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Abstract

A wide variety of computer tools are based on graphs. In many modern applications, graphs
also play an important role in the user interfaces of the tools. Although such tools, in a founda-
tional sense, are based on the mathematical graph concept, it is frequently the case that a richer
and more practical graph concept is needed for user interface purposes. The richness comes from
several sources, but the variation in the ways the edges are rendered is of particular importance.
In this paper we will demonstrate that a variety of relationships among nodes (one-to-one through
many-to-many) can be understood as composite edges, the parts of which are particular kinds of
subgraphs of the overall graph. We will also demonstrate how composite edges can be structured
and managed in terms of two design patterns known from the area of object-oriented design. The
paper is organized in two parts, the first of which lays the mathematical foundation of the latter.

1 Introduction and Motivation

Graphs play an important role in many different computer usages. Flow charts, state machines, entity
relationship diagrams, call trees, and inheritance hierarchies are just a few examples of graphs used in
the area of computer science. Similar examples could be drawn from a wide variety of other domains.

More or less specialized graph manipulation facilities are part of a great number of modern computer

tools. One of the main ideas behind the work in this paper is to envisggmearic graph processing

tool, which can be used whenever there is a need to deal with graphs on a computer. A similar idea has
found widespread use in the area of text processing, where Emacs [10, 11] is widely used for nearly
any kind of plain text manipulation on UNIX systems.

Emacs is indeed a successful example of a generic text editing tool. In this work we present the key
ideas behind Gingér5], an interactive graph processing tool which has been designed with some
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inspiration from Emacs. The development of the Ginger prototype is the experimental foundation of
the ideas presented in this paper.

It is not straightforward to design a generic graph processing tool which can be used whenever the
need of manipulating a graph exists. It is not the ambition of this paper to come up with a complete
design of such a tool, but we think our contributions can help solve part of the problem.

The following aspects seem to be important for a generic graph processing tool:

¢ Internal graph conceptualization: Support of an open-ended set of graph concepts, including
node and edge concepts.

e External graph conceptualization Flexible mechanisms to support variations in the visual
appearance of nodes and edges on the screen and other output media.

¢ Algorithmic extensibility : Extensible functionality at the level of graph algorithms.

e Standard interfacing: Well-developed interfaces both towards the human user (interactive
interface) and towards other programs (external graph representation, programmatic interface)
which have the need to present and manipulate information represented as a graph.

Although the plain graph concepts are simple and straightforward, there exists a great number of

variations of graph concepts, which necessarily have a profound influence on the supporting computer

tools: Directed and undirected graphs (cyclic and acyclic), weighted graphs, and hypergraphs are

all examples of such variations. Moreover and even more important, it seems to be the case that

specialized graph concepts are created, depending on the context of use. As examples of the latter
we may mention layered graphs (graphs in which nodes are graphs) and hypertext graphs (graphs in
which edges are anchored somehow in the nodes interior).

It would be attractive to support a graph concept (including node and edge concepts) which can be
specialized to subsume the examples from above, and others as well. Concept formation, along the
lines of object-oriented modelling, seems to be well-suited for this purpose. This has, indeed, been
proposed by several other authors in the area [4, 7].

The visual properties of graphs cannot be underestimated. It is undoubtedly fair to say that the ba-
sic appeal of graphs stems from the traditional, visual presentation of a graph in terms of circles or
rectangles representing nodes, and lines or arrows representing edges. The mathematical graph model
serves as the foundation, but graphs are most often identified with their visual presentation. In partic-
ular, this is true when it comes to the more practical applications of graphs as supported by computer
tools.

The number of variations of different renderings of nodes and edges are overwhelming. Figure 1
shows some typical examples drawn from the area of software engineering. The relationship between
the two entities in figure 1(a) can be seen in at least two different ways when interpreted in terms of
nodes and edges: The diamond can be seen as a node connected by two edges to the entity nodes,
or the diamond can be considered simply as a decoration on the edge between the two entities. We
prefer the latter view, because it is coherent with the logical content of the diagram, ie. the existence

of one logical relationship between the two entities. Similar considerations apply to the edges (lines)
connecting the nodes (class icons) in the OMT diagram.

2



. 1 . > N .

(a) Prototypical nodes and edges in an en-
tity/relationship diagram.
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(b) Nodes and edges representing classes and their
relationships in the OMT notation [9]

Figure 1: Example nodes and edges from two different graphical notations.

As a simple approach one may attempt to deal with the numerous variations in node and edge deco-
rations via a number of node and edge attributes such as shape, size, color, labels, line style etc. The
problem with this idea is that the list of desireable decorations and gadgets is never-ending.

In this paper we will focus on the subproblem of edge rendering, exploring an alternative approach.
The basic idea promoted in this paper is to consider complicated edges as a kind of subgraphs or
composite edges, in which, for instance, bending points are invisible nodes, and in which decorations
such as the diamond mentioned above are visible nodes of the subgraphs. A central part of the design
of composite edges concerns the interaction and coordination between the whole and its parts. We
present a solution to this problem, which is inspired from the design patterns known as Composite
and Observer [3].

Given appropriate graph concepts and ways to visualize instances of these leads us quite naturally
to the question of the functionality on the graphs. It should be obvious that flexible extensibility at
the algorithmic level is a much wanted property of a graph manipulation componengxtansion
languageon top of an efficient kernel (centered around an object-oriented realization of the basic
graph concepts) is probably an attractive solution. In fact, this is the most concrete inspiration from
Emacs on our work with Ginger. In Emacs, a Lisp dialect is the extension language on top of a kernel
implemented in a more conventional and efficient programming language (C). In section 4 of this
paper we will briefly touch on our experience with Scheme [1] and an object-oriented package on top
of Scheme, Meroon [8], for this purpose.

In the rest of the paper we will focus on graph concepts, both at the internal representation level and
with respect to the external appearance of the graphs in the user interface. In section 2 we discuss
graph abstraction in general. This is used as a foundation of graph presention with substantial varia-
tions on the rendering of edges. In section 2 we end up with a distinction between two categories of
abstractions, called logical abstraction and visual abstraction. In section 3 we propose a concrete way



of implementing the abstractions from the earlier section. Finally, in section 4 we describe the Ginger
graph tool, in which we have tested the ideas described in this paper.

2 Graphs and graph abstractions

In this section we will develop a number of graph abstractions that turn out to be useful in dealing with
graphs like the ones in figure 1. Thus, our main interest in this section is graphs with edges that are
more complicated than just a tuple of two nodes and illustrated as an arrow or a straight line segment.
In addition our developments are useful for understanding the graph compacting facilities found in
several graph editing tools, such as daVinci [2]. We start with a brief presentation of the mathematical
graph and hypergraph concepts.

2.1 Mathematical Graphs and Hypergraphs

In mathematical graph theory, a graph is defined as follows:

Graph. A graphG is a pair(X, U) whereX is a set of nodes and is a family? of edges: = (z, y)
inX x X.

If G = (X, E)isagraph and = (x,y) is an edge ir, x will be called theinitial ending point andy
theterminal ending poinbf e. These terms directly support the notion of a directed graph; undirected
graphs may be seen as a special case in which we disregard the roles of the ending points.

In many practical situations we deal with graphs in which some edges are attached to more than
two nodes. The fork-shaped edge in the inheritance relationship between the superclass and its two
subclasses in figure 1(b) is an example of such an edge. Often, and also in this particular example,
such graphs can be seen as a notational convenience, where an edge with more than two ending points
stands for two or more conventional edges. The mathematical counterpart to graphs like these is called
hypergraphs.

Hypergraph. A hypergraphG is a pair(X, U) whereX is a set of nodes and is a family of tuples
from the family of cartesian product§ x X x ... x X.2 An element fromU is called a
hyperedge.

Hypergraphs can be seen as a generalization of graphs.

2.2 An application-oriented graph concept

We wish to capture the mathematical hypergraph concept in a practical graph concept which will
found the base of our later work with a graph drawing tool. Since hypergraphs are a generalization of

2\We use the term “family” in the meaning of a set in which duplication of elements is allowed.
3This definition implies that the tuples i may have different degree.
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“ordinary” graphs, the latter will be automatically supported when the practical graph concept covers
hypergraphs. Thus, when we use the term “edge” and “graph” in the following, we implicitly refer to
hyperedges and hypergraphs, respectively.

It turns out to be primarily the edge concept that needs special attention in the development of a practi-
cal graph concept; hence we will focus on edges in this section. From a computer science perspective
it is natural to regard edges as objects with their own identity. In other words, an edge becomes a first
class object, contrary to the mathematical definition above, in which edges and hyperedges were de-
fined as tuples of nodes. The understanding of an edge as a first class object is important in a practical
graph tool because — among other reasons — it allows us to equip edges with attributes and operations.

Edge objects have the ability to connect a number of node objects. This ability can be captured by
letting each edge object hold two lists of references to node objects: a list of initial endpoints and a
list of terminal endpoints. With this understanding of edges we can talk atiteced hypergraph

Note that since a reference to a particular node may appear in both lists, a node may play the role
as both an initial and a terminal endpoint of the edge. ddgree of an edgis defined as the total
number of endpoints of an edge, initial as well as terminal.

The mathematical graph concept is supported by letting edge objects hold exactly one node reference
in the list of initial endpoints and one node reference in the list of terminal endpoints. We refer to
such edges asonventional edgesA conventional edge is always of degree two. The mathematical
(undirected) hypergraph concept is supported by disregarding the separation of endpoint references in
two lists, i.e. by forming the concatenation of the two endpoint lists.

The edge concept presented in this section places no restrictions on the number of node references in
the endpoint lists of an edge. That freedom leaves room for a number of special cases, some of which
proves to be useful later on. One of these special cases is an edge holding two empty endpoint lists;
we refer to such an edge aseparate edgeAnother special case is an edge with node references in
only one of the endpoint lists, i.e. an edge with only initial or only terminal endpoints. We refer to
such an edge as amconnected edgel'hese kinds of edges are useful as temporary representations

of edges, which we change in an interactive editing process. In addition they play an important role
in section 2.4 on graph abstractions.

It is convenient to define a textual as well as a graphical notation for edge objects. We use the notation
e = ([x1,x2, ..., Tn], [Tnt1, Tnyo, .., Tr]) @S @ textual representation of the edde which the initial
endpoint list contains the node referenagszo, ..., x,, while the terminal endpoint list contains

LTn+1,Ln42, - Tm-

Conventional edges are usually drawn as arrows pointing from one node to another. We can extend
this basic graphical notation to support arbitrary edges by allowing separate and unconnected edges to
be drawn as edges with “dangling” endpoints and by graphically composing (hyper)edges of a number

of conventional edges. Figure 2 illustrates a simple, canonical graphical nétefigmyper)graphs

based on that idea. Often we want to settle on a richer or more specialized notation, however. This

will be the theme of section 3 of this paper.

“This figure has been produced using the Ginger tool. As such, the figure represents a kind of a meta application of the
ideas presented in this paper. In section 3.4 of this paper we explain in details, how such edges are produced and maintained
using Ginger. Subsequent figures produced directly by Ginger are marked with (Figure: Ginger).
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Figure 2: Visualization of a grapfy, with a set of nodex = {A, B,C, D, E, F,G} and edge$/ =
{61, €2, €364, 65}’ wheree; = ([A]’ [B])’ €2 = ([ ]a [C])a €3 = ([ ], [ ])a €4 = ([F]’ [Dv E])1
andes = ([F, G],[]). (Figure: Ginger).

2.3 Subgraphs

In order to identify “a subset of a graph”, which is a candidate for graph abstraction, we need the
concept of a subgraph. The definition applies to graphs as well as hypergraphs.

The proper subgraph induced by a set of node%”. Let Y be a subset oX in the (hyper)graph
G = (X,U). L= (Y,V)isaproper subgraph @f if V' is the family of (hyper)edges i&i for
which all ending points (initial as well as terminal) belong}o

Thus, a subgrapli, of G disregards all edges that involve nodes outside the set of nodes, which
inducesL. Figure 3 gives an example of a proper subgraph.

(&) The original graphG. The (b) The proper sub-
large circle contains the nodes in graph[L of G induced
Y ={B,C, E}. byY.

Figure 3: A graphG and a proper subgraph induced{y, C, E'}.

It is also possible to define a subgraph in which unconnected edges are allowed. We refer to this kind
of subgraph as eelaxed subgraph



The relaxed subgraph induced by a set of nodes. Let Y be a subset oX in the (hyper)graph
G = (X,U). The graphL = (Y, V) is a relaxed subgraph ¢f if V' is the largest subset &f
in which every edge hasat least onending point inY".

If the nodes in Y are connected to the nodes in X (via one or more edge in U) there will be at least
one unconnected edge in V. Figure 4 illustrates the concept of a relaxed subgraph.

B (c)
(@) The original graphi. The (b) The relaxed subgraph
large circle contains the nodes in L of G induced byY.
Y ={B,C, E}. Notice the three edges

of degree 1 which dis-
tinguish the relaxed sub-
graph from the proper
subgraph shown in fig-
ure 3(b).

Figure 4: A graph7 and a relaxed subgraghof G.

2.4 Subgraph abstractions

It is possible to abstract a proper subgrdpk: (Y, V) of G = (X, U) into a new node N of7. This

is illustrated in figure 5. From a transformation point of view the subgrap$ substituted by the
node N. The edges i&r \ V' with an ending point irt” get N as the ending point in the abstracted
graph. Thus, every edge entering or leaving a node in the subdraptonnected to the new node N
in the abstracted graph.

In a similar way it is possible to abstract a relaxed subgdagh (Y, V') of G = (X, U) to a new edge

e of G. In generale becomes a hyperedge with ending pointsXin, Y. The degree of depends on

the number of nodes i \ Y connectedl to nodes inY” via edges irlJ. Figure 6 illustrate a typical
abstraction process in whichbecomes a hyperedge of degree 3. In figure figures 7 we illustrate a
less typical abstraction process in which the degree of the resulting edge is one. In case there are no
edges in U which connect nodesihandY” e becomes an edge of zero degree.

A nodez is connectedo y if there is an edge in which z is an initial ending point ob andy is a terminal ending
point of v, or vice versa.
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(&) The original graphG. The (b) The graphG after abstracting
large circle contains the nodes in the proper subgraph induced by
Y ={B,C, E}. into a new node N.

Figure 5: Node abstraction of a proper subgraph of G.

®

(@) The original graphG. The (b) The graphG after abstracting
large circle contains the nodes in the relaxed subgraph induced by
Y ={B,C,E}. into a new edge.

Figure 6: Edge abstraction of a relaxed subgraph of G.
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(@) The original graphG. The (b) The graphG after abstracting
large circle contains the nodes in the relaxed subgraph induced By
Y ={B,C,E}. into a new edge.

Figure 7: Edge abstraction of a relaxed subgraph.

2.5 Graph abstractions

We are now in a position where an arbitrary subliseif nodes in a (hyper)grapi = (X, U), where
Y is a subset of{, induces two new graphs’ andG” that are different abstractions 6%

e The node abstracted graph induced by YThe proper subgraph generated ¥Yjycan be ab-
stracted to a new node, and as sttls abstracted t6:’. In G, all nodes inY’, and all edges
entirely connected to nodes i, are collapsed to a single node.

e The edge abstracted graph induced by YThe relaxed subgraph = (Y, V') generated by
can be abstracted to a new edge, and as &uishabstracted t6”. In G, all nodes inY’, and
all edges with at least one ending poinflinare collapsed to a single edge

It is possible to distinguish between several different kinds of situations where these abstractions can
be applied.

e Logical abstraction. A subgraph is substituted by a node or edge, and hereby the graph is
simplified. This affects the representation of the graph. For any graph algorithmic purpose, the
subgraph is thus considered as a single node or edge. From a visual point of view, however, the
abstracted node or edge is shown as the original subgraph.

¢ Visual abstraction. The subgraph is collapsed to a single node or edge in the visualization of
the graph, but no changes have occured in the underlying graph representation. Only from a
visual point of view the graph has been simplified. This kind of abstraction characterizes the
visual compaction facilities found in graph editors such as Edge [7] and daVinci [2].

¢ Logical and visual abstraction. The subgraph is substituted by a single node or edge, both in
the internal representation and in the visualization of the graph. This kind of abstraction may
be seen as a proper graph transformation in the direction towards a more simple graph.



In the next section we will see how the ideas behind logical, edge abstracted graphs can provide for
rich and versatile variations of edge renderings in a practical graph editing tool.

3 Composite graph concepts and hierarchies

In the previous section, we described a number of general gragaretical concepisspecifically

proper and relaxed subgraphs and the graph abstractions derived from these. In this section we will
explain how to shape a number of similgnactical conceptavhich we use as the basis for a graph
editing tool. The concepts are implemented in Scheme and Meroon. We will start by introducing
composite nodes and composite edges in terms of the results from the previous section. Following
that we introduce a hierarchy of graph concepts, which include composite nodes and composite edges.
Next, we address the problem of handling the dependencies among the constituents of a composite
object and the composite object itself. It turns out that the structures and the interaction among
objects can be handled by instances of the well-known design patterns called Composite and Observer.
Finally, a number of concrete examples are discussed.

3.1 Composite graph elements

As a consequence of section 2.3 we can represent a many-to-many relationship among a number of
nodes as a relaxed subgraph. The relaxed subgraph can be abstracted to a single hyperedge by means
of a logical abstraction process. This simplifies the graph from a logical and topological point of view.
However, from a visual point of view the hyperedge is presented in terms of the relaxed subgraph.

We are now interested in forming a concept which captures the mathematical idea of a hyperedge
representing the relaxed subgraph. In order to emphasize that the hyperedge is formed in terms of
more primitive graph constituents, we call the new concegbraposite edgeWe could in a similar

way introduce a&omposite nodghich is the result of abstracting a proper subgraph, but we do not
use composite nodes in the remaining parts of this paper.

A fundamental requirement to the design of composite graph elements is that they appear as first class
members, in the same way as simple nodes and simple edges. This “first-classness” can be expressed
as the following two properties that must hold for composite graph elements:

e Homogeneity Programatically, they can be used just like simple (non-composite) elements by
clients.

e Unity: In response to interactive manipulation, they appear as a unit to the user.

The homogeneity property implies that composite elements may be nested to arbitrary depth. Thus,
a composite edge can, together with other nodes and edges, be abstracted further on to another com-
posite graph element.

The unity property has as a consequence that interaction on the parts of a composite graph elements is
interpreted as interaction on the whole. For that purpose we need to care about structures and mech-
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anisms which allow us to capture the necessary interaction and cooperation between the composite
objects and its parts.

3.2 The hierarchy of node and edge concepts

The concepts of simple nodes and edges together with the composite graph concepts introduced above
need to be classified together in a single concept hierarchy. Using the object-oriented paradigm this
has led us to the class hierarchy of “built-in graph elements” in figure 8. A table, which explains the
responsibilities of the individual classes, is shown in figure 9.

Observable

ComponentObject
Node Edge

|SimpIeNode| |CompositeNode| |SimpIeEdge| |CompositeEdge|

Figure 8: The hierarchy of graph element types. (Figure: Ginger)

The hierarchy of built-in types is open, and intended, for further extension by addition of user-defined
subclasses, in particular specializations of @mmpositeNode and CompositeEdge classes.
We will now explain the elements of the hierarchy in figure 8 and their relationships.

All classes, excepSimpleNode and SimpleEdge are abstract. The two classes at the top of
the hierarchy together witompositeNode andCompositeEdge contain methods which are
necessary in the design patterns, which we use in the next section.

The abstract clasg&dge is responsible for building the structure of a graph. THedge contains
methods for linking node and edge objects. Huge class represents hyperedges as described in
section 2 since it places no restrictions on the number of nodes it may connect.

The concrete class&mpleNode andSimpleEdge extend their superclasses with a number of
methods that control the visual appearence (attributes) of nodes and ed§espleEdge is fur-
thermore restricted to connecting two nodes. Objects of these two types can be displayed and manip-
ulated interactively in the graph editing tool without further programming efforts.

Finally, the abstract class€ompositeNode andCompositeEdge contain methods which —in
cooperation with those i@bservable andComponentObject - support the implementation of
composite graph elements. As mentioned above, user-defined composite graph elements will typi-
cally be implemented as concrete specialization€ofmpositeEdge . We will now describe the
realization of composite graph elements using these classes and the design patterns in which they are
involved.

11



ClassObservable ClassComponentObject
registerObserver(obs,asp,methzake obs obstﬁrve asgetct display displays the object on the screen
?ng[#oséng meth as updgte undisplay  removes object from the screen
. . select make object the selected one
notifyObservers(asp, val) Qgggcﬁgs,ﬁiféﬂgﬁge § unselect make sure the object is not selected
to val
ClassNode ClassEdge
to(Node) connect Node at terminal ending point of this edge
from(Node) connect Node at initial ending point of this edge
unlinkTo(Node) unconnect Node from terminal ending point
unlinkFrom(Node) unconnect Node from initial ending point
inpointingNodes  return the set of nodes of initial ending point
outpointingNodes  return the set of nodes of terminal ending point
Class SimpleNode Class SimpleEdge
x(Int) setthe x-coord?nate of this node direction(Dir) assign dir as the direction of this edge
Y(lnt) set the y-coordinate of this node to(Node) connect Node at the terminal ending point
width(Int) set the width of this node from(Node) connect Node at the initial ending point
he'th(lm) set t:e re'grl tht_h's node display displays the object on the screen
Ia_LbeI(Stn_ng) zz;t :aalt:i?m(: ¢ t:;?:sode undisplay removes object from the screen
b!tmap(Flle) i ? " br_J conth select make object the selected one
dlsp_lay splays e.o Ject on the screen unselect make sure the object is not selected
undisplay removes object from the screen
select make object the selected one
unselect make sure the object is not selected
ClassCompositeNode ClassCompositeEdge
addComponent(Comp) add component to this node addComponent(Comp)  add component Comp to this edge
deleteComponent (Compglete component from this node deleteComponent(Comp) delete component Comp from this eqge

Figure 9: The responsibilities of the classes from figure 8. Classes and responsibilitidi iare
abstract.
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3.3 Realizing dependencies in composite graph elements

We handle the relationships between a composite graph element and its parts via use of the design
pattern called Composite. In general, a Composite pattern is used to compose objects into tree struc-
tures of parts and wholes, and to allow for the same treatment of composite as well as non-composite
objects. The diagram in figure 10 illustrates the static structure of the Composite pattern as it is used

in Ginger.

‘ Graph }—» ComponentObject

display()
undisplay()
select()
unselect()

SimpleEdge CompositeEdge
display() display()

children

addComponent(ComponentObject)
removeComponent(ComponentObject)

Figure 10: The Composite design pattern as it is used in Ginger.

As it can be seen in the figure the cl&smponentObject is responsible for display and selection
(together with the reverse actions). The display and selection methods are all abstract, and conse-
quently they need to be elaborated at more specific levels in the class hierarchy.

The classCompositeEdge contains the basic data structures and methods that allow the construc-
tion of a composite object by adding component objects to the composite. Removal of objects is also
supported.

When a new user-defined composite node or edge type is implemented as a specializatiom of
positeNode or CompositeEdge , one of the tasks of the implementor is to specify concrete ver-
sions of the display and selection methods inherited i@mponentObject . In most cases this is

a simple matter of redirecting method calls to the corresponding method in each of the components.

The unity property, introduced in section 3.1 requires some kind of coordination between the whole
(the composite object) and its parts (the component objects). For instance, if the user selects a com-
ponent object, this should typically result in the entire composite object being selected. In addition, a
composite should be able to react on changes in its surroundings. As an example of this, we will later
study a composite “orthogonal” edge consisting of a horizontal and a vertical line segment; in order
to keep the line segments horizontal and vertical, respectively, the composite edge has to detect and
react appropriately whenever one of the nodes which it connects is moved.

In both cases, the composite object needs to be informed of certain events that occur in its components
orinits context. The Observer design pattern [3] describes a proven way to arrange exactly this kind of
collaboration between observers and subjects. In this context, the possible subjects are the components
of a composite edge, or the nodes connected to a composite edge, and the observer is the composite
object. The use of the Observer pattern in Ginger gives rise to the@lzsyvable in the top of

13



the class hierarchy shown in figure 8. This abstract class contains methods to register an object of any
subtype ofComponentObject as observer to th®bservable object. The observer is registered

with interest in some particulasispectof the Observable object. The registered observers are
notified whenever the observed object (the subject) changes state with respect to the given aspects.
The notification includes information about the relevant aspect.

As an alternative to the use of the Observer pattern, the dependencies among components and com-
posits could be expressed in a system of constraints and then be handled by a constraint solver. That
solution has some benefits, for instance ease of expression. The cost, however, is the relative com-
plexity of the constraint solver compared to the simple application of the Observer design pattern. As
we will see in the next subsection, the current design also allows quite easy and elegant expression of
the dependencies among graph elements.

3.4 Examples of composite graph elements

In this subsection, we present three examples of composite graph elements all of which are imple-
mented as subclasses of tBempositeEdge class. The extended class hierarchy is shown in
figure 11.

Observable
ComponentObject

Node Edge

SimpIeNodel |CompositeNode| |SimpIeEdge| |C0mpositeEdge|

| BendingEdge | | BeamEdge

| OrthogonalBendingEdge |

Figure 11: Ginger’s hierarchy of graph element types, extended with subclasgesngiosi-
teEdge . (Figure: Ginger)

The first and most simple example we present is the compositeBelgdingEdge . It is an edge
equipped with a bending point which allows the edge to bend in an arbitrary angle, see figure 12. The
bending point can be moved interactively by dragging it using a pointing device.

A BendingEdge is composed of two SimpleEdge objects (one in the “head” of the edge and one in
the “tail”) and a very small SimpleNode object in the bending point. These objects are private to the
BendingEdge and are created during construction of BendingEdge objects. ThecldssyEdge
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Figure 12: BendingEdge object connecting two SimpleNode objects. (Figure: Ginger)

redefines the methods, from, display, andselect The redefinedo method simply connects the
“head” component edge to the node given as argument, by calling tnethod on the component
edge. Thdrom method is implemented in a similar way. The display and selection methods have
equally straightforward implementations since they just have to call the corresponding method on all
the component objects.

Whenever one of the components of the BendingEdge is selected interactively, the other components
must also be marked as selected, otherwise the BendingEdge does not succeed in giving the user the
impression that it is a logical unit. This is accomplished by using the Observer pattern described
above. The BendingEdge registers itself as observer of each of its components with respect to the
aspect “selection”, and each time a component changes selection state, the BendingEdge thus receives
control and can update the state of all other components accordingly.

The power and elegance of composite graph elements based on the Observer pattern is further illus-
trated by our next example, tirthogonalBendingEdge . This specialization dBendingEdge
automatically places the bending point so that the edge always bends orthogonally, see figure 13.

Figure 13: OrthogonalBendingEdge connecting two SimpleNodes. (Figure: Ginger)

OrthogonalBendingEdge is identical to BendingEdge except that it redefinesathdfrom methods.

The challenge for the OrthogonalBendingEdge is to stay orthogonal even when the nodes it connects
are moved. However, the OrthogonalBendingEdge can handle this by registering itself as observer of
each of the nodes it connects, with respect to the position of the nodes. This registration is handled in
the redefinedo andfrom methods. When one of the nodes is moved, the OrthogonalBendingEdge is
notified and it can then update the position of the bending point to reflect the new situation. Each of
the redefinedo andfrom methods consist of just a few lines of Meroon code. Figure 14 serves as a
side bar which explains the redefinedmethod of OrthogonalBendingEdge.

As a final example, we present the BeamEdge, shown in figure 15.

Compared with the previous examples, the BeamEdge has two interesting characteristics:

¢ It uses nested composite graph elements.

e Itis a hyper edge.
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1. (define-method (to! (obe OrthogonalBendingEdge) (n SimpleNode) . option)
2 (call-next-method)

3 (x! (BendingEdge-bendNode obe) (SimpleNode-x n))

4. (registerObserver n obe 'x orthogonalBendingEdgeNotifyEndpointChange))

The following items explain the example line by line:

Line 1: A methodto! is to be defined. The exclamation mark signals by convention that the method chang¢s the
state of the object. The method has two parametkesandn, of typesOrthogonalBendingEdge and
SimpleNode respectively. Finally, theption parameter is a placeholder for additional information not usegl in
this example.

Line 2: The first procedure call in thte! method call-next-method , is a Meroon primitive which activate
theto! method in the supercla®®endingEdge . This method takes care of connecting the node to the edgds
terminal endpoint.

Line 3: The x coordinate of the simple node in the bending point is initialized with the value of the x coordingte of
the noden being connected.

Line 4: The OrthogonalBendingEdge objeahe, is registered as an observer of the nodeth respect to thex'
aspect”, such that the update metbatiogonalBendingEdgeNotifyEndpointChange will be called
each time the node changes horizontal position (x coordinate). When called, the method updates the x coofdinate
of the node in th©rthogonalBendingEdge  's bending point in the same manner as in line three of this
example.

Figure 14: An example of a method in the class OrthogonalBendingEdge, which participates in the

Observer design pattern.

| Subclass A | | Subclass B | | Subclass C | | Subclass D |

Figure 15: A BeamEdge representing a specialization relationship between a superclass and four sub-
classes. (Figur: Ginger)

The internal composition of a BeamEdge is illustrated in figure 16, where the parts are separated from
each other to make clear what the constituents are. The edge consists of a SimpleEdge, a SimpleNode
(later denoted theenter-nodg and, in this example, four OrthogonalBendingEdge objects (slightly
overlapping) as nested components of the BeamEdge.

Superclass

SimpleEdge }
SimpleNode ~ OrthogonalBendingEdge

@ | Subclass B | | Subclass C | @I

Figure 16: Components of a BeamEdge.
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The visual appearence of the BeamEdge is controlled by the position of the nodes which it connects,
via dependencies realized using the Observer pattern. Naturally, each of the component Orthogonal-
BendingEdges keeps itself orthogonal. Therefore, all the BeamEdge has to do in order to maintain a
visual appearence as shown in figure 15, is to register itself as an observer of the “superclass” node,
and thereby — when necessary — update the position of the center-node to keep this node in a fixed
distance straight below the superclass node.

A BeamEdge is a hyperedge since it may connect more than two nodes. The BeamEdge has one
designated initial endpoint which is the node corresponding to the superclass node above, and any
number of terminal endpoints. Nodes — corresponding to subclasses in the example above — can be
connected to the BeamEdge’s terminal endpoints by calling the BeamBdgeéthod once for each

node to be connected.

This concludes our series of example composite graph elements. In the following section, we present
the Ginger graph editor which implements the ideas presented above.

4 The Ginger graph editor

The incremental and experimental development of the Ginger graph editor has been of central impor-
tance to the development of the ideas presented in this paper. This section covers some basic design
issues and illustrates the user interface of the editor.

A number of requirements was posed on the graph editor. First of all, we needed an interactive graph
editor which could be used as a base for our experimentation with the more interesting aspects of
graph manipulation. But we did not want to create just a “quick and dirty” prototype; rather, we
wanted the basic, interactive graph editor to be useful in its own right as an easy to use, efficient and
portable tool for simple graph manipulation tasks.

This led to a design based on a “kernel” implemented in the C programming language and using
Schemé as a dynamic extension language.

The kernel implements a basic graph datatype and handles the visual presentation and interactive
manipulation of this graph datatype via the graphical user interface implemented using the X toolkit
and -library.

The extension language allows the user to define new graph elements like the examples given in the
previous section. As mentioned earlier, Ginger uses Meroon, which is an object-oriented extension

to Scheme, to implement the hierarchy of graph element types shown in figure 8 and to let the user

define new subtypes.

A snapshot of Ginger’s graphical user interface is shown in figure 17.

The larger part of the main window is the graph area where the current graph may be edited by direct
manipulation (selection and dragging of nodes and edges using a pointing device). The menu buttons
at the top of the main window offer file operations (load/save graphs, export to PostScript file etc.),

selection control (node and edge selection modes and operations), layout algorithms (array layout,

5Ginger uses the Elk [6] implementation of the Scheme programming language. Elk is well suited for the purpose
because it supports easy linking of the Scheme interpreter into a C program.
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Menu buttons ——»

Graph area >
|
I
| |
A O

|SimpIeN0de| |CompositeN0de| |SimpIeEdge| |C0mpositeEdge|

._
Node and edge BT BT
operations ] uge — = | - W

Messagefield 5 loading graph susrlocal/Gingerdfull_hierarchy.gol... done.

Figure 17: Ginger’s main window

circular layout and hierarchical layout can by applied to any selection of the graph), and various
program options. The help button opens the editor’s hypertext help window.

Ginger’s extension language is accessed via a command prompt in a pop-up window which can be
opened from the file menu. Here, the user has programmatic access to the built-in graph datatypes
described above and to the full functionality of Elk Scheme.

To complete the example of “intelligent” composite graph elements, we will show how the BeamEdge
presented in the previous section handles interactive relocation of one of the nodes connected to it.
The BeamEdge was first used in the figure showing the hierarchy of node and edge concepts; the
figure is repeated here as figure 18.

Observable
ComponentObject

-

SimpIeNodel |CompositeNode| |SimpIeEdge| |CompositeEdge

Figure 18: The hierarchy of graph element types. (Figure: Ginger)

Now imagine that a user interactively drags tRdge node slightly downwards and to the right.
This action affects the “upper” BeamEdge connectidge to its superclas€omponentObject
and the “lower” BeamEdge connectiliggige to its two subclasse§impleEdge and Composi-
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teEdge . The new situation is illustrated in figure 19.

Observable
ComponentObject

Graph components affected by the move
A /
‘A

SimpleNode] [CompositeNode] lSimpIeEdge] [CompositeEdge]

Figure 19: The hierarchy of graph element types.

With respect to the upper BeamEdge, the change is handled by the BeamEdge’s OrthogonalBendingEdge-
component, so the BeamEdge itself needs not take any action. Since a BeamEdge must keep its center-
node (the triangle-shaped gadget) in a fixed distance straight below the superclass node, the lower
BeamEdge adjusts the position of its center-node in repsonse to the interactive moveedfjthe

node. That adjustment, in turn, triggers an update action in each of the two OrthogonalBendingEdge-
components of the lower BeamEdge; hence each of these components adjust the position of their
bending points in order to remain orthogonal.

The above figures only show static snapshots of the editor. The Ginger graph editor is available for
downloading for a more dynamic and interactive experience.

5 Conclusions

In this paper we have addressed the problem of making a graph tool, which supports many different
edge and hyperedge shapes. The important observation is that many complicated edges in “real life
graphs” can be regarded as some kind of a subgraph aggreated by a number of more primitive edges
and nodes.

At the theoretical level the main contribution is the definition of a relaxed subgraph, which can be
abstracted to an edge relative to the surrounding graph. We think of the graph abstraction as a logical
abstraction, because it simplifies the topology of the graph. At the visual level, however, the relaxed
subgraph serves as a presentation of the abstracted edges in terms of primitive edges and nodes. From
a mathematical point of view, a relaxed subgraph may be a confusing concept, because it involves
edges of degree less than two. From a more practical computer science point of view, however, it
makes sense to work with edges as first class objects, even in the case where one or more ending point
are (temporarily) disconnected from the nodes of the graph.

At the practical level, the main contribution of the paper is the organization of a relaxed subgraph in a
composite edge together with the realization of dependency preserving mechanisms between the the
composite edge and its surround. The dependencies are realized by instances of the design patterns
known as Composite and Observer.

"Downloading can be done via the WWW Ginger homepage: http://iwww.cs.asmdkhark/Ginger
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It is our conclusion that the insight from this paper may turn out to be a small but significant contribu-
tion to a general graph editor component, which we envision as an important building block of many
future tools in a wide variety of application areas.
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