
Paper published in Safecomp'91, Trondheim (Norway), November 1991

KNOWLEDGE MODELLING AND RELIABILITY PROCESSING:

PRESENTATION OF THE FIGARO LANGUAGE AND ASSOCIATED TOOLS

Marc Bouissou, Henri Bouhadana, Marc Bannelier, Nathalie Villatte

Electricité de France, DER/ESF Section,
1 av. du Général de Gaulle
92141 Clamart cedex. FRANCE
Tel. (1) 47 65 58 22

Abstract. EDF has been developing for several years an integrated set of knowledge-based and
algorithmic tools for automation of reliability assessment of complex (especially sequential)
systems.
In this environment, the reliability expert has at his disposal all the powerful classic tools for
qualitative and quantitative processing and besides he gets various means to generate automatically
the entries for these tools, through the acquisition of graphical data.
The development of these tools has been based on FIGARO, a language for system modelling,
which plays an important unifying role.
A variety of compilers and translators transform a FIGARO model into conventional models, such
as fault-trees, Markov chains, Petri Nets...
In this paper, we present the main ideas which determined the FIGARO language, and we illustrate
these general ideas by examples.

Keywords. Knowledge representation, Modeling, Simulation, Stochastic systems, Reliability,
Performance, Monte Carlo methods, Markov chain.

I. INTRODUCTION

In the framework of the probabilistic safety analysis of the
Paluel nuclear power plant (EPS 1300), EDF has
developed software packages allowing the automation of
reliability models' construction and assessment.

These tools were used to develop new concepts, original
and highly performing algorithms /1/, but they lacked
generality and user friendliness. The main problem lay in
the fact that the expert systems being applied for
generation of reliability models were too specific of the
fields being dealt with and difficult to maintain.

EDF has therefore developed a second generation of these
software packages. This version, which is available on a
workstation (under UNIX/Xwindow) with user friendly,
graphical interfaces, is no longer dedicated to nuclear
applications.

Our concern for unification of the software packages,
explanation of the reliability expert's modelling choices,
and generality has led us to design a unique system
modelling language (the FIGARO language) which is
independent from the processing method used afterwards.
This language has been worked out in order /4/:

- to give a suitable formalism for setting up knowledge
bases (with generic component descriptions),

- to be more general than all conventional reliability
models,

- to make the best possible compromise between
modelling power (or generality) and processing
tractability,

- to be as readable as possible,
- to be easily associated with graphic representations.

In fact the setting up of knowledge-based systems is the
only way to reduce significantly the necessary outlay for
the reliability studies.

On the basis of a FIGARO language modelling, different
compilers and translators allow to deduce automatically
the data which are necessary for the classical reliability
model processing codes: fault trees, Markov chains, Petri
nets, etc.

II. THE FIGARO LANGUAGE MAIN OBJECTIVE:
TO MODEL DISCRETE STATE SPACE

SYSTEMS

Let's take a physical system. We can define three
probability model categories. Starting from the most
detailed (and most complex) models to the least detailed
ones, the specified categories are as follows:

A. Continuous state space dynamic simulation models,
B. Discrete state space dynamic simulation models,
C. Abstract models.

A model of type A is made up of:

- The deterministic differential equations which rule
the system physical quantities: temperature,
pressure, mass, etc...

- The discontinuities due to sudden component state
changes induced by random phenomena (faults,

repairs...) or deterministic (timer triggered
action...).

A model of type B does not imply differential equations:
the system can only have a finite or countable number of
states and runs over from a state to another following a
random or deterministic phenomenon.

The evolution of the system is therefore a continuous time
stochastic process which can be represented schematically
as follows:

t

E0

E1

The models of type C (for example : fault trees) are
thoroughly different from the two preceding ones as they
have only a remote relation with the physical phenomena
which rule the system life. The time is not introduced
explicitly. That's why we have called them "abstract" as
opposed to the simulation models.

We wished to find, in the definition of a language which
describes probabilistic problems, a fair equilibrium
between "full" simulation, which is quite detailed, and a
too abstract model.

It is obvious that the first type of model, which is ideal in
the absolute, is in practice too rich to be tractable (in most
cases).

On the contrary, the choice of the C-type model (for
instance a fault tree), or even of a too restrictive B-type
model (for instance a Markov chain) may lead to
unacceptable simplifications.

Therefore we have tried to work out a language which
could describe unambiguously a B-type model, keeping in
mind the objectives given in part I.

An analysis of the existing modelling and computer
languages has shown that none of them provided the
required set of characteristics; therefore we have created
the FIGARO language with specific object-oriented type
syntax and semantics. FIGARO is part of the so-called
"hybrid" languages, that is to say it takes some of its
features from the object-oriented languages and models the
behavior of an object through order 1 production rules.

The use of rules offers two advantages:

- The rules are close to the natural language if their
syntax is selected appropriately: their use will
improve the model readability,

- EDF has got the mastery of different tools in this
field and, in particular, worked on the validation of
0 order production rule bases.

The characteristics which make of FIGARO an object-
oriented language bring some decisive advantages in
knowledge storage and among them:

- Easy knowledge classification,

- No repetition (due to the "factorization" allowed by
the heritage mechanism) which is a source of
maintenance errors.

A FIGARO description is made of two kinds of rules:

- interaction rules: they model the propagation of
instantaneous effects.

Ex : IF (flow(pump1) + flow(pump3)) <
threshold2 THEN state(alarm) <- 'on';

- occurrence rules: they yield the list of events that
may happen in a state of the system. These rules
have a particular semantics, related to time; this is
why they include a distribution law of the time after
which the event will happen:

Ex1 : IF state(timer) = 'on'
THEN-MAY-HAPPEN
EVENT down
EFFECT state(timer) <-- 'off'
LAW FIXED_TIME(delay) ;
(* deterministic law *)

Ex2 : IF state(engine) = 'working'
THEN-MAY-HAPPEN
FAILURE breakdown
EFFECT state(engine) <-- 'breakdown'
LAW EXPONENTIAL(lambda) ;
(* constant failure rate *)

Important note: it can be easily proved /4/ (and that will
appear in the below-mentioned examples) that FIGARO
has the very important property to be a generalization of
most of the modelling types used by the reliability experts;
it generalizes in particular:

- the fault trees,
- the state graphs (including Markov chains),
- the stochastic Petri nets,
- the queuing models.

This property of FIGARO ensures that any conventional
model has its FIGARO equivalent and therefore the
exclusive use of FIGARO as representation formalism is
not restrictive whatsoever.

III. FIGARO MODELS PROCESSING METHODS

The processing operations take place in two stages in order
to master the combinatorial explosion problems at best:

*The first is only intended to pass over from the FIGARO
representation of order 1, made up of the knowledge
base types and objects describing a particular system, to
an exactly equivalent FIGARO representation of order
0 which is obtained through application of the heritage
mechanism to the objects and by instanciation of the
first order (generic) rules in the form of zero order
(specific) rules.

For example, the following first order rule (in the type
"circuit-breaker"):

IF position = 'open' OR (FOR_ANY x AN
upstream_component, energised(x) = FALSE)

THEN FOR_ALL y A downstream_component DO
energised(y) <-- FALSE ;

will produce this much simpler zero order rule, for a
circuit breaker cb1, having the two u1 and u2 upstream
components, and the d1 downstream component:

IF position(cb1) = 'open' OR
(energised(u1) = FALSE AND energised(u2) =
FALSE)

THEN energised(d1) <-- FALSE ;

The transformation of first order rules into zero order rules
is interesting for two reasons:

- direct processing from the first order would be too
difficult as it would require numerous evaluations
of first order rules which are time consuming,

- the rule base coherence checking tools exist only for
zero order rules.

*The second is the choice (more or less automatized) of
the processing method and the application of this
method.

In order to choose the method, one has to determine the
more or less static character of the system, in other words a
more or less great independence between different parts of
the model.

When it is possible to identify independent parts, one
should take advantage of this feature to study these parts
separately.

The breakdown of a big model into sub-models is a
fundamental heuristic which offers decisive advantages:

- the sub-models are simpler to understand, to validate,

- they imply easier processing (the memory and the
CPU time required for a study are exponential
functions of the model size).

- due to their characteristics, the sub-models allow
processing operations which are impossible for
global models (example: a sub-model can be
Markovian but that is not the case of the global
model).

In order to achieve that, we have developed a program
which elaborates the influence graph between the state
variables of the FIGARO 0 model and allows different
processing operations on the basis of this graph.

With this software, the user works in an interactive way:
he can display, on request, different data on the
dependence graph and order the output of sub-models
(extracts from the global model in FIGARO 0) on files
which will be reinserted at the start of the processing chain
in order to be translated into quantifiable models.

When the user has identified the FIGARO O pertinent sub-
models, he can choose the optimum method for each of
them and generate the input data of one of the available
evaluation tools by the adequate translator.

The evaluation tools now used at ESF and fully integrated
in the FIGARO environment are as follows:

- for any FIGARO model: GSI, a software which has
been developed since 1985 at ESF. GSI offers a
wide variety of processings, all available from a
single description (in zero order production rules).
These processings are listed in part IV.

- for fault trees: PHAMISS /6/, a Dutch software
developed by ECN. This software is remarkable
through the variety of the quantifications which it
can carry out: calculation of availability, reliability,
importance of components and minimal cut sets,
uncertainty and this is for components being
repairable or not, periodically checked or not. The
automatically generated trees have characteristics
(such as many repeated leaves) which cause
PHAMISS to lose much time: that's why we have
developed a tree optimizer which carries out a pre-
processing /2/.

- for stochastic Petri nets: either GSI, or MOCA-RP
/5/, a code developed by ELF-Aquitaine which
allows to carry out a Monte Carlo simulation.

IV THE GSI EVALUATION TOOL

The input of GSI is a rule model, including (like FIGARO)
occurrence and interaction rules. All the rules are specific
(like in FIGARO 0).

GSI allows three main types of treatments, corresponding
to different methods:

- Monte Carlo simulation: this method is the most
general, and can be used even for non Markovian
models, including various lifetime distributions for
the components (lognormal, Weibull...), and
deterministic phenomena (fixed time type laws).
The simulation can yield virtually any kind of result
about the behavior of the system: reliability and
availability, of course, but also average
performance, number of events, sojourn times...
The only limit of this method is well known : it
may be very time consuming.

- Markov chain generation and quantification: this
method is applicable when the model contains only
exponential and instantaneous probability laws, in
other words, when the model describes a Markov
stochastic process, with a finite number of states.
The (very severe) limit of this method is the
exponential growth of the number of states when
the size of the system increases.

- Sequence generation and quantification: this last
method is the most original, and has given its name
to GSI: "Generation of Sequences by Inferences"
/3/, /7/.

This approach does not require graph production
and allows to deal with models which are
equivalent to huge, even infinite, Markov chains.
As a matter of fact, GSI, thanks to different
heuristics, allows to limit the number of sequences
to explore: to each type of exploration corresponds
an approximation level.

In 89-90, theoretical works run in cooperation with
the ORSAY university have permitted, besides
showing that the GSI quantification techniques
remain valid on infinite graphs, to get better
estimations of the errors due to the approximations.

Another advantage of the sequence generation
method is that it gives the most probable sequences,
i.e., the weak points of the system.

Since all the treatments of GSI may be very time
consuming for big models, this software works in two
steps: the input model is first translated into PASCAL
procedures, which are compiled and linked with the fixed
procedures containing the algorithms; then the execution
itself takes place.
This technique is necessary to be able to run models
containing thousands of rules in reasonable times.

V. APPLICATION FOR A USER FRIENDLY WORK
ON CONVENTIONAL RELIABILITY MODELS

To carry out quick and simple studies or such studies
which do not justify the development of reusable FIGARO
component descriptions, the reliability expert may want to
use a conventional model, such as a fault tree, a reliability
diagram, a Petri net...

Such a model will be built more rapidly than a FIGARO
based model, which obliges to structure and formalize the
concepts being handled more or less consciously in the
production of the specific model. In return, it won't be at
all reusable for carrying out a second study of the same
type.

FIGARO gives a very satisfying answer to this request
through the possibility it offers to create "knowledge
micro-bases" corresponding to the classical models. These
bases allow graphic model acquisition.

Their development is quite fast (in general one day).

Therefore this allowed us to create easily a coherent set of
graphic interfaces (as it rests on a single tool) for all the
conventional models.

More generally, it is important to notice that any simple
graphic language can be supported by means of a small,
quickly written FIGARO knowledge base.
Besides, the FIGARO based modelling allows to access
the full available processing set: for example it is possible
to assess the reliability of a system represented through a
fault tree by a Monte Carlo simulation, which is feasible
whatever the FIGARO model, or by the analytical
calculations of GSI whereas most of the fault tree codes do
not permit such a calculation (for a repairable system).

Fig. 1 and Fig. 2 at the end of this paper show the aspect
of graphic interfaces, which are set up through FIGARO
for an example of reliability diagram, and of Petri net.

The reliability diagram can be calculated on request by
PHAMISS after transformation into a fault tree, or directly
by GSI.

The Petri net, as far as it is concerned, can be assessed on
request by GSI, or by MOCA-RP.

VI. APPLICATION FOR STUDY OF SEQUENTIAL
ELECTRICAL SYSTEMS

A knowledge base has been developed in order to model
and quickly evaluate the reliability of nuclear power plant
electrical distribution systems.

This knowledge base includes components such as: diesel-
generators, busbars, circuit-breakers, transformers...
All the sequential aspects of this kind of systems
(automatic reconfigurations after failures and repairs) are
explicitly modelled in this knowledge base.
Fig. 4 gives examples of sequences which lead to the
failure of the system of Fig. 3. GSI automatically found
these sequences, without building the underlying Markov
chain.

VII. APPLICATION FOR COMMUNICATION
NETWORKS

A knowledge base was written to allow the quick
comparison of different topologies of a communication
network. The network is supposed to be made of nodes
and links, which both may have failures; all the
components are independent.
After the acquisition of the topology of a network, it is
possible to study it either by generating a fault-tree, or by
running GSI.

In a second knowledge base, a refinement has been
introduced in the modelling: it is possible to declare that
several components share the same repairmen. This
introduces dependencies into the system, and the fault tree
study remains no longer valid, whereas GSI can still be
used.

VIII. DEVELOPMENT TOOLS, TARGET
MACHINES

The Table 1 sums up, on a practical basis, the main
features of the tools which have been quoted in this paper.

IX. CONCLUSION

We have provided the main characteristics of the FIGARO
application prototype by illustrating through examples its
high generality degree and user friendliness.

This application makes up a complete environment in
which:

- a user of knowledge bases can carry out "fully mouse-
controlled" system studies rapidly enough (10 to 20
times faster than without knowledge base) to compare
different system design solutions,

- the developer of knowledge bases has at his disposal a
high level formalism (the FIGARO language) to
express the (functional or material) knowledge he
wants to formalize.

For the time being, the user can still take many initiatives
in processing selection from a FIGARO model and the
developer is totally free in writing a knowledge base. In
particular he can choose the modelling fineness: FIGARO
allows reliability processing from a very simplified
component modelling. In this way, the inexperienced user
can gradually pass to the knowledge base developer's stage
through gradual improvement of his models.

The following stage consists in obtaining, through an
intensive use of these tools in fields as different as
possible, more directing guides in order to help:

- the developer to structure and formalize his
knowledge when he builds a knowledge base,

- the user to choose the most pertinent processing, in
particular by controlling the validity of the choices
he makes.

REFERENCES

/1/ Ancelin, C., Bannelier, M., Bouhadana, H., Bouissou,
M., Lucas, J.Y., Magne, L., Villatte, N. (1990). Poste de
travail basé sur l'intelligence artificielle pour les études de
fiabilité.
Revue Française de Mécanique, Numéro spécial : les
systèmes experts et la mécanique N° 1990-2 . ISSN 0373-
6601.

/2/ Bouhadana, H. (1989). Méthodes d'amélioration
qualitative d'un modèle de fiabilité.
Mémoire de DEA. EDF/Paris XIII. Sept. 1989.

/3/ Bouissou, M. (1986). Recherche et quantification
automatiques de séquences accidentelles pour un système
réparable.

5ème Congrès de Fiabilité et Maintenabilité de Biarritz
(France). Oct. 1986.

/4/ Bouissou, M., Bouhadana, H.,Bannelier, M. (1990). Un
moyen d'unifier diverses modélisation pour les études
probabilistes :
le langage FIGARO.
HT-53/90-42A. EDF internal report.

/5/ Signoret, J.P. (1989). MOCA-RP batch, utilisation du
logiciel, révision 0.
Internal report SNEA(P) DEA-SES-ARF, JPS/cl/n°89-71.

/6/ Terpstra, K., Dekker, N.H., Van Driel,G. (1986).
PHAMISS, A Reliability Computer Program for phased
Mission Analysis and Risk Analysis. User's Manual.
ECN-83. Netherlands Energy Research Foundation.

/7/ Villemeur, A., Bouissou, M., Dubreuil-Chambardel, A.
(1987). Accident sequences: methods to compute
probabilities.
International topical conference on PSA and Risk
Management. (Zurich, Switzerland).

TABLE 1 : development tools and target machines

Programming languageMachines and
systems

Developer AI techniques.

FIGARO
language definition

-------------- ------------- EDF Knowledge representation.
Object language.
Order 1 production rules.

Graphical
Interface

LELISP AIDA SUN 3 and 4
(UNIX/X11)

EDF Object language.

Compilers (FIG0, GSI,
fault tree)

LEX/YACC C
LELISP

SUN 3 and 4
(UNIX)

EDF Backward chaining (fault trees).
Order 1 to order 0 rule
transformation.

GSI V5.3 PASCAL VS
PASCAL ISO

IBM 3090 (MVS),
SUN 4, HP 9000
(UNIX), IBM PS
(AIX)

EDF Inference engine in forward
chaining.
Heuristic rules.
Compilation of 0 order rules.

Dependence analysis LEX/YACC C SUN 4 EDF ----------------------
PHAMISS FORTRAN 77 IBM 3090 (MVS),

SUN 4 (UNIX),
IBM PS (AIX)

ECN ----------------------

MOCA-RP FORTRAN 77 IBM 3090 (MVS),
SUN 4 (UNIX),
IBM PC (MS.DOS)

ELF
Aquitaine

Fig. 1 : Graphic data acquisition for a reliability diagram

Fig. 2 : Graphic data acquisition for a Petri net

Fig. 3 : Graphic data acquisition for an electrical system

**
* Seq. * * Ditrib. * * Asympt. * Mean dura-* Contrib. *
* Number* Events * Parameter *Type* Proba. * tion * *
************ ***
* 658* [grid1 fails] * 1.0000e-04* EXP* * * *
* * [cb1 opens , * 9.9900e-01* INS* * * *
* * cb3 opens] * 9.9900e-01* INS* * * *
* * [cb2 closes , * 9.9900e-01* INS* * * *
* * cb4 closes] * 9.9900e-01* INS* * * *
* * [grid2 fails] * 1.0000e-04* EXP* 3.3101e-04* 9.9701e+00* 9.8230e-01*
**
* 798* [grid1 fails] * 1.0000e-04* EXP* * * *
* * [cb1 fails op., * 1.0000e-03* INS* * * *
* * cb3 fails op.] * 1.0000e-03* INS* 3.3333e-07* 0.0000e+00* 9.8919e-04*
**
* 760* [grid1 fails] * 1.0000e-04* EXP* * * *
* * [cb1 fails op., * 1.0000e-03* INS* * * *
* * cb3 opens] * 9.9900e-01* INS* * * *
* * [cb4 fails cl.] * 1.0000e-03* INS* 3.3300e-07* 0.0000e+00* 9.8820e-04*
**
* 797* [grid1 fails] * 1.0000e-04* EXP* * * *
* * [cb1 opens , * 9.9900e-01* INS* * * *
* * cb3 fails op.] * 1.0000e-03* INS* * * *
* * [cb2 fails cl.] * 1.0000e-03* INS* 3.3300e-07* 0.0000e+00* 9.8820e-04*
**
* 723* [grid1 fails] * 1.0000e-04* EXP* * * *
* * [cb1 opens , * 9.9900e-01* INS* * * *
* * cb3 opens] * 9.9900e-01* INS* * * *
* * [cb2 fails cl., * 1.0000e-03* INS* * * *
* * cb4 fails cl.] * 1.0000e-03* INS* 3.3267e-07* 0.0000e+00* 9.8722e-04*
**
* 759* [grid1 fails] * 1.0000e-04* EXP* * * *
* * [cb1 fails op., * 1.0000e-03* INS* * * *
* * cb3 opens] * 9.9900e-01* INS* * * *
* * [cb4 closes] * 9.9900e-01* INS* * * *
* * [grid2 fails] * 1.0000e-04* EXP* 1.6617e-07* 4.9950e+00* 4.9312e-04*
**

Fig. 4 : Sequences found by GSI for the system of Fig. 3.

