

Functional Embedded Telephony
in Camelot

Hua Yang

Master of Science

School of Informatics

University of Edinburgh

2005

 i

Abstract

This project would first develop an on-line game application in the Camelot

programming language which would be compiled to run on an emulator for a

Java-enabled mobile phone.

Java-enabled mobile telephones allow users to develop and download their own

code onto the handset. Programming an embedded system such as a telephone is

very different from programming a general-purpose workstation. Embedded system

developers face problems, such as conserving the battery life, which have no

analogue in traditional desktop computing.

One of the most significant costs of battery energy in embedded devices is

memory usage. For this reason, developers benefit from using Camelot, an

OCaml-like functional programming language, which can give precise guarantees

of resource consumption inferred directly from the application code. Camelot uses

the Hofmann/Jost type system to provide quantitative guarantees about the

consumption of resources such as memory. And lfd_infer is the implementation for

the static prediction of heap space usage, which relates to the Hofmann/Jost type

system. This project will use this tool to get the resource consumption of the game.

On the other hand, although Camelot has been used in a wide range, most

implementations of it so far are small and aim for particular problems. The

implementation of this project faces a variety of problems. Thus, it is a good

opportunity to test and improve the Camelot compiler, so this is the other task of

this project.

 ii

Acknowledgements

First, I would like to thank my supervisor Professor Don Sannella for his continued

guidance and many fruitful discussions throughout the project, and Dr Kenneth

MacKenzie, this work would not have been possible without his insightful help. I

would also like to thank Dr David Aspinall for his helpful advice and

encouragement.

Thanks also to my family and friends for providing support and encouragement

throughout my entire MSc.

 iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has

not been submitted for any other degree or professional qualification except as

specified.

(Hua Yang)

 iv

Table of Contents

Chapter 1 Introduction .. 1

1.1 Embedded System Development .. 1

1.1.1 Memory Overflow Concern ... 1

1.1.2 Related Work on Memory-Overflow Problem............................... 2

1.2 Proof-Carrying Code... 3

1.3 MRG Project ... 6

1.3.1 Architecture of MRG.. 6

1.3.2 Components of MRG ... 7

1.4 Description of the Project ... 10

1.4.1 Motivation and Description of the Project 10

1.4.2 Principle Goal of the Project .. 11

1.4.3 Preparation for the Project.. 11

1.5 Structure of the Dissertation ... 12

Chapter 2 Camelot and the Case Study.. 13

2.1 OCaml: Objective Caml.. 13

2.1.1 The Core Language .. 13

2.1.2 Object-Oriented Features of OCaml... 14

2.2 Camelot ... 15

2.2.1 The Core Language: Comparison between Camelot and OCaml 15

2.2.2 OCamelot: Object-Oriented Camelot... 18

2.3.3 Extended With Concurrency .. 21

2.3 Case Study: Functional Embedded Telephony in Camelot..................... 23

2.3.1 Game Storyline... 23

2.3.2 Facilities ... 24

2.3.3 Implementation in Detail.. 24

Chapter 3 Inference of Heap-Space Bounds .. 34

 v

3.1 Linear Programming .. 34

3.2 The Program Logic ... 37

3.2.1 The Syntax and Operational Semantics of Grail.......................... 38

3.2.2 The Program Logic .. 42

3.3 Inference of Heap-Space Bounds ... 45

3.3.1 Introduction of lfd_infer... 45

3.3.2 Further Discussion About Heap Space Usage.............................. 47

3.4 Practical Work on the Inference of Heap-Space Bounds........................ 50

3.4.1 Verifying Correctness of the Inference Result 50

3.4.2 Experiment Problem Report And Analysis 53

3.4.3 Heap Consumption of This Project .. 59

Chapter 4 Conclusion .. 66

4.1 Project Summary... 66

4.2 Further Work ... 68

Appendix A ML Family Evolution Tree .. 70

Appendix B The Syntax of Camelot .. 71

Appendix C Camelot’s Built-in Funtions.. 73

Appendix D.1 The Map of The Game ... 74

Appendix D.2 Actions in The Game .. 75

Appendix D.3 The Categories of Objects.. 76

Appendix D.4 Self-Defined Datatypes ... 77

Appendix D.5 E-R Diagram Of the Database... 78

Appendix E Pure Camelot Code in the Game .. 79

Bibliography ... 87

 vi

List of Figures

1.1 Overview of Proof Carrying Code ………………………………………….. 4

1.2 The Architecture of MRG …………………………………………………… 6

2.1 Insertion Sort …………………………….…………………………………..17

2.2 Example for Match Statement in Camelot…………………………………...17

2.3 The Syntax of a Class Definition in Camelot …………………………........ 20
2.4 Derived Forms for Thread Creation and use in Camelot ……………………22
2.5 Layered Architecture ………………………………………………………...25

2.6 Using The Diamond Type ………………………………………………...…29
2.7 the Room Class in the Project ……………………………………………….30
2.8 Definition of Thread connect ……………………………………………….31

3.1 Feasible Region for LP Program …………………………………………….35
3.2 The Syntax of Grail ………………………………………………………….38
3.3 The Dynamic Semantics of Grail ……………………………………………41
3.4 The Program Logic for Grail ………………………………………………..51
3.5 simple.constraints: All constraints for Inference …………………………….51
3.6 An Unbounded Case in Linear Programming ……………………………….58
3.7 Changed Linear Problem ……………………………………………………59

 vii

List of Tables

2.1 Basic Features of Camelot’s Object System ………………………………...19
2.2 Explanation of items in the Class Definition Syntax ……..............................21
2.3 Explanation of the Game Architecture ………………………………………26

3.1 Explanation of Grail’s Syntax ……………………………………………….39
3.2 Representation of Resource’s Four Components ……………………………42
3.3 Operations on Resource ……………………………………………………..42
3.4 Solutions for the Heap Usage Problem of Multi-Threads …………………..49

Chapter 1

 1

Chapter 1 Introduction

1.1 Embedded System Development

Nowadays, computing systems are everywhere. When we talk about them, most of

us think of “desktop” computers, for example, PC’s, laptops, mainframes, servers,

etc. But there is another far more common type — the embedded system. An

embedded system is a combination of computer hardware and software, either fixed

in capability or programmable for a specific computational task. Compared with

conventional desktop systems, embedded systems consist of fairly standard

components, such as processors, memory units, buses, peripherals as well as

real-time I/O devices, e.g. sensors and actuators. In addition to these, embedded

systems also have their own characteristics:

 Single-functioned, which means each of them execute a single

program repeatedly

 Tightly-constrained, including low cost, low power, small, fast, etc.

 Continually react to changes in the system’s environment

 Must compute certain results in real-time without delay

Embedded systems are already used in a broad area, from industrial machines,

automobiles, medical equipment, airplanes to toys, vending machines, as well as

cell phones.

1.1.1 Memory Overflow Concern

Out-of-memory error is a serious problem in computing, which becomes more

critical in the context of the embedded system, because of its limited memory and

particular storage organization. [1] points out that desktop systems can reduce the

Chapter 1

 2

ill-effects of the out-of-memory problem through their virtual memories in two

ways. One is that additional space on hard disks can be provided by virtual

memories the time a workload runs out of physical main memory (DRAM), and as

a result the workload can continue making progress. The second is related to the

hardware-assisted segment-level protection mechanism provided by virtual memory,

which ensures that an application with an excessive memory requirement can be

terminated by user without crashing the system[1]. Embedded systems, on the other

hand, typically have neither hard disks, nor virtual memory support. This means

that out-of-memory errors leave the system in greater peril. More specifically, since

there is no swap space — the additional space allocated in the hard disk by the

virtual memory, the memory-overflow application has no space to grow into,

therefore, the system crashes. Furthermore, because of the absence of protection

given by the virtual memory, there is a possibility that a segment exceeds the

memory bound cannot be detected and hence no pre-crash remedial action can be

performed. So for correct execution, programmers need to make accurate

compile-time estimates of the maximum memory requirement of each task across

all input data sets, and choose a physical memory size larger than the maximum

memory requirement of the embedded application.

1.1.2 Related Work on Memory-Overflow Problem

Currently works on the memory-overflow problem have already been carried out,

and some helpful solutions were proposed. Next I will give an introduction of two

different approaches, which represent two directions of researches on this problem,

one on hardware and one on software.

(1) Add a limited form of virtual memory which provides memory protection but

not swap-space [1]. This method is mostly implemented in a few high-end

embedded systems [2]. Unlike virtual memory for desktop systems which gives

programmers the illusion of an unlimited usage of memory, all embedded

Chapter 1

 3

systems, regardless with or without virtual memory, are inherently constrained

by the amount of available physical memories [3]. In other words, because of

their lack of hard disks and hence of swap space, out-of-memory problem has

not been thoroughly solved, and even programs running on embedded systems

that have memory management hardware and virtual memory, is still possible

to cause memory overflow. On the other hand, most commercial embedded

processors, such as [4] [5] [6], do not go in for this method. The major reason

for that is the cost of the hardware memory management units (MMUs) that

provide virtual memory has been considered by processor vendor to be

excessive in an embedded environment [7] [1].

(2) Software run-time checks for out-of-memory errors. This method is proposed in

[1]. The basic idea consists of two parts. First, out-of-memory errors are

detected just before they will happen by using carefully optimized

compiler-inserted run-time check code. Such error detection enables the

designer to incorporate system-specific remedial action, such as transfer to

manual control, shutting down of non-critical tasks, or other actions. Second,

grow the stack or heap segment after it is out of memory, into previously

un-utilized space such as dead variables and space freed by compressed live

variables. This technique can avoid the out-of-memory error if the extra space

recovered is enough to complete execution [1]. Surpassing the hardware

method, this method achieves space recovery and memory protection with low

system overheads.

1.2 Proof-Carrying Code

Proof-Carrying Code (PCC) provides an alternative method for achieving memory

safety. The same idea can be applied to other safety properties covering data access

policies, resource usage bounds, and data abstraction boundaries [8].

Chapter 1

 4

What is Proof-Carrying Code?

Proof-Carrying Code, as pioneered by Necula and Lee [9] [10], is a general

framework for verifying the safety properties of machine-language programs [11].

PCC enables a computer system to determine, automatically and with certainty that

program code provided by another system is safe to install and execute without

interpretation or run-time checking [8]. The key ideas behind PCC involve five

concepts: code producer, code consumer, proof producer, safety policy and proof,

which are:

 The code consumer requests code from the code producer, specifying a

safety policy

 The code producer sends code to the code consumer together with a proof

produced by the proof producer, which indicates that this code abides by

the safety policy

 The code consumer checks whether the proof is valid for the code and the

safety policy

 If the proof passes the check, the code then can be executed on the code

consumer side.

Figure 1.1: Overview of Proof Carrying Code

Chapter 1

 5

The principle of Proof-Carrying Code is to construct and verify a mathematical

proof about the machine-language program itself, and this guarantees safety — but

only if there’s no bug in the verification-condition generator, or in the logical

axioms, or typing rules, or the proof-checker [11]. As [12] points out, a major

advantage of this approach is that it sidesteps the difficult issue of trust: there is no

need to trust either the code producer, or a centralized certification authority. If

some code comes with a proof that it does not violate a certain security property,

and the proof can be verified, then it does not matter who wrote this code: the

property is guaranteed to hold. But the user does need to trust certain elements of

the infrastructure: the code that checks the proof; the soundness of the logical

system in which the proof is expressed; and, of course, the correctness of the

implementation of the virtual machine that runs the code — however these

components are fixed and so can be checked once and for all.

Compared with [1]’s approach to achieving memory safety, Proof-Carrying Code

has the potential to free the host-system designer from relying on run-time checking

as the sole means of ensuring safety. Authors of [8] further argue that by being

limited to memory protection and run-time checking for achieving memory safety,

designers of that kind of systems must impose substantial restrictions on the

structure and implementation of the entire system. Moreover, Proof-Carrying Code

provides greater flexibility for designers of both the host system and then agents,

and also allows safety policies to be used that are more abstract and fine-grained

Chapter 1

 6

than memory protection [8].

1.3 MRG Project

Mobile Resource Guarantees (MRG) is a European Commission funded project,

belonging to the Laboratory for Foundations of Computer Science. MRG applied

ideas from Proof-Carrying Code to the problem of resource certification for mobile

code [12]. The aim of the project was to develop the infrastructure needed to endow

mobile code with independently verifiable certificates describing its resource

behaviour, in the form of condensed and formalized mathematical proofs of

resource-related properties which are by their very nature self-evident, unforgeable,

and independent of trust networks [13].

1.3.1 Architecture of MRG

Figure 1.2: The Architecture of MRG

GDF

Resource
Typechecker

Certificate
Generator

Compile

Proof
Checker

Resource
Manager

Vitual
Machine

p implies
c

satisfies r

Runs code

Resource Policy

Grail
Progra

JVM
Program

Proof

Camelot
Code

Code Producer Code Consumer

Code c with
Certificate p

Chapter 1

 7

Figure 1.2 shows MRG’s PCC-like architecture. Along with it is a novel protocol

proposed by MRG. In this protocol, a Resource Manager is responsible for

negotiating resource policies specified by the code consumer with the code producer,

and verifying that the certificate attached to the required code ensures that it will

run within the constraints required. A Proof Checker, invoked by the Resource

Manager, is in charge of the practical verification work. If the check succeeds, we

have an absolute guarantee that resource bounds are met, so it is not necessary to

check for resource violations as the code runs. In detail, the phases in the protocol

are [16]:

 Initiate: Code producer A wants to send code consumer B a piece of

mobile code c

 Policy: A and B agree upon some resource policy r that the code must

satisfy. The choice of policy may influence some aspect of the compilation

(or re-compilation) of the code from a high-level language, in particular

how the Resource Type-checker influences the Certificate Generator

 Certify: Provided the code meets the policy r, then A sends B the code c

together with a certificate p that c abides by r

 Check: B checks the validity of the certificate p with respect to the code

and the agreed resource policy.

 Run: Provided the check was successful, B then runs the code

1.3.2 Components of MRG

1.3.2.1 Programming Languages

The Mobile Resource Guarantees framework provides two language levels:

Camelot, the high-level language, and Grail, the low-level language into which

Camelot is compiled.

(1) Camelot

Chapter 1

 8

Camelot is a first-order OCaml-like resource-safe function language, which was

developed as a test bed for different methods of analyzing heap usage [14]. Camelot

provides the usual recursive datatypes and recursive functions definitions, using

pattern matching, albeit restricted to flat patterns [12]. In order to create a system

allowing inter-operation with external Java libraries and to compile an object

system to JVML, Camelot further extends its type system to include object-oriented

features. With respect to the concurrency problem, a simplified thread model is

added in Camelot which abbreviates the use of threads in the language. Still,

Camelot has its differences from OCaml, one of which lies in Camelot’s memory

model. Through a special type, Camelot enables programmers to precise control

heap space usage. More information about this type is put in a later section about

the space-aware type system. And a detailed introduction to this language is in

chapter 2.

(2) Grail

Grail is a small typed language, which represents Java bytecode in a functional form.

As a conventional strict first-order functional language, Grail has the following four

characteristics: [15]

- call-by-value function invocation

- lexical scoping for variables

- mutually recursive local function declarations

- strict static typing

As a vehicle for Proof-Carrying-Code-like project, Grail is required to [12]:

- be the target for the Camelot compiler;

- serve as a basis for attaching resource assertions;

- be amenable to formal proof about resource usage;

- provide a uniform format for sending and receiving guaranteed code

- be executable.

Chapter 1

 9

Grail has two semantics: one functional and one imperative, both of which have

direct connections with responsibilities listed above. Grail’s compiler is a part of

Camelot’s compiler, so sometimes for simplification, we can directly get a Java

bytecode from a Camelot program using the compiler of Camelot.

1.3.2.2 Space-aware Type System

Camelot, in combination with its space type system, enables to produce JVM

bytecode endowed with guaranteed and certified bounds on heap space

consumption. MRG uses Hofmann/Aspinall type system, which provides an

abstract type denoted <>, as well as enforcing linear typing.

This abstract type, called Diamond, represents regions of heap-allocated memory.

The motivation of designing a special diamond type is to allow better control of

heap usage. All non-primitive types in a Camelot program are compiled to JVM

objects of a single class Diamond, which contains appropriate fields to hold data for

a single node of any datatype. Diamond values can be obtained through constructors

for datatypes or released through match rules with special annotations. Considering

that there will be times that one may not want to re-use a diamond value

immediately, a freelist is provided for the storage of unused diamonds.

The type system provides two ways to achieve linear typing. First the Camelot

compiler has an option that enforces linear use of all variables, or alternatively, the

programmer himself ensures that the datatype he deconstructed using the match rule

is not used anymore, because its contents will be overwritten subsequently. Linear

typing schemes guarantee single-threadedness and so the soundness of in-place

update with respect to a functional semantics [37]. However, this is a restrictive

discipline in practice and rules out many sound programs. So in [37] an improved

type system, that distinguishes between modifying and read-only access to a data

structure and in particular allows multiple read-only accesses, is proposed [12].

Chapter 1

 10

1.3.2.3 Program Logic for Generating and Checking Proofs

The Camelot programming language is supported not only by a strong, expressive

type system, but also by a program logic which supports reasoning about the time

and space usage of programs in the language. Actually speaking, the program logic

operates on programs written in Grail which is the target of Comelot’s compiler.

Serving as the target logic of a certifying compiler, the program logic exploits

Grail’s dual nature of combing a functional interpretation with object-oriented

features and a cost model for the JVM [25]. This program logic, together with the

resource-aware operational semantics of Grail, has been formalized in the theorem

prover Isabelle/HOL. Certifications in the MRG framework contain a claim of

resource usage together with a proof of the claim. And this proof is just expressed in

this program logic. The logic exists not only on the code producer side, where it is

used by the certifying compiler to generate certificates, but also on the code

consumer side, where it is used by the proof checker to check whether the

certificate attached to the code indicates that the required resource of the program

will not violate the resource policy the consumer claimed, and whether this

certificate is logically correct. A detailed introduction to this will be given in

Chapter 3.

1.4 Description of the Project

1.4.1 Motivation and Description of the Project

In these years the worldwide market of mobile communication is growing at a rapid

pace and has overtaken wired phone communications. We have heard for a while

that the mobile industry will explode with millions of end-user playing games and

interacting on billions of handsets. In particular, Screen Digest (June 2004)

estimated that the total market for online games will double between 2004 and 2007,

the Massive Multi Player Online Game (MMOG) market continues to grow, and

Chapter 1

 11

Europe, a relatively untapped MMOG market to date, will become the largest

growth opportunity when the North American market approaches saturation.

On the other hand, as a kind of embedded systems, programming a mobile device is

very different from programming a general-purpose workstation. Developers face

problems, such as conserving the battery life, which have no analogue in traditional

desktop computing. One of the most significant costs of battery energy in mobile

devices is memory usage. For this reason, developers benefit from using

programming languages which give precise guarantees of resource consumption

that can be inferred directly from the application code. Camelot is just this sort of

programming language, which in combination with its space-aware type system

provides quantitative guarantees about the consumption of resources such as

memory usage.

1.4.2 Principle Goal of the Project

The principle goal of this case study project is:

- developing an on-line game application in the Camelot programming

language which would be compiled to run on an emulator for a

Java-enabled mobile phone.

- most implementations of Camelot so far are small and aim for particular

problems, and the implementation of this project will face a variety of

problems. Thus, it is a good opportunity to test and improve the Camelot

compiler

- using an implementation of a static inference on heap space usage to get

quantitative results about the consumption of the resource used by our

game.

1.4.3 Preparation for the Project

Before carrying out this project, some preparations have been made:

Chapter 1

 12

(1) Proof-Carrying Code Framework

The comprehension of this technology has been stated in previous sections.

(2) MRG Project

Besides for the components introduced in section 1.3.2, MRG still made some other

achievement. Understanding some work of this project is required for this project.

(3) DEGAS

DEGAS, Design Environments for Global ApplicationS, mainly concerns

specification in UML and the qualitative and quantitative analysis of global

applications. In [17], DEGAS provides a case study of m-MMPORG (mobile

Massive Multi Player Online Role Game), the one to be implemented in this project,

in the form of a high-level UML design for a room-based game to be played over

mobile telephones.

(4) Current technologies on mobile devices development

This provided me ideas for later practical implementation work.

1.5 Structure of the Dissertation

The organization of this dissertation in chapters occurs as follows:

Chapter 2 This chapter first gives a literature review about OCaml and Camelot,

and then introduces the implementation of this game in detail.

Chapter 3 Work on inference of heap space usage is presented in this part. But

before that, linear programming and a program logic are introduced

first.

Chapter 4 This chapter concludes the work we have done for this project,

followed by an expectation of further work.

Chapter 2

 13

Chapter 2 Camelot and the Case Study

2.1 OCaml: Objective Caml

OCaml, Objective Caml, is an advanced programming language which is a member

of the ML family. OCaml shares the functional and imperative features of ML, but

adds object-oriented concepts and has minor syntax differences [18]. (Appendix A

shows a relationship tree which indicates how ML was influenced by and has

influenced other languages, together with the development of ML. You might get a

general knowledge about the ML family there.)

2.1.1 The Core Language

2.1.1.1 The Basics of OCaml

OCaml offers basic built-in types: bool, int, float, char, string, as well as predefined

data structures: tuples, lists, and arrays. In addition to these, OCaml allows

user-defined data structures, like records and variants. In OCaml, everything is an

expression so everything returns a value. Variables of OCaml are immutable, that is,

once they are bound to a value, they cannot be changed except by a new, fresh

binding. While this seems very limiting to a programmer who is accustomed to

other programming styles, it enforces safe programming by not allowing side

effects.

Functions in OCaml are values that are bound to names and treated as first-class

values. Strictly speaking, no function in OCaml takes more than one argument.

Multiple argument functions are actually curried functions. OCaml enables

conditional computation which is performed with the traditional if-then-else

construct.

OCaml is not a pure function language. It has looping constructs like while and for

Chapter 2

 14

loops, as well as mutable data structures such as arrays [19]. Like ML, OCaml also

provides exception signaling and handling mechanism.

2.1.1.2 The Module System

The module system is one of the important characteristics of OCaml. The primary

motivation for it is to centralize related definitions, e.g. definitions of a data type

and associated operations on that type, as well as enforce a consistent naming

scheme for these definitions. This can efficiently avoid running out of names or

accidentally confusing names [19]. Structures, Signatures and Functors form the

basis of this system.

2.1.2 Object-Oriented Features of OCaml

OCaml supports class definition. Like conventional object-oriented programming

languages, OCaml provides concepts like private methods, abstract methods (but

here called virtual methods), inheritance, class coercions, friend class, as well as

new for creating objects. Features of OCaml which distinguish it from OO

imperative languages are:

 OCaml provides a direct way to create an object without going through a class.

The syntax is exactly the same as for class expressions, but the result is a single

object rather than a class. Unlike classes, which cannot be defined inside an

expression, immediate objects can appear anywhere, using variables from their

environment [19].

 In the body of a class, polymorphic methods are allowed, but with a limitation,

namely, a polymorphic method can only be called if its type is known at the call

site. Otherwise, the method will be assumed to be monomorphic, and given an

incompatible type [19].

 OCaml provides the library function Oo.copy for cloning objects. Usually, the

instance variables have been copied but their contents are shared. Assigning a

Chapter 2

 15

new value to an instance variable of the copy will not influence the original’s,

and vice versa. However, in the case that the instance variable is a reference

cell, assignments will influence both the original and the copy.

 OCaml allows recursive classes definitions where recursive classes can be used

to define objects whose types are mutually recursive.

 OCaml provides a novel method, the binary method, which takes an argument

of the same type as self.

2.2 Camelot

Camelot serves as the high-level programming language in MRG framework.

Owing to its resource-safe character, it is developed as the test bed for different

methods of analyzing heap usage.

2.2.1 The Core Language: Comparison between Camelot and

OCaml

The core of Camelot is a standard polymorphic ML-like functional language whose

syntax is based upon that of OCaml [20]. In section 2.2, we have introduced the

core language of OCaml, so here we only focus on differences between them

(Appendix C shows the complete syntax of Camelot).

(1) In OCaml, there is actually no way to modify a list in-place once it is built. For

example, the sort function in figure 2.1(a) does not modify its input list, instead

it builds and returns a new list containing the same elements as the input list, in

ascending order. Most OCaml data structures like list are immutable, except for

a few, like arrays which can be modified in-place at any time.

However, Camelot allows in-place modification through the diamond type and

the freelist. The diamond type in Camelot is denoted by <> whose values represent

blocks of heap-allocated memory. Camelot allows explicit manipulation of diamond

Chapter 2

 16

objects, and that is achieved by equipping constructors and match rules with special

annotations referring to diamond values [14]. See the insertion sort example in

figure 2.1(c). The annotation “@d” on the first occurrence tells the compiler that the

space used by the list cell is to be made available for re-use via the diamond value d

[22]. And the second annotation on the second occurrence points out that the new

list cell should be constructed in the diamond object referred to by d. Considering

that sometimes we don’t want to re-use a diamond value immediately, Camelot

provides a freelist for the storage of unused diamonds. The diamond annotated by

“@_” will be placed on the freelist for later use. Figure 2.1(b) shows the usage of it.

The related topic about static inference of heap space usage will be discussed in

chapter 3.

 [] []

 | :: ()

 [] []
 | :: ::

let rec sort l
match l with

hd tl insert hd sort tl

and insert a l
match l with a

hd tl if a hd then a l

=
→

→

=
→

→ ⇐
 ::

;;
else hd insert a tl

Figure 2.1(a): insertion sort in ocaml

 [] :: []
 | :: @_
 :: (::)

let insert a l
match l with a

hd tl
if a hd then a hd tl

=
→

→
<=

 :: ()

 [] []
 | :: @_ ()

else hd insert a tl

let sort l match l with
hd tl insert hd sort tl

= →
→

Figure 2.1(b): In-place Insertion Sort in Camelot

Chapter 2

 17

 [] :: []
 | (::) @
 :: (::)@

let insert a l
match l with a

hd tl d
if a hd then a hd tl d

=
→

→
<=

 (:: ())@

 [] []
 | (::)@ (())@

else hd insert a tl d

let sort l match l with
hd tl d insert hd sort tl d

= →
→

Figure 2.1(c): Another In-place Insertion Sort in Camelot

Figure 2.1: Insertion Sort

(2) OCaml supports higher-order functions but Camelot does not. In Camelot, any

invocation of a function must supply exactly the same number of arguments as

are specified in the definition of the function.

(3) Iterative constructs are not available in Camelot. Camelot only supports

recursive definitions or invocations.

(4) Camelot does not support exception signaling and handling, as well as the

module notion.

(5) Camelot also uses the match statement for datatype deconstruction, but the form

of it is much more restricted than the one of OCaml [21]. This means that there

must be exactly one rule for each constructor in the associated datatype, and

each rule binds the values contained in the constructor to variables, or discards

them by using the pseudo-variable “ _ ” [21]. An example of match statement

usage in Camelot is given in figure 2.2.

 int | int * int

 (1 : int) (2 : int)
 1 2
 | (,) 2 (, 2)

type list Nil Cons list

let copylist l list l list
match l with Nil l

Cons h t let l Cons h l

=

=
→

→ =
 2in copylist t l

Figure 2.2: Example for Match Statement in Camelot

Chapter 2

 18

(6) Camelot also allows self-defined datatypes but with a requirement that datatype

constructors must begin with an upper-case letter.

(7) string type in Camelot is immutable, different from the one in OCaml, where the

ith element of a string type variable s can be obtained through s.[i].

(8) In OCaml, we use arr.(i) to retrieve the ith element of an array arr, but in

Camelot, we use the built-in function for array, get arr i. Besides for this,

Camelot still has several other functions on arrays, like empty: int -> α -> α

array, set: α array -> int -> unit and arraylength: α array -> int.

(9) OCaml provides an append operator @ on lists, but Camelot reserves this

symbol for use with rules of the diamond type, which is a special type for

explicit resource allocation.

(10) Camelot does not have the = = operator in OCaml. = in Camelot can be

applied to strings and other objects. However, it is interpreted as equality of

references and hence will usually fail to give the expected result; for strings,

we should use the function same_string [22].

(11) Functions in Camelot are defined using the keyword let, rather than fun or

function, which are used in OCaml.

(12) In addition to the primitive types supported by OCaml, Camelot still provides

unit type, which has a single value (). Camelot has its own built-in functions,

which are shown in Appendix C.

2.2.2 OCamelot: Object-Oriented Camelot

The original motivation for adding object-oriented features to Camelot is the need

to create a system allowing inter-operation with external Java libraries, and to

compile an object system to JVML [21]. Rather than creating a fundamentally

different system, the object system for Camelot is drawn from the object system of

the JVM. From another point of view, the power of Camelot’s object system might

be considered as a subset of OCaml’s. Table 2.1 shows the basic features of

Chapter 2

 19

OCamelot.

Feature Description Example

Static

Method

Calls

Static methods and functions are

conceptually equal, ignoring the

use of classes for encapsulation.

java.lang.Double.parseDouble a

Static Field

Access

Only accesses to constant static

fields are supported

java.lang.Double.MAX_VALUE

Object

creation

Use the new operator in the curried

form

new java.lang.Double 3.1415926

Instance

field access

Retrieve the value of an instance:

Update the value of an instance:

object#field

object#field ← value

Method

invocation

introduce from OCaml’s syntax,

using a curried form

object#method para1 para2

Null

values

Considering existence of null

object, a function isnull is added to

test whether the curried expression

is a null value

isnull expr

Test if the expression expr is a

null value

Casts &

typecase

cast objects up to superclasses:

cast objects down to subclasses:

obj :> superclass

match obj with

o :> subclass1 → o.a()

| o :> subclass2 → o.b()

| _ → obj.c()

Table 2.1: Basic Features of Camelot’s Object System

In addition, OCamelot also supports self-defined classes. This facility can be used

to implement callbacks, such as in the Swing GUI system which requires us to write

stateful adaptor classes [29], or to invoke Camelot codes in the context of Java, for

Chapter 2

 20

example to create a resource-certified library for use in a Java program [29]. Figure

2.3 shows the syntax of a class declaration, followed by table 2.2 explaining items

in the syntax.

Examples of self-defined classes can be found in the next section which introduces

implementation details of this project.

Clearly the presence of mutable objects in object-oriented Camelot provides for

in-place update [29]. However the unbounded heap-usage problem solved for

datatypes are replicated by allowing arbitrary object creation. Perhaps more

seriously, invocating arbitrary Java code in Camelot programs may lead to

unlimited heap space usage. Further discussion about this problem will be given in

chapter 3.

:: class with end

::

:: implement

::

::
:: field : | field mutable : | val :

classdefl cname scname body

body interfaces fields methods

interfaces iname interfaces

fields field fields

methods method methods
field x x x

me

τ τ τ

= =

=

=

=

=

=

() ()
() ()

() ()

11 1

1 1

1 1

:: maker : : : super

 | method : : :
 | method () :
 | let : : :
 | let () :

mn n i i

n n

n n

thod x x x x exp

m x x exp
m exp

m x x exp
m exp

τ τ

τ τ τ
τ

τ τ τ
τ

= =

=

=

=

=

… …

…

…

Figure 2.3: The Syntax of a Class Definition in Camelot

Chapter 2

 21

item explanation

class cname Define a class called cname

<scname with> Inherit from a class called scname

implement iname Implement an interface called iname

field <mutable> x : τ Instance field named x of type τ, optionally be

declared to be mutable

val x : τ Static fields named x of type τ

maker (x1 : τ1) … (xn : τn)

<: super xi1 … xim> = exp

Constructor of the class with arguments x1 of

type τ1, .. xn of type τn, the superclass maker is

optionally executed, and expression exp is

executed.

method m (x1 : τ1) … (xn : τn) : τ

= exp

Instance method named m of type τ with

arguments x1 of type τ1, .. xn of type τn,

expression exp is executed.

method m () : τ = exp Instance method named m of type τ with xero

argument, expression exp is executed.

let m (x1 : τ1) … (xn : τn) : τ = exp Static method named m of type with

arguments x1 of type τ1, .. xn of type τn,

expression exp is executed.

let m () : τ = exp Static method named m of type τ with xero

argument, expression exp is executed.

Table 2.2: Explanation of items in the Class Definition Syntax

2.3.3 Extended With Concurrency

In Camelot, a simplified thread model is especially designed for concurrent

programming, which abbreviates the use of threads in the language. These derived

forms are implemented by class hoisting, moving a generated class definition to the

Chapter 2

 22

top level of the program [20]. Figure 2.4 shows concrete forms:

let rec ()
 let in ()
let
 new () in

class () . .
with
 let rec ()

threadname args
locals subexps threadname args

threadInstance
threadname actuals

threadnameHolder args java lang Thread

threadname

=
=

=

=

=

…

 let in ()
 method () :
 let _ = this # (true)
 in ()
 end
 let # () in

locals subexps threadname
run unit

setDaemon
threadname

threadInstance start

=
=

…

Figure 2.4: Derived Forms for Thread Creation and use in Camelot [20]

In order to retain predictability of memory behaviour in Camelot, there are several

restrictions:

(1) The stop and suspend methods from Java’s threads API are not allowed. This is

because the former will cause objects to be exposed in a damaged state, the latter

will freezes threads without releasing resources occupied by them, and as a result

both of them can confuse the prediction of memory consumption.

(2) All threads are required to run, namely, all threads are started at the point where

they are constructed. This is also required for the sake of predictability.

(3) Each class has one constructor, which implies that overloading is not supported

by Camelot. So initial values for all the fields of the class need to be passed when

an object is created.

Chapter 2

 23

2.3 Case Study: Functional Embedded Telephony in

Camelot

This is a case study project to develop an on-line game application in the Camelot

programming language. The design of the game is based on [17] where DEGAS

provides a case study of m-MMPORG in the form of a high-level UML design for a

room-based game to be played over mobile telephones. The motivation of this part

is to implement a large practical system in Camelot taking advantage of the features

of this language, as well as to test Camelot compiler.

2.3.1 Game Storyline

This Massive Multi-Player Online Role-playing Game (MMPORG) consists of a

series of game levels. Each level is composed of a start area, a certain number of

standard rooms, and a special room which can hold only one player at a time. The

architecture of every level is different from level to level, this means that the

number of rooms and the paths they are connected by may change. Appendix D.1

shows the map of this game.

Each player in the game has four associated parameters: health, strength, agility and

cash. Players are considered as active entities who can operate on objects, change

locations, interact with other players and so on. (Allowed actions are listed in

Appendix D.2 with necessary explanation) Objects, including food, weapons,

medicine, tools, etc., are divided into categories according to the player’s parameter

they affect. (Object Categories and corresponding effects are shown in Appendix

D.3) Players have to explore rooms to collect as many points as possible to improve

their personal parameters. They might encounter obstacle in the special room or be

attacked by other players. On this occasion, the winner can have his points

increased and obtain an object from the loser. At the same time, the loser may lose

some points or an object. If one of the player’s parameters reaches zero except for

Chapter 2

 24

the health, the player has to quit the current room and be transferred back to the

start area of the current level. But if the health reaches zero, the player cannot play

anymore. The winner of this game is the one who can pass through all challenges,

successively reach the special room in the last level and pass the test there.

2.3.2 Facilities

There are several facilities required to establish as the basis of this project. First,

from the point of location, the game can be generally divided into two parts: the

server, which is responsible for clients’ registration, login, information management

and so on; and the client, where actual actions of the game occur. So setting up a

web server to carry out jobs on the server side is pre-requisite for this project.

Second, since this game is oriented to large numbers of players, so a database is

required to store all players’ information, as well as to provide query service when

necessary. The third is a special package for mobile phone application development,

and the corresponding platform for testing. Considering the cost and possibilities,

we finally choose Apache Tomcat as our servlet container, postgreSQL as the

underlying database management system, Java API provided by J2ME as the special

development package, and KVM as the underlying design platform. All of them are

free and have large installed bases of users.

2.3.3 Implementation in Detail

2.3.3.1 Architecture of the Game

As a whole, although the developed system involves a server, and clients, it actually

follows a distributed architecture. The meaning of this is that some services of the

system are provided by the Network. These kind of services are different from

traditional client/server ones, because in client/server architecture clients always

know where to locate the service (because the services is almost always at the same

address), but in a distributed environment like the one implemented in this case

Chapter 2

 25

study the service moves from one location to another. And the entity responsible for

some service is a set of peers instead of a central entity – the server. Thus in order to

locate a service, peers must send messages to the Network to find out the

information they need.

This system has a Peer-to-Peer nature, which means that most communication

happens between the players’ devices, so the figure of the Server is limited only to

administrative procedure [17] such as registration, user login, logout, and account

management. In the logic of the Game the Server has only little participation,

instead the Client takes on most of these jobs. Figure 2.5 shows the structure of the

application on the Client side, followed by Table 2.3 explaining the work of each

layer.

Figure 2.5: Layered Architecture

Network Connectivity

Communication

User Interface

Security

Game Engine

Chapter 2

 26

Layer Duty

User Interface Enable user to interact with the game

Game Engine Implement all the game logic, i.e. actions of the

player

Communication implement all the communication activities of the

game, i.e. p2p, client/server communication

Network Connectivity provide essential Network Connectivity allowing the

system to relay on an appropriate transfer protocol,

i.e. HTTP

* Security Support

(need to be improved)

On the 3rd and 4th layers, provide necessary security

support for communication applications and

connectivity between peers.

Table 2.3: Explanation of the Game Architecture

2.4.3.2 Major Implementation Issues:

In the previous section we have pointed out that this is a distributed system. Issues

discussed in this section relate to this feature.

(1) Mobility & Distributed Environment

This system is highly mobile and has a P2P nature. Players inside a Room constitute

a virtual community that they can join and leave, and interactions between them can

only occur inside the same room. Room object is the most important mobile object

of the system. This object contains all the information about the virtual environment

in which players are playing and provide necessary services for players during the

game. When entering a room of the game, every player receives a copy of the Room

object. If the entering player is the first one in a room, it is the server that creates

and sends a room copy to the player’s device. Other players will be forwarded to

players already inside the room and a peer-to-peer procedure will allow the

newcomer to receive its copy of the Room object from some other player. These

Chapter 2

 27

instances of the Room object must be kept synchronized in order that every player

has the same version of the status of the Room he is in. This problem is solved by

introducing a second mobile object: a Token. Each room has only one Token, and

only the player holding the Token has the right to perform any Environment Action

(The definition of Environment Action is given in Appendix D.2). If any other

player wants to do some Environment Action, before he can be satisfied, the Token

must move to the requesting player’s device first.

(2) Synchronization

Environment Actions are defined as Local and Synchronous Actions. It means that

this kind of actions is performed directly on the local device of the player doing

them, but before this is done, players must synchronize on something. Room is the

obvious synchronized point in this game. For example several players may request

to take objects or weapons from the same room at the same time. The system must

notice this race and grant exclusive access to these resources. And the way to do this

is implementing the Token as briefly described above. The token can be thought of

as a mobile object moving from one peer to another peer in the same room. Only

the player owning the Token can access resources and perform the action he

requested. Other players must wait and their requests will be stored in a queue of

the Token. After the peer has finished processing the action, the new status of the

room needs to be broadcasted to all the other peers in the room for the sake of

keeping the consistency of the room. Those peers receiving the information must

update their clone of the room object. After this procedure has succeeded the Token

can move somewhere else. On the other hand, the request of the other peer will be

enqueued, and after the action is finished the request will be dequeued.

In addition to these two issues, the design of the database is also a concern of this

project. Appendix E.7 shows the E-R diagram of this project.

2.4.3.3 Programming in Camelot

This case study takes full advantage of the facilities provided by Camelot, i.e.

Chapter 2

 28

diamond type for heap-space allocation, self-defined classes, threads for

concurrency, and so on. Therefore, it’s a good opportunity to help test and the

Camelot compiler.

(1) Using the Diamond Type

Diamond type in Camelot enables in-place operations and precise control of heap

usage. A freelist for the storage of unused diamonds is provided for the case where

one may not always want to reuse a diamond value immediately. Since a safe and

static automation of the decision about whether a pattern match is destructive or not

is not available, it is our programmers’ responsibility to ensure that the datatype we

are going to deconstruct will not be used anymore because its heap space will be

reclaimed and its contents will be overwritten subsequently. We have mentioned in

the previous section that there are two kinds of destructive match patterns in

Camelot, one uses “@d” annotation and the other uses “@_”. For the inference

implementation of the static prediction of heap space usage (introduced in the next

section), both of them are treated as @_, as this will not affect the inference in any

way. So it is not a big matter whether to use @d or @_, but, it is a matter of

distinguishing whether to use a destructive pattern match or a read-only pattern

match. Following codes are the examples of their usage in this project.

 ! | int* * *int* int* int*

 (_, _, _, , _, _, _)
 | 0

type card NullCard Card of string string string
let attAbility c

match c with Weapon attak attak
NullWeapon

=
=

→
→

Figure 2.6(a): A Method in the Project Using Read-Only Match

 (1 :) (2 :)
 1 6 ()
 | 6 (, ,) @
 (6 (, , 2) @)

let conca tL ist l cardpa irlist l cardpa irlist
m atch l w ith N il

C ons a b t d
conca tL ist t C ons a b l d

=
→

→

Figure 2.6(b): A Method in the Project

Using Deconstructive Pattern Match with “@d”

Chapter 2

 29

 (:)
 3 ()
 | 3 (, ,) @_

let clearStringIntList l stringintlist
match l with Nil

Cons a b t clearStringIntList t

=
→

→

Figure 2.6(c): A Method in the Project Using Deconstructive Pattern Match

with “@_”

Figure 2.6: Using The Diamond Type

(2) Defining Our Own Classes

Section 2.4.3.1 describes the layer architecture of this game. From the point of

implementation view, each layer corresponds to a Camelot class. So in the program,

we have three major classes: roomgame class, realizing the Game Engine layer;

userinterface, realizing the User Interface; connectionManager, realizing the

Connection Manager layer. Thread connect assumes jobs like the Network

Connectivity layer, but we put its introduction in the next section. Other than this,

plr class, room class (actually it is a Thread), messageSender (Thread),

messageReceiver (Thread) are assistance classes. Rather than implementing the

object element and the weapon element of the game as classes, we design special

datatypes for them in order to enable the inference experiment conducted in the next

chapter. Concrete definitions of object type, weapon type, and related datatypes are

given in Appendix D.4. Figure 2.7 shows part of the declaration of the roomgame

class to give a straightforward example of our usage of Camelot’s OO features.

Chapter 2

 30

 . . .
 :
 :
 : Re

 (* *)

class roomgame javax microedition midlet MIDlet with
field connM connectionManager
field ui userInterface
field mrecv message ceiver

Constructor of the class

=

#

 ()
 _ ()
 _ ()
 ()

 (*

maker
let ui new userInterface this

in let connM new connectionManager this
in

Signals the MIDlet that it has entered the

=
= ←
= ←

 *)
 () :
 _ # # ()
 _ # # ()
 ()

Active state
method startApp unit

let this ui startMenu
in let this connM openMessageListener
in

end

=
=
=

Figure 2.7: the Room Class in the Project

(3) Concurrent Programming

Thread is a frequently used concept in this project. As we can see, connect, which is

responsible for the communication between the peer and the server, messageSender,

which is responsible for sending messages to other peers, messageReceiver, which

is responsible for listening and receiving messages from other peers, and room,

which is responsible for operations on the room, i.e. update the object/weapon list,

enqueue the incoming request for the Token, process query about a specific

object/weapon in the room and so on. The common ground of them is when they are

doing their jobs, the game is still going on without interruption. Camelot provides

two kinds of forms for thread declarations. One is the standard form used for class

declarations, and the other are derived forms we mentioned in section 2.3.3.

Derived forms for thread creation and use in Camelot contain a Java method

java.lang.Thread.setDaemon of class java.lang.Thread. However, in this project,

Chapter 2

 31

we use the Java APIs provided by J2ME instead of J2SE, the former is much

smaller than the latter. Some of the methods defined in J2SE are not included in

J2ME, and java.lang.Tharead.setDaemon is one of these. There is no

java.lang.Thread.setDaemon defined in J2ME’s Thread class. Therefore, we have

to use Camelot’s standard form for class definition to define treads in our game.

Figure 2.8 shows the definition of connect.
 . .
 :
 : . . .
 :
 : int

class connect java lang Thread with
field url string
field c javax microedition io HttpConnection
field connM connectionManager
field tag

=

#
#

 ker (:) (:) (: int)
 _
 _
 _
 ()

ma cManager connectionManager urlocation string cTag
let connM cManager

in let url urlocation
in let tag cTag
in

=
= ←
= ←
= ←

 () :
 (#)
 (#)
 _
 : .

method run unit
let tag this tag

in let conn javax microedition io Connector open this url
in let match conn with

hconn javax

=
=
=

=
> . .

 _
 _ # # Re
 .

microedition io HttpConnection
let c hconn

in let this c set questMethod
javax micr

→
= ←
=

. . .

oedition io HttpConnection POST
in

end

#
#

Figure 2.8 Definition of Thread connect

2.4.3.4 Camelot Compiler Test Report

Up to now, although Camelot has been used in a wide range, most implementations

Chapter 2

 32

of it are small and aim for particular problems. The implementation of this project

faces to a variety of problems. Thus, it is a good opportunity to test and improve the

Camelot compiler. Followings are the improvements made to the compiler during

this period. (All the fixing works on Camelot compiler were done by Dr. Kenneth

MacKenzie, LFCS, Univ of Edinburgh.)

(1) Added new types, byte, long, and so on, for our need to access data like byte

arrays. For example, storeMyInfo is a method in the connectionManager class,

which is responsible for telling the Server the current status of the player. Since

the output stream only accepts byte data, so the player’s information has to be

changed to byte array first.

(2) Fixed a parsing problem. In this project, there are some contexts where we only

can put long name like “java.microedition.lcdui.Alert”, but short class name like

“connectionManager” are sometimes needed as well. The previous Camelot

compiler cannot recognize the short class name. The solution to this problem

perfects Camelot’s OO features, since now we not only can define our own

classes, but also can use them.

(3) Fixed the problem that the compiler sometimes failed to find methods which

were defined in superclasses.

(4) Fixed the problem where the compiler confused the character type with the

integer type, and therefore it couldn’t find the correct method.

(5) Originally, datatypes weren’t allowed to contain objects, for example, it was

considered as a syntax error if we defined a type like

 . . *int |type t A of java math BigInteger= …

(6) Added the isnull construct. In [21], it is mentioned that considering in Java, any

method with object return type may return the null object, Camelot provides a

construct

 isnull e

 which tests if the expression e is a null value. However, in the previous compiler,

Chapter 2

 33

this construct has not been implemented yet.

(7) Released the constraint that variable names had to begin with lower-case letters.

This improvement tones with some programmers’ habits that they get used to

have classes names begin with upper-case letters.

(8) Enabled the compiler to work on Windows system. There was a problem in the

previous compiler where the compiler couldn’t recognize filenames with colons

in them like “E:\WTK22\lib”, so at that time in Windows, the compiler could

not recognize the name of the file which includes the Java classes we need.

Chapter 3

 34

Chapter 3 Inference of Heap-Space Bounds

The Goal of the Mobile Resource Guarantees (MRG) project is to develop

Proof-Carrying Code (PCC) technology to endow mobile code with certificate of

bounded resource consumption. These certificates are generated by a compiler

(actually the combined compiler for Camelot and Grail) which, in addition to

translating high-level programs into machine code, derives formal proofs based on

programmer annotations and program analysis [22]. Programmer annotations enable

programmers to express and manage storage, allocation explicitly. The program

analysis takes space reuse by explicit deallocation into account and also furnishes

an upper bound on the heap usage in the presence of garbage collection [23]. The

program analysis relies on the type system which makes reference to the above

programmer annotations. Linear Programming (LP) is used to automatically infer

derivations in this enriched type system [23]. Following this line, this chapter first

gives a literature review about linear programming, the program logic that connects

with the outcome of space inference, and the core, inference for heap-space usage.

After that, analysis of the practical inference work on our program will be given as

well.

3.1 Linear Programming

A linear programming problem is one in which we are to find the maximum or

minimum value of a linear expression

ax by cy+ + +… (called the objective function)

subject to a number of linear constraints of the form

Ax By Cy N+ + + ≤…

or Ax By Cy N+ + + ≥… (called linear inequality)

Chapter 3

 35

The largest or smallest value of the objective function is called the optimal value,

and a collection of values of x, y, z, … that gives the optimal value constitutes an

optimal solution. The variables x, y, z, … are called the decision variables. And the

feasible region determined by a collection of linear inequalities is the collection of

points that satisfy all of the inequalities.

Use of the graphic method gives you a more straightforward comprehension of this

problem and its solution set. For instance,

minimize 3 4
subject to 3 4 12
 2 4
 1, y 0

Z x y
x y
x y
x

= +
− ≤
+ ≥
≥ ≥

The feasible region for this set of constraints is shown below.

Figure 3.1: Feasible Region for LP Program

The following table shows the value of Z at each corner point:

Point Z = 3x + 4y

(1, 1.5) 3(1) + 4(1.5) = 9 minimum

(4, 0) 3(4) + 4(0) = 12

Chapter 3

 36

Therefore, the solution is x = 1, y = 1.5, giving the minimum value Z = 9.

The graphic method can only effectively solve those linear programming problems

involving two variables.

Usually, all minimization problems can be expressed in a standard form as follows

[24]:

1 2Determine 0, 0, 0nx x x≥ ≥ ≥… (3.1)

so as to

1 1 2 2minimize n nZ c x c x c x= + + +… (3.2)

subject to the constraint conditions expressed as equalities:

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =

+ + + =

+ + + =

…
…

#
…

 (3.3)

The constants (1,2, ,)jc j n= … in the objective function are called cost coefficients;

the constants (1,2, ,)ib i m= … defining the constraint requirements are called

stipulations; and the constants (1,2, , and 1, 2, ,)ija i m j n= =… … are called

structural coefficients. The sign conditions imposed by (3.1) are known as the

non-negativity requirements.

In practice, the constraint conditions generally appear as inequalities, with

greater-than or less-than signs, or in a mixed form. In order to replace the

inequalities constraint conditions by constraint equations, slack variables, which are

positive, are introduced. Let, in a particular problem, the constraint condition appear

as

1 1 2 2i i ip p ia x a x a x b+ + + ≤…

By adding a suitable positive quantity 1px + to the left-hand side, the two sides can

be equated, therefore the inequality constraint can be written as:

Chapter 3

 37

1 1 2 2 1i i ip p p ia x a x a x x b++ + + + =…

If the constraint condition appears with a greater-than or equal-to sign, this can also

be changed into an equation by subtracting the positive quantity 1px + from the

left-hand side:

1 1 2 2 1i i ip p p ia x a x a x x b++ + + − =…

This standard form is adopted in the simplex method which is a widely used

solution algorithm for solving linear programs. In the experiment section, we will

use the simplex method to solve a linear programming problem generated by the

type system and the specific problem logic.

3.2 The Program Logic

The program logic for reasoning about resource consumption of programs written in

Grail is one of the essential components of the MRG project. The introduction to

the program logic in this section will be based on [25] [26] [27].

Serving as the target logic of a certifying compiler, the program logic exploits

Grail’s dual nature of combing a functional interpretation with object-oriented

features and a cost model for the JVM [25]. This program logic, together with the

resource-aware operational semantics of Grail, has been formalized in the theorem

prover Isabelle/HOL. The logic exists not only on the code producer side, where it

is used by the certifying compiler to generate certificates, but also on the code

consumer side, where it is used by the proof checker to check whether the

certificate attached to the code indicates that the required resource of the program

will not violate the resource policy the consumer claimed, and whether this

certificate is logically correct.

This project uses the Hofmann/Jost type system to provide quantitative guarantees

about the resource consumption. The concern of this type system is that given a

functional program containing a function f of type, say, L(B) -> L(B), i.e., turning

Chapter 3

 38

lists of Booleans into lists of Booleans, find a function v such that the computation

f(w) requires no more than v(w) additional heap cells [25]. By encoding a

Grail-level interpretation of the Hofmann/Jost type system, a smooth transition from

program analysis to program verification can be obtained.

3.2.1 The Syntax and Operational Semantics of Grail

The main characteristic of Grail is its dual identity: its (impure) call-by-value

functional semantics may be shown to coincide with an imperative interpretation of

the expansion of Grail programs into the Java Virtual Machine Language, provided

that some mild syntactic conditions are met [27]. Certificates expressed in the

program logic are obtained by computing in Isabelle/HOL some resource properties

of heap-manipulating Grail programs that were produced by compiling Camelot

programs. The formal syntax of Grail is shown in figure 3.2 [25] followed by a

table explaining symbols appearing in the syntax:

arg :: var | |
exp :: null

 | int
 | var
 |

 | :

 | .
 | .

i i

a s x null i
e r

i
x

prim op x x

new c t x

x t
x t y

∈ =
∈ =

 = 

=
 |

 | :
 | let in
 | ;
 | if then else
 | call

 | ()

c t
c t x

x e e
e e

x e e
f

x m a

=
=

i

◇

◇

 | ()c m a◇

Figure 3.2: The Syntax of Grail

Chapter 3

 39

Name Representation

x Variable

i Integer

m Method Name

c Class Name

f Function Name

(i.e. labels of basic blocks)

t (static) field names

op primitive operator: V=>V=>V

(i.e. arithmetic or comparison operator)

V Semantic category of values, Comprising integers,

references r, and the special symbol ⊥, absence of a

value

null Null Heap Reference

x.t Same as the non-static getfield instruction

x.t:=y Same as the non-static putfield instruction

c◊ t Same as the static getfield instruction

c◊ t:= x Same as the static putfield instruction

let x=e1 in e2 The evaluation of e1 returns an integer

or reference value on top of the JVM stack

e1 ; e2 Sequential composition

new c[t1 :=x1,..., tn:=xn] Create and initial an object of class c according to the

argument list

call f Function call (i.e. immediate jumps) without

arguments

c.m(ā) Static method invocation

x.m(ā) Instance method invocation

Table 3.1: Explanation of Grail’s Syntax

Chapter 3

 40

Operational semantics of Grail based on its functional interpretation are shown in

figure 3.3, with judgements in the form:

', (, ,)E h e h v p⇓

meaning that “in variable environment E and initial heap h, code e evaluates to the

value v, yielding the heap h’ and consuming p resources” [25]. Here “resources”

refers to a tuple of four counters: p clock callc invkc invkdpth= . Representation

of these four components is shown in table 3.2. The operational semantics and the

program logic employ two operators on resources, p ⊕ q and p ∪ q. For their effects

on the resources components, refer to table 3.3.

(NULL)
, null (, , 1 0 0 0)E h h null⇓

(INT)
, int (, , 1 0 0 0)E h i h i⇓

(VAR)
, var (, , 1 0 0 0)E h x h E x⇓

(PRIM)
, prim (, () (), 3 0 0 0)E h op x y h op E x E y⇓

Ref
(GETF) (Ref : heap reference of location l)

, . (, (). , 2 0 0 0)
E x l

l
E h x t h h l t

=
⇓

Ref
(PUTF)

, . : (. , 3 0 0 0)
E x l

E h x t y h l t E y
=

= ⇓   6 ⊥,

(GFST)
, (, (). , 2 0 0 0)E h c t h h c t⇓◇

(PFST)
, : (. , , 3 0 0 0)E h c t y h c t E y= ⇓   6◇ ⊥

{ }()
() (NEW)

, : (, : ,Ref , (1) 0 0 0)

(() returns a fresh location outside the domain of)

i i i i

l freshloc h

E h new c t x h l c t E x l n

freshloc h h

=
  = ⇓ = +    
6

Chapter 3

 41

1 1

1 2 1

true , (, ,)
(IFTRUE)

,if then else (, , 2 0 0 0)
E x E h e h v p

E h x e e h v p
= ⇓

⇓ ⊕

2 1

1 2 1

false , (, ,)
(IFFALSE)

,if then else (, , 2 0 0 0)
E x E h e h v p

E h x e e h v p
= ⇓

⇓ ⊕

()
1 1 1 2 2

1 2 2

, (, ,) : , (, ,)
(LET)

, let in (, , 1 0 0 0)
E h e h w p w E x w h e h v q

E h x e e h v p q
⇓ ≠ = ⇓

= ⇓ ⊕ ∪
⊥

()
1 1 1 2 2

1 2 2

, (, ,) , (, ,) (COMP)
, ; (, ,)

E h e h p E h e h v q
E h e e h v p q
⇓ ⇓

⇓ ∪
⊥

1

1

, () (, ,) (CALL)
, call (, , 1 0 0 0)

(, the function table, used to obtain function bodies from names)

E h snd FT f h v p
E h f h v p
FT

⇓
⇓ ⊕

()
()

1

1

 () , () (, ,)
(SINV)

, () (, , 2 0 1 1)

(, the method table, used to obtain method bodies from names)
(creates an appropriate environment)

newframe null fst MT c m a E h snd MT c m h v p

E h c m a h v a p

MT
newframe

⇓

⇓ + ⊕◇

()
()

1

1

 () , () (, ,)
(VINV)

, () (, , 4 0 1 1)

(retrieves the dynamic class name c
 associated to the object pointed to b

classOf E h x c newframe E x fst MT c m a E h snd MT c m h v p

E h x m a h v a p

classOf

⇓

⇓ + ⊕i

y)x

Figure 3.3: The Dynamic Semantics of Grail

Chapter 3

 42

Component Representation

clock a global abstract instruction counter

callc the number of function calls (jump instructions)

invkc the number of method invocations

invkdpth the maximal invocation depth

Table 3.2: Representation of Resource’s Four Components

Component Operator Implementation

clock ⊕ , ∪ point-wise addition

callc ⊕ , ∪ point-wise addition

invkc ⊕ , ∪ point-wise addition

invkdpth
⊕

∪

point-wise addition

pick the maximum

Table 3.3: Operations on Resource

Notice that instead of being explicitly recorded in the resource model, the size of

heap is deduced from |dom(h)| which represents the domain of the object heap.

3.2.2 The Program Logic

The MRG project employs the Proof-Carrying Code infrastructure which equips

Grail programs with certificates concerning their resource consumption. Certificates

contain a claim of resource usage together with a proof of the claim [12]. The proof

expressed in a program logic for Grail follows a custom logic of partial correctness.

Sequents are of the form:

:e PΓ �

which means that a Grail expression e∈expr is related to a specification P under

some set of assumptions Γ of the same form. The specification P denotes a predicate

which can constrain possible executions of e with respect to the dynamic semantic

Chapter 3

 43

pointed out above. Specifications can refer to the initial and final heaps of a

program expression, the initial environment, the resources consumed and the result

value [25]. The uniform judgement in the program logic is:

' ': . e E h h v p P E h h v pλ

which means that whenever the execution of e for initial heap h and environment E

terminated and delivers final heap h’, result v and resources p, P is satisfied, that is

that ()' ', , , implies E h e h v p P E h h v p⇓ . Figure 3.4 shows the concrete rules

of this logic. As we will see, besides rules for each form of Grail expression e∈expr,

two basic rules are provided as well.

() (),
VAX

:
e P

e P
∈Γ

Γ �
 ()

' ' ': . VCONSEQ
:

e P Ehh vp PEhh vp QEhh vp
e P

Γ ∀ →
Γ

�
�

()' ' VNULL
null : . 1 0 0 0Ehh vp h h v null pλΓ = ∧ = ∧ =�

()' ' VINT
int : . 1 0 0 0i Ehh vp h h v i pλΓ = ∧ = ∧ =�

()' ' VVAR
var : . 1 0 0 0x Ehh vp h h v E x pλΓ = ∧ = ∧ =�

()' ' VPRIM
prim : . 3 0 0 0op x y Ehh vp v op E x E y h h pλΓ = ∧ = ∧ =�

()' ' ' VGETF
. : . . Ref (). 2 0 0 0x t Ehh vp l E x l h h v h l t pλΓ ∃ = ∧ = ∧ = ∧ =�

()'

'

VPUTF
. : : . . Ref 3 0 0 0

 .

x t y Ehh vp l E x l p

h h l t E y v

λΓ = ∃ = ∧ = ∧

=   ∧ =⊥ 

�

6

() ()' ' VGETST
: . . 2 0 0 0c t Ehh vp h h v h c t pλΓ = ∧ = ∧ =� ◇

()' ' VPUTST
: . . 3 0 0 0c t Ehh vp h h c t E y v pλΓ =   ∧ =⊥ ∧ = � 6◇

Chapter 3

 44

()

{ }()

()
'

'

VNEW
new : : . . (1) 0 0 0

 , : Ref

i i

i i

c t x Ehh vp l l freshloc h p n

h h l c t E x v l

λ Γ = ∃ = ∧ = + 
 ∧ = = ∧ =  

�

6

()
()

1 1 2 2
' ' '

1 2

' '
1

' '
2

: :
if then else : . . 2 0 0 0

e P e P
x e e Ehh vp p p p

E x true PEhh vp

E x false P Ehh vp

λ
Γ Γ

Γ ∃ = ⊕ ∧

= → ∧

= → ∧

� �
�

()

()VIF

 E x true E x false= ∨ =

()
()()

1 1 2 2
'

1 2 1 2 1 1 1 1

'
2 1 2

1

: :
let in : . .

 :

 1 0 0 0

e P e P
x e e Ehh vp p p h w PEhh wp w

P E x w h h vp

p p

λ
Γ Γ

Γ = ∃ ∧ ≠⊥ ∧

= ∧

= ⊕

� �
�

()

()

2

VLET

p∪

()

()1 1 2 2
'

1 2 1 2 1 1 1 1
'

2 1 2 1 2

: : VCOMP
; : . .

e P e P
e e Ehh vp p p h PEhh p

P Eh h vp p p p

λ
Γ Γ

Γ ∃ ⊥ ∧

∧ = ∪

� �
�

(){ } () ()
' 'call , : . 1 1 0 0

VCALL
call :

f P snd FT f Ehh vp PEhh v p
f P
λΓ ⊕

Γ

∪ �
�

()(){ } () ()()
()

() ()

' ' '

' '

, : . .

 2+ 0 1 1
VSINV

:

c m a P snd MT c m Ehh vp E E newframe null fst MT c m a E

PE hh v a p

c m a P

λΓ ∀ =

→ ⊕

Γ

∪ �

�

◇

◇

()(){ }
()

()

()

' '

' '

' '

,

 : . .(

 (()))

 (, , , 4+ 0 1 1)

x m a P

snd MT c m Ehh vp E classOf E h x c

E newframe E x fst MT c m a E

E h h v a p

λ

Γ

∀ ∧

=

→ ⊕ ∈

∪ i �

() ()VVINV
:

P

x m a PΓ � i

Chapter 3

 45

()() : (,) VCUT
:

finite D D e P G D provable D G
G e P

⊆�
�

[]()()
[]() ()

 () . (),
VADAPTS

0 . () :

goodContext MST G finite G c m y MST m y null G

c m z MST m z null

∈

�

@

@

Figure 3.4: The Program Logic for Grail

The goodContext property requires that whenever a method invocation is associated

to its specification table entry in G, the method body satisfies the specification for

any arguments passed to the body via the formal parameters. [25] also proves

soundness and completeness of this program logic, which establishes a solid and

convincing basis for the usage of the logic.

3.3 Inference of Heap-Space Bounds

The Diamond type in Camelot, together with its resource-aware type system, allows

the heap usage of Camelot programs to be inferred. Next we use lfd_infer, the

practical implementation to understand the procedure of getting an inference for

heap-space usage.

3.3.1 Introduction of lfd_infer

lfd_infer is the implementation aiming for the static prediction of heap space usage

for first-order functional programs as proposed by M.Hofmann and S.Jost in 2003.

The process of type inference first sets up a set of linear inequalities over the

rational variables on the fly by reconstructing a typing derivation for a given

program. These equalities, together with a rather arbitrary objective function, form a

linear program, which is then fed to an external LP-solver where an optimal

solution for this linear programming problem is calculated. Making use of the

solution set, an annotated typing for each of the program’s functions is established,

as well as a linear bound on each function’s heap space consumption. Some major

features of this implementation are:

Chapter 3

 46

(1) All build-in types are assumed to be unboxed, i.e. heap free, including the string

type. This is not a bug although strings indeed use up heap-space. The reason for

that is in most cases the use of strings is merely providing a convenient way for

screen-printing. If heap space consumption of strings is a concern, they can be

treated as lists of characters, or alternatively, be restricted to a predefined length.

(2) For compatibility with Camelot, lfd_infer distinguishes a destructive- from a

read-only pattern match. The syntax is as:

match x with
| Cons(a, b, c) -> (* Read-only match *)
| Cons(a, b, c)@_ -> (* Destructive match, cell goes to freelist *)
| Cons(a, b, c)@d -> (* Destructive match, cell bound to d of t

…
…
… ype <> *)

Cons(a, b, c) (* Allocate heapcell from freelist *)
Cons(a, b, c)@_ (* Allocate heapcell from freelist *)
Cons(a, b, c)@d (* Use heapcell bound to d *)

Of course, there is only one match operation is allowed for each constructor among

the above possibilities. Furthermore, in this system, a node of a data structure on the

heap can only be destroyed and built anew, but it cannot be updated.

(3) lfd_infer allows programmers to enforce some annotations as they see fit. This

can be done using the enriched or annotated typing facility that it provides.

(4) Since modularity is inherent to the inference, lfd_infer supports partial inference

[28]. Any function, which is defined but not declared, i.e. there is no val-statement

corresponding to it, will be ignored in the inference. However, the inference will

fail if such functions are called by any other declared and defined function of the

program. On the contrary, any defined function is checked based on their given

declaration. If a function is undefined, then all the annotations related to it are

assumed to be zero, or accepted as given.

We have mentioned lfd_infer’s enriched typing above, which calculates resource

annotations for functions and is therefore able to provide programmers with helpful

information on resource assumption analysis. This annotated type is like this:

Chapter 3

 47

insert :1, int [(0) | (int, #,0)]
 [(0) | (int, #,0)],0;

list Nil Cons
list Nil Cons

→
→

where for each occurring type, all its constructors are listed, and for each

constructor, a number indicating the amount of heap cells that must be supplied for

each node contained in the input of that type is added. The first-hand information

from the annotated type is that at most how many heap cells are required at the

beginning for the sake of normally starting and executing a function, and that how

many heap cells will be returned after its execution. So, for example, the type above

says that a call to insert may allocate one heap cell during its execution, and do not

return any heap cell after executing.

On the other hand, lfd_infer has an obvious deficiency which was also admitted by

its creators. Leaving programmers to designate for each pattern match whether it is

destructive or not is a kind of burden for them, and is dangerous for programs. A

program might crash if a destructive pattern match is not the last access to that data.

Although there is an ongoing research aiming at this problem, programmers

currently still have to devote some attention on this problem when designing their

programs.

3.3.2 Further Discussion About Heap Space Usage

3.3.2.1 Heap Usage Problem Caused by Camelot’s Object-Oriented

Feature

As described earlier, the presence of mutable objects in object-oriented Camelot

provides in-place update [20]. However by allowing arbitrary object creation, the

unbounded heap-usage problem solved for datatypes recurs on this occasion.

Perhaps more seriously, invocating arbitrary Java code in Camelot programs might

lead to an unlimited heap space usage.

For the first problem, the first attempt to directly adapt the idea of diamonds seems

unrealistic, since it is hardly appropriate to represent every Java object uniformly by

Chapter 3

 48

an object of one class. So an abstract diamond is proposed instead, which represents

the heap storage but used by an arbitrary object. Any requirement is satisfied by

using new to supply one of these diamonds. But a problem of this approach is that

reclamation of such abstract diamonds would only correspond to making an object

available for garbage collection, rather than definitely being able to re-use the

storage. Even so, such a system might be able to give a measure of the total number

of objects created and the maximum number in active use simultaneously [20].

For the second problem, although there is some way to place a bound on the heap

space used by the new OO features within a Camelot program, external Java code

may use arbitrary amounts of heap. With respect to this problem, [29] proposes and

analyzes three approaches. The first is that only external classes which come with

proofs of bounded heap usage are allowed to be used. But constructing a

resource-bounded Java class library or inferring resource bounds for an existing

library would be massive work, even for the smaller class libraries used with mobile

devices. The second approach is to leave programmers or library creators to state

the resource usage of the external methods they produce. This requires extending

the trusted computing base in the sense of resources, but seems a more reasonable

solution [29]. The third is to only take account of resources consumed by Camelot

code. This suggestion seems somewhat unrealistic, as one could easily cheat by

using Java libraries to do some memory-consuming “dirty work” [29].

3.3.2.2 Heap Usage Problem Caused by Threads

The analysis of memory consumption of Camelot programs is based on the

consumption of memory by heap-allocated data structures. The present analysis of

Camelot programs is based on a single-threaded architecture. To assist with the

development of the thread management system in Camelot, analysis methods for

multiple threads’ memory usage need to be considered. Table 3.4 concludes

solutions for this problem proposed in [20].

Chapter 3

 49

Approach Description Strongpoint Shortcoming

Shared

free list

A single free

list of

storage is

shared across

all threads

Efficient memory usage Run-time penalty caused by

synchronization (an

overhead of locking and

unlocking the parent of the

field occurs when entering

and leaving a critical

section)

Private

free list

Each thread

separately

maintains its

own local

instance of

the free list

No requirement for access

to the free list to be

synchronized, therefore

time is saved

Memory use penalty:

There will be times when

one thread allocates

memory while another

thread has unused memory

on its local free list.

Hybrid

free list

Each thread

has a local

free list,

meanwhile, a

global free

list exits as

well

Reduce the overhead of

calls to access the

synchronized global free

list, while preventing

threads from keeping too

many unused memory cells

locally.

The analysis of this

approach is complicated.

Table 3.4: Solutions for the Heap Usage Problem of Multi-Threads

Camelot chooses the first scheme. In addition to it, a requirement is imposed to ease

the predictability of memory usage, which is that data structures in a multi-threaded

Camelot program are not shared across threads. This requirement means that the

space consumption of a multi-threaded Camelot program is obtained as the sum of

per-thread space allocation plus the space requirements of the threads themselves

[20].

Chapter 3

 50

3.4 Practical Work on the Inference of Heap-Space

Bounds

This section will use the lfd_infer to analyze the heap space usage of our game

program. Since functional objects allowed in Camelot are currently not yet

accounted for in lfd_infer, so we have to pick out some pure Camelot code and

deploy the experiment on them.

3.4.1 Verifying Correctness of the Inference Result

The Camelot code named simple.cmlt is quite simple:

let hd l = match l with [] -> 0 | (h::_) -> h

The inference result of the heap consumption is:

 hd : 0, list_1[0|int,#,0] -> int, 0;

which means that hd is a function taking as argument an integer list, and return an

integer after computation. There is no extra heap-cell required excepts for those

originally allocated to hold the input list.

Figure 5 shows all generated constraints which are used for inference.

Chapter 3

 51

Figure 3.5: simple.constraints: All constraints for Inference

The linear problem we pick out from it is:

Minimize: +4*u01 +4*u02 +2*x01 -1*y01 ;

Subject to:

hd__11_Val: -1*a02 +1*y01 <= 0 ; (1)

hd__11_M'2: +1*a02 -1*u02 -1*x01 <= 0 ; (2)

hd__10_Val: -1*a01 +1*y01 <= 0 ; (3)

hd__10_M'1: +1*a01 -1*u01 -1*x01 <= 0 ; (4)

a01, a02, u01, u02, x01, y01 >= 0

/*
 This file is an automatically generated lp for 'lp_solve'.
(simple.constraints)
 Contains 4 inequalties in 6 variables.
*/

/*
 hd : x01, list_1[u01|int,#,u02] -> int, y01;
*/

MIN: +4*u01 +4*u02 +2*x01 -1*y01 ;

hd__11_Val: -1*a02 +1*y01 <= 0 ;
hd__11_M'2: +1*a02 -1*u02 -1*x01 <= 0 ;
hd__10_Val: -1*a01 +1*y01 <= 0 ;
hd__10_M'1: +1*a01 -1*u01 -1*x01 <= 0 ;
a01 >= 0 ;
a02 >= 0 ;
u01 >= 0 ;
u02 >= 0 ;
x01 >= 0 ;
y01 >= 0 ;
a01 <= 10000 ;
a02 <= 10000 ;
u01 <= 10000 ;
u02 <= 10000 ;
x01 <= 10000 ;

Chapter 3

 52

(a01, a02, u01, u02, x01, y01 <= 1000 is the upper bound which are predefined by

the system)

Add (1) and (2) to remove a02, and the same to (3) and (4) to remove a01, we can

get:

Minimize: Z = +4*u01 +4*u02 +2*x01 -1*y01 ;

Subject to:

y01 – u02 – x01 ≤ 0

y01 – u01 – x01 ≤ 0

u01, u02, x01, y01 >= 0

Then we will use the Simplex Method introduced in Section 3.1 to find the optimal

solution for this problem.

Step 1. Introduce slack variables to the constraints and rewrite the objective

function in standard form.

-u02 – x01 + y01 + s01 = 0

-u01 – x01 + y01 + s02 = 0

4u01 + 4u02 + 2x01 – y01 – Z = 0

Step 2. Write down the initial tableau.

 u01 u02 x01 y01 s01 s02 Z Ans

Cons1 0 -1 -1 1 1 0 0 0

Cons2 -1 0 -1 1 0 1 0 0

Min 4 4 2 -1 0 0 1 0

Step 3. Select the pivot column:

For this example, the pivot column is y01-column.

Step 4. Select the pivot in the pivot column.

 u01 u02 x01 y01 s01 s02 Z Ans Ratio

Cons1 0 -1 -1 1 1 0 0 0 0/1=0

Cons2 -1 0 -1 1 0 1 0 0 0/1=0

Min 4 4 2 -1 0 0 1 0

Chapter 3

 53

So we pick up the 1 in the first row as the pivot.

Step 5. Use the pivot to clear the column in the normal manner.

 u01 u02 x01 y01 s01 s02 Z Ans

Cons1 0 -1 -1 1 1 0 0 0

Cons2 -1 1 0 0 -1 1 0 0

Min 4 3 1 0 1 0 1 0

Step 6. Go to step 3.

All the entries on the last row are positive, so we can get the solution now, which is

u01 = 0, u02 = 0, x01 = 0, y01 = 0, s01 = 0, s02 = 0, Z = 0

Put the values to their proper position in the structure:

 hd : x01, list_1[u01|int,#,u02] -> int, y01

Then we can get the result

 hd : 0, list_1[0|int,#,0] -> int, 0;

which is the same as the one lfd_infer computes.

3.4.2 Experiment Problem Report And Analysis

Since the whole Camelot code is quite large, for convenience, we separate them into

several parts based on datatypes they operate on, and then carry out the experiment

on each of these parts. During this period, some problems have been notified by

lfd_infer, but after analysis, we find out that most of them result from shortcomings

of lfd_infer itself. Next we will describe and analyze these problems.

Problem 1: LP For the Whole Program is Infeasible

Reason: Misuse of Destructive Pattern Match

This problem happens when lfd_infer tries to solve stringpairlist.cmlt which

collects all functions on the datatype stringpairlist, and stringintlist.cmlt which

collects all functions on the datatype stringintlist. Actual implementation can be

Chapter 3

 54

found in Appendix F. Take stringpairlist.cmlt for example, we finally discovered

that the problem is ascribed to the function:

 (:) (: in t) (: in t)
 (:) :

le t sh ow S tr in gP a irL ist l s tr in gp a ir lis t k n
sink strin g str ing

if k n
th en b eg in

=
<

 2 (,) -
 ^ " : " ^ ^ "

m a tch ssE lem en tA t l k w ith
P a ir key va lu e

le t s ink sink p la yer key
>

=
 : " ^ ^ "\ "

 (1)
 | 2 -

p ho ne va lue n
in sh ow S trin gP a irL ist l k n sin k

N on e sin k
+

>

en d
else s ink

And this function further calls the function:

 (:)
 4 - 2
 4 (, ,) -

let ssE lem entA t l stringpairlist k
m atch l w ith N il N one

C ons a b t

=
>

>
 0

 (- 1)

if k
then ssE lem entA t t k

>

 2 (,)else P air a b

which has LFD type:

ssE lem en tA t: 1 , s trin g p a irlis t[0 |s trin g ,s trin g ,# ,0] in t
 s tr in g s trin g p a ir[1 |s trin g ,s trin g ,0], 0 ;

→
→

This means that to execute function ssElementAt without running out of memory,

we need at least one free heap cell available before the function starts. This is due to

the possibility of executing the constructor 2 (,)Pair a b , which needs a heap cell to

hold the pair. On the other hand, since we don’t know values of parameters n and k

in advance, it is impossible to decide how often showStringPairList calls

ssElementAt and therefore how much memory showStringPairList will need. This

is the reason for LP being infeasible. Furthermore, instead of halting at this point,

lfd_infer continues computing heap usage for the remaining functions, so we still

Chapter 3

 55

obtain an LFD type for showStringPairList, even though it is wrong. (The LFD

type below says that showStringPairList doesn’t consume any memory, but this is

incorrect, since we need some space to store the input list.)

 showStringPairList: 0, stringpairlist[0|string,string,#,0] int int
 string string, 0;

→ →
→ →

The solution to this problem is to append “@_” to the pair constructor in

showStringPairList as follows (since we don’t need the pair returned by

ssElementAt again, we can throw it away):

 2 (,) @ _
m a tch ssE lem en tA t l k w ith

P a ir key va lu e → …

As a result, the program becomes feasible and corresponding correct LFD types are:

ssElementAt: 1, stringpairlist[0|string,string,#,0] int
 stringstringpair[1|string,string,0], 0;

 showStringPairList: 1, stringpairlist[0|string,string,#,0] int int

→
→

→ →
 string string, 1;→ →

The type for showStringPairList says that it needs at least one free heap cell before

it starts and leaves at least one free heap cell when it returns. This heap cell is used

up in the call to ssElementAt, but is recovered when the destructive match is

performed. And again this heap cell is used the next time that ssElementAt is

invoked. When we eventually return from showStringPairList, this heap cell will be

reclaimed to the freelist for later use by other functions, so we get the return

typestring, 1 .

Problem 2: Memory Leak

Reason: lfd_infer

In the lfd_infer manual [28], memory leak problem is explained as the loss of

references to heap cells. Actually, lfd_infer’s judgement for this problem is not

accurate. Our code is a proof of this. Following is a function in

Chapter 3

 56

objectlist.cmlt(Appendix F):

 (:)
 -
 (,)@_ -

let clearObjectList l objectlist
match l with Nil Nil
Cons h t clearObjectList t

=
>

>

lfd_infer gives a LFD type:

clearObjectList: 0, objectlist[0|obj[u07|int,string,int,int,string,u08],#,0]
 unit, 0;→

and then prints a message warning of a the memory leak with an inequality:

 clearObjectList_163_Ma2: -1 K1 +1 a69 -1 u06 -1 x03 <= 0 ; × × × ×

which means that the memory leak occurs in the branch of a destructive pattern

match on the second constructor of the matched type. We can see in this branch

there is a reference for a heap cell (represented by -1×K1 in the inequality) released

due to the destructive match. Since there is not a datatype constructor from that

point, lfd_infer falsely assumes that the heap cell pointed to by the released

reference has been lost, and therefore warns that a memory leak occurs. In fact,

there is no leak. clearObjectList works properly. The heap cell released by the

destructive pattern has been reclaimed and put in the free list (recall the definition

of “@_”). If we give a list of length n as input, there will be n extra heap cells put

on the free list when clearObjectList returns. The essential reason is that the LFD

type system is not strong enough to express this. Since clearObjectList returns a

unit type, the only possible return types for the function are things like:

unit, 0
unit, 1

unit, (1)n n ≥
#

Values appearing in LFD types have to be constants, and the best the LFD type

system can is to say that the return type of clearObjectList is unit, 0. The 0 will at

least be a correct bound for the amount of heap space obtained when we call

clearObjectList. To get a correct answer, we’d need a type like

Chapter 3

 57

unit, (where is the length of the input list)n n

But lfd_infer’s type system currently cannot express this. Therefore, the “memory

leak” in lfd_infer sometimes is not a memory leak. However, in order to pass the

inference of lfd_infer, we modify the code a little:
 ! | *
 ! | int* *int*int*

type objectlist Nil Cons of obj objectlist
type obj NullObject Object of string string

let c

=
=

 (:)
 -
 | (,)@_ -
 (,)

learObjectList l objectlist
match l with Nil Nil

Cons h t
Cons NullObject clearObjectList t

=
>

>

The modification seems artificial. Since constructor NullObject takes no space, this

function uses the same heap space as the original one. But the lfd_infer passes it,

first because the second Cons could subsequently gain the reference released by the

destructive pattern match, and second because the return type is objectlist rather

than unit. We use the same trick to solve the memory leak reported when we

analyse other programs.

Problem 3: Unbounded Heap Usage

Reason: lfd_infer;

When parsing stringpairlist.cmlt and stringintlist.cmlt, we get LFD types suck as the

following, taking function siElemenetAt in stringintlist.cmlt for example:

siElementAt: 10000, stringintlist[0|string,int,#,0] int
 stringintpair[10000|string,int,9999], 0;

→
→

This means that the heap space required by function siElemenetAt is unbounded

when it starts executing, as 10000 is the default highest value of the number of heap

cells available. From the view of linear programming, we can use the following

figure 3.6 to explain this unboundedness problem. As we can see, it is impossible

for the objective function to find a point of intersection with either constraint

inequality in the feasible region within a finite value. In this case, lfd_infer just

Chapter 3

 58

simply assumes that the consumption reaches the upper bound, and this is why we

see 10000 or 9999 in the LFD type. In order to obtain a finite solution, the

programmer has to use the options –olhs, -orhs, -odin, -odout provided by lfd_infer

to change the objective function himself. Figure 3.7 shows how this change works.

For our program, after using option –olhs 4, we can get a reasonable LFD type:

siElementAt: 1, stringintlist[0|string,int,#,0] int
 stringintpair[1|string,int,0], 0;

→
→

Although the problem is solved finally, the penalty for it is that programmers

themselves have to manually change the objective function so as to get a reasonable

solution. This obviously imposes a burden on the programmer.

Figure 3.6: An Unbounded Case in Linear Programming

Chapter 3

 59

Figure 3.7: Changed Linear Problem

3.4.3 Heap Consumption of This Project

Although our project implements a multi-threaded game system, constrained by the

capability of the inference tool, our experiment results are oriented to a single

thread. On the other hand, no thread in our program uses those pure Camelot

functions (without operations on objects) we mentioned here. So for this project,

heap space usage of pure Camelot codes for one thread is equal to it for

multi-threads. Next I will list the inference results of all the pure Camelot codes in

this project, which are separated by datatypes codes operate on.

Chapter 3

 60

stringpairlist:

: 0, [0 | , , #,0]
 [0 | , , #,0], 0;

: 0, [0 | , , #,1]

clearStringPairList stringpairlist string string
stringpairlist string string

copyStringPairList stringpairlist string string

→

 [0 | , , #,0]
 [0 | , , #,0], 0;

 : 0, [0 | , , #,0] , 0;

stringpairlist string string
stringpairlist string string

findNumber stringpairlist string string string string

get

→
→

→ →

 : 0, [0 | , , #,0] , 0;

 : 0, [0 | , , #,0]
 [0 | , , #,0], 0;

_ : 0,

Value stringpairlist string string string string

rmPlayer stringpairlist string string string
stringpairlist string string

same string str

→ →

→
→

, 0;

: 1, [0 | , , #,0] int int
 , 1;

 : 0, [0 | , , #,0] int, 0;

ing string bool

showStringPairList stringpairlist string string string
string

sizeof stringpairlist string string

ssElemen

→ →

→ → →
→

→

: 1, [0 | , , #,0] int
 [1| , ,0], 0;

 : 0, [0 | ,#,0] int , 0;

tAt stringpairlist string string
stringstringpair string string

stringAt stringlist string string

→
→

→ →

Chapter 3

 61

stringintlist:
: 0, int [0 | , int, #,0]

 int [0 | , int, #,0], 0;

: 1, int [0 | , int, #,0] int int

clearStringIntList string list string
string list string

concatStringIntList string list string string

→

→ → →
 , 1;

: 0, int [0 | , int, #,1]
 int [0 | , int, #,0]
 int [0 |

string

copyStringIntList string list string
string list string
string list strin

→

→
→ , int, #,0], 0;

 : 0, int [0 | , int, #,0] int, 0;

 : 0, int [0 | , int, #,0] int, 0;

: 0, int [0 | , int, #,0]

g

findRoom string list string string

lengthof string list string

removeFirst string list string

→ →

→

 int [0 | , int, #,0], 0;

_ : 0, , 0;

: 1, int [0 | , int, #,0] int int
 , 1;

: 1

string list string

same string string string bool

showStringIntList string list string string
string

siElementAt

→

→ →

→ → →
→

, int [0 | , int, #,0] int
 int [1| , int,0], 0;

_ _ int : 0, int , 0;

string list string
string pair string

string of string

→
→

→

Chapter 3

 62

objectlist:
 : 0, [0 | int, , int, int, , 0] int, 0;

 : 0, [0 | int, , int, int, , 0] int, 0;

: 0, [0 | [0 | int, , int, int, , 0], #,0]

ability obj string string

category obj string string

clearObjectList objectlist obj string string

→

→

 [0 | [0 | int, , int, int, , 0], #,0], 0;

: 1, [0 | [0 | int, , int, int, , 0], #, 0]
 int int , 1;

objectlist obj string string

concatObjectList objectlist obj string string
string string

c

→

→ → → →

: 0, [0 | [0 | int, , int, int, , 0], #,1]
 [0 | [0 | int, , int, int, , 0], #,0]
 [0 | [0 | int,

opyObjectList objectlist obj string string
objectlist obj string string
objectlist obj s

→
→ , int, int, , 0], #,0], 0;

 : 0, [0 | [0 | int, , int, int, , 0], #, 0] int
 int int [0 | int, , int, int, , 0], 0;

: 1, [0

tring string

findObject objectlist obj string string
obj string string

objElementAt objectlist

→
→ → →

| [0 | int, , int, int, , 0], #, 0] int
 [0 | int, , int, int, , 0], 0;

: 0, [0 | [0 | int, , int, int, , 0], #, 0]

obj string string
obj string string

objectListLength objectlist obj string string

→
→

 int, 0;

 : 0, [0 | int, , int, int, , 0] int, 0;

 : 0, [0 | int, , int, int, , 0] , 0;

 : 0, [0 | int, , int, int, , 0] , 0;

oid obj string string

oname obj string string string

owner obj string string string

remo

→

→

→

→

: 0, [0 | [0 | int, , int, int, , 0], #,0] int
 [0 | [0 | int, , int, int, , 0], #,0], 0;

: 0, [0 | [0 | int, , i

veObject objectlist obj string string
objectlist obj string string

showObjectList objectlist obj string

→
→

nt, int, , 0], #,0] int
 int , 0;

: 0, [0 | [0 | int, , int, int, , 0], #,0]
 int int ,

string
string string

showSortedObject objectlist obj string string
string string

→
→ → →

→ → → → 0;

_ _ int : 0, int , 0;string of string→

Chapter 3

 63

cardlist:
 : 0, [0 | int, , , int, int, int, , 0] int, 0;

: 0, [0 | [0 | int, , , int, int, int, , 0], #, 0]
 int [0 | int, ,

attAbility card string string string

cardElementAt cardlist card string string string
card string

→

→ → , int, int, int, , 0], 0;

: 0, [0 | [0 | int, , , int, int, int, , 0], #, 0]
 int, 0;

 : 0, [0 | int, , , int, int, int

string string

cardListLength cardlist card string string string

cardOwner card string string

→

, , 0] , 0;

 : 0, [0 | int, , , int, int, int, , 0] int, 0;

: 0, [0 | [0 | int, , , int, int, int, , 0], #, 0]

string string

cid card string string string

clearCardList cardlist card string string string
cardlist

→

→

→ [0 | [0 | int, , , int, int, int, , 0], #, 0], 0;

 : 0, [0 | int, , , int, int, int, , 0] , 0;

: 0, [0 | [0 | int, , , int, int, int,

card string string string

cname card string string string string

concatCardList cardlist card string string st

→

, 0], #, 0]
 int int , 0;

 : 0, [0 | int, , , int, int, int, , 0] int, 0;

: 0, [0 | [0 | int, , , int, int, int

ring
string string

condition card string string string

copyCardList cardlist card string string

→ → → →

→

, , 0], #,1]
 [0 | [0 | int, , , int, int, int, , 0], #, 0]
 [0 | [0 | int, , , int, int, int, , 0], #, 0], 0;

string
cardlist card string string string
cardlist card string string string

defAb

→
→

 : 0, [0 | int, , , int, int, int, , 0] int, 0;

 : 0, [0 | int, , , int, int, int, , 0] , 0;

 : 0, [0 | [0 | int, , , int, int, in

ility card string string string

figure card string string string string

findCard cardlist card string string

→

→

t, , 0], #, 0]
 int int int
 [0 | int, , , int, int, int, , 0], 0;

 : 0, [0 | [0 | int, , , int, int, int, , 0], #, 0]

string

card string string string

removeCard cardlist card string string string

→ → →
→

int
 [0 | [0 | int, , , int, int, int, , 0], #, 0], 0;

: 0, [0 | [0 | int, , , int, int, int, , 0], #, 0]

cardlist card string string string

showCardList cardlist card string string string

→
→

→ int int , 0;

_ _ int : 0, int , 0;

string string

string of string

→ → →

→

Chapter 3

 64

We have noticed that most of these functions require no extra heap cell before

executing, and do not return any heap cell after executing. So the heap space this

kind of functions need relies on the size of inputs. For example, the sizeof function

on stringpairlist, it doesn’t need any more heap cells during its execution except

for those allocated at the beginning to hold the input stringpairlist. So the number

of heap cells this function needs is equal to the length of the input list. It is the same

to other functions which have same annotation types as sizeof.

There is another case shown above:

: 1, [0 | , , #,0]
 int int , 1; (1)

: 1, [0 | , , #,0] int

showStringPairList stringpairlist string string
string string

ssElementAt stringpairlist string string

→ → → →

→
 [1| , ,0], 0; (2)stringstringpair string string→

The type for showStringPairList says that it needs at least one free heap cell before

starting and leaves at least one free cell on the heap when it returns. This heap cell

is used up in the call to ssElementAt, but is recovered when we do the destructive

match, and can be used again the next time we call ssElementAt. When we

eventually return from showStringPairList, this heap cell will be free for other

functions to use, so we get the return type string, 1. Moreover, showStringPairList

is the only function invoking ssElementAt. So the overall consumption of these

two functions is also equal to the size of inputs.

The third LFD type shown above is:

: 0, [0 | , , #,1]
 [0 | , , #,0]
 [0 | , , #,0], 0;

copyStringPairList stringpairlist string string
stringpairlist string string
stringpairlist string string

→
→

which means that executing copyStringPairList may allocate a number of extra

heap cells equal to the length of the input list, one free heap cell per Cons-node of

the input list. So in this case, the heap space consumption of the function is the

double of the input list’s length, which includes the space to hold the input list at the

very beginning.

Chapter 3

 65

Besides for what we have discussed above, another heap space consumption is the

heap space required for those codes involving objects. In section 3.3.2.1, we have

presented several solutions to this problem. Here we point out again just because it

also needs to be taken account of when we want to get an accurate result of the

overall heap space consumption of the program.

Furthermore, since different functions might be used in different circumstances,

which implies that their inputs might vary, so it’s not possible for us, in current

condition, to give an exact number of heap cells we require for our program. One of

the solutions to it is that we can impose more constraints on the inputs of some

functions to make possible that we can expect which function will have what kind

of input and how large of the input. In this case, providing an accurate result of heap

space consumption becomes possible. This idea also suggests a possibility of our

future work.

Chapter 4

 66

Chapter 4 Conclusion

4.1 Project Summary

This is a case study project of developing an on-line game application in the

Camelot programming language which has been compiled to run on an emulator for

a Java-enabled mobile phone. Three major issues have been considered in the

implementation:

- The system deploys a distributed architecture. Some services of the system

are provided by the Network. So peers in a virtual wireless environment need

to broadcast their queries to locate the service they require.

- The system is highly mobile and has a P2P nature. Room is the most

important mobile object of the system. Copies of it move from one peer to

another peer. This “move” is actually a clone action, which is achieved

through the direct Peer-to-Peer communication.

- The system provides environment actions which are local and synchronous.

Room is the critical section, each of which has a Token for exclusive actions

on it. Only the player owning the Token has the right to access resources and

perform the action he requested. Other players must wait and their requests

will be enqueued.

Programming a mobile device is very different from programming a

general-purpose workstation because of the resource limit on the former. For this

reason, developers can benefit from using programming languages, like Camelot, to

get precise guarantees of resource consumption which are inferred directly from the

application code. Camelot is an OCaml-like functional programming language

which compiles to a high-level analogue of Java byte code named Grail. Camelot is

equipped with a mechanism which enables programmers have precise control on

Chapter 4

 67

memory especially heap space usage. Moreover, although Camelot has been used in

a wide range, most implementations of it so far are small and aim for particular

problems. The implementation of this project faces to a set of various problems.

Thus, it is a good opportunity to help test and improve the compiler of Camelot.

Some improvements have been made to the compiler during this period are:

- Added new datatypes;

- Fixed a parsing problem related to the class name in Camelot;

- Fixed a problem caused by class inheritance;

- Allowed datatypes contain objects;

- Added the isnull construct;

- Released the constraint on variable names;

- Enabled the compiler to work on Windows system.

The Goal of the Mobile Resource Guarantees (MRG) project is to endow mobile

code with certificate of bounded resource consumption. These certifications contain

a claim of resource usage together with a proof of the claim. The proof is expressed

in the program logic we mentioned in section 3.2.2, and the claim of resource usage

can be obtained by the use of lfd_infer, an implementation of static prediction of

heap space usage for first-order functional programs. This project uses this tool to

infer the heap consumption of pure Camelot codes in our game. However, lfd_infer

has its shortcomings which partly make effects on the accuracy of the result. These

shortcomings are:

- Functional objects as allowed in Camelot are currently not accounted for.

Therefore, we only perform inference on the Camelot code without objects.

- The term “memory leak” is not accurate in lfd_infer. We have to make some

artificial things in order to pass the inference, and these introduce the

accuracy of the result about the heap usage.

- Sometimes programmers are required to adjust objective functions created by

lfd_infer themselves so as to get reasonable solutions to their functions.

Chapter 4

 68

4.2 Further Work

As for the further work, not only on the game itself, but also on the analysis on

resource consumption of the game, major suggestions are:

(1) Game Interface. The user interface of the current game is quite simple. For a

game which hopes to attract its players, the user interface is a critical part. J2ME

provides a specific user interface package which can ease our work in the future.

(2) Game Security. [17] proposes a Wide Mouthed Frog algorithm for this problem

based on the SSL protocol.

Figure 4.1 the Wide Mouthed Frog Algorithm [17]

The figure above shows the details of this algorithm to establish a secure connection

between peer A and peer B. First peer A creates the key KAB he wants to use to talk

with B, then sends this information through a secure connection to the Server using

his session key KAS. The Server forwards the information directly to B using their

session key KBS. Now that B has the session key KAB, A can encrypt message M

using private session key KAB and send it to B. Now that peer A and B have

established their private session key they can have secure communication without

relaying to the Server anymore.

(3) The program logic. The program logic is used to assert resource-related

properties of Java bytecode programs. Currently, we can get the inference of heap

space usage for our program (those pure Camelot codes in the program), which

forms part of the certification. It is nevertheless worthwhile to experiment with

B

S

A

[KAB]

[KAB]

[M

KB

KA

KA

Protocol Narration:
1. A S:

A,KAS[B,KAB]
2. S B: KBS[A,KAB]
3. A B: KAB[M]

M created
KAB

Chapter 4

 69

another part of the certification, the proof, at the bytecode level. Moreover, using

the ‘raw’ proof rules at the bytecode level will enable proofs to be given that are not

possible via the high-level type system - for example, it may be possible to prove

tighter resource bounds this way. This experimentation work can be carried out

using the Isabelle interactive theorem prover.

Appendix A

 70

Appendix A ML Family Evolution Tree

LISP

ISWIM

ALGOL

PASCA

CLU

ML STANFORD

MOSCO
W

STANDARD
ML

HOP LAZ
Y

SATHE MICRO
ML

C++

ML-LINDA ANU
ML

CAM

SKEL-M EXTENDE
D

CAMELO

ALGOL

Standard ML has also influenced following languages

STANDARD
ML

ML ML POLY/M SML2

MOSCO
W

PAR
A

STANDARD
ML/

SKEL-M SML9

SML2C ML-LE CONCURRE
NT

POPLOG/M

EDINBURGH
STANDARD

Appendix B

 71

Appendix B The Syntax of Camelot

The terms tycoon, con, fname, and var refer to type constructors, constructors,

function names and variable names respectively. The term tyvar refers to a type

variable, which is a name beginning with a single quote.

()1

1

 ::

 ::

sec :: type var var

 :: * * |

n

n

program typedecseq valdecseq funimplseq

typedecseq typedec typedecseq

type ty ty tycon conbind

conbind con of ty ty conbind

=

=

= … =

= …

 | ! | con conbind

 :: int
 char
 bool
 float
 string

ty =

 unit
 byte
 long

 array

tycar
ty

1

 ::

 ()n

tyseq tycon
Ty ty

Ty Ty ty higer order type
=

→…→ → −

 ::
 :: val :

 val :

valdecseq valdec valdecseq
valdec var ty

fname Ty

=

=

 ::

 :: let rec

funimplseq funimpl funimplseq

funimpl fundecseq

=

=

Appendix B

 72

 :: and
 :: var exp

fundecseq fundec fundecseq
fundec fname seq r

=

= =

1

exp ::
 var

 exp exp

n

r const

fname
fname r r

=

…

 if exp then exp else exp
 let exp in exp
 match exp with
 free var

r r r
pat r r

r match
=

 (exp)r

()
()

1

1

 :: |

 :: , , exp

 , , @ exp

 ::

n

n

match mrule match

mrule con pat pat r

con pat pat pat r

pat vra

=

= … ⇒

… ⇒

=
 _

In some contexts the symbol _ can be used instead of a variable name.

This feature can be used to discard unwanted values.

Appendix C

 73

Appendix C Camelot’s Built-in Funtions

There are some built-in functions provide by Camelot. The names of most of these

are self-explanatory.

int_of_float: float -> int
float_of_int : int -> float
int_of_string: string -> int
string_of_int: int -> string
float_of_string: string -> float
string_of_float: float string
print_int:

→
 int unit

print_int_newline: int unit
print_float: float unit
print_float_newline: float unit
print_char: char unit
print_char_newline: char unit
print_s

→
→
→
→
→
→

tring: string unit
print_string_newline: string unit
print_newline: unit unit
same_string: string string bool

(* Array operations *)
empty: int α

→
→

→
→ →

→ → array
get: array int
set: array int unit
arraylength: array int

α
α α
α
α

→ →
→ →
→

Appendix D

 74

Appendix D.1 The Map of The Game

The game consists of a series of game levels. Each level is composed of a start area,

a certain number of standard rooms, and a special room which can hold only one

player at a time.

Level
R1

R2

R3

R4

S1

Start Area

Level
R1

R2

R3 R4

S2

Start Area

R5

Level

Start Area

R2

R6R3

R4

R1 R5

S3

Appendix D

 75

Appendix D.2 Actions in The Game

This game allows actions:

- Observe: observe the current room’s information;

- Use: use personal objects, points of some parameters can be increased;

- Take Room Object: take an object from the current room;

- Take Room Weapon: take an weapon from the current room;

- Talk: talk to a player inside the same room;

- Fight: fight with a player inside the same room;

- Change Room: leave the current room and enter another room;

- Check My Weapons, Check My Objects, Check My Points: check the

player’s information.

These actions can be divided into following three categories:

Self Actions: Local & Asynchronous

Environmental Action: Local & Synchronous

Interactive Action: P2P & Asynchronous

Action Local P2P Synchronou
s

Asynchronou
s

To observe X X
To use Personal obj. X X

Room Objects X X To take
Room Weapons X X
My Objects X X
My Weapons X X

To Check

My Points X X
To talk Players X X
To fight Players X X
To change room X X

Appendix D

 76

Appendix D.3 The Categories of Objects

Objects of the game are divided into several categories based on the parameter they
have effect on.

Categories Parameters affected

Category 1 Health Points

Category 2 Strength

Category 3 Agility

Category 4 Cash

Category 5 Health Points & Strength

Category 6 Strength & Agility

Category 7 Health & Agility

Appendix D

 77

Appendix D.4 Self-Defined Datatypes

 ! | *
 ! 2 | 2 *
 int ! 3 | 3 * int * int
 ! 4 |

type objectlist Nil Cons of obj objectlist
type cardlist Nil Cons of card cardlist
type string list Nil Cons of string string list
type stringpairlist Nil

=
=
=
= 4 * *

 int 1 *int
 2 *
 ! 5 | 5 *

Cons of string string stringpairlist
type string pair Pair of string
type stringstringpair Pair of string string
type stringlist Nil Cons of string stringlist

type obj Object

=
=

=

= int* *int*int*
 int* * *int*int*int*

of string string
type card Card of string string string=

Note that the object element and the weapon element of the game are defined as

datatypes, rather than classes.

Appendix D

 78

Appendix D.5 E-R Diagram Of the Database

This is the E-R diagram for the database used on the Server side.

connect_from connect_to

object

weapon

player

phone

health

strength

agility

cash

oid

password

online

pname

oname category ability

cid cname att_ability def_ability

room

number

tag

own_weapon

owned

owned

own_obj

exit

obj_loc

obj_loc

obj_loc

Appendix E

 79

Appendix E Pure Camelot Code in the Game

Declarations of functions here are the very original ones, so they still have problems

mentioned in chapter 3. Refer to chapter 3 to find how to modify them.

Stringpairlist.cmlt

 ! 4 | 4 * *
 ! 2 | 2 *
 ! 5 | 5 *

type stringpairlist Nil Cons of string string stringpairlist
type stringstringpair None Pair of string string
type stringlist Nil Cons of string stringlist

=
=

=

 (:)
 4 2
 | 4 (, ,) 0

let ssElementAt l stringpairlist k
match l with Nil None

Cons a b t if k

=
→

→ >
 (-1)

 2 (,)
then ssElementAt t k
else Pair a b

 (:)
 4 0
 | 4 (, ,) 1 ()

let sizeof l stringpairlist
match l with Nil

Cons a b t sizeof t

=
→

→ +

 (:) (:) :
 4 4
 | 4(, ,)

let rmPlayer l stringpairlist pname string stringpairlist
match l with Nil Nil

Cons a b t if a pname

=
→

→ =

then t
else rmPlayer t pname

 (:) (:) :
 4 ""
 | 4 (, ,)

let findNumber l stringpairlist pname string string
match l with Nil

Cons a b t if a pname

=
→

→ =

then b
else findNumber t pname

 (1:) (2 :)
 1 4 2
 | 4 (, ,) 2 4 (, , 2)

let copyStringPairList l stringpairlist l stringpairlist
match l with Nil l

Cons a b t let l Cons a b l

=
→

→ =
 2 in copyStringPairList t l

Appendix E

 80

 (:) (: int) (: int) (sin :) :

let showStringPairList l stringpairlist k n k string string
if k n
then begin

match ssElementAt l k wi

=
<

 2 (,)
 sin sin ^ " : " ^ ^ " : " ^ ^ "\ "

th
Pair key value

let k k player key phone value n
in showString

→
=

 (1) sin
 | 2 sin

 sin

PairList l k n k
None k

end
else k

+
→

 (:) (:)
 4 " "
 | 4 (, ,)

let getValue l stringpairlist key string
match l with Nil

Cons a b t if a key

=
→

→ =

then b
else getValue t key

 (:) (: int)
 5 - " "
 | 5(,) 0

let stringAt l stringlist k
match l with Nil

Cons h t if k

=
>

→ >
 (-1)

then stringAt t k
else h

 (:)
 4 ()
 | 4 (, ,)@_

let clearStringPairList l stringpairlist
match l with Nil

Cons a b t clearStringPairList t

=
→

→

stringintlist.cmlt

 int ! 3 | 3 * int * int
 int ! 1 | 1 *int

type string list Nil Cons of string string list
type string pair None Pair of string

=
=

 (: int)
 3 1
 | 3 (, ,) 0

let siElementAt l string list k
match l with Nil None

Cons a b t if k

=
→

→ >
 (-1)

 1(,)
then siElementAt t k
else Pair a b

 (: int)
 3 0
 | 3 (, ,) 1

let lengthof l string list
match l with Nil

Cons a b t lengthof t

=
→

→ +

Appendix E

 81

 (: int)
 3 3
 | 3 (, ,)

let removeFirst l string list
match l with Nil Nil

Cons a b t t

=
→

→

 (: int) (:) : int
 3 0
 | 3 (, ,)

let findRoom l string list direction string
match l with Nil

Cons a b t if a direction

=
→

→ =

then b
else findRoom t direction

 (: int) (: int) (: int) (sin :) :

 1(,)@_

let concatStringIntList l string list k n k string string
if k n
then match siElementAt l k

with Pair key value

=
<

→
 sin sin ^ ^ " | " ^ (_ _ int) ^ " | "

 (1) sin
 | 1 sin

let k k key string of value
in concatStringIntList l k n k

None

=
+

→
 sin

k
else k

 (1 : int) (2 : int)
 1 3 2
 | 3 (, ,) 2 3(, , 2)

let copyStringIntList l string list l string list
match l with Nil l

Cons a b t let l Cons a b l

=
→

→ =
 2in copyStringIntList t l

 (: int) (: int) (: int) (sin :) :

let showStringIntList l string list k n k string string
if k n
then begin

match siElementAt l k with

=
<

 1 (,)
 sin sin ^ ^ ": " ^ (_ _ int) ^ "\ "
 (1

Pair key value
let k k key string of value n
in showStringIntList l k

→
=

+) sin
 | 1 sin

 sin

n k
None k

end
else k

→

 (: int)
 3 ()
 | 3 (, ,)

let clearStringIntList l string list
match l with Nil

Cons a b t clearStringIntList t

=
→

→

cardlist.cmlt (At the very beginning, we used “card” to name “weapon”)

Appendix E

 82

 ! 2 | 2 *
 ! | int* * *int*int*int*

type cardlist Nil Cons of weapon weaponlist
type card NullWeapon Weapon of string string string

=
=

 (, _, _, _, _, _, _)
 | 0

 (_, , _, _, _, _, _)
 |

let cid w match w with Card id id
NullCard

let cname w match w with Card name name
Nu

= →
→

= →
" "

 (_, _, , _, _, _, _)
 | " "

 (_, _,

llCard

let figure w match w with Card fpath fpath
NullCard

let attAbility w match w with Weapon

→

= →
→

= _, , _, _, _)
 | 0

 (_, _, _, _, , _, _)
 |

attak attak
NullWeapon

let defAbility w match w with Card defence defence
Nul

→
→

= →
0

 (_, _, _, _, _, , _)
 | 0

 (_, _, _, _, _, _,)

lCard

let condition w match w with Card cond cond
NullCard

let cardOwner w match w with Card owner owner

→

= →
→

= →
 | " "NullCard →

 (:)
 2
 | 2 (,) 0

let cardElementAt l cardlist k
match l with Nil NullCard

Cons h t if k

=
→

→ >
 (-1)

then cardElementAt t k
else h

 (:)
 2 0
 | 2 (,) 1

let cardListLength l cardlist
match l with Nil

Cons h t cardListLength t

=
→

→ +

Appendix E

 83

 (:) (: int) (: int) (: int) :

let findCard l cardlist id k n card
if k n
then begin

let weapon cardElementAt l k
in

=
<

=

 ()

 (1)

if id cid weapon
then weapon
else findCard l id k n

end
else let weapon NullCard

in weapon

=

+

=

 (:) (: int) (: int) (sin :)

 sin sin ^ (_ _ int (

let concatCardList l cardlist k n k string
if k n
then let cardIns cardElementAt l k

in let k k string of

=
<

=
=)) ^ " | " ^ () ^ " | "

 ^ () ^ " | " ^ (_ _ int ()) ^ " | "

cid cardIns cname cardIns
figure cardIns string of attAbility cardIns

 ^ (_ _ int ()) ^ " | "
 ^ (_ _ int ()) ^ " | "
 (1) sin

string of defAbility cardIns
string of condition cardIns

in concatCardList l k n k+
 sin else k

 (1 :) (2 :)
 1 2 2
 | 2 (,) 2 2(, 2)

let copyCardList l cardlist l cardlist
match l with Nil l

Cons a t let l Cons a l
in copy

=
→

→ =
 2 CardList t l

 (:) (: int) (: int) (sin :) :

let showCardList l cardlist k n k string string
if k n
then begin

let cardIns cardElementAt l k

=
<

=
 sin sin ^ () ^ ": - "

 ^ (_ _ int ())

in let k k cname cardIns Attack Ability
string of attAbility cardIns
= >

 ^ "; - "
 ^ (_ _ int ()) ^ "\ "
 (1) sin

Defend Ability
string of defAbility cardIns n

in showCardList l k n k
end

>

+

 sinelse k

 (:) 2 ()
 | 2 (,)@_
let clearCardList l cardlist match l with Nil

Cons h t clearCardList t
= →

→

Appendix E

 84

 (:) (: int) :
 2 - 2
 | 2 (,)@_

let removeCard l cardlist id cardlist
match l with Nil Nil

Cons h t
if cid h id

=
>

→
=

 2(,)
 2 (,)

then Cons NullCard t
else Cons h removeCard t id

objectlist.cmlt

 ! | *
 ! | int* *int*int*

type objectlist Nil Cons of obj objectlist
type obj NullObject Object of string string

=
=

 (, _, _, _, _)
 | 0

 (_, , _, _, _)
 |

let oid o match o with Object id id
NullObject

let oname o match o with Object name name
Null

= →
→

= →
" "

 (_, _, , _, _)
 | 0

 (_, _, _, , _)

Object

let category o match o with Object cat cat
NullObject

let ability o match o with Object abi abi

→

= →
→

= →
 | 0

 (_, _, _, _,)
 | " "

NullObject

let owner o match o with Object own own
NullObject

→

= →
→

 (:)

 | (,) 0

let objElementAt l objectlist k
match l with Nil NullObject

Cons h t if k

=
→

→ >
 (-1)

then objElementAt t k
else h

 (:)
 0
 | (,) 1

let objectListLength l objectlist
match l with Nil

Cons h t objectListLength t

=
→

→ +

 (:)
 -
 | (,)

let clearObjectList l objectlist
match l with Nil Nil

Cons h t clearObjectList t

=
>

→

Appendix E

 85

 (:) (: int) :

 | (,)@_

let removeObject l objectlist id objectlist
match l with Nil Nil

Cons h t
if oid h id

=
→

→
=

 _
 (,)

then let clearObject h in t
else Cons h removeObject t id

=

 (:) (: int) (: int) (: int) :

let findObject l objectlist id k n obj
if k n
then

let objxt objElementAt l k
in

if i

=
<

=

 ()

 (1)

d oid objxt
then objxt
else findObject l id k n

else let objxt NullObject
in objxt

=

+
=

 (:) (: int) (: int) (sin :)

 sin sin ^ (_ _ i

let concatObjectList l objectlist k n k string
if k n
then let objxtIns objElementAt l k
in let k k string of

=
<

=
= nt ()) ^ " | "

 ^ () ^ " | " ^ (_ _ int ()) ^ " | "
 ^ (_ _ int ()

oid objxtIns
oname objxtIns string of category objxtIns
string of ability objxtIns) ^ " | "

 (1) sin
 sin

in concatObjectList l k n k
else k

+

 (1 :) (2 :)
 1 2
 | (,) 2 (, 2)

let copyObjectList l objectlist l objectlist
match l with Nil l

Cons a t let l Cons a l

=
→

→ =
 2in copyObjectList t l

Appendix E

 86

 (:) (: int) (: int) (sin :)

 sin sin ^ " "

let showSortedObject l objectlist k n k string
if k n
then let objxtIns objElementAt l k

in let k k OBJECTS

=
<

=
=

 ^ () ^ ": - "
 ^ (_ _ int ())
 ^ " - " ^

oname objxtIns category
string of category objxtIns
ability

>

> (_ _ int ())
 ^ "\ \ "
 (1) sin
 sin

string of ability objxtIns
n n

in showSortedObject l k n k
else k

+

 (:) (: int) (: int) (sin :) :

let showObjectList l objectlist k n k string string
if k n
then begin

let objxtIns objElementAt l k

=
<

=
 sin sin ^ () ^ ": - "

 ^ (_ _ int ())

in let k k oname objxtIns category
string of category objxtIns

= >

 ^ "; - " ^ (_ _ int ()) ^ "\ "
 (1) sin

 sin

Ability string of ability objxtIns n
in showObjectList l k n k

end
else k

>
+

Bibliography

 87

Bibliography

[1] Surupa Biswas, Matthew Simpson, Rajeev Barua. Memory Overflow

Protection for Embedded Systems using Run-time Checks, Reuse and

Compression. CASES”04: 280-291, September 22-25, 2004

[2] Wind River. High Availability Design for Embedded Systems.

Http://www.windriver.com/whitepapers/high_availability_design.html

[3] George V.Neville-Neil. Programming Without A Net. ACM Queue:

Tomorrow’s Computing Today, 1(2): 16-23, April 2003

[4] Motorola. M68000 User’s Manual. Prentice Hall, Englewood Cliffs, NJ

[5] Intel i960Sx 32-bit Microprocessor. Intel Corporation.

http://www.intel.com/design/i960/documentation/docs_sx.htm.

[6] MSP430 Ultra-Low-Power MSUs. Texas Instruments, 2004.

http://focus.ti.com/lit/ml/slab034g/slab034g.pdf

[7] Michael Durrant. Running Linux on low cost, low power MMU-less

processors. August 2000.

http://www.linuxdevices.com/articles/AT6245686197.html

[8] George C. Necula, Peter Lee. Safe, Untrusted Agents using Proof-Carrying

Code. In LNCS 1419: Special Issue on Mobile Agent Security. Springer, 1998.

Bibliography

 88

[9] George C. Necula, Peter Lee. Safe Kernel extensions without run-time

checking. In Proc. 2nd USENIX Symp. On Operating System Design and Impl.,

pages 229-243, 1996

[10] George C. Necula. Proof-Carrying Code. In Proc. 24th ACM Symp. On

Principles of Prog. Lang., pages 106-119, New York, Jan. 1997. ACM Press.

[11] Andrew W. Appel. Foundational Proof-Carrying Code. In LICS ’01, 16th

Annual IEEE Symposium Logic in Computer Science, pages 1-10, June 16,

2001.

[12] David Aspinall, Stephen Gilmore, Martin Hofmann, Donald Sannella, and

Ian Stark. Mobile Resource Guarantees for Smart Devices. In Construction

and Analysis of Safe, Secure, and Interoperable Smart Devices: Proceedings

of the International Workshop CASSIS 2004, Springer-Verlag, No. 3362,

pages 1-26, 2005.

[13] MRG Final Report. 30th June 2005.

http://groups.inf.ed.ac.uk/mrg/project-info/final-report.pdf.

[14] Kenneth MacKenzie and Nicholas Wolverson. Camelot and Grail:

resource-aware functional programming on the JVM. In Trends in

Functional Programing, Intellect,Vol. 4, pages 29-46, 2004.

[15] Lennart Beringer, Kenneth MacKenzie and Ian Stark. Grail: a Functional

Form for Imperative Mobile Code. In Foundations of Global Computing:

Proceedings of the 2nd EATCS Workshop, Elsevier, No. 85.1, June 2003.

Bibliography

 89

[16] MRG Report: Information Society Technologies (IST) Programme, Annex1 –

“Description of Work”. October 2004.
 http://groups.inf.ed.ac.uk/mrg/project-info/contract-new.pdf

[17] C. Caragiuli, D. Piazza, I.Mura, C. Chesta, G. Previti and M. Di Florio. D24

Specification in UML of Case studies. In Design Environments for Global

ApplicationS, DEGAS IST-2001-32072, pages 6-12, 17-21, 34-61, 31

December 2002.

[18] Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Main_Page

[19] Xavier Leroy. The Objective Caml system release 3.08 Document and User’s

manual. July 13, 2004. http://caml.inria.fr/pub/docs/manual-ocaml/index.html

[20] S. Gilmore, K.MacKenzie, and N. Wolverson. Extending Resource-Bounded

Functional Programming Languages with mutable state and concurrency. In

Parallel and Distributed Computing Practices, pages 1 – 19, 2005.

[21] Hans-Wolfgang Loidl and Kenneth MacKenzie. A Gentle Introduction to

Camelot. LFCS, Univ of Edinburgh & Inst for Informatics, LMU Univ

Munich, pages 1 – 36, September 2004.

[22] Kenneth MacKenzie. An Overview of Camelot. LFCS, Univ of Edinburgh,

pages 1 – 11, 3rd July 2003.

[22] Lennart Beringer, Martin Hofmann, Alberto Momigliano and Olha

Shkaravska. Towards certificate generation for linear heap consumption. In

Proceedings of ICALP/LICS Workshop on Logics for Resources, Processes,

and Programs (LRPP2004), pages 1 – 12, July 2004.

Bibliography

 90

[23] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for

First-order Functional Programs. In Proceedings of the 30th ACM Symposium

on Principles of Programming Languages, ACM Press, New York, Vol. 38,

No. 1, pages 185-197, January 2003.

[24] Srinath, L. S. Linear Programming: Principles and Applications (2nd Edition)

book

[25] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl

and Alberto Momigliano. A program Logic for Resource Verification. In

Proceedings of 17th International Conference on Theorem Proving in Higher

Order Logics (TPHOLs2004), Springer-Verlag LNCS, Heidelberg, Vol. 3223,

pages 34-49, September 2004.

[26] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for

First-order Functional Programs. In Proceedings of the 30th ACM

Symposium on Principles of Programming Languages, ACM Press, New

York, Vol. 38, No. 1, pages 185-197, January 2003.

[27] Lennart Beringer, Martin Hofmann, Alberto Momigliano and Olha

Shkaravska. Towards Certificate Generation For Linear Heap Consumption.

In Proceedings of ICALP/LICS Workshop on Logics for Resources,

Processes, and Programs (LRPP2004), July 2004.

[28] Steffen Jost. lfd_infer: an Implementation of a Static Inference on Heap

Space Usage. Inst for Informatics, LMU Univ Munich

[29] Nicholas Wolverson and Kenneth MacKenzie. O’Camelot: Adding Objects to

Bibliography

 91

a Resource Aware Functional Language. In Trends in Functional Programing,

Intellect, Vol. 4, pages 47-62, 2004.

