
European Space Agency Contract Report

The work described in this report was performed under ESA
contract. Responsibility for the contents resides in the au-
thor or organisation that prepared it.

Open Ravenscar Real-Time Kernel
ESTEC/Contract No.13863/99/NL/MV

Operation Manual
Version 2.2b — 19 November, 2001

FOR OPENRAVENSCAR 2.2B, WITH METRICS ANNEX

UNIVERSIDAD POLITÉCNICA DE MADRID

DEPARTAMENTO DE INGENIERÍA DE SISTEMAS TELEMÁTICOS

UNIVERSITY OF YORK

DEPARTMENT OF COMPUTER SCIENCE

CONSTRUCCIONES AERONÁUTICAS, S.A.
DIVISIÓN ESPACIO

c© 1999–2001 DIT/UPM.

Published by

Departamento de Ingeniería de Sistemas Telemáticos
Universidad Politécnica de Madrid
ETSI Telecomunicación, Ciudad Universitaria
E-28040 Madrid
SPAIN

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission noice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided also that the sections entitled Copying and GNU General Public License (see
appendix E) are included exactly as in the original, and provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the Free Software Foundation.

Send questions, comments, suggestions, etc. to help@openravenscar.org.
Send bug reports to bug-report@openravenscar.org.

Status: Final

Authors: Juan A. de la Puente
José F. Ruiz
Juan Zamorano
Jesús González-Barahona
Ramón Fernández-Marina
Miguel Ánguel Ajo

Revised by: Ángel Álvarez
Alejandro Alonso

History
Version Date Comments
1.1 – 1.5 Internal revisions.
1.6 2000-06-16 First public release.
2.0 2000-09-28 Second public release.
2.2 2001-03-21 Support for remote targets and Solaris host
2.2b 2001-11-19 Appendix F “Metrics” included included.

Contents

1 Introduction 1
1.1 Intended readership . 1
1.2 Purpose . 1
1.3 Applicability statement . 1
1.4 Free software . 2
1.5 Related documents . 2
1.6 Conventions . 2
1.7 Problem reporting instructions . 3
1.8 Glossary . 3

1.8.1 Definitions . 3
1.8.2 Acronyms . 4

1.9 References . 5
1.9.1 Applicable documents . 5
1.9.2 Reference documents . 5

1.10 Contributors to ORK . 5
1.11 Document overview . 6

2 Software overview 7
2.1 The Open Ravenscar Real-Time Kernel 7
2.2 Architecture of ORK . 8
2.3 Using the kernel with GNAT . 8
2.4 Using the kernel with C programs . 10
2.5 Hardware and software environment . 10

2.5.1 Development platform . 10
2.5.2 Execution platform . 11

3 How to use ORK 13
3.1 Software development . 13
3.2 Writing Ada 95 programs . 13

3.2.1 Ravenscar profile restrictions . 14
3.2.2 The GNAT configuration file . 15
3.2.3 A first example . 16

3.3 Compiling and linking Ada 95 programs 18
3.4 Debugging Ada 95 programs on the development platform 19
3.5 Executing and debugging Ada 95 programs on the target platform 21

3.5.1 Making boot PROMS . 21
3.5.2 Remote target monitor . 21
3.5.3 Using GDB with a remote target 21
3.5.4 Using GBD with an ERC32 simulator with the remote target mon-

itor . 22

i

3.6 Interrupt handlers . 23
3.6.1 Protected procedure handlers . 23
3.6.2 An example with interrupts . 24

3.7 Working with C programs . 24
3.7.1 The C interface . 24
3.7.2 ORK & CIL limitations . 25
3.7.3 A simple example . 25
3.7.4 Compiling a C program . 27

4 ORK reference 29
4.1 Installation and directory structure . 29

4.1.1 Getting ORK . 29
4.1.2 Installing ORK . 29
4.1.3 Installing the ORK sources . 30
4.1.4 Directory structure . 30
4.1.5 Tools . 31
4.1.6 Documentation . 32

4.2 Kernel interface . 32
4.2.1 Introduction . 32
4.2.2 Threads and synchronization . 32
4.2.3 Time management . 34
4.2.4 Memory management . 35
4.2.5 Interrupt handling . 36

4.3 Errors . 37
4.4 Tailoring the kernel . 37

4.4.1 Configurable parameters . 38
4.4.2 Interrupt names . 38
4.4.3 Compiling the kernel . 39

A The Ravenscar profile 41
A.1 Introduction . 41
A.2 Definition . 42

A.2.1 Forbidden features . 42
A.2.2 Supported features . 43
A.2.3 Dynamic semantics . 43

A.3 Denoting the restrictions . 44

B The Ravenscar restrictions in GNAT 45
B.1 The pragma Ravenscar . 45
B.2 Other pragmas . 48

B.2.1 Pragma Restrictions . 48
B.2.2 Scheduling related pragmas . 49

B.3 The gnat.adc file for the Ravenscar profile 49

C Example program 51
C.1 Description . 51
C.2 Temporal requirements of the tasks . 52
C.3 Schedulability analysis . 53
C.4 Example program output . 54
C.5 Example code . 55

ii

D Known bugs and limitations 61
D.1 Introduction . 61
D.2 Unsolved GNAT 3.13 bugs . 61
D.3 Solved GNAT 3.13 bugs . 61
D.4 ORK-ERC32 2.2b bugs related to the Ravenscar Profile 62
D.5 Other ORK-ERC32 2.2b bugs . 62
D.6 ORK-ERC32 2.2b tasking bounded errors 62

E GNU General Public License 63

F Metrics 71
F.1 Ada LRM Annex C and D Metrics . 71

F.1.1 Protected Procedure Handlers (C-3.1) 71
F.1.2 Monotonic Time (D-8) . 71
F.1.3 Delay Accuracy (D-9) . 74
F.1.4 Other Optimizations and determinism rules (D-12) 74

F.2 Other useful metrics . 75
F.2.1 Context Switch . 75
F.2.2 Interrupt Latency . 75

Bibliography 76

iii

iv

Chapter 1

Introduction

1.1 Intended readership

This manual contains operation instructions for the Open Ravenscar Real-time Kernel
(ORK) for the ERC32 computer and other associate software. It should be read by appli-
cation programmers and system administrators of software projects using ORK.

Previous knowledge of the Ada 95 [6] and C [7] programming languages is assumed.
The reader should also be familiar with the GNAT and GCC programming environments
[2], the GDB debugger [34], and the fundamentals of real-time programming and the
Ravenscar profile [10, 8, 29].

1.2 Purpose

The purpose of this document is to describe how to use, install, and configure the Open
Ravenscar Real-Time Kernel (ORK) for ERC32-based computers.

The Open Ravenscar Real-Time Kernel is an open-source real-time kernel of reduced
size and complexity, for which users can seek certification for mission-critical space ap-
plications. The kernel supports both Ada 95 and C applications on an ERC32-based
computer.

ORK is fully integrated with GNAT, the GNU-NYU Ada Translator, and with GDB,
the GNU debugger. It also works with DDD, a graphic front-end for GDB. The ORK
software package includes specialized modules for using these tools with ORK.

1.3 Applicability statement

This manual applies to the following versions of software (openravenscar 2.2b):

• ORK-ERC32 2.2b

• GNAT 3.13

• GCC 2.8.1

• GDB 4.17

• DDD 3.2

1

2 CHAPTER 1. INTRODUCTION

1.4 Free software

ORK is free software. This means that everyone is free to use it and free to redistribute it
on a free basis. This applies to the source code and documentation as well.

ORK is not in the public domain. It is copyrighted and there are restrictions on its dis-
tribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further shar-
ing any version of ORK that they might get from you. The precise conditions are found
in the GNU General Public Licence that comes with ORK. See appendix E for details.

The easiest way to get a copy of ORK is from someone else who has it. The GPL
gives you the freedom to copy or adapt a licensed program, but every person getting a
copy also gets with it the freedom to modify that copy (which means that they must get to
source code), and the freedom to distribute further copies.

You can also get the latest version from the ORK web site,

http://www.openravenscar.org/

1.5 Related documents

The following documents contain additional information about software tools that can be
used to develop ORK-based real-time software:

1. Ada 95 Reference Manual [6].

2. GNU Emacs Manual [24]

3. GNAT User’s Guide [5].

4. GNAT Reference Manual [4].

5. Debugging with GDB [34].

6. Debugging with DDD [44].

7. Version Management with CVS [23].

1.6 Conventions

The following typographical conventions are used in this manual:

• Functions, utility program names, standard names, and code listings, are typeset in
a fixed width font.

• Variables and parameters are typeset in a slanted font.

• Options are enclosed in square brackets: []

• Commands that are entered by the user are preceded by $.

1.7. PROBLEM REPORTING INSTRUCTIONS 3

1.7 Problem reporting instructions

If you obtained ORK from a support organization, we recommend you contact that or-
ganization first. You can find contact information for support organizations on the ORK
web site,

http://www.openravenscar.org.

In any event, we also recommend that you send bug reports for ORK to this address:

bug-report@openravenscar.org

We welcome bug reports, as they are a vital part of the process of the continuing
improvement of ORK. You will help us (and make it more likely that we will look at your
report in a timely manner) if you follow these guidelines:

• Please report each bug in a separate message, and add a short but specific subject.

• Please include full sources. We can’t duplicate errors without the full sources. In-
clude all sources in the single email message with appropriate indications in the
multiple file cases, see below. Also say exactly what you saw, do not assume that
we can guess what you saw, or duplicate the behaviour you encountered.

All sources must be sent in plain ASCII or ISO-8859-1 format.

• Please include a complete identification of the version of the system you are running
(i.e. development and target environments, as well as versions of ORK and all other
software you are using).

• Please try to reduce your example to a simple one.

If you think that you have found a bug in GNAT, GCC, GDB, or DDD, rather than
ORK, please send the bug report to the appropriate address:

• GNAT: report@gnat.com

• GCC: bug-gcc@gnu.org

• GDB: bug-gdb@gnu.org

• DDD: bug-ddd@gnu.org

1.8 Glossary

1.8.1 Definitions

Development platform. The computer system (hardware and software) which is used to
write, compile, and debug embedded software.

Execution platform. The computer hardware, and possibly basic ROM resident software
(such as a bootstrap loader) where the embedded software is executed.

Target platform. The same as execution platform.

RP program. A program that complies with the Ravenscar profile restrictions.

4 CHAPTER 1. INTRODUCTION

1.8.2 Acronyms

ALRM Ada Language Reference Manual.

API Application Program Interface.

ATCB Ada Task Control Block.

CIL C Interface Library.

DDD Data Display Debugger.

ESA European Space Agency.

ESTEC European Space Research and Technology Center.

FSF Free Software Foundation.

GDB GNU Debugger.

GNAT GNU New York University Ada Translator.

GNARL GNU Ada Run-Time Library.

GNARLI GNU Ada Run-Time Library Interface.

GNORT GNAT No Run Time.

GNU GNU is Not Unix.

GNULL GNU Low-Level Library.

GNULLI GNU Low-Level Library Interface.

GPL GNU Public License.

GUI Graphic User Interface.

HIS High-Integrity System.

IRTAW International Real-Time Ada Workshop.

ISO International Standards Organization.

LGPL Lesser GNU Public License (formerly Library GPL).

MEC Memory Controller (a component of the ERC32 chipset).

ORK Open Real-Time Ravenscar Kernel.

OS Operating System.

PC IBM Personal Computer architecture.

PR Pragma Ravenscar (GNAT specific).

PROM Programmable Read-Only Memory.

RAVENSCAR Reliable Ada Verifiable Executive Needed for Scheduling Critical Appli-
cations in Real-Time.

1.9. REFERENCES 5

RP Ravenscar Profile.

RP program An Ada program that complies with the Ravenscar profile.

SIS SPARC Instruction set Simulator.

URL Uniform Resource Locator.

1.9 References

1.9.1 Applicable documents

1. ECCS-E40A. Space Engineering — Software [21].

2. Ada 95 Reference Manual [6].

3. Guidance for the Use of the Ada Programming Language in High Integrity Systems
[29].

4. Alan Burns. The Ravenscar profile [12].

5. C Programming Language [7].

6. POSIX Real-Time Standards [28].

1.9.2 Reference documents

1. ERC-32 Manuals [35, 36, 37, 38].

2. ERC-32 GCC Manual [25].

3. Ada 95 — Quality and Style [9].

4. HOOD 3.1 Reference Manual [27]

5. GNAT Manuals [3, 1].

6. Debugging with GDB [34].

Additional details and references can be found in the bibliography at the end of this
volume.

1.10 Contributors to ORK

ORK was developed by a team of the Department of Telematics Engineering, Universi-
dad Politécnica de Madrid1 (DIT/UPM), lead by Juan Antonio de la Puente. The other
members of the team were Juan Zamorano, José F. Ruiz, Ramón Fernández, and Rodrigo
García. Alejandro Alonso and Ángel Álvarez acted as document and code reviewers, and
contributed to the technical discussions with many fruitful comments and suggestions.
The same team developed the adapted packages that enable GNAT to work with ORK.

GDB was adapted to ORK by Jesús González-Barahona, Vicente Matellán, Andrés
Arias, and Juan Manuel Dodero. José Centeno and Pedro de las Heras acted as reviewers

1Technical University of Madrid.

6 CHAPTER 1. INTRODUCTION

for this part of the work. All of them work at the Department of Engineering, Universidad
Rey Juan Carlos, Madrid.2

The ORK software was validated by Jesús Borruel and Juan Carlos Morcuende, from
Construcciones Aeronáuticas (CASA), Space Division. We also relied very much on
Andy Wellings and Alan Burns, of York University, for reviewing and discussions about
the Ravenscar profile and its implementation.

ORK was developed under contract with ESA, the European Space Agency. Jorge
Amador, Tullio Vardanega and Jean-Loup Terraillon provided many positive criticism
and contributed the user’s view during the development. The project was carried out from
September, 1999 to June, 2000.

1.11 Document overview

The rest of this document is organised as follows:

• Chapter 2 describes the general structure of the ORK software and the Ravenscar
profile restrictions.

• Chapter 3 contains instructions for writing, compiling, linking, executing, and de-
bugging programs with the ORK software.

• Chapter 4 describes in detail the functions of ORK and the way it is linked with
Ada and C programs.

• Appendix A describes the Ravenscar profile in detail.

• Appendix B contains an analysis of how conformance to the Ravenscar profile can
be hack at compile time with GNAT-ORK.

• Appendix C contains a comprehensive example of a Ravenscar-compliant program
and its compilation with GNAT-ORK.

• Appendix E contains a copy of the GNU General Public License (GPL).

2King Juan Carlos University.

Chapter 2

Software overview

2.1 The Open Ravenscar Real-Time Kernel

The Open Ravenscar Real-Time Kernel (ORK) is a small, high performance real-time
kernel that provides restricted tasking support for Ada 95 programs. The kernel is also
usable from C programs.

The kernel is intended to support mission critical real-time software systems. In order
to ensure that the software is highly reliable, and even in some cases go through a certifi-
cation process, program constructs which are not verifiable should not be used. The exact
set of language features to be avoided depends on the degree of integrity that is desired
for the software and the verification methods that are to be used. A detailed account of
the Ada language issues in high integrity systems can be found in the ISO technical re-
port Guide for the use of the Ada Programming Language in High Integrity Systems [29].
Based on these considerations, language subsets for building software with different levels
of integrity can be defined. In the case of Ada, there is a standard mechanism to enforce
that only the required subset of the language is used by means of the pragma Restrictions
and the restriction identifiers that are defined in the ALRM “Safety and Security” annex
([6], annex H).

Tasking has often been considered not safe for high integrity systems, mainly due to
the difficulty of analysing and verifying tasking programs. However, recent advances in
response time analysis for fixed priority preemptive scheduling [11] enable limited tasking
mechanisms to be used even in this kind of systems.

One of the goals of the 8th International Real-Time Ada Workshop, which was held
in 1997 in Ravenscar, Yorkshire, England, was to define a safe tasking model for Ada.
The outcome of this work is known as the “Ravenscar profile” [10]. The profile was
slightly modified in the following meeting [8], after some experience was gained on its
implementation and use. It is also inlcuded in the ISO Ada 95 HIS report [29].

The profile defines a subset if Ada tasking that includes static tasks (with no entries)
and protected objects (with at most one entry), a real-time clock and delay until statements,
as well as protected interrupt handler procedures and other tasking related features. A
detailed description can be found in appendix A.

The restrictions in Ada tasking defined in the Ravenscar profile enable tasking to be
supported by a small, reliable kernel instead of a full operating systems. ORK is one such
kernel, which enables critical real-time systems to be executed on a bare processor with
no underlying operating system.

The kernel is integrated with the GNAT compilation system. A special cross-compilation
version of GNAT is included in the ORK distribution. Real-time programs are written in
a subset of Ada 95 which is consistent with the Ravenscar profile and with other, non

7

8 CHAPTER 2. SOFTWARE OVERVIEW

tasking restrictions, as desired according to the degree of integrity that is required for the
program. The restrictions can be enforced at compilation time by means of appropriate
restriction pragmas.

The code generated by the special version of GNAT can be loaded on the target hard-
ware by means of appropriate bootstrap loaders. It can also be executed on a target sim-
ulator for testing purposes. Debugging support is available with an enhanced version
of GDB which is also part of the ORK distribution. A graphic debugging interface is
provided by means of DDD.

The kernel has been designed for efficient support of Ada tasking constructs, but can
also be used with C programs. A C interface package is provided for this purpose.

2.2 Architecture of ORK

The kernel consists of the following Ada packages:

• Kernel: Root package (empty interface).

• Kernel.Threads: Thread management, including synchronization and scheduling
control functions.

• Kernel.Time: Clock and delay services.

• Kernel.Memory: Storage management.

• Kernel.Interrupts: Interrupt handling.

• Kernel.Parameters: Configuration parameters.

• Kernel.CPU_Primitives: Processor-dependent definitions and operations.

• Kernel.Peripherals: Support for peripherals in the target board.

• Kernel.Peripherals.Registers: Definitions related to input-output registers of the pe-
ripheral devices.

• Kernel.Serial_Output: Support for serial output to a console.

Figure 2.1 shows the structure of the kernel.
The kernel is not intended to be directly used from Ada programs. Instead, an interface

to the GNU Ada Runtime Library (GNARL) is used so that Ada 95 tasking constructs can
be directly used by the real-time application programmer. This interface is described in
the next section.

2.3 Using the kernel with GNAT

Ada tasking is implemented in GNAT by means of the run-time library, called GNARL
[26]. The parts of GNARL which are dependent on a particular machine and operating
system are known as GNULL, and its interface to the platform-independent part of the
GNARL is called GNULLI. GNULL is built on top of ORK, which provides all the low-
level tasking support functionality required by the Ravenscar profile subset of Ada tasking
(figure 2.2).

2.3. USING THE KERNEL WITH GNAT 9

Kernel.ParametersE

Kernel.Peripherals

Kernel.CPU_Primitives

Kernel.Time

Kernel.Memory

Kernel.Threads

Kernel.Interrupts
{Time Keeping and Delays}

{Storage Allocation}

{Thread Management}

{Synchronization}

{Scheduling}

{Interrupt Handling}

Kernel

{Serial Output}

Kernel.Serial_Output

Figure 2.1: Architecture of ORK

Hardware

GNARL

Ada Application

GNULL C Interface layer

ORK

C Application

G
D

B
 /

D
D

D

Kernel interface

GNULLI C interface

GNARLI

Figure 2.2: Architecture of the GNAT/GCC run-time system based on ORK

10 CHAPTER 2. SOFTWARE OVERVIEW

Ravenscar-compliant Ada programs are developed in GNAT by enforcing a set of
restrictions (see chapter 3 and appendix B) by means of a configuration pragma (pragma
Ravenscar). This pragma also selects a restricted version of GNARL with reduced size
and complexity. A special version of GNULL is also used, which interfaces directly with
ORK. All this complexity is hidden to the programmer, who only needs to insert the
pragma Ravenscar in the GNAT configuration file (commonly named gnat.adc).

2.4 Using the kernel with C programs

The kernel can also be used with programs written in C (see section 3.7). Since C has
no tasking constructs, the kernel functions for creating and handling threads have to be
explicitly called from C. A C API (see figure 2.2) is provided for this purpose. The
C interface is provided by a C interface layer (CIL), which is integrated with the GCC
compilation system.

2.5 Hardware and software environment

ORK is intended to be used with a GNAT or GCC compilation system targeted to an
ERC32 computer. In order to use it effectively, the following components are required.

2.5.1 Development platform

Real-time software based on openravenscar 2.2b can be developed on the following plat-
forms:

• PC-compatible systems with a GNU/Linux operating system. The software has
been tested with the Red-Hat 6.2 distribution of GNU/Linux.

• SPARC computers with a Solaris oerating system. The software has been tested
with Solaris 2.8.

The cross development system consists of the following packages targeted to ELF-32
ERC32:

• GNAT 3.13: GNU Ada 95 compilation system.

• GCC 2.8.1: GNU C compiler.

• GDB 4.17: GNU debugger.

• DDD 3.2: graphical front-end for GDB.

• Newlib 1.8.2: Cygnus C-library.

• Binutils 2.9.1: GNU binary utilities.

• MKPROM: boot-PROM builder for ERC32 targets.

• REM-COM: remote target monitor for ERC32 targets.

• ORK-ERC32 2.2b: the ORK kernel, the ORK C Interface Library, GNAT patches,
and GDB and DDD scripts and patches.

2.5. HARDWARE AND SOFTWARE ENVIRONMENT 11

You also may find it useful to have the Emacs editor with Ada mode. You can down-
load all the above mentioned packages from http://www.openravenscar.org/. Sec-
tion 4.1 shows how to install an openravenscar 2.2b compilation system from both the
binary and source distributions.

2.5.2 Execution platform

The execution platform for ORK based programs is an ERC32 computer with at least
110 KB memory. Programs can be loaded into an ERC32-based computer memory by
means of appropriate tools. Once loaded, the software can be debugged by running GDB
on the development computer, which communicates with the target computer by means
of a communication line (e.g. serial line or ethernet).

Programs can also be tested and debugged on the development platform usin the TSIM
simulator, which can be connected to GDB using a socket connection.1 Another possibil-
ity for debugging and executing ORK-based applications is to use SIS (SPARC Instruction
set Simulator).2

1TSIM is not free software. It is not part of ORK, and it is not available at the ORK site. See http:
//www.gaisler.com/ for further details.

2SIS is not free software. It is not part of ORK, and it is not available at the ORK site.See http:
//www.estec.esa.nl/wsmwww/erc32/freesoft.html for further details.

12 CHAPTER 2. SOFTWARE OVERVIEW

Chapter 3

How to use the Open Ravenscar
Real-Time Kernel

3.1 Software development

In order to develop programs based on ORK you should perform the following activities:

1. Write the source code for the program.

2. Compile and link the program.

3. Debug the program on the development platform.

4. Debug the program on the target platform.

5. Make a boot PROM for the program.

Two kinds of programs are supported by ORK:

• Ada 95 programs, restricted as defined by the Ravenscar profile.

• C programs directly using kernel threads.

Figure 3.1 describes the data flow for the GNAT compilation system.
Purely sequential Ada or C programs do not require ORK support, and can be com-

piled using GNORT1 or GCC.

3.2 Writing Ada 95 programs

The first step in compiling an Ada application is to write the source code for the program
units which make up the application. You can use your favourite text editor for this
purpose.

1For details about GNORT contact Ada Core Technologies, Inc. at http://www.act.com or http:
//www.act-europe.fr.

13

14 CHAPTER 3. HOW TO USE ORK

Application
objects

.ali

GNAT
compiler

GNAT
binder

GNAT
linker

.ali

Restricted GNARL

.ads

and ORK
specifications

.exe

.a

Restricted GNARL and ORK ALI
(Ada Library Information) files and other library files

Restricted GNARL, ORK,

gnat.adc

Application
compilation

units

.ads

.adb

GNAT
configuration file

.o

Application ALI (Ada
Library Information)

files

b~xxx.adb

b~xxx.ads

executable
ELF−32 SPARC

Figure 3.1: Compilation flow for GNAT/ORK applications

3.2.1 Ravenscar profile restrictions

When writing your Ada 95 application code, you should bear in mind that only the Ada
subset defined by the Ravenscar profile can be used. This means that you should not
use any of the following features (see appendix A for a full description of the Ravenscar
profile):

• Task types and object declarations other than at the library level.

• Dynamic allocation and unchecked deallocation of protected and task objects.

• Requeue statement.

• ATC (asynchronous transfer of control via the asynchronous_select statement.)

• Abort statements, including Abort_Task in package Ada.Task_Identification.

• Task entries.

• Dynamic priorities.

• Ada.Calendar package.

• Relative delays.

• Protected types and object declarations other than at the library level.

• Protected types with more than one entry.

• Protected entries with barriers other than a single boolean variable declared within
the same protected type.

• Entry calls to a protected entry with a call already queued.

• Asynchronous task control.

• All forms of select statements.

• User-defined task attributes.

3.2. WRITING ADA 95 PROGRAMS 15

• Dynamically attached interrupt handlers

• Task termination

If your program has strong integrity requirements, you may also wish to restrict some
of the sequential constructs of Ada as well (See the reference [29] for guidelines on the
Ada features you may wish to limit.)

ORK assumes that the following restrictions are also applicable to your program:

• No allocators (this means that there are no new statements). This is required as
ORK supports only static storage.

• No Ada.Text_IO package. This is required as ORK does not directly support any
input-output device but a serial output line, which is not accessible through Ada.Text_IO.

Notice that the above restrictions are common in embedded systems and do not impose
any additional limitation on what could be considered as common practice.

WARNING 3.1
Programs that are not Ravenscar profile compliant should not be compiled and linked
with the ORK version of GNAT. Using language features which are not allowed by the
Ravenscar profile may result in unpredictable compilation or execution errors.

WARNING 3.2
ORK users are recommended to assign distinct priorities to all tasks and protected ob-
jects.2

3.2.2 The GNAT configuration file

You can have GNAT check all the above restrictions for you by compiling the program
with a Ravenscar configuration pragma. Configuration pragmas are put in a special source
file called gnat.adc (see [5]). Some additional configuration pragmas should also be in-
cluded, as shown in the following template:

−− gnat.adc - configuration file template for the Ravenscar profile
pragma Ravenscar;
pragma Restrictions (Max Tasks => N);
−− N must be equal to the number of tasks of the application
−− pragma Restrictions(No Allocators); - does not work properly in GNAT 3.13 5

pragma Restrictions(No IO);
pragma Task Dispatching Policy (FIFO Within Priorities);
pragma Locking Policy (Ceiling Locking);

A copy of this file is included in the examples directory for your convenience.3 Of
course, you should add any additional restrictions you would like to enforce on your
program.

Notice that the maximum number of application tasks is bounded by a kernel config-
uration parameter (see section 4.4 for the details).

2ORK allows priorities to be shared —as long as in keeping withe ceiling priority protocol— but this is
not a commendable practice unless the task and protected object population exceeds the allowable range of
priorities. See section 4.4 on how to configure the range of priorities and the maximum number of tasks.

3The directory examples is located directly under the directory where you have installed the openraven-
scar distribution (/usr/local/openravenscar in a standard installation).

16 CHAPTER 3. HOW TO USE ORK

(environment)

Event

Wait

Signal

priority = 0 priority = 1 priority = 2

ceiling priority = 2

SporadicPeriodicBackground

Figure 3.2: Task structure of the Hello program. Parallelograms represent tasks, and
rounded rectangles represent protected objects. The arrows denote procedure or entry
calls.

3.2.3 A first example

Let us now see a simple Ravenscar-compliant Ada program. The program consists of
two compilation units: the main procedure (file hello.adb), and a package with all the
application code, including two tasks, a protected object, and a background procedure
(files tasking.ads and tasking.adb). Notice that GNAT requires that each compilation unit
is in a separate file with the same name as the unit (see the GNAT User’s Guide [5] for the
details).

Figure 3.2 shows the task structure of the program.

−− hello.adb - Main procedure for the ’hello’ example
with Tasking;
−− used for Background
procedure Hello is

pragma Priority (0); 5

begin
−− do some background work - must not terminate
Tasking.Background;

end Hello;

Notice that the main procedure does nothing but start a background procedure. The
Priority pragma specifies the lowest possible priority for the environment task (i.e. the
initial task that does all initialization and then calls the main procedure). In this way, we
ensure that the background procedure is only executed when there are no other executable
tasks.

The environment task is not allowed to terminate in GNAT with the Ravenscar pragma.In
order to prevent this to happen, the background procedure must never return. This is
checked at compile time by writing a No_Return pragma near the procedure specification
(in file tasking.ads):

−− tasking.ads - application tasks for the ’hello’ example
package Tasking is

procedure Background;
pragma No Return (Background);

3.2. WRITING ADA 95 PROGRAMS 17

−− background activity - does not terminate 5

end Tasking;

The tasking package specification contains no other declarations. All the application
activities are included in the package body:

−− tasking.adb - application tasks for the ’hello’ example
with Ada.Real Time;
−− used for Clock, Time Span, Milliseconds
with Kernel.Serial Output; use Kernel.Serial Output;
−− used for Put Line; 5

package body Tasking is
use Ada.Real Time;

−− Task and protected object declarations -
type Cycle Count is mod 10; 10

task Periodic is
pragma Priority (1);

end Periodic;
15

task Sporadic is
pragma Priority (2);

end Sporadic;

protected Event is 20

pragma Priority (2);
procedure Signal (C : Cycle Count);
entry Wait (C : out Cycle Count);

private
Occurred : Boolean := False; 25

Cycle : Cycle Count := 0;
end Event;

−− Background procedure
30

procedure Background is
C : Cycle Count := 0;

begin
loop

C := C + 1; 35

end loop;
end Background;

−− Task and protected object bodies
40

task body Periodic is
Period : Time Span := Milliseconds (1 000); −− 1s
Next : Time := Clock;
Cycle : Cycle Count := 1;

begin 45

loop
delay until Next;
Put Line("Hello periodic");
if Cycle = 0 then

Event.Signal(Cycle); −− signal once every 10s 50

end if;
Cycle := Cycle + 1;
Next := Next + Period;

end loop;

18 CHAPTER 3. HOW TO USE ORK

end Periodic; 55

task body Sporadic is
Cycle : Cycle Count;

begin
loop 60

Event.Wait(Cycle);
Put Line("Hello sporadic");

end loop;
end Sporadic;

65

protected body Event is

procedure Signal (C: Cycle Count) is
begin

Occurred := True; 70

Cycle := C;
end Signal;

entry Wait(C : out Cycle Count)
when Occurred is 75

begin
Occurred := False;
C := Cycle;

end Wait;
80

end Event;

end Tasking;

Notice that the background procedure actually does nothing but increment a count in
an endless loop. In real applications it might include some useful work to be executed at
the lowest priority.

The tasking package contains two tasks: a periodic task, and a sporadic task. The
latter is activated by the periodic task by means of a synchronization protected object
(event). This is a common way to implement software-activated sporadic tasks [15]. The
periodic task activates the sporadic task once every ten cycles. Each task writes a string
to the serial output every time it is activated.

There is a copy of the above files in the examples/hello distribution directory. In
order to compile and link the example files, you should copy them to a working directory
and follow the steps that are described in the next section.

3.3 Compiling and linking Ada 95 programs

You can compile and link your program with gnatmake. For instance:

$ sparc-ork-gnatmake hello \
-largs -k -mcpu=cypress -specs ork_specs

The command line switches are described in the GNAT User’s Guide [5].
You can also compile, bind, and link separately:

$ sparc-ork-gcc -c hello.adb
$ sparc-ork-gcc -c tasking.adb
$ sparc-ork-gnatbind -x hello.ali
$ sparc-ork-gnatlink -k -mcpu=cypress -specs ork_specs hello.ali

3.4. DEBUGGING ADA 95 PROGRAMS ON THE DEVELOPMENT PLATFORM 19

See the GNAT User’s Guide [5] for details on the switches and library files.
A link diagnostic information file with the symbols which are mapped by the linker

together with information on global common storage allocation can be obtained by using
the following switch for gnatlink:

$ sparc-ork-gnatmake -g hello.adb -largs -Xlinker -Map hello.map \
-k -mcpu=cypress -specs ork_specs

As a result, a link diagnostic file called hello.map is created. This kind of map files
tend to be useful in embedded software development.

After all these compilation steps an ELF-32 SPARC executable called hello is ob-
tained.

3.4 Debugging Ada 95 programs on the development plat-
form

The simplest way you can test your program is by using an ERC32 simulator on your
development platform. If you have the TSIM simulator4 you can do:

$ tsim hello

And typing “go” from the command prompt you will get the following output:

Hello periodic
Hello periodic
Hello periodic
Hello periodic
Hello periodic
Hello periodic
Hello periodic
Hello periodic
Hello periodic
Hello periodic
Hello sporadic
Hello periodic
...

There is another simulator, called SIS,5 which is not available for ELF-32 SPARC
executable format. Therefore, this simulator requires an additional step to change the
format of the executable. You can do:

$ sparc-ork-objcopy -O srec hello hello.srec
$ sis hello.srec

And typing “go” from the command prompt you will get the same output as with
TSIM.

4TSIM is not free software, and it is not part of ORK. See http://www.gaisler.com/for futher details.
5SIS is not free software. It is not part of ORK, and is not available at the ORK site. See http:

//www.estec.esa.nl/wsmwww/erc32/freesoft.html for further details.

20 CHAPTER 3. HOW TO USE ORK

WARNING 3.3
SIS uses a 32 bit counter for CPU cycles. As a result, the execution stops after 232 CPU
cycles, which is about 7 minutes of simulated time for a 10 MHz ERC32. You may use the
SIS64 version of SIS, which uses a 64 bit counter and has virtually unlimited simulation
time. Be aware, however, that it runs about 20% slower than SIS.

Running the program on TSIM or SIS by themselves does not provide enough in-
formation on the behaviour of the program. You can have a better view of the program
execution by using the GDB debugger, connected to the TSIM ERC32 simulator. In this
case, TSIM must be started with the -gdb option, so that it waits for a connection from
GDB:

$ tsim -gdb
...

gdb interface: using port 1234

After that, GDB can be started in the usual way (for instance, in another window).
Before loading the program to debug, GDB must be connected to the simulator (using the
extended-remote target):

$ sparc-ork-gdb hello \
--command=/usr/local/openravenscar/lib/ork_tasking-tsim.gdb

(gdb) target extended-remote 127.0.0.1:1234
...

(gdb) load
...

(gdb) cont
...

(gdb) detach
...

You can have a better view with the DDD graphich front-end to GDB:

$ ddd hello --debugger sparc-ork-gdb \
--command /usr/local/openravenscar/lib/ork_tasking-tsim.gdb

The GDB script ork_tasking.gdb provides debugging facilities for Ada tasks on top of
ORK. See the section on Ada tasking of the manual Debugging with GDB to learn more
about how to use it, and the facilites actually provided.

WARNING 3.4
This debugging facilities for Ada tasks can be used through the additional buttoms and
menus of the improved ORK version of DDD.

If the ORK version of DDD is used then the target can be set and the program can be
load in TSIM by pushing the special buttom which is labeled load.

For a complete description of GDB and DDD commands, see the documents Debug-
ging with GDB [34] and Debugging with DDD [44].

3.5. EXECUTING AND DEBUGGING ADA 95 PROGRAMS ON THE TARGET PLATFORM21

3.5 Executing and debugging Ada 95 programs on the
target platform

The remote target monitor needs to be running on the target board to allow remote target
debugging with sparc-ork-gdb. The remote target monitor uses UART B as debugging
link and UART A as console.

A boot PROM must be make to load and run the remote target monitor on a standalone
target.

3.5.1 Making boot PROMS

ORK applications are linked to run from beginning of RAM at address 0x2000000. To
make a boot-PROM that will run on a standalone target, use the mkprom utility. This
will create a compressed boot image that will load the application to the beginning of
RAM, initiate various MEC register, and finally start the application. mkprom will set all
target dependent parameters, such as memory sizes, number of memory banks, waitstates,
baudrate, and system clock. The applications do not set these parameters themselves, and
thus do not need to be relinked for different board architectures. The example below
creates a boot PROM for a system with 1 Mbyte RAM, one waitstate during write, 3
waitstates for ROM access, and a 10 MHz system clock. For more details see the mkprom
manual.

$ mkprom -ramsz 1024 -ramwws 1 -romws 3 hello -freq 10 hello.srec

A file called hello.srec is created. The format of that file is Motorola S-record
which is usually accepted by PROM recorders. It is possible to use an ERC32 simulator
(SIS or TSIM) to load and test the resulting file.

3.5.2 Remote target monitor

The directory /usr/local/openravenscar/src/rem-com contains the remote monitor.
The monitor supports “break-in” into a running program by pressing Ctrl-C in GDB or
interrupt in DDD. The two timers are stopped during monitor operation to preserve the
notion of time for the application. Note that the remote debugger monitor only works
with programs compiled with ORK-ERC32 2.2b.

Type make, in the /usr/local/openravenscar/src/rem-com directory, to build
the monitor. Before building setup the Makefile for your board. Record the resulting
*.srec file to your boot-PROM. The remote debugger must be attached via UART B to
the host, and a console can be attached via UART A.

The monitor installs itself into the top 64K of RAM. It therefore needs to know how
large the RAM is. The default RAM size for the monitor is 2 Mbyte. You will have to
adjust the Makefile in the /usr/local/openravenscar/src/rem-com directory if your
system has a different memory size.

3.5.3 Using GDB with a remote target

You can use the debugger while your program runs on the target platform. To do so you
need a serial link between UART B of the remote target and a serial device on your host
station. If your program produces some output, you need another serial link connection
from UART A to a terminal emulator on your host to display it. Terminal emulators such
as tip, minicom and kermit will do.

22 CHAPTER 3. HOW TO USE ORK

For example, on a i386/GNU Linux workstation, UART A can be connected to /dev/
ttyS0 (usually labeled as COM1), and UART B can be connected to /dev/ttyS1 (usually
labeled as COM2). On a SPARC/Solaris workstation /dev/ttya and /dev/ttyb can be
used.

The remote target has a boot PROM with a remote target monitor which operates the
serial lines at 115200 bauds.

If under this example configuration you type

$ xterm -e tip -115200 /dev/ttyS0 &

An X-terminal is created, and the terminal emulator program TIP is attached to /dev/
ttyS0, which is configured at 115200 bauds. The initial message of the remote target
monitor will then be displayed on the X-terminal by powering-on or resetting the remote
target. Now, the debugging session can be started:

$ sparc-ork-gdb hello \
--command /usr/local/openravenscar/lib/ork_tasking-rem-tar.gdb

(gdb) set remotebaud 115200
(gdb) target erc32 /dev/ttyS1
(gdb) load
(gdb) continue

...

You can also use DDD for a better interface:

$ ddd hello --debugger sparc-ork-gdb \
--command /usr/local/openravenscar/lib/ork_tasking-rem-tar.gdb

If you use the ORK version of DDD, then you may use the “Load” menu button to set
the target and load the program on the remote target. The default GBD script ork_tasking-
rem-tar supplied with the ORK distribution uses /dev/ttyS1 at 115200 bauds for the
host-target communication, but you can change this setting by editing the script.

3.5.4 Using GBD with an ERC32 simulator with the remote target
monitor

It is possible to use a simulator as the remote target, and connect it with sparc-ork-gdb.
For example, let us suppose that UART B is connected to pseudo-device /dev/ttypb.

The you can type:

$sis -freq 10 -fast_uart -uart2 /dev/ptypb mon.srec
> go

SIS 6 simulates a remote target with a 10 MHz ERC32, UART B connected to pseudo-
device /dev/ttypb, and running the remote target monitor. The initial message of the
remote target monitor will be displayed.

The fast_uart flag, which can be omitted, runs UARTS at an infinite speed, rather
than with the correct slow timing. As a result the communication via the pseudo-serial
lines will be as fast as possible.

Now, the debugging session can be started:

6Either SIS or TSIM can be used for this purpose.

3.6. INTERRUPT HANDLERS 23

$ sparc-ork-gdb hello \
--command /usr/local/openravenscar/lib/ork_tasking-rem-sim.gdb

(gdb) target erc32 /dev/ttypb
(gdb) load
(gdb) continue

...

Of course, DDD can also be used:

$ ddd hello --debugger sparc-ork-gdb \
--command /usr/local/openravenscar/lib/ork_tasking-rem-sim.gdb

If you use the ORK version of DDD, then you may use the “Load” menu button
to set the target and load the program on the remote target. The default GBD script
ork_tasking-rem-sim, which is supplied with the ORK distribution, uses /dev/ttypb for
the host-simulator communication, but you can change this setting by editing the script.

It is also possible to connect UART A to other pseudo-device (/dev/ttypa) and to attach
to the pseudo-device a terminal emulator program. Then, the initial message of the remote
target monitor will be displayed on the terminal emulator program.

WARNING 3.5
Occasionally, sparc-ork-gdb hangs when attempting to load the program on the simulators
(SIS or TSIM). If you experience this problem, type Crtl-C and then type load again. This
problem has never arisen with actual remote targets. Therefore, it can be concluded that it
is a simulator or a Unix pseudo-device bug. The bug has not been fixed by the ORK team
as the source code of the simulators is not available.

3.6 Interrupt handlers

3.6.1 Protected procedure handlers

The Ravenscar profile allows the use of protected procedures as interrupt handlers. Inter-
rupt handlers are declared as parameterless protected procedures, attached to an interrupt
source. Interrupt sources are identified in the Ada.Interrupts.Names package. This pack-
age contains the identifiers of all the ERC-32 interrupts.

WARNING 3.6
The Ravenscar profile only allows the static attachment of protected procedures as inter-
rupt handlers. The sources of GNAT Run-Time Library have been modified to take into
account that restriction by the ORK team. As a result, a pragma Interrupt_Handler without
the corresponding pragma Attach_Handler gives the following compilation error:

fatal error: run-time library configuration error
cannot locate "Dynamic_Interrupt_Protection" in file "s-interr.ads"
(entity not in package)

Moreover, a call to Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler,
Detach_Handler, and Reference will raise Program_Error. Although, a call to Is_Reserved
does not raise Program_Error in the current version of ORK.

24 CHAPTER 3. HOW TO USE ORK

A general template is:

with Ada.Interrupt.Names; use Ada.Interrupt.Names;

−− used for External Interrupt 0, External Interrupt 0 Priority

protected Interrupt is
5

−− public protected operations

private

−− the handler need not be visible outside the protected object

pragma Interrupt Priority(External Interrupt 0 Priority); 10

procedure Handler;
pragma Attach Handler (Handler, External Interrupt 0);

−− other private operations and data

end Interrupt;

Notice that you should assign a priority to the protected object with a pragma Priority.
You should use a priority level equal to the hardware priority of the interrupt source.
Notice that hardware priority levels are the values of interrupt names as declared in the
package Ada.Interrupt.Names.

WARNING 3.7
You should only use priorities in the Interrupt_Priority range for protected objects that
contain interrupt handlers (ALRM C.3.1).

3.6.2 An example with interrupts

Appendix C describes an example application with interrupt handlers.

3.7 Working with C programs

3.7.1 The C interface

ORK may be used from C programs through the CIL (C Interface Layer, figure 2.2).
The CIL consists of some header files that contain the appropriate types and function
definitions which are needed to interface with the ORK kernel. These files are:

• ork.h

• types.h

• kernel-interrupts.h

• kernel-memory.h

• kernel-threads.h

• kernel-time.h

3.7. WORKING WITH C PROGRAMS 25

3.7.2 ORK & CIL limitations

A C program for the ORK kernel can be divided into any number of .c and .h files, just
like any ordinary C program. However, the following issues should be taken into account:

• The Ravenscar profile restrictions cannot be enforced at compilation time by any
means, so the conformance of the application with the Ravenscar profile is left up
to the programmer.

• Concurrency is handled by the kernel. No processes can be created, only threads,
and only through the CIL capabilities. Moreover, the main function must not termi-
nate, as the Ravenscar profile states clearly.

As a result, the main program will have the following structure:

void main (void)
{

/* C variable declaration */
/* Ada packages elaboration */
/* ORK kernel initialization */ 5

/* C variable initialization */
/* Tasks creation statements */
/* Environment Task’s infinite loop */

}

Tasks must not terminate either, so the structure of task bodies will be as follows:

void task body (void)
{

/* Task’s local variable declaration and initialization */
while (1) {

/* task code */ 5

}
}

• Ada packages must be elaborated before functions exported to C can be used. This
means that the function adainit() must be called as soon as possible from the C
program. Although the program must not terminate, a call to adafinal() at the end
would be desirable, just in case.

• No dynamic memory can be used, thus no malloc calls can be made. All variables
must be declared statically, and references must be used instead of pointers.

3.7.3 A simple example

The example that follows is a C implementation of the Ada program from section 3.2.3,
with a condition variable being used instead of a protected object. The output will be the
same as the one on section 3.4

##
$Id: c−hello.c,v 1.6 2002/03/01 11:52:58 ork Exp $
##
#include "ork.h"

5

ork cond t event c;
ork mutex t event m;

26 CHAPTER 3. HOW TO USE ORK

int periodic (void) { 10

ork time t period = 1*SECOND;
ork time t next = kernel clock();
int c = 10;

15

while (1) {
kernel delay until(next);
c−−;

printf("Hello periodic\n"); 20

if (c == 0) {
kernel condition signal (&event c);
c = 10;

}
next = next + period; 25

}
}

int sporadic (void) {
30

int ceiling violation = 0;

while (1) {
kernel mutex lock (&event m, &ceiling violation);
kernel condition wait (&event c, &event m); 35

kernel mutex unlock (&event m);

printf("Hello sporadic\n");
}

} 40

int main (void)
{

ork thread t periodic task;
ork thread t sporadic task; 45

ork thread t env task;

ork prio t p periodic;
ork prio t p sporadic;
ork prio t p env; 50

ork prio t p mutex;

int stacksize = 5120;
int ok; 55

int count = 0;

adainit();
kernel initialize();

60

p periodic = 200;
p sporadic = 201;
p mutex = 202;

kernel mutex init (&event m, p mutex); 65

kernel condition init (&event c);

3.7. WORKING WITH C PROGRAMS 27

// How to change environment thread’s priority
env_task = *kernel_thread_self ();
p_env = 100; // New priority 70

kernel_set_priority (&env_task, p_env);

kernel_thread_create(&periodic_task, periodic, 0, p_periodic, stacksize, &ok);
kernel_thread_create(&sporadic_task, sporadic, 0, p_sporadic, stacksize, &ok);

75

// Environment task’s code
while (1) {

if (count++ >= 10)
count = 0;

} 80

adafinal();
}

85

As it follows from the example, a single header file must be included: ork.h, which
includes the other CIL header files required by the program.

Notice that the main procedure never terminates. This is due to the GNAT requirement
that the environment task never ends under the Ravenscar profile (the same happens with
Ada example in 3.4).

The default priority for the environment task is 120. This can be changed by the
environment task itself, as can be seen in the example (line 65), where the environment
task’s priority is set to 100.

3.7.4 Compiling a C program

The compiler must know which Ada packages have to be elaborated. As such information
cannot be provided in the C program nor in the Makefile, a dummy Ada procedure that
uses the ORK packages has to be added to the program. The code of this procedure is:

with Kernel.Threads;
with Kernel.Time;
with Kernel.Interrupts;
with Kernel.Memory;
procedure Stub is 5

begin
null;

end Stub;

The steps that should be followed to produce an ORK-based application written in C
are:

1. Compile your C code:

$ sparc-ork-gcc -I/usr/local/openravenscar/include -g -c \
c-program.c

2. Compile the Ada code:

$ sparc-ork-gnatmake -gnata -gnatE -gnato -gnatr -g -c stub.adb

28 CHAPTER 3. HOW TO USE ORK

3. Bind the Ada program:

$ sparc-ork-gnatbind -n -t -Mmain stub.ali

4. Link everything together:

$ sparc-ork-gnatlink -k -mcpu=cypress -specs ork_specs \
stub.ali c-program.o -lgnarl -o c-application

Chapter 4

ORK reference

4.1 Installation and directory structure

4.1.1 Getting ORK

ORK is only distributed via anonymous ftp. The primary home of ORK is http://www.
openravenscar.org. The ORK cross-compilation system and related tools can be found
by clicking on the link “software”. The sources used to build ORK cross-compilation
system can be also found at the same location. The ORK distribution includes:

openravenscar-2.2-i686-pc-linux-gnu-bin.tar.gz : gzipped tarfile which contains the
binary distribution for GNU/Linux. The current distribution has been compiled
on Red-Hat 6.2using glibc2 libraries. To avoid problems with different versions of
libc, all binaries are statically linked.

openravenscar-2.2-sparc-solaris2.8-bin.tar.gz : gzipped tarfile which contains the bi-
nary distribution for Solaris. The current distribution has been compiled on So-
laris 2.8. To avoid problems with different versions of libc, all binaries are statically
linked.

openravenscar-2.2-src.tar.gz : gzipped tarfile which contains the sources as well as the
procedures for building the ORK.

PC-compatible computers with a GNU/Linux operating system and SPARC comput-
ers with Solaris are supported as development platforms. The installation procedure for a
Linux computers is detailed but the installation procedure for a Solaris computers is the
same. Although, the binary distribution for Solaris must be used instead.

4.1.2 Installing ORK

The openravenscar 2.2b directory tree has been compiled to reside in the /usr/local/
openravenscar directory. After obtaining the gzipped tarfile openravenscar-2.2-i686-pc-linux-gnu-bin.
tar.gz, which includes the binary distribution, uncompress and untar it onto /usr/
local/openravenscar, or create a link to the openravenscar location.

The Open Ravenscar distribution can be installed with the following commands (as-
suming the gzipped tar file is located at /tmp/openravenscar-2.2-i686-pc-linux-gnu-bin.
tar.gz):

$ cd /usr/local
$ tar -zxvf /tmp/openravenscar-2.2--i686-pc-linux-gnu-bin.tar.gz

29

30 CHAPTER 4. ORK REFERENCE

After the cross-compilation system is installed, /usr/local/openravenscar/bin
must be added to the search path (usually, environment variable PATH in your shell).

4.1.3 Installing the ORK sources

In this chapter it is assumed that the sources are installed in /usr/local/openravenscar/
src, although they can be installed at any location. After obtaining the gzipped tarfile
openravenscar-2.2-src.tar.gzwhich contains the sources of ORK cross-compilation
system, uncompress and untar it to /usr/local/openravenscar/src.

The Open Ravenscar distribution can be installed with the following commands (as-
suming the gzipped tar file is located at /tmp/openravenscar-2.2-src.tar.gz):

$ cd /usr/local
$ tar -zxvf /tmp/openravenscar-2.2-src.tar.gz

The sources have been adapted using ACT patches, RTEMS patches, and specific
ORK patches. The sources provided are ready for building the ORK cross-compilation
system. The directory /usr/local/openravenscar/src also contains procedures for
building the whole ORK cross-compilation system and the ORK adalib (see sections 4.4
and 4.4.3).

4.1.4 Directory structure

Contents of /usr/local/openravenscar

bin: executables.

demo: demo application which shows ORK functionality (see appendix C).

include: include files.

lib: gcc libraries which include ORK adalib for erc32 target.

info: gcc documentation in info format.

man: man pages.

sparc-ork-elf: newlib (libc) library for SPARC family.

src: sources of ORK and related tools.

Contents of /usr/local/openravenscar/src

binutils-2.9.1: Adapted sources of binutils for ORK.

newlib-1.8.2: Adapted sources of newlib for ORK.

gcc-2.8.1: Adapted sources of gcc for ORK.

gcc-2.8.1/ada: Adapted sources of gnat-3.13a for ORK including ORK itself.

ORK: Startup code and miscellaneous support routines.

4.1. INSTALLATION AND DIRECTORY STRUCTURE 31

4.1.5 Tools

ORK includes the following tools in the /usr/local/openravenscar/bin directory:

sparc-ork-addr2line: utility to translate program addresses into file names and line num-
bers.

sparc-ork-ar: library archiver.

sparc-ork-as: cross-assembler.

sparc-ork-c++filt: utility to demangle C++ symbols.

sparc-ork-gasp: assembler pre-processor.

sparc-ork-gcc: C cross-compiler.

sparc-ork-gnat: utility to list GNAT commands, qualifiers and options.

sparc-ork-gnatbind: Ada binder.

sparc-ork-gnatbl: Ada bind and link.

sparc-ork-gnatchop: Ada source code splitter.

sparc-ork-gnatfind: Ada utility for locating definitions and/or references to a specified
entity or entities.

sparc-ork-gnatkr: Ada file name kruncher.

sparc-ork-gnatlink: Ada linker.

sparc-ork-gnatls: Ada library lister.

sparc-ork-gnatmake: Ada make utility.

sparc-ork-gnatmem: Ada utility to monitors dynamic allocation and deallocation activ-
ity in a program.

sparc-ork-gnatprep: Ada pre-processor.

sparc-ork-gnatpsta: utility to print the Standard package.

sparc-ork-gnatpsys: utility to display the System package.

sparc-ork-gnatxref: Ada utility to generating a full report of all cross-references.

sparc-ork-ld: linker.

sparc-ork-nm: utility to print symbol table.

sparc-ork-objcopy: utility to convert between binary formats.

sparc-ork-objdump: utility to dump various parts of executables.

sparc-ork-ranlib: library sorter.

sparc-ork-size: utility to display segment sizes.

sparc-ork-strings: utility to dump strings from executables.

sparc-ork-strip: utility to remove symbol table.

32 CHAPTER 4. ORK REFERENCE

4.1.6 Documentation

An extensive set of documentation for all the tools can be found in the /usr/local/
openravenscar/info and /usr/local/openravenscar/man directories.

Data sheets for the ERC32 as well as GNU tools such as ld, as, bdf, etc. can be found at
the ESA ERC32CCS site located at ftp://ftp.es-tec.esa.nl/pub/ws/wsd/erc32/
erc32ccs.

4.2 Kernel interface

4.2.1 Introduction

The kernel provides all the required functionality to support real-time programming on
top of the ERC32 hardware architecture. The kernel functions are grouped as follows:

1. Task management, including task creation, synchronization, and scheduling.

2. Time services, including absolute delays and real-time clock.

3. Memory management. The only kinds of dynamic storage allocation supported by
the kernel are those required to allocate task control blocks (TCBs) and stack space
for tasks at system startup.

4. Interrupt handling.

All these functions are described in the following subsections.
The kernel is normally used as a low-level layer providing the basic functionality to

the upper GNAT run-time system. However, it can be used directly from an application
program, written in either Ada or C.

4.2.2 Threads and synchronization

The operations related with the initialization of the kernel, thread management, synchro-
nization, and scheduling are implemented in the package Kernel.Threads.

with System;
−− used for Address
package Kernel.Threads is

procedure Initialize; 5

−− Thread support

type Thread Id is private;
Null Thread Id : constant Thread Id; 10

procedure Thread Create (Id : in out Thread Id;
Code : System.Address;
Args : System.Address;
Priority : Integer; 15

Stack Size : Integer;
Succeeded : out Boolean);

function Thread Self return Thread Id;
20

4.2. KERNEL INTERFACE 33

−− Mutual exclusion locks

type Mutex is limited private;

procedure Mutex Init (Id : access Mutex; 25

Ceiling Priority : Integer);
procedure Mutex Lock (Id : access Mutex;

Ceiling Violation : out Boolean);
procedure Mutex Unlock (Id : access Mutex);

30

−− Condition variables

type Condition is limited private;

procedure Condition Init (Id : access Condition); 35

procedure Condition Wait (Id : access Condition;
Mutex Id : access Mutex);

procedure Condition Signal (Id : access Condition);

−− Scheduling - 40

procedure Set Priority (Id : Thread Id;
Priority : Integer);

function Get Priority (Id : Thread Id) return Integer;
45

procedure Yield;

−− Debugging support -

function Check No Mutexes (Self ID : Thread Id) return Boolean; 50

end Kernel.Threads;

Before calling any kernel operation, the initialization routine (Initialize) must be ex-
plicitly invoked. Its purpose is to initialize the ready queue, as well as the descriptors
of the environment thread (which executes the main procedure) and the dummy thread
(which is executed when there is no ready threads in the system).

Once the kernel has been initialized, threads can be created invoking the procedure
Thread_Create. This procedure needs to know the pointer to the function to execute
(and its argument), its priority, and its required stack size. With this information a new
thread is created. Both the thread descriptor and the new stack for the thread are obtained
from a preallocated pool, so that no dynamic memory allocation is needed. The function
Thread_Self is used to obtain the identity of the currently running thread.

The synchronization of threads can be achieved using both mutexes and condition
variables. Mutexes implement the ceiling locking protocol, as required by the Ravenscar
profile. Condition variables must always be used with an associated mutex to guarantee
the mutual exclusion.

The procedure Mutex_Init initializes the mutex, setting the value of its ceiling priority.
Once the mutex is initialized, in can be acquired calling Mutex_Lock. The effect of seizing
the mutex is that the active priority of the thread is raised to the ceiling priority of the
mutex.

Several implementations of threads support acquiring a mutex just for reading or with
read/write permission. This choice enhances the level of concurrency in multiprocessor
systems, but it presents an unnecessary overhead with no benefits in monoprocessor sys-
tems.

34 CHAPTER 4. ORK REFERENCE

The procedure Mutex_Unlock releases the mutex. The active priority of the thread is
restored to the value held by the thread just before acquiring the mutex.

The Ravenscar profile does not allow finalization of objects, so there is no kernel
primitive for the finalization of mutexes.

Seizing of mutexes can be nested, so that a thread which holds a mutex can acquire
another one; of course, the ceiling priority of the latter must be greater or equal to the
ceiling of the former, to avoid the violation of the ceiling locking protocol. When nesting
mutexes, LIFO order of unlocking is required.

Condition variables are used to suspend the current thread until the condition is sig-
nalled. Conditions have a procedure called Condition_Init which initializes the condition.
When a thread wants to suspend itself until the condition is signalled by another thread,
Condition_Wait is called. Waiting on a condition is always associated to a mutex, which
must be held by the thread before calling the Condition_Wait operation. The effect of this
call is to atomically release the mutex and suspend the thread. The kernel guarantees that
the thread is granted the mutex again when it resumes execution.

The Ravenscar profile does not allow more than one thread to wait on a condition at
the same time. If a thread tries to wait on a condition that already has another thread
waiting on, a bounded error occurs. The default kernel action upon this bounded error is
to suspend the calling thread forever. In fact, this action should never be taken for Ada
tasks, because this error is caught by the GNARL code that deals with protected entry call.
The GNARL action for this bounded error (violation of the Ravenscar profile restriction
Max_Queue_Depth => 1) is to raise Program_Error, as specified by the Ravenscar profile
definition (see appendix A).

WARNING 4.1
The GNAT 3.13 implementation of this specification does not work correctly. It is there-
fore possible that the kernel suspends a task forever as a result of calling an entry with a
queued call in the current openravenscar 2.2b cross-compilation system.

The procedure Condition_Signal signals the condition, so that if there is a thread wait-
ing on the condition, the task resumes its execution. If there are no waiting threads, this
call has no effect.

The base priority of the thread, which is the priority of the thread without taking into
account the dynamic priority changes which may be caused by the ceiling locking policy,
can be changed by calling the procedure Set_Priority. The current base priority of a thread
can be obtained calling the procedure Get_Priority.

The scheduling of threads is performed according to the FIFO within priorities and the
ceiling locking methods (see ALRM D.2-3). However, a context switch may be forced by
calling the procedure Yield; when calling this procedure, the ownership of the processor is
voluntarily transferred to the next ready thread with the currently active priority. If there
is no other thread with this active priority this call has no effect.

4.2.3 Time management

The operations related with time are implemented in package Kernel.Time.

package Kernel.Time is

type Time is range −(2**63) . . +(2**63 − 1);

−− Clock 5

function Clock return Time;

4.2. KERNEL INTERFACE 35

Tick : constant Time;

−− Delay until
procedure Delay Until (T : Time); 10

end Kernel.Time;

The time in ORK is represented as a 64-bit integer number of nanoseconds. The
interval of time values that can be represented in this way is approximately -292..+292
years.

The kernel provides a high resolution clock with low overhead in timer handling; the
combination of a timestamp counter and a high resolution timer contributes to improve
the performance and granularity of the time management.

The ERC32 hardware provides two timers (apart from the special Watchdog timer)
which can be programmed to be either of single-shot type or periodical type [39]. We use
one of them (the Real Time Clock) as a timestamp counter and the other (called General
Purpose Timer) as a high-resolution timer. Therefore, the first provides the basis for a high
resolution clock, while the second offers the required support for precise alarm handling.

The Real Time Clock is programmed by ORK to interrupt periodically by updating
the most significant part of the clock. The less significant part of the clock is held in the
hardware clock register. A software register is used to store the most significant part of
the clock. The Real Time Clock period can be modified by changing the value of Ker-
nel.Parameters.Clock_Interrupt_Period, which represents the integer number of nanosec-
onds of the desired clock interrupt period.

Depending on the selected period for the clock interrupt, the overhead imposed to the
system changes.

The current value of the real-time clock can be obtained calling the function Clock.
This function returns the number of nanoseconds elapsed since system startup, providing
a time zone independent, monotonically increasing, absolute time value.

The granularity of the real-time clock can be read from the constant called Tick.
When a thread needs to suspend until an absolute time, the procedure Delay_Until is

called. The effect of this call is the suspension of the calling thread until the value of the
clock is equal to or greater than the specified time. If the alarm time is not in the future,
the ownership of the processor is transferred to the next ready thread with the currently
active priority.

4.2.4 Memory management

The memory management is implemented by package Kernel.Memory. No heap manage-
ment is provided, as dynamic data allocators are expected not to be found in Ravenscar
compliant programs.

with System;
−− used for Address
with System.Parameters;
−− used for Size Type
package Kernel.Memory is 5

function New Memory Region (Bytes : System.Parameters.Size Type)
return System.Address;

function New Stack (Bytes : System.Parameters.Size Type)
return System.Address; 10

36 CHAPTER 4. ORK REFERENCE

end Kernel.Memory;

The procedure New_Memory_Region allocates a memory block with the desired size,
returning the address of the beginning of this block.

Space for stacks is requested using the function New_Stack. The required stack size is
set as the argument of the function, and the value returned by the function is the address
of the top of the new stack.

Memory deallocation is not supported by ORK.

4.2.5 Interrupt handling

Interrupt names and operations are encapsulated by package Kernel.Interrupts.

with System;
−− used for Address
package Kernel.Interrupts is

type Interrupt ID is . . .; 5

procedure Attach Handler (Handler : System.Address;
Id : Interrupt ID);

procedure Detach Handler (Id : Interrupt ID);
function Current Handler(Id : Interrupt ID) 10

return System.Address;

end Kernel.Interrupts;

Interrupt handlers are always executed using an interrupt stack. The size of the inter-
rupt stack can be modified by the user changing the value of Kernel.Parameters.Interrupt_
Stack_Size. Interrupt handlers are called directly from the hardware, and are executed as
if they were directly invoked by the interrupted thread (but using the interrupt stack).

The procedure Attach_Handler must be called to attach a handler to an interrupt. The
required arguments for this procedure are:

• Id. The interrupt identifier.

• Handler. The address of the procedure used as interrupt handler.

• Priority. The priority at which the interrupt handler is executed. This value must be
at least equal to the priority of the interrupt.

If the active priority of a running thread is equal to or greater than the one of an
interrupt, the interrupt will not be recognized by the processor. On the contrary, the
interrupt will remain pending until the active priority of the running task becomes lower
than the priority of the interrupt, and only then will the interrupt be recognized.

An important implication of this interrupt model is that users should always use dis-
tinct priorities for threads and interrupt handlers; otherwise, tasks could delay the interrupt
handling. The implication of this (correct and important) recommendation is that the user
should not assign priorities in the Interrupt_Priority range to software tasks.

The procedure Detach_Handler detaches a previously attached interrupt handler. Sub-
sequent deliveries of the interrupt are handled by a default handler which is part of the
kernel itself. This call has no effect if an interrupt handler was not previously attached.

The function Current_Handler gets the address of the handler which is currently at-
tached to an interrupt.

4.3. ERRORS 37

4.3 Errors

Errors in the kernel are signalled to the application program by means of the Ada excep-
tion mechanism.

Dynamic memory should only be allocated (from a preallocated pool) in the initial-
ization of the kernel, as a result of task creation (ATCBs, stacks, . . .). If the preallocated
pool is completely full, any request for new space raises Tasking_Error.

The stack allocated for each task is protected using the memory access protection
functionality provided by the MEC in ERC32. When the stack for any task is not enough
for its computation, a Storage_Error is raised (with a “stack overflow” message) when a
task tries to write outside the bounds of its stack.

When attaching protected procedures to interrupts, the ceiling priority of the protected
object should be carefully chosen. The compiler checks that the interrupt for the protected
object is in the range of System.Interrupt_Priority. This range of priorities is mapped to
the 15 different interrupt levels provided by the SPARC architecture. Therefore, when
assigning priorities to protected objects, the priority value must be at least equal to the
priority of the hardware interrupt. Otherwise, the execution of the program is erroneous
(ALRM C.3.1). The kernel cannot automatically detect this wrong priority assignment,
and it must be done by the user.

One important restriction of ORK is related to the implementation of protected ob-
jects. Calling an operation that is potentially blocking during a protected action is a
bounded error (see ALRM 9.5.1). The implementation requires the user not to make
potentially blocking calls within protected subprograms, as this greatly simplifies the im-
plementation of the underlying mutexes required by protected objects.

WARNING 4.2
The user must carefully write protected subprograms to avoid bounded errors when calling
potentially blocking operations during protected actions.

Potentially blocking operations are (ALRM 9.5.1):

• Protected entry calls;

• delay until;

• Ada.Synchronous_Task_Control.Suspend_Until_True (ALRM D.10);

Notice that an external call on a protected subprogram with the same target object as
that of the protected action, or a call on a subprogram whose body contains a potentially
blocking operation is also a blocking operation (ALRM 9.5.1).

4.4 Tailoring the kernel

ORK has configuration parameters to tailor it to different applications. This parameters
are mainly in kernel-parameters.ads. That file, as well as other ORK files, can be found
at /usr/local/openravenscar/src/gcc-2.8.1/ada.

You can modify that file and rebuild the whole cross-compilation system in order to
build an ORK that satisfies your requirements.

It is recommended that the file kernel-parameters.ads be previously compiled:

$ sparc-ork-gcc -c -gnatpg kernel-parameters.ads

After updating kernel-parameters.ads, the ORK cross-compilation system can be re-
built (see section 4.4.3).

38 CHAPTER 4. ORK REFERENCE

4.4.1 Configurable parameters

The configurable parameters included in the Kernel.Parameters package are:

Max_Tasks: Maximum number of threads supported by the kernel.

Stack_Area_Size: Maximum space to allocate stacks for threads.

Default_Stack_Size: Default size for the stack of a thread.

Interrupt_Stack_Size: Size of the interrupt stack.

Max_Priority: Last value of subtype System.Priority.

Clock_Frequency: Frequency of the Real Time Clock and General Purpose Timer input
clock.

Clock_Interrupt_Period: Period of Real Time Clock interrupt. The range of this constant
depends on Clock_Frequency.

The configurable parameter which defines the memory space available in the board is
included in the linker script file commands.ld, which can be found in
/usr/local/openravenscar/sparc-ork-elf/lib/ directory. You can edit that file
and change the RAM_SIZE value. It is not needed to rebuild the ORK cross-compilation
system when this parameter is changed.

4.4.2 Interrupt names

ORK interrupt names are as close as possible to names given in MEC revision A De-
vice Specification document [22]. For example, the ORK name Watch_Dog_Time_Out
denotes the Watch Dog time-out interrupt.

ORK interrupt names are defined in Kernel.Peripherals. These interrupt names are
available to GNARL by appropriate renames in the GNULL package System.OS_Interface.
As a result, the standard Ada package Ada.Interrupts.Names contains the following inter-
rupt names:

Watch_Dog_Time_Out: This interrupt occurs if the watchdog timer times out.

Real_Time_Clock: This interrupt is issued by the real time clock timer tick.

General_Purpose_Timer: This interrupt is issued by the general purpose timer.

DMA_Time_Out: This interrupt occurs if the DMA session exceeds permitted time.

DMA_Access_Error: This interrupt occurs if the DMA performs an access violation or
illegal access.

UART_Error: This interrupt is generated by the UARTs if an error is detected.

UART_A_Ready: This interrupt is generated by the UART channel A each time a data
word has been correctly received and each time a data word has been sent.

UART_B_Ready: This interrupt is generated by the UART channel B each time a data
word has been correctly received and each time a data word has been sent.

4.4. TAILORING THE KERNEL 39

Correctable_Error_In_Memory: This interrupt occurs if the EDAC (Error Detection And
Correction) detects and corrects an error.

Masked_Hardware_Errors: This occurs when there is a hardware error set in the Error
and Reset Status Register and the error is masked.

External_Interrupt_(4,3,2,1,0): The sources of these interrupts are located outside the
ERC32. Consequently these interrupts are inputs to the MEC through pins Ex-
tINT(4,3,2,1,0).

4.4.3 Compiling the kernel

Procedures for rebuilding the whole ORK cross-compilation system and adapting ORK
are the in /usr/local/openravenscar/src directory.

In order to rebuild the whole ORK cross-compilation system, you need to do the
following:

1. Edit the file user.cfg in order to change the location of ORK, if so desired.

2. Enter the command

$./build_ada HOST

in the /usr/local/openravenscar/srcdirectory where HOST can be either i[3456]86-
pc-linux-gnu or sparc-sun-solaris2.*

The last procedure will take about 15-30 minutes on a modern computer (e.g. 13
minutes on a 600 MHz Pentium III with 128 Mbytes and IDE disks, and 38 minutes on
a 360 MHz UltraSparc II with 128 Mbytes and IDE disks) As a result, the ORK cross-
compilation system will be installed.

As this procedure takes a long time, it is possible to selectively rebuild only the ORK
adalib. However, ORK must have been previously compiled in order to do this.

If the ORK cross-compilation system has been built previously, the subdirectories
called build-sparc-tools and src must already exist in /usr/local/openravenscar/
src. It is then possible to rebuild only the ORK adalib by typing

$./build_adalib

in the /usr/local/openravenscar/src directory.

WARNING 4.3
It is necessary to have a gnat-3.13 installed for rebuilding or adapting ORK.

40 CHAPTER 4. ORK REFERENCE

Appendix A

The Ravenscar profile

A.1 Introduction

The Ravenscar Profile (Reliable Ada Verifiable Executive Needed for Scheduling Critical
Applications in Real-Time) is the best known result of the 8th International Real-Time
Ada Workshop (IRTAW’8), which was held in April 1997 in Ravenscar, Yorkshire [10,
16, 14]. The purpose of the profile is to identify a subset of the tasking features of Ada
which can be implemented using a small, reliable kernel. The expected benefits of this
approach are:

• Improved memory and execution time efficiency, by removing features with a high
overhead.

• Improved reliability, by removing non-deterministic and non analysable features.

• Improved timing analysis, by removing non-deterministic and non-analysable fea-
tures.

The profile was revised at the 9th International Real-Time Ada Workshop (IRTAW’9)
that was held in March 1999 near Tallahassee, Florida [8]. The revision took into account
early experience with a commercial Ravenscar real-time kernel called Raven [20, 19], as
well as some other experiences with small size kernels with a similar orientation [30, 31,
17, 41, 33, 32]. The next meeting, IRTAW’10, was held near Avila, Spain, in September
2000. The meeting discussed up-to-date experience in implementing the profile, including
ORK [18, 40], and made some recommendations about exceptions, memory management,
and interrupt support [42].

The profile is now part of the ISO report Guide for the use of the Ada Programming
Language in High Integrity Systems (HIS) [29]. The summary presented here is based
on Alan Burns’ comprehensive account of the definitions in IRTAW’8, IRTAW’9, and
IRTAW’10 [13].

The definition of the Ravenscar profile is based on Ada 95, including the Systems Pro-
gramming and Real-Time annexes. It only addresses tasking constructs, as the reliability
aspects of the sequential part of Ada are covered in other sections of the HIS report [29].

The profile is based on a computation model with the following features:

• A single processor.

• A fixed number of tasks.

41

42 APPENDIX A. THE RAVENSCAR PROFILE

• A single invocation event for each task. The invocation event may be generated by
the passing of time (for time-triggered tasks) or by a signal from either another task
or the environment (for sporadic tasks).

• Task interaction only by means of shared data with mutually exclusive access.

This set of features effectively supports building systems with the following kinds of
components:

• Periodic tasks.

• Program driven sporadic tasks.

• Interrupt driven sporadic tasks.

• Protected objects implementing shared data (typically with no entries).

• Protected objects for event synchronization (with at most one entry called by a
single signalling task).

These components are considered to be expressive enough for implementing high
integrity systems for space applications on a single processor.

A.2 Definition

The Ravenscar profile is defined by the following restrictions [13]:

A.2.1 Forbidden features

RP1 Task types and object declarations other than at the library level. Thus, there is no
hierarchy of tasks.

RP2 Dynamic allocation and unchecked deallocation of protected and task objects.

RP3 Requeue.

RP4 ATC (asynchronous transfer of control via the asynchronous_select statement.)

RP5 Abort statements, including Abort_Task in package Ada.Task_Identification.

RP6 Task entries.

RP7 Dynamic priorities.

RP8 Calendar package.

RP9 Relative delays.

RP10 Protected types and object declarations other than at the library level.

RP11 Protected types with more than one entry.

RP12 Protected entries with barriers other than a single boolean variable declared within
the same protected type.

RP13 An entry call to a protected entry with a call already queued.

A.2. DEFINITION 43

RP14 Asynchronous task control.

RP15 All forms of select statements.

RP16 User-defined task attributes.

RP100 Dynamic interrupt handler attachments.

In addition to these restrictions, implementations can make the following assumption:

RP17 Tasks do not terminate.

A.2.2 Supported features

The above restrictions still support a wide range of tasking features, such as:

RP18 Task objects, restricted as above.

RP19 Protected objects, restricted as above.

RP20 Atomic and Volatile pragmas.

RP21 Delay until statements.

RP22 Ceiling Locking policy and FIFO within priorities dispatching.

RP23 Count attribute (but not within entry barriers).

RP24 Task identifiers, e.g. T’Identity, E’Caller.

RP25 Synchronous task control.

RP26 Task discriminants.

RP27 Real_Time package.

RP28 Protected procedures as statically bound interrupt handlers.

A.2.3 Dynamic semantics

Two aspects of the profile require their dynamic semantics to be defined:

RP29 If an entry call is made on an entry that already has a queued call (i.e. the queue
length would become 2), then Program_Error is raised.

This is consistent with the use of Program_Error in the definition of synchronous
suspension objects [6] D.10(10).

RP30 If a task attempts to terminate, this is classified as a bounded error (i.e. there is a
documentation requirement on the implementation to define its effect), one allowed
outcome being the permanent suspension of the task.

RP101 If a task executes a potentially blocking operation from within a protected object
then Program_Error must be raised (unless a subprogram call is made to a foreign
language domain). The full language defines this as a bounded error, Program_Error
being just one of the allowed outcomes.

44 APPENDIX A. THE RAVENSCAR PROFILE

A.3 Denoting the restrictions

Most of the Ravenscar profile restrictions can be checked at compile time in Ada 95 by
means of standard identifiers that can be used with the pragma Restrictions [6, 13.12; D7;
H.4]. The following identifiers apply:

RP31 No_Task_Hierarchy

RP32 No_Abort_Statements

RP33 No_Task_Allocators

RP34 No_Dynamic_Priorities

RP35 No_Asynchronous_Control

RP36 Max_Task_Entries => 0

RP37 Max_Protected_Entries => 1

RP38 Max_Asynchronous_Select_Nesting => 0

RP39 Max_Tasks => N – defined by the application

However, these identifiers are not sufficient to enforce all the profile restrictions. The
following additional restriction identifiers have been proposed to that end:

RP40 Simple_Barrier_Variables

RP41 Max_Entry_Queue_Depth => 1 – or, in general, N

RP42 No_Calendar

RP43 No_Relative_Delay

RP44 No_Protected_Type_Allocators

RP45 No_Local_Protected_Objects

RP46 No_Requeue

RP47 No_Select_Statements

RP48 No_Task_Attributes

RP49 No_Task_Termination

RP50 No_Dynamic_Interrupt_Handlers

The meanings of these restrictions are straightforward, and foloow directly from the
above definitions.

The last restriction forbids calling the subprograms defined in Ada.Interrupts. The
type Interrupt_Id may be used in application programs.

Appendix B

The Ravenscar restrictions in GNAT

This appendix is based on GNAT 3.13[4].

B.1 The pragma Ravenscar

Most of the Ravenscar profile restrictions can be enforced at compile time by using
an appropriate set of restriction identifiers with the pragma Restrictions (ALRM D.7,
H.4). However, not all the Ravenscar restrictions can be enforced by standard restric-
tion identifiers, and thus a number of additional restriction identifiers have been proposed
at IRTAW8, [10], IRTAW9 [8], and IRTAW10 [42] for this purpose. The complete set of
Ravenscar restrictions is listed in appendix A and in reference [13].

The approach adopted in GNAT is to use an implementation defined pragma (pragma
Ravenscar) in order to establish the complete set of restrictions [4]. However, the restric-
tions established by the pragma Ravenscar are not exactly the same as those defined in
the profile. This means that there some small differences between the GNAT Ravenscar
pragma and the profile defined by IRTAW [13].

Table B.1 summarizes the restrictions enforced by this pragma and their relationship
with the profile restrictions.1

From the table the following conclusions can be drawn:

1. Two restrictions which are part of the Ravenscar profile definition [13] are not en-
forced by the pragma Ravenscar:

• RP39 Max_Tasks => N

Notice that this restriction could not be included in the pragma as the value of
N is application dependent. However, since Max_Tasks is a standard restric-
tion parameter (ALRM D.7), this restriction can be enforced at compile time
using the pragma Restriction.

• RP50 No_Dynamic_Interrupt_Handlers

This a new restriction which was not required until the IRTAW10 revision of
the profile. Therefore it was not possible to include it in GNAT 3.13, which
was released before that event. Although it should be included in future ver-
sions of GNAT, some kind of workaround, such as raising an exception if the
application calls an Ada.Interrupts subprogram, is the only thing that can be
done for the moment.

1The RP codes refer to appendix A.

45

46 APPENDIX B. THE RAVENSCAR RESTRICTIONS IN GNAT

Table B.1: The pragma Ravenscar (PR) and the Ravenscar profile (RP) restrictions

Code Restriction RP restriction Comments
PR1 No_Task_Hierarchy RP31
PR2 No_Abort_Statements RP32
PR3 No_Task_Allocators RP33
PR4 No_Dynamic_Priorities RP34
PR5 No_Asynchronous_Control RP35
PR6 Max_Task_Entries => 0 RP36
PR7 Max_Protected_Entries => 1 RP37
PR8 Max_Asynchronous_Select_Nesting => 0 RP38
— Max_Tasks => N RP39 Not included in PR

PR10 Boolean_Entry_Barriers RP40 Different identifier
PR11 No_Entry_Queue RP41 Different semantics

(yet acceptable for N=1)
PR12 No_Calendar RP42
PR13 No_Relative_Delay RP43
PR14 No_Protected_Type_Allocators RP44
PR15 No_Local_Protected_Objects RP45
PR16 No_Requeue RP46
PR17 No_Select_Statements RP47
PR18 No_Task_Attributes RP48
PR19 No_Task_Termination RP49

— No_Dynamic_Interrupt_Handlers RP50 Not included in PR
PR20 Static_Storage_Size Not required by RP
PR21 No_Dynamic_Interrupts — Contradicts RP
PR22 No_Terminate_Alternatives — Implied by RP47
PR23 Max_Select_Alternatives => 0 — Implied by RP47

B.1. THE PRAGMA RAVENSCAR 47

2. Four restrictions which are not part of the Ravenscar profile proper, but may be
considered useful [8], are not enforced by the pragma Ravenscar:

• RP51 No_Exception_Handlers

• RP52 No_Standard_Storage_Pools

• RP53 No_IO

• RP54 No_Nested_Finalization

However, since all of them are available in GNAT as restriction identifiers,2 they
can be enforced at compile time using the pragma Restriction.

3. One restriction,

• PR10 Boolean_Entry_Barriers

has a different name, but the same semantics as the identifier proposed in the Raven-
scar profile definition:

• RP40 Simple_Barrier_Variables

This difference may cause only portability problems, but does not prevent the com-
piler form enforcing the right restriction.

4. One restriction

• PR11 No_Entry_Queue

has a different name, and a slightly different semantics from the restriction proposed
in the Ravenscar profile definition:

• Max_Entry_Queue_Depth => N

However, since N = 1 in the Ravenscar profile, the restriction of the GNAT pragma
Ravenscar is acceptable. Moreover, Max_Entry_Queue_Depth => N is implemented
in GNAT as a restriction parameter, and can thus be explicitly set with the Restric-
tions pragma.

5. Two of the restrictions enforced by the pragma Ravenscar are redundant:

• PR22 No_Terminate_Alternatives

• PR23 Max_Select_Alternatives => 0

Both restrictions are implied by RP47. However, it does no harm to have them
included in the pragma Ravenscar.

6. One restriction is enforced by the pragma Ravenscar, but is in contradiction with
the Ravenscar profile definition;

• PR21 No_Dynamic_Interrupts

2Notice that RP51 and RP52 are not part of the Ada 95 standard, but are provided in GNAT as
implementation-defined restrictions [4, section 4, 57].

48 APPENDIX B. THE RAVENSCAR RESTRICTIONS IN GNAT

The current profile definition [13] specifies the restriction No_Dynamic_Interrupt_Handlers
instead (RP50). The problem with No_Dynamic_Interrupts is that it forbids any de-
pendence from Ada.Interrupts [4], thus preventing the use of type Interrup_Id which
is required by pragma Attach_Handler. The result is that the current definition of
pragma Ravenscar in GNAT 3.13 does not support static interrupt handlers, which
are explicitly allowed by the Ravenscar profile. The only workaround for the mo-
ment is to modify the compiler in order to ignore such restriction.

The conclusion is that, although there are some differences between the restrictions
imposed by the pragma Ravenscar and the IRTAW definition of the Ravenscar profile, the
pragma can be used in its present form, together with other configuration pragmas (see
below), to check Ravenscar compliance of Ada programs compiled with GNAT.

B.2 Other pragmas

B.2.1 Pragma Restrictions

Some of the Ravenscar restrictions can be enforced with restriction identifiers. The
Ravenscar restriction identifiers that are accepted by GNAT 3.13 are listed in table B.2.

Table B.2: Ravenscar restriction identifiers in GNAT

Code GNAT restriction RP restriction Comments
RI1 No_Task_Hierarchy RP31
RI2 No_Abort_Statements RP32
RI3 No_Task_Allocators RP33
RI4 No_Dynamic_Priorities RP34
RI5 No_Asynchronous_Control RP35
RI6 Max_Task_Entries => 0 RP36
RI7 Max_Protected_Entries => 1 RP37
RI8 Max_Asynchronous_Select_Nesting => 0 RP38
RI9 Max_Tasks => N RP39 N is application dependent
RI10 Boolean_Entry_Barriers RP40 Different identifier
RI11 Max_Entry_Queue_Depth => 1 RP41

No_Entry_Queue RP41 Different semantics
RI12 No_Calendar RP42
RI13 No_Relative_Delay RP43
RI14 No_Protected_Type_Allocators RP44
RI15 No_Local_Protected_Objects RP45
RI16 No_Requeue RP46
RI17 No_Select_Statements RP46
RI18 No_Task_Attributes RP48
RI19 No_Task_Termination RP49

The set of restriction identifiers covers the Ravenscar profile specifications (except for
interrupt handler support), and thus can be used to enforce the profile at compile time,
with that only exception.

B.3. THE GNAT.ADC FILE FOR THE RAVENSCAR PROFILE 49

B.2.2 Scheduling related pragmas

The following standard pragmas should be used with Ravenscar profile programs:

• pragma Task_Dispatching_Policy (FIFO_Within_Priorities)

• pragma Locking_Policy (Ceiling_Locking)

The pragma Queuing_Policy is not needed as the maximum length of protected entry
queues is restricetd to 1 (RP41).

B.3 The gnat.adc file for the Ravenscar profile

GNAT requires configuration pragmas to be put in a separate file, called gnat.adc [5]. A
template gnat.adc for Ravenscar compliant programs follows.

−− gnat.adc - configuration file template for the Ravenscar profile
pragma Ravenscar;
pragma Restrictions (Max Tasks => N);
−− N must be equal to the number of tasks of the application
−− pragma Restrictions(No Allocators); - does not work properly in GNAT 3.13 5

pragma Restrictions(No IO);
pragma Task Dispatching Policy (FIFO Within Priorities);
pragma Locking Policy (Ceiling Locking);

The maximum number of tasks is application-dependent. There is an upper bound on
this number, which depends on the underlying kernel. See the Operation Manual for the
details.

50 APPENDIX B. THE RAVENSCAR RESTRICTIONS IN GNAT

Appendix C

Example program

C.1 Description

The goal of this example is to show the functionality of the Open Ravenscar Real-Time
Kernel.

The example program has three tasks which spend their computation time calling the
Whetstone benchmark. This benchmark performs floating point operations developed for
the Performance Issues Working Group (PIWG) test suite.

In order to exercise communication among tasks, two of the three tasks interact through
a protected object. One of the tasks is sporadic and the other one is periodic. The third
task is an independent periodic task.

The sporadic task is activated by a hardware interrupt for which it waits on an pro-
tected entry with a simple boolean barrier. A protected procedure is used to handle the
interrupt, in accordance with the ORK interrupt model. The protected procedure opens
the barrier and then the sporadic task becomes runnable. After the task executes its code
the barrier is closed again.

A periodic task activates the hardware interrupt. The Memory Controller (MEC) de-
vice of the ERC32 core computer has special registers which allows the user to force
hardware interrupts by software. Such registers are used by the periodic task to activate
the hardware interrupt at regular intervals.

All the tasks print the value of Real_Time.Clock whenever they start and finish exe-
cuting their body. Only absolute delays and the monotonic clock of the Real_Time pack-
age are used. In order to avoid undesirable interactions between input-output and task
scheduling, the special Put operation of the Kernel.Serial_Output package is used.

The example program is designed to cover all the features which are needed in space
embedded applications. In particular, the example includes:

• Task management

• Task synchronization

• Time keeping and absolute delays

• Ada interrupt management

• Floating point calculations

51

52 APPENDIX C. EXAMPLE PROGRAM

 demo_HRT

 WCET_A2

 WCET_C2

 E Real_Time

 E Text_IO

 E Workload

 Pr Monitor

 Exclusive

 S Task_A

 Start
 ASER_BY_IT External_Interrupt

 C Task_B C Task_C

Figure C.1: Example task set

C.2 Temporal requirements of the tasks

Figure C.1 shows the structure of the task set. The task set will be analysed for the tem-
poral requirements of the tasks as shown in table C.1. The period for task A is interpreted
as a minimum inter-arrival time.

Task Period Activities
A 14 a1, a2

B 20 b1

C 36 c1, c2

Table C.1: Temporal requirements of the example tasks

Tasks A and C contain two logical blocks of activities, while task B has only one.
Activity a1 corresponds to internal computation of task A, and a2 to the execution time
of task A inside resource Monitor. Similarly, c1 corresponds to the internal execution
time of task C, and c2 to the execution time of task C inside resource Monitor. Finally,
b1 corresponds to the whole execution of task B. By extension, the same set of symbols
denote the WCET of the corresponding block of activity.

Task (block) Priority WCET Resource
A(a1) Priority’Last 1 None
A(a2) Priority’Last 2 Monitor
B (b1) Priority’Last - 1 6 None
C (c1) Priority’Last - 2 2 None
C (c2) Priority’Last 6 Monitor

Table C.2: Priority assignment and Worst Case Execution Time of activities

Table C.2 shows the priorities assigned to the tasks. Task A has the highest priority,
task C has the lowest priority, task B has a medium priority.

C.3. SCHEDULABILITY ANALYSIS 53

C.3 Schedulability analysis

The Ravenscar profile requires the program to be compiled with pragma Task_Dispatching
_Policy(FIFO_Within_Priorities) and pragma Locking_Policy (Ceiling_Locking) (see 3.2.2).
Therefore, the maximum response time of every task can be evaluated using equation C.1.

Ri = Ci +Bi + ∑
j∈hp(i)

⌈

Ri

Tj

⌉

×C j (C.1)

Which is solved using a recurrence relation:

wn+1
i = Ci +Bi + ∑

j∈hp(i)

⌈

wn
i

Tj

⌉

×C j

As immediate ceiling locking is used, the maximum blocking time can be evaluated
for every task.

Task A: can suffer a blocking time equal to WCET of activity c2, i.e. Ba = 6.

Task B: can suffer a blocking time equal to WCET of activity c2, i.e. Bb = 6.

Task C: is the lowest priority task and so can not suffer blocking, i.e. Bc = 0.

The maximum response time of every task can now be calculated. The minimum
inter-arrival time will be used as the period in order to calculate the worst case response
time for the low priority task.

Following common practice, an initial value w0
i equal to the sum of the WCET of

higher priority task plus the WCET of the task itself is used:

w1
a = 3+6 = 9

w1
b = 6+6+

⌈

9
14

⌉

×3 = 15

w2
b = 6+6+

⌈

15
14

⌉

×3 = 18

w3
b = 6+6+

⌈

18
14

⌉

×3 = 18

w1
c = 8+

⌈

17
14

⌉

×3+

⌈

17
20

⌉

×6 = 20

w2
c = 8+

⌈

20
14

⌉

×3+

⌈

20
20

⌉

×6 = 20

Figure C.2 shows the schedule of the tasks starting at time zero for 60 time units of
100ms each. Up arrows denote activation time and down arrows denote deadlines. Filled
boxes denote sections executed at ceiling priority.

54 APPENDIX C. EXAMPLE PROGRAM

0 5 10 15 20 25 30 35 40 45 50 55 60 time units

Task A

Task B

Task C

���
���
���

���
���
���

�����
�����
�����

���
���
���

�����������
�����������
�����������
�����������

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

�����������
�����������
�����������
�����������

�
�
�

���
���
���

Figure C.2: Schedule of tasks

C.4 Example program output

The output of the example program shows the start and termination time of each task
cycle. You can use TSIM for executing it, the options -freq 10 -fast_uart can be
used to set the clock frequency defined in Kernel.Parameters and to set “infinite” speed in
the UART channel.

With a time unit of 100ms the actual output1 is:

$ tsim -freq 10 -fast_uart demo

TSIM - remote SPARC simulator 0.1 (demo version)

serial port A on stdin/stdout
allocated 4096 K RAM memory
allocated 2048 K ROM memory
section: .text at 0x2000000, size 183680 bytes
section: .data at 0x202cd80, size 6148 bytes
section: .bss at 0x202e588, size 408660 bytes
tsim> go
Task A running RT.Clock = 0.001300500
Task A finishing RT.Clock = 0.306737700
Task B running RT.Clock = 0.308817300
Task B finishing RT.Clock = 0.915951300
Task C running RT.Clock = 0.917942600
Task C finishing RT.Clock = 1.728120300
Task A running RT.Clock = 1.730182000
Task A finishing RT.Clock = 2.035818800
Task B running RT.Clock = 2.037934000
Task B finishing RT.Clock = 2.645087400
Task A running RT.Clock = 2.801267200
Task A finishing RT.Clock = 3.106838900
Task C running RT.Clock = 3.600678000
Task C finishing RT.Clock = 4.410930900
Task A running RT.Clock = 4.413009400
Task A finishing RT.Clock = 4.718632300
Task B running RT.Clock = 4.720762600
Task B finishing RT.Clock = 5.327842300
Task A running RT.Clock = 5.601311000
Task A finishing RT.Clock = 5.906893700

1The start and termination time of each task cycle can vary depending of the ORK version

C.5. EXAMPLE CODE 55

...

There are small variations with respect to the timetable of figure C.2 which are due to:

1. Kernel overhead.

2. The code of the tasks includes calls to the Whetstone benchmark with an actual
parameter which suits the WCET defined in table C.2. As a result, the execution
time of protected operations, delay settings, clock readings, and other operations
increases the WCET defined in table C.2.

C.5 Example code

demo.adb

with Tasks;
with System;

procedure Demo is
5

pragma Priority (System.Priority’First);

begin

Tasks.Background; 10

end Demo;

tasks.ads

package Tasks is

procedure Background;

end Tasks; 5

tasks.adb

with Kernel.Serial Output;

with Ada.Interrupts.Names;

with Ada.Real Time; 5

use type Ada.Real Time.Time Span;

with System;
with Workload;
with Force External Interrupt 2; 10

package body Tasks is

Time Unit : constant Ada.Real Time.Time Span :=
Ada.Real Time.Milliseconds (100); 15

−− This constant was meausured with sis -freq 10
−− A program for measuring this constant can be built with
−− make -f Makefile.measure

20

56 APPENDIX C. EXAMPLE PROGRAM

Time per Kwhetstones : constant Ada.Real Time.Time Span :=
Ada.Real Time.Nanoseconds (539021);

procedure Execution Time (Time : Ada.Real Time.Time Span) is
25

begin
Workload.Small Whetstone (Time / Time per Kwhetstones);

end Execution Time;

−− 500 Milliseconds is the initial offset for the tasks 30

−− It is enough time to elaborate the program

Offset : constant Ada.Real Time.Time Span :=
Ada.Real Time.Milliseconds (500);

35

Time Zero : constant Ada.Real Time.Time :=
Ada.Real Time.Time of (0, Ada.Real Time.Time Span Zero) +
Offset;

−− This procedure prints Real Time.Clock - Time Zero 40

procedure Print RTClok is
Seconds Count From Time Zero : Ada.Real Time.Seconds Count;
Time Span From Time Zero : Ada.Real Time.Time Span;
Duration From Time Zero : Duration; 45

begin

Ada.Real Time.Split (Ada.Real Time.Clock − Offset,
Seconds Count From Time Zero, 50

Time Span From Time Zero);
Duration From Time Zero := Duration (Seconds Count From Time Zero) +

Ada.Real Time.To Duration (Time Span From Time Zero);
Kernel.Serial Output.Put (" RT.Clock = ");
Kernel.Serial Output.Put (Duration’Image(duration From Time Zero)); 55

end Print RTClok;

−− Temporal parameters of Tasks
60

subtype Tasks is character range ’A’ . . ’C’;

WCET A1 : constant Ada.Real Time.Time Span := 1 * Time Unit;
WCET A2 : constant Ada.Real Time.Time Span := 2 * Time Unit;
Period A : constant Ada.Real Time.Time Span := 14 * Time Unit; 65

WCET B : constant Ada.Real Time.Time Span := 6 * Time Unit;
Period B : constant Ada.Real Time.Time Span := 20 * Time Unit;

WCET C1 : constant Ada.Real Time.Time Span := 2 * Time Unit; 70

WCET C2 : constant Ada.Real Time.Time Span := 6 * Time Unit;
Period C : constant Ada.Real Time.Time Span := 36 * Time Unit;

−− Priority of the interrupt used
75

Priority Of External Interrupts 2 : constant System.Interrupt Priority :=
System.Interrupt Priority’First + 9;

procedure Background is
80

C.5. EXAMPLE CODE 57

begin
loop

null;
end loop;

end Background; 85

task A is
pragma Priority (System.Priority’Last);

end A;
90

task B is
pragma Priority (System.Priority’Last − 1);

end B;

task C is 95

pragma Priority (System.Priority’Last − 2);
end C;

protected Monitor is
100

pragma Priority (System.Priority’Last);

procedure Exclusive (Time : Ada.Real Time.Time Span;
Running Task : Tasks);

105

end Monitor;

−− This task forces a interrupt every Period A

task Interrupt is 110

pragma Priority (Priority Of External Interrupts 2);
end Interrupt;

protected Interrupt Semaphore is
pragma Priority (Priority Of External Interrupts 2); 115

entry Wait;

procedure Signal;
pragma Interrupt Handler (Signal); 120

pragma Attach Handler (Signal,
Ada.Interrupts.Names.External Interrupt 2);

private
125

Signaled : Boolean := False;

end Interrupt Semaphore;

protected body Interrupt Semaphore is 130

entry Wait when Signaled is

begin
Signaled := False; 135

end Wait;

procedure Signal is
begin

Signaled := True; 140

58 APPENDIX C. EXAMPLE PROGRAM

end Signal;

end Interrupt Semaphore;

task body Interrupt is 145

Next Time : Ada.Real Time.Time := Time Zero;
begin

loop
delay until Next Time;
Force External Interrupt 2; 150

Next Time := Next Time + Period A;
end loop;

end Interrupt;

protected body Monitor is 155

procedure Exclusive (Time : Ada.Real Time.Time Span;
Running Task : Tasks) is

begin 160

Execution Time (Time);
Kernel.Serial Output.Put ("Task ");
Kernel.Serial Output.Put (Running Task);
Kernel.Serial Output.Put (" finishing");
Print RTClok; 165

Kernel.Serial Output.New Line;
end Exclusive;

end Monitor;
170

task body A is
begin

loop
Interrupt Semaphore.Wait;
Kernel.Serial Output.Put ("Task A running "); 175

Print RTClok;
Kernel.Serial Output.New Line;
Execution Time (WCET A1);
Monitor.Exclusive (WCET A2, ’A’);

end loop; 180

end A;

task body B is
Next Time : Ada.Real Time.Time := Time Zero;

begin 185

loop
delay until Next Time;
Kernel.Serial Output.Put ("Task B running ");
Print RTClok;
Kernel.Serial Output.New Line; 190

Execution Time (WCET B);
Next Time := Next Time + Period B;
Kernel.Serial Output.Put ("Task B finishing");
Print RTClok;
Kernel.Serial Output.New Line; 195

end loop;
end B;

task body C is
Next Time : Ada.Real Time.Time := Time Zero; 200

C.5. EXAMPLE CODE 59

begin
loop

delay until Next Time;
Kernel.Serial Output.Put ("Task C running ");
Print RTClok; 205

Kernel.Serial Output.New Line;
Execution Time (WCET C1);
Monitor.Exclusive (WCET C2, ’C’);
Next Time := Next Time + Period C;

end loop; 210

end C;

end Tasks;

force_external_interrupt_2.adb

with Kernel.Peripherals.Registers;
−− to get definitions of MEC registers such as:
−− Test Control
−− Interrupt Mask
−− Interrupt Force 5

procedure Force External Interrupt 2 is

package KPR renames Kernel.Peripherals.Registers;
10

−− The MEC registers must be accesses as a whole.
−− The workaround used to force GNAT to generate proper instructions is:
−− Registers type definition are cualified with pragma Atomic
−− and auxiliary objects are used to write the MEC registers

15

Test Control Auxiliary : KPR.Test Control Register :=
KPR.Test Control;

Interrupt Mask Auxiliary : KPR.Interrupt Mask Register :=
KPR.Interrupt Mask;

Interrupt Force Auxiliary : KPR.Interrupt Force Register := 20

KPR.Interrupt Force;

begin

Test Control Auxiliary.Interrupt Force Register Write Enable := True; 25

Interrupt Mask Auxiliary.External Interrupt 2 := False;
Interrupt Force Auxiliary.External Interrupt 2 := True;

KPR.Test Control := Test Control Auxiliary;
KPR.Interrupt Mask := Interrupt Mask Auxiliary; 30

KPR.Interrupt Force := Interrupt Force Auxiliary;

end Force External Interrupt 2;

gnat.adc

pragma Ravenscar;

pragma Restrictions (No Asynchronous Control);
pragma Restrictions (Max Tasks => 4);
pragma Task Dispatching Policy (FIFO Within Priorities); 5

pragma Locking Policy (Ceiling Locking);

60 APPENDIX C. EXAMPLE PROGRAM

Appendix D

Known bugs and limitations

D.1 Introduction

This appendix lists three kinds of bugs and limitations of the openravenscar 2.2b compi-
lation system:

1. Unsolved GNAT 3.13 problems related to the Ravenscar Profile restrictions.

2. GNAT 3.13 problems which can be solved with some work-arounds.

3. Bugs and limitations of the ORK-ERC32 2.2b kernel itself.

The bugs are detailed in the next sections. The actions for bounded errors related to
tasking are also included.

D.2 Unsolved GNAT 3.13 bugs

These bugs imply a limitation in the compile-time checking of the Ravenscar profile re-
strictions.

1. The restriction Max_Task => N is not enforced at compilation time.

2. The restriction No_Protected_Type_Allocators is not enforced at compilation time.

3. The restriction No_Local_Protected_Objects is not enforced at compilation time
when declaring protected objects within a task.

D.3 Solved GNAT 3.13 bugs

These bugs originally in GNAT 3.13 have been fixed by minor changes in the compiler
sources, and not present in openravenscar 2.2b.

1. The restriction Boolean_Entry_Barriers is not properly implemented in GNAT 3.13,
which causes a spurious error when compiling some valid, RP-compliant programs.

2. GNAT 3.13 does not allow static protected interrupt handlers, as required by the
Ravenscar Profile definition.

61

62 APPENDIX D. KNOWN BUGS AND LIMITATIONS

D.4 ORK-ERC32 2.2b bugs related to the Ravenscar Pro-
file

1. The Count attribute does not work for protected entries.

2. The restriction Max_Entry_Queue_Depth => 1 is not properly checked at run time,
and Program_Error is not raised when a task makes a call to a protected entry which
already has a queued call.

D.5 Other ORK-ERC32 2.2b bugs

1. Stack Protection. ORK uses the hardware facilities of the ERC32 to detect thread
stack overruns. Thread stacks are allocated in a linear memory space, and forbidden
blocks are inserted between adjacent stacks in order to detect stack overruns.

The size of forbidden blocks is Kernel.Parameters.Protection_Stack_Size, which
has a default value of 256 bytes.

However, if a thread allocates an amount of stack larger than the forbidden block
then it can access the next thread stack without hardware detection.

2. sparc-ork-gnatpsys. The standard Ada 95 package System is not included in the
predefined GNAT Ada library which is located in the adainclude directory. In-
stead, this package is embedded in the GNAT compilation system. The GNAT tool
gnatpsys can be used to display its specification.

The name of the equivalent tool for the GNAT-ORK cross-compilation system is
sparc-ork-gnatpsys. The purpose of this tool is to list the System specification for
the cross-compilation system. However, due to a bug the current version displays
the System specification for the native GNAT compiler.

D.6 ORK-ERC32 2.2b tasking bounded errors

1. Task Termination. Task termination is a bounded error in the Ravenscar Profile
(RP30). The default action of a task termination in ORK is null.

This default action can be changed by means of the procedure
System.Task_Primitives.Operations.Set_Exit_Task_Procedure.

2. Potentially blocking statements in protected procedures and functions. Calling
a potentially blocking operation in a protected procedure is a bounded error (ALRM
9.5.1).

This is currently detected by ORK and Program_Error is raised.

3. Task Identification. It is a bounded error to call Task_Identification.Current_Task
(ALRM C.7.1) from an interrupt handler. ORK does not detect this bounded error.

The effect of calling Task_Identification.Current_Task from an interrupt handler is
to obtain a non sense Task_Id.

Appendix E

GNU General Public License

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software–to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent li-

63

64 APPENDIX E. GNU GENERAL PUBLIC LICENSE

censes, in effect making the program proprietary. To prevent this, we have made it clear
that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and conditions for copying, distribution and modi-
fication

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The "Program", below, refers to any such program or work, and
a "work based on the Program" means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term "modification".)
Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users
may redistribute the program under these conditions, and telling the user how
to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

65

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncom-
mercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under

66 APPENDIX E. GNU GENERAL PUBLIC LICENSE

this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gen-
erous contributions to the wide range of software distributed through that system
in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

67

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

End of terms and conditions

68 APPENDIX E. GNU GENERAL PUBLIC LICENSE

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the "copyright" line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright c© yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may be called
something other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu
items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter
the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.
signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

69

nes

70 APPENDIX E. GNU GENERAL PUBLIC LICENSE

Appendix F

Metrics

F.1 Ada LRM Annex C and D Metrics

This appendix lists the additional characteristics of the ORK-ERC32 2.2bwhich are spec-
ified in Annex C and D of the Ada Language Reference Manual and are allowed by the
Ravenscar profile.

The metrics are shown in processor cycles therefore to obtain seconds they must be
divided by the processor clock frequency.

F.1.1 Protected Procedure Handlers (C-3.1)

15. The worst case overhead for an interrupt handler that is a parameterless pro-
tected procedure, in clock cycles. This is the execution time not directly attributable
to the handler procedure or the interrupted execution. It is estimated as C - (A+B),
where A is how long it takes to complete a given sequence of instructions without any
interrupt, B is how long it takes to complete a normal call to a given protected pro-
cedure, and C is how log it takes to complete the same sequence of instructions when
it is interrupted by one execution of the same procedure called via an interrupt.

=== interrupt_overhead_test ===============================
Cycles> 1969334
Cycles> 1970270
cycles A+B: 1969334
cycles C: 1970270
cycles C-(A+B) = 936
==

The average overhead of a protected procedure as interrupt handler is 936 processor
cycles.

This metric has been measured with the simulators. Otherwise, special hardware such
as signal generators and logic analyzers must be used to measure this overhead on real
target. It must be said that other metrics have been measured on the simulators as well as
on real hardware and the differences were insignificant.

F.1.2 Monotonic Time (D-8)

33. Values of Time_First, Time_Last, Time_Span_Last, Time_Span_Unit and Tick

• Time_First: seconds: -633437445 Duration: -8589934591.854780000

71

72 APPENDIX F. METRICS

• Time_Last: seconds: 633437444 Duration: 8589934592.854780000

• Time_Span_First: -9223372036.854780000

• Time_Span_Last: 9223372036.854780000

• Time_Span_Unit: 0.000000001

• Tick: 0.000000050

The value of Tick is equal to the period of the input clock signal. The frequency of
this clock signal for the eVAB-695E-Rev.C Temic Evaluation Board is 20 MHertz.

34. Properties of the underlying time base used for the clock and for type Time:
range of values supported and any relevant aspects of the underlying hardware or
OS facilities. Time is represented internally as a 64-bit integer number of nanoseconds.
The interval of time values that can be represented in this way is approximately -292..+292
years. Time is a count of ticks since the clock was started.

The ERC32 hardware provides two timers (apart from the special Watchdog timer)
which can be programmed to be either of single-shot type or of periodical type. One of
them (the Real Time Clock) is used as a timestamp counter and the other (called General
Purpose Timer) as a high-resolution timer. The former timer provides the basis for a high
resolution clock, while the latter offers the required support for precise alarm handling.
Both timers are clocked by the internal processor clock, and they use a two-stage counter.

In order to provide a high resolution clock, the least significant part of the clock is
held in the Real Time Clock hardware register and the Real Time Clock is programmed
to interrupt periodically, updating the most significant part of the clock.

As a result, the clock tick is equal to the period of the input signal of the downcounter
which is the processor clock period in the current implementation.

The underlying implementation is deeply described in the Software Design Document
(Kernel.Time subsection) and in [43].

35. Synchronization with external sources The system does not synchronize with any
external source.

36. External environment properties affecting the behavior of the clock. The clock
is a count of ticks since the clock was started, therefore its behavior only is affected by
the manufacturing drift of the hardware clock.

39. An upper bound of a clock tick. The tick of the clock is equal to the period of
the processor input signal and the clock is incremented by the hardware every tick. As a
result, the tick has always the same value.

40. Upper bound of the size of a clock jump The clock is a count of ticks and is not
synchronize with external sources. As a result, the clock does not jump.

F.1. ADA LRM ANNEX C AND D METRICS 73

41. Clock Drift The implementation of the clock uses a timer in periodic mode there-
fore the clock has the accuracy of the hardware. In order to probe it, a test against
canon.inria.fr NPT V3 primary server shows a drift of −2± 21 seconds for a 4.3× 105

seconds.
The resulting drift is less than 10−5 which is in the range of the manufacturing drift of

the clocks.
The test was made on a eVAB-695E-Rev.C Temic Evaluation Board.

44. An upper bound on the execution time of a call to the Clock function, in processor
clock cycles. Line tested: " T := Clock; "

=== D8-44-clock_call =====================================
total processor cycles used by a ’Clock’ call: 126
===

45. Upper bounds on the execution times of the operators of the types Time and
Time_Span The results of the test give the following cycles for each operation:

• Time + Time_Span: Cycles: 18

• Time_Span + Time: Cycles: 18

• Time - Time_Span: Cycles: 18

• Time - Time: Cycles: 18

• Time < Time: Cycles: 16

• Time <= Time: Cycles: 24

• Time > Time: Cycles: 23

• Time >= Time: Cycles: 15

• Time_Span + Time_Span: Cycles: 18

• Time_Span - Time_Span: Cycles: 18

• - Time_Span: Cycles: 27

• Time_Span * Integer Cycles: 145

• Integer * Time_Span Cycles: 146

• Time_Span / Time_Span Cycles: 1603

• Time_Span / Integer Cycles: 277

• abs(Time_Span) Cycles: 16

• Time_Span < Time_Span Cycles: 39

• Time_Span <=Time_Span Cycles: 31

• Time_Span > Time_Span Cycles: 32

1This error margin in the test is because of the standard unix clock representation (1 second clock
resolution)

74 APPENDIX F. METRICS

• Time_Span >=Time_Span Cycles: 40

• To_Duration(Time_Span) Cycles: 13

• To_Time_Span(Duration) Cycles: 13

• Split(Time, Seconds_Count, Time_Span) Cycles: 716

• Time_Of(Seconds_Count, Time_Span) Cycles: 70

• Nanoseconds(Integer) Cycles: 135

• Microseconds(Integer) Cycles: 254

• Milliseconds(Integer) Cycles: 274

F.1.3 Delay Accuracy (D-9)

11. An upper bound on the execution time, in processor clock cycles, of a de-
lay_until_statement whose requested value of the delay expression is less than or
equal to the value of Real_Time.Clock at the time of executing the statement. This
execution time is equal to 475 processor clock cycles.

13. An upper bound on the lateness of a delay_until_statement, in a situation where
the value of the requested expiration time is after the time the task begins execut-
ing the statement, the task has sufficient priority to preempt the processor as soon
as it becomes ready, and it does not need to wait for any other execution resources.
The upper bound is expressed as a function of the difference between the requested
expiration time and the clock value at the time the statement begins execution. The
lateness of a delay_until_statement is obtained by subtracting the requested expira-
tion time from the real time that the task resumes execution following this statement

• One task + background task

The delay until lateness upper bound for a call to a delay until statement is 139.5
µseconds, using a 20 MHz system clock. This lateness occurs when the time of the
delay until matches with a second change. It must be noted that the clock interrupt
occurs every second in the kernel tested.

If the time of the delay until statement does not match with a clock interrupt, the
lateness upper bound for a call to a delay until statement is 109.5 µseconds.

• N tasks + background task

The delay until lateness for several tasks (N Tasks) is: 132.5 µseconds + 7 × N
µseconds when the time of the delay until matches with a clock interrupt. If not:
102.5 µseconds + 7 × N µseconds

F.1.4 Other Optimizations and determinism rules (D-12)

7. The overhead associated with obtaining a mutual-exclusive access to an entry-less
protected object. The execution time in processor clock cycles of a call to Set. The
number of processor clock cycles used by a call to the protected procedure "Set" is 706.

F.2. OTHER USEFUL METRICS 75

F.2 Other useful metrics

F.2.1 Context Switch

The context switch is measured between two tasks with the same priority, before this it
measures the overhead of the Yield procedure.

The context switch time is equal to 523 processor clock cycles.

F.2.2 Interrupt Latency

This tests measures the interrupt latency. This test uses a special register of ERC32 which
allow to force interrupts.

The external interrupt 2 is forced by this means and the time until the first statement
of the protected interrupt handler is reached can be considered as the interrupt latency.

The interrupt latency is equal to 1708 processor clock cycles.
This elapsed time has been measured with the simulators otherwise special test instru-

ment must be used. The example program detailed in appendix C has been used for the
test.

76 APPENDIX F. METRICS

Bibliography

[1] Ada Core Technologies. GNAT Reference Manual. Version 3.13w, November 1999.

[2] Ada Core Technologies. GNAT User’s Guide. Version 3.12a2, 1999.

[3] Ada Core Technologies. GNAT User’s Guide. Version 3.13w, November 1999.

[4] Ada Core Technologies. GNAT Reference Manual. Version 3.13a, March 2000.

[5] Ada Core Technologies. GNAT User’s Guide. Version 3.13a, March 2000.

[6] Ada 95 Reference Manual: Language and Standard Libraries. International Stan-
dard ANSI/ISO/IEC-8652:1995, 1995. Available from Springer-Verlag, LNCS no.
1246.

[7] ISO/IEC-9899:1990 — Programming Languages — C, 1990.

[8] Lars Asplund, Bob Johnson, and Kristina Lundqvist. Session summary: The Raven-
scar profile and implementation issues. Ada Letters, XIX(25):12–14, 1999. Pro-
ceedings of the 9th International Real-Time Ada Workshop.

[9] Christine Ausnit-Hood, Kent A. Johnson, Robert G. Petit IV, and Steven B. Opdahl,
editors. Ada 95 Quality and Style. Number 1344 in Lecture Notes in Computer
Science. Springer-Verlag, 1995.

[10] Ted Baker and Tullio Vardanega. Session summary: Tasking profiles. Ada Letters,
XVII(5):5–7, 1997. Proceedings of the 8th International Ada Real-Time Workshop.

[11] Alan Burns. Preemptive priority based scheduling: An appropriate engineering ap-
proach. In S.H. Son, editor, Advances in Real-Time Systems. Prentice-Hall, 1994.

[12] Alan Burns. The Ravenscar profile. Ada Letters, XIX(4):49–52, 1999.

[13] Alan Burns. The Ravenscar profile. Technical report, University of York, 2000.
Available at www.cs.york.ac.uk/~burns/ravenscar.ps.

[14] Alan Burns, Brian Dobbing, and George Romanski. The Ravenscar profile for high
integrity real-time programs. In Lars Asplund, editor, Reliable Software Technolo-
gies — Ada-Europe’98, number 1411 in LNCS. Springer-Verlag, 1998.

[15] Alan Burns and Andy J. Wellings. Real-Time Systems and Programming Languages.
Addison-Wesley, 2 edition, 1996.

[16] Alan Burns and Andy J. Wellings. Restricted tasking models. ACM Ada Letters,
XVII(5):27–32, 1997. Proceedings of the 8th International Ada Real-Time Work-
shop.

77

78 BIBLIOGRAPHY

[17] Juan A. de la Puente, José F. Ruiz, and Jesús M. González-Barahona. Real-time
programming with GNAT: Specialised kernels versus POSIX threads. Ada Letters,
XIX(2):73–77, 1999. Proceedings of the 9th International Real-Time Ada Work-
shop.

[18] Juan A. de la Puente, Juan Zamorano, José F. Ruiz, Ramón Fernández, and Rodrigo
García. The design and implementation of the Open Ravenscar Kernel. Ada Letters,
XXI(1), 2001.

[19] Brian Dobbing and George Romanski. The Ravenscar profile: Experience report.
Ada Letters, XIX(2):28–32, 1999. Proceedings of the 9th International Real-Time
Ada Workshop.

[20] Briand Dobbing and Alan Burns. The Ravenscar profile for high-integrity real-time
programs. Ada Letters, XVIII(6):1–6, 1998. Proceedings of the ACM SIGAda
International Conference — SIGAda’98.

[21] ECCS. ECCS-E-40A Space Engineering — Software, 1999. Available from ESA.

[22] ESA/ESTEC. 32 Bit Microprocessor and Computer System Development. MEC rev.
A Device Specification, 1997. Report MCD/SPC/0009/SE.

[23] Per Cederqvist et al. Version Management with CVS. Free Software Foundation,
1993. For CVS version 1.10.5.

[24] Free Software Foundation. GNU Emacs Manual.

[25] Jiri Gaisler. The ERC32 GNU cross-compiler system. Technical report,
ESA/ESTEC, 1999. Version 2.0.6.

[26] E.W. Giering and T.P. Baker. The GNU Ada Runtime Library (GNARL): Design
and implementation. In Proceedings of the Washington Ada Symposium, 1994.

[27] HOOD user Group. HOOD Reference Manual, 1993. Version 3.1.

[28] IEEE. Portable Operating System Interface (POSIX) — Part 1: System Applica-
tion Program Interface (API) [C Language] (Incorporating IEEE Stds 1003.1-1990,
1003.1b-1993, 1003.1c-1995, and 1003.1i-1995), 1990. ISO/IEC 9945-1:1996.

[29] ISO/IEC/JTC1/SC22/WG9. Guide for the use of the Ada Programming Language
in High Integrity Systems, 2000. ISO/IEC TR 15942:2000.

[30] M. Kamrad and B. Spinney. An Ada runtime system implementation of the Raven-
scar profile for a high speed application layer data switch. In Michael González-
Harbour and Juan A. de la Puente, editors, Reliable Software Technologies — Ada-
Europe’99, number 1622 in LNCS, pages 26–38. Springer-Verlag, 1999.

[31] José F. Ruiz and Jesús M. González-Barahona. Implementing a new low-level
tasking support for the GNAT runtime system. In Michael González-Harbour and
Juan A. de la Puente, editors, Reliable Software Technologies — Ada-Europe’99,
number 1622 in LNCS, pages 298–307. Springer-Verlag, 1999.

[32] H. Shen and T.P. Baker. A Linux kernel module implementation of restricted Ada
tasking. Ada Letters, XIX(2):96–103, 1999. Proceedings of the 9th International
Real-Time Ada Workshop.

BIBLIOGRAPHY 79

[33] H. Shen, A. Charlet, and T.P. Baker. A ’bare-machine’ implementation of Ada multi-
tasking beneath the Linux kernel. In Michael González-Harbour and Juan A. de la
Puente, editors, Reliable Software Technologies — Ada-Europe’99, number 1622 in
LNCS, pages 287–297. Springer-Verlag, 1999.

[34] Richard M. Stallman and Roland H. Pessch. Debugging with GDB. Free Software
Foundation, 5th edition, 1998. For GDB version 4.17.

[35] TEMIC. SPARC V7 Instruction Set Manual, 1996.

[36] TEMIC. TSC691E Integer Unit User s Manual for Embedded Real Time 32 bit
Computer (ERC32), 1996.

[37] TEMIC. TSC692E Floating Point Unit User s Manual for Embedded Real Time 32
bit Computer (ERC32), 1996.

[38] TEMIC. TSC693E Memory Controller User s Manual for Embedded Real Time 32
bit Computer (ERC32), 1996.

[39] Temic/Matra Marconi Space. SPARC RT Memory Controller (MEC) User’s Manual,
April 1997.

[40] Tullio Vardanega and Gert Caspersen. Using the Ravenscar Profile for space appli-
cations: The OBOSS case. In Michael González-Harbour, editor, Proceedings of
the 10th International Real-Time Ada Workshop, 2001. To appear in Ada Letters.

[41] W.M. Walker, P.T. Wooley, and A. Burns. An experimental testbed for embedded
real time Ada 95. Ada Letters, XIX(2):84–89, 1999. Proceedings of the 9th Interna-
tional Real-Time Ada Workshop.

[42] Andy Wellings. 10th International Real-Time Ada Workshop — Session summary:
Status and future of the Ravenscar profile. Ada Letters, XXI(1), March 2001.

[43] Juan Zamorano, José F. Ruiz, and Juan A. de la Puente. Implementing
Ada.Real_Time.Clock and absolute delays in real-time kernels. In Alfred
Strohmeier and Dirk Craeynest, editors, Reliable Software Technologies — Ada-
Europe 2001, number 2043 in LNCS, pages 317–327. Springer-Verlag, 2001.

[44] Andreas Zeller. Debugging with DDD. User’s Guide and Reference Manual. Free
Software Foundation, 1st edition, 2000. For DDD version3.2.

80 BIBLIOGRAPHY

