINGS :)",

 "root_url" : "http://annukcreations.blogspot.com/",

 "domain_url" : "http://blogspot.com/",

 "host_url" : "http://annukcreations.blogspot.com/",

 "parent_url" : "http://annukcreations.blogspot.com/2014/12/sunny-rings.html",

 "lang" : "en",

 ... // truncated

more on the Talkwalker Streaming API

/api/streaming_api.adoc

Talkwalker Search API

Talkwalker Search Results API

https://api.talkwalker.com/api/v1/search/results

How it works

The Talkwalker Search API allows you to retrieve up to 500 sorted results for a given timeframe within the last 30 days.

In addition, a histogram of the number of results can also be returned. You can sort the results by publication time,

indexing time, engagement or other metrics. A single search query can support up to 50 operands. To create complex

queries, operands may be combined using Boolean operators.

A few words about the results

Search results can be sorted by engagement, time or other metrics and be restricted to specific attribute value ranges

(for example only return results published in a certain timerange). When no special filters are applied, a single search

request will return results from all media types and all languages over the past 30 days sorted by engagement by

default. You don’t need to execute one search request for each language and media type separately. To get a smaller set

of results, you can either get only the highest ranked results or get a random sample set.

Parameters

parameter description required? default value

access_token API access token required

q The query to search for required

offset Number of results to skip (for paging) optional default: 0

hpp Number of hits per page (for paging) optional default: 10 /
maximum : 500

sort_by Criteria for sorting the results. optional default:
engagement

sort_order Sorting order (ascending or descending) optional default: desc

hl Turns highlighting on or off optional default: 1

pretty Formatted json for testing optional false

More on the Talkwalker Query Syntax

Credits

1 credit per returned result, at least 10 credits per call (e.g. 100 results = 100 credits, 10 results = 10 credits and 0 results

= 10 credits).

Examples

Get 100 results containing the words "cats" and "dogs" but not "birds"

Set the query cats AND dogs AND NOT birds with query=cats%20AND%20dogs%20AND%20NOT%20birds (note: in URLs spaces are

replaced by %20) and set hits per page to 100 with hpp=100.

curl

'https://api.talkwalker.com/api/v1/search/results?access_token=demo&q=cats%20AND%20dogs%20AND%20NOT%20birds&hp

p=100&pretty=true'

More on the Talkwalker Query Syntax

Get results containing the word "cats" sorted from new to old

To sort the results by date, set sort_by to published (to sort by the date of publication), to get the newest results first, set

sort_order=desc.

curl

'https://api.talkwalker.com/api/v1/search/results?access_token=demo&q=cats&sort_by=published&sort_order=desc&p

retty=true'

All options for sort_by are : reach, facebook_shares, facebook_likes, twitter_shares, twitter_retweets, twitter_followers, youtube_likes,

youtube_dislikes, youtube_views, cluster_size, comment_count, published, search_indexed

More on the document fields

Get results containing the word "dogs" published in american blogs

curl

'https://api.talkwalker.com/api/v1/search/results?access_token=demo&q=cats%20AND%20sourcetype:"BLOG"%20AND%20s

ourcecountry:us&pretty=true'

Talkwalker Search Histogram API

https://api.talkwalker.com/api/v1/search/histogram/<type>

How it works

With the Talkwalker Search Histogram API, you can retrieve the distribution of the number of search results for a given

search query. Histograms can be made for distribution over time or over specific metrics (number of comments,

number of shares, reach, retweets etc.). By setting min and max a histogram can be limited to a specific range (min_include and

max_include control if those bounds are included). interval defines the width of the bins, the accepted values are long

integers for metrics or duration values (like 7d for 7 days) for published and search_indexed dates. When using a bin size of

entire days, timezone allows to set a timezone to specify the begin and end of the days.

Types

type Description

published Timestamp of publication (epoch time in milliseconds)

search_indexed Timestamp of indexation in Talkwalker (epoch time in milliseconds)

reach The reach of an article/post represents the number of people who were reached by this
article/post.

engagement The engagement of an article/post is the sum of actions made by others on that article/post.

facebook_shares Number of Facebook shares an article has

facebook_likes Number of Facebook likes an article has

twitter_retweets Number of Twitter retweets an article has

twitter_shares Number of Twitter share an article has

twitter_followers Number of Twitter followers a source has

youtube_views Number of YouTube views a video has

youtube_likes Number of YouTube likes a video has

youtube_dislikes Number of YouTube dislikes a video has

comment_count Number of Comments an article has

Parameters

parameter description required? allowed values default
value

access_token a read/write token specified in the
API application

required

q The query to search for required Talkwalker query syntax

min Minimum value for bins optional Long Integer value

max Maximum value for bins optional Long Integer value

min_include Include min value optional true / false true

max_include Include max value optional true / false false

interval Bin Interval optional Long Integer (duration for published
and search_indexed)

dynamic

timezone Time zone (for interval) optional tz database timezone name (i.e.
`Europe/Luxembourg)

UTC

Possible values for interval when creating a histogram over published or search_indexed: year, quarter, month, week, day, hour, minute,

second as well as numeric values with the units w (week), d (day), h (hours), m (minutes), and s (seconds). (e.g. 5d for 5 days or

2w for 2 weeks).

The maximum number of histogram bins is 400, if the min, max and interval parameters result in a larger number of bins,

an error message (HTTP 400) is returned. Try reducing the range or increasing the interval.

Credits

10 credits per call.

Examples

Get a histogram over the last 8 days of online news results containing the word
"birds"

Set the query to birds%20sourcetype:"ONLINENEWS". By default the Talkwalker Search Histogram API return results over the last

seven days.

curl

'https://api.talkwalker.com/api/v1/search/histogram/published?access_token=demo&q=birds%20sourcetype:\"ONLINEN

EWS\"&interval=day&pretty=true'

response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET

/api/v1/search/histogram?access_token=demo&q=birds%20sourcetype:\"ONLINENEWS\"&interval=7d&pretty=true",

 "result_histogram" : {

 "header" : {

 "v" : ["Number Results"]

 },

 "data" : [{

 "t" : 1417478400000,

 "v" : [4366.0]

 }, {

 "t" : 1417564800000,

 "v" : [3385.0]

 }, {

 "t" : 1417651200000,

 "v" : [4233.0]

 }, {

 "t" : 1417737600000,

 "v" : [4071.0]

 }, {

 "t" : 1417824000000,

 "v" : [2571.0]

 }, {

 "t" : 1417910400000,

 "v" : [2191.0]

 }, {

 "t" : 1417996800000,

 "v" : [3275.0]

 }, {

 "t" : 1418083200000,

 "v" : [1140.0]

 }]

 }

}

Get a histogram with a resolution of 6 hours over the last 7 days of results containing
the word "birds"

Set interval to 6h for 4 values per day.

curl

'https://api.talkwalker.com/api/v1/search/histogram/published?access_token=demo&q=birds&interval=6h&pretty=tru

e'

The interval parameter accepts the values year, quarter, month, week, day, hour, minute, second as well as numeric values with the

units w (week), d (day), h (hours), m (minutes), and s (seconds).

Get a histogram over a specific range

Set min to 1390176000000 and max to 1390608000000 to get a histogram of results published between 20.01.2014 and 25.01.2014 with

start timestamp included and end timestamp excluded (default values).

curl

'https://api.talkwalker.com/api/v1/search/histogram/published?access_token=demo&q=birds&min=1390176000000&max=

1390608000000&pretty=true'

The min and max parameters accept timestamps in epoch format (milliseconds after 1.1.1970 UTC).

Get a histogram and statistics over engagement

For types different from published and search_indexed, the histogram API also returns statistics (average, minimum,

maximum and sum) over every bin.

curl 'https://api.talkwalker.com/api/v1/search/histogram/engagement?access_token=demo&q=birds&pretty=true'

response

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v1/search/histogram/engagement?access_token=demo&q=birds&pretty=true",

 "result_histogram" : {

 "header" : {

 "v" : ["Number Results"]

 },

 "data" : [{

 "v" : [333989.0],

 "k" : 0.0,

 "val" : [{

 "count" : 333989,

 "min" : 0.0,

 "max" : 80759.0,

 "avg" : 22.01215608897299,

 "sum" : 7351818.0

 }]

 }, {

 "v" : [5.0],

 "k" : 82254.0,

 "val" : [{

 "count" : 0,

 "sum" : 0.0

 }]

 }...

 // truncated

 {

 "v" : [1.0],

 "k" : 740286.0,

 "val" : [{

 "count" : 1,

 "min" : 822531.0,

 "max" : 822531.0,

 "avg" : 822531.0,

 "sum" : 822531.0

 }]

 }]

 }

}

Talkwalker Search API and Talkwalker Projects

https://api.talkwalker.com/api/v1/search/p/<project_id>

How it works

Talkwalker users can use the topics defined in their project with the Talkwalker API. Topics can be used with the Search

Results API and the Search Histogram API. This allows Talkwalker users to use the queries from their projects and to

retrieve the documents they get in their Talkwalker project including changes and tags that were done in Talkwalker. In

addition to the 30 days of search, the full history of Talkwalker projects is available in the search API, when used in

combination with a Talkwalker project.

Parameters

parameter description required? default value

access_token API access token required

q The query to search for. required

offset Number of results to skip (for paging) optional default: 0

hpp Number of hits per page (for paging) optional default: 10 /
maximum : 500

sort_by Criteria for sorting the results optional default:
engagement

sort_order Sorting order (ascending or descending) optional default: desc

hl Turns highlighting on or off optional default: true

topic One or more topics or panels that are defined in the
Talkwalker project

optional, multiple

Credits

1 credit per returned result, minimum 10 credits per Search Result API call.

10 credits per Search Histogram API call.

No credits for project list, topic list, document update and document delete calls.

Get a list of all projects linked to an API application

Use the private access_token from your API application on the https://api.talkwalker.com/api/v1/search/info endpoint to get the list

of all linked projects.

curl 'https://api.talkwalker.com/api/v1/search/info?access_token=<access_token>'

Parameters

parameter description required? default value

access_token a read/write token specified in the API application required

Rate Limit

This endpoint is limited to 10 calls per minute, the result should be stored.

Get a list of all resources

Resources are data retrieval settings from a Talkwalker project. This can be search-topics, filters, monitored-pages,

source-panels, events, or saved-objects for for embedding in external tools.

To get a list of the resources defined in a Talkwalker project use the project_id and the access_token on the

https://api.talkwalker.com/api/v2/talkwalker/p/<project_id>/resources endpoint.

curl 'https://api.talkwalker.com/api/v2/talkwalker/p/<project_id>/resources?access_token=<access_token>'

Parameters

parameter description required? values

access_token a read/write token specified in the API
application

required

type filter on the type of resources optional search, filter, page, event, panel,
savedobject

object_type filter on types of saved objects optional name of the saved-object type (name
of the embedding destination)

Example: Get all saved objects from a project that were saved for embedding in an external tool called myapp.

curl

'https://api.talkwalker.com/api/v2/talkwalker/p/<project_id>/resources?access_token=<access_token>&type=shared

object&object_type=myapp'

Instead of using an access_token the Talkwalker API can also be used with OAuth 2.0 authentication (see the chapter on

access_tokens and OAuth 2.0).

Rate Limit

This endpoint is limited to 20 calls per minute, the result should be stored.

Get search results and histograms for topics

The Project Search Result API https://api.talkwalker.com/api/v1/search/p/<project_id>/results and the the Project Search Histogram

API https://api.talkwalker.com/api/v1/search/p/<project_id>/histogram can be used with the same parameters as the normal Search

Result API and the Search Histogram API. Additionally to search a specific topic of a Talkwalker Project, set the

parameter topic to one or more topic-IDs.

Modifiying documents with the Talkwalker API

Single Documents

To change result documents, use the https://api.talkwalker.com/api/v2/search/p/<project_id>/<operation> endpoint. Creating new

documents can be done on the create operation, updating documents is done with the update operation. Deletion and un-

deletion of documents can be done on the delete and undelete operations respectively.

The fields url, published, and content are required. When left empty, some fields (for example sourcetype, posttype and language)

will be filled automatically with default values or automatically extracted values.

Examples:

Create

curl -XPOST 'https://api.talkwalker.com/api/v2/docs/p/<project_id>/create?access_token=<access_token>' -d '

{

 "url" : "http://www.example.com/docs/doc1.html",

 "title" : "This is a title",

 "content" : "Example content. Really not that much.",

 "tags_marking" : "read",

 "published" : "1430136532000"

}' -H 'Content-Type: application/json; charset=UTF-8'

Update

Setting a new title field, adding an important tag, and removing the read tag:

curl -XPOST 'https://api.talkwalker.com/api/v2/docs/p/<project_id>/update?access_token=<access_token>' -d '

{

 "url" : "http://www.example.com/docs/doc1.html",

 "title" : "This is a new title",

 "content" : "Example content. Really not that much.",

 "+tags_marking" : ["important"],

 "-tags_marking" : ["read"],

 "extra_author_attributes" : {

 "name" : null

 },

 "published" : "1430136532000"

}' -H 'Content-Type: application/json; charset=UTF-8'

Fields that are of type array, can be updated in three ways: using "<fieldname>" to replace the whole array, "+<fieldname>" to

add an item to the array, and "-<fieldname>" to remove an item. Fields can be cleared by explicitly setting them null.

Delete

Deleting a document:

curl -XPOST 'https://api.talkwalker.com/api/v2/docs/p/<project_id>/delete?access_token=<access_token>' -d '

{

 "url" : "http://www.example.com/docs/doc1.html"

}' -H 'Content-Type: application/json; charset=UTF-8'

Undelete

Deleting a document:

curl -XPOST 'https://api.talkwalker.com/api/v2/docs/p/<project_id>/undelete?access_token=<access_token>' -d '

{

 "url" : "http://www.example.com/docs/doc1.html"

}' -H 'Content-Type: application/json; charset=UTF-8'

Multiple Documents

Multiple documents can be manipulated using the https://api.talkwalker.com/api/v2/search/p/<project_id> endpoint. The execution

order of the given document operations is not guaranteed (multiple operations on a single document in a single request

should be avoided).

curl -XPOST 'https://api.talkwalker.com/api/v2/docs/p/<project_id>/delete?access_token=<access_token>' -d '

[{

 "create": {

 "url": "http://www.example.com/docs/doc1.html",

 "title" : "This is the title of doc 1",

 "content" : "and this is the content of doc 1",

 }

}, {

 "update": {

 "url": "http://www.example.com/docs/doc2.html",

 "title" : "This is the title of doc 2",

 "content" : "and this is the content of doc 2",

 }

}, {

 "delete": {

 "url": "http://www.example.com/docs/doc3.html"

 }

}]' -H 'Content-Type: application/json; charset=UTF-8'

Parameters

parameter description required? values

access_token a read/write token specified in the API application required

parameter description required? values

return_entry Specifies if the modified document should be returned optional hide (default),
show

See Talkwalker Documents

Talkwalker Streaming API

Source

https://api.talkwalker.com/api/v2/stream

How it works

The Talkwalker Streaming API delivers real-time data through a persistent connection to our servers. Configure your

stream with a set of filtering rules, connect to the stream and new results will be delivered in real time, as soon as they

are found by our crawlers. You will not need to do any polling to receive new data.

You setup and configure the Streaming API by defining rules (Boolean query, language, media types, etc.). The Streaming

API then finds and collects all relevant data and adds it to your data stream, with individually highlighted snippets per

matched rule. This feature allows you to gather data from many rules through a single stream while easily matching the

results back to your predefined rules.

Each rule allows filtering by title, content, author, language, URL, country, media type, and more parameters, using the

same syntax as in our Talkwalker Search interface. You can also apply a list of sources to be included or excluded from

the stream, to give you even further possibilities to narrow down the results you will get. A single rule can support up to

50 operands. To create complex rules, operands may be combined using Boolean Operators.

The documents are streamed in the order they are found by our crawlers and added to Talkwalker (i.e. by search_indexed

timestamp). Custom sorting is not possible with the Streaming API (however this can be done with the Search API). The

documents are grouped in timeframes which contain all documents that were indexed between the given start and end

time of the timeframe.

Each result (independent on how many rules match) will be counted as 1 credit.

Stream Format

Stream

A Stream, its rules, queries and panels are represented by the following json object. stream_id, rule_id and panel_id are used

to reference streams, rules and panels and have to be unique within a project. stream_id and rule_id are also used in the

results to specify which rule or stream matched a result.

Example:

/api/fields.adoc

{

 "stream_id" : "teststream",

 "rules" : [{

 "rule_id": "rule-1",

 "query": "cats"

 },{

 "rule_id": "teststream-dogs-toppanel",

 "query": "dogs",

 "panel": {

 "referenced_panel":["toppanel"]

 }

 }]

}

Stream ids, rule ids, panel ids, etc can only contain lowercase letters, numbers and the characters - and _. They

have to start with a lower case letter.

json fields

parameter description required? default value

stream_id id we want to reference this stream with required

rules a set of rules for this stream optional

A set of rules can be either an array of strings to be matched or for a more advance usage a rule is defined as the

following object:

parameter description required? default value

rule_id id we want to reference this rule with (will also
be returned when the rule matched)

optional

query a query defining this rule optional*

panel.referenced_panel a set of panels that are being applied to this rule optional*

panel.matching matching can be 'all' or 'any' (if doc needs to be
in all panels or in a single panel)

optional any

*Note: either a query or a panel must be set

The Talkwalker API returns a sequence of chunks, in version 2 (/v2/stream) the format of the sequence has been

changed, chunks are delivered in a flat list, separated by newline characters (\r\n). Each chunk contains a

document or stream information. Result documents have "chunk_type" : "CT_RESULT", CT_CONTROL identifies control chunks

(containing information about the next result chunks) and CT_ERROR identifies error message chunks.

Result Chunk

{

 "chunk_type" : "CT_RESULT",

 "chunk_result" : {

 "data" : {

 "data" : { <default result data (see simple search)> },

 "highlighted_data" : [{

 "title_snippet" : "<title snippet for rule>",

 "content_snippet" : "<content snippet for rule>",

 "matched":{

 "rule_id" : "rule1",

 "stream_id" : "stream2",

 "panel_id : ["panel1","panel2"],

 "rule_query : "cats AND dods" // if rule_id is not set on rule

 }

 }]

 }

 }

}

Control Chunk

{

 "chunk_type" : "CT_CONTROL",

 "chunk_control" : {

 "timeframe_start" : <start time>,

 "timeframe_end" : <stop time>

 }

}

Error Chunk

{

 "chunk_type" : "CT_ERROR",

 "chunk_error" : {

 "status_code" : "<code>",

 "status_message" : "<error message>",

 "data" : [{

 "key" : "errdetail",

 "value" : ["some details"]

 }

]

 }

}

Credits

Each result (independent on how many rules match) will be counted as 1 credit. If no credits are left, the stream is

stopped and a control chunk containing the timestamp of the end of the stream (needed for resuming) is sent. API calls

which don’t return any results are not counted. The documents are billed after every completed timeframe, if a stream

gets disconnected a non completed timeframe will not be billed. (When resuming a disconnected stream, a partially

streamed timeframe has to be restarted and streamed again.) When the parameter max_hits is set, only the specified

maximum number of results will be billed, even if the entire timeframe gets streamed after reaching the limit.

Order and Timing of Chunks

It is not possible to do any custom sorting with the Talkwalker Streaming API. The data is grouped in unsorted

timeframes, which will be returned in the order the data was added to Talkwalker. (This can be a different order than

the order the data was published in.)

The number of results chunks in a timeframe is not limited! When implementing a client application, store or

process the results in a reasonable batch size (to limit memory usage and prevent out of memory) and do not

wait for a completed timeframe.

Stream Results

To start streaming the results from a stream at least one rule needs to be defined. The results are available at

https://api.talkwalker.com/api/v/stream/s/<stream_id>/results.

Example: Start a stream:

curl https://api.talkwalker.com/api/v2/stream/s/teststream/results?access_token=demo

Example: Resume a disconnected stream: Set the parameter stream_resume to the start timestamp ('timeframe_start') of the

last CT_CONTROL chunk. Since the results in a timeframe are not sorted, the streaming of the entire timeframe has to be

restarted.

curl

https://api.talkwalker.com/api/v2/stream/s/teststream/results?access_token=demo&stream_resume=1388534400000

Parameters

parameter description required? default value

access_token a read/write token specified in the API application required

q The query to search for. optional

stream_resume Resumes the stream from this starting point optional now

stream_stop Stops the stream at this point optional

max_hits Stops the stream after the given number of hits optional

stream_stop can be used to specify an end timestamp for the stream. When the number of documents in max_hits is reached,

the remaining documents of the timeframe are still streamed but not billed. After this, a control chunk containing the

timestamp needed to resume the stream is send.

Multiple stream ids

To stream results of multiple streams through one single connection, all of the streaming endpoints accept multiple

streams in the /s/<stream_id> parameter. The following syntax can be used:

example description

single test-stream a single stream

multiple test1,test2,test3 a list of streams

prefix test* every stream that starts with test

all * all defined streams

exclude test*,-test1 every stream that stats with test except test1

While streaming the matched streams are expanded on the start of every chunk, so that new streams get picked up

automatically on a running connection. Streaming will fail in case no stream matches the multiple streams description

(anymore).

Stream ids, rule ids and panel ids all must be unique within the project.

Rate Limit

This endpoint is limited to 5 calls per minute. Only one connection can be opened, if multiple streams were defined,

they must be streamed through one single connection (see above how to select multiple streams).

Managing Streams

Stream Create and Stream Definition

Creating a new Stream and getting the definition of a stream are done on the

https://api.talkwalker.com/api/v2/stream/s/<streamid> endpoint, using the methods PUT and GET.

Parameters

Endpoint parameters:

parameter description required? default value

access_token a read/write token specified in the API application required

Example: create a new stream

{

 "stream_id" : "teststream",

 "rules" : [{

 "rule_id": "rule-1",

 "query": "cats"

 }]

}

Command:

curl -XPUT https://api.talkwalker.com/api/v2/stream/s/teststream?access_token=demo -d '{ "rules" : [{

"rule_id": "rule-1", "query": "cats" }] }' -H 'Content-Type: application/json; charset=UTF-8'

Response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "PUT /api/v2/stream/s/teststream?access_token=demo",

 "result_stream" : {

 "data" : [{

 "stream_id" : "teststream",

 "rules" : [{

 "rule_id" : "rule-1",

 "query" : "cats"

 }]

 }]

 }

}

Example: get the stream teststream

curl -XGET https://api.talkwalker.com/api/v2/stream/s/teststream?access_token=demo

The response will be the same as before.

Rate Limit

This endpoint is limited to 20 calls per minute.

Stream Delete

The https://api.talkwalker.com/api/v2/stream/s/<stream_id> endpoint is used to delete a stream.

Example:

curl -XDELETE 'https://api.talkwalker.com/api/v2/stream/s/teststream?access_token=demo&pretty=true'

Parameters

parameter description required? default value

access_token a read/write token specified in the API application required

Rate Limit

This endpoint is limited to 20 calls per minute.

Stream Info

The https://api.talkwalker.com/api/v2/stream/info endpoint returns a list of all Talkwalker API Streams linked to a Talkwalker

API access token.

Example:

curl 'https://api.talkwalker.com/api/v2/stream/info?access_token=demo&pretty=true'

Response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v2/stream/info?access_token=demo",

 "result_streaminfo" : {

 "data" : [{

 "name" : "teststream"

 }]

 }

}

Parameters

Endpoint parameters:

parameter description required? default value

access_token a read/write token specified in the API application required

Rate Limit

This endpoint is limited to 20 calls per minute, the result should be stored.

Rules

The https://api.talkwalker.com/api/v2/stream/s/<stream_id>/r/<rule_id> resource is used to set new rules for an existing stream. Rules

are used to filter out unwanted results on a stream. Talkwalker Streaming API rules are specified in the Talkwalker

query syntax.

The response only includes the requested, created or deleted rule.

Example:

Add a rule to limit a stream to only German results

curl -XPUT https://api.talkwalker.com/api/v2/stream/s/teststream/r/rule-1?access_token=demo -d '

{

 "query":"lang:de"

}'

-H "Content-Type: application/json; charset=UTF-8"

Response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "PUT /api/v2/stream/s/teststream/r/rule-1?access_token=demo",

 "result_stream" : {

 "data" : [{

 "stream_id" : "teststream",

 "rules" : [{

 "rule_id" : "rule-1",

 "query" : "lang:de"

 }]

 }]

 }

}

Get an existing rule:

curl -XGET https://api.talkwalker.com/api/v2/stream/s/teststream/r/rule-1?access_token=demo

Delete an existing rule:

curl -XDELETE https://api.talkwalker.com/api/v2/stream/s/teststream/r/rule-1?access_token=demo

Rules that are not in valid Talkwalker query syntax will be rejected (error 400 - 4 Error in query), in this case the old rules

will not be replaced.

Parameters

Endpoint parameters:

parameter description required? default value

access_token a read/write token specified in the API application required

Rate Limit

This endpoint is limited to 20 calls per minute.

Panels

The Panel defines a source set that is considered for streaming. It can contain a whitelist with an include query

include_query or a blacklist with exclude query exclude_query. To create, get or delete a panel use the

https://api.talkwalker.com/api/v2/panel/a/<panel_id> endpoint. Panels are defined using the Talkwalker query syntax.

Example: Create a the panel with "include_query" : ["lang:de", "lang:fr"] and "exclude_query": ["sourcecountry:lu"] for the stream

teststream to restrict the stream to German and French results which are not from Luxembourg.

curl -XPUT https://api.talkwalker.com/api/v2/panel/a/testpanel?access_token=demo -d '

{

 "include_query" : [

 "lang:de",

 "lang:fr"

],

 "exclude_query" :[

 "sourcecountry:lu"

]

}' -H "Content-Type: application/json; charset=UTF-8"

Response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "PUT /api/v2/panel/a/testpanel?access_token=demo",

 "result_panel" : {

 "data" : [{

 "panel_id" : "testpanel",

 "include_query" : [

 "lang:de",

 "lang:fr"

],

 "exclude_query" : [

 "sourcecountry:lu"

]

 }]

 }

}

Getting a panel

curl -XGET https://api.talkwalker.com/api/v2/panel/a/testpanel?access_token=demo

Deleting a panel

Panels that are still referenced may not be deleted.

curl -XDELETE https://api.talkwalker.com/api/v2/panel/a/testpanel?access_token=demo

Panels that are not in valid Talkwalker query syntax will be rejected (error 400 - 4 Error in query), in this case the old

panels will not be replaced.

Getting a list of all panels

curl -XGET https://api.talkwalker.com/api/v2/panel/info?access_token=demo

Response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v2/panel/info?access_token=demo",

 "result_panel" : {

 "data" : [{

 "panel_id" : "panel1"

 }, {

 "panel_id" : "panel2"

 }, {

 "panel_id" : "panel3"

 }]

 }

}

Parameters

Endpoint parameters:

parameter description required? default value

access_token a read/write token specified in the API application required

Rate Limit

This endpoint is limited to 20 calls per minute.

Matching of Streams, Rules and Panels

When a document matches a rule, highlighted_data is included in the result entry. When multiple rules match a query,

highlight_data is repeated for every rule that matches.

Example:

highlighted_data {

 matched {

 rule_id: "rule-1",

 stream_id: "stream-1",

 panel_id: ["panel-1","panel-2"],

 rule_query: "cats OR dogs" // if rule_id is not set on rule

 }

 title_snippet: "Cats are...",

 content_snippet: "... cats are ..",

}

Quota on Streams

A quota can be specified for each stream. This quota allows to limit the number of results delivered through a stream

per hour, day or month. After the limit has been reached this stream will be deactivated until the next period begins.

The connection will stay open even if the stream, some of the streams or all streams are deactivated. Information about

disabled streams is delivered through periodic control chunks.

Example:

curl -XPUT https://api.talkwalker.com/api/v2/stream/s/teststream/quota?access_token=demo -d '

{

 "allowance":1000,

 "reset":"daily",

 "timezone":"UTC",

 "reference_time":"2015-01-01T00:00:00.000Z" // or long

}'

The reference time defines a reference time in relation to the period and timezone. Its usage depends on period:

period reference time "explanation"

hourly beginning of hour + (reference % hour) minute in hour

daily beginning of day + (reference % day) hour in day

weekly beginning of week + (reference % week) day of week

monthly beginning of month + (reference % month) day of month

Request information about a quota on a stream:

Example:

curl -XGET https://api.talkwalker.com/api/v2/stream/s/teststream/quota?access_token=demo

Response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "PUT /api/v2/stream/s/teststream/quota?access_token=demo",

 "result_stream" : {

 "data" : [{

 "stream_id" : "teststream",

 "quota" : {

 "allowance" : 10000,

 "reset" : "hourly",

 "timezone" : "UTC",

 "period_start" : "2015-04-27T08:00:00.000Z",

 "period_reset":"2015-04-27T09:00:00.000Z",

 "usage":0,

 "status":"active",

 "reference_time":"2015-01-01T00:00:00.000Z"

 }

 }]

 }

}

To remove the quote from a stream:

Example:

curl -XDELETE https://api.talkwalker.com/api/v2/stream/s/teststream/quota?access_token=demo

A Reset can also be triggered manually if a rule should be reactivated, the usage will then be reset to 0 for the current

period:

curl -XPOST https://api.talkwalker.com/api/v2/stream/s/<streamid>/quota/reset?access_token=demo

If the quota on a stream gets full before the end of a chunk, the data for the current chunk is still fully delivered.

Reactivation of a stream occurs at chunk boundaries. Chunk boundaries are aligned with the different reset times.

Additional Information on Quota in Control Chunks

The information delivered through the control-chunk contains the list of streams requested by the connection. It

contains the number of results delivered per stream, the remaining quota if applicable, the status of the stream (if it has

been deactivated because of the quota). The number of remaining credits on the account can be requested through the

credits API.

Control chunks will have the following additional information:

{

 "timeframe_start": 1427216400000,

 "timeframe_end": 1427216460000,

 "stream":[{

 "id":"stream-1",

 "allowance": 10000,

 "usage": 5000,

 "reset": 1427241600000,

 "status":"active"

 }]

}

Temporarily Disable Streams

POST https://api.talkwalker.com/api/v2/stream/s/<stream_id>/enable

POST https://api.talkwalker.com/api/v2/stream/s/<stream_id>/disable

These endpoints allow to temporarily disable a stream or to eanble it. Disabling a stream has the same effect, as a

stream which has reached its quota. Disabled streams are shown in control chunks with "status" : "disabled". New created

streams are enabled, while creating you can explicitly specify "enabled" : true or "enabled" : false.

Talkwalker Streaming API and Talkwalker Projects

https://api.talkwalker.com/api/v2/stream/s/<stream_id>/p/<project_id>/results

How it works

Talkwalker users can use the topics defined in their project with the Talkwalker API. Topics can be used with the

Streaming Results API. To limit the results of a predefined stream to those matching a topic topic to that topic’s ID

(multiple topics can be set). see Talkwalker Search API and Talkwalker Projects

Example: Setup a stream that streams all new data for a Talkwalker Project. You will need your custom API application

access token.

To find the Id of your project use:

curl 'https://api.talkwalker.com/api/v1/search/info?access_token=<access_token>'

To get a list of all topics:

curl 'https://api.talkwalker.com/api/v1/search/p/<project_id>/topics/list?access_token=<access_token>'

api/../search_api.adoc

To create the stream:

curl -XPUT 'https://api.talkwalker.com/api/v2/stream/s/teststream?access_token=<access_token>' -d

'{"streamid":"teststream"}' -H 'Content-Type: application/json; charset=UTF-8'

To start the stream:

curl

https://api.talkwalker.com/api/v2/stream/s/teststream/p/<project_id>/results?access_token=<access_token>&topic

=<topic_id_1>&topic=<topic_id_2>

See FAQ for more examples

Talkwalker Single Sign-on API

Source

https://api.talkwalker.com/api/v2/auth/

Note: The Single Sign-on API needs a special access token (of type authentication) and the endpoints must be called via a

secure connection (HTTPS).

Talkwalker Login Url

curl 'https://api.talkwalker.com/api/v2/auth/u/<user_id>/loginurl?access_token=<access_token>'

The Talkwalker Single Sign-on API is used to retrieve a single sign on URL for a Talkwalker account or application. To

get such an URL, the /loginurl endpoint is used,the returned login URL is only valid for 10 seconds. The alternative

endpoint api.talkwalker.com/api/v2/auth/loginurl?access_token=<access_token> can be used to login without specifying a user, the

returned login url will authenticate as the account administrator.

Parameters

parameter description required? default value

access_token Authentication access token required

project_id ID of a Talkwalker project required

page Menu page that will be opened on login optional home_screen

view View that will be shown on login optional home_screen

logout_url Url the user will be redirected to on logout optional default login page

/api/faq.adoc

parameter description required? default value

token_timeout Timeout for the generated login token optional 10s

pretty Formatted json for testing optional false

token_timeout accepts values in minutes or seconds (for example 5s or 1m) with a maximum time of 30m.

Either page can be set (monitor, dashboard or home_screen) to lead the user to a generic menu or view can be set to lead to a specific

stored view. To get a list of all views see below.

Example:

https://api.talkwalker.com/api/v2/auth/u/<user_id>/loginurl?access_token=<access_token>&pretty=true

Result:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v2/auth/u/<user_id>/loginurl?access_token=<access_token>&pretty=true",

 "result_loginurl" : {

 "single_sign_on_url" : "/app/login?login_token=<token>&user_id=<user_id>",

 "user_id" : "<user_id>",

 "expiration_date" : 1423064059056

 }

}

Logout

curl 'https://api.talkwalker.com/api/v2/auth/u/<user_id>/logout?access_token=<access_token>'

The /logout-endpoint is used to log a user out from talkwalker and to invalidate all tokens that were created for this user.

All sessions for this user (either authenticated with a single sign on URL, or with a password) will be closed.

User List

curl 'https://api.talkwalker.com/api/v2/auth/users?access_token=<access_token>'

This endpoint returns a list of all the users in an account and the projects they have access to.

Example:

https://api.talkwalker.com/api/v2/auth/users?access_token=<access_token>&pretty=true

Result:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v2/auth/users?access_token=<access_token>&pretty=true",

 "result_users" : {

 "user" : [{

 "user_name" : "Admin 1",

 "user_email" : user_1@site.com",

 "user_id" : "user_id_1",

 "project" : [{

 "project_id" : "project_id_1",

 "project_name" : "Project 1",

 "account_id" : "account_id_1",

 "account_name : "account_name_1",

 "access_level" : "ACCOUNT_ADMIN"

 }, {

 "project_id" : "project_id_2",

 "project_name" : "Project 2",

 "account_id" : "account_id_1",

 "account_name : "account_name_1",

 "access_level" : "ACCOUNT_ADMIN"

 }, {

 "project_id" : "project_id_3",

 "project_name" : "Project 3",

 "account_id" : "account_id_1",

 "account_name : "account_name_1",

 "access_level" : "ACCOUNT_ADMIN"

 }]

 }, {

 "user_name" : "User 2",

 "user_email" : user_2@site.com",

 "user_id" : "user_id_2",

 "project" : [{

 "project_id" : "project_id_2",

 "project_name" : "Project 2",

 "account_id" : "account_id_1",

 "account_name : "account_name_1",

 "access_level" : "FULL_TOOL"

 }]

 }]

 }

}

Project List

curl 'https://api.talkwalker.com/api/v2/auth/projects?access_token=<access_token>'

This endpoint returns a list of all the projects in an account and the users that have access.

Example:

https://api.talkwalker.com/api/v2/auth/projects?access_token=<access_token>&pretty=true

Result:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v2/auth/projects?access_token=<access_token>&pretty=true",

 "result_projects" : {

 "project" : [{

 "project_id" : "project_id_1",

 "project_name" : "Project 1",

 "account_id" : "account_id_1",

 "account_name : "account_name_1",

 "user" : [{

 "user_id" : "user_id_1",

 "user_name" : "Admin 1",

 "user_email" : user_1@site.com",

 "access_level" : "ACCOUNT_ADMIN"

 }]

 }, {

 "project_id" : "project_id_2",

 "project_name" : "Project 2",

 "account_id" : "account_id_1",

 "account_name : "account_name_1",

 "user" : [{

 "user_id" : "user_id_1",

 "user_name" : "Admin 1",

 "user_email" : user_1@site.com",

 "access_level" : "ACCOUNT_ADMIN"

 }, {

 "user_id" : "user_id_2",

 "user_name" : "User 2",

 "user_email" : user_2@site.com",

 "access_level" : "FULL_TOOL"

 }]

 }, {

 "project_id" : "project_id_3",

 "project_name" : "Project 3",

 "account_id" : "account_id_1",

 "account_name : "account_name_1",

 "user" : [{

 "user_id" : "user_id_1",

 "user_name" : "Admin 1",

 "user_email" : user_1@site.com",

 "access_level" : "ACCOUNT_ADMIN"

 }]

 }]

 }

}

View List

curl 'https://api.talkwalker.com/api/v2/talkwalker/p/<project_id>/views?access_token=<access_token>'

This endpoint returns a list of all the views in a project. Note: This endpoint is part of the Talkwalker Project API and

needs a read_write access token.

Result:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v2/talkwalker/p/<project_id>/views?access_token=<access_token>&pretty=true",

 "result_views" : {

 "projects" : [{

 "id" : "<project_id>",

 "title" : "Project 1",

 "dashboards" : [{

 "id" : "id1",

 "title" : "Dashboard 1"

 }, {

 "id" : "id2",

 "title" : "Dashboard 2"

 }, {

 "id" : "id3",

 "title" : "Dashboard 3"

 }, {

 "id" : "id4",

 "title" : "Dashboard 4"

 }, {

 "id" : "id5",

 "title" : "Dashboard 5"

 }, {

 "id" : "id6",

 "title" : "Dashboard 6"

 }]

 }]

 }

}

== Talkwalker Channelmonitoring API

Channelmonitoring suggest

This provides the same functionality as the pagemonitoring suggest in the talkwalker. Given a string (url, name, …) and

a type (default = auto), it will provide several candidates.

Command:

curl -XGET

https://api.talkwalker.com/api/v2/talkwalker/p/<projectid>/monitoring/suggest?input=<url/string>&type=auto&acc

ess_token=<access_token>

Response

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "...",

 "result_monitoring_pages" : {

 "data" : [{

 "title" : "ABC",

 "type" : "facebook-page",

 "access_url" : "http://facebook.com/296043200790",

 "query" :

"channel:\"vtwqablxreaaaacgbieemqkdivbe6t2lcicgmzlfmqnci2duorydulzpo53xonf4zdsnrqgqztembqg44ta\""

 }, ...]

 }

}

Fetch query

Input: the access_url and the site monitoring type

Output: query to be used in stream

Command:

curl -XGET https://api.talkwalker.com/api/v2/talkwalker/p/<project_id>/monitoring/fetch?type=twitter-

user&access_url=http%%3A%%2F%%2Ftwitter.com%%2Flufthansa&access_token=<access_token>

Response

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v2/talkwalker/p/<project_id>/monitoring/fetch?type=twitter-

user&access_url=http%%3A%%2F%%2Ftwitter.com%%2Flufthansa&access_token=<access_token>",

 "result_monitoring_pages" : {

 "data" : [{

 "title" : "Lufthansa",

 "type" : "twitter-user",

 "access_url" : "http://twitter.com/lufthansa",

 "query" :

"channel:\"vtwqablxreaaaacgbieemqkdivbe6t2lcicgmzlfmqnci2duorydulzpo53xonf4zdsnrqgqztembqg44ta\""

 }]

 }

}

Talkwalker Query Syntax
A single search query can support up to 50 operands and be up to 1024 characters long in length. To create complex

queries, operands may be combined using Boolean Operators.

All queries are executed in their unaccented and case insensitive form, thus a search for "éléVE" will also match all

documents with the word "eleve". No language stemming is being done, thus a search for the "children" won’t return

results with the word "child".

Special Transformations

These transformations apply when a query contains no operators from the query syntax (quotes, AND, OR, wildcards etc,

see below).

Words with only capital letters (and special chars +-&) are executed as exact (case sensitive) raw data search (ABC = ++"ABC",

A&B = ++"A&B").

Screen names (@name), hashtags (#hashtag), cashtags ($cashtag) as well as words containing a dash (-), a plus (+) or an

ampersand (&) are executed as (case insensitive) raw data search (@username = +"@username" , p&t = +"p&t").

If a query contains multiple simple words (no special characters like (#@+-&), no operators and is not only capital letters, it

is executed as a proximity search. The maximum number of jumps is set to (#words - 1) * 10 (cat dog mouse bird = "cat dog

mouse bird"~30).

To prevent this behaviour use the explicit query syntax below. (instead of cat dog mouse use cat OR dog OR mouse, cat AND dog AND

mouse or "cat dog mouse" to search for one of the words, all the words or the exact phrase.

Boolean Operators

AND AND combines two keywords: BMW AND bike will find all entries which mention the
keyword BMW and the keyword bike.

BMW AND bike

AND NOT AND NOT excludes a word of an entry: BMW AND NOT bike will find all entries with the
keyword BMW, but only if the notion bike is not contained in the same article.

BMW AND NOT bike

OR OR means that a least one of the terms which are linked by an OR have to be
mentioned in the same article: BMW OR bike will find all entries that include
either the keyword BMW or the keyword bike.

BMW AND NOT bike BMW
OR bike

Exclusion of
Keywords

Negative filters can be created by using the operator NOT. NOT coupons

Phrase Search Quotes "" are used for finding keyword sequences: "BMW series" will find all
entries which contain the phrase "BMW series". In contrast the search query
BMW AND series does not respect the order.

"bmw series"

Combinations Brackets () are used to group several keywords in a way that operators can be
applied on multiple terms within the brackets (distributive law). BMW AND
(motorcycle OR car) is a shortform for (BMW AND motorcycle) OR (BMW AND car)

BMW AND (motorcycle OR
car)

Wildcard Search The Wildcard operator * is a character that stands for 0 or any possible
number. Wildcards are only accepted at the end of a keyword: Luxemb* will find
all entries including keyworks like Luxembourg , Luxemburg, Luxemburgisch
or any other keyword with the prefix Luxemb.

Luxemb*

Wildcard Search
– one character

The question mark ? has a similar function as the wildcard operator, but only
replaces exactly one character, i.e. it is useful in consideration of British and
American English, e.g.: reali?ation finds realisation but also realization.

reali?ation

Proximity Search The tilde symbol ~ analyses the surroundings of a character string which is
enclosed in quotes (consisting at least two words). You cannot combine the
tilde with the wildcard operator. e.g. "obama merkel"~5 finds "A statement released
from the White House said Obama, Monti and Merkel agreed on certain steps"
(3 jumps between both words), "obama merkel"~5 finds every entry, containing the
keywords obama and merkel within an interval of maximum of 5 jumps.

"obama merkel"~5

Fuzzy X Search The tilde symbol ~X after a word searches for words similar to the given word.
The value after the tilde (0, 1 or 2) defines the number of changed characters.
roam~1 will also find foam.

roam~1

Fuzzy Search The tilde symbol ~ after a word will find this word as a two part word with a
hyphen, space or other special character in it. carsharing~ will find carsharing, car-
sharing, car sharing etc

carsharing~

Raw Data Search A simple + in front of a keyword samples an exact character string including
special characters and punctuation, it does not consider lower and upper
cases. It also works with brackets and tilde: +"l'or�al" or +"d&g" etc

+"l'oréal"

Exact Raw Data
Search

Two ++ in front of a keyword samples an exact character string including
special characters and punctuation, it does consider lower and upper cases. It
also works with brackets and tilde: ++"L'Oréal"

++"L'Oréal"

NEAR/x The NEAR/x operator works similar to the proximity search operator, but also
works with parentheses and thus can be used with multiple terms. (default
value for x: 15)

(BMW OR Audi) NEAR/3
(motorcycle OR car)

ONEAR/x Same as NEAR/x but respects the order of terms. (BMW OR Audi) ONEAR/3
(motorcycle OR car)

Sentence Search The SENTENCE operator works similar to the NEAR/x operator. It searches for
keywords that appear in the same sentence. SENTENCE can also be used with
multiple terms.

(BMW OR Audi) SENTENCE
(motorcycle OR car)

Ordered Sentence
Search

Same as SENTENCE but respects the order of terms in the sentence. (BMW OR Audi)
OSENTENCE (motorcycle
OR car)

Note:

In phrase search and raw data phrase search ("" or +"") the number and type white space characters are ignored. For

example "BMW series" (one space) will also match documents which contain "BMW series" (two spaces) and vice versa.

White space characters include spaces, tabs and new line characters, also transitions between letters and special

characters are considered as whitespace. For example +"P&T" will match P&T but also P& T and P & T.

Advanced Search Options:

Single Keyword
Search

Search for simple brands, products, keywords, etc. Apple

Title Search It searches within the title of an article. title:sixt will find all results which
contain the keyword sixt within the title. title:"obama merkel"~5 matches with:
Obama Seeking Ally Finds Merkel a Tough Sell

title:sixt
title:"obama merkel"~5

Content Search It searches within the article content:sixt will find all results which mention the
keyword within the main text of the article.

content:sixt

Author Search It searches for authors of articles. author:Franz will find all results containing
articles which defined Franz as author.

author:Franz

Language Search It searches for languages of articles. lang:de only indicates German results. lang:de

Source Country
Restriction

It searches for the country of origin of sources. sourcecountry:de filters all articles
from German sources and which were published in Germany.

sourcecountry:de

Author Country
Restriction

If the author is in a specifiy country when writing posts, authorcountry:fr limits
results to ones from French authors.

authorcountry:de

Source Type
Restriction

sourcetype:"BLOG" restricts results to a specific media/source type. Returns only
BLOG entries.

sourcetype:BLOG

Comments Search Find only comments by setting is:comment or without comments (-is:comment) is:comment

Retweets Search Find only retweets with is:retweet or exclude retweets with -is:retweet and get
only original posts

is:retweet

Twitter Reply
Search

Find only tweets that are replies to other tweets is:twitter_reply

Questions Search Search for questions. is:question will find only documents that are questions. is:question

Image Search contains:image returns those documents that include images contains:image

Audio Search contains:audio returns those documents that include audio contains:audio

Video Search contains:video returns those documents that include videos contains:video

Talkwalker Tags
Search

is:important finds all documents that were manually tagged as important in
Talkwalker. is:read finds documents that were read (original document link
opened). is:checked finds documents were the sentiment has been checked
manually in the project

is:important, is:read,
is:checked

Score Search score:n finds all documents that were manually tagged with the respective
score. (In a Talkwalker project scores can be added to a selected document by
pressing the number keys)

score:4

Post Type Search posttype:IMAGE allows to search only for documents of type image. Possible
values are TEXT LINK IMAGE VIDEO AUDIO.

posttype:LINK

Url based Search

Url Search url: returns the document with this exact url. Prefix Wildcard (e.g. *apple)
matching is not supported.

url:http://twitter.com
/bmw
/status/56192586115556
1473

Parent Url Search parenturl: returns all child documents (comments or retweets) from a
document specifed by the given url. E.g. Give me all the comments for this
document url.

parenturl:http://twitt
er.com/bmw
/status/56192586115556
1473

Host Url
Restriction

hosturl:"www.spiegel.de" returns all the documents from the host www.spiegel.de hosturl:"http://www.sp
iegel.de/"

Domain Url
Restriction

domainurl:spiegel.de" returns all the documents from the domain Spiegel.de. Pay
attention not to insert www. into the query

domainurl:"http://spie
gel.de/"

Site Search site:twitter.com/bmw/ returns all documents from the site twitter.com/bmw/.
site:googleblog.blogspot.com returns documents from googleblog.blogspot.com. Pay
attention to end with a / if the site includes a specific path (/bmw/) but not if it
ends with the top level domain (.com)

site:googleblog.blogsp
ot.com
site:blogspot.com
site:twitter.com/bmw/

In Urls Search inurls:facebook returns all documents which have the keyword facebook anywhere
in their url, or which have it in any referenced url in the content.

inurls:facebook

Metric (Minimum / Maximum) Restrictions

metric_name:>n , metric_name:<n and metric_name:n return only documents which match a specific value or range of a metric.

Following tables explains the possible metrics

metric_name Description Example

reach The reach of an article/post represents the number of people who
were reached by this article/post.

reach:>100

engagement The engagement of an article/post is the sum of actions made by others
on that article/post.

engagement:<1000

facebook_shares Number of Facebook share an article has facebook_shares:0

facebook_likes Number of Facebook likes an article has facebook_likes:>0

twitter_retweets Number of Twitter retweets an article has twitter_retweets:>1000

twitter_shares Number of Twitter share an article has twitter_shares:0

metric_name Description Example

twitter_followers Number of Twitter followers a source has twitter_followers:>1000

youtube_views Number of YouTube views a video has youtube_views:>100000

youtube_likes Number of YouTube likes a video has youtube_likes:>100

youtube_dislikes Number of YouTube dislikes a video has youtube_dislikes:>0

instagram_likes Number of Instagram likes a post has instagram_likes:>0

instagram_followers Number of Instagram followers a post has instagram_followers:>100

comment_count Number of Comments an article has comment_count:>0

published Timestamp of publication (epoch time in milliseconds) published:>1420731027000

searchindexed Timestamp of indexation in Talkwalker (epoch time in milliseconds) searchindexed:>1420731027000

sample Get a random sample of the results (percent of the total number of
results i.e. setting 25 will return one of four the documents) values:1-
100

sample:25

sample_million Similar to sample_percent, with higher precision (i.e. setting 2000 will
return one of 500 documents) values:1-1000000

sample_million:2000

sentiment The detected sentiment of the article (values -5 (negative) to 5
(prositive)). sentiment:positive, sentiment:negative and sentiment:neutral map to
the respective sentiment ranges of Talkwalker

sentiment:>0
sentiment:negative

Geographic Restrictions

Note: Some documents have precise geographic data in form of GPS measured coordinates provided by the source. For

other documents this data is based on source metadata, with a certain precision level. These levels (ordered from lowest

precision to highest) are: country, region and city (extracted data) and coordinates (exact data).

The coordinates for lower precision geographic data are equal to their capital.

Restriction Description Example

sourcegeo Restricts the results to a rectangular geographic area defined by the
coordinates (latitude,longitude) of the upper left and lower right corner.

sourcegeo:50.3,5.7;49.4,6.5

sourcegeo_resolution Restricts to documents that have a minimum precision level of
location data. Possible levels are coordinates, city, region and country.
default: all documents

sourcegeo_resolution:coordin
ates

Example: Search for documents that are in a box that roughly corresponds to Luxembourg and have exact coordinates.

Luxembourg’s north end is at around 50.3°, south is at 49.4°, west at 5.7° and east at 6.5°, the upper left corner is 50.3,5.7 the

lower right corner is 49.4,6.5. The final query is : sourcegeo:50.3,5.7;49.4,6.5 AND sourcegeo_resolution:coordinates.

Special Query Modifiers

All queries are executed in their unaccented and case insensitive form on the content and the title of documents. To

change this behaviour, use flag:<modifier_name> to enable special query modes.

Modifier Name Description Example

matchinurls Query will also match URLs and links. flag:matchinurls

matchauthor Query will also match author field flag:matchauthor

matchexact Use Raw data search as default. All keywords are considered as case-
insensitive exact character string including special characters and
punctuation.

flag:matchexact

matchexactcase Use Exact raw data search as default. All keywords are considered as
case-insensitive exact character string including special characters and
punctuation.

flag:matchexactcase

matchfuzzywords Use Fuzzy Search as default. All keywords will also match combined
words carsharing will match words like carsharing, car-sharing or car sharing.

flag:matchfuzzywords

The special modifiers can be combined: carsharing flag:matchauthor flag:matchfuzzywords searches for words like carsharing, car

sharing or car-sharing in the fields title, content and author_name.

Note: When matchinurls or matchauthor is set, API results will not have highlighting in snippets when one of these fields is

matched. == Talkwalker Documents

Fields

field name name Write access
through API

Comment Possible field values

url URL y¹ Normalized URL of the article Unique Url, for example:
http://blog.talkwalker.com
/en/how-to-export-data-
from-talkwalker/

matched_query Matched Query n Query which matched. On
streaming, this information is
present in extra entrydata.

matched_profile Matched Profile n Profile/Rule which matched. On
streaming, this information is
present in extra entrydata.

indexed Indexed n When article was added to
Talkwalker System

Java Timestamp, for
example: 1392821902000

search_indexed Search Indexed n When article was indexed by
Talkwalker search system after
postprocessing

Java Timestamp, for
example: 1392821902000

published Published y When article was published Java Timestamp, for
example: 1392821902000

title Title y Text version of the source title

content Content y² Text version of the content

http://blog.talkwalker.com/en/how-to-export-data-from-talkwalker/
http://blog.talkwalker.com/en/how-to-export-data-from-talkwalker/
http://blog.talkwalker.com/en/how-to-export-data-from-talkwalker/

field name name Write access
through API

Comment Possible field values

title_snippet Title Snippet n If a match occurred in the title,
this field will contain the snippet
related to the query set in the
datafeed. On streaming, this
information is present in extra
entrydata.

content_snippet Content Snippet n If a match occurred in the article,
this field will contain the snippet
related to the query set in the
datafeed. On streaming, this
information is present in extra
entrydata.

root_url Root URL n Url of the subsection of the site
where article was posted on.

Example:
www.zeit.de/blogs/

domain_url Domain URL n Url of the domain where article
was posted on

Example: zeit.de

host_url Host URL n Url of the host where article was
posted on

Example: www.zeit.de

parent_url Parent URL n Url of the parent of the article.
This is the post this url is refering
to, e.g. in case of a comment the
main article, in case of a message
board post, the main post in the
thread

lang Language of the
Article

y The language of the article

porn_level Pornography
Level

y³ Statistical Calculation of the
pornographic Level

0-100. 100 = Pornographic
Content

fluency_level Fluency Level y Statistical Calculation of the
fluency level (Data Range: 0-100).
The Fluency Level of an article if
low if the article is composed of
stacked words without
punctuation marks.

0-100. 100="Normal" Text

spam_level Spam Level y Spam level of the source. 0-100. 100="Spam", > 50
can be considered as
spam

sentiment Sentiment y Sentiment of text. Negative,
neutral or positive

-5, -4, -3, -2, -1, 0, 1, 2, 3, 4,
5. (-5 being negative and 5
being positive)

source_type Source Type y² Source type of the post. Source
type can be any string and be user
defined

ONLINENEWS, BLOG …
default: OTHER

field name name Write access
through API

Comment Possible field values

post_type Post Type y Type of the post. If it’s a text post,
an image post, video post or
anything else.

default: TEXT

cluster_id Cluster Id n Url of main cluster entry. Will
group identical/similar stories
from multiple sources together

meta_cluster_id Meta Cluster Id n Url of main cluster entry. Will
group identical/similar clusters
together

tags_internal Internal Tags 1 n Only in Talkwalker project. Tags
used internally. E.g. automatically
set tags

tags_marking Internal Tags 2 y Only in Talkwalker project. Tags
used internally. E.g. automatically
set tags

important, read, checked,
replied

tags_customer Customer Tags y Only in Talkwalker project. Tags
added by users of Talkwalker

tags_plugin Plugin tags y Only in Talkwalker project. Tags
added by plugins in Talkwalker

See the chapter on Protocols, Encodings and Value Field Options for possible values for the fields sourcetype, lang, or

country_code.

¹ Can not be changed after creating a new document.

² Must not be null or empty.

³ Extracted automatically when left empty.

Content

Talkwalker provides result snippets for all content. In all cases, the content field only contains the first words of the

document, in addition, we provide the part of the document which matches the query in the content_snippet field. In the

Streaming API a snippet is provided for every matching rule.

URLs

To filter on specific websites in a query, the fields domain_url and host_url can be used. host_url is used for specific hosts like

www.talkwalker.com or blog.talkwalker.com, while domain_url would filter on all host in a specific domain (i.e.

domain_url:blog.talkwalker.com would return all results of the domain talkwalker.com also those from www.talkwalker.com while

host_url:blog.talkwalker.com would return only results from blog.talkwalker.com not from www.talkwalker.com).

Sentiment

Talkwalker uses natural language processing (NLP) to compute a general sentiment for the documents in our index. The

accuracy of automatic detection is limited by irony, sarcasm and misspellings in the documents. Sentiment analysis is

available for:

Language Language Code Language Language Code

Albanian sq Hungarian hu

Arabic ar Italian it

Chinese zh_cn, zh_tw Korean ko

Croatian hr Malay ms

Czech cs Norwegian no

Danish da Polish pl

Dutch nl Portuguese pt

English en Russian ru

Finnish fi Slovak sk

Flemish nl Spanish es

French fr Swedish sv

German de Turkish tr

Reach

The reach of an article/post represents the number of people who were reached by this article/post. Note that the views

only get set to a proper value if the host of the URL is either a domain (like theguardian.com) or if it is a domain with a

well-known 3rd-level-subdomain in front (mainly applies to www, e.g. www.theguardian.com). Reach is set to 0 for

other hosts, i.e. hosts with other 3rd-level-subdomains, like on foobar.blogspot.com, as using the Alexa views of the

domain would assign much too high reach to mere sub-hosts otherwise.

Reach is calculated in the following ways:

Blogs; News Sites; Forums: Number of Page Views

Facebook: The Number of Fans of the Page (Note: Only available for public pages, which are monitored by Talkwalker,

we don’t collect any fan counts for user profiles)

Twitter: The number of Followers of the author

Images

Optional

images MEDIA_ENTRY Write access
through API

Comment

url Image Url y Link to Image

width Image Width y Width of image, if available

height Image Height y Height of image, if available

legend Image legend y Legend text

Videos

Optional

videos MEDIA_ENTRY Write access
through API

Comment

url Video Url y Link to Image

width Video Width y Width of image, if available

height Video Height y Height of image, if available

legend Video legend y Legend text of video

Attributes

These fields are only set for certain post types.

Article extended attributes fields will be updated for up to 1 month.

The source extended attributes represent the exact value at publication.

Not all urls will have all meta data, e.g.:

• Blog, news and messageboard posts (not their comments), will only have facebook_shares, twitter_shares set.

• All the other types will only be set if the sourcetype is of the same type and if the data is available.

article_extended_attr
ibutes

ARTICLE_EXTENDED
_ATTRIBUTES

Write access through
API

Comment

facebook_shares Article Facebook
Shares

y Number of Facebook share an article has

facebook_likes Article Facebook Likes y Number of Facebook likes an article has

twitter_retweets Article Twitter
Retweets

y Number of Twitter retweets an article has

twitter_likes Article Twitter Likes y Number of Twitter likes an article has

url_views Article URL Views y

pinterest_likes Article Pinterest Likes y Number of Pinterest likes an image has

pinterest_pins Article Pinterest Pins y Number of Pinterest pins an image has

pinterest_repins Article Pinterest Re-
Pins

y Number of Pinterest re-pins an article has

youtube_views YouTube Video Views y Number of YouTube views a video has

youtube_comments YouTube Video
Comments

y Number of YouTube comments a video has

youtube_likes YouTube Video Likes y Number of YouTube likes a video has

article_extended_attr
ibutes

ARTICLE_EXTENDED
_ATTRIBUTES

Write access through
API

Comment

youtube_dislikes YouTube Video
Dislikes

y Number of YouTube dislikes a video has

instagram_likes Instagram Image Likes y Number of Instagram likes an image has

twitter_shares Article Twitter Shares y Number of Twitter share an article has

source_extended_att
ributes

SOURCE_EXTENDED_
ATTRIBUTES

Write access through
API

Comment

alexa_pageviews Alexa Page Views y

facebook_followers Facebook Followers y Number of Facebook followers a source has

twitter_followers Twitter Followers y Number of Twitter followers a source has

instagram_followers Instagram Followers y Number of Instagram follows a source has

pinterest_followers Pinterest Followers y Number of Pinterest follows a source has

article_attributes ATTRIBUTES Write access through
API

Comment

worlddata/continent Article Continent n Continental location of the article

worlddata/country Article Country n Country location of the article

worlddata/region Article Region n Regional location of the article

worlddata/city Article City n City location of the article

worlddata/longitude Article Longitude n Longitudinal location of the article

worlddata/latitude Article Latitude n Latitudinal location of the article

country_code y

resolution n Resolution of the geo data extraction

id Article ID n

type Article Type n

name Article Name n

birthdate Article birth date n

gender Article Gender n

image_url Article Image URL n

short_name Article Short Name n

url Article URL n URL of the article

(For documents which don’t include location data, these fields are approximated)

author_attributes ATTRIBUTES Write access through
API

Comment

worlddata/continent Author Continent n Continental location of the author

worlddata/country Author Country n Country location of the author

worlddata/region Author Region n Regional location of the author

worlddata/city Author City n City location of the author

worlddata/longitude Author Longitude n Longitudinal location of the author

worlddata/latitude Author Latitude n Latitudinal location of the author

country_code y

resolution n Resolution of the geo data extraction

id Author ID y

type Author Type n

name Author Name y Name of the author

birthdate Author Birthdate n Birthdate of the author

gender Author Gender y Gender of the author

image_url Author Image URL y

short_name Author Short Name y

url Author URL y Url to the profile of the author

(For documents which don’t include location data, these fields are approximated)

source_attributes ATTRIBUTES Write access through
API

Comment

worlddata/continent Source Continent n Continental location of the source

worlddata/country Source Country n Country location of the source

worlddata/region Source Region n Regional location of the source

worlddata/city Source City n City location of the source

worlddata/longitude Source Longitude n Longitudinal location of the source

worlddata/latitude Source Latitude n Latitudinal location of the source

country_code y

resolution n Resolution of the geo data extraction

id Source ID y

type Source Type n

name Source Name y

birthdate Source Birthdate n

source_attributes ATTRIBUTES Write access through
API

Comment

gender Source Gender n

image_url Source Image URL y

short_name Source Short Name n

url Source URL y URL of the source

(For documents which don’t include location data, these fields are approximated)

Evolution and stability of document fields

The structure of the documents will not be changed. Existing fields will not be removed and their formatting will not be

changed. Occasionally, new fields will be added to the documents and the order of fields can change, please take this

into account when implementing a custom client.

Streaming

(repeated extra entries for each matching rule, available in streaming only)

Extra Fields

On streaming, this information is present in extra entrydata

Field Name Name Write access
through API

Comment

highlighted_data Highlighted Data n Content and title snipped of matched rules queries and
panels

matched Matched n Stream, Rule and Panel which were matched.

rule_id matched rule n ID of matched rule

rule_query matched rule n Query of matched rule (when id is not set)

stream_id matched stream n ID of matched stream

panel_id matched panel n ID of matched Panel

matched_profile Matched Profile n Profile which matched (if Talkwalker)

title_snippet Title Snippet n If a match occurred in the title, this field will contain the
snippet related to the query set in the datafeed.

content_snippet Content Snippet n If a match occurred in the article, this field will contain the
snippet related to the query set in the datafeed.

Protocols, Encodings and Value Field Options

Protocols and Encodings

The Talkwalker API uses HTTP protocol 1.1. The Streaming API streams documents using the HTTP 1.1 Chunked transfer

encoding mechanism.

The data is compressed using gzip: "Accept-Encoding:gzip" must be set in the header. The Encoding used is UTF-8.

Evolution of JSON fields

The structure of the json responses will not be changed. Existing fields will not be removed and their formatting will not

be changed. However, new fields will be added to the responses and the order of fields can change, please take this into

account when implementing a custom client.

Value options

The Following tables contain possible options and formats for certain fields.

Source Type Options

Media Source Types

ONLINENEWS All news sites

ONLINENEWS_MAGAZINE Printed magazines sites

ONLINENEWS_NEWSPAPER Printed newspaper sites

ONLINENEWS_PRESSRELEASES Results from sites that publish press releases

ONLINENEWS_TVRADIO TV or radio stations

ONLINENEWS_AGENCY News agencies

ONLINENEWS_OTHER News results that do not fall under of the other news categories

BLOG All blog sites

MESSAGEBOARD All forums and message boards

SOCIALMEDIA All social media sites

SOCIALMEDIA_TWITTER Results from Twitter

SOCIALMEDIA_FACEBOOK Results from Facebook

SOCIALMEDIA_YOUTUBE Results from YouTube

SOCIALMEDIA_LINKEDIN Results from LinkedIn

SOCIALMEDIA_GOOGLEPLUS Results from Google+

SOCIALMEDIA_FLICKR Results from Flickr

SOCIALMEDIA_FOURSQUARE Results from Foursquare

SOCIALMEDIA_INSTAGRAM Results from Instagram

Media Source Types

SOCIALMEDIA_MIXCLOUD Results from Mixcloud

SOCIALMEDIA_SOUNDCLOUD Results from SoundCloud

SOCIALMEDIA_VIMEO Results from Vimeo

SOCIALMEDIA_DAILYMOTION Results from Dailymotion

OTHER Everything else which does not fit into the above listed categories

Language Options

ABKHAZIAN ab HERERO hz PALI pi

AFAR aa HINDI hi PANJABI pa

AFRIKAANS af HIRI MOTU ho PERSIAN fa

AKAN ak HUNGARIAN hu POLISH pl

ALBANIAN sq ICELANDIC is PORTUGUESE pt

AMHARIC am IDO io PUSHTO ps

ARABIC ar IGBO ig QUECHUA qu

ARAGONESE an INDONESIAN id RAETO ROMANCE rm

ARMENIAN hy INTERLINGUA ia ROMANIAN ro

ASSAMESE as INTERLINGUE ie RUNDI rn

AVARIC av INUKTITUT iu RUSSIAN ru

AVESTAN ae INUPIAQ ik SAMOAN sm

AYMARA ay IRISH ga SANGO sg

AZERBAIJANI az ITALIAN it SANSKRIT sa

BAMBARA bm JAPANESE ja SARDINIAN sc

BASHKIR ba JAVANESE jv SCOTTISH GAELIC gd

BASQUE eu KANNADA kn SERBIAN sr

BELARUSIAN be KANURI kr SHONA sn

BENGALI bn KASHMIRI ks SICHUAN YI ii

BIHARI bh KAZAKH kk SINDHI sd

BISLAMA bi KHMER km SINHALESE si

BOSNIAN bs KIKUYU ki SLOVAK sk

BRETON br KINYARWANDA rw SLOVENIAN sl

BULGARIAN bg KIRGHIZ ky SOMALI so

BURMESE my KOMI kv SOUTHERN SOTHO st

CATALAN ca KONGO kg SOUTH NDEBELE nr

CHAMORRO ch KOREAN ko SPANISH es

CHECHEN ce KURDISH ku SUNDANESE su

CHINESE zh KWANYAMA kj SWAHILI sw

CHINESE SIMPLIFIED zh cn LAO lo SWATI ss

CHINESE TRADITIONAL zh tw LATIN la SWEDISH sv

CHURCH SLAVIC cu LATVIAN lv TAGALOG tl

CHUVASH cv LIMBURGISH li TAHITIAN ty

CORNISH kw LINGALA ln TAJIK tg

CORSICAN co LITHUANIAN lt TAMIL ta

CREE cr LUBA KATANGA lu TATAR tt

CROATIAN hr LUXEMBOURGISH lb TELUGU te

CZECH cs MACEDONIAN mk THAI th

DANISH da MALAGASY mg TIBETAN bo

DIVEHI dv MALAY ms TIGRINYA ti

DUTCH nl MALAYALAM ml TONGA to

DZONGKHA dz MALTESE mt TSONGA ts

ENGLISH en MANX gv TSWANA tn

ESPERANTO eo MAORI mi TURKISH tr

ESTONIAN et MARATHI mr TURKMEN tk

EWE ee MARSHALLESE mh TWI tw

FAROESE fo MOLDAVIAN mo UIGHUR ug

FIJIAN fj MONGOLIAN mn UKRAINIAN uk

FINNISH fi NAURU na URDU ur

FRENCH fr NAVAJO nv UZBEK uz

FRISIAN fy NDONGA ng VENDA ve

FULAH ff NEPALI ne VIETNAMESE vi

GALLEGAN gl NORTHERN SAMI se VOLAPUK vo

GANDA lg NORTH NDEBELE nd WALLOON wa

GEORGIAN ka NORWEGIAN no WELSH cy

GERMAN de NORWEGIAN BOKMAL nb WOLOF wo

GREEK el NORWEGIAN NYNORSK nn XHOSA xh

GREENLANDIC kl NYANJA ny YIDDISH yi

GUARANI gn OCCITAN oc YORUBA yo

GUJARATI gu OJIBWA oj ZHUANG za

HAITIAN ht ORIYA or ZULU zu

HAUSA ha OROMO om

HEBREW he OSSETIAN os

Country Options

AFGHANISTAN af GIBRALTAR gi PALESTINE ps

ALAND ISLANDS ax GREECE gr PANAMA pa

ALBANIA al GREENLAND gl PAPUA NEW GUINEA pg

ALGERIA dz GRENADA gd PARAGUAY py

AMERICAN SAMOA as GUADELOUPE gp PERU pe

ANDORRA ad GUAM gu PHILIPPINES ph

ANGOLA ao GUATEMALA gt PITCAIRN pn

ANGUILLA ai GUERNSEY gg POLAND pl

ANTARCTICA aq GUINEA gn PORTUGAL pt

ANTIGUA AND BARBUDA ag GUINEA BISSAU gw PUERTO RICO pr

ARGENTINA ar GUYANA gy QATAR qa

ARMENIA am HAITI ht REUNION re

ARUBA aw HEARD ISLAND AND
MCDONALD ISLANDS

hm ROMANIA ro

AUSTRALIA au HONDURAS hn RUSSIA ru

AUSTRIA at HONG KONG hk RWANDA rw

AZERBAIJAN az HUNGARY hu SAINT BARTHELEMY bl

BAHAMAS bs ICELAND is SAINT HELENA sh

BAHRAIN bh INDIA in SAINT KITTS AND NEVIS kn

BANGLADESH bd INDONESIA id SAINT LUCIA lc

BARBADOS bb IRAN ir SAINT MARTIN mf

BELARUS by IRAQ iq SAINT PIERRE AND
MIQUELON

pm

BELGIUM be IRELAND ie SAINT VINCENT AND THE
GRENADINES

vc

BELIZE bz ISLE OF MAN im SAMOA ws

BENIN bj ISRAEL il SAN MARINO sm

BERMUDA bm ITALY it SAO TOME AND PRINCIPE st

BHUTAN bt JAMAICA jm SAUDI ARABIA sa

BOLIVIA bo JAPAN jp SENEGAL sn

BONAIRE SINT EUSTASIUS
AND SABA

bq JERSEY je SERBIA rs

BOSNIA AND HERZEGOVINA ba JORDAN jo SERBIA AND MONTENEGRO cs

BOTSWANA bw KAZAKHSTAN kz SEYCHELLES sc

BOUVET ISLAND bv KENYA ke SIERRA LEONE sl

BRAZIL br KIRIBATI ki SINGAPORE sg

BRITISH INDIAN OCEAN
TERRITORY

io KUWAIT kw SINT MAARTEN sx

BRITISH VIRGIN ISLANDS vg KYRGYZSTAN kg SLOVAKIA sk

BRUNEI bn LAOS la SLOVENIA si

BULGARIA bg LATVIA lv SOLOMON ISLANDS sb

BURKINA FASO bf LEBANON lb SOMALIA so

BURUNDI bi LESOTHO ls SOUTH AFRICA za

CAMBODIA kh LIBERIA lr SOUTH GEORGIA AND THE
SOUTH SANDWICH ISLANDS

gs

CAMEROON cm LIBYA ly SOUTH KOREA kr

CANADA ca LIECHTENSTEIN li SOUTH SUDAN ss

CAPE VERDE cv LITHUANIA lt SPAIN es

CAYMAN ISLANDS ky LUXEMBOURG lu SRI LANKA lk

CENTRAL AFRICAN
REPUBLIC

cf MACAO mo SUDAN sd

CHAD td MACEDONIA mk SURINAME sr

CHILE cl MADAGASCAR mg SVALBARD AND JAN MAYEN sj

CHINA cn MALAWI mw SWAZILAND sz

CHRISTMAS ISLAND cx MALAYSIA my SWEDEN se

COCOS ISLANDS cc MALDIVES mv SWITZERLAND ch

COLOMBIA co MALI ml SYRIA sy

COMOROS km MALTA mt TAIWAN tw

CONGO cg MARSHALL ISLANDS mh TAJIKISTAN tj

COOK ISLANDS ck MARTINIQUE mq TANZANIA tz

COSTA RICA cr MAURITANIA mr THAILAND th

COTE DIVOIRE ci MAURITIUS mu THE DEMOCRATIC
REPUBLIC OF CONGO

cd

CROATIA hr MAYOTTE yt TIMOR LESTE tl

CUBA cu MEXICO mx TOGO tg

CURACAO cw MICRONESIA fm TOKELAU tk

CYPRUS cy MOLDOVA md TONGA to

CZECH REPUBLIC cz MONACO mc TRINIDAD AND TOBAGO tt

DENMARK dk MONGOLIA mn TUNISIA tn

DJIBOUTI dj MONTENEGRO me TURKEY tr

DOMINICA dm MONTSERRAT ms TURKMENISTAN tm

DOMINICAN REPUBLIC do MOROCCO ma TURKS AND CAICOS
ISLANDS

tc

ECUADOR ec MOZAMBIQUE mz TUVALU tv

EGYPT eg MYANMAR mm UGANDA ug

EL SALVADOR sv NAMIBIA na UKRAINE ua

EQUATORIAL GUINEA gq NAURU nr UNITED ARAB EMIRATES ae

ERITREA er NEPAL np UNITED KINGDOM uk

ESTONIA ee NETHERLANDS nl UNITED STATES us

ETHIOPIA et NETHERLANDS ANTILLES an UNITED STATES MINOR
OUTLYING ISLANDS

um

FALKLAND ISLANDS fk NEW CALEDONIA nc URUGUAY uy

FAROE ISLANDS fo NEW ZEALAND nz US VIRGIN ISLANDS vi

FIJI fj NICARAGUA ni UZBEKISTAN uz

FINLAND fi NIGER ne VANUATU vu

FRANCE fr NIGERIA ng VATICAN va

FRENCH GUIANA gf NIUE nu VENEZUELA ve

FRENCH POLYNESIA pf NORFOLK ISLAND nf VIETNAM vn

FRENCH SOUTHERN
TERRITORIES

tf NORTHERN MARIANA
ISLANDS

mp WALLIS AND FUTUNA wf

GABON ga NORTH KOREA kp WESTERN SAHARA eh

GAMBIA gm NORWAY no YEMEN ye

GEORGIA ge OMAN om ZAMBIA zm

GERMANY de PAKISTAN pk ZIMBABWE zw

GHANA gh PALAU pw

API Account

Access Token

Demo

To try the Talkwalker API, you can use the access token demo (access_token=demo). With this token you can try the Search API

(results and histogram) and the streaming API. Accessing the Talkwalker API with this token, will not return any social

media results, only results from blogs, forums and news are returned. (this token can be used for testing only)

Your own Access Token

To use the Talkwalker API with the topics from your Talkwalker or to get results from social media (Twitter, Facebook…)

you need to apply and get your own access tokens.

• read_write access tokens are necessary for search, channel monitoring, updating and deleting documents in a project

and for creating streams, deleting streams, setting panels and setting rules.

• authentication access tokens are necessary when using the Authentication API.

To get an access token please contact us.

OAuth 2.0

For an integration of private Talkwalker widgets and data in external applications, Talkwalker and the Talkwalker API

can authenticate users via OAuth 2.0. Every external application that wants to use such data needs OAuth 2.0 credentials

for Talkwalker (a client_id and client_secret) and needs to provide a redirect URL.

To ask for permission to access private data, the external application redirects the user to:

http://www.talkwalker.com/app/oauth/authorize?client_id=<client_id>&response_type=code&redirect_uri=<redirect_uri_encoded>&scope=projects

After the user has granted permission, he will be redirected to the redirect URL provided by the external application.

This redirect will include a query string with a access code parameter (?code=<access_code>).

To get the actual OAuth access token for a user, the external application makes a POST request to:
http://www.talkwalker.com/app/oauth/access_token?client_id=<client_id>&client_secret=<client_secret>&grant_type=authorization_code&redirect_uri=<re

direct_uri_encoded>&code=<authorization_code> with the header : Content-Type: application/x-www-form-urlencoded

The Talkwalker server will respond with a body of the following form: access_token=<oauth_access_token>

The external application can now use the OAuth access token instead of a Talkwalker API access token. Instead of setting

the query string field access_token, the requests must contain the header field

Authorization to Bearer <oauth_access_token>.

for more information about OAuth 2.0 see http://oauth.net/2/

http://oauth.net/2/

OAuth 2.0 Setup

To get a client_id and a client_secret please contact us. You will have to provide one or more redirect_uri (for development

purposes localhost is allowed).

Credits / Pricing

Monthly Reset of Credits

The credits will be reset every month, on the day of the subscription at 03:00 UTC. (Note that the monthly new results in

Talkwalker projects are reset on the first of a new month at 0:00 UTC)

Remaining Credits Endpoint

The endpoint https://api.talkwalker.com/api/v1/status/credits is used to get an overview of consumed credits and API calls.

Response:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v1/status/credits?access_token=demo",

 "result_creditinfo" {

 "used_credits_monthly" : 0,

 "used_credits_onetime" : 0,

 "remaining_credits_monthly" : 0,

 "remaining_credits_onetime" : 0,

 "next_billing_period" : 1419634800000,

 "estimate_credits_used_until_end_of_billing_period" : 0,

 "monthly_total" : 0

 }

}

Rate Limit

This endpoint is limited to 10 calls per minute, the result should be stored.

FAQ

How to stream all documents from a Talkwalker project?

The following command creates a stream "test" used to stream the documents to your application.

curl -XPUT 'https://api.talkwalker.com/api/v2/stream/s/test?access_token=<access_token>' -d '{}' -H "Content-

Type: application/json; charset=UTF-8"

You can then use the "test" stream to stream all documents in real time from your Talkwalker project to your

application. This will return in real time all new results which have been found since the time you executed below

command:

curl 'https://api.talkwalker.com/api/v2/stream/s/test/p/<project_id>/results?access_token=<access_token>'

This will stream the data to your application. For each entry (or for every second if there are no entries) our server will

send you a newline.

Below is an example of the data you will receive:

{

 "chunk_type" : "CT_CONTROL",

 "chunk_control" : {

 "timeframe_start" : 1409906205401,

 "timeframe_end" : 1409906265618

 }

}

{

 "chunk_type" : "CT_RESULT",

 "chunk_result" : {

 "data" : {

 "data" : {

 "url" : "http://www.facebook.com/permalink.php?id=45012929134&story_fbid=10152329058194135",

 "matched_profile" : [

 "hznwvi3k_5imn0wzqr36f"

],

 "indexed" : 1409906120127,

 "search_indexed" : 1409906245484,

 "published" : 1409902879000,

 "title" : "",

 "content" : "Cn u hlp me abt my dstv account",

 "title_snippet" : "",

 "content_snippet" : "Cn u hlp me abt my dstv account",

 "root_url" : "http://www.facebook.com/45012929134",

 "domain_url" : "http://facebook.com/",

 "host_url" : "http://www.facebook.com/",

 "parent_url" : "http://www.facebook.com/permalink.php?id=45012929134&story_fbid=10152329058194135",

 "lang" : "en",

 "porn_level" : 0,

 "fluency_level" : 100,

 "spam_level" : 0,

 "sentiment" : 0,

 "source_type" : [

 "SOCIALMEDIA",

 "SOCIALMEDIA_FACEBOOK"

],

 "post_type" : [

 "TEXT"

],

 "article_extended_attributes" : {

 "num_comments" : 1

 },

 "source_extended_attributes" : {

 "alexa_pageviews" : 60438000000

 },

 "extra_article_attributes" : {

 "world_data" : {

 }

 },

 "extra_author_attributes" : {

 "world_data" : {

 },

 "id" : "fb:100007373088511",

 "name" : "S'bu Dlokweni",

 "gender" : "UNKNOWN",

 "image_url" : "https://graph.facebook.com/100007373088511/picture",

 "url" : "http://www.facebook.com/profile.php?id=100007373088511"

 },

 "extra_source_attributes" : {

 "world_data" : {

 "continent" : "Africa",

 "country" : "South Africa",

 "region" : "Orange Free State",

 "city" : "Bloemfontein",

 "longitude" : 26.2299128812,

 "latitude" : -29.1199938774,

 "country_code" : "za"

 }

 },

 "engagement" : 1,

 "reach" : 0

 }

 }

 }

}

It consists of CT_DATA (the data entries) and CT_CONTROL (the control entries). One example CT_CONTROL stream is

shown below:

[{"chunk_type":"CT_CONTROL","chunk_control":{"timeframe_start":1409906135111,"timeframe_end":1409906205401}}

In this case, all results from 1409906135111 to 1409906205401 will be streamed to the application.

In case of disconnection (e.g. connection issue, application got restarted), you can provide the latest timeframe_start as a

starting point as a value for the parameter stream_resume:

curl

'https://api.talkwalker.com/api/v2/stream/s/test/p/<project_id>/results?access_token=<access_token>&stream_res

ume=1409906135111'

Below command returns the list of topics, which can then be used to only stream a certain topic and not all topics:

curl 'https://api.talkwalker.com/api/v2/talkwalker/p/<project_id>/resources?access_token=<access token>'

curl 'https://api.talkwalker.com/api/v2/stream/s/test/p/<project id>/results?access_token=<access

token>&topic=<topic id 1>&topic=<topic id 2>'

How to stream all documents from a Talkwalker project for a
specific month?

The following command creates a stream "test" used to stream the documents to your application.

curl 'https://api.talkwalker.com/api/v2/stream/test?access_token=<access_token>' -d '{}' -H "Content-Type:

application/json; charset=UTF-8"

You can then use the "test" stream to stream all documents from August 2014 from your Talkwalker project to your

application. To get only the documents from August set a query published:>1406851200000 AND published:<1409529600000 to restrict

the stream to documents from August and set stream_resume=1406851200000 to start the stream on August 1. Set a stream_stop time

later than the end of August so you get all documents from August, also those that were found and streamed later (for

example use the current time : stream_stop=1422543275000).

Note: To get all documents from August, do not set stream_stop to the end of August. Documents that were published in

August could have been added to the stream at a later point as we only found them later.

curl

'https://api.talkwalker.com/api/v2/stream/s/test/p/<project_id>/results?access_token=<access_token>&q=publishe

d:>1406851200000%20AND%20published:<1409529600000&stream_resume=1406851200000'

How to get the documents of the last hour of a Talkwalker
project?

To get the results from the last hour, set stream_resume to the epoch time one hour (i.e. 3600000 milliseconds) ago and

stream_stop to the most recent time. You will get all the documents that have been found during the last hour.

Note: these are the documents that were found during this period (timestamp in search_indexed) the documents were not

necessarily published during the last hour, thus the set of documents is not equal to the set shown for the last hour in

Talkwalker. When documents that were published earlier are found (and streamed), they are added to Talkwalker for

the period they were published in.

curl

'https://api.talkwalker.com/api/v2/stream/s/test/p/<project_id>/results?access_token=<access_token>&stream_res

ume=1420531486000&stream_stop=1420535086000'

How to stream all documents from Talkwalker Page Monitoring

The following command creates a stream "test" used to stream the documents to your application.

curl -XPUT 'https://api.talkwalker.com/api/v2/stream/create?access_token=<access_token>' -d

'{"streamid":"test"}' -H "Content-Type: application/json; charset=UTF-8"

You can then use the "test" stream to stream all documents from page monitoring by settings topic to page:

curl 'https://api.talkwalker.com/api/v2/stream/s/test/p/<project id>/results?access_token=<access

token>&topic=page'

How to eliminate retweets or comments from a stream?

To remove retweets and retrieve only the original Tweets add -is:retweet (or -is:comment) to the rules of a stream.

If you want to remove all retweets from an entire stream you can also add a query (-is:retweet) when getting the results

of a stream.

curl 'https://api.talkwalker.com/api/v2/stream/s/test/p/<project_id>/results?access_token=<access_token>&q=-

is:retweet'

How to get only documents of a Talkwalker project that include
special keywords

To get a stream of only a subset of the documents of a Talkwaker project, you can set up rules for your stream. Rules are

expressed in the Talkwaker query syntax. https://api.talkwalker.com/api/v2/stream/s/<stream_id>/r/<rule_id> is used to set new rules

for an existing stream. If you define more than one rule, the stream will return any documents that match at least one

rule.

curl -XPUT https://api.talkwalker.com/api/v2/stream/s/teststream/r/rule-1?access_token=demo -d '{

"query":"keyword1 AND keyword2" }' -H "Content-Type: application/json; charset=UTF-8"

The stream will now only return documents that match "keyword1 AND keyword2", the field

data.highlighted_data.matched.rule_id indicates which rules were matched.

How to use a single stream for multiple applications / clients?

To use one stream to retrieve data for more than one application / client, rules are used. Set a separate rule (using the

Talkwaker query syntax) for each application.

curl -XPUT https://api.talkwalker.com/api/v2/stream/s/teststream?access_token=<access_token> -d

'{"rules":[{"rule_id" : "rule-1", "query" : "foo"},{"rule_id" : "rule-2", "query" : "bar"}]}'

The returned results will be in the format below. The documents can be separated using matched_query, which indicates

which rule the result belongs to.

{

 "chunk_type" : "CT_RESULT",

 "chunk_result" : {

 "data" : {

 "data" : { <default result data (see simple search)> },

 "highlighted_data" : [{

 "matched" : {

 "rule_id" : "rule-1"

 }

 "title_snippet" : "<title snippet for rule>",

 "content_snippet" : "<content snippet for rule>"

 }]

 }

 }

}

How to get the number of results grouped by media types?

The Talkwalker API provides only documents and histograms, to group results into custom sets, you have to get all the

results and then compute those sets locally. Alternatively you can perform separate searches (or histograms) for each of

the groups you want to create (use the Talkwalker query syntax to restrict the results to those matching a single group).

How to get the ids of Talkwalker Topics?

To get a list of the search-topics defined in a Talkwalker project use the project_id and the access_token on the

https://api.talkwalker.com/api/v2/talkwalker/p/<project_id>/resources endpoint with the filter type=search.

curl

'https://api.talkwalker.com/api/v2/talkwalker/p/<project_id>/resources?access_token=<access_token>&type=search

'

The result could look like this:

{

 "status_code" : "0",

 "status_message" : "OK",

 "request" : "GET /api/v2/talkwalker/p/<project_id>/resources?access_token=<access_token>&type=search",

 "result_resources" : {

 "projects" : [{

 "id" : "<project_id>",

 "title" : "Air France",

 "topics" : [{

 "id" : "search|1",

 "title" : "Category 1",

 "nodes" : [{

 "id" : "search|1|1",

 "title" : "topic 1"

 }, {

 "id" : "search|1|2",

 "title" : "topic 2"

 }]

 }, {

 "id" : "search|2",

 "title" : "Catergory 2",

 "nodes" : [{

 "id" : "search|2|1",

 "title" : "topic 1"

 }, {

 "id" : "search|2|2",

 "title" : "topic 2"

 }, {

 "id" : "search|2|2",

 "title" : "topic 3"

 }]

 }]

 }]

 }

}

To get results for all projects in 'search' use search as topic ID. To use a single topic use the id of the topic (for example

search|2|1) for topic 1 of category 2 in search).

Code Examples

Streaming Client Examples

PHP

Note: This example needs the php cURL library and PHP 5.5.

client.php

<?php

class TalkwalkerApiStreamingClientExample

{

 private $url;

 private $token;

 # internal

 private $finished = FALSE;

 private $resume_ts;

 private $unprocessed_data = '';

 private $header_size = -1;

 private $header = '';

 private $header_complete = FALSE;

 private $wait_for_retry = 0;

 private $error_data = '';

 public function __construct($url, $token) {

 $this->url = $url;

 $this->token = $token;

 }

 function setCurlOptions($ch) {

 curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 30);

 curl_setopt($ch, CURLOPT_TIMEOUT, 90);

 curl_setopt($ch, CURLOPT_FAILONERROR, FALSE);

 curl_setopt($ch, CURLOPT_HEADER, TRUE);

 curl_setopt($ch, CURLOPT_USERAGENT, 'PhpExampleClient/1.0.0');

 curl_setopt($ch, CURLOPT_ENCODING, 'gzip');

 }

 public function run($streamid, $project, $start_ts, $stop_ts) {

 $this->resume_ts = $start_ts;

 while (!$this->finished) {

 $this->unprocessed_data = '';

 $this->error_data = '';

 $this->header_size = -1;

 $this->header_complete = FALSE;

 $this->header = '';

 $ch = curl_init();

 $_url = $this->url . '/v2/stream/s/' . $streamid;

 if(!empty($project)) {

 $_url .= '/p/' . $project;

 }

 $_url .= '/results?';

 $_url .= 'access_token=' . $this->token;

 $_url .= '&stream_resume=' . $this->resume_ts . '&stream_stop=' . $stop_ts;

 curl_setopt($ch, CURLOPT_URL, $_url);

 curl_setopt($ch, CURLOPT_HTTPGET, 1);

 $this->setCurlOptions($ch);

 $headers = array(

 'Cache-Control: no-cache',

 'Pragma: no-cache',

 'Content-Language: en-US');

 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

 curl_setopt($ch, CURLOPT_WRITEFUNCTION, array($this, "read_stream"));

 curl_exec($ch);

 // check if something is in $error_data

 // check error code

 $http_status = curl_getinfo($ch, CURLINFO_HTTP_CODE);

 if (curl_errno($ch) == 0 && $http_status == 200) {

 $this->finished = TRUE;

 }

 // else: error occurred

 if ($http_status > 0 && $http_status != 200) {

 $this->onStatusError($this->error_data);

 }

 curl_close($ch);

 if (!$this->finished) {

 if ($this->wait_for_retry > 0) {

 echo "SERVICE UNAVAILABLE \n";

 echo "WAITING " . $this->wait_for_retry . "s UNTIL RETRYING\n";

 sleep($this->wait_for_retry);

 $this->wait_for_retry = 0;

 } else {

 sleep(5); // 60

 }

 }

 }

 }

 function read_stream($ch, $data) {

 $http_status = curl_getinfo($ch, CURLINFO_HTTP_CODE);

 $header_size = curl_getinfo($ch, CURLINFO_HEADER_SIZE);

 $this->unprocessed_data = $this->unprocessed_data . $data;

 // read the header when it is complete

 if ($this->header_size < $header_size) {

 $this->header_size = $header_size;

 $header_complete = FALSE;

 } else {

 $header_complete = TRUE;

 }

 $partial_header = substr($this->unprocessed_data, 0, $header_size);

 if ($header_complete && $this->header == '') {

 $this->header = substr($this->unprocessed_data, 0, $header_size);

 $this->unprocessed_data = substr($this->unprocessed_data, $header_size);

 }

 if ($header_complete && $http_status == 200) {

 // split on '\r\n'

 $arr_data = explode("\r\n", $this->unprocessed_data);

 $count = count($arr_data);

 for ($i = 0; $i < $count; $i++) {

 $line = $arr_data[$i];

 // try parse json

 if (strlen($line) > 0) {

 $json = json_decode($line);

 if ($json == NULL) {

 // put it back only if last element

 if ($i == $count-1) {

 $this->unprocessed_data = $line;

 } else {

 $this->finished = TRUE;

 $this->handleParseError($line);

 }

 } else {

 if (isset($json->chunk_type)) {

 switch ($json->chunk_type) {

 case "CT_ERROR":

 $this->handleStreamError($json->chunk_error);

 break;

 case "CT_CONTROL":

 if (isset($json->chunk_control->timeframe_start)) {

 $this->resume_ts = $json->chunk_control->timeframe_start;

 }

 $this->handleStreamControl($json->chunk_control);

 break;

 case "CT_RESULT":

 $this->handleStreamResult($json->chunk_result);

 break;

 default:

 $this->unhandledStreamChunk($json);

 break;

 }

 } else {

 $this->unhandledStreamChunk($json);

 break;

 }

 }

 } else {

 $this->unprocessed_data = '';

 }

 }

 } elseif ($http_status == 503) {

 $header_array = $this->parseHeader($partial_header);

 if (array_key_exists('Retry-After', $header_array)) {

 $this->wait_for_retry = $header_array['Retry-After'];

 }

 } else {

 $this->error_data = $this->error_data . $data;

 }

 return strlen($data);

 }

 function onStatusError($str) {

 echo "START ERROR \n{$str}\n";

 }

 function handleParseError($str) {

 echo "Could not parse '{$str}'\n";

 }

 function handleStreamError($err) {

 echo "ERROR\n";

 var_dump($err);

 }

 function handleStreamControl($ctrl) {

 echo "CONTROL [{$ctrl->timeframe_start} TO {$ctrl->timeframe_end}]\n";

 }

 function handleStreamResult($res) {

 if (isset($res->data->data->url)) {

 echo "RESULT: {$res->data->data->url}\n";

 }

 }

 function unhandledStreamChunk($json) {

 echo "UNHANDLED\n";

 var_dump($json);

 }

 function parseHeader($header) {

 $headers = array();

 foreach (explode("\r\n", $header) as $i => $line)

 if ($i === 0) {

 $headers['http_code'] = $line;

 } else {

 if($line != '') {

 list ($key, $value) = explode(': ', $line);

 $headers[$key] = $value;

 }

 }

 return $headers;

 }

 function createStream($name) {

 $ch = curl_init();

 $stream = new stdClass;

 $stream->streamid = $name;

 $_url = $this->url . '/v1/stream/create?';

 $_url .= 'access_token=' . $this->token;

 $this->setCurlOptions($ch);

 curl_setopt($ch, CURLOPT_URL, $_url);

 curl_setopt($ch, CURLOPT_POST, 1);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE);

 $headers = array(

 'Cache-Control: no-cache',

 'Pragma: no-cache',

 'Content-Language: en-US');

 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

 curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($stream));

 $result = curl_exec($ch);

 curl_close($ch);

 $answer = json_decode($result);

 if($answer != null && $answer->status_code != '0') {

 echo $result;

 return;

 }

 echo 'CREATED STREAM : '. $name . "\n";

 return $name;

 }

 function deleteStream($name) {

 $ch = curl_init();

 $_url = $this->url . '/v1/stream/s/' . $name;

 $_url .= '/delete?';

 $_url .= 'access_token=' . $this->token;

 $this->setCurlOptions($ch);

 curl_setopt($ch, CURLOPT_URL, $_url);

 curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE);

 $headers = array(

 'Cache-Control: no-cache',

 'Pragma: no-cache',

 'Content-Language: en-US');

 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

 $result = curl_exec($ch);

 curl_close($ch);

 $answer = json_decode($result);

 if($answer != null && $answer->status_code != '0') {

 echo $result;

 return;

 }

 echo 'DELETED STREAM : '. $name . "\n";

 return $name;

 }

}

/** Test call method */

function main() {

 $url = 'https://api.talkwalker.com/api/v2/stream/s/<stream_id>/p/<project_id>/results?access_token=<token>';

 $start_ts = time() * 1000;

 $stop_ts = time() * 1000 + 60*60*1000;

 $example = new TalkwalkerApiStreamingClientExample($url, $start_ts, $stop_ts);

 $example->run();

}

main();

?>

Java

client.java

package com.trendiction.api.client.streamapi.streaming2;

import java.io.BufferedReader;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.net.URLConnection;

import java.util.HashMap;

import java.util.Map;

import java.util.concurrent.atomic.AtomicLong;

import java.util.zip.GZIPInputStream;

import org.apache.commons.io.IOUtils;

import org.codehaus.jackson.node.JsonNodeFactory;

import org.codehaus.jackson.node.ObjectNode;

import com.fasterxml.jackson.core.JsonFactory;

import com.fasterxml.jackson.core.type.TypeReference;

import com.fasterxml.jackson.databind.ObjectMapper;

import com.trendiction.config.Time;

/**

 * Example class can be used as an example.

 * It is invoked via the ExampleTest class in this test case

 */

public class TalkwalkerApiStreamingClientExample {

 private final String url;

 private final String token;

 private final String stream_id;

 private final long start_ts;

 private final long stop_ts;

 public TalkwalkerApiStreamingClientExample(String url, String token, String stream_id, long start_ts, long

stop_ts) {

 this.url = url;

 this.token = token;

 this.stream_id = stream_id;

 this.start_ts = start_ts;

 this.stop_ts = stop_ts;

 }

 public void run() throws InterruptedException, IOException {

 deleteStream();

 System.out.println("CREATING STREAM");

 createStream();

 AtomicLong resume_ts = new AtomicLong(start_ts);

 boolean finished = false;

 while (!finished) {

 try {

 String _url = url + "/v2/stream/s/" + stream_id + "/results?access_token=" + token + "&stream_resume="

+ resume_ts.get() + "&stream_stop="

 + stop_ts;

 // connect

 URL request = new URL(_url);

 URLConnection connection = request.openConnection();

 connection.setConnectTimeout(30000);

 connection.setReadTimeout(90000);

 HttpURLConnection httpConnection = (HttpURLConnection) connection;

 httpConnection.setRequestMethod("GET");

 httpConnection.setRequestProperty("User-Agent", "JavaExampleClient/1.0.0");

 httpConnection.setRequestProperty("Accept-Encoding", "gzip");

 connection.setUseCaches(false);

 connection.setRequestProperty("Content-Language", "en-US");

 httpConnection.connect();

 int httpCode = httpConnection.getResponseCode();

 // getting the correct input stream

 if (httpCode == 200) {

 try (InputStream is = httpConnection.getInputStream()) {

 try {

 readStream(httpConnection, is, resume_ts);

 } catch (IOException ioe) {

 //stream or connection was interrupted, retry with next iteration

 }

 }

 } else if (httpCode == 503) {

 // the service is currently unavailable

 int secondsToWait = httpConnection.getHeaderFieldInt("Retry-After", 60);

 System.out.println("TEMPORARILY UNAVAILABLE");

 System.out.println("WAITING " + secondsToWait + "s UNTIL RETRYING");

 Thread.sleep(secondsToWait * 1000);

 } else {

 // when encountering an error, we exit loop

 try (InputStream is = httpConnection.getErrorStream()) {

 readError(httpConnection, is, httpCode);

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 finished = true;

 }

 }

 } catch (IOException ex) {

 // try again

 ex.printStackTrace();

 // sleep a minute

 Thread.sleep(60 * 1000);

 }

 }

 deleteStream();

 }

 private void readError(HttpURLConnection httpConnection, InputStream errorInputStream, int httpCode)

 throws IOException {

 ByteArrayOutputStream bos = new ByteArrayOutputStream();

 byte[] dataBuf = new byte[1024 * 1024];

 // read answer

 while (true) {

 int read = errorInputStream.read(dataBuf, 0, dataBuf.length);

 if (read == -1) {

 break;

 }

 bos.write(dataBuf, 0, read);

 }

 InputStream is = new ByteArrayInputStream(bos.toByteArray());

 if ((httpConnection.getContentEncoding() != null) && (httpConnection.getContentEncoding().equals("gzip")))

{

 is = new GZIPInputStream(is);

 }

 // read json using jackson json (another library may be used here)

 JsonFactory factory = new JsonFactory();

 ObjectMapper mapper = new ObjectMapper(factory);

 TypeReference<HashMap<String, Object>> typeRef = new TypeReference<HashMap<String, Object>>() {

 };

 HashMap<String, Object> o = mapper.readValue(is, typeRef);

 }

 private void readStream(HttpURLConnection httpConnection, InputStream inputStream, AtomicLong resumeTs)

 throws IOException {

 // reading the stream and invoking the listener

 InputStream is = inputStream;

 if ((httpConnection.getContentEncoding() != null) && (httpConnection.getContentEncoding().equals("gzip")))

{

 is = new GZIPInputStream(is);

 }

 BufferedReader reader = new BufferedReader(new InputStreamReader(is, "UTF-8"), 100);

 String line;

 while ((line = reader.readLine()) != null) {

 // parse json (use an available json parser)

 // skip empty lines

 if (line.isEmpty()) {

 continue;

 }

 JsonFactory factory = new JsonFactory();

 ObjectMapper mapper = new ObjectMapper(factory);

 TypeReference<HashMap<String, Object>> typeRef = new TypeReference<HashMap<String, Object>>() {

 };

 HashMap<String, Object> o = mapper.readValue(line, typeRef);

 Object oType = o.get("chunk_type");

 if (oType != null && oType instanceof String) {

 String type = (String) oType;

 switch (type) {

 case "CT_ERROR":

 Map<String, Object> errorChunk = getAsMap(o, "chunk_error");

 handleStreamError(errorChunk);

 break;

 case "CT_CONTROL":

 Map<String, Object> controlChunk = getAsMap(o, "chunk_control");

 if (controlChunk != null) {

 Long timeframeStart = getAsT(controlChunk, "timeframe_start", Long.class);

 if (timeframeStart != null) {

 resumeTs.set(timeframeStart);

 }

 }

 handleStreamControl(controlChunk);

 break;

 case "CT_RESULT":

 Map<String, Object> resultChunk = getAsMap(o, "chunk_result");

 handleStreamResult(resultChunk);

 break;

 default:

 unhandledStreamChunk(o);

 break;

 }

 } else {

 unhandledStreamChunk(o);

 }

 }

 }

 protected static Map<String, Object> getAsMap(Map<String, Object> o, String key) {

 if (o != null) {

 Map<String, Object> ret = null;

 Object oRet = o.get(key);

 if (oRet != null && oRet instanceof Map) {

 return (Map<String, Object>) oRet;

 }

 }

 return null;

 }

 protected static <T> T getAsT(Map<String, Object> o, String key, Class<T> clz) {

 if (o != null) {

 Map<String, Object> ret = null;

 Object oRet = o.get(key);

 if (oRet != null && clz.isInstance(oRet)) {

 return (T) oRet;

 }

 }

 return null;

 }

 protected void onInitializationError(Map<String, Object> errorData) {

 System.out.println("ERROR: " + errorData);

 }

 protected void handleStreamError(Map<String, Object> errorChunk) {

 System.out.println("ERROR: " + errorChunk);

 }

 protected void handleStreamControl(Map<String, Object> controlChunk) {

 System.out.println("CONTROL: " + controlChunk);

 }

 protected void handleStreamResult(Map<String, Object> resultChunk) {

 Map<String, Object> resultData = getAsMap(resultChunk, "data");

 Map<String, Object> entryData = getAsMap(resultData, "data");

 String url = getAsT(entryData, "url", String.class);

 System.out.println("RESULT: " + url);

 }

 protected void unhandledStreamChunk(Map<String, Object> unhandledChunk) {

 System.out.println("UNHANDLED: " + unhandledChunk);

 }

 protected void createStream() throws IOException {

 String _url = url + "/v1/stream/create?access_token=" + token;

 // connect

 URL request = new URL(_url);

 URLConnection connection = request.openConnection();

 connection.setConnectTimeout(30000);

 connection.setReadTimeout(90000);

 HttpURLConnection httpConnection = (HttpURLConnection) connection;

 httpConnection.setRequestMethod("POST");

 httpConnection.setRequestProperty("User-Agent", "JavaExampleClient/1.0.0");

 httpConnection.setRequestProperty("charset", "utf-8");

 httpConnection.setDoOutput(true);

 httpConnection.setDoInput(true);

 connection.setUseCaches(false);

 connection.setRequestProperty("Content-Language", "en-US");

 DataOutputStream wr = new DataOutputStream(connection.getOutputStream());

 JsonNodeFactory factory = JsonNodeFactory.instance;

 ObjectNode on = factory.objectNode();

 on.put("streamid", stream_id);

 System.out.println(on.toString());

 wr.writeBytes(on.toString());

 wr.flush();

 wr.close();

 httpConnection.connect();

 int httpCode = httpConnection.getResponseCode();

 if (httpCode != 200) {

 System.out.println("ERROR");

 System.out.println(IOUtils.toString(httpConnection.getInputStream(), "UTF-8"));

 } else {

 System.out.println("CREATED");

 }

 }

 protected void deleteStream() throws IOException {

 String _url = url + "/v1/stream/s/" + stream_id + "/delete?access_token=" + token;

 // connect

 URL request = new URL(_url);

 URLConnection connection = request.openConnection();

 connection.setConnectTimeout(30000);

 connection.setReadTimeout(90000);

 HttpURLConnection httpConnection = (HttpURLConnection) connection;

 httpConnection.setRequestMethod("DELETE");

 httpConnection.setRequestProperty("User-Agent", "JavaExampleClient/1.0.0");

 httpConnection.setRequestProperty("charset", "utf-8");

 httpConnection.setDoOutput(true);

 httpConnection.setDoInput(true);

 connection.setUseCaches(false);

 connection.setRequestProperty("Content-Language", "en-US");

 httpConnection.connect();

 int httpCode = httpConnection.getResponseCode();

 if (httpCode != 200) {

 System.out.println("ERROR");

 try {

 System.out.println(IOUtils.toString(httpConnection.getInputStream(), "UTF-8"));

 } catch (Exception e) {

 e.printStackTrace();

 }

 } else {

 System.out.println("DELETED");

 }

 }

Throubleshooting

Error Codes

http
code

status
code

message description

200 0 OK Default answer

500 1 Internal Server Error An unexpected exception was encountered.

500 2 Search Execution Exception An unexpected exception was encountered. Related to the
search

400 3 Parameter Missing Required parameters are missing. The missing parameters are
provided in key 'params'.

400 4 Error in query Could not parse query. The details can be found under 'details'.

400 5 Invalid parameter value A parameter has an unacceptable value. The parameter is listed
under 'param' and the details under 'details'.

401 7 Invalid, missing or inactive
access token

The access token is either missing or the provided value is
invalid.

401 8 Call limit exceeded for this
endpoint

The called endpoint has a limited call frequency, the values
should be cached by the client.

401 9 No credits left. The account ran out of credits.

403 10 API application is inactive The API account is inactive. 'appId' gives the id of that account.

403 11 No such application linked The provided id is not linked in the API to any project or
application.

403 12 Linked application inactive or
deleted

The linked application is inactive or deleted.

403 13 Access denied: Insufficient
access rights.

The used access token does not have enough access rights.
'rights_req' will list the required access rights, 'rights_got' lists
the access rights provided by that access token.

404 15 Wrong stream id. No such
stream defined.

A non existing stream was accessed.

400 16 Invalid operation on document The search document modification operation is not supported.
'reason' and 'details' will provide more information.

400 17 Could not parse json The JSON that was passed via POST could not be properly
interpreted (it was not in the expected format).

400 18 Invalid operation on stream Modifying a stream failed. See 'reason' for details.

403 19 Number of rules to set exceeds
maximum number of rules

Exceeded the maximum allowed rules for this API account.
'number_max' is the limit, 'number_available' how many we
can save and 'number_saving' the number we tried to save

403 20 Cannot create any more
streams

Exceeded maximum amount of streams ('number_max')

403 21 A stream with this name
already exists

The stream 'streamid' is already defined.

http
code

status
code

message description

403 22 Number of sources to set
exceeds maximum number of
sources

Exceeded the maximum allowed sources (whitelist or blacklist)
for this API account. 'number_max' is the limit,
'number_available' how many we can save and
'number_saving' the number we tried to save.

403 23 Stream has no rules defined Exception when trying to stream with a stream that has no rule
defined.

403 24 Stream got disconnected
because newer stream running

A new stream (same streamid) is connected, so the old stream
will be disconnected.

403 25 Stream got disconnected The stream was disconnected due to the given reason.

404 26 Endpoint or action not found The called endpoint was not found.

403 27 Connection is not secure, must
use HTTPS

Authentication API endpoints need to be called using HTTPS.

404 28 User was not found in this
application

This user id does not exist or is not linked to this project.

403 29 Access to this project is
forbidden

This project can not be accessed with the given access_token.

429 30 Limit of maximum concurrent
streams reached

Too many streams running in parallel for this account.

404 31 Could not find rule with id A rule with the given id could not be found.

404 32 Could not find panel with id A panel with the given id could not be found.

403 33 Panel is still referenced This panel could not be deleted, it is still used in a stream.

505 - HTTP Version Not Supported The Talkwalker Streaming API supports HTTP 1.1 or newer.

400 34 Url is malformed The given URL for channel monitoring is malformed

400 35 Could not execute action in
Talkwalker

Error in connecting to a Talkwalker project

403 36 Access prohibited Access prohibited due to access restriction settings

Error Handling

Streaming API

Resuming a disconnected stream

A stream can be disconnected for several reason: given maximum of hits (max_hits) reached, stream_stop reached, no credits

left, server issues or connection problems. To resume a disconnected stream, set the parameter stream_resume to the start

timestamp ('timeframe_start') of the last CT_CONTROL chunk. Since the results in a timeframe are not sorted, the streaming of

the entire timeframe has to be restarted to make sure that no documents are lost.

curl

https://api.talkwalker.com/api/v2/stream/s/teststream/results?access_token=demo&stream_resume=1388534400000

The Streaming API returns different results for the same topic than the Talkwalker
application.

Possible reasons:

Different queries or source filters:

Use https://api.talkwalker.com/api/v2/stream/s/<stream_id>?access_token=demo&pretty=true to make sure that no additional rules and

source blacklists are set.

Documents are streamed at indexation time

Talkwalker finds most documents briefly after they were created, at this moment they are added to Talkwalker, and

streamed via the API. Documents that are found later (i.e. some time after they were published on the original

webpage), will be added to Talkwalker with their original publication time (timestamp the published field) along with the

documents that were found earlier. In the Streaming API they only appear at the moment they were found (timestamp

in 'search_indexed' field).

• Solutions:

◦ with a query on published (published:>1388534400000 AND published:<1388544400000) a stream with a start point (stream_resume) of

the beginning of the time range and a stop point (stream_stop) equal to the current time returns the same results as

Talkwalker.

◦ when adding the streamed results to a local database, you can group them later by the value in the published field.

Time zones

Timeranges in the Talkwalker application relative to the timezone set up under General Settings - Project display options

- Time zone , while the Talkwalker API uses Unix Time (Epoch Time) in milliseconds (no time zones). This can make

results, that are equal, appear to be different in the API.

No maximum of documents in the current month

While the Talkwalker application applies a maximum of found documents per month, the Talkwalker API returns all

documents that can be found for th current given month. When the API is used with a Talkwalker project, the full

project history is available.

	Talkwalker API
	Table of Contents
	Talkwalker API Overview
	Talkwalker Search API Overview & Example
	Talkwalker Streaming API Overview & Example

	Talkwalker Search API
	Talkwalker Search Results API
	Talkwalker Search Histogram API
	Talkwalker Search API and Talkwalker Projects
	Modifiying documents with the Talkwalker API

	Talkwalker Streaming API
	Source
	How it works
	Managing Streams
	Matching of Streams, Rules and Panels
	Quota on Streams
	Temporarily Disable Streams
	Talkwalker Streaming API and Talkwalker Projects

	Talkwalker Single Sign-on API
	Source
	Talkwalker Login Url
	Logout
	User List
	Project List
	View List
	Channelmonitoring suggest
	Fetch query

	Talkwalker Query Syntax
	Special Transformations
	Boolean Operators
	Advanced Search Options:
	Url based Search
	Metric (Minimum / Maximum) Restrictions
	Geographic Restrictions
	Special Query Modifiers
	Fields
	Images
	Videos
	Attributes
	Evolution and stability of document fields
	Streaming

	Protocols, Encodings and Value Field Options
	Protocols and Encodings
	Evolution of JSON fields
	Value options

	API Account
	Access Token
	OAuth 2.0
	Credits / Pricing

	FAQ
	How to stream all documents from a Talkwalker project?
	How to stream all documents from a Talkwalker project for a specific month?
	How to get the documents of the last hour of a Talkwalker project?
	How to stream all documents from Talkwalker Page Monitoring
	How to eliminate retweets or comments from a stream?
	How to get only documents of a Talkwalker project that include special keywords
	How to use a single stream for multiple applications / clients?
	How to get the number of results grouped by media types?
	How to get the ids of Talkwalker Topics?

	Code Examples
	Streaming Client Examples

	Throubleshooting
	Error Codes
	Error Handling

