United States Patent 9

Pazel

US005410648A
(111 Patent Number: 5,410,648
45] Date of Patent: Apr. 25, 1995

[54] DEBUGGING SYSTEM WHEREIN
MULTIPLE CODE VIEWS ARE

SIMULTANEOUSLY MANAGED

Donald P. Pazel, Croton-on-Hudson,
N.Y.

International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 753,358
Filed: Ang. 30, 1991

Int. CLS ..o GO6F 9/45; GO6F 17/24
us. Cl. 395/158; 395/600;
364/192; 364/DIG. 2 364/948.2; 364/948.21;
371/19

Field of Search 395/650, 275, 575, 700,
395/375, 800, 700, 144, 158, 600; 371/19;
364/191, 192

[75] Inventor:

[73] Assignee:

(21]
[22]

[51]
[52]

[58]

[56] References Cited

U.S. PATENT DOCUMENTS
5,179,702 '1/1993 Spix et al. .vcevcvceerierienene 395/650

OTHER PUBLICATIONS

Parker, Tim, “C Development Environments”, Com-
puter Language, vol. 7, No. 5, May 1990, pp. 97-110.
Ambler et al., “Influence of Visual Technology on the
Evolution of Language Environments”, Computer, Oct.
1989, pp. 19-22.

Leonard 1. Vanek et al., “Static Analysis of Program

Source Code Using EDSA”, pp. 192 199, Array Sys-
tems Computing, Canada 1989.

Logitech, Inc., “Multiscope Debugger User’s Manual”,
Jul. 1989 pp. 1-8 2nd pamphlet, pp. 23-82. '
Microsoft Corporation,“Advanced Programming
Techniques”, pp. 185-205, Copyright, 1990.

Primary Examiner—Paul V. Kulik
Assistant Examiner—Paul R. Lintz
Attorney, Agent, or Firm—Perman & Green

[57] ABSTRACT

A computer-implemented method is described for dis-
playing on a screen, a plurality of views of a software
code listing. The method includes the steps of display-
ing a first view-type of at least a portion of the software
code listing and selecting and displaying additional
view-types of the software code listing. The system
includes a prioritized listing of view-types, each view-
type providing a different presentation of a code listing.
When a program listing in one file presents a call to
another file, the system automatically presents a win-
dow including the called code listing, with the view-
type automatically selected in accordance with the
preestablished priority listing. Windows/code views
are handled as objects, and are thus immediately recall-
able using a graphical interface.

11 Claims, 5 Drawing Sheets

MULTI-VIEW DEBUG, PLURAL. FILES

DISPLAY CURRENT FILE 60
VIEW-TYPE(S)

FOR EACH CURRENT FILE VIEW TYPE
IF KEEP SELECTED-DO NOTHING

IF &% SELECTED: SAVE WINDOW & CONTENTS
RENT SCROLL POSITION
SIZE AND POSITlON ON SCREEN REMOVE
WINDOW AND PUT ICON ON SCREEN
F se EGTED: SAVE wmoow &
'S, REMOVE WINDOW FROM

WINDOW

SCREEN

EW-TYPE AVAILABLE
NEW FILE

!

\SIIELECT HIGHEST PRIORITY
FOR

RETRIEVE STORED ATTRIBUTES
OF NEW FILE VIEW TYPE WINDOW
AND SCROLL,IF NECESSARY, TO
CURRENT LINE AND HIGHLIGHT

—172

DISPLAY SELECTED
VIEW-TYPE WINDOW

EXIT l

]_,74

U.S. Patent Apr. 25, 1995 Sheet 1 of 5 5,410,648

FIG. |
14 10 16
RAM
| PROGRAM
ROM ALU T
PROGRAM
< N >
12
18
DISPLAY
FIG. 2
DEBUG_FRAME
_ —
OPEN FILES: PROGRAM

O SOURCE FILE |
O DISASSEMBLY | ASHE
O MIXED R

O FLOW GRAPH 33 32
O COMPRESSED

OKEEP -
0DISCARD| >34
O ICON

FILE N

U.S. Patent Apr. 25, 1995 Sheet 2 of 5 5,410,648

FIG. 3
SOURCE: FILE 2
FILE BREAKPOINTS VARIABLES FEATURES RUN _QPTIONS_\
25 = — - — | 40
26 ———-- L
27 - - |
29asbic
as=p+c
/30 i (a==b), Q1),'/////////////////////////////////////,a\
31
32 42
|
|
!
FIG. 4 FIG. 5
| __RUN OPTIONS OPTIONS
e

7/ CTRL+0 7 / —45

/9////////

— . a—
- as——

- * - = s caw -

T T

U.S. Patent

Apr. 25, 1995

FIG. ©

Sheet 3 of 5

SOURCE: FILE N

FILE BREAKPOINTS VARIABLES FEATURES RUN OPTIONS

FIG. 7

[SOURCE:FILE 2

SOURCE:FILE N

QDL

\\ 5\

5,410,648

IFLOW GRAPH: FILE N

DISASSEMBLY:FILE N

MIXED:FILE N

U.S. Patent Apr. 25, 1995 Sheet 4 of 5 5,410,648

FIG. 8

MULTI-VIEW DEBUG, SINGLE FILE

DISPLAY FILE | 50

SELECT HIGHEST PRORITY— %4 -
VIEW-TYPE AVAILABLE |
FOR FILE '

56

IS
FILE-VIEW
ALREADY ON
SCREEN

FINISHED

RETRIEVE STORED ATTRIBUTES |L— 58
IF ANY EXIST, ELSE USE
DEFAULT ATTRIBUTES

l

DISPLAY SELECTED}—— 2°
VIEW-TYPE WINDOW

l

FINISHED

U.S. Patent

Apr. 25, 1995 Sheet 5 of 5

FIG. 9

MULTI-VIEW DEBUG, PLURAL FILES

DISPLAY CURRENT FILE
VIEW-TYPE(S)

—— 60

5,410,648

FOR EACH CURRENT FILE VIEW TYPE
IF KEEP SELECTED-DO NOTHING

IF | SELECTED: SAVE WINDOW & CONTENTS
VE CURRENT SCROLL POSITION ,WINDOW
SIZE AND POSITION ON SCREEN, REMOVE
WINDOW AND PUT ICON ON SCREEN

IF RD SELECTED: SAVE WINDOW &
%S, REMOVE WINDOW FROM SCREEN

64

1S
NEWFILE
VIEW ALREADY
ON SC;QEEN

NO

68

1

SELECT HIGHEST PRIORITY
VIEW-TYPE AVAILABLE
FOR NEW FILE

| o

v

70 |jUPDATE NEW FILE VIEW,

MOVE CURRENT CODE LINE,
HIGHLIGHT AND SCROLL

RETRIEVE STORED ATTRIBUTES
OF NEW FILE VIEW TYPE

AND SCROLL,IF NECESSARY, TO
CURRENT LINE AND HIGHLIGHT

WINDOW

- EXIT

~— 72

DISPLAY SELECTED
VIEW-TYPE WINDOW

EXIT

——— 74

5,410,648

1

DEBUGGING SYSTEM WHEREIN MULTIPLE
CODE VIEWS ARE SIMULTANEOUSLY
MANAGED

FIELD OF THE INVENTION

This invention relates to methods and systems in the
field of software programing development, and more
particularly, to a debugging system which provides the
user with an ability to display and correct software
programs. ’

BACKGROUND OF THE INVENTION

Typically, a programmer develops and tests a soft-
ware program for a computer by producing and enter-
ing source code into files through the use of an editor
program. The computer then creates an executable
program by translating the source code listing into ma-
chine code by running a series of programs which typi-
cally include various preprocessors, a compiler, a
linker, etc. During the conversion of the source code
listing to machine code, intermediate code listings may
be created, e.g. a disassembly code describing subtasks
within tasks defined by lines of source code; a mixed
source/disassembly listing wherein both source lines
and disassembly lines are sequentially listed, and other
types of intermediate code structures.

Editors are programs which are used to enter or
change source code and must, therefore, have the capa-
bility to display the source code for the user.

The term “line of code” will be used hereinafter and
refers to (approximately) a complete instruction in the
particular code language. A line of code will generally
display as one line on a user display device.

A debugging system is a combination of computer
hardware and debugger software which executes a
user’s program in a controlled manner. Debuggers aid a

10

15

20

25

30

user in identifying and correcting mistakes in an au-

thored program and allow the program to be executed
in small segments until specified machine addresses
(breakpoints) are encountered or until certain events
occur (exception events). During operation of a debug-
ger, the executing code listing is displayed, with the
active line of code highlighted or otherwise indicated.
The “active” line of code, in this instance, refers to a
line of code which executes its defined function when
the user steps to a next line of code.

Debugging software systems exist in the prior art.
One such debugging system is described by Vanek et al.
in “Static Analysis of Program Source Code Using
EDSA”, Proceedings of Conference on Software Main-
tenance, pages 192-199, October, 1989. Vanek et al.
describe a debugging system wherein the user is enabled
to view displayed code listings. All views disclosed by
Vanek et al. have identical display characteristics. Each
view can contain a subset of lines of the original source
program and may show only declarations, only state-
ments at or above a given level of syntactic nesting, all
statements that assign a value to a given variable etc.
New views may be inserted by logical operators. The
EDSA system, further, is tied to the program being
analyzed since it must have access to the complete de-
tails of the program which it, in turn, represents as a
syntax tree and which it stores in a file.

Logitech Inc., 1235 Pear Avenue, No. 111 Mountain
View, Calif. 94043 markets a window-based debugging
program entitled “MultiScope” for debugging the pro-
grams written to operate in the OS/2 system program

40

45

50

55

60

65

2

environment. The MultiScope debugging system in-
cludes both run-time and post-mortem debuggers which
employ either a presentation manager or text mode
interface.

MultiScope has two windows to show program
codes. One window is called the Source window, and
the other is called the Assembler window. The Source
window shows the current code line in a high level
language,and the assembler window shows it in one of
several possible variants of a disassembly view. As one
steps through execution, the current line shows high-
lighted in both views and moves with execution. The
contents of the Source window can be changed to show
other file/views in the appropriate higher level lan-
guage. If the higher level view does not exist, an error
message is placed in the Source window. The Assem-
bler window can, as well, be reset to show a disassem-
bly view of another source file.

Codeview, a debugger marketed by the Microsoft
Corporation, Redmond, Wash., runs in a character
mode within an OS/2 session window. Codeview has
two windows to show program code. From either win-
dow, one may see different files in different views
(source, assembler, etc.). However, only one of the
windows will show the current line, i.e. the “active”
window. So, if some file/view has the current line of
execution, and it is showing in the active window, the
appropriate line will be highlighted. But if the same
view is in the other window, the current line is not
highlighted. In both windows, the user may change the
window contents to show different file/views.

Both MultiScope and Codeview handle the window,
per se, as a separate object, independent of the code
view displayed therein. Thus, if the user “closes” a
window, there is no retention of the window and its
contents as an object. When a user wishes to resurrect
the window, both the file to be displayed and the code
lines to be shown must be remembered and specified.
Otherwise the window displays the initial lines of the
code listing, rather than the code listing that was last

-shown. Furthermore, both MultiScope and Codeview

are limited to two windows, and have no capability for
further views.

Accordingly, it is an object of this invention to pro-
vide an improved debugging system which enables
plural code listings to be simultaneously viewed, closed
and recalled.

It is another object of this invention to provide an
improved debugging system which enables simulta-
neous viewing and view management of different lan-
guage manifestations of a code listing.

SUMMARY OF THE INVENTION

A computer-implemented method is described for
displaying on a screen, a plurality of views of a software
code listing. The method includes the steps of display-
ing a first view-type of at least a portion of the software
code listing and selecting and displaying additional
view-types of the software code listing. The system
includes a prioritized listing of view-types, each view-
type providing a different presentation of a code listing.
When a program listing in one file presents a call to
another file, the system automatically presents a win-
dow including the called code listing, with the view-
type automatically selected in accordance with the
preestablished priority listing. Windows/code views

5,410,648

3

are handled as objects, and are thus immediately recall-
able using a graphical interface.

DESCRIPTION OF THE DRAWINGS

FIG. 1is a high level block diagram of a data process-
ing system wherein the debugging invention herein
described may be employed.

FIG. 2 illustrates a Debug Frame presented to the
viewer that enables selection of a particular file and its
view-type.

FIG. 3 shows a view of a source code listing.

FIG. 4 shows a pull-down menu illustrating various
Run selections.

FIG. 5 shows a pull-down menu illustrating Options
available which enable a display priority order to be
identified and changed.

FIG. 6 illustrates a view of a source code listing from
a file other than that shown in FIG. 3.

FIG. 7 illustrates the display of a plurality of source
listings and further indicates the various additional
types of code view-types which can be simultaneously
displayed.

FIG. 8 is a high level flow diagram of the debug
invention wherein multiple views may be simulta-
neously presented for a code listing appearing in a single
file.

FIG. 9 is a high level flow diagram of the debug
invention wherein multiple views may be simulta-
neously presented for code listings appearing in plural
files.

DETAILED DESCRIPTION OF THE
INVENTION

In this description the terms “view” and “view-type”
will be employed. A “view” of a program listing may be
either a sequence of lines of text depicting the program
listing, a graphical representation of a portion of the
program listing, or a combination of the two. A “view-
type” of a program is a view wherein the program
listing is shown as either a source code listing; a disas-
sembled source code listing; a mixture of source and
disassembled source code; a control flow graph; or a
compressed program view.

A source view-type is the highest level language that
is translated to machine language before the program
can be run. It will generally be presented as a series of
lines of source code statements, each line being sequen-
tially numbered. A disassembled source code view-type
is one wherein various subtasks within a task (as defined
by a source line) are shown in an intermediate language
in lieu of the source line. A mixed source/disassembly
view-type is one wherein both source lines and disas-
sembled source lines are shown together. A control
flow graph is a view-type wherein the software pro-
gram is depicted as a graphical flow-diagram. A com-
pressed program view-type is one wherein the program
listing is shown as though viewed from a long distance
away, wherein individual lines of text cannot be dis-
cerned. The view, however, shows the overall arrange-
ment of the lines of text, indentations, spaces etc. and
may, in addition, indicate a box showing where, in the
overall code sequence, a particular active line of code
exists.

Referring now to FIG. 1, a high level block diagram
is shown of a data processing system that is adapted to
operate the multi-view debugging system of this inven-
tion. An arithmetic logic unit 10 communicates via a bus
12 with a read only memory (ROM) 14, random access

5

10

15

20

25

30

35

40

45

50

55

60

65

4
memory (RAM) 16 and a display 18. RAM 16 contains
both the program being debugged, its various view-
types, and a software listing of the debug program.

The debug program is initially operated by a user to
compile in RAM 16 a table that lists the source code
files/modules in the program to be debugged. If no
source listing is available, the debug program can con-
struct a disassembly set of source statements from an
object code listing. Thus, while a disassembly listing
will always be available, source code listings may not
be. For instance, many programs contain files produced
in response to a source code listing but, in themselves,
have no controlling source code statements. They are
internally produced within the machine for use as an
invisible ““utility” or for another similar function.

In the process of debugging, the user-views the pro-
gram on display 18 and steps from line of code to line of
code to determine where a crash (or crashes) occur. It
is often the case that the user wishes to view a code
listing other than a source listing and further, wishes to
have multiple, simultaneous views of the executing
software, at various levels. Such views potentially en-
able faster troubleshooting and rapid debugging of the
software.

In FIG. 2, a view is shown of a Debug Frame
wherein menus appear that enable function and presen-
tation view-type to be user-selected. The Debug Frame
is a window in the debugger software which acts as the
master control for the debugger.

Window 30 in the Debug Frame provides a listing of
files in the program to be debugged. A highlight line 32
may be stepped down the listing of files to enable selec-
tion of one for debugging. Window 33 enables the user
to select one of five listed view-types that are available
in the system (as defined above). If the user chooses a
source listing and such is not available, the system auto-
matically provides the next lower priority listing, i.e.
disassembly. In window 33, the view-types are listed in
priority order, however, it is to be understood that any
priority can be arbitrarily assigned by the system user.
The user’s choice of view-type for the highlighted file
in window 30 is only applicable to that file and to no
others. Thus, as will be seen hereafter, if a source code
listing for a portion of file 2 presents 2 call for a code
listing in another file, the system automatically chooses
the highest priority view-type available for the called
listing, irrespective of the view-type chosen for file 2.

A further window 34 is contained within the Debug
Frame and contains three additional user choice fields,
i.e., Keep, Discard, and Icon. These fields come into use
when one program listing in a file calls a line of code in
a program listing in another file. A selection of the
“Keep” field results in a displayed view-type being
retained on the screen, while a new code listing view is
simultaneously displayed. A “Discard” selection causes
the current view-type on the screen to be removed and
discarded. A selection of the “Icon” indication causes
the view-type on the screen to be removed from the
screen and replaced by an icon. At that time, a further
view-type can be displayed and the “iconized” view-
type is again displayable on the screen simply by a selec-
tion of the icon (by a mouse or other indicator).

As above indicated, views may and will be replaced,
discarded, etc. by the user from the screen. It is often
the case, however, that the user wishes to retrace steps
and to resurrect discarded views. In contrast to the
prior art, this invention enables the user to accomplish
this without requiring detailed record-keeping on the

5,410,648

5

part of the user. In this system, each file has an associ-
ated window (or windows), which, in combination with
its current view, is maintained as an object. Thus, when
a window is removed from the screen, its scroll posi-
tion, window size, window position, and other display
attributes are stored. By simply recalling the window
associated with a file, the “saved” window and its con-
tents are displayed, without further user intervention.
No user-initiated editing is required to reestablish a
previous window’s contents.

Turning now to FIG. 3, a representative source code
listing in file 2 is illustrated. A selection bar 40 runs
across the top of the screen and contains a plurality of
selection items, each one of which results in the display
of a pull-down window (see FIGS. 4 and 5). A plurality
of source code lines are shown on the screen, with lines
29 and 30 illustrating a simple function (A=B-+C),
followed by a conditional call to a subroutine “Q” if
A =B. Subroutine Q is not present in file 2. It is to be
noted that line 30 (wherein the call to subroutine Q is
indicated) is highlighted as shown at 42, but the func-
tions called for by the statement there indicated have
not yet been executed. That execution only occurs
when the user steps the source listing to line 31.

As shown in FIG. 4, a selection of the “run” indica-
tion in selection bar 40 of FIG. 3 causes a pull-down
menu to appear that designates a number of options
available to the user to increment through the code
listing. In this instance, it is assumed that the “step”
indication 43 has been selected (by the highlight). This
indication enables the user to increment one line of code
under control of simultaneous actuation of two key-
board keys (control and S). At FIG. 5, a pull-down is
shown which results when the options indication is
chosen on selection bar 40. The pull-down shows that a
“display order” select function 45 is available. The
selection of this line enables the priority order shown at
window 33 in FIG. 2 to be revised.

Referring now back to FIG. 3, it is assumed that the
user steps highlight bar 42 from line 30 to line 31. This
immediately results in a new file view, ie., “file n”
(FIG. 6) being displayed on the screen. Subroutine Q
appears at line 9 and its initial code line is highlighted,
followed by its subsidiary source code statements. At
this stage, line 9 in FIG. 6 is the “active” code line and
will be executed if the highlight bar is stepped to line 10.
If there is no source listing for “file n”, then a disassem-
bly view-type is presented instead.

The above description, at a high level, indicates the
views which are presented to a user as lines of code are
stepped in a code listing of a program. It is often impor-
tant for the user to have available, alternative presenta-
tions of the code listing for both comparison and fault
analysis purposes. It is advantageous if those presenta-
tions can be simultaneously viewed on a screen so as to
enable side-by-side comparison of code sequences. A
screen presentation is shown in FIG. 7 wherein source
code listings shown in FIGS. 3 and 6 are simultaneously
presented for viewing by the user. As will be hereinafter
understood, the invention enables the source listing for
file n to be viewed; and/or for a disassembly listing of
file n to be viewed, and/or for a mixed source/assembly
listing to be viewed, and/or for compressed-view or
flow graph versions of file n to also be viewed. In addi-
tion, in lieu of displaying file n, if source file 2 is the only
view-type on the screen, the user can call one of the
other view-types of file 2 to be simultaneously dis-
played, thereby providing two different code listings

10

15

20

25

35

50

60

65

6
for the program contained within file 2. Furthermore,
as many windows as desired can be displayed to provide
further debugging capabilities.

Referring to FIG. 8, a flow diagram is shown which
presents the method for managing simultaneous presen-
tation of a pair of view-types from a single file on a
screen. Initially, the screen displays the current file
view-type (Box 50) for user interaction. Subsequently, if
the user requests another view (Box 52) but does not
specify the view-type, the procedure selects the highest
priority view-type available for the file (Box 54).

At this point, the procedure determines whether the
user-selected new view-type is already on the screen
(Box 58). If so, the subroutine exits (and the user must
specify a new view type). Otherwise, stored attributes
(or default attributes) are accessed (Box 58) and the
selected view-type is displayed in window format (Box
59).

Turning to FIG. 9, a procedure is shown where a
debug action is in process and plural files are involved.
Initially, a current file view-type (or types) is (are) dis-
played on the screen (Box 60). The user then steps a
code line causing a new code line to be highlighted. The
procedure determines whether the new code line calls
for a new file (decision box 62) and if yes, it proceeds to
select one of the three functions indicated in box 64. If
Keep is selected, nothing occurs and the procedure
continues. If Icon has been selected, the current file
view-type window and its contents are saved, including
the current scroll position, window size and its position
on the screen. The window is removed and a small Icon
is placed on the screen instead. If Discard is selected,
the window is saved as with the Icon selection, and the
window is removed from the screen.

Before placing a new file view on the screen, the
procedure determines whether such a view is already
present on the screen (decision box 66). If such a view
is found on the screen, the procedure moves to box 68
where the new file view is updated by scrolling (if nec-
essary) to bring the currently active code line into the
window and the active line is highlighted.

If the new file view is found not to be present on the
screen, then the program proceeds to select the highest
priority view-type available for the new file. Generally,
this will either be a source code listing or an assembly
code listing. The stored attributes of the highest priority
view-type are now retrieved and the code lines are
scrolled, if necessary, to the currently active line, which
line is then highlighted. The selected view-type win-
dow is then displayed (box 74). In this manner, the
view-type window displays are managed, with a mini-
mum of user-interaction, with automatic selection of
prioritized view-types and with window recall ability
that automatically re-displays the window as it last
appeared.

It should be understood that the foregoing descrip-
tion is only illustrative of the invention. Various alterna-
tives and modifications can be devised by those skilled
in the art without departing from the invention. Ac-
cordingly, the present invention is intended to embrace
all such alternatives, modifications and variances which
fall within the scope of the appended claims.

I claim: ,

1. A computer system for performing a method for
displaying, on a screen, a plurality of views of software
code listings, said computer system including 2 priorit-
ized listing of view-types, each said view-type provid-

5,410,648

7

ing a different presentation of a code listing, said
method comprising the steps of:

displaying a first view-type of at least a portion of a

software code listing in a first file;

stepping through code lines in said portion of said

software code listing;
when a call is found in said first file for a code listing
in another file, displaying a highest priority view-
type available in said computer system of said code
listing in said another file where said highest prior-
ity view-type of said another file is independent of
highest priority view-type of said first file; and

upon a determination that a view-type is to be re-
moved from said screen, and saving a window in
which said view-type is displayed and its contents
as an object, whereby said removed window and
its contents are recallable as said object and when
so recalled are displayed on said screen.

2. The method as defined in claim 1 wherein said
view-type of said code listing from said another file is
simultaneously displayed with said first view-type of
said software code listing of said first file.

3. The method as recited in claim 2 comprising the-

step of:
determining if said highest priority view-type from
said another file is already displayed on said screen,
and if so, updating said displayed highest priority
view-type to show a currently active code line.

4. The method of claim 3 wherein said prioritized
listing of said view-types includes a source code listing
as the highest priority.

5. The method of claim 4 wherein a view-type having
a lower prioritization is a disassembly code listing.

6. The method of claim 5 wherein another said prio-
ritized view-type includes both source code and disas-
sembly code combined.

7. The method of claim 6 wherein another said prio-
ritized view-type includes a compressed image of said
source code listing.

10

20

25

30

35

45

50

55

60

65

8

8. The method of claim 7 wherein another said view-
type includes a flow graph of said source code, which
graphically illustrates said source code.

9. The method of claim 1, wherein the steps of the
method are performed under the control of a debugging
program.

10. A computer system for performing a method for
displaying, on a screen, a plurality of views of a soft-
ware code listing, said computer system including a
prioritized listing of view-types, each said view-type
providing a different presentation of a code listing, said
method comprising the steps of:

displaying a first view-type of at least a portion of a

software code listing in a first file;

stepping through code lines in said portion of said

software code listing;
when a call is found in said first file for a code listing
in another file, displaying a highest priority view-
type available in said computer system of said code
listing in said another file where said highest prior-
ity view-type of said another file is independent of
highest priority view-type of said first file; and

upon a determination that said first view-type is to be
i) kept on the screen, ii) removed from the screen
and replaced by an icon, or iii) discarded from the
screen, and if said first view-type is to be replaced
by an icon or discarded,

saving as an object, a window in which said first

view-type is displayed and its contents by record-
ing said software code listing’s scroll position, size
of the window and position of the window on the
screen, whereby, in case it is discarded, said win-
dow and its contents may be recalled by reference
to the file and an indication of view-type or in case
said window is replaced by an icon, said window
may be recalled by selecting said icon.

11. The method as recited in claim 10 comprising the
step of:

determining if said highest priority view-type from

said another file is already displayed on said screen,
and if 5o, updating said displayed highest priority
view-type to show a currently active code line.

¥ * ¥ * %

