

System Configuration Guide

Release 1.3.9

Copyright (c) 2014

MapuSoft Technologies

1301 Azalea Road

Mobile, AL 36693

www.mapusoft.com

http://www.mapusoft.com/

 System Configuration Guide

 2

Table of Contents

Chapter 1.About this Guide 6

Objectives ... 7
Audience ... 7
Document Conventions .. 7

MapuSoft Technologies and Related Documentation 8
Requesting Support... 10

Registering a New Account ... 10
Submitting a Ticket ... 10
Live Support Offline .. 11

Documentation Feedback ... 11

Chapter 2.System Configuration 12

System Configuration ... 13
Target OS Selection .. 14

OS HOST Selection .. 15

Target 64 bit CPU Selection ... 15

User Configuration File Location ... 16
OS Changer Components Selection ... 17

POSIX OS Abstractor Selection ... 18
OS Abstractor Process Feature Selection ... 19
OS Abstractor Task-Pooling Feature Selection .. 20

OS Abstractor Profiler Feature Selection ... 22
OS Abstractor Output Device Selection ... 23

OS Abstractor Debug and Error Checking ... 23
OS Abstractor ANSI API Mapping .. 24
OS Abstractor External Memory Allocation .. 25

OS Abstractor Resource Configuration .. 25

OS Abstractor Minimum Memory Pool Block Configuration 28
OS Abstractor Application Shared Memory Configuration 28
OS Abstractor Clock Tick Configuration ... 30
OS Abstractor Device I/O Configuration ... 31

SMP Flags ... 31
OS Abstractor Target OS Specific Notes ... 33

Nucleus PLUS Target .. 33
ThreadX Target.. 33
Precise/MQX Target .. 33

Linux Target ... 34
User Vs ROOT Login .. 34
System Resource Configuration .. 34
Time Resolution .. 34
Memory Heap .. 35
Priority Mapping Scheme .. 35

 System Configuration Guide

 3

Memory and System Resource Cleanup .. 35
Single-process Application Exit .. 36
Multi-process Application Exit .. 36
Manual Clean-up ... 36
Multi-process Zombie Cleanup ... 36
Task’s Stack Size ... 36

Windows Target ... 37
Android Target ... 37

Installing and Building the Android Platform ... 37
Adding Mapusoft Products to the Android Platform ... 37
Running the Demos from the Android Emulator ... 38

QNX Target .. 38
User Vs ROOT Login .. 38
Time Resolution .. 39
Memory Heap .. 39
Priority Mapping Scheme .. 39
Memory and System Resource Cleanup .. 39
Task’s Stack Size ... 39
Dead Synchronization Object Monitor .. 39

VxWorks Target ... 40
Version Flags ... 40
Unsupported OS Abstractor APIs .. 40

Application Initialization .. 42
Example: OS Abstractor for Windows Initialization 42

Example: POSIX Interface for Windows Target Initialization 45
Runtime Memory Allocations .. 47

OS Abstractor Interface ... 47
POSIX Interface .. 48
micro-ITRON Interface ... 48
VxWorks Interface .. 49
pSOS Interface ... 49
Nucleus Interface ... 49
ThreadX Interface .. 50

OS Abstractor Process Feature ... 51
Simple (single-process) Versus Complex (multiple-process) Applications52

Memory Usage ... 53

Memory Usage under Virtual memory model based OS 53
Multi-process Application ... 53
Single-process Application .. 54

Memory Usage under Single memory model based OS 55
Multi-process Application ... 55
Single-process Application .. 56

Chapter 3: Ada System Configuration 57

Interfacing to C and Machine ... 57
Code ... 57
Data Layout ... 57
Interface to C ... 57
Machine Code Inserts .. 58

Implementation-Defined Conventions ... 59
Interrupt Handling .. 60

Exceptions in Interrupt Handlers ... 61

 System Configuration Guide

 4

Implementation-Defined Pragmas .. 72
Debugging Ada Programs .. 73
Source File Display in a C debugger .. 73

Local Ada Variable Display in a C debugger ... 73
Global Ada Variable Display in a C debugger ... 73
Nested Subprograms and Up-level References .. 73
Setting Break Points ... 74
Stopping when an Exception is raised .. 74

Generics and Inlines ... 74
Tasking-related Symbols and Breakpoints ... 74

Tracing the Call Stack .. 75

Revision History 76

 System Configuration Guide

 5

List of Tables

Table 1_1: Notice Icons .. 7
Table 1_2: Text and Syntax Conventions ... 7
Table 1_3: Document Description Table .. 8
Table 2_1: Set the Pre-processor Definition For Selected Target OS .. 14
Table 2_2: Select the host operating system ... 15
Table 2_3: Select the Target CPU type .. 15
Table 2_4: OS Changer components for your application .. 15
Table 2_5: Set the Pre-processor Definition For error checking ... 15
Table 2_6: Cross_os_usr.h Configuration File .. 16
Table 2_7: OS Changer Components Selection .. 17
Table 2_8: POSIX component for application ... 18
Table 2_9: OS Abstractor Process Feature Selection ... 19
Table 2_10: OS Abstractor Task-Pooling Feature Selection ... 20
Table 2_11: OS Abstractor Profiler Feature Selection .. 22
Table 2_12: OS Abstractor Output Device Selection .. 23
Table 2_13: OS Abstractor Debug and Error Checking... 23
Table 2_14: OS Abstractor ANSI API Mapping ... 24
Table 2_15: OS Abstractor External Memory Allocation ... 25
Table 2_16: OS Abstractor system resource configuration parameters ... 25
Table 2_17: Additional resources required internally by OS Abstractor .. 27
Table 2_18: OS Abstractor Minimum Memory Pool Block Configuration .. 28
Table 2_19: OS Abstractor Application Shared Memory Configuration ... 28
Table 2_20: OS Abstractor Clock Tick Configuration .. 30
Table 2_21: OS Abstractor Device I/O Configuration .. 31
Table 2_23: Compilation Flag for SMP .. 31
Table 2_21: Compilation Flag For Nucleus PLUS Target .. 33
Table 2_22: Compilation Flag for Precise/MQX Target ... 33
Table 2_24: Version Flags for VxWorks Target ... 40
Table 2_25: Unsupported OS Abstractor APIs for VxWorks Target ... 41
Table 2_26: Simple (single-process) Versus Complex (multiple-process) Applications 52
Table 3_1: Symbols and Breakpoints Fields related about Ada task .. 74

 System Configuration Guide

 6

Chapter 1.About this Guide

This chapter contains the following topics:

Objectives

Audience

Document Conventions

MapuSoft Technologies and Related Documentation

Requesting Support

Documentation Feedback

 System Configuration Guide

 7

Objectives

This manual contains instructions on how to get started with the Mapusoft products. The

intention of the document is to guide the user to install, configure, build and execute the

applications using Mapusoft products.

Audience

This manual is designed for anyone who wants to port applications to different operating

systems, create projects, and run applications. This manual is intended for the following

audiences:

 Customers with technical knowledge and experience with the Embedded Systems

 Application developers who want to migrate their application to different RTOSs

 Managers who want to minimize the cost and leverage on their existing code

Document Conventions

Table 1_1 defines the notice icons used in this manual.

Table 1_1: Notice Icons

Ico

n

Meaning Description

 Informational note Indicates important features
or icons.

Caution Indicates a situation that

might result in loss of data

or software damage.

Table 1_2 defines the text and syntax conventions used in this manual.

Table 1_2: Text and Syntax Conventions

Convention Description

Courier New Identifies Program listings

and Program examples.

Italic text like this

Introduces important new

terms.

 Identifies book names

 Identifies Internet draft
titles.

COURIER NEW, ALL CAPS Identifies File names.

Courier New, Bold Identifies Interactive

Command lines

 System Configuration Guide

 8

MapuSoft Technologies and Related Documentation

Reference manuals can be provided under NDA. Click http://mapusoft.com/contact/ to

request for a reference manual.

The document description table lists MapuSoft Technologies manuals.

Table 1_3: Document Description Table

User Guides Description

 

AppCOE Quick Start Guide

Provides detailed description on how to become

familiar with AppCOE product and use it with
ease. This guide:

 Explains how to quickly set-up AppCOE on
Windows/Linux Host and run the demos that

came along AppCOE

Application Common

Operating Environment

Guide

Provides detailed description of how to do porting

and abstraction using AppCOE. This guide:

 Explains how to port applications

 Explains how to import legacy applications

 Explains how to do code optimization

 Explains how to generate library packages

 Explains on Application profiling and platform
profiling

 OS Abstractor Interface

Reference Manual

Provides detailed description of how to use OS

Abstraction. This guide:

 Explains how to develop code independent of the

underlying OS

 Explains how to make your software easily
support multiple OS platforms

POSIX Interface Reference

Manual

Provides detailed description of how to get started

with POSIX interface support that MapuSoft

provides. This guide:

 Explains how to use POSIX interface, port
applications

micron-ITRON Interface

Reference Manual

Provides detailed description of how to get started

with micron-ITRON interface support that MapuSoft
provides. This guide:

 Explains how to use micron-ITRON interface, port
applications

pSOS Interface Reference

Manual

Provides detailed description of how to get started

with pSOS interface support that MapuSoft

provides. This guide:

 Explains how to use pSOS interface, port
applications

pSOS Classic Interface

Reference Manual

Provides detailed description of how to get started

with pSOS Classic interface support that MapuSoft
provides. This guide

 Explains how to use pSOS Classic interface, port
applications

Nucleus Interface Reference

Manual

Provides detailed description of how to get started

with Nucleus interface support that MapuSoft

provides. This guide:

http://mapusoft.com/contact/

 System Configuration Guide

 9

 Explains how to use Nucleus interface, port
applications

ThreadX Interface Reference

Manual

Provides detailed description of how to get started

with ThreadX interface support that MapuSoft

provides. This guide:

Explains how to use ThreadX interface, port
applications

VxWorks Interface Reference

Manual

Provides detailed description of how to get started

with VxWorks Interface support that MapuSoft

provides. This guide:

Explains how to use VxWorks Interface, port

applications

Windows Interface Reference

Manual

Provides detailed description of how to get started

with Windows interface support that MapuSoft
provides. This guide:

 Explains how to use Windows interface, port
applications

Release Notes Provides the updated release information about

MapuSoft Technologies new products and features

for the latest release.

This document:

 Gives detailed information of the new products

 Gives detailed information of the new features
added into this release and their limitations, if

required

 System Configuration Guide

 10

Requesting Support

Technical support is available through the MapuSoft Technologies Support Centre. If you are a

customer with an active MapuSoft support contract, or covered under warranty, and need post

sales technical support, you can access our tools and resources online or open a ticket at

http://www.mapusoft.com/support.

Registering a New Account

To register:

From http://www.mapusoft.com/main page, select Support.

Select Register and enter the required details.

After furnishing all your details, click Submit.

Submitting a Ticket

1. To submit a ticket:
1. From http://www.mapusoft.com/main page, select Support > Submit a

Ticket

2. Select a department according to your problem, and click Next.

3. Fill in your details and provide detailed information of your problem.

4. Click Submit.

MapuSoft Support personnel will get back to you within 48 hours with a valid response.

2. To submit a ticket from AppCOE

1. From AppCOE main menu, Select Help > Create a Support Ticket as shown in
below Figure

Figure: Create a Support Ticket from AppCOE

http://www.mapusoft.com/support
http://www.mapusoft.com/
http://www.mapusoft.com/

 System Configuration Guide

 11

2. Using the Existing Email and Password for login into Mapusoft Support Suite.

3. Select the department according to your problem, and click Next.

4. Fill in your details and provide detailed information of your problem.
5. Click Submit.

MapuSoft Support personnel will get back to you within 48 hours with a valid response.

Live Support Offline

MapuSoft Technologies also provides technical support through Live Support offline.
To contact live support offline:

1. From http://www.mapusoft.com/main page, select Support > Live Support

Offline.

2. Enter your personal details in the required fields. Enter a message about your

technical query. One of our support personnel will get back to you as soon as

possible.
3. Click Send.

You can reach us at our toll free number: 1-877-627-8763 for any urgent assistance.

Documentation Feedback

Send Feedback on Documentation: http://www.mapusoft.com/support/index.php/

http://www.mapusoft.com/
http://www.mapusoft.com/support/index.php/

 System Configuration Guide

 12

Chapter 2.System Configuration

This chapter contains the information about the System Configuration with the following

topics:

 System Configuration

 Target OS Selection

 OS HOST Selection

 Target 64 bit CPU Selection

 User Configuration File Location

 OS Changer Components Selection

 POSIX Interface Selection

 OS Abstractor Interface Process Feature Selection

 OS Abstractor Interface Task-Pooling Feature Selection

 OS Abstractor Interface Profiler Feature Selection

 OS Abstractor Interface Output Device Selection

 OS Abstractor Interface Debug and Error Checking

 OS Abstractor Interface ANSI API Mapping

 OS Abstractor Interface Resource Configuration

 OS Abstractor Interface Minimum Memory Pool Block Configuration

 OS Abstractor Interface Application Shared Memory Configuration

 OS Abstractor Interface Clock Tick Configuration

 OS Abstractor Interface Device I/O Configuration

 OS Abstractor Interface Target OS Specific Notes

 Runtime Memory Allocations

 OS Abstractor Process Feature

 Simple (single-process) Versus Complex (multiple-process) Applications

 System Configuration Guide

 13

System Configuration

The user configuration is done by setting up the appropriate value to the pre-processor

defines found in the cross_os_usr.h.

NOTE: Make sure the OS Abstractor Interface libraries are re-compiled and newly built

whenever configuration changes are made to the os_target_usr.h when you build your
application. In order to re-build the library, you would actually require the full-source code

product version (not the evaluation version) of OS Abstractor Interface.

Applications can use a different output device as standard output by modifying the

appropriate functions defines in os_target_usr.h along with modifying os_setup_serial_port.c

module if they choose to use the format Input/output calls provided by the OS
AbstractorInterface.

 System Configuration Guide

 14

Target OS Selection

Based on the OS you want the application to be built, set the pre-processor definition in your

project setting or make files by using the Table 2_1.

Table 2_1: Set the Pre-processor Definition For Selected Target OS

Flag and Purpose Available Options

OS_TARGET

To select the target

operating system.

The value of the OS_Target should be for the OS Abstractor

Interface product that you have purchased. For Example, if you

have purchased the license for :

OS_NUCLEUS – Nucleus PLUS from ATI

OS_THREADX – ThreadX from Express Logic

OS_VXWORKS – VxWorks from Wind River Systems
OS_ECOS – eCOS standards from Red Hat

OS_MQX - Precise/MQX from ARC International
OS_UITRON – micro-ITRON standard based OS

OS_LINUX - Open-source/commercial Linux distributions

OS_WINDOWS – Windows 2000, Windows XP, Windows CE,
Windows Vista from Microsoft. If you need to use the OS

Abstractor Interface both under Windows and Windows CE

platforms, then you will need to purchase additional target

license.

OS_TKERNEL – Japanese T-Kernel standards based OS

OS_LYNXOS - LynxOS from LynuxWorks
OS_QNX – QNX operating system from QNX

OS_LYNXOS – LynxOS from Lynuxworks

OS_SOLARIS – Solaris from SUN Microsystems

OS_ANDROID – Mobile Operating System running on Linux

Kernel

OS_NETBSD – UNIX like Operating System

OS_µCOS – µCOS from Micrium
For example, if you want to develop for ThreadX, you will define

this flag as follows:

OS_TARGET = OS_THREADX

PROPRIETARY OS: If you are doing your own porting of OS

Abstractor Interface to your proprietary OS, you could add your

own define for your OS and include the appropriate OS interface
files within os_target.h file. MapuSoft can also add custom

support and validate the OS Abstraction solution for your

proprietary OS platform

 System Configuration Guide

 15

OS HOST Selection

The flag has to be false for standalone generation.

Table 2_2: Select the host operating system

Flag and Purpose Available Options

OS_HOST

To select the host

operating system

This flag is used only in AppCOE

environment. It is not used in the target

environment. In Standalone products,

this flag should be set to OS _FALSE.

Target 64 bit CPU Selection

Based on the OS you want the application to be built, set the following pre-processor

definition in your project setting or make files:

Table 2_3: Select the Target CPU type

Flag and Purpose Available Options

OS_CPU_64BIT

To select the target CPU

type.

The value of OS_CPU_64BIT can be any

ONE of the following:

 OS_TRUE – Target CPU is 64 bit type
CPU

 OS_FALSE – Target CPU is 32 bit
type CPU

NOTE: This value cannot be set in the
cross_os_usr.h, instead it needs to be

passed to compiler as –D macro either in

command line for the compiler or set this

pre-processor flag via the project

settings. If this macro is not used, then
the default value used will be OS_FALSE.

Select the OS Changer components for your application use as follows:

Table 2_4: OS Changer components for your application

Compilation Flag Meaning

MAP_OS_ANSI_FMT_IO Maps ANSI Formatted I/O functions

to the OS Abstractor equivalent

MAP_OS_ANSI_IO Maps ANSI I/O functions to the OS
Abstractor equivalent

INCLUDE_OS_PSOS_CLA

SSIC

set to OS_TRUE to build for use with the

OS Changer for pSOS Classic product

Select the following definition if you want OS Changer to enable error checking for debugging

purposes:

Table 2_5: Set the Pre-processor Definition For error checking

Compilation Flag Meaning

OS_DEBUG_INFO Enable error checking for debugging

 System Configuration Guide

 16

User Configuration File Location

The default directory location of the cross_os_usr.h configuration file is given below:

Table 2_6: Cross_os_usr.h Configuration File

Target OS Configuration Files Directory Location

OS_NUCLEUS \mapusoft\cros_os_nucleus\include

OS_THREADX \mapusoft\cross_os_threadx\include

OS_VXWORKS \mapusoft\cross_os_vxworks\include

Please make sure you specify the appropriate

target OS versions that you use in the

osabstractor_usr.h

OS_MQX \mapusoft\cross_os_mqx\include

OS_UITRON \mapusoft\cross_os_uitron\include

OS_LINUX \mapusoft\cross_os_linux\include

Please make sure you specify the appropriate
target OS versions that you use in the

cross_os_usr.h

NOTE: RT Linux, for using RT Linux you need

to select this option.

OS_SOLARIS \mapusoft\cross_os_solaris\include

OS_WINDOWS \mapusoft\cross_os_windows\include

Any windows platform including Windows CE

platform. If you use OS Abstractor
Interfaceunder both Windows and Windows CE,

then you would require additional target

license.

NOTE: Windows 2000, Windows XP, Windows
CE, Windows Vista from Microsoft

OS_ECOS \mapusoft\cross_os_ecos\include

OS_LYNXOS \mapusoft\cross_os_lynxos\include

OS_QNX \mapusoft\cross_os_qnx\include

OS_TKERNEL \mapusoft\cross_os_tkernel\include

OS_ANDROID \mapusoft\cross_os_android\include

OS_NETBSD \mapusoft\cross_os_netbsd\include

OS_µCOS \mapusoft\cross_os_µCOS\include

If you have installed the MapuSoft’s products in directory location other than
mapusoft then refer the corresponding directory instead of \mapusoft for correct

directory location.

 System Configuration Guide

 17

OS Changer Components Selection

OS Abstractor optional comes with various OS Changer API solutions in addition to its BASE

and POSIX API offerings. OS Changer APIs are used to port legacy code base from one OS to

another. Select one or more OS Changer components depending on the type of code that you

needed to port to one or more new operating system platforms. Set the pre-processor flag

below to select the components needed by your application:

Table 2_7: OS Changer Components Selection

Flag and Purpose Available Options

INCLUDE_OS_VXWORKS

To include VxWorks Interface

product. Refer to the appropriate

Interface manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE

INCLUDE_OS_POSIX/LINUX

To include POSIX/LINUX Interface

product. Refer to the appropriate
Interface manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE

INCLUDE_OS_PSOS

To include pSOS Interface product.

Refer to the appropriate Interface

manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE

INCLUDE_OS_PSOS_CLASSIC

To include a very old version of pSOS
Interface product. Refer to the

appropriate Interface manual for

more details.

OS_TRUE – Include support for pSOS 4.1 rev

3/10/1986
OS_FALSE – do not include pSOS 4.1 support

The default is OS_FALSE

INCLUDE_OS_UITRON

To include UITRON Interface product.

Refer to the appropriate Interface
manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE

INCLUDE_OS_NUCLEUS

To include Nucleus PLUS Interface

product. Refer to the appropriate

Interface manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE.

INCLUDE_OS_NUCLEUS_NET

To include Nucleus NET Interface

product. Refer to the appropriate
Interface manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE.

INCLUDE_OS_THREADX

To include ThreadX Interface

product. Refer to the appropriate

Interface manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE

INCLUDE_OS_FILE

To include ANSI file system API
compliance for the vendor provided

File Systems. Refer to the appropriate

Interface manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support
The default is OS_FALSE.

This option is only available for Nucleus PLUS target

OS

INCLUDE_OS_WINDOWS

To include Windows Interface

product. Refer to the appropriate
Interface manual for more details.

OS_TRUE – Include support

OS_FALSE – Do not include support

The default is OS_FALSE
This option is not available on Windows operating

system host or target environment

 System Configuration Guide

 18

NOTE: For additional information regarding how to use any specific Interface product, refer

to the appropriate reference manual or contact www.mapusoft.com.

POSIX OS Abstractor Selection

OS Abstractor Interface optionally comes with POSIX support as well. Set the pre-processor
flag provided below to select the POSIX component for application use as follows:

Table 2_8: POSIX component for application

Flag and Purpose Available Options

INCLUDE_OS_POSIX

To include POSIX Interface

product component.

OS_TRUE – Include support. You will need this

option turned ON either if the underlying OS

does not support POSIX (or) you need to POSIX

provided by OS Abstractor Interface instead of
the POSIX provided natively by the target OS

OS_FALSE – Do not include support

The default is OS_FALSE.

NOTE: The above component can be used across POSIX based and non-POSIX based target

OS for gaining full portability along with advanced real-time features. POSIX Interface
library will provide the POSIX functionality instead of application using POSIX

functionalities directly from the native POSIX from the OS and as a result this will ensure

that your application code will work across various POSIX/UNIX based target OS and also

its various versions while providing various real-time API and performance features. In

addition, OS Abstractor Interface will allow the POSIX application to take advantage of

safety critical features like task-pooling, fixing boundary for application’s heap memory use,
self recovery from fatal errors, etc. (these features are defined elsewhere in this document).

For added flexibility, POSIX applications can also take advantage of using OS Abstractor

Interface APIs non-intrusively for additional flexibility and features.

http://www.mapusoft.com/

 System Configuration Guide

 19

OS Abstractor Process Feature Selection

 Table 2_9: OS Abstractor Process Feature Selection

Flag and Purpose Available Options
INCLUDE_OS_PROCESS

OS_TRUE – Include OS Abstractor process

support APIs and track resources under each

process and also allow multiple individually

executable applications to use OS Abstractor

OS_FALSE – Do not include process model
support. Use this option for optimized OS

Abstractor performance

The default is OS_FALSE

The INCLUDE_OS_PROCESS option is useful when there are multiple developers writing

components of the applications that are modular. The resource created by the process is

automatically tracked and when the process goes away they also go away. One process can
use another process resource, only if that process is created with ―system‖ scope. A process

cannot delete a resource that it did not create.

The INCLUDE_OS_PROCESS feature can also be used on target OS like VxWorks 5.x a non-

process based operating system. In this case, the OS Abstractor provides software process
protection. Under process-based OS like Linux, the processes created by the OS Abstractor

will be an actual native system processes.

The INCLUDE_OS_PROCESS feature is also useful to simulate complex multiple embedded

controller application on x86 single processor host platform. In this case, each individual

process /application will represent individual controllers, which uses a shared memory
region for inter-communication. This application could then be ported to the real multiple

embedded controller environments with shared physical memory.

Process Feature use within OS Changer

It is possible for legacy applications to use the process feature along with OS Changer and

take advantage of process protection mechanism and also have the ability to break down

the complex application into multiple manageable modules to reduce complexity in code

development. However, when porting legacy code, we recommend that the application be

first ported to a single process successfully. Once this is completed, then the application

can be modified to move the global data to shared memory and can be made to easily reside
into individual process and or multiple executables.

To allow the legacy applications to be broken down into process modules and /or multiple

applications the flag INCLUDE_OS_PROCESS needs to be set to OS_TRUE. Also the

application needs to use OS_Create_Process envelopes to move the resources to appropriate
processes. Legacy application can also make in multiple applications which then compile

separately and can continue to use Interface APIs for inter-process communication.

Interface APIs provides transparency to the application and allows the application to use the

API among resources within a single process or multiple processes /applications.

 System Configuration Guide

 20

OS Abstractor Task-Pooling Feature Selection

Task-Pooling feature enhances the performances and reliability of application. Creating a task

(thread) at run-time require considerable system overhead and memory. The underlying OS

thread creation function call can take considerable amount of time to complete the operation

and could fail if there is not enough system memory. Enabling this feature, Applications can
create OS Abstractor tasks during initialization and be able to re-use the task envelope again

and again. To configure task-pooling, set the following pre-processor flag as follows:

 Table 2_10: OS Abstractor Task-Pooling Feature Selection

Flag and Purpose Available options

INCLUDE_OS_TASK_POOLI

NG

OS_TRUE – Include OS Abstractor task pooling

feature to allow applications to re-use task

envelops from task pool created during

initialization to eliminate run-time overhead with
actual resource creation and deletion

OS_FALSE – Do not include task pooling support

The default is OS_FALSE

Except for the performance improvement, this behavior will be transparent to the

application. Each process /application will contain its own individual task pool. Any

process, which requires a task pool, must successfully add tasks to the pool before it can be

used. Tasks can be added to (via OS_Add_To_Task_Pool function) or removed (via

OS_Remove_From_Task_Pool function) from a task pool at anytime.

When an application makes a request to use a pool task, OS Abstractor will first search for

a free task in the pool with an exact match based on stack size. If it does not find a match,

then a free task with the next larger stack size that is available will be used. If there are

multiple requests pending, a search will be made in FIFO order on the request list when a

task is freed to the pool. The first request that matches or fulfills the stack requirement will
then be fulfilled.

Refer to the MapuSoft supplied os_application_start.c file that came with the MapuSoft’s

demo application. The demo application pre-creates a bunch of fixed-stack-size (using

STACK_SIZE as defined in cross_os_def.h) task-pool-task as shown below:

#if (INCLUDE_OS_TASK_POOLING == OS_TRUE)

 for(i = 0; i < Max_Threads; i++)

 {

OS_Add_To_Task_Pool(STACK_SIZE); /*this is a portion of code in

init.c,

STACK_SIZE should be changed

according to the desired stack size

 }

#endif

Typically, applications would need a variety of threads with different stack size. If you would

like to modify the demo application to use threads with larger or differing stack size, make

sure you modify the os_application_start.c file according to your needs.

 System Configuration Guide

 21

The OS_Create_Task function will be used to retrieve a task from the task pool. This will be

accomplished by passing one of the flags OS_POOLED_TASK_WAIT or

OS_POOLED_TASK_NOWAIT as a parameter to OS_Create_Task. When a task has completed

and either exits, falls through itself or gets deleted by another task using the

OS_Delete_Task function, the task will automatically be freed to be used again by the task

pool. For further details, please refer to the OS_Create_Task specification defined in the

following pages.

An Application can add or remove tasks with a specified stack size to the task pool at any

time. The task pool will grow or shrink depending on each addition or deletion of tasks in

the task pool. The Application cannot remove a valid task, which does not belong to the task

pool. OS_Get_System_Info function can be used to retrieve the system configuration and

run-time system status including information related to task pool.

If OS_TASK_POOLING is enabled, then all tasks POSIX threads created using the POSIX

Interface POSIX APIs provided by POSIX Interface with POSIX and/or any task creation

created using task create functions in any Interface products will automatically use the task

pool mechanism with the flag option set to OS_POOLED_TASK_NOWAIT.

Warning: Your application will fail during task creation if OS_TASK_POOLING is enabled

and you have not added any tasks to the task pool. Make sure you add tasks (via

OS_Add_To_Task_Pool function) with all required stack sizes prior to creating pooled tasks

(via OS_Create_Task function).

Special Notes: Task Pooling feature is not supported in ThreadX, µCOS, and Nucleus

targets.

 System Configuration Guide

 22

OS Abstractor Profiler Feature Selection

The following are the user configuration options that can be set in the cross_os_usr.h:

 Table 2_11: OS Abstractor Profiler Feature Selection

Flag and Purpose Available Options

OS_PROFILER

Profiler feature allows
applications running on the

target to collect valuable

performance data regarding

the application’s usage of

the OS Abstractor APIs.

Using the AppCOE tool, this
data can then be loaded and

analyzed in graphical

format. You can find out

how often a specific OS

Abstractor API is called
across the system or within

a specific thread. You can

also find out how much time

the functions took across

the whole system as well as

within a specific thread

Profiler feature uses high

resolution clock counters to

collect profiling data and

this implementation may not
be available for all target

CPU and OS platforms.

Please contact MapuSoft for

any custom high resolution

timer implementation

required for the profiler for
your target/OS

environment. Refer to

OS_Get_Hr_Clock_Freq()

and OS_Read_Hr_Clock()

for additional details on

what target/OS platforms

are currently supported by

the profiler.
If profiler feature is turned

ON, then it needs to use the

open/read/write calls to

write to profiler data file. If

you set OS_MAP_ANSI_IO to

OS_TRUE then make sure
you install the appropriate

file device and driver.

Can either be:

OS_TRUE – Profiler feature will be included.
Profiling takes place with each OS Abstractor API

call. If profiler is turned on, also set the value for

the following defines:

PROFILER_TASK_PRIORITY

The priority level (0 to 255) of the profiler thread.
The profiler thread starts picking up the

messages in the profiler queue, formats them

into XML record and write to file. If the priority is

set to the lowest (i.e, 255), then the profiler

thread may not have an opportunity to pick the
message from the queue in time and as such the

queue gets filled up and as such the profiler will

stop. The default profiler task priority value is set

to 200.

NUM_OF_MSG_TO_HOLD_IN_MEMORY

This will be the depth of the profiler queue. The

bigger the number, the more the memory is

needed. A maximum of 30,000 profiler records

can be created. Please make sure you increase
you application’s heap size by

NUM_OF_MSG_TO_HOLD_IN_MEMORY times

PROFILER_MSG_SIZE in the OS_Application_Init

call.

PROFILER_DATAFILE_PATH

This will be the directory location where the

profiler file will be created. For Linux,The default

location set is ―/root‖.

OS_FALSE – Profiler code will be excluded and

the feature will be turned off.

The default value is OS_FALSE.

 System Configuration Guide

 23

The profiler starts as soon as the application starts and will continue to collect performance
data until the memory buffers in the profiler queue gets filled up. After, this the profiling

stops and data is dumped into *.pal files at the user specified location. It is recommended

that the profiler feature be turned off for the production release of your application.

If the profiler feature is turned OFF, then the profiler hooks disappear within the OS

Abstractor and as such there are no impacts to the OS Abstractor API performance.

Special Notes: Profiler feature is not supported in ThreadX and Nucleus targets.

OS Abstractor Output Device Selection

The following are the user configuration options and their meanings:

 Table 2_12: OS Abstractor Output Device Selection

Flag and Purpose Available options

OS_STD_OUTPUT

Output device to print.

OS_SERIAL_OUT – Print to serial

OS_WIN_CONSOLE – Print to console

User can print to other devices by modifying the

appropriate functions within
os_setup_serial_port.c in the OS Abstractor

―source‖ directory and use OS Abstractor’s

format Input/Output calls.

The default value is OS_WIN_CONSOLE

OS Abstractor Debug and Error Checking

Table 2_13: OS Abstractor Debug and Error Checking

Flag and Purpose Available Options

OS_DEBUG_INFO OS_DEBUG_MINIMAL – print debug info, fatal

and compliance errors

OS_DEBUG_VERBOSE –print the debug

information, Fatal Error & Compilation Error
elaborately.

OS_DEBUG_DISABLE -do not print debug info

The default value is OS_DEBUG_MINIMAL

OS_ERROR_CHECKING OS_TRUE – Check for API usage errors
OS_FALSE – do not check for errors. Use this

option to increase performance and reduce code

size

The default value is OS_TRUE

 System Configuration Guide

 24

OS Abstractor ANSI API Mapping

OS Abstractor APIs can be mapped to exact ANSI names by turning on these features:

Table 2_14: OS Abstractor ANSI API Mapping

Flag and Purpose Available options

MAP_OS_ANSI_MEMORY OS_TRUE – map ANSI malloc() and free() to OS

Abstractor equivalent functions

OS_FALSE – do not map functions. Also, when

you call OS_Application_Free in this case, the
memory allocated via malloc() calls will NOT be

automatically freed.

The default value is OS_TRUE

NOTE: Refer to OS_USE_EXTERNAL_MALLOC

define, if you want to connect your own memory
management solution for use by OS Abstractor

MAP_OS_ANSI_FMT_IO

OS_TRUE – map ANSI printf() and sprintf() to

OS Abstractor equivalent functions

OS_FALSE – do not map functions

The default value is OS_FALSE

MAP_OS_ANSI_IO OS_TRUE – map ANSI device I/O functions like
open(), close(), read(), write, ioctl(), etc. to OS

Abstractor equivalent functions

NOTE: If your target OS is NOT a single-

memory model based (e.g. Windows, Linux,

QNX, etc.), then the OS Abstractor I/O

functions are to be used within one single
process/application.. If you need to use the I/O

across multiple process, then set this define to

OS_FALSE so that your application can use the

native I/O APIs from the OS

OS_FALSE – do not map functions

The default value is OS_FALSE

NOTE: When you set MAP_OS_ANSI_IO to OS_TRUE, OS Abstractor automatically replaces

open() calls to OS_open() during compile time when you include os_target.h in your source

code. If you set MAP_OS_ANSI_IO to OS_FALSE, then in your source code when you include

os_target.h, application can actually use both OS_open() and open() calls, where the

OS_open will come from OS Abstractor library and open() will come from the native OS

library. Given that OS Abstractor I/O APIs are similar to ANSI I/O, you probably can use
the third option so that you eliminate some performance overhead going through OS

Abstractor I/O wrappers if necessary. But, it is always recommended that application use

OS Abstractor or POSIX APIs instead of directly using native API calls from OS libraries for

maximum portability.

 System Configuration Guide

 25

OS Abstractor External Memory Allocation

OS Abstractor APIs can be mapped to exact ANSI names by turning on these features:

Table 2_15: OS Abstractor External Memory Allocation

Flag and Purpose Available options

OS_USE_EXTERNAL_MALL

OC

OS_TRUE – OS Abstractor can be configured to

use an application defined external functions to

allocate and free memory needed dynamically by
the process. In this case, the OS Abstractor will

use these function for allocating and freeing

memory within OS_Allocate_Memory and

OS_Deallocate_Memory functions These

external functions needs to be similar to

malloc() and free() and should be defined

within cross_os_usr.h in order for OS Abstractor
to successfully use them. This feature is useful if

the application has its own memory management

schemes far better than what the OS has to offer

for dynamic allocations.

OS_FALSE – OS Abstractor will directly use the

target OS system calls for allocating and freeing
the memory

The default value is OS_FALSE

OS Abstractor Resource Configuration

In addition to OS Abstractor resources used by application, there may be some additional

resources required internally by OS Abstractor. The configuration should take into the

account of these additional resources while configuring the system requirements. All or any of

the configuration parameters set in cross_os_usr.h configuration file can be altered by

OS_Application_Init function .

The following are the OS Abstractor system resource configuration parameters:

Table 2_16: OS Abstractor system resource configuration parameters

Flag and Purpose Default Setting

OS_TOTAL_SYSTEM_PROCESSES

The total number of processes

required by the application

100

One control block will be used by the

OS_Application_Init function when the
INCLUDE_OS_PROCESS option is true

OS_TOTAL_SYSTEM_TASKS

The total number of tasks required

by the application

100

One control block will be used by the

OS_Application_Init function when the

INCLUDE_OS_PROCESS option is true.

OS_TOTAL_SYSTEM_PIPES
The total number of pipes for

message passing required by the

application

100

OS_TOTAL_SYSTEM_QUEUES 100

 System Configuration Guide

 26

The total number of queues for

message passing required by the

application

OS_TOTAL_SYSTEM_MUTEXES

The total number of mutex
semaphores required by the

application

100

OS_TOTAL_SYSTEM_SEMAPHORES

The total number of regular

(binary/count) semaphores required

by the application

100

OS_TOTAL_SYSTEM_DM_POOLS
The total number of dynamic variable

memory pools required by the

application

100

One control block will be used by the

OS_Application_Init function when the

INCLUDE_OS_PROCESS option is true.

OS_TOTAL_SYSTEM_PM_POOLS

The total number of partitioned

(fixed-size) memory pools required by
the application

100

OS_TOTAL_SYSTEM_TM_POOLS

The total number of Tiered memory

pools required by the application

100

OS_TOTAL_SYSTEM_TSM_POOLS

The total number of Tiered shared

memory pools required by the
application

100

OS_TOTAL_SYSTEM_EV_GROUPS

The total number of event groups

required by the application

100

OS_TOTAL_SYSTEM_TIMERS

The total number of application

timers required by the application

100

OS_TOTAL_SYSTEM_HANDLES
The total number of system Handles

required by the application

100

NOTE: The first control block of Task, Queue, Dynamic Memory and Semaphore is reserved

for internal use in the OS Abstractor Interface.

 System Configuration Guide

 27

The following are the additional resources required internally by OS Abstractor:

Table 2_17: Additional resources required internally by OS Abstractor

Resources

Linux /POSIX ,Vxworks, pSOS ,Windows, µCOS, QNX,

MQX, ThreadX, Nucleus, uITRON, NetBSD, Solaris,

LynxOS, Android Targets

TASK

 2 Semaphore required if application uses µitron
Interface for above mentioned target

 1 Event Group required by OS Abstractor for
signaling support in posix for above mentioned target

 1 Event group required if application uses POSIX
Interface and/or VxWorks Interface and/or pSOS
Interface for above mentioned target

 1 Event Group required by OS Abstractor if
application uses task pooling for above mentioned

target

DYNAMIC_POOL
 1 Event Group required by OS Abstractor for above

mentioned target but not for MQX Target

QUEUE

 2 Semaphores used by OS Abstractor for above
mentioned target

 1 Semaphore used by POSIX Interface for above
mentioned target

 Additional Queues required by OS Abstractor if
application uses profiler for above mentioned target

PIPE  1 Additional Semaphore required by OS Abstractor

MUTEX
 Additional Protection Structure required by OS

Abstractor for above mentioned target

PROCESS

 1 DM_POOL used by OS Abstractor for above
mentioned target

 1 Event Group required by OS Abstractor for above
mentioned target

 1 Additional Task required by OS Abstractor for above
mentioned target

 2 Protection Structures required by OS Abstractor for
above mentioned target

Note: Every process needs a memory pool only for µCOS

Target

NON_PROCESS

 1 Event Group required by OS Abstractor for Linux,
Windows, MQX Target

 2 Event Group required by OS Abstractor µCOS
Target

PARTITION_POOL
 1 Semaphore is used by OS Abstractor for above

mentioned target

PROTECTION_STRUCTURE

 1 Protection Structures required by
os_key_list_protect if application uses POSIX Interface

for above mentioned target

 14 Additional Protection Structure required by OS
Abstractor for above mentioned Targets except

LynxOS Target, Vxworks & QNX Target

 System Configuration Guide

 28

 13 Additional Protection Structure required by OS
Abstractor for LynxOS Target, Vxworks &QNX Target

Posix Condition Variable
1 Event Group required by POSIX Interface for above

mentioned target

Posix R/W Lock

1 Event Group required by POSIX Interface for above

mentioned target

1 Semaphore required by POSIX Interface for above
mentioned target

If INCLUDE_OS_PROCESS feature is set to OS_FALSE, then the memory will be allocated

from the individual application/process specific pool, which gets created during the

OS_Application_Init function call.

If INCLUDE_OS_PROCESS is set to OS_TRUE, then the memory is allocated from a shared
memory region to allow applications to communicate across multiple processes. Please note

that in this case, the control block allocations cannot be done from the process specific

dedicated memory pool since the control blocks are required to be shared across multiple

applications.

OS Abstractor Minimum Memory Pool Block Configuration

Table 2_18: OS Abstractor Minimum Memory Pool Block Configuration

Flag and Purpose Default Setting

OS_MIN_MEM_FROM_POOL

Minimum memory allocated by the

malloc() and/or

OS_Allocate_Memory() calls. This will

be the memory allocated even when

application requests a smaller

memory size

4 (bytes)

NOTE: Increasing this value further

reduces memory fragmentation at the

cost of more wasted memory.

OS Abstractor Application Shared Memory Configuration

Table 2_19: OS Abstractor Application Shared Memory Configuration

Flag and Purpose Default Setting

OS_USER_SHARED_REGION1_SIZE

Application defined shared memory
region usable across all process-

based OS Abstractor

processes/applications. Process-

based applications are required to be

built with OS_INCLUDE_PROCESS
feature set to OS_TRUE

1024 (bytes)

OS Abstractor includes this shared user region in the memory area immediately following all

the OS Abstractor control block allocations. Applications can access the shared memory via

the System_Config->user_shared_region1 global variable. Also, access to shared

 System Configuration Guide

 29

memory region must be protected (i.e. use mutex locks prior to read/write by the

application).

NOTE: The actual virtual address of the shared memory may be different across

processes/application; however the OS Abstractor initialized the System_Config pointer

correctly during OS_Application_Init function call. Applications should not pass the shared

memory region address pointer from one process to another since the virtual address
pointing to the shared region may differ from process to process (instead use the above

global variable defined above for shared memory region access from each

process/applications).

 System Configuration Guide

 30

OS Abstractor Clock Tick Configuration

Table 2_20: OS Abstractor Clock Tick Configuration

Flag and Purpose Default Setting

OS_TIME_RESOLUTION

This will be the system clock ticks

(not hardware clock tick).

For example, when you call

OS_Task_Sleep(5), you are

suspending task for a period

(5* OS_TIME_RESOLUTION).

See NOTES in this table.

10000  second (= 10milli sec)

Normally this value is derived from the

target OS. If you cannot derive the

value then refer to the target OS
reference manual and set the correct

per clock tick value

OS_DEFAULT_TSLICE

Default time slice scheduling window

width among same priority pre-

emptable threads when they are all
in ready state.

10

Number of system ticks. If system tick

is 10ms, then the threads will be

schedule round-robin at the rate of

every 100ms.
NOTE: On Linux operating system, the

time slice cannot be modified per

thread. OS Abstractor ignores this

setting and only uses the system

default time slice configured for the

Linux kernel.
NOTE: Time slice option is NOT

supported under micro-ITRON.

NOTE: If the time slice value is non-

zero, then under Linux the threads will

use Round-Robin scheduling using the
system default time slice value of Linux.

If the Linux kernel support

LINUX_ADV_REALTIME then the time

slice value will be set accordingly.

NOTE: Since the system clock tick resolution may vary across different OS under different

target. It is recommended that the application use the macro OS_TIME_TICK_PER_SEC to

derive the timing requirement instead of using the raw system tick value in order to keep

the application portable across multiple OS.

 System Configuration Guide

 31

OS Abstractor Device I/O Configuration

Table 2_21: OS Abstractor Device I/O Configuration

Flag and Purpose Default Setting

NUM_DRIVERS

Maximum number of drivers allowed

in the OS Abstractor driver table
structure

20

NOTE: This excludes the native drivers

the system, since they do not use the
OS Abstractor driver table structure.

NUM_FILES

Maximum number of files that can

be opened simultaneously using the

OS Abstractor file control block

structure.

30

NOTE: One control block is used when

an OS Abstractor driver is opened.

These settings do not impact the OS

setting for max number of files.

EMAXPATH

Maximum length of the directory

path name including the file name

for OS Abstractor use excluding the

null char termination

255

NOTE: This setting does not impact the

OS setting for the max path/file name.

MAX_FILENAME_LENGTH (EMAXPATH + 1)

/* max chars in filename + EOS*/

SMP Flags

The following is the compilation defines that can be set when building the OS Abstractor
library for SMP kernel target OS:

Table 2_23: Compilation Flag for SMP

Compilation Flag Meaning
OS_BUILD_FOR_SMP

Support for

Symmetric Multi-

Processors (SMP)

Specify the SMP or non-SMP kernel. The value can be:

OS_TRUE SMP enabled

OS_FALSE SMP disabled

Warning: If you fail to set SMP flag to OS_TRUE and use Mapusoft products on an SMP

enabled machine, you will get the result in an unpredictable behavior due to failure of

internal data protection mechanism.

Now MapuSoft provides SMP support to the following OS’s:

 Linux

 Windows XP/Vista/Mobile/CE/7

 VxWorks

 System Configuration Guide

 32

Limitations:

In VxWorks there is a limitation to set affinity to a single core only. Hence in

OS_Application_Init.c and OS_Create_Process.c, the affinity mask in the respective init_info

structures should be passed accordingly.

SMP is not supported on the following OSs:

 µCOS

 Nucleus

 ThreadX

 MQX

 uITRON

 Android

 T-Kernel

 uITRON

 QNX

 Solaris

 NetBSD

 LynxOS

 System Configuration Guide

 33

OS Abstractor Target OS Specific Notes

Nucleus PLUS Target

The following is the compilations define that has to be set when building the Nucleus PLUS

library in order for the OS Abstractor to perform correctly:

Table 2_21: Compilation Flag For Nucleus PLUS Target

Compilation Flag Meaning

NU_DEBUG Regardless of the target you build, the OS Abstractor

library always requires this flag to be set in order to be

able to access OS internal data structures. Without this

flag, you will see a lot of compiler errors.

ThreadX Target

The ThreadX port for Win32 has a user defined memory ceiling which has a default value of
64K. If you run into issues with memory not being available, you will need to increase the

memory limit. This define is called TX_WIN32_MEMORY_SIZE and is located in tx_port.h.

Precise/MQX Target

The following are the compilation defines that has to be set if you are using Precise/MQX as

your target OS:

Table 2_22: Compilation Flag for Precise/MQX Target

Compilation Flag Meaning

MQX_TASK_DESTRUCTION Set this macro to zero to allow OS Abstractor

to manage destruction of MQX kernel objects
such as semaphores.

BSP_DEFAULT_MAX_MSGPO

OLS

Set this macro to match the maximum

number of message queues and pipes required

by your application at a given time.

For example, if your application would need a

max of 10 message queues and 10 pipes, then

this macro needs to be set to 20.

The MQX_TASK_DESTRUCTION macro is located in source\include\mqx_cnfg.h in your

MQX installation. Set it to zero as shown below (or pass it to compiler via pre-processor

setting in your project make files):

#ifndef MQX_TASK_DESTRUCTION

#define MQX_TASK_DESTRUCTION 0

#endif

The BSP_DEFAULT_MAX_MSGPOOLS macro is located in source\bsp\bspname\bspname.h
in your MQX installation, where bspname is the name of your BSP. Set the required value

as follows:

#define BSP_DEFAULT_MAX_MSGPOOLS (20L)

 System Configuration Guide

 34

Linux Target

User Vs ROOT Login

OS Abstractor internally checks the user ID to see if the user is ROOT or not. If the user is

ROOT, then it will automatically utilize the Linux real time policies and priorities. It is always

recommended that OS Abstractor application be run under ROOT user login. In this mode:

 OS Abstractor task priorities, time slice, pre-emption modes and critical region
protection features will work properly.

 OS Abstractor applications will have better performance and be more deterministic

behavior since the Linux scheduler is prevented to alter the tasks priorities behind
the scenes.

 Also, when you load other Linux applications (that uses the default SCHED_OTHER
policies), they will not impact the performance of the OS Abstractor applications that

are running under real-time priorities and policies.

Under non-ROOT user mode, the task scheduling is fully under the mercy of the Linux

scheduler. In this mode, the OS Abstractor does not utilize any real-time priorities and/or
policies. It will use the SCHED_OTHER policy and will ignore the application request to set

and/or change scheduler parameters like priority and such. OS Abstractor applications will

run under the non-ROOT mode, with restrictions to the following OS Abstractor APIs:

 OS_Create_Task: The function parameters priority, time-slice and OS_NO_PREEMPT flag

options are ignored

 OS_Set_Task_Priority: This function will have no effect and will be ignored

 OS_Set_Task_Preemption: Changing the task pre-emption to OS_NO_PREEMPT has no
effect and will be ignored

 OS_Protect: Will offer NO critical region data protection and will be ignored. If you need
protection, then utilize OS Abstractor mutex features

 OS_Create_Driver: The OS Abstractor driver task will NOT be run at a higher priority
level that the OS Abstractor application tasks.

Though OS Abstractor applications may run under non-ROOT user mode, it is highly

recommended that the real target applications be run under ROOT user mode.

System Resource Configuration

Linux has a limit on the sysv system resources. Typically, OS Abstractoris able to adjust these

limits as required. But, if the CAP_SYS_RESOURCE capability is disabled, OS Abstractorwill
not have the proper access privileges to do so. In this case, the values will need to be adjusted

manually using an account with the proper capabilities enabled, or the kernel will need to be

modified and rebuilt with the increased number of resources set as a default.

Time Resolution

The value of the system clock ticks is defined by OS_TIME_RESOLUTION, which is retrieved

from the Linux system. Under Red Hat®/GNU® Linux, this is actually 100 (this means every
tick equals to 10ms). However, the OS_TIME_TICK_PER_SEC could be different under other

real-time or proprietary Linux distributions.

Also, make sure you modify OS_DEFAULT_TSLICE value to match with your application needs

if necessary. By default, this value is set for the time slice to be 100ms. If the Linux Advanced

 System Configuration Guide

 35

Real Time Feature is present (i.e the Linux kernel macro LINUX_ADV_REALTIME == 1), then

OS Abstractor automatically takes advantage of this feature if present and uses the

sched_rr_set_interval() function and sets the application required round-robin thread

time-slice for the OS Abstractor thread. If this feature is not present, the time-slice value for

round-robin scheduling will be whatever the kernel is configured to.

Memory Heap

OS Abstractor uses the system heap directly to provide the dynamic variable memory
allocation. The Memory management for the variable memory is best left for the Linux kernel to

be handled, so OS Abstractor only does boundary checks to ensure that the application does

not allocate beyond the pool size. The maximum memory the application can get from these

pools will depend on the memory availability of the system heap.

Priority Mapping Scheme

The OS Abstractor uses priorities 0~255 plus one more for exclusivity which results in a total
of 257 priorities. If the Linux that you use provides less than 257 priority values, then OS

Abstractor maps its priority in a simple window-mapping scheme where a window of OS

Abstractor priorities gets mapped to each individual Linux priority. If the Linux that you use

provides more than 257 priority values, then the OS Abstractor maps it priority one-on-one

somewhere in the middle of the range of Linux priorities. Please modify the priority scheme as

necessary if required by your application. If you want to minimize the interruption of the
external native Linux applications then you would want the OS Abstractor priorities to map to

the higher end of the Linux priority window.

OS Abstractor priority value of 257 is reserved internally by OS Abstractor to provide the

necessary exclusivity among the OS Abstractor tasks when they request no preemption or task

protection. The exclusivity and protections are not guaranteed if the external native Linux
application runs at a higher priority.

It is recommended that the Linux kernel be configured to have a priority of 512, so that the OS

Abstractor priorities will use the window range in the middle and as such would not interfere

with some of core Linux components. If your Linux kernel is configured to have less than 257

priorities, the OS Abstractor will automatically configuring a windowing scheme, where

multiple number of OS Abstractor priorities will map to a single Linux priority. Because of this,
the reported priority value could be slightly different than what was used during the task

creating process. If your application uses the pre-processor called OS_DEBUG_INFO, then all

the priority values and calculations will be printed to the standard output device.

Memory and System Resource Cleanup

OS Abstractor uses shared memory to support multiple OS Abstractor and OS Changer
application processes that are built with OS_INCLUDE_PROCESS mode set to OS_TRUE.

 System Configuration Guide

 36

Single-process Application Exit

This will apply to application that does not use the OS_PROCESS feature. Each application

needs to call OS_Application_Free to unregister and free OS Abstractor resources used by the
application. Under circumstances where the application terminates abnormally, the

applications need to install appropriate signal handler and call OS_Application_Free within

them.

Multi-process Application Exit

This will be the case where the applications are built with OS_PROCESS feature set to

OS_TRUE. When the first multi-process application starts, shared memory is created to
accommodate all the shared system resources for all the multi-process application. When

subsequent multi-process application gets loaded, they will register and OS Abstractor will

create all the local resources (memory heap) necessary for the application. Application’s can

also spawn new applications using OS_Create_Process and will result the same as if a new

application get’s loaded. Each application needs to call OS_Application_Free to unregister
and free OS Abstractor resources used by the application. Under circumstances where the

application terminates abnormally, the applications need to install appropriate signal handler

and call OS_Application_Free within them. When the last application calls

OS_Application_Free, then OS Abstractor frees the resources used by the application and also

deletes the shared memory region.

Manual Clean-up

If application terminates abnormally and for any reason and it was not possible to call

OS_Application_Free, then it is recommended that you execute the provide cleanup.pl script

manually before starting to load applications. Users can query the interprocess shared

resources status by typing ipcs in the command line.

Multi-process Zombie Cleanup

There are circumstances where a multi-process application terminates abnormally and was

not able to call OS_Application_Free. In this case, the shared memory region would be left

with a zombie control block (i.e there is no native process associated with the OS Abstractor

process control block). Whenever, a new multi-process application get’s loaded, OS Abstractor

automatically checks the shared memory region for zombie control blocks. If it finds any, it

will take the following action:
Free and initialize all the control blocks that belong to the zombie process (this could even be

the zombie process of the same application currently being loaded but was previously

terminated abnormally).

Task’s Stack Size

The stack size has to be greater than PTHREAD_STACK_MIN defined by Linux, otherwise, any
OS Abstractor or OS Changer task creation will return success, but the actual task

(pthread) will never get launched by the target OS. It is also safe to use a value greater than or

equal to OS_MIN_STACK_SIZE defined in cross_os_def.h. OS Abstractor ensures

that OS_STACK_SIZE_MIN is always greater that the minimum stack size requirement set by

the underlying target OS.

 System Configuration Guide

 37

Windows Target

OS_Relinquish_Task API uses Window’s sleep() to relinquish task control. However, the

sleep() function does not relinquish control when stepping through code in the debugger, but

behaves correctly when executed. This is a problem inherent in the OS itself.

If you have windows interface turned ON (i.e OS_INCLUDE_WINDOWS = OS_TRUE) along with

other interface libraries in your project, make sure the project is build with process mode flag
is turned ON (i.e INCLUDE_OS_PROCESS = OS_TRUE). If you build one interface library with

process mode flag turned OFF and other interface libraries with process mode flag ON then

segmentation fault will occur due to mismatch all libraries not being built with the current

process feature.

Android Target

Installing and Building the Android Platform

Prerequisites:

To install and build Android requires the following packages:

 JDK 5.0 update 12 or higher. Java 6 will not work. – Download from
http://java.sun.com

 Android 1.5 SDK – Download from
http://developer.android.com/sdk/1.5_r3/index.html

 Android 1.5 NDK – Download from
http://developer.android.com/sdk/ndk/1.5_r1/index.html

Refer to the Android website for instructions on how to properly install and configure the SDK

and the NDK.

It is very important that JDK 6 is not used. JDK 6 will cause compiler errors. If you have both

JDK’s installed confirm that JDK 5.0 is the one that will be used by using the command:

$ which java

Adding Mapusoft Products to the Android Platform

To add Mapusoft products to Android Platform:

1. Add the Mapusoft project into the ~/android-ndk-1.5_r1/sources directory. This directory

is referred to as <MAPUSOFT_ROOT>.

2. Run the setup.sh script located in <MAPUSOFT_ROOT>/cross_os_android. This creates
symbolic links for the demo applications.

The command used to build the applications is

$ make APP=<app_name>

For instance, to build the OS Abstractor demo the command would be

$ make APP=demo_cross_os

http://java.sun.com/
http://developer.android.com/sdk/1.5_r3/index.html
http://developer.android.com/sdk/ndk/1.5_r1/index.html

 System Configuration Guide

 38

Running the Demos from the Android Emulator

To run the demos from Android Emulator:

1. Follow the steps documented on the Android developer site on how to create an AVD for the
emulator.

2. Launch the emulator with the command:

$ emulator –avd <avd_name>

3. Open another terminal and enter the command:

$ adb logcat

This will capture the log output from the emulator.

4. After the emulator launches click on the menu button to unlock the phone.

5. Click on the popup arrow on the screen.

6. The demos should be listed in the list of applications. Click on one to launch it. The demo

output will be piped into the adb terminal window.

QNX Target

User Vs ROOT Login

OS Abstractor internally checks the user ID to see if the user is ROOT or not. If the user is

ROOT, then it will automatically utilize the Linux real time policies and priorities. It is always
recommended that OS Abstractor application be run under ROOT user login. In this mode:

 OS Abstractor task priorities, time slice, pre-emption modes and critical region
protection features will work properly.

 OS Abstractor applications will have better performance and be more deterministic
behavior since the Linux scheduler is prevented to alter the tasks priorities behind

the scenes.

 Also, when you load other Linux applications (that uses the default SCHED_OTHER
policies), they will not impact the performance of the OS Abstractor applications that

are running under real-time priorities and policies.

Under non-ROOT user mode, the task scheduling is fully under the mercy of the Linux

scheduler. In this mode, the OS Abstractor does not utilize any real-time priorities and/or

policies. It will use the SCHED_OTHER policy and will ignore the application request to set

and/or change scheduler parameters like priority and such. OS Abstractor applications will

run under the non-ROOT mode, with restrictions to the following OS Abstractor APIs:

OS_Create_Task: The function parameters priority, time-slice and OS_NO_PREEMPT flag

options are ignored

 OS_Set_Task_Priority: This function will have no effect and will be ignored

 OS_Set_Task_Preemption: Changing the task pre-emption to OS_NO_PREEMPT has no
effect and will be ignored

 OS_Protect: Will offer NO critical region data protection and will be ignored. If you need
protection, then utilize OS Abstractor mutex features

 OS_Create_Driver: The OS Abstractor driver task will NOT be run at a higher priority
level that the OS Abstractor application tasks.

 System Configuration Guide

 39

Though OS Abstractor applications may run under non-ROOT user mode, it is highly

recommended that the real target applications be run under ROOT user mode.

Time Resolution

The value of the system clock ticks is defined by OS_TIME_RESOLUTION, which is retrieved from

the Linux system. Under Red Hat®/GNU® Linux, this is actually 100 (this means every tick

equals to 10ms). However, the OS_TIME_TICK_PER_SEC could be different under other real-time

or proprietary Linux distributions.

Also, make sure you modify OS_DEFAULT_TSLICE value to match with your application needs if

necessary. By default, this value is set for the time slice to be 100ms.

Memory Heap

OS Abstractor uses the system heap directly to provide the dynamic variable memory
allocation. The Memory management for the variable memory is best left for the Linux kernel to

be handled, so OS Abstractor only does boundary checks to ensure that the application does

not allocate beyond the pool size. The maximum memory the application can get from these

pools will depend on the memory availability of the system heap.

Priority Mapping Scheme

QNX native priority value of 255 will be reserved for OS Abstractor Exclusivity. The rest of the

255 QNX priorities will be mapped as follows:

0 to 253 OS Abstractor priorities -> 254 to 1 QNX priorities

254 and 255 OS Abstractor priorities -> 0 QNX priority

The OS Abstractor uses priorities 0~255 plus one more for exclusivity which results in a total
of 257.

Memory and System Resource Cleanup

Please refer to the same section under target specific notes for Linux operating system.

Task’s Stack Size

The stack size has to be greater than PTHREAD_STACK_MIN defined by Linux, otherwise, any
OS Abstractor or OS Changer task creation will return success, but the actual task

(pthread) will never get launched by the target OS. It is also safe to use a value greater than or

equal to OS_STACK_SIZE_MIN defined in def.h. OS Abstractor ensures

that OS_STACK_SIZE_MIN is always greater that the minimum stack size requirement set by

the underlying target OS.

Dead Synchronization Object Monitor

Use OS_Monitor_Register function to register a process as a dead synchronization object

monitor. A dead synchronization object situation can occur if a process is terminated while it

owns a synchronization object such as a mutex or a pthread_spinlock. When this happens any
other processes suspended on that object will never be able to acquire it. This situation can

only occur if the synchronization object is shared between processes. For further information

about OS_Monitor_Register function, refer to the OS Abstractor Interface Reference Manual.

 System Configuration Guide

 40

VxWorks Target

Version Flags

The following is the compilation defines that has to be set when building the OS Abstractor

library for VxWorks target OS:

Table 2_24: Version Flags for VxWorks Target

Compilation Flag Meaning
OS_VERSION Specify the VxWorks version. The value can be:

OS_VXWORKS_5X – VxWorks 5.x or older
OS_VXWORKS_6X – Versions 6.x or higher

OS_USER_MODE Set this value to OS_TRUE if the OS Abstractor is

required to run as a application module.

Under OS_VXWORKS_5X, the

OS_KERNEL_MODE flag is ignored. The library is

built to run as application module.
Under OS_VXWORKS_6X, you have the option to

create the library for either as a kernel module or

a user application as below:

OS_USER_MODE = OS_TRUE for application

module
OS_USER_MODE =OS_FALSE for kernel module.

OS_KERNEL_MODE Set this value to OS_TRUE if the OS Abstractor is

required to run as a kernel module.

Under OS_VXWORKS_5X, the

OS_KERNEL_MODE flag is ignored. The library is

built to run as a kernel module.
Under OS_VXWORKS_6X, you have the option to

create the library for either as a kernel module or

a user application as below:

OS_KERNEL_MODE = OS_TRUE for kernel

module
OS_KERNEL_MODE = OS_FALSE for user

application.
OS_VXWORKS_TARGET Select your appropriate Target platform. The

value can be:

OS_VXWORKS_PPC

OS_VXWORKS_PPC_604

OS_VXWORKS_X86
OS_VXWORKS_ARM

OS_VXWORKS_M68K

OS_VXWORKS_MCORE

OS_VXWORKS_MIPS

OS_VXWORKS_SH
OS_VXWORKS_SIMLINUX

OS_VXWORKS_SIMNT

OS_VXWORKS_SIMSOLARIS

OS_VXWORKS_SPARC

Unsupported OS Abstractor APIs

The following OS Abstractor APIs are not supported as shown below:

 System Configuration Guide

 41

Table 2_25: Unsupported OS Abstractor APIs for VxWorks Target

Compilation Flag Unsupported APIs
OS_VERSION =
OS_VXWORKS_5X

OS_Delete_Partion_Pool

OS_Delete_Memory_Pool

OS_Get_Semaphore_Count
OS_VERSION =
OS_VXWORKS_6X and
OS_KERNEL_MODE = OS_TRUE

OS_Set_Clock_Ticks

OS_VERSION =
OS_VXWORKS_6X and
OS_KERNEL_MODE =
OS_FALSE

OS_Get_Semaphore_Count

 System Configuration Guide

 42

Application Initialization

Once you have configured the OS Abstractor (refer to chapter OS Abstractor Configuration),

now you are ready to create a sample demo application.

Application needs to initialize the OS Abstractor library by calling the OS_Application_Init()

function prior to using any of the OS Abstractor function calls. Please refer to subsequent
pages for more info on the usage and definition of OS_Application_Init function.

The next step would be is to create the first task and then within the new task context,

application needs to call other initializations functions if required. For example, to use the

POSIX Interface component, application need to call OS_Posix_Init() function within an OS

Abstractor task context prior to using the POSIX APIs. The OS_Posix_Init() function initializes
the POSIX library and makes a function call to px_main() function pointer that is passed along

within OS_Posix_Init() call. Please note that the px_main() function is similar to the main()

function that is typically found in posix code. Please refer to the example initialization code

shown at the end of this section.

If the application also uses OS Changer components, then the appropriate OS Changer library

initialization calls need to be made in addition to POSIX initialization. Please refer to the

appropriate Interface reference manual for more details.

Please refer to the init.c module provided with the sample demo application for the specific

OS, tools and target for OS Abstractor initialization and on starting the application.

If you need to re-configure your board differently or would like to use a custom board, or

would like to re-configure the OS directly, then refer to the appropriate documentations

provided by the OS vendor.

Example: OS Abstractor for Windows Initialization

int main(int argc,

 LPSTR argv[])

{

 OS_Main();

 return (OS_SUCCESS);

} /* main */

#if (OS_HOST == OS_TRUE)
/* The below defines are the system settings used by the OS_Application_Init()
function. Use these to modify the settings when running on the host. A value of -1
for any of these will use the default values located in cross_os_usr.h.
 When you optimize for the target side code, the wizard will create a custom
cross_os_usr.h using the settings you specify at that time so these defines will no
longer be necessary. */
#define HOST_TASK_POOLING OS_FALSE /* to use task pooling, set
this to OS_TRUE, and make sure
 add tasks to pool using
OS_Add_To_Pool apis */
#define HOST_DEBUG_INFO 2
#define HOST_TASK_POOL_TIMESLICE -1
#define HOST_TASK_POOL_TIMEOUT -1
#define HOST_ROOT_PROCESS_PREEMPT -1
#define HOST_ROOT_PROCESS_PRIORITY -1

 System Configuration Guide

 43

#define HOST_ROOT_PROCESS_STACK_SIZE -1
#define HOST_ROOT_PROCESS_HEAP_SIZE -1
#define HOST_DEFAULT_TIMESLICE 0
#define HOST_MAX_TASKS 8
#define HOST_MAX_TIMERS 5
#define HOST_MAX_MUTEXES 5
#define HOST_MAX_PIPES 5
#define HOST_MAX_PROCESSES 8
#define HOST_MAX_QUEUES 4
#define HOST_MAX_PARTITION_MEM_POOLS 9
#define HOST_MAX_DYNAMIC_MEM_POOLS 8
#define HOST_MAX_EVENT_GROUPS 4
#define HOST_MAX_SEMAPHORES 7
#define HOST_MAX_PROTECTION_STRUCTS 5
#define HOST_USER_SHARED_REGION1_SIZE 2
#define HOST_ROOT_PROCESS_AFFINITY 0
#endif

 /* set the OS_APP_INIT_INFO structure with the actual number of resources

we will use. If we set all the Variables to -1, the default values would be

used. On ThreadX and Nucleus, we must pass an OS_APP_INIT_INFO structure with

at least first_available set to the first unused memory. Other OS's can pass

NULL to OS_Application_Init and all defaults would be used. */

VOID OS_Main()
{
 STATUS sts = OS_SUCCESS;
 OS_APP_INIT_INFO info = OS_APP_INIT_INFO_INITIALIZER;
 UNSIGNED process_id = 0;

#if (OS_HOST == OS_TRUE)

 /* Initialize the info structure. During the optimization process the wizard will
 create a custom cross_os_usr.h with these values set to the values you specify
 at that time so this structure will not be necessary on the target system. */
 info.debug_info = HOST_DEBUG_INFO;
 info.task_pool_timeslice = HOST_TASK_POOL_TIMESLICE;
 info.task_pool_timeout = HOST_TASK_POOL_TIMEOUT;
 info.root_process_preempt = HOST_ROOT_PROCESS_PREEMPT;
 info.root_process_priority = HOST_ROOT_PROCESS_PRIORITY;
 info.root_process_stack_size = HOST_ROOT_PROCESS_STACK_SIZE;
 info.root_process_heap_size = HOST_ROOT_PROCESS_HEAP_SIZE;
 info.default_timeslice = HOST_DEFAULT_TIMESLICE;
 info.max_tasks = HOST_MAX_TASKS;
 info.max_timers = HOST_MAX_TIMERS;
 info.max_mutexes = HOST_MAX_MUTEXES;
 info.max_pipes = HOST_MAX_PIPES;
 info.max_processes = HOST_MAX_PROCESSES;
 info.max_queues = HOST_MAX_QUEUES;
 info.max_partition_mem_pools = HOST_MAX_PARTITION_MEM_POOLS;
 info.max_dynamic_mem_pools = HOST_MAX_DYNAMIC_MEM_POOLS;
 info.max_event_groups = HOST_MAX_EVENT_GROUPS;
 info.max_semaphores = HOST_MAX_SEMAPHORES;
 info.max_protection_structs = HOST_MAX_PROTECTION_STRUCTS;
 info.user_shared_region1_size = HOST_USER_SHARED_REGION1_SIZE;

 System Configuration Guide

 44

 info.task_pool_enabled = HOST_TASK_POOLING;
 info.affinity_mask = HOST_ROOT_PROCESS_AFFINITY;
#endif
#if ((OS_TARGET == OS_THREADX) || (OS_TARGET == OS_NUCLEUS))
 info.pool = pool;
#endif
 sts = OS_Application_Init(&process_id,
 “Demo”,
 "/",

 HEAP_SIZE,
 &info);

 if ((sts != OS_SUCCESS)&&(sts != OS_SUCCESS_ATTACHED))
 {
 OS_Fatal_Error("OS_Main",
 "os_init.c",
 "OS_ERR_SYSTEM_NOT_INITIALIZED",
 "There was an error while initializing Cross OS",
 OS_ERR_SYSTEM_NOT_INITIALIZED,
 sts);
 return;
 }

 OS_Library_Init();
 /* Wait for Application termination */
 OS_Application_Wait_For_End();
}

VOID OS_Application_Start(UNSIGNED argv)

{

/*User application code*/

}

 System Configuration Guide

 45

Example: POSIX Interface for Windows Target Initialization

int main(int argc,

 LPSTR argv[])

{

 OS_Main();

 return (OS_SUCCESS);

} /* main */

#if (OS_HOST == OS_TRUE)
/* The below defines are the system settings used by the OS_Application_Init()
function.
 Use these to modify the settings when running on the host. A value of -1 for any
of these
 will use the default values located in cross_os_usr.h.
 When you optimize for the target side code, the wizard will create a custom
cross_os_usr.h
 using the settings you specify at that time so these defines will no longer be
necessary. */
#define HOST_TASK_POOLING OS_FALSE /* to use task pooling, set
this to OS_TRUE, and make sure
 add tasks to pool using
OS_Add_To_Pool apis */
#define HOST_DEBUG_INFO -1
#define HOST_TASK_POOL_TIMESLICE -1
#define HOST_TASK_POOL_TIMEOUT -1
#define HOST_ROOT_PROCESS_PREEMPT -1
#define HOST_ROOT_PROCESS_PRIORITY -1
#define HOST_ROOT_PROCESS_STACK_SIZE -1
#define HOST_ROOT_PROCESS_HEAP_SIZE -1
#define HOST_DEFAULT_TIMESLICE -1
#define HOST_MAX_TASKS 5
#define HOST_MAX_TIMERS 0
#define HOST_MAX_MUTEXES 0
#define HOST_MAX_PIPES 0
#define HOST_MAX_PROCESSES 1
#define HOST_MAX_QUEUES 2
#define HOST_MAX_PARTITION_MEM_POOLS 0
#define HOST_MAX_DYNAMIC_MEM_POOLS 0
#define HOST_MAX_EVENT_GROUPS 0
#define HOST_MAX_SEMAPHORES 1
#define HOST_MAX_PROTECTION_STRUCTS 1
#define HOST_USER_SHARED_REGION1_SIZE -1
#define HOST_ROOT_PROCESS_AFFINITY 0
#endif

VOID OS_Main()

{

 STATUS sts = OS_SUCCESS;
 OS_APP_INIT_INFO info = OS_APP_INIT_INFO_INITIALIZER;
 UNSIGNED process_id = 0;

 /* set the OS_APP_INIT_INFO structure with the actual

 * number of resources we will use. If we set all the

 System Configuration Guide

 46

 * variables to -1, the default values would be used.

 * On ThreadX and Nucleus, we must pass an OS_APP_INIT_INFO

 * structure with at least first_available set to the first

 * unused memory. Other OS's can pass NULL to OS_Application_Init

 * and all defaults would be used */

#if (OS_HOST == OS_TRUE)

 /* Initialize the info structure. During the optimization process the wizard will
 create a custom cross_os_usr.h with these values set to the values you specify
 at that time so this structure will not be necessary on the target system. */
 info.debug_info = HOST_DEBUG_INFO;
 info.task_pool_timeslice = HOST_TASK_POOL_TIMESLICE;
 info.task_pool_timeout = HOST_TASK_POOL_TIMEOUT;
 info.root_process_preempt = HOST_ROOT_PROCESS_PREEMPT;
 info.root_process_priority = HOST_ROOT_PROCESS_PRIORITY;
 info.root_process_stack_size = HOST_ROOT_PROCESS_STACK_SIZE;
 info.root_process_heap_size = HOST_ROOT_PROCESS_HEAP_SIZE;
 info.default_timeslice = HOST_DEFAULT_TIMESLICE;
 info.max_tasks = HOST_MAX_TASKS;
 info.max_timers = HOST_MAX_TIMERS;
 info.max_mutexes = HOST_MAX_MUTEXES;
 info.max_pipes = HOST_MAX_PIPES;
 info.max_processes = HOST_MAX_PROCESSES;
 info.max_queues = HOST_MAX_QUEUES;
 info.max_partition_mem_pools = HOST_MAX_PARTITION_MEM_POOLS;
 info.max_dynamic_mem_pools = HOST_MAX_DYNAMIC_MEM_POOLS;
 info.max_event_groups = HOST_MAX_EVENT_GROUPS;
 info.max_semaphores = HOST_MAX_SEMAPHORES;
 info.max_protection_structs = HOST_MAX_PROTECTION_STRUCTS;
 info.user_shared_region1_size = HOST_USER_SHARED_REGION1_SIZE;
 info.task_pool_enabled = HOST_TASK_POOLING;
 info.affinity_mask = HOST_ROOT_PROCESS_AFFINITY;
#endif
#if ((OS_TARGET == OS_THREADX) || (OS_TARGET == OS_NUCLEUS))
 info.pool = pool;
#endif

sts = OS_Application_Init(&process_id,
 “Demo”,
 "/",

 HEAP_SIZE,
 &info);

 if ((sts != OS_SUCCESS)&&(sts != OS_SUCCESS_ATTACHED))
 {
 OS_Fatal_Error("OS_Main",
 "os_init.c",
 "OS_ERR_SYSTEM_NOT_INITIALIZED",
 "There was an error while initializing Cross OS",
 OS_ERR_SYSTEM_NOT_INITIALIZED,
 sts);
 return;
 }

 OS_Library_Init();

 System Configuration Guide

 47

 /* Wait for Application termination */
 OS_Application_Wait_For_End();
}

VOID OS_Application_Start(UNSIGNED argv)

{

 pthread_t task;

/* posix compatibility initialization. create the main process

 * and pass in the osc posix main entry function px_main.*/

 OS_Posix_Init();

 pthread_create(&task, NULL, (void*)px_main, NULL);

 pthread_join(task, NULL);

 OS_Application_Free(OS_APP_FREE_EXIT);

} /* OS_Application_Start */

int px_main(int argc,

 char* argv[])

{

/*User application code*/

}

Runtime Memory Allocations

OS Abstractor Interface

Some of the allocations for this product will be dependent on the native OS. Some of these

may be generic among all products. The thread stacks should come from the process heap.

This is only being done on the OS Abstractor for QNX product at the moment.

 Message in int_os_send_to_pipe

 Device name in os_creat

 Partitions in os_create_partition_pool

 Device name in os_device_add

 File structures in os_init_io

 Driver structures in os_init_io

 Device header for null device in os_init_io

 Device name for the null device in os_init_io

 Device name in os_open

 Environment structure in os_put_environment

 Environment variable in os_put_environment

 Memory for profiler messages if profiler feature is turned ON

 Thread stack (only under QNX)

 System Configuration Guide

 48

POSIX Interface

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,
all these allocations come from the calling processes memory pool:

 Pthread key lists and values

 Stack item in pthread_cleanup_push

 Sem_t structures created by sem_open.

 Timer_t structures created by timer_create.

 mqueue_t structures created by mq_open.

 Message in mq_receive. This is deallocated before leaving the function call.

 Message in mq_send. This is deallocated before leaving the function call.

 Message in mq_timedreceive. This is deallocated before leaving the function call.

 Message in mq_timedsend. This is deallocated before leaving the function call.

All of the following are specific to the TKernel OS and use the SMalloc api call. These will not
be accounted for in the process memory pool:

 Parameter list for execve

 INT_PX_FIFO_DATA structure in fopen

All of the following are specific to the TKernel OS and use os_malloc_external API call. These

will not be accounted for in the process memory pool.

 Buffer for getline

 Globlink structure in int_os_glob_in_dir

 Globlink name in int_os_glob_in_dir

 Directory in int_o_prepend_dir

micro-ITRON Interface

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,

all these allocations come from the calling processes memory pool.

 Message in snd_dtq. This is deallocated before leaving the function call.

 Message in psnd_dtq. This is deallocated before leaving the function call.

 Message in tsnd_dtq. This is deallocated before leaving the function call.

 Message in fsnd_dtq. This is deallocated before leaving the function call.

 Message in rcv_dtq. This is deallocated before leaving the function call.

 Message in prcv_dtq. This is deallocated before leaving the function call.

 Message in trcv_dtq. This is deallocated before leaving the function call.

 Message in snd_mbf. This is deallocated before leaving the function call.

 Message in psnd_mbf. This is deallocated before leaving the function call.

 Message in tsnd_mbf. This is deallocated before leaving the function call.

 Message in rcv_mbf. This is deallocated before leaving the function call.

 Message in prcv_mbf. This is deallocated before leaving the function call.

 System Configuration Guide

 49

 Message in trcv_mbf. This is deallocated before leaving the function call.

VxWorks Interface

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,

all these allocations come from the calling processes memory pool.

 Wdcreate allocates memory for an OS_TIMER control block .

 Message in msgqsend. This is deallocated before leaving the function call.

 Message in msgqreceive. This is deallocated before leaving the function call

pSOS Interface

All of the following allocations use OS_Allocate_Memory using the System_Memory pool.

Thus, all these allocations come from the calling processes memory pool.

 Rn_getseg will allocate from the System_Memory if a pool is not specified.

 Message in q_vsend. This is deallocated before leaving the function call.

 Message in q_vrecieve. This is deallocated before leaving the function call.

 Message in q_vurgent. This is deallocated before leaving the function call.

All of the following allocations use malloc. Depending on the setting of OS_MAP_ANSI_MEM

these may or may not be accounted for in the process memory pool.

 IOPARMS structure in de_close

 IOPARMS structure in de_cntrl

 IOPARMS structure in de_init

 IOPARMS structure in de_open

 IOPARMS structure in de_read

Nucleus Interface

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,

all these allocations come from the calling processes memory pool.

 Message in nu_receive_from_pipe. This is deallocated before leaving the function
call

 Message in nu_receive_from_queue. This is deallocated before leaving the
function call

 Message in nu_send_to_front_of_pipe. This is deallocated before leaving the

function call

 Message in nu_send_to_front_of_queue. This is deallocated before leaving the
function call

 Message in nu_send_to_pipe. This is deallocated before leaving the function call

 Message in nu_send_to_queue. This is deallocated before leaving the function
call

 System Configuration Guide

 50

ThreadX Interface

All of the following allocations use OS_Allocate_Memory using the System_Memory pool. Thus,

all these allocations come from the calling processes memory pool.

 Message in tx_queue_receive. This is deallocated before leaving the function call

 Message in tx_queue_send. This is deallocated before leaving the function call

 Message in tx_queue_front_send. This is deallocated before leaving the function
call

 System Configuration Guide

 51

OS Abstractor Process Feature

An OS Abstractor process or an application (―process‖) is an individual module that contains

one or more tasks and other resources. A process can be looked as a container that provides

encapsulation from other process. The OS Abstractor processes only have a peer-to-peer

relationship (and not a parent/child relationship).

An OS Abstractor process comes into existence in two different ways. Application registers a

new OS Abstractor process when it calls OS_Application_Init function. Application also

launches a new process when it calls the OS_Create_Process function. In the later case, the

newly launched process does not automatically inherit the open handles and such; however

they can access the resources belonging to the other process if they are created with ―system‖

scope.

Under process-based operating system like Linux, this will be an actual process with virtual

memory addressing. As such the level of protection across individual application will be

dependent on the underlying target OS itself.

Under non-process-based operating system like Nucleus PLUS, a process will be a specialized

task (similar to a main() thread) owning other tasks and resources in a single memory model

based addressing. The resources are protected via OS Abstractor software. This protection

offered by OS Abstractor is software protection only and not to be confused with MMU

hardware protection in this case.

OS Abstractor automatically tracks all the resources (tasks, threads, semaphores, etc.) and

associates them with the process that created them. All the memory requirements come from

its own process dedicated memory pool called ―process system pool‖. Upon deletion of the

process, all these resources will automatically become freed.

Depending on whether the resource needs to be shared across other processes, they can be

created with a scope of either OS_SCOPE_SYSTEM or OS_SCOPE_PROCESS. The resources

with system scope can be accessible or usable by the other processes. However, the process

that creates them can only do deletion of these resources with system scope.

A new process will be created as a ―new entity‖ and not a copy of the original. As such, none
of the resources that are open becomes immediately available to the newly created process.

The new created process can use the resources which were created with system scope by first

retrieving their ID through their name. For this purpose, the application should create the

resources with unique names. OS Abstractor will all resource creation with duplicate names,

however the function that returns the resource ID from name will provide the ID of only the
first entry.

Direct access to any OS Abstractor resource control blocks are prohibited by the application.

In other words, the resource Ids does not directly point to the addresses of the control blocks.

 System Configuration Guide

 52

Simple (single-process) Versus Complex (multiple-process) Applications

An OS Abstractor application can be simple (i.e. single-process application) or complex (multi-

process application). Complex and large applications will greatly benefit in using the

OS_INCLUDE_PROCESS feature support offered by OS Abstractor.

Table 2_26: Simple (single-process) Versus Complex (multiple-process) Applications

OS_INCLUDE_PROCESS =

OS_FALSE

(Simple OR Single-process

Application)

OS_INCLUDE_PROCESS = OS_TRUE

(Complex OR multi-process Application)

OS Abstractor applications are

independent from each other

and are complied and linked
into a separate executables.

There is no need for the OS

Abstractor and/or OS Changer

APIs to work across processes.

OS Abstractor applications can share the OS

Abstractor resources (as long as they are created

with system scope) between them even though
they may be complied and linked separately.

The OS Abstractor and/or OS Changer APIs

works across processes.

Many independent or even

clones of OS Abstractor single-
process applications can be

hosted on the OS platform.

In addition to independent single-process

applications, the current release of OS
Abstractor allows to host one multi-process

application.

OS Abstractor applications do

NOT spawn new processes via

the OS_Create_Process function.

In fact, any APIs with the name

―process‖ in them are not
available for a single-process

application.

OS Abstractor applications can spawn new

processes via the OS_Create_Process function.

Each application uses its own

user configuration parameters

set in the cross_os_usr.h file.

Each application has to have the same set of

shared resources defined in the cross_os_usr.h

(e.g. max number of tasks/threads across all

multi-process applications). When the first
multi-process application gets loaded, the OS

Abstractor uses the values defined in

cross_os_usr.h or the over-ride values passed

along its call to OS_Application_Init function to

create all the shared system resources. When

subsequent multi-process application gets
loaded, OS Abstractor ignores the values defined

in the cross_os_usr.h or the values passed in

the OS_Application_Init call. Please note that the

shared resources are only gets created during

the load time of the first application and they
gets deleted when the last multi-process

application exits.

OS Abstractor creates all the

resource control blocks within

the process memory individually

for each application.

OS Abstractor creates all the resource control

blocks in shared memory during the first

OS_Application_Init function call. In other

words, when the first application gets loaded, it

will initialize the OS Abstractor library. After
this, every subsequent OS_Application_Init call

 System Configuration Guide

 53

will register and adds the application as a new

OS Abstractor process and also creates the

memory pool for the requested heap memory.

An application can delete or free or re-start itself

with a call to OS_Application_Free. An

application can delete or re-start another

application via OS_Delete_Process.

Also, it is up to the application to provide the
necessary synchronization during loading

individual applications so that the complex

application will start to run only in the preferred

sequence.

Memory Usage

The memory usage depends on whether your application is built in single process mode (i.e

OS_INCLUDE_PROCESS set to false) or multi-processes mode (i.e OS_INCLUDE_PROCESS set

to true).

The memory usage also depends on whether the target OS supports single memory model or a

virtual memory model. Operating systems such as LynxOS, Linux, Windows XP, etc. are

based on virtual memory model where each application are protected from each other and run

under their own virtual memory address space. Operating systems like Nucleus PLUS,

ThreadX, MQX, etc. are based on single memory model where each application shares the

same address space and there is no protection from each other.

In general, OS Abstractor applications require memory to store the system configuration and

also to meet the application heap memory needs.

Memory Usage under Virtual memory model based OS

Multi-process Application

System_Config: The system config structure will be allocated from shared memory. The size

will be returned to the user for informational use via the OS_SYSTEM_OVERHEAD macro.

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the

heap size for this particular process. In this type of system, it is possible to have multiple

applications, all of which will call this API. This API will create an OS Abstractor dynamic

memory pool the size of the heap. The global variable System_Memory will be set to the id of

this pool.

OS_Create_Process: The memory value passed into this API by process_heap_size will be the
heap size for this particular process. This API will create an OS Abstractor dynamic memory

pool the size of the heap. The global variable System_Memory will be set to the id of this pool.

System_Memory: This will be set to the pool id of the process memory pool.

 System Configuration Guide

 54

Single-process Application

System_Config: The system config structure will be allocated from the process heap. The size

will be returned to the user for informational use only by calling OS_System_Overhead();

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the
amount of memory available to the system. This API will create an OS Abstractor dynamic

memory pool this size. The memory for System_Config does not come from this pool. So the

total memory requirements will be OS_SYSTEM_OVERHEAD + memory_pool_size.

System_Memory: This will be set to 0. Since there are no processes, the first pool will always

be the system memory pool.

 System Configuration Guide

 55

Native process heap size: We are not adjusting the native process heap size, so it could be

possible that there is an inconsistency between the amount of memory reserved by OS

Abstractor and the amount of memory reserved for the actual heap of the native process.
There is no upper bounds limit to the system wide memory use while in process mode. We

will create processes without regard to the actual size of the physical memory.

Memory Usage under Single memory model based OS

Multi-process Application

System_Config: The first available memory will be set in the OS_APP_INFO structure and will

be adjusted the size of the system_config structure.

OS_Application_Init: The memory value passed into this API by memory_pool_size will be the

heap size for this particular process. This API can only be called once since it is not possible
to have multiple applications natively. This API will create an OS Abstractor dynamic memory

pool the size of the heap.

OS_Create_Process: The memory value passed into this API by process_heap_size will be the

heap size for this particular process. This API will create an OS Abstractor dynamic memory
pool the size of the heap.

System_Memory: This will always be set to 0. When we get a pool id of 0 in any of the

allocation APIs we will know to allocate from the current process memory pool. This means

that the dynamic memory pool control block at index 0 is not to be used.

 System Configuration Guide

 56

Single-process Application

System_Config: The first available memory will be set in the OS_APP_INFO structure and will

be adjusted the size of the system_config structure.

OS_Application_Init: the memory value passed into this API by memory_pool_size will be the

amount of memory available to the system. This API will create an OS Abstractor dynamic

memory pool this size. The memory for System_Config does not come from this pool. So the

total memory requirements will be OS_SYSTEM_OVERHEAD + memory_pool_size.

System_Memory: This will always be set to 0. Since we are not in process mode, there should

not be any other OS Abstractor memory pools created.

There is no upper bounds limit to the system wide memory use while in process mode.

Also, it cannot be guaranteed that there will be enough memory to create all the processes
of the application since there is no total memory being reserved.

 System Configuration Guide

 57

Chapter 3: Ada System Configuration

Interfacing to C and Machine

Code

This section explains how to interface between Ada code and C and machine code. The Ada

compiler generates C code, which is compiled by the C compiler into machine language.
Therefore, most machine-level details require some understanding of the conventions used by

the C compiler.

Before reading this section, please read the sections of the C compiler manual that refer to

interfacing between C and assembly language. You will need to understand the calling

conventions, data layout conventions, and so forth documented there. In order to write

machine code inserts, you need to understand your target’s hardware architecture.

Data Layout

Ada types are converted into corresponding C types. In most cases, the correspondence is

simple:

An Ada array becomes a C array (starting at zero).An Ada record becomes a C struct with the

fields in the same order. Ada Integer becomes int, modular becomes unsigned, Character

becomes char, and enumerations become enum. See the C compiler documentation for

information about the layout of these types.

Packed Arrays

The effect of Pragma Pack on an array type is to cause packing of discrete type array elements

into 8-bit bytes. The component size used is the smallest divisor of 8 which is greater than or

equal to the component size with any leftover bits spread evenly into each component. For

example, if the component size is 3, each component, when packed in the array, is 4 bits. Note

that pragma Pack has no effect on the layout of the component type.

Packed Records

The effect of pragma Pack on a record type is to cause scalar components (other than floating

point) to be compressed so that they occupy the smallest number of bits appropriate to values

of those types. Sub-word sized items will be combined into a single word, packed starting at the

next available bit, but never to extend across a word boundary. If an item is word sized or
larger, it will start and end on a word boundary. Bit numbering starts with zero at the low-

order end of words.

Interface to C

Since the compiler generates C, it is relatively straightforward to interface to C. Refer to RM-B.3
for information about the language-defined mechanisms. An example version of package

Interfaces.C may be found in the distribution, in the RTS or RTL subdirectory.

You can use the -ke switch to tell the Ada compiler to keep the C code after compiling it, and

you can look at the C code to determine what names and so forth were chosen.

 System Configuration Guide

 58

Machine Code Inserts

Ada provides two mechanisms for doing machine code inserts: Code statements and Intrinsics.

AdaMagic supports the more powerful of the two mechanisms— intrinsics. Code statements

and the corresponding package System, Machine_Code are not supported.

The C compiler supports machine code inserts using the ―asm‖ and ―asm_volatile‖ operations.

These operations have a special syntax that is a mixture of strings, colons, and parenthesized
C variable names.

This is supported in Ada as follows:

procedure <Ada subp name>(<formal_parameter_list>);

pragma Import(Inline_Asm[_Volatile], <Ada subp name>,

"<instruction1>;<instruction2>;...:<output constraint1>(Ada OUT

param):" &

"<input constraint1>(Ada IN param),...:<clobberreg1>,<clobberreg2,...")

This has the same format as the C inline asm operation except:

 everything is enclosed in a single level of quotes

 the names used are the Ada formal parameter names

OUT parameters may appear only in the output section. IN parameters may appear only in the

input section. IN OUT parameters must appear in both, with an appropriate digit in the input

section. After giving the pragma Import with the Inline_Asm convention, each call to that

procedure will be expanded by the compiler into an inline sequence of instructions; the

instructions are given in the string literal that is the second argument of the pragma.

In addition, there is a package System.Machine_Intrinsics, which contains two special

procedures:

procedure Asm(Instruction : String);

procedure Asm_Volatile(Instruction : String);

A call to Asm turns into the corresponding ―asm‖ statement in C; similarly for Asm_Volatile.

The string must of course be known at compile time—for example, a double-quoted string
literal, or (if that won’t fit on a line), several string literals concatenated together with "&".

The string literals may include assembler directives, macro calls, #include statements, and so

forth, in addition to actual machine code instructions.

Example:

with System.Machine_Instructions;

package body ... is

...

procedure Disable_Interrupts is

use System.Machine_Instructions;

begin

asm("#include <def21060.h>");

asm("bit clr MODE1 IRPTEN;");

end Disable_Interrupts;

 System Configuration Guide

 59

Implementation-Defined Conventions

As explained above, the following implementation-defined conventions may be used in pragmas

Convention, Import, and Export:

 C

 C_Pass_By_Copy

 Inline_Asm

 Inline_Asm_Volatile

 Program_Memory: The entity mentioned in the pragma must be a library-level object

(it must not be nested in any subprogram). It must not be aliased. The generated C

code must represent the object as a static or extern variable; for example, the object

cannot be dynamic-sized, because that requires an extra indirection in the

generated C code. If you specify convention Program_Memory, then the Ada

compiler generates ―pm‖ in the C code. This causes the C back end to allocate the

object in program memory rather than the default data memory. See the C compiler

manual for more details.

 System Configuration Guide

 60

Interrupt Handling

This section explains how to write interrupt handlers. The basic Ada mechanisms for interrupt

handling are described in RM-C.3; please read that first. You will also need to read the

interrupt-related parts of your target’s hardware manual.

NOTE: If you want to write an interrupt handler that does not do any Ada tasking-related

operations (such as protected procedure calls), then you can use your target’s RTOS
mechanisms directly, instead of the mechanisms described here.

The basic idea is that a protected procedure can be attached as an interrupt handler. If the

procedure should be permanently attached throughout the execution of the program, use

pragma Attach_Handler to attach it. If the procedure needs to be attached and detached and

reattached from time to time during execution, then first use pragma Interrupt_Handler to

mark that procedure as a potential interrupt handler. Then use operations in package
Ada.Interrupts to attach and detach the procedure.

The example hardware (the Analog Devices SHARC) supports 32 interrupts. These are given

names in package Ada.Interrupts.Names, which is shown here:

package Ada.Interrupts.Names is

-- Hardware interrupts

-- If interested in further detail on this example, see page F-1 of the

-- ADSP-2106x SHARC User’s Manual, Second Edition,

Reserved_0 : constant Interrupt_ID := 0;

RSTI : constant Interrupt_ID := 1; -- (reserved) Reset (read-only, non-

maskable)

Reserved_2 : constant Interrupt_ID := 2;

SOVFI : constant Interrupt_ID := 3; -- Status stack or loop stack

overflow of PC stack full

. . .

SFT2I : constant Interrupt_ID := 30; -- User software interrupt 2

SFT3I : constant Interrupt_ID := 31; -- User software interrupt 3

-- Useful constants

First_Interrupt : constant Interrupt_ID := 0;

Last_Interrupt : constant Interrupt_ID := 31;

end Ada.Interrupts.Names;

These interrupt names can be used in a pragma Attach_Handler, or in the

operations defined in Ada.Interrupts. For example, to attach a handler

permanently:

protected PO is

procedure Handler;

pragma Attach_Handler(Handler, Ada.Interrupts.Names.IRQ0I);

end PO;

Or, in a more dynamic situation:

protected PO is

procedure Handler;

pragma Interrupt_Handler(Handler);

end PO;

And then, from time to time:

Ada.Interrupts.Attach_Handler

(New_Handler => PO.Handler’Access,

 System Configuration Guide

 61

Interrupt => Ada.Interrupts.Names.IRQ0I);

The interrupts marked above as ―(reserved)‖ are reserved for the Ada run-time system or the

real-time kernel. The Reserved_n interrupts are reserved by the hardware. You cannot attach
handlers to reserved interrupts. (If you try, Program_Error will be raised.)

Exceptions in Interrupt Handlers

If an exception is propagated out of an interrupt handler, it is ignored. So, if you have a bug

that causes an unhandled exception, the exception is lost, and you will be confused as to why

your program doesn’t work. To help in debugging, you can write your interrupt handlers like

this:

protected body Handler_PO is

procedure Handler is

-- Nothing here.

begin

declare

... -- If you want local variables, put them here,

-- so if their elaboration raises an exception,

-- it will be handled below.

begin

...

end;

exception

when X: others =>

Put_Line(Exceptions.Exception_Name(X)

& " raised in interrupt handler.");

end handler;

The exception handler can log the error and/or take some other appropriate action. Here, it

just prints something like ―Constraint_Error raised in interrupt handler.‖ to standard output.

NOTE: There is some time overhead associated with having the exception handler.

Priorities

Interrupt handlers run at interrupt priority, which means they are higher priority than normal

tasks.

More precisely, the ceiling priority of the protected object containing the interrupt handler is an

interrupt-level priority. Thus, not only does the interrupt handler run at interrupt level, but so

do all other operations of the same protected object. In the examples below, procedure Handler

and entry

Await_Interrupt will both execute at interrupt level (locking out other tasks).

Package System has:

subtype Priority is Integer range 1 .. 30;

subtype Interrupt_Priority is Integer range 31 .. 31;

subtype Any_Priority is Integer range

Priority’First .. Interrupt_Priority’Last;

Default_Priority : constant Priority := (Priority’First +

Priority’Last)/2;

 System Configuration Guide

 62

Interrupts are masked when an interrupt hander is executing, and when a task is executing at

a priority in Interrupt_Priority, because it called a protected operation of an interrupt-level

protected object.

Example 1

We show three examples of interrupt handling below. The first example shows how to attach a

simple interrupt handler. The second example shows how to communicate information from

the interrupt handler to Ada tasks using protected entries. The third example shows how to

use suspension objects (see RM-D.10) to notify a task from an interrupt handler that the event

has occurred.

The first example prints the following:

Hello from Simple_Interrupt_Test main procedure.

0 interrupts so far.

1 interrupts so far.

2 interrupts so far.

. . .
9 interrupts so far.

10 interrupts.

--

-- This is a simple example of interrupt handling using

-- protected procedures as interrupt handlers

-- We attach an interrupt handler that just counts up the number

-- of times it is called. We then simulate some interrupts,

-- and print out the count.

--

with Ada.Interrupts.Names; use Ada.Interrupts.Names;

-- This is where the names of all the hardware interrupts
-- are declared.

with Ada_Magic.DBG; use Ada_Magic.DBG;

-- We could use Text_IO instead, but Ada_Magic.DBG is much smaller,

-- so it’s better if memory is tight.

package Simple_Interrupt_Test is

-- This is the root package of the example.
end Simple_Interrupt_Test;

--

package Simple_Interrupt_Test.Handlers is

-- This package creates an interrupt handler for the SFT0I

-- interrupt. The interrupt handler is the protected
-- procedure Handler inside the protected object Handler_PO.

-- This interrupt handler simply counts the number of

-- interrupts; this number is returned by Number_Of_Interrupts.

pragma Elaborate_Body;

protected Handler_PO is

procedure Handler; -- The interrupt handler.
pragma Attach_Handler(Handler, SFT0I);

 System Configuration Guide

 63

function Number_Of_Interrupts return Natural;

-- Return number of interrupts that have

-- occurred so far.
private

Count: Natural := 0;

end Handler_PO;

end Simple_Interrupt_Test.Handlers;

--

package body Simple_Interrupt_Test.Handlers is

 protected body Handler_PO is

procedure Handler is

begin

 Count := Count + 1;

end Handler;
function Number_Of_Interrupts return Natural is

begin

 return Count;

end Number_Of_Interrupts;

end Handler_PO;

 end Simple_Interrupt_Test.Handlers;
--

with System.Machine_Intrinsics;

with Simple_Interrupt_Test.Handlers; use Simple_Interrupt_Test.Handlers;

procedure Simple_Interrupt_Test.Main is

-- This is the main procedure. It simulates an external interrupt 10

-- times by calling Generate_Interrupt, and prints out the number

-- each time.

procedure Generate_Interrupt(Interrupt : Ada.Interrupts.Interrupt_ID) is

-- This uses machine code intrinsics to simulate a hardware

-- interrupt, by generating an interrupt in software.

use System.Machine_Intrinsics;
-- This sets the N’th bit in IRPTL, where N is the interrupt number,

-- which causes the interrupt to happen; see page 3-26 of the

-- ADSP-2106x SHARC Users’ Manual, Second Edition.

-- We want to use the BIT SET instruction, so it’s atomic,

-- but that instruction requires an immediate value;

-- we can’t calculate 2**N and use that as the mask;

-- hence the rather repetitive code below.

procedure Gen_0 is

 pragma Inline(Gen_0);

begin

 System Configuration Guide

 64

 Asm("BIT SET IRPTL 0x00000001;");

end Gen_0;

procedure Gen_1 is

 pragma Inline(Gen_1);

begin

 Asm("BIT SET IRPTL 0x00000002;");

end Gen_1;

. . .

procedure Gen_31 is

 pragma Inline(Gen_31);

begin

 Asm("BIT SET IRPTL 0x80000000;");

end Gen_31;

subtype Handleable_Range is Ada.Interrupts.Interrupt_ID

 range 0..31; -- These are the only interrupts that

 -- actually exist in the hardware.

begin

 case Handleable_Range’(Interrupt) is

when 0 => Gen_0;

when 1 => Gen_1;

when 2 => Gen_2;

. . .

when 31 => Gen_31;

 end case;

 end Generate_Interrupt;

begin

 Put_Line("Hello from Simple_Interrupt_Test main procedure.");

 for I in 1..10 loop

Put_Line(Integer’Image(Handler_PO.Number_Of_Interrupts)

& " interrupts so far.");

 Generate_Interrupt(SFT0I);

 end loop;

 System Configuration Guide

 65

Put_Line(Integer’Image(Handler_PO.Number_Of_Interrupts)

& " interrupts.");

 end Simple_Interrupt_Test.Main;

Example 2

The second example prints the following:

Hello from Interrupt_Test_With_Entries main procedure.

Generating interrupt.

Waiting_Task: Got interrupt.

Generating interrupt.

Waiting_Task: Got interrupt.

. . .

Generating interrupt.

Goodbye from Interrupt_Test_With_Entries main procedure.

Waiting_Task: Got interrupt.

Goodbye from Waiting_Task.

—————————————————————-

-- This example illustrates how an interrupt handler (a protected procedure) may

communicate with a task using an entry. The interrupt handler is called when the

interrupt occurs, and it causes the entry’s barrier to become True. The task waits by

calling the entry; it is blocked until the barrier becomes True.

In this example, we simulate 10 interrupts, and we have a task

-- (Waiting_Task) that waits for 10 interrupts by calling the entry.

-- Each interrupt triggers one call to the entry to proceed. In this

-- example, the only information being transmitted back to the waiting

-- task is the fact that the interrupt has occurred.

-- In a real program, the protected object might have additional

-- operations to do something to some external device (e.g. initiate

-- some I/O). This might cause the device to generate an interrupt.

-- The interrupt would not be noticed until after this operation

-- returns, even if the device generates the interrupt right away;

-- that’s because of the priority rules. Also, the interrupt handler

-- might get some information from the device, save it locally in the

-- protected object, and then the entry body might pass this information

-- back to the task via an ’out’ parameter.

-- In other words, a protected object used in this way acts as a "device

 System Configuration Guide

 66

-- driver", containing operations to initiate I/O operations, to wait

-- for operations to complete, and to handle interrupts. Anything that

-- needs to be done while masking the interrupt of the device should be

-- part of the protected object.

-- Note that if multiple device drivers are needed for similar devices,

-- it is convenient to declare a protected type, and declare multiple

-- objects of that type. Discriminants can be used to pass in

-- information specific to individual devices.

--

with Ada.Interrupts.Names; use Ada.Interrupts.Names;

with Ada_Magic.DBG; use Ada_Magic.DBG;

package Interrupt_Test_With_Entries is

-- Empty.

end Interrupt_Test_With_Entries;

--

package Interrupt_Test_With_Entries.Handlers is

pragma Elaborate_Body;

protected Handler_PO is

procedure Handler; -- The interrupt handler.

pragma Attach_Handler(Handler, SFT0I);

entry Await_Interrupt;

-- Each time Handler is called,

-- this entry is triggered.

private

Interrupt_Occurred: Boolean := False;

end Handler_PO;

end Interrupt_Test_With_Entries.Handlers;

--

package body Interrupt_Test_With_Entries.Handlers is

protected body Handler_PO is

procedure Handler is

begin

Interrupt_Occurred := True;

end Handler;

entry Await_Interrupt when Interrupt_Occurred is

begin

 System Configuration Guide

 67

Interrupt_Occurred := False;

end Await_Interrupt;

end Handler_PO;

end Interrupt_Test_With_Entries.Handlers;

--

package Interrupt_Test_With_Entries.Waiting_Tasks is

pragma Elaborate_Body; -- So the body is allowed.

end Interrupt_Test_With_Entries.Waiting_Tasks;

--

with Interrupt_Test_With_Entries.Handlers; use

Interrupt_Test_With_Entries.Handlers;

package body Interrupt_Test_With_Entries.Waiting_Tasks is

task Waiting_Task;

task body Waiting_Task is

begin

for I in 1..10 loop

Handler_PO.Await_Interrupt;

Put_Line("Waiting_Task: Got interrupt.");

end loop;

Put_Line("Goodbye from Waiting_Task.");

end Waiting_Task;

end Interrupt_Test_With_Entries.Waiting_Tasks;

--

with System.Machine_Intrinsics;

with Interrupt_Test_With_Entries.Waiting_Tasks;

-- There are no references to this package; this with_clause is here

-- so that task Waiting_Task will be included in the program.

procedure Interrupt_Test_With_Entries.Main is

procedure Generate_Interrupt(Interrupt : Ada.Interrupts.Interrupt_ID)

is

... -- as in previous example

end Generate_Interrupt;

begin

-- Generate 10 simulated interrupts, with delays in between.

Put_Line("Hello from Interrupt_Test_With_Entries main procedure.");

for I in 1..10 loop

 System Configuration Guide

 68

delay 0.01;

Put_Line("Generating interrupt.");

Generate_Interrupt(SFT0I);

end loop;

Put_Line("Goodbye from Interrupt_Test_With_Entries main procedure.");

end Interrupt_Test_With_Entries.Main;

Example 3

The third example prints the following:

Hello from Suspension_Objects_Test main procedure.

Generating interrupt.

Waiting_Task: Got interrupt.

Generating interrupt.

Waiting_Task: Got interrupt.

Generating interrupt.

Waiting_Task: Got interrupt.

Generating interrupt.

Waiting_Task: Got interrupt.

Goodbye from Waiting_Task.

Generating interrupt.

Generating interrupt.

Generating interrupt.

Generating interrupt.

Generating interrupt.

Generating interrupt.

Goodbye from Suspension_Objects_Test main procedure.

-- This example illustrates how an interrupt handler

-- (a protected procedure) may communicate with a task

-- using a suspension object. A suspension object allows a

-- task or interrupt handler to notify another task that some

-- event (in our case, an interrupt) has occurred.

-- Each time the interrupt occurs, the suspension object is set to True.

-- The task waits for this event by calling Suspend_Until_True.

-- In this example, we simulate some interrupts,

-- and we have a task (Waiting_Task) that waits for them

 System Configuration Guide

 69

-- using a suspension object called Interrupt_Occurred.

-- Note that if the task is already waiting (the usual case) when the

-- interrupt occurs, Interrupt_Occurred is only set to True momentarily;

-- Suspend_Until_True automatically resets it to False. If the task is

-- not waiting, then the True state will be remembered, and when the

-- task gets around to waiting, it will reset it to False and proceed

-- immediately.

-- Note that only one task can wait on a given suspension object; it’s

-- sort of like a protected object with an entry queue of length one,

-- which allows it to be implemented more efficiently. This means that

-- the programmer using suspension objects has to know which task will

-- do the waiting; it’s as if that task has a kind of ownership of that

-- particular suspension object.

--
with Ada.Interrupts.Names; use Ada.Interrupts.Names;

with Ada_Magic.DBG; use Ada_Magic.DBG;

package Suspension_Objects_Test is

-- Empty.

end Suspension_Objects_Test;

--
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

package Suspension_Objects_Test.Handlers is

pragma Elaborate_Body;

protected Handler_PO is

procedure Handler; -- The interrupt handler.

pragma Attach_Handler(Handler, SFT0I);

end Handler_PO;

Interrupt_Occurred: Suspension_Object;

-- Default-initialized to False.

-- Set to True for each interrupt.

end Suspension_Objects_Test.Handlers;

--

package body Suspension_Objects_Test.Handlers is

protected body Handler_PO is

procedure Handler is

 System Configuration Guide

 70

begin

Set_True(Interrupt_Occurred);

end Handler;

end Handler_PO;

end Suspension_Objects_Test.Handlers;

--

package Suspension_Objects_Test.Waiting_Tasks is

pragma Elaborate_Body; -- So the body is allowed.

end Suspension_Objects_Test.Waiting_Tasks;

--

with Suspension_Objects_Test.Handlers; use Suspension_Objects_Test.Handlers;

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

package body Suspension_Objects_Test.Waiting_Tasks is

task Waiting_Task;

task body Waiting_Task is

begin

for I in 1..4 loop

Suspend_Until_True(Interrupt_Occurred);

Put_Line("Waiting_Task: Got interrupt.");

end loop;

Put_Line("Goodbye from Waiting_Task.");

end Waiting_Task;

end Suspension_Objects_Test.Waiting_Tasks;

--

with System.Machine_Intrinsics;

with Suspension_Objects_Test.Waiting_Tasks;

-- There are no references to this package; this with_clause is here

-- so that task Waiting_Task will be included in the program.

procedure Suspension_Objects_Test.Main is

procedure Generate_Interrupt(Interrupt : Ada.Interrupts.Interrupt_ID) is

... -- as in previous example

end Generate_Interrupt;

begin

-- Generate some simulated interrupts, with delays in between.

Put_Line("Hello from Suspension_Objects_Test main procedure.");

 System Configuration Guide

 71

for I in 1..10 loop

delay 0.01;

Put_Line("Generating interrupt.");

Generate_Interrupt(SFT0I);

end loop;

Put_Line("Goodbye from Suspension_Objects_Test main procedure.");

end Suspension_Objects_Test.Main;

 System Configuration Guide

 72

Implementation-Defined Pragmas

The following implementation-defined pragmas are supported:

pragma Assert(boolean_expression[, static_string_expression]);

This pragma is allowed wherever a declaration or a statement is allowed. The
boolean_expression is evaluated, and Program_Error is raised if the value is not True. The

string expression is currently ignored. At some future date, we intend to add a separate

package to support the pragma Assert, and raise an Assert_Error exception instead. Note that

the check associated with a pragma Assert can be suppressed with a pragma Suppress

(Assertion_Check) or a pragma Suppress(All_Checks).

pragma C_Pass_By_Copy([Max_Size =>] static_integer_expression);

This is a configuration pragma. The expression may be of any integer type. This pragma affects

the parameter passing conventions of structs in subprograms whose convention is C. Any

struct whose size is less than or equal to that specified by this pragma will be passed by copy;
larger structs will be passed by reference. The Max_Size is measured in storage elements.

Without this pragma,all structs are passed by reference (for interface-C subprograms), unless

the convention is specified explicitly with a pragma Convention(C_Pass_By_Copy, …).

pragma Revision(static_string_expression);

This pragma is allowed wherever any pragma is allowed. The static_string_expression is

intended to contain a revision number for the current compilation unit. This pragma currently

has no effect. At some future date, it will include the revision as a string in the generated code.

pragma Suppress_Aggregate_Temps;

This pragma causes compiler-generated temporary variables to be suppressed in an

assignment statement where the right-hand side is an aggregate, such as ―X := (…);‖. The

generated code will build the aggregate directly in the target, which is more efficient than using

a temp.

Note: This pragma is dangerous. In particular, if the right-hand side overlaps the target, as in

this example: ―X := (This => X.That, That => X.This);‖ the compiler will generate incorrect code.

Without the pragma, the compiler can *sometimes* avoid the temp, but only in those cases

where the compiler is smart enough to prove the absence of overlapping.

This pragma is a configuration pragma, which means that you may place it at the top of a
source file, in which case it applies to the units in that file, or you may place it in a pragmas-

only file, in which case it applies to the entire program library.

In addition, there is a compiler switch -suppress_aggregate_temps, which has the same effect

as the pragma.
pragma Unchecked_Union([Entity =>] first_subtype_local_name);

This is a representation pragma. It causes the discriminant to be omitted from an Ada variant

record type, in order to interface to a C union type. The discriminant can be (and in fact must

be) specified in aggregates, but it is not allocated any space at run time.

Pragma Interface:

This pragma is a synonym for pragma Import. It is provided for backward compatibility; new

code should use pragma Import instead.
Pragmas Memory_Size, Storage_Unit, System_Name:

These pragmas are ignored. They are provided for compatibility with Ada 8

 System Configuration Guide

 73

Debugging Ada Programs

This section contains advice for debugging using a C debugger.

Source File Display in a C debugger

The AdaMagic Compiler generates optimized ANSI C as its intermediate language, which is
then compiled by an ISO/ANSI C compiler to produce object modules. When given the ―-ga‖ flag

(―-g‖ for debugger, ―a‖ for Ada source display), the AdaMagic compiler will generate ―#line‖

directives in the generated C source which will allow a typical C debugger (e.g. gdb) to trace the

generated object code back to the original Ada source file and line that produced it.

Alternatively, when given the ―-gc‖ flag (―-g‖ for debugger, ―c‖ for C source display), the
generated intermediate C will be saved, with C comments identifying the original Ada source

line, and the target debugger will show the generated C source, rather than the original Ada

source, when stepping through an AdaMagic program.

Local Ada Variable Display in a C debugger

When either the -ga or -gc flag is given, information on all Ada local variables is carried forward

into the debugger symbol information included in the generated object modules. Because Ada

ignores upper/lower case, whereas a typical C debugger distinguishes between upper and

lower case, it is important to understand the ―canonical‖ upper/lower case conventions used in

the generated debugger symbol information. In particular, the original upper/lower case in the
Ada name is ignored – the name in the debugger symbol table always starts with an upper case

letter, and then the remaining letters are in lower case. For example, an Ada local variable

called ―My_Local_Variable‖would appear in the debugger as ―My_local_variable.‖

Global Ada Variable Display in a C debugger

For Ada variables (or subprograms) declared inside packages, a concatenated name appears in

the debugger symbol table. The concatenated name consists of the package name,

canonicalized so that the first letter is upper case, followed by an underscore (’_’), followed by

the name of the variable (or subprogram) inside the package, again with the first letter

capitalized. For example, an Ada variable whose full name is ―My_Package.My_Global‖ would
appear in the debugger as ―My_package_My_global‖. Effectively every ―.‖ in the full expanded

name has been converted to ―_‖ with the next letter in upper case.

If the Ada variable (or subprogram) is declared in the package body rather than in the package

spec, then two underscores separate the package name from the variable (or subprogram)

name. Hence, a variable from the body such as ―My_Package.My_Hidden_Global‖would appear
in the debugger as ―My_package__My_hidden_global‖.

Nested Subprograms and Up-level References

If a variable is declared in a subprogram that has nested subprograms, and at least one of
those nested subprograms makes an ―up-level‖ reference to the variable, then the variable is

moved into a ―frame record‖ and the whole frame record is passed to each of the nested

subprograms to support up-level access.

The frame record of the current subprogram (if any) is called ―this_frame‖ in the debugger, and

the frame record of the enclosing subprogram (if any) is pointed to by a parameter called

―parent_frame.‖ If you can’t ―find‖ a local variable you expected to see, and the current
subprogram has nested subprograms, then take a look in the local variable called ―this_frame.‖

If it exists, it might contain the local variable you were looking for.

Similarly, if you are looking for a variable from an enclosing subprogram, look through the

―parent_frame‖ parameter. If the variable is multiple levels up in the hierarchy of enclosing

subprograms, then look for another ―parent_frame‖ component in the frame record pointed to

 System Configuration Guide

 74

by the ―parent_frame‖ parameter, and keep following the chain. For example, a variable called

―My_Up_Level‖, which is two levels up in the hierarchy, would be accessible via ―this_frame-

>parent_frame->My_up_level‖.

Setting Break Points

When viewing a source file in the debugger, you can set a break point by double clicking on the

line of interest. This should work whether looking at Ada source, C source, or disassembly.
Disassembly is most reliable if you want to stop at a very specific instruction. With Ada or C

source, there is some imprecision in the setting of the break point.

Watch points generally work with the simulator, and don’t seem to slow it down significantly

(given that the simulator is already quite slow).

Stopping when an Exception is raised

By setting a break point at the symbol ―rts_raise‖ the debugger will stop when any exception is

raised. To set a breakpoint when a run-time check fails causing a language-defined exception

to be raised, you can set a break point at ―rts_raise_constraint_error,‖

―rts_raise_program_error,‖ or ―rts_raise_storage_error.‖

Note that rts_raise_storage_error is only used for ―primary‖ stack overflow, and it bypasses

―rts_raise‖ itself because of the intricate processing required when the primary stack overflows.

Other storage overflows go through rts_raise directly, and bypass rts_raise_storage_error.

To stop when an exception is re-raised (e.g. via the ―raise;‖ statement in Ada), set a break point

at ―rts_raise_occurrence.‖ When rts_raise is called, the only parameter is the address of a string
containing the full name of the exception being raised. When rts_raise_occurrence is called, the

only parameter is the address of an ―exception_occurrence‖ record, which contains as its first

word a pointer to the string name of the exception being re-raised.

Generics and Inlines

It is not generally possible to set a breakpoint in an instance of a generic or an inline expansion

of a subprogram call. However, line number information is included which should allow the C

debugger to step through instances and inlines.

Tasking-related Symbols and Breakpoints

To determine the current task, the global variable per_thread_ptr points to the task control

block for the current task. The global variable main_thread is the task control block for the

environment (main) thread of the program.

More information on the Ada task is described in the following fields:

Table 3_1: Symbols and Breakpoints Fields related about Ada task

Position in Record Field Name Meaning

2 highwater_mark Secondary stack

pointer

3 Ss_last_chunk Secondary stack limit

4 Ss_Priority Current task priority

5 Name (null terminated)

7 Suspended_On != null means thread is

suspended

8 Defer_count > 0 means is abort-

deferred

9 Pending_abort_level Normally 2**31-1

 System Configuration Guide

 75

The field Suspended_On contains a non-null address when the corresponding Ada task is

suspended. The target of the pointer is the ―Suspension Object‖ on which the task is

suspended.

To set a breakpoint for when a task is about to suspend, set it at:

System_Rts_Tgt_Kernel_Threads_Suspend_until_true_or_timeout

(NOTE: This is case sensitive)

The parameters to this routine are the pointer to the Suspension Object, and the maximum

time in ticks the task will wait. To set a breakpoint for when a task ends, set it at:

System_Rts_Task_termination_pkg_Terminate_task

The only parameter to this routine is the completion status, which is either

Completed_normally(=1) or Unhandled_exception(=4).

To set a breakpoint for when a task is aborted, set it at:

System_Rts_Master_pkg_Abort_self
The only parameter to this routine is the abort ―level‖ where zero means abort completely, and

> 0 means abort to the asynchronous select statement at the corresponding level of dynamic

nesting. To set a breakpoint for when the main subprogram ends, either because it is complete,

or because of an unhandled exception, set it at:

ada_fini

This routine performs any necessary finalization and then returns, allowing the target program

to exit.

Tracing the Call Stack

The debugger’s stack trace back command is generally useful. However, sometimes it is

necessary to track the stack manually. To do that, you will need to know the target calling

conventions. In an interrupt handler, there may be different calling conventions used by the
target hardware or operating system.

 System Configuration Guide

 76

Revision History

Document Title: System Configuration Guide
Release Number: 1.3.9

Release Revision Orig. of
Change

Description of Change

1.3.5 0.1 VV  New document

 Updated UITRON with micro-
ITRON

 Added revision history

 Renamed Getting started to
Programmers Guide

 Changed the Programmers Guide
description on page 8

1.3.6 0.1 VV  Modified the Release number

 Added the SMP Flag information

 Added Android Specific notes

 Added Ada System Configuration

1.3.7 0.1 VV  Modified the Release number

1.3.8 0.1 VV  Modified the Release number

1.3.9 0.1 VV  Added the Threadx Interface

 Added the Threadx Target

 Added SMP Flag Limitation

© Copyright 2014 MapuSoft Technologies, Inc. - All Rights Reserved

The information contained herein is subject to change without notice. The materials located on the Mapusoft.
(‖MapuSoft‖) web site are protected by copyright, trademark and other forms of proprietary rights and are owned or

controlled by MapuSoft or the party credited as the provider of the information.

MapuSoft retains all copyrights and other property rights in all text, graphic images, and software owned by

MapuSoft and hereby authorizes you to electronically copy documents published herein solely for the purpose of
reviewing the information.

You may not alter any files in this document for advertisement, or print the information contained herein, without
prior written permission from MapuSoft.

MapuSoft assumes no responsibility for errors or omissions in this publication or other documents which are
referenced by or linked to this publication. This publication could include technical or other inaccuracies, and not

all products or services referenced herein are available in all areas. MapuSoft assumes no responsibility to you or
any third party for the consequences of an error or omissions. The information on this web site is periodically
updated and may change without notice.

This product includes the software with the following trademarks:

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a trademark of X/Open.

IBM PC is a trademark of International Business Machines, Inc.

Nucleus PLUS and Nucleus NET are registered trademarks of Mentor Graphics Corporation.

Linux is a registered trademark of Linus Torvald.

VxWorks and pSOS are registered trademarks of Wind River Systems.

