
Computers and Microprocessors

1-1 Introduction

Over the last few decades, computers, and microprocessors in particular, have
begun to have an enormous impact upon our lives. In early stages of development,
computers were expensive, large, slow, centralized machines, consuming large amounts
of electrical power. All this has changed fundamentally as microelectronics has reduced
the cost of computing power and increased the data processing capabilities of a silicon
chip. The development of the microcomputer (one or more integrated circuit chips
that provide all the functions of a computer) is revolutionizing the computer industry
and many other industries as well. Because of their low cost, small size and versatility,
microcomputers made available cheap and virtually unlimited computing power.

A microcomputer system is generally built around a microprocessor. The
microprocessor chip contains within it most of the control, logic and arithmetic functions
of a computer. To become a complete microcomputer, other integrated circuit (IC)
chips, such as RAMs (Random Access Memories), ROMs (Read Only Memories) and
peripheral devices for input/output have to be added.

The first practical IC microprocessor, the Intel 4004 appeared in 1971. The 4004
was a slow, 4-bit CPU holding about a few thousand PMOS transistors. Intel rapidly
followed up with microprocessors of greater complexity: the 4040, the 8008 and the
8080 series. Other manufacturers responded rapidly with effective, if not better micro
families; 6800 series from Motorola, 6500 from Rockwell and Z80 from Zilog.

The fast evolution of microelectronics resulted in ever growing chip density.
Smaller transistor structures increased overall switching speed, decreased power
consumption, and allowed designers to integrate more transistors on the same area.
More transistors allowed higher complexity functions to be realized on a single chip of
silicon. Today, besides a wide palette of 8-bit microprocessors, 16-, 32- and 64-bit
microprocessors have become available to the design engineer. Not only the integration
density, but also the throughput has increased considerably from a few ten thousand
instructions/second to over billion instructions/second for the most advanced
microprocessors used in personel computers and workstations.

The evolution of the microprocessor not only enabled us to build and use powerful
computers, but also allowed us to control a vast variety of equipment. Integrating
CPU core, RAM, ROM and I/O on a single chip a complete smal scale microcomputer
was obtained. Single chip microcomputers are used, where the device is dedicated to
a specific operation, space is limited, and large volume production is the case.Since
most of these microcomputers were used to control some equipment, they were called
microcontollers. The first 8-bit microcontroller, the F8, was introduced by Fairchild in
1974. The ever growing demand for embedded control resulted in development of
powerful microcontrollers. General Motors was the first company to use a

1

microcontroller in its high-end cars. This microcontroller was the Motorola MC6801

with an enhanced 8-bit CPU, 128 bytes of RAM, 2 KBytes of ROM, 31 parallel I/O
lines, an asynchronous serial communication interface, and a 16-bit programmable
timer. Today a typical car uses more than ten microcontrollers.

Development in VLSI and electronic CAD technology enables us to rapidly design
and produce sophisticated microcontrollers tailored for specific applications. Still the
majority of microcontrollers are 8-bit devices, but these devices now make use of flash
memory technology to replace ROMs and EPROMs. Flash memory for program and
system parameter storage enables the equipment manufacturer to easily update software
and system parameters without removing the chip from its circuit, thus reducing
service cost and time.

This book will be based upon the Motorola HC08 family of microcontrollers with
special emphasis on the MC68HC908GP32. This device has an 8-bit CPU core, 512
bytes of RAM, 32 kilobytes of flash memory, parallel and serial I/O, multifunction
timers, and A/D converter.

1-2 Basic Computer Structure

A computer, and a microcomputer in particular, can be defined as a machine
which manipulates data according to a stored program executed within it. The data is
often thought of as numbers, but can, with suitable processing, be any physical parameter
or quantity which can be represented using binary numbers. Fig. 1.1 shows the structure
of a simple computer. The computer can be split into a number of separate components,
though the components shown do not necessarily represent the physical division
between components in a real computer. For example, the Control Unit and Arithmetic
and Logic Unit (ALU) are generally implemented as a single chip, the microprocessor
or central processing unit (CPU), in microcomputers.

Data & Instruction
Controller Data Operator (ALU)

Input/Output Units

(Microprocessor or CPU)

Clock

RAM/ROM
Memory

Fig. 1-1. Simplified Computer Structure

The first requirement of any microprocessor is a mechanism for manipulating

2

data. This is provided by the ALU of the computer, which can perform such functions

as adding or subtracting two numbers, performing logical operations like AND, OR,
NOT, and shift and rotate operations. More complex ALUs can perform additional
more powerful instructions like multiply and divide. From this very basic set of
operations, more complex processing functions can be generated by programming.

Clearly, every computer must include a mechanism to communicate with the
outside world. All communication will be done via an input and an output unit. The
outside world may consist of someone typing at a keyboard of a computer terminal
and watching the response on a screen, or it may be some equipment, for example an
air conditioning system, which is proving data inputs such as temperature and relative
humidity of the interior and outside, and is being controlled according to the program
inside the computer, via computer outputs which switch on and off heater or cooler,
moisturizer, fan etc.

The computer must include memory which serves two functions. First, it provides
storage for the computer program and data (main memory); second it provides
temporary storage for data which may be used or generated at some point during
program execution by the ALU (registers). Main memory is organized as a one-
dimensional array of words, and each instruction or data variable occupies one or
more words in memory. Each word is made up of a number of bits (binary digits) of
storage in parallel. The number of bits in each word is defined by the designer of the
computer or microprocessor, and is one measure of the computer's processing power.
Most microprocessors have word lengths of 8 bits (byte), 16 bits (word) and 32 bits
(long word).

The control unit of the microprocessor controls the sequence of operations of all
the components described above, according to the instructions in the computer program.
The control unit is responsible for execution of all sequential operation steps of an
instruction. First instruction is fetched from memory (called instruction fetch), then
decoded by the control unit and converted into a set of lower level control signals
which cause the functions specified by that instruction to be executed in sequence.
After the completion of execution of the current instruction the next instruction is
fetched and the above process is repeated. This process is repeated for every instruction
except for so called program flow control instructions, like branch, jump or exception
instructions. In this case the next instruction to be fetched from memory is taken from
the part of memory specified by the instruction, rather than being the next instruction
in sequence. All operations in the control unit are synchronized to a fixed frequency
clock signal to ensure all operations occur at the correct time instance. This clock
signal is either an externally applied signal input, or it is generated internally from a
crystal connected to the microprocessor. The clock frequency defines the instruction
execution speed of the microprocessor and is constrained by the operating speed of
the semiconductor circuits which make up the computer.

The patient reader has recognized the fact that memory contains both instruction
and data, and furthermore, both flow from memory to microprocessor and vice versa
via the same common way. How can the microprocessor distinguish between instruction
and data, and why do we not use different memories for instruction and data? Using

3

just one memory for both instruction and data simplifies the hardware and reduces

overall cost. This architecture is called the von Neuman architecture, named after the
scientific giant of our century who invented it. The microprocessor cannot distinguish
between instruction and data, therefore the programmer is responsible for correct
program flow.

As mentioned before a microcomputer or microcontroller is a single-chip computer
with all necessary circuit blocks integrated. A typical microcontroller structure is shown
in Fig. 1.2. Note that the clock generator, the CPU (controller + data operator), both
RAM and ROM, and Input/Output units are on-chip. Only a timing reference like a
piezoelectric crystal has to added externally.

Data & Instruction

(Microcontroller)

Clock

RAM/ROM
Memory

Controller Data Operator (ALU)

Input/Output Units

Fig. 1-2. Typical Microcontroller Structure

4

Instructions and Addressing Modes

2-1 The Programming Model

Before going into detail of instructions and addressing modes let us examine the
programming model of the HC08 family of processors. The HC08 family are 8-bit
microprocessors with some 16-bit extensions. The registers inside the HC08 accessible
to the programmer are shown in Figure 2-1, where the longer registers hold 16 bits
and the shorter ones hold 8 bits [1]. Let us have a brief description of all these
registers.

7 0

15 0

Accumulator (A)

Index Register (H:X)

Stack Pointer (SP)

Program Counter (PC)

Condition Code Register (CCR)

Carry/Borrow Flag
Zero Flag
Negative Flag
Interrupt Mask
Half Carry Flag (From Bit 3)
Two's Complement Overflow Flag

XH
15 0

15 0

7

A

SP

PC

V 1 1 H I N Z C

Figure 2-1. Programming Model of the HC08 family

Accumulator

The accumulator (A) shown in Figure 2-1 is a general-purpose 8-bit register. The
central processor unit (CPU) uses the accumulator to hold operands and results of
arithmetic and non-arithmetic operations.

Index Register

The 16-bit index register allows indexed addressing of a 64 KByte memory space.
It is formed by concatenating the H and X halves. The predecessor of the HC08 family,
the HC05, owned only an 8-bit index register X. To guarantee object code level
compatibility, this architecture has been adopted and hardware reset clears the high

5

portion (H) of the index register (H:X).

Stack Pointer

The stack pointer (SP) is a 16-bit register that contains the address of the next
location on the stack. Stack is an area in memory reserved for sequential storage and
retrieval of temporary data. Temporary data can be saved by pushing data bytes onto
stack. Here the stack pointer serves as an automatic address generator by decrementing
itself after each push (save on stack) operation, to point to a new unused location. The
read from stack or pull data operation is performed again by the assistance of the
stack pointer. To pull a byte from stack, first the value of the stack pointer is incremented
by one to point to the data to be pulled, then the actual read memory operation is
done.

For a large number of instructions the stack pointer can also be used in the same
way as the index register enabling the programmer to use so called stack pointer
indexed addressing.

As in the case of the index register H:X, the stack pointer is preset to $00FF during
a hardware reset for HC05 family compatibility. Note that execution of the reset stack
pointer (RSP) instruction presets the least significant byte to $FF, but does not affect
the most significant byte.

Program Counter

The program counter (PC) is a 16-bit register that contains the address of the next
instruction or operand to fetched. Normally, the program counter automatically
increments to the next sequential memory location every time an instruction or operand
is fetched. Instructions like jump, branch, subroutine call, and interrupt operations
load the program counter with an address other than that of the next sequential
location. During reset, the program counter is loaded with the reset vector address
contained in locations $FFFE and $FFFF. The vector address is the address of the first
instruction to be executed after exiting the reset state.

Condition Code Register

The 8-bit condition code register (CCR) contains the interrupt mask and five flags
that indicate the result of the instruction just executed. Bits 6 and 5 are unused and set
permanently to logic 1. Let us briefly describe the use of these flag bits:

V - Overflow Flag

This bit is set whenever a two’s complement overflow occurs as a result of an
operation. The V flag is important for signed arithmetic operations.

H - Half-Carry Flag

The CPU sets the half-carry flag when a carry occurs between bits 3 and 4 of the

6

accumulator during an add-without-carry (ADD) or add-with-carry (ADC) operation.

The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations.
The decimal adjust accumulator (DAA) instruction uses the state of the H and C flags
to determine the appropriate correction factor.

I - Interrupt Mask

When the interrupt mask is set, all interrupts are disabled. Interrupts are enabled
when the interrupt mask is cleared. When an interrupt occurs, the interrupt mask is
automatically set after the CPU registers are saved on the stack, but before the interrupt
vector is fetched.

N - Negative Flag

The CPU sets the negative flag when an arithmetic operation, logical operation, or
data manipulation produces a negative result.

C - Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry
out of bit 7 of the accumulator or when a subtraction operation requires a borrow.
Some logical operations and data manipulation instructions also clear or set the
carry/borrow flag (as in bit test and branch instructions and shifts and rotates).

Details of flag use will be covered in the next sections along programming examples.

2-2 The Instruction

We now examine the notion of an instruction, one of operations performed by the
CPU. It can be described statically as a collection of bits in memory, or as a line of a
program or, dynamically, as a sequence of actions by the controller. The specification
of what the control unit is to do is contained in a program, a sequence of instructions
stored, for the most part, in consecutive locations of memory. To execute the program,
the CPU controller repeatedly executes the instruction cycle (or fetch/decode/execute
cycle):

1. Read the next instruction from memory.
2. Decode the read instruction.
3. Execute the instruction decoded.

As we shall see with the HC08 family of microcontrollers, reading an instruction
from memory will require that one or more bytes have to be read. To execute the
instruction, some additional bytes might be read or written. The instruction read cycle
is usually called fetch cycle. The fetch cycle might be composed of multiple read
cycles. The first byte read from memory is called the opcode (operation code), decoding
this opcode the controller will decide whether to read more bytes or not to execute the
instruction. If besides the opcode byte or bytes, there are more bytes in the instruction,

7

those make up the data, called the operand. Whether an instruction is made up of a

single or multiple bytes is a function of the so called addressing mode involved.

We now look at the instruction statically as one or more bytes in memory or as a
line of a program. Each instruction in a microcomputer carries out an operation. The
types of operations provided by a von Neuman computer can be summarized as
follows:

1. Move.
2. Arithmetic.
3. Logical.
4. Control.
5. Input/Output instructions.

We will examine these in detail later. Let us now examine how these instructions are
stored in memory as part of a program and how they are executed by the HC08. As an
example let us use the load instruction belonging to the move class of instructions. It
will move a byte from memory to a register. Depending on the register size one or two
bytes have to be transferred from memory to register.

If we wish to put a specific number, say hexadecimal 3F, into the accumulator, the
instruction would be written as

LDA #$3F

where the symbol “#” denotes immediate addressing and “$” is used to indicate that
the number which follows is in hexadecimal format. If we had to put a specific number,
say $1240, into the index register (H:X), the instruction would be written as

LDHX #$E240

Examining memory where the instructions are stored, we would see for
LDA #$3F

$A6

$3F

address n

address n+1

and for LDHX #$E240

$45

$E2

$40

address n

address n+1

address n+2

See that in machine code LDA has been replaced by $A6 and LDHX by $45 as a
result of the immediate addressing mode. Note that the 16-bit hexadecimal value

8

$E240 to be loaded into the accumulator is stored in the 8-bit wide memory as two

consecutive bytes, high byte first. Storing multibyte data in byte-wide memory high
byte at lowest and low byte at highest address is called big-endian format. All Motorola
miroprocessors make use of the big-endian format. In the drawing above, and all like
it that follow, the lower-numbered address will be towards the top of the drawing.

2-3 Addressing Modes

An instruction is made up of an operation code (opcode, for short) and of optional
input data (operand). The data will specify a source or destination address or an
immediate source value. The HC08 family, like most microprocessors, is a one-address
computer, because each instruction can specify at most one effective address in memory.
For instance, if an instruction were to move a byte from location 1000 in memory into
the accumulator, then 1000 is the effective address. This effective address is generally
determined by some bits in the opcode. The addressing mode specifies how the effective
address is to be determined, and is generally determined by some bits in the opcode.
If necessary, there are binary numbers in the data or operand field of the instruction
that are used to determine the address. The HC08 makes use of 6 different basic
addressing modes

1) Inherent
2) Immediate
3) Extended
4) Direct
5) Indexed
6) Relative

which will be discussed in detail in the next sections.

Inherent addressing

Source and destination of some instructions may be specified inherently by the
opcode itself. For instance, in the instruction CLRA, clear accumulator, source data for
operation is known, and the result destination is specified as accumulator. In this type
of addressing all instructions are of one-byte type.

Immediate addressing

As introduced in Chapter 2-1, the immediate mode is the simplest addressing
mode, where the value of the operand is part of the instruction. The adjective immediate
is used since the value follows immediately the opcode. This type of addressing is
used to initialize with constants or to provide constants for other instructions, such as
LDA, load to accumulator. Depending on the associated register size the immediate
data will be either 8-bits (byte) or 16-bits (word). For an 8-bit microprocessor 16-bit
data has to be stored in two consecutive memory locations. Note that with Motorola,

9

the description of a 16-bit data is always higher-order byte first; that is, the higher-order

byte has the lower-numbered memory location. The immediate mode of addressing
can only be used to load a register from memory.

Extended addressing

Since the program counter of the HC08 is a 16-bit register, a total of 216 = 65536
memory locations can be addressed. In the extended mode, a full 16-bit (two-byte)
description is used to specify the effective address of the data, even though the first
byte may consist of all zeros. As mentioned above, the higher-ordered byte is at the
lower-numbered memory location. If we wish to put the data contained at address
$0180 into the accumulator , the instruction would be written as

LDA $0180

Examining memory where the instructions are stored, we would see for LDA $0180

$C6

$01

$80

address n

address n+1

address n+2

This instruction when executed by the CPU will access the memory cell at address
$0180, read its content and place it into the accumulator.

Direct addressing

Experience has shown that most of the accesses to data are to a rather small
number of highly used data words clustered together in a small memory region. To
improve both static and dynamic efficiency, the HC08 has a compact and fast version
of addressing, called direct addressing. In this mode the effective addresses high byte
is assumed to be equal to zero, and the lower byte is the only given part. This addressing
mode is also called zero-page addressing, because it restricts the memory addressing
range to the first (lowest) 256 locations. If we again wish to put the data contained at
address $0080 into the accumulator, the instruction would be written as

LDA $80

Examining memory where the instructions are stored, we would see for LDA $80

$B6

$80

address n

address n+1

10

Comparing this example with the one in extended addressing, we immediately see
that direct addressing uses one less byte for the same operation. Reading only two
bytes from memory instead of three saves one byte in program memory and also
increases the speed of execution by one clock cycle.

Indexed addressing

Computer designers realized that, as good as extended addressing is, it is not particularly
efficient because it takes a couple of recall cycles to get the address of operand or
result from memory. To improve efficiency, the controller could be provided with few
registers that could be indirectly addressed to get the data. Such registers are called
pointer or index registers. Indirectly addressing through a pointer or index register
would be faster since less number of bytes are needed to specify the full 16-bit address.
Moreover, it has turned out to be the most efficient mode to handle many data structures,
such as character strings, vectors, look-up tables, and many others.

The HC08 got two pointer registers, called H:X and SP respectively. The H:X
register is the so called index register, whereas SP is the stack pointer. The index
register is used for indexed addressing, whereas the stack pointer is primarily used to
create a so called push-down pop-up stack. There are five different ways of indexed
addressing. The first three are the basic ones used to manipulate data structures like
strings, vectors, look-up tables, etc. To access a block of data in memory the index
register has to contain the base address or starting address of the block. The effective
address of the operand or result is the sum of the contents of the index register H:X
and a so called offset specified along with the instruction. This offset can be zero, a
one byte unsigned displacement between $00 and $FF, or a two byte unsigned
displacement between $0000 and $FFFF. For example, if we want to load into
accumulator the nth element of a look-up table starting at address $E400, then the
instruction would look like

LDA $E400,X

Before executing this instruction, the index register has to contain n. The effective
address for the 16-bit offset case is calculated as follows:

Index Register (H:X)

16-bit unsigned offset

16-bit effective address

+

For the 8-bit unsigned offset case before the addition a zero is appended in front of the
offset to make it also a 16-bit positive number.

11

Index Register (H:X)

8-bit offset

16-bit effective address

+$00

In the case of zero offset no addition is performed an the index register content is the
effective address. Use of no offset executes fastest with also minimum code, but can be
restricted in certain cases. Use of 16-bit offset executes slowest with also maximum
code size, but has no restrictions at all. Also note that in none of the cases the content
of the index register is modified.

In addition to the index register H:X, the stack pointer SP can also be used as an
index register with one or two bytes of unsigned offsets. This capability eases operation
on data pushed onto stack by a significant amount.

Stack Pointer SP

8-bit offset

16-bit effective address

+$00 16-bit unsigned offset

16-bit effective address

+

Stack Pointer SP

An example for a stack pointer indexed addressing mode could be written as:

LDA 2,S

The fourth and fifth modes of indexed addressing are the “Indexed with Post
Increment, and Indexed”, “8-Bit Offset with Post Increment”. These are used only by
the CBEQ Compare and Branch if EQual instruction, and the MOV Move instruction.
In this addressing modes the index register H:X is used to address the operand either
using no offset or a one byte offset. After the operation on the operand the index
register H:X is incremented by one automatically. This special but powerful case will
be explained later in greater detail.

Relative addressing

The microcontroller is very much like any other computer; however, the use of
ROMs in microcomputers raises an interesting problem that is met by the last mode of
addressing. Suppose that someone buys a piece of machine code written for the same
family processor, but the machine code has to reside at an address not supported by
the microcontroller to be used. Since the programs source code is not available the end
user cannot modify or relocate the object code. If this specific program however had
been written in such a way that it does not make use of absolute addresses but only
relative ones, the complete code can be copied to any location to run. Such code is

12

called position independent. Program counter relative addressing, or simply relative

addressing enables us to write position independent software.

Program counter relative addressing, or simply relative addressing, adds a two's
complement number, called an offset, to the value of the program counter to get the
effective address of the operand. The 8-bit two’s complement notation offset is first
sign extended to form a 16-bit two’s complement number and then added to the
program counter as shown below:

Program Counter (PC)

signed offset +sign extention

Program Counter (PC)

In the HC08, relative addressing is limited to conditional or unconditional branches
and to subroutine call instructions. A major drawback of the HC08 is the lack of the
relative addressing mode for load type instructions.

A simple program segment generating a small delay proportional to the contents
of accumulator can be written using a conditional branch instruction.

LDA #$10
Loop DECA

BNE Loop

In this few lines of program, “DECA” decrements the contents of accumulator by one,
“BNE label” tests whether the result of the previous instruction (decrementation of
accumulator) was not equal to zero, and branches to the label “Loop” if so. It is
obvious that the program will loop 16 times, since accumulator had been initialized to
$10¬=¬16. Examining memory where the instructions are stored, we would see

$A6

$10

$4A

$26

$FD

LDAA¬¬#$10

DECA

BNE¬¬label "Loop"

Next instruction

$8021

$8023

$8026

where $26 represents the machine code for “BNE” Branch Not Equal instruction and
$FD or minus three decimal ($8023 - $8026 = -3) is the branch offset or displacement.

13

The BNE instruction updates the program counter such that it points to the “DECA”

DECrement Accumulator instruction at location $8023 or label Loop, if the zero flag Z
in the condition code register was cleared, or to the instruction which would have
followed the “BNE Loop” instruction at location $8026 or L1 if the Z flag was set.

$A6

$10

$4A

$26

$FD

PC points here if Z=0

8-bit two's complement
representation of L - L1

PC points here if Z=1

Loop

L1

Note that due to the one-byte two's complement number as offset, the maximum
displacements are limited to +127 and -128. Larger displacements can be spanned
using additional “BRA” BRanch Always instructions.

2-4 The Instruction Set

The Motorola HC08 family has a set of 89 different executable source instructions.
Included are 8 and 16-bit binary and decimal arithmetic, logical, shift, rotate, load,
store, conditional or unconditional branch, subroutine call, interrupt and stack
manipulation instructions.

The coding of the first (or only) byte corresponding to an executable instruction is
sufficient to identify the instruction and the addressing mode. The hexadecimal
equivalents of the binary codes, which result from the translation of the 89 instructions
in all valid modes of addressing, are shown to detail in Appendix 1.

We now examine each class of instructions for the HC08. This discussion of classes,
with sections for examples and remarks, is the outline for the section.

At the conclusion of the section, you will have all the tools needed to program on
the HC08 in assembly language. You should be able to write programs in the order of
25 instructions long. If you have a laboratory parallel to a course that uses this book,
you should be able to enter these programs, execute them, debug them, and using this
hands-on experience, you should begin to understand computing.

2-4-1 Move Instructions

The instructions of the move class essentially move one or two bytes from memory
to a register (or vice versa) or transfer one or more bytes from one register to another

14

within the microcontroller. The two simplest instructions from this class are the load

and store instructions, to transfer data between memory and accumulator and registers
H:X and X. The load instructions make use of the immediate, direct, indexed, and
extended addressing modes, whereas the store instructions cannot make use of the
immediate mode, since this would generate self-modifying code.

LDA Load Accumulator STA Store Accumulator
LDHX Load index register H:X STHX Store index register H:X
LDX Load index reg. low (X) STX Store index reg. low (X)

As a function of register size a load or store operation will move either 8-bit data
or 16-bit data. A 8-bit move will need only one access to the addressed memory
location, whereas a 16-bit move will need two consecutive accesses to two consecutive
memory locations. Remember that for all Motorola microprocessors, the higher byte of
a 16-bit data is at the lower addressed memory location. Examples to the simple load
and store instructions will be given later in this chapter along with other more complex
instructions.

A special kind of memory to register (or vice versa) transfer is done with the
assistance of the stack pointer SP. The stack pointer SP works as a pointer register in
push and pull instructions. This type of moves are called push and pull instructions,
where pushing means moving data from register to memory, and pulling the operation
in reverse direction.

PSHA Push Accumulator PULA Pull Accumulator
PSHH Push Index Register High PULH Pull Index Register High
PSHX Push Index Register Low PULX Pull Index Register Low

The memory area used to save temporarily contents of registers by push instructions
is called stack, and usually consists of a small area of available RAM. Care has to be
taken that no unintentional program code corrupts contents of the stack.

During execution of a push operation, first the content of the register is transferred
to the location in memory pointed at by SP, then the content of SP is decremented by
one. Let us examine now the contents of memory after the execution a PSHA instruction

SP points here before PSHA

SP points here after PSHA

address n

address n-1
content

of A

unused

As it can be clearly seen, the stack pointer always points to an empty or unused
location in memory.

During execution of a pull register operation, first the content of SP is incremented
by one, then contents of memory are transferred from the location in memory pointed
at by SP to register. Let us examine now the contents of memory after the execution of
PULA instruction

15

SP points here after PULA

SP points here before PULA

address n

address n-1 unused
content

of A

Register to register moves make use of the inherent addressing mode, since source
and destination address are already defined in the instruction.

TAP Transfer A to CCR TPA Transfer CCR to A
TAX Transfer A to X TXA Transfer X to A
TSX Transfer SP+1 to H:X TXS Transfer H:X-1 to SP

TAP transfers the contents of the accumulator to the condition code register CCR.
Note that the bits 5 and 6 of the CCR are always set to one, and the TAP instruction
therefore can modify only bit 7 and bits 4 to 0. TPA however transfers all CCR bits to
the accumulator. TPA in conjunction with TAP is used to temporarily save condition
code register contents before execution of a program segment, which should not modify
the contents of the CCR, and restore contents after. Example code would look like

TPA
PSHA
////
PULA
TAP

where //// represents any number of lines of code.

TAX transfers the contents of accumulator to X, that is, duplicates A's contents to
the low byte of the index register. TXA just does the reverse of the TAX instruction.
The TAX instruction has been placed into the HC05 family of processors instruction
set to emulate “accumulator-offset indexed” addressing. Note that the HC05 family
has just an 8-bit index register, and zero offset, 8-bit offset, and 16-bit offset indexed
addressing can span a data array of 256 byte size maximum anywhere in memory. If,
for example, a program has to retrieve the nth data byte of an array starting at address
$E400, where n is contained in the accumulator, we could write he following piece of
code to solve the task:

TAX
LDA $E400,X

The HC08 family of processors however have a 16-bit index register H:X. To use the
above code for a HC08 family processor, the high portion of the index register H has
to be cleared first using a CLRH instruction.

TSX and TXS are 16 bit transfers between stack pointer and index register and
need special attention. TSX transfers contents of the stack pointer plus one into the

16

index register, and not its own content. This instruction makes the index register point

to the last item pushed onto stack. It is good programming practice to use stack for
variables, temporaries and scratch area and not some absolute memory area of the
microcomputer. In such case all input data will be pushed onto stack and additional, if
necessary, scratch area reserved on stack. Then using TSX the index register will point
to the area of stack memory where all data is stored. At exit, all stack area has to be
restored. Example code would look like

PSHX
PSHH
PSHA
TSX
LDA 1,X
////

Here LDA 1,X would load the saved value of H into the accumulator. Note that in
this way any data on stack can be accessed in random order.

SP points here before PSHX

SP points here after PSHA

H:X points here after TSX
content

of H
content

of X

content
of A

unused

address n
address n-1
address n-2

address n-3

The programmer has to restore the stack by pulling off the stack the same number of
bytes pushed.

TXS transfers contents of index register minus one into the stack pointer, and is
complement instruction of TSX. TXS is a very infrequently used instruction and can be
used only to initialize the stack pointer from the index register value. This is very
useful since hardware reset initializes SP to $00FF. The 68HC908GP32 microcontroller
has 512 bytes of RAM in the address range $0040 to $023F. The following two lines of
code would initialize the SP to $023F.

LDHX #$0240 Point to top of RAM of 68HC908GP32
TXS H:X - 1 => SP

To move data between different memory locations usually a load source data to
accumulator, then store accumulator content to destination operation with one LDA
and STA instruction in sequence was performed. This was typical for most
microprocessors and microcontrollers. Since microcontrollers execute in majority move
type instructions to move data bytes between memory and on-chip peripherals located
in the first 256 bytes of address range, a new instruction MOV has been implemented
with the HC08 family of microcontrollers. This speeds up processing and shortens
code length. MOV moves a byte of data from a source address to a destination address
without the use of the accumulator. Data is examined as it is moved, and condition

17

code bits are updated. Source data is not changed. To specify source and destination

four addressing modes for the MOV instruction are defined as follows:

1. IMM/DIR moves an immediate byte to a direct memory location.
2. DIR/DIR moves a direct location byte to another direct location.
3. IX+/DIR moves a byte from a location addressed by H:X to a direct location.

H:X is incremented after the move.
4. DIR/IX+ moves a byte from a direct location to one addressed by H:X. H:X

is incremented after the move.

Let us give some simple examples to show the advantages of the MOV instruction.
First let us initialize PortA and PortB of the 68HC908GP32 located at addresses $00
and $01 in page 0 respectively. Using load and store instructions we would write

LDA #$55 Load accumulator with value 2 ~/2 bytes
STA $00 Save accumulator 3 ~/2 bytes
LDA #$AA Load accumulator with value 2 ~/2 bytes
STA $01 Save accumulator 3 ~/2 bytes

This code would use up 8 bytes in memory and execute in 10 cycles. Using the MOV
instruction

MOV #$55,$00 Move $55 to location $00 4 ~/3 bytes
MOV #$AA,$01 Move $AA to location $01 4 ~/3 bytes

the same program would require only 6 bytes and execute in 8 cycles. If the above
load store sequence should not have modified the accumulator, a PSHA has to used
before the LDA #$55 instruction and a PULA has to follow the STA $01 instruction,
lengthening the code and slowing it down further.

Let us now give a more complex example where an array of bytes starting at
location BEGIN and ending at location END, are to be sent byte by byte to Port A of
the 68HC908GP32 microcontroller. Using the MOV instruction, the code would look
like

LDHX #BEGIN Point to string in memory 3 ~/3 bytes
LOOP MOV X+,$00 move data from memory to Port A 4 ~/2 bytes

CPHX #END has pointer reached END ? 3 ~/3 bytes
BLS LOOP if not, send next one 3 ~/2 bytes

The instruction CPHX (ComPare H:X) compares H:X against the upper limit END and
updates the flags in the CCR. The instruction BLS (Branch if Lower or Same) tests
whether the CCR bits indicate a lower or same case for the compare operation or not.
The same task could be done using again load and store instructions and a separate
index register incrementation using AIX #1 as follows

LDHX #BEGIN Point to string in memory 3 ~/3 bytes
LOOP LDA ,X Get data from memory 2 ~/1 byte

18

STA $00 Store data to Port A 3 ~/2 bytes

AIX #1 increment H:X by 1 2 ~/2 bytes
CPHX #END has pointer reached END ? 3 ~/3 bytes
BLS LOOP if not, send next one 3 ~/2 bytes

using up more memory for program code and executing slower.

2-4-2 Arithmetic Instructions

The computer is often used to compute numerical data, as the name implies, or to
control a process or machinery. These operations need arithmetic instructions, which
we will now study. However, you must recall that computers are designed and programs
are written to enhance static or dynamic efficiency. Rather than having four basic
arithmetic instructions - add, subtract, multiply, and divide - computers have
instructions that occur most often in programs. Rather than the sophisticated divide,
we will see the often used increment and decrement instruction in a computer. It is
also a fact that the ability to execute multiply and divide instructions needs a high
amount of additional hardware in the arithmetic-logic unit, but today VLSI technology
easily allows us to do so. In control and data acquisition applications multiplication
and division are frequently used, and due to this fact, the Motorola HC08 family of
microcontrollers got a 8 x 8 multiply and a 16 / 8 divide instruction. Arithmetic
instructions make use of the immediate, direct, indexed, extended, and inherent
addressing modes. Let us first look at addition and subtraction.

ADD ADD to accumulator
ADC ADd with Carry to accumulator

SUB SUBtract from accumulator
SBC SuBtract with Carry from accumulator

As it can be easily seen, there are two types of addition and subtractions, namely
with and without carry. Addition without carry adds contents of memory to the
relevant accumulator. The addition can generate a carry, since input and output of the
operation have to fit to same size. All conditional results of the addition are reflected
in the bits of the condition code register. Addition with carry adds contents of memory
and the carry bit to the accumulator and may generate also a carry. Due to this fact,
addition with carry is used if multi-byte sized numbers are to be added. Let us have
three examples to add 24-bit (3 byte) numbers. The full assembly listing below shows
memory location, machine code, label area, instruction mnemonic, operand and optional
comment fields.

0100 C6 0182 ADD24 LDA $0182
0103 CB 0185 ADD $0185
0106 C7 0188 STA $0188 Save sum LSB
0109 C6 0181 LDA $0181
010C C9 0184 ADC $0184
010F C7 0187 STA $0187 Save sum NSB

19

0112 C6 0180 LDA $0180

0115 C9 0183 ADC $0183
0118 C7 0186 STA $0186 Save sum MSB

0100 45 0180 ADD24 LDHX #$0180 Point to MSB of source
0103 E6 02 LDA 2,X Get LSB
0105 EB 05 ADD 5,X add
0107 E7 08 STA 8,X Save sum LSB
0109 E6 01 LDA 1,X
010B E9 04 ADC 4,X
010D E7 07 STA 7,X
010F F6 LDA ,X
0110 E9 03 ADC 3,X
0112 E7 06 STA 6,X

0100 45 0003 ADD24 LDHX #3 set loop counter
0103 98 CLC clear carry bit
0104 D6 0182 ALOOP LDA $0182,X get number
0107 D9 0185 ADC $0185,X add with carry
010A D7 0188 STA $0188,X store sum
010D 5B F5 DBNZX ALOOP decr. X, branch if not 0

In the first two examples, the least significant byte of the numbers are added without
carry, whereas the more significant bytes are added using carry. Since load and store
operations do not modify the carry bit, carry between additions is not lost. Note that
the program segment using extended addressing needs 27 bytes and executes in 36
clock cycles, compared to 20 bytes and 29 clock cycles for the indexed mode including
initialization of the index register. The third example making use of 16-bit offset
indexed addressing and using the X register also as a loop counter. The DBNZX
instruction is a looping primitive decrementing X by one and testing the Z flag of the
CCR. If the Z flag is not set, that is, X has not reached zero, a branch to the given label
is made. This short code needs only 15 bytes for the task but due to 16-bit offset
indexed addressing timing and the DBNZX instruction overhead 48 clock cycles are
needed. Note that a CLC instruction is used before the loop performing additions
with carry. This code is only efficient for large loop counts.

Another interesting example would be data manipulation on stack as shown below:

PSHX
PSHH
PSHA
TSX
ADD 2,X
STA 2,X
CLRA
ADC 1,X
STA 1,X
PULA

20

PULH

PULX

Examining stack after the TSX instruction executed, we would see

SP points here before PSHX

SP points here after

H:X points here after
pushed H

pushed X

pushed A

unused

address
address
address

address

This small program segment does an effective address calculation adding the
unsigned 8-bit value in the accumulator to the index register (H:X). Since there is no
instruction available which can add the contents of A to H:X, the contents of H:X has
to be saved first in memory to allow a memory to register addition operation. After
TSX the index register points to the memory location, where the accumulator has been
saved by PSHA. Now, using first the ADD 2,X (ADD memory content to accumulator)
instruction in indexed addressing mode and with one offset, we obtain A = A + X. We
save this sum using STA 2,X again onto stack and overwrite the previous value of X.
The possible carry C, generated during the addition of A and X is still in the CCR.
After zeroing A by executing CLRA and then by ADC 1,X adding A to H (H contained
in memory at 1,X) together with the possible carry of the previous addition, the
content of A will be either equal to the original H or H+1. We save this sum using STA
1,X again onto stack and overwrite the previous value of H. Now the stack looks like

SP points here before PSHX

SP points here after PSHA

H:X points here after TSX
C+H

A+X

A

unused

address n
address n-1
address n-2

address n-3

Executing finally in sequence PULA, PULH and PULX instructions, the memory contents
in stack are transferred to the A and H:X registers, and the stack pointer is also
updated to point to the memory location at program start.

Having explained addition in detail, there is no need to give examples for
subtraction, since the code writing principles are identical. A slight variant of the
subtract operation, the comparison however needs special attention.

Compare instructions compare contents of registers against memory contents.
These instructions perform also subtractions, but do not write the resulting difference
into the associated register. They just update the CCR flags as if a subtraction was
done.

21

CMP CoMPare accumulator against content of memory
CPHX CoMPare index register H:X against content of memory
CPX ComPare X register against content of memory

The CMP and CPX instructions are 8-bit comparisons whereas the CPHX is a 16-bit
comparison. Let us give a simple example which checks Port A contents against a
limit. If Port A is less than or equal the limit value, set Port B equal to 1, else equal to 2.

LDA #$7F Set comparison value
CMP $00 Read Port A
BHI High go to High if value is higher
LDA #1 else set A = 1
BRA Save go to Save

High LDA #2 Set A = 2
Save STA $01 Save A in Port B

This program segment makes the assumption that Port A and Port B have been initialized
to act as input and output respectively. To clear memory locations starting at $0040
and ending at $01FF the following simple code can be used:

CLRM LDHX #$0040 Let H:X point to first location
CLOOP MOV #0,X+ move $00 to memory, increment H:X

CPHX #$01FF compare H:X against upper limit
BLS CLOOP branch to CLOOP if lower or same

A special case of the compare instructions are the TST instructions

TSTA TeST Accumulator
TSTX TeST X register
TST TeST content of memory

which do an immediate compare against zero of the accumulator, index low byte or
memory. These instructions modify the zero and minus flags and reset the overflow
flag in the CCR.

As noted earlier, some arithmetic instructions are included in the instruction set
to enhance static and dynamic efficiency. We often add 1 to or subtract 1 from an
accumulator or a byte in memory, say to count the number of times that something is
done. Rather than use an ADD instruction with an immediate value of #1, a shorter
instruction INCA is used for these many instances. The increment and decrement
instructions

INCA INCrement A
INCX INCrement X
INC INCrement content of memory

DECA DECrement A

22

DECX DECrement X

DEC DECrement content of memory

add or subtract 1 from A, X or a memory location. Examining the flags, it seems a little
puzzling that the carry bit is unaffected by an INC or DEC instruction. Since INC or
DEC are usually used to update a loop counter, these instructions are used for counting,
and not directly for arithmetic. Since any memory cell can be used for this purpose, a
large number of counters can be easily constructed without using the A and X registers.

Two slightly different addition like instructions are the

AIX Add immediate to H:X register
AIS Add immediate to SP register

instructions to add a signed 8-bit value immediately to the contents of the H:X or SP
registers respectively. With this instruction it is possible to decrement or increment
the H:X or SP register in the range -128 to +127. Note that these instructions do not
change any flags, since they are just pointer modifiers. The AIS instruction can be
used to create and remove a stack frame buffer that is used to store temporary variables.
The following example shows how to load into A content of location pointed at by
H:X plus A. H:X is preserved.

PSHX Save original H:X on stack
PSHH
PSHX Push X then H onto stack
PSHH
ADD 2,SP Add stacked X to A
TAX Move result into X
PULA Pull stacked H into A
ADC #0 Take care of any carry
PSHA Push modified H onto stack
PULH Pull back into H
AIS #1 Clean up stack
LDA ,X Get Ath element of array
PULH Restore original H:X
PULX

This operation emulates a LDA A,X instruction, which is not available in the HC08
family instruction set. This addressing mode, the so called accumulator-offset indexed
addressing mode, simplifies data operations on arrays dramatically.

Most of the control, data acquisition and signal processing algorithms use in
addition to addition and subtraction, multiplication and division. The implementation
of hardware multiplier and divider required a very large number gates in the ALU
increasing the chip area and thereby the cost. The first microcontroller to incorporate a
hardware multiplier was the Motorola MC6801. Later, as VLSI technology advanced,
more complex microcontrollers like the MC68HC11 were designed, which also
incorporated a hardware divider. The HC08 family of microcontrollers, built using the

23

latest VLSI technologies, can easily incorporate the hardware multiplier and divider.

The 8 by 8 multiply instruction MUL, multiplies A and X, and stores the 16-bit product
in X:A, i.e. overwriting original multiplier and multiplicand. The carry bit is cleared
after this operation.

DIV divides a 16-bit unsigned dividend contained in the concatenated registers H
and A by an 8-bit divisor contained in X. The quotient is placed in A, and the remainder
is placed in H. The divisor is left unchanged. An overflow (quotient > $FF) or divide-by-0
sets the C bit, and the quotient and remainder are indeterminate.

Arithmetic in microprocessors is mostly done in binary or hexadecimal notation
because of the higher byte efficiency. However, for human interfacing decimal notation
is more practical. The DAA instruction, for decimal adjust accumulator, is used when
binary-coded decimal numbers are being added. Briefly, two decimal digits per byte
are represented with binary-coded decimal, the most significant four bits for the most
significant digit and the least significant four bit for the least significant digit. Each
decimal digit is represented by its usual 4-bit expansion so that the 4-bit sequences
representing 10 through 15 are not used. Only addition instructions affect the half-carry
bit to enable binary-to-BCD conversion by the DAA instruction. To see how the decimal
adjust works, suppose that the hexadecimal contents of A is $46 and the hexadecimal
contents of location $0140 is $27. After

ADD $0140

is executed, the contents of A will be $6D and the carry bit will be zero. However, if
we are treating this numbers as binary-coded decimal numbers, what we want is $73
in A. The sequence

ADD $0140
DAA

does just that. The DAA instruction may be used only after ADD or ADC instructions.

Negation, subtracting a number from 0, is done often enough that it merits a
special instruction. The instructions

NEGA NEGate A
NEGX NEGate X
NEG NEGate content of memory

subtract the 8-bit number in A, X or a memory location from zero, placing the result in
the same place as the operand. The bits C, N, Z, and V are modified for this operation.

Clearing, or writing a 0 to a destination, is a very important instruction to preset a
memory location or register. The bits N and V are cleared and Z is set. C is unchanged.

CLRA CLeaR A
CLRX CLeaR X

24

CLR CLeaR content of memory

2-4-3 Logic Instructions

Logic instructions are used to set, clear or modify individual or multiple bits or
bit patterns in accumulators, registers and memory. They are used by compilers,
program that translate high-level languages to machine code, to manipulate bits to
generate machine code. They are used by controllers of machinery because bits are
used to turn things on and off. They are used by operating systems to control
input/output (I/O) devices and to control allocation of time and memory on a computer.
Combinatorial logic instructions of the HC08 are

AND AND A
ORA OR A
EOR Exclusive OR A

and the one's complement of an accumulator or memory byte

COMA COMplement A
COMX COMplement X
COM COMplement content of memory

A variant of the AND instruction is the BIT instruction, the same way the CMP
instruction is compared with the SUB instruction. The BIT

BIT BIT test A

instructions logically and the contents of memory with the respective accumulator,
update the N and Z flag, reset the V flag bit, but do not change the contents of the
accumulator in use.

In microcontroller applications we frequently have to clear or set a specific bit of
available ports. This can be accomplished by using the AND and ORA instructions
respectively. Let us for example write a small segment of code to clear bit 3 of Port A
and to set bit 0 of Port B as follows

LDA $00 Read Port A data 3~/2 bytes
AND #$FB AND A with $FB to clear bit 3 2~/2 bytes
STA $00 Store data in Port A 3~/2 bytes
LDA $01 Read Port B data 3~/2 bytes
ORA #$01 OR A with $01 to set bit 0 2~/2 bytes
STA $01 Store data in Port B 3~/2 bytes

As can be seen each operation takes three lines of code with a total execution time of
16 clock cycles and a size of 12 bytes of memory. To shorten and speedup code two
new instructions

25

BCLR n Clear Bit n in Memory

BSET n Set Bit n in Memory

have been added to the instruction set. Rewriting the above code we would obtain

BCLR 3,$00 Clear bit 3 of location 0 4~/2 bytes
BSET 0,$01 Set bit 0 of location 1 4~/2 bytes

speeding up the execution by a factor two and reducing memory requirement by a
factor 3. Note that this two new instructions do not modify any CCR bits and the
memory has to be in direct page (first 256 locations). All microcontrollers of the HC08
family have I/O located in direct page.

Shift and rotate instructions are a special group of logic instructions, rearranging
bits of data in an accumulator, X register or memory byte. For example, the arithmetic
shift-left instruction

ASLA Arithmetic Shift Left A
ASLX Arithmetic Shift Left X
ASL Arithmetic Shift Left content of memory

shifts all the bits left by one, putting the most significant bit into the carry bit of the
CCR, and putting a zero in on the right.

b7 b0

0C

The mnemonics

LSLA Logic Shift Left A
LSLX Logic Shift Left X
LSL Logic Shift Left content of memory

are synonyms of the ASLx instructions, because an arithmetic shift-left is equivalent to
a logic shift. Shifting all bits up (to the left) is equal to a multiplication by two.

In the shift-right operation of an accumulator, X register or memory byte, there
exists a major difference between an arithmetic and logic operation. The arithmetic
shift-right instructions

ASRA Arithmetic shift right A
ASRX Arithmetic shift right X
ASR Arithmetic shift right content of memory

shift all bits right by one, holds the most significant bit in its position, and puts the
least significant bit into the carry bit of the CCR.

26

b7 b0

C

Holding the most significant bit in place, the sign is preserved, and therefore this
instruction acts as a signed divide-by-two operation. Assuming the contents of the
accumulator to be $80 (-128 decimal) before the ASRA instruction, it can be seen that it
will be $C0 (-64 decimal) after.

The logic shift-right is just the complement of the shift-left operation, shifting all
bits right by one, putting the least significant bit into carry, and putting a zero in on
the left. This if analyzed, is equivalent to an unsigned divide-by-two.

LSRA Logic Shift Right A
LSRX Logic Shift Right X
LSR Logic Shift Right content of memory

0 C
b7 b0

Rotate instructions, like shift instructions, shift the bits in the accumulator, X
register or memory byte. However, while the carry bit is shifted in on one side, the bit
on the other side is shifted out into carry. Due to this circular operation, these instructions
are called rotate instructions.

ROLA ROtate Left A
ROLX ROtate Left X
ROL ROtate Left content of memory

b7 b0

C

RORA ROtate Right A
RORB ROtate Right X
ROR ROtate Right content of memory

C
b7 b0

Rotate instructions are used with multiple-byte arithmetic operations such as
division with and multiplication by two. For example, the sequence

ASL $0102
ROL $0101
ROL $0100

27

multiplies the 24-bit number in memory locations $0100 - $0102 by two.

Another important code simplifying instruction is NSA, nibble swap accumulator.
This instruction exchanges the two halves of the accumulator. The NSA instruction is
used for more efficient storage and use of binary-coded decimal operands. The following
code will compress two bytes, each containing one BCD nibble, into one byte in A.
Each byte contains the BCD nibble in bits 0-3. Bits 4-7 are clear.

LDA BCD1 Read first BCD byte
NSA Swap LS and MS nibbles
ADD BCD2 Add second BCD byte

If NSA had not been incorporated in the instruction set we had to realize the
above code as follows:

LDA BCD1
LSLA
LSLA
LSLA
LSLA
ADD BCD2

The remaining logic instructions

CLC CLear Carry bit SEC SEt Carry bit
CLI CLear Interrupt bit SEI SEt Interrupt bit
CLV CLear oVerflow bit SEV SEt oVerflow bit

are used to clear or set individual bits in the condition code register.

2-4-4 Control instructions

The next class of instructions, the control instructions or program flow control
instructions, are those that affect the program counter. After the move class, this class
composes the most often used instructions. Control instructions are divided into
branching instructions and what might be called subroutine and interrupt instructions.

Let us discuss branching instructions first. Branching instructions all use relative
addressing. A source program specifies the destination of a branch instruction by its
absolute address, either as a numerical value or as a symbol or expression which can
be numerically evaluated by the assembler. The assembler calculates the 8-bit relative
offset as the difference from this absolute address and the current value of the location
counter. During program execution, if the tested condition is true, the two’s complement
offset is sign-extended to a 16-bit value which is added to the current program counter.
This causes program execution to continue at the address specified as the branch
destination. If the tested condition is not true, the program simply continues to the

28

next instruction after the branch. Table 2-1 gives a summary of all branch instructions.

There are two unconditional and 18 conditional branch instructions. For example,
the instruction

BRA Label

for “branch always” will cause the program counter to be loaded with the address
“Label”. Corresponding to the BRA instruction the instruction

BRN Label

for “branch never” will never branch to location “Label”. This instruction seems to be
useless at the first glance, but it is useful because any branching instruction can be
changed to a BRA or BRN instruction just by changing an opcode byte. This allows a
programmer to choose manually whether a particular branch is taken while he or she
is debugging a program.

Conditional branch instructions test the condition code bits. As noted earlier these
bits have to be carefully watched, for they make a program look so correct that you
want to believe that the hardware is at fault. The hardware is rarely at fault. The
condition code bits are often the source of the fault because the programmer mistakes
where they are set, and which ones to test in a conditional branch. See the right
column of the operation code bytes table in Appendix 1. Note that move instructions
generally change the N and Z flag bits, but not the C bit, or change no bits at all;
arithmetic instructions generally change all five bits H, N, Z, V, and C; logic instructions
generally change the N, Z and C flag bits. There is sound rationale for which bits are
affected, and the way they are changed.

29

Table 2-1. Branch Instruction Summary

Branch Complementary Branch

Opcode
92
90
27
93
91
22
24
27
23
25
25
27
2B
2D
29
2F
20

Test
r>m
r≥m
r=m
r≤m
r<m
r>m
r≥m
r=m
r≤m
r<m

Carry
result=0
Negative

I mask
H-bit

IRQ high
Always

Boolean
(Z)∩(N⊕ V)=0

(N⊕ V)=0
(Z)=1

(Z)∩(N⊕ V)=1
(N⊕ V)=1
(C)∩(Z)=0

(C)=0
(Z)=1

(C)∩(Z)=1
(C)=1
(C)=1
(Z)=1
(N)=1
(I)=1
(H)=1

–
–

Mnemonic
BGT
BGE
BEQ
BLE
BLT
BHI

BHS/BCC
BEQ
BLS

BLO/BCS
BCS
BEQ
BMI
BMS

BHCS
BIH

BRA

Test
r≤m
r<m
r≠m
r>m
r≥m
r≤m
r<m
r≠m
r>m
r≥m

No carry
result≠0

Plus
I mask=0

H=0
IRQ low
Never

Opcode
93
91
26
92
90
23
25
26
22
24
24
26
2A
2C
28
2E
21

Mnemonic
BLE
BLT
BNE
BGT
BGE
BLS

BLO/BCS
BNE
BHI

BHS/BCC
BCC
BNE
BPL
BMC

BHCC
BIL

BRN

Signed
Signed
Signed
Signed
Signed

Unsigned
Unsigned
Unsigned
Unsigned
Unsigned

Simple
Simple
Simple
Simple
Simple
Simple

Uncond.

Type

explanations : (…) contents of ; ∩ logic AND

There are 10 simple branching instructions, which test only a single bit of the
CCR.

BNE Label Branches to location Label if Z = 0
BEQ Label Branches to location Label if Z = 1
BPL Label Branches to location Label if N = 0
BMI Label Branches to location Label if N = 1
BCC Label Branches to location Label if C = 0
BCS Label Branches to location Label if C = 1
BHCC Label Branches to location Label if H= 0
BHCS Label Branches to location Label if H = 1
BIL Label Branches to location Label if the IRQ pin is low
BIH Label Branches to location Label if the IRQ pin is high

Frequently, two numbers are compared, as in a compare instruction or a subtraction.
One would like to make a branch based on whether the result is positive, negative,
less than, and so forth. The table below, where R stands for the contents of a register
and M stands for the contents of a memory location (or locations), shows the test and

30

the branching statement to make depending on whether the numbers are interpreted

as signed or unsigned.

Test Signed Unsigned

R < M BLT BLO (or BCS)
R ≤ MBLE BLS
R ≥ MBGE BHS (or BCC)
R > M BGT BHI

The branch mnemonics for the two's complement, or signed, number are

BLT Branch if Less Than Branch if N ⊕ V = 1
BLE Branch if Less than or Equal to Branch if Z + (N ⊕ V) = 1
BGE Branch if Greater than or Equal to Branch if N ⊕ V = 0
BGT Branch if Greater Than Branch if Z + (N ⊕ V) = 0

The mnemonics for unsigned numbers are

BLO Branch if LOwer Branch if C = 1
BLS Branch if Lower or Same Branch if C + Z = 1
BHI Branch if HIgher Branch if C + Z = 0
BHS Branch if Higher or Same Branch if C = 0

Notice that BLO is the same instruction as BCS, and BHS is the same instruction as
BCC. One should consult the instruction set summary in Appendix 1 for a while to
make sure that the correct branch is being chosen. Each of the preceding branch
statements is represented in memory by an opcode byte followed by the 1-byte two's
complement relative offset. Note that due to the one-byte two's complement offset, the
maximum displacements are limited to +127 and -128. Larger displacements can be
spanned using additional BRA instructions, although this rather seldom happens.

Notice also that a branch for 2’s complement overflow is missing. It can be
implemented by the following code segment

TPA
TSTA
BMI V_SET
//// code if V is not set

V_SET //// code for case when V is set

since the V flag is the most significant bit of the CCR.

In addition to the branch instructions there are some additional instructions which
combine two operations in one. These are

BRCLR n BRanch if bit n in memory CLeaR
BRSET n BRanch if bit n in memory SET

31

CBEQ Compare and Branch if EQual

CBEQA Compare A with immediate operand and Branch if EQual
CBEQX Compare X with immediate operand and Branch if EQual
DBNZ Decrement content of memory and Branch if Not Zero
DBNZA Decrement A and Branch if Not Zero
DBNZX Decrement X and Branch if Not Zero

The BRCLR n instruction tests bit n of a memory location in direct page and if
clear branches to the given label. If the tested bit is not clear, the instruction following
the BRCLR n instruction is executed. The BRSET n instruction tests bit n of a memory
location in direct page and if set branches to the given label. If the tested bit is not set,
the instruction following the BRSET n instruction is executed.

CBEQ compares the operand with the accumulator (or index register for CBEQX
instruction) against the contents of a memory location and causes a branch if the
register (A or X) is equal to the memory contents. The CBEQ instruction combines
CMP and BEQ for faster table lookup routines and condition codes are not changed.

The IX+ variation of the CBEQ instruction compares the operand addressed by
H:X to A and causes a branch if the operands are equal. H:X is then incremented
regardless of whether a branch is taken. The IX1+ variation of CBEQ operates the
same way except that an 8-bit offset is added to H:X to form the effective address of
the operand.

Let us now have a simple piece of code to skip spaces ($20) in a string of ASCII
characters. The string must contain at least one non-space character and it is assumed
that on entry the H:X register points to start of string and at exit H:X points to first
non-space character in the string.

LDA #$20 Load space character
SKIP CBEQ X+,SKIP Increment through string until
* non-space character found.

AIX #-1 Adjust pointer to point to 1st non-space char.

Note that X post increment will occur irrespective of whether branch is taken or not.
In this example, H:X will point to the non-space character plus 1 immediately following
the CBEQ instruction.

CBEQA and CBEQX compare accumulator or index low byte against an immediate
operand in memory and branch if the operand is equal to the respective register
content.

The looping primitives DBNZ, DBNZA and DBNZX subtract 1 from the contents
of memory, A, or X; then branch using the relative offset if the result of the subtraction
is not $00. DBNZX only affects the low order eight bits of the H:X index register pair;
the high-order byte (H) is not affected. An example for DBNZX was given earlier in
section 2-4-2 along with the ADD and ADC instructions.

32

The BRA instruction making use of indexed and extended addressing instead of

relative addressing is called the JMP “Jump” instruction. The effective address is
retrieved from memory by the locations using the index register contents plus the
unsigned offset in the indexed mode or by directly specifying the explicit 16-bit address
in the extended mode.

The indexed mode of addressing for the jump instruction is of particular importance,
since it eases the use of jump tables. For example, let us write a small program
segment, where the program should jump to the nth table address, called a vector.
Assume that at sequence entry, accumulator contents is n = 2, and H:X points to the
beginning of the vector address table (Vector 0) in memory.

Vect.0H
Vect.0L

Vect.1L

Vect.2H

Vect.2L

Initial H:X registerTable start

H:X points here after addition

Vect.1H

LSLA Multiply A by two
PSHX Push X then H onto stack
PSHH
ADD 2,SP Add stacked X to A
TAX Move result into X
PULA Pull stacked H into A
ADC #0 Take care of any carry
PSHA Push modified H onto stack
PULH Pull back into H
PULA Clean up stack
LDA ,X Get Vector high byte into A
LDX 1,X Get Vector low byte into X
PSHA Copy A into H
PULH
JMP ,X Jump to program at vector address

The accumulator has to be multiplied by two before addition to the index register H:X,
since each entry in the vector table is of two byte length. Since the indexed addressing
mode for LDHX is missing we cannot load H:X with the content of memory H:X is
pointing at. To do so, we load A with the high byte of the vector address using
indexed addressing with zero offset, and load X with the low byte of the vector
address using again indexed addressing, but with an offset of one. After copying A to
H via push and pull operations, H:X contains the vector address. Now the indexed
jump can be performed.

33

Finally there is one more unconditional branch instruction, the “No Operation”

NOP instruction. This instruction does nothing, but increments the program counter.
It can be used to tune delay loops, as this example can show:

CLRA Preset loop count to 256
DLOOP NOP

NOP
DECA
BNE DLOOP

Without the two NOP instructions the loop would execute in 4 clock cycles, and the
total delay would be 256 x 4 = 1024 clock cycles. However, with the NOP instructions
inserted the loop time increased to 6, and the total delay to 256 x 6 = 1536 clock cycles.

You may have already written a program where one segment of it is repeated in
several places. Have you wished that you knew how to avoid writing it more than
once? Two solutions exist, the first is called a subroutine call, the second a macro
definition. We will deal now with the first solution, the subroutine call. A subroutine
is a program segment which ends with an instruction such that the subroutine program
will return to the main calling program. This return instruction has to retrieve
information where the main program has to be continued, and has to load the program
counter with this value. For this purpose subroutine call instructions save the address
of the instruction immediately following the subroutine call instruction onto hardware
stack, low byte first, and load the program counter with the address of the called
subroutine; the RTS “return from subroutine” instruction causes the top two bytes of
the hardware stack to be pulled back into the program counter, high byte first. In
order to guarantee proper operation of the subroutine call and return instruction pair,
the programmer has to assure that the saved program counter has to be on top of
stack at the time the RTS instruction is executed.

34

Machine code for
subroutine call

Next instruction
of main program

•
•
•

•
•
•

Subroutine
program start

•
•
•

$81Machine code for
subroutine return

Machine code for
subroutine call

Next instruction
of main program

Figure 2-2. Subroutine call and return

The Motorola HC08 family has two subroutine call instructions:

BSR Branch to SubRoutine
JSR Jump to SubRoutine

The BSR instruction makes use of relative addressing, whereas the JSR instruction
makes use of direct, indexed, and extended addressing.

Addition and subtraction of 8-bit numbers is simple matter for the HC08
programmer. 8 by 8 multiplication is also done using the MUL instruction and 16 by 8
division is realized using the DIV instruction. However, multiplication of say two
16-bit numbers yielding a 32-bit result, or other more complex but frequently used
routines or algorithms can be written down as subroutines to be called from anywhere
in your main program.

The last group of control instructions are made up of interrupt instructions. These
instructions, like subroutine instructions temporarily give up control of the main
program, execute the particular code segment, and finally return back to resume main
program execution. Interrupt instructions save all registers except the H register and
the stack pointer onto hardware stack in contrast to subroutine call instructions. There

35

are three related interrupt instructions:

SWI SoftWare Interrupt
WAIT Enable interrupts; stop CPU
STOP Enable interrupts; Stop Clock Oscillator
RTI ReTurn from Interrupt

Actually interrupts are generated either by hardware or software. The SWI “Software
Interrupt” serves to generate interrupts under software control. Executing the SWI
instruction the CPU will first stack register contents starting with program counter up
to the condition code register, then set the I bit in the CCR, and finally read contents of
the software interrupt vector at memory locations $FFFC : $FFFD and load it into the
program counter.

A
X

PC H
PC L

CCR

SP points here after SWI

SP points here before SWIaddress n

address n-4
address n-5

The value in locations $FFFC : $FFFD is the start address or vector of the so called
software interrupt service routine or software interrupt handler. Since the start address
is always retrieved from the same locations, the SWI instruction is of the inherent
addressing mode. The interrupt service routine has to end with the RTI “Return from
Interrupt” instruction, which pulls off stack registers saved. The SWI instruction is
primarily used to insert a so called breakpoint into a user program. A breakpoint is a
point in the program, where normal execution stops, and the monitor program gains
temporarily control of the system to enable debugging. After having checked the
program, the user can return from the breakpoint and resume normal program execution.
For HC05 family compatibility, the SWI instruction and hardware interrupts do not
stack the H register. If however, the interrupt service routine is to change the H
register, it has to be stacked by a PSHH instruction at the beginning of the service
routine, and pulled off stack by a PULH instruction before the RTI instruction.

The SWI instruction is frequently used in operating systems to emulate system
functions or other nonexisting instructions. Emulation means getting exactly the same
result, but perhaps taking more time. Since only one SWI instruction is defined, but
usually many operations are desired to be emulated, a programming trick is used: The
SWI instruction is followed by a data byte, which enables the programmer to define
256 different SWI operations. This byte, called postbyte, is interpreted in the software
interrupt handler routine, and control is given to the particular interrupt service routine
thereafter. Explaining how to implement this trick is beyond the scope of this book.

36

The WAIT and STOP instructions have been added to enable two different power

saving states. Executing the WAIT instruction, the MCU first clears the I bit in the
CCR, thereby enabling maskable hardware interrupts, then stops the clock of the
CPU, but not the clocks of the peripherals. Stopping the CPU reduces the power
consumption by an important amount. Any peripheral having the capability to generate
interrupts, can upon interrupt reactivate CPU clocks. After CPU clocks are activated,
the CPU will stack its registers, and then fetch the appropriate interrupt vector to start
the interrupt service routine. Executing the STOP instruction however, the MCU will
first clear the I bit in the CCR, then it will stop to clock oscillator. This will stop
everything in the MCU, reducing power consumption to almost zero. A hardware
interrupt applied via the IRQ pin or resetting the MCU will reactivate the clock generator.
Reactivation of the clock is a lengthy process, since the clock generator has to stabilize.
Details about power saving modes and instructions will be covered in later chapters.

Table 2-2. MC68HC908GP32 MCU Interrupt Vector Locations

MSB
FFFE
FFFC
FFFA
FFF8
FFF6
FFF4
FFF2
FFF0
FFEE
FFEC
FFEA
FFE8
FFE6
FFE4
FFE2
FFE0
FFDE
FFDC

LSB
FFFF
FFFD
FFFB
FFF9
FFF7
FFF5
FFF3
FFF1
FFEF
FFED
FFEB
FFE9
FFE7
FFE5
FFE3
FFE1
FFDF
FFDD

Interrupt
RESET

Software Interrupt (SWI)
IRQ Pin

CGM (PLL)
TIM1 channel 0
TIM1 channel 1
TIM1 overflow
TIM2 channel 0
TIM2 channel 1
TIM2 overflow
SPI receiver

SPI transmitter
SCI errors

SCI receiver
SCI transmitter

KBD pin
A/D conv. comp.

Timebase

In
cr

ea
sin

g
pr

ior
ity

Table 2-2 gives a complete listing of all interrupt vectors of the MC68HC908GP32
microcontroller. RESET has the highest priority among all interrupts followed by SWI
and IRQ pin. RESET has the highest priority since it is recognized immediately
immaterial of the state of the MCU. Since SWI can be executed independent of the
state of the I-bit, it has the next highest priority. Among all hardware interrupts,
which are maskable, the IRQ pin has the highest priority. In the event that two or

37

more interrupts happen simultaneously, the interrupt having the higher priority will

be serviced first.

2-4-5 Input/Output Instructions

The last class of instructions, the input/output or I/O class, does not exist for
Motorola microprocessors and microcontrollers. All Motorola microcontrollers use
memory mapped I/O instead of independent I/O. Memory mapped I/O is superior
to independent I/O since all instructions which fetch one of their operands from
memory and/or store a result into memory can be used with I/O devices, i.e. all
move, arithmetic, and logic instructions can be used as I/O instructions.

2-5Assembler Directives and Pseudo Operations

We have shown all instructions of the HC08 family. In order to write a program
that can be assembled, the assembler needs more information. For this purpose some
so called assembler directives and pseudo operations have been defined [2]. The most
frequent used are listed below:

DS #n Define storage Reserve n number of bytes in memory as specified
by operand,

END End of source program
EQU Equate Define label equal to operand,
FCB Form Constant Byte Form a byte in memory with contents

of operand,
FCC Form Constant Character Form ASCII character string in memory defined

in operand field,
FDB Form Double Byte Form double byte in memory with contents of

operand,
MACR Macro Definition Define a macro expression,
MEND Macro Definition End End macro expression,
ORG Origin Force program counter to contents of operand,
RMB Reserve Memory Byte Reserve number of bytes in memory as specified

by operand.

Please note that some non-standard macroassemblers need a semicolon instead of a
space character before the comment field. A more complete set of assembler directives
and pseudo operations can be found in 68HC08 In-Circuit Simulator Operator’s Manual
[2]. Using assembler directives, let us rewrite an example given before

PORTA EQU $00 Define value (address) of PORTA
PORTB EQU $01 Define value (address) of PORTB
*

ORG $0100 Force program to start at $0100
LDA PORTA Read Port A data
AND #$FB AND A with $FB to clear bit 3

38

STA PORTA Store data in Port A

LDA PORTB Read Port B data
ORA #$01 OR A with $01 to set bit 0
STA PORTB Store data in Port B
END

Having defined PortA and PortB earlier in the program by the EQU statements, the
code written is much easier to understand.

The following interrupt service routine will be run upon reception of a byte in the
serial communication interface SCI. The SCI receiver interrupt vector located at
$FFE4:$FFE5 points to the beginning of the SCI service routine SCISER. The FDB
assembler directive will force the assembler to evaulate the address of SCISER and put
its value into locations $FFE4:$FFE5. The two RAM locations $40 and $41 are reserved
by the assembler to be used as INBUF.

SCS1 EQU $16 SCI status register 1
SCS2 EQU $17 SCI status register 2
SCDR EQU $18 SCI data register
*

ORG $40 Point to beginning of RAM
INBUF RMB 2 Storage area for input buffer pointer
*

ORG $E000 Point to SCI interrupt service routine
SCISER LDA SCSI1 read SCI status register 1

LDHX INBUF load input buffer pointer
MOV SCDR,X+ move received data into buffer
STHX INBUF save incremented pointer
RTI return from interrupt

*
ORG $FFE4
FDB SCISER Define SCI receiver inter. service routine
END

References

1. Motorola Inc., “CPU08RM/AD CPU08 Central Processing Unit Reference Manual”
Revision 3, 2001.

2. Motorola Inc., “M68ICS08SOM/D M68ICS08 68HC08 In-Circuit Simulator
Operator’s Manual”, chapter 4.

39

The MC68HC908GP32 Microcontroller Hardware

3-1 Introduction

The MC68HC908GP32 is a member of the low-cost, high-performance HC08 family
of 8-bit microcontroller units (MCUs). The GP32 is a complete monolithic microcontroller
produced in submicron CMOS technology. The block diagram, shown in Figure 3-1,
illustrates the integration of the on-chip resources into a complete powerful
microcontroller [1]. FLASH memory technology eases programming and enables in-
circuit software updating. Hardware features of this microcontroller can be summarized
as follows:

• 8 MHz internal bus frequency
• Low-power design; fully static with stop and wait modes
• Master reset pin and power-on reset (POR)
• 32 Kbytes of on-chip FLASH memory with in-circuit programming

capabilities of FLASH program memory
• 512 bytes of on-chip random-access memory (RAM)
• Serial peripheral interface module (SPI)
• Serial communication interface module (SCI)
• Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with

selectable input capture, output compare, and PWM capability on each
channel

• 8-channel, 8-bit successive approximation analog-to-digital converter (ADC)
• BREAK module (BRK) to allow single breakpoint setting during in-circuit

debugging
• Internal pullups on IRQ and RST to reduce customer system cost
• Clock generator module with on-chip 32 kHz crystal compatible PLL (phase

locked loop)
• Up to 33 general purpose input/output (I/O) pins, including:

– 26 shared function I/O pins
– Five or seven dedicated I/O pins, depending on package choice

• Selectable pullups on inputs only on ports A, C, and D. Selection is on an
individual port bit basis. During output mode, pullups are disengaged.

• High current 10 mA sink/10 mA source capability on all port pins
• Higher current 15 mA sink/source capability on PTC0-PTC4
• System protection features:

– Computer operating properly (COP) module
– Low supply voltage detection with optional reset and selectable trip points
 for 3,0 and 5,0 Volt operation.
– Illegal opcode detection with reset
– Illegal address detection with reset

40

VDDA

VSS

DDADV /VREFH

M68HC08 CPU
CPU

REGISTERS
ARITHMETIC/LOGIC

UNIT (ALU)

CONTROL AND STATUS REGISTER - 64 BYTES

USER FLASH - 32256 BYTES

USER RAM - 512 BYTES

MONITOR ROM - 307 BYTES

USER FLASH VECTOR SPACE - 36 BYTES

CLOCK GENERATOR MODULE

32 kHz OSCILLATOR

PHASE-LOCKED LOOP

24 INTR SYSTEM
INTEGRATION MODULE

SINGLE EXTERNAL IRQ
MODULE

8-BIT ANALOG-TO-DIGITAL
CONVERTER MODULE

POWER-ON-RESET
MODULE

POWER

OSC1
OSC2

CGMXFC

* RST

* IRQ

SSADV /VREFL

DDV

VSSA

PROGR. TIMEBASE
MODULE

SINGLE BRKPT BREAK
MODULE

DUAL V. LOW-VOLTAGE
INHIBIT MODULE

8-BIT KEYBOARD
INTERRUPT MODULE

2-CHANNEL TIMER
INTERFACE MODULE1

2-CHANNEL TIMER
INTERFACE MODULE2

SERIAL COMMUNICATION
INTERFACE MODULE

COMPUTER OPERATING
PROPERLY MODULE

SERIAL PERIPHERAL
INTERFACE MODULE

MONITOR MODULE

DATA BUS SWITCH
MODULE

MEMORY MAP
MODULE

MASK OPTION REGISTER1
MODULE

MASK OPTION REGISTER2
MODULE

DD
RA

PO
RT

A

PTA7/KBD7 –
PTA0/KBD0 †

INTERNAL BUS

DD
RB

PO
RT

B

PTB7/AD7
PTB6/AD6
PTB5/AD5
PTB4/AD4
PTB3/AD3
PTB2/AD2
PTB1/AD1
PTB0/AD0

DD
RC

PO
RT

C

PTC6 †
PTC5 †
PTC4 †‡
PTC3 †‡
PTC2 †‡
PTC1 †‡
PTC0 †‡

DD
RD

PO
RT

D

PTD7/T2CH1 †
PTD6/T2CH0 †
PTD5/T1CH1 †
PTD4/T1CH0 †
PTD3/SPSCK †
PTD2/MOSI †
PTD1/MISO †
PTD0/SS †

PTE1/RxD
PTE0/TxDDD

RE

PO
RT

E
SECURITY
MODULE

MONITOR MODE ENTRY
MODULE

† Ports are software configurable with pullup device if input port.
‡ Higher current drive port pins
* Pin contains integrated pullup device

Figure 3-1. MC68HC908GP32 MCU Block Diagram

The GP32 comes in three different plastic packages, a 40 pin dual-in-line, a 42 pin
shrink dual-in-line, and a 44 pin quad flat pack package. All port pins shown in Figure
3-1 are available for the 44 pin package, whereas some port pins for the 42 and 40 pin
packages are missing.

3-2 Non-Port Pins

As with all microcontrollers there are a group of pins necessary for basic operation.
These are the pin on the left hand side of Figure 3-1. Some of those pins need special
hardware attention. These are the power supply pins VDD and VSS, the clock generator
module (CGM) pins VDDA and VSSA, and the clock oscillator pins OSC1 and OSC2. A
microcontroller is an electronic device, running at a high frequency and consuming
pulsed power. Since printed circuit supply lines are of appreciable length, they make
up non-negligible inductance. The pulsating current would therefore make the supply

41

voltage collapse for very short times of period. To avoid such short reductions in

supply voltage, which could make the device malfunction or work unreliable, the
supply pins have to be bypassed using a low self-inductance ceramic capacitor C1, to
be placed as close as possible to the pins of interest.

VDD VSS

MCU

C1 100nF

C2 10µF
VDD

Figure 3-2. Power Supply Bypassing

Figure 3-2 shows the necessary circuit for power supply bypassing. The electrolytic
capacitor C2 need not to be in close vicinity of the microcontroller since it bypasses
only low frequent current pulses.

Figure 3-3 shows typical connection of external hardware to the Clock Generator
Module (CGMC). Note the presence of the 100nF ceramic bypass capacitor across the
VDDA and VSSA pins. Values of RB, RS, C1, and C2 are crystal dependent. C2 can be an
adjustable capacitor to fine-tune the crystal frequency for extreme accurate timing
applications. Typical values of the above mentioned resistors and capacitors for a
32768 Hz crystal would be 10MΩ, 330kΩ, 10pF, and 22pF respectively. Printed circuit
layout should minimize lead length in the crystal circuit and avoid close vicinity to
traces carrying pulsating signals of similar frequencies. Good layout practice should
run ground traces around the crystal oscillator external circuitry, if possible.

RB
RSX1

C1 C2

CGMXCLK

OSCSTOPENB
(FROM CONFIG)

SIMOSCEN

33nF

10nF
10k

100nF

VDD

VDDAVSSACGMXFCOSC1 OSC2

Figure 3-3. CGMC External Connections

The PLL in the CGMC can synthesize any bus clock frequency up to and in excess
of 8 MHz. Six registers are used to program the CGMC. Table 3-1 gives some numeric
values for the most common bus frequencies generated from a 32768 Hz crystal [1].

42

Table 3-1. Numeric Examples for CGMC
fBUS [MHz] fRCLK [Hz] R N P E L

2,0 32768 1 F5 0 0 D1

2,4576 32768 1 12C 0 1 80

2,5 32768 1 132 0 1 83

4,0 32768 1 1E9 0 1 D1

4,9152 32768 1 258 0 2 80

5,0 32768 1 263 0 2 82

7,3728 32768 1 384 0 2 C0

8,0 32768 1 3D1 0 2 D0

The following code [2] will program the VCO to 32 MHz from a 32768 Hz clock
reference. The 32 MHz VCO will divide to an 8 MHz bus clock. Note that the PLL
can only be programmed when it is off. Therefore, always clear the PLLON bit before
writing to the PLL programming registers.

PCTL EQU $36 PLL Control Register
PBWC EQU $37 PLL Bandwidth Control Register
PMSH EQU $38 PLL Multiplier Select Register High
PMSL EQU $39 PLL Multiplier Select Register Low
PMRS EQU $3A PLL VCO Range Select Register
PMDS EQU $3B PLL Reference Divider Select Register
*

BCLR 5,PCTL Turn off PLL
MOV #$00,PCTL Set P=0 for PRE[1:0]
MOV #$02,PCTL Set E=2 for VPR[1:0]
MOV #$D1,PMSL Set N=977 for MUL[11:0]
MOV #$03,PMSH
MOV #$D0,PMRS Set L=208 for VRS[7:0]
MOV #$01,PMDS Set R=1 for RDS[3:0]
BSET 5,PCTL Turn on PLL
BSET 7,PBWC Enable Auto Bandwidth Control
BRCLR 6,PBWC,* Loop until LOCK bit set
BSET 4,PCTL Select VCO clock as system clock
NOP
NOP

The * in the line BRCLR 6,PBWC,* means to branch to the same instruction
instead of using a label in front of the BRCLR instruction. This is frequently used

43

shortcut in programming. Extensive programming information of the CGMC can be

retrieved from the technical data of the GP32 [1].
The Reset function is used primarily for two purposes in an GP32 system:

1. To provide an orderly and defined startup of MCU activity from a
powerdown,

2. or to return a system to startup conditions without an intervening powerdown
condition.

The MCU has these reset sources:

• Power-on reset module (POR)
• External reset pin RST
• Computer operating properly module (COP)
• Low-voltage inhibit module (LVI)
• Illegal opcode
• Illegal address

All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode)
and assert the internal reset signal (IRST). IRST causes all registers to be retuned to
their default values and all modules to be returned to their reset states [1]. The RST
pin circuit makes this pin both an input and an output. Pulling the asynchronous RST
pin low halts all processing. All internal reset sources pull the RST pin low for 32
CGMXCLK cycles to allow resetting of external peripherals. When power is first applied
to the MCU, the power-on reset module (POR) generates a pulse to indicate that
power-on has occurred. The external RST pin is held low while the SIM counter
counts out 4096 CGMXCLK cycles to allow stabilization of the clock oscillator. Sixty-four
CGMXCLK cycles later, the CPU and memories are released from reset to allow the
reset vector sequence to occur.

IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup
resistor. A logic 0 on the IRQ pin can latch an interrupt request. The external interrupt
pin is falling-edge-triggered and is software configurable to be either falling-edge or
falling-edge and low-level triggered. The MODE bit in the IRQ Status and Control
Register (INTSCR) controls the triggering sensitivity of the IRQ pin [1]. If the interrupt
mask bit I in the condition code register is clear, the following will happen step by
step:

• the current instruction is executed to end,
• registers (except H) are pushed onto stack,
• the I bit is set to avoid other interrupt sources to disrupt the pending one,
• the IRQ vector from $FFFA:$FFFB is fetched.

The interrupt latch remains set until the interrupt vector is fetched, or writing a one to
the ACK bit in the INTSCR, or by reset.

For full resolution, the analog power supply pins VDDAD/VREFH and VSSAD/VREFL
should be connected to a well filtered VDD and VSS respectively.

44

3-3 I/O Ports

Port A

PTA7–PTA0 are general purpose, bidirectional I/O port pins. Any or all of the
port A pins can be programmed to serve as keyboard interrupt pins. These port pins
also have selectable pullups when configured as input. The pullups are automatically
disengaged when configured as output. The pullups are selectable on an individual
port bit basis. The Port A Data Direction Register (DDRA) is used to define the direction
of operation of each bit. A zero in a bit position makes the corresponding port bit to
function as an input, whereas a one makes it function as an output. Reset clears the
DDRA, thereby making the whole Port A input. Data written to Port A Data Register
(PTA) is stored in that register, even when it is configured to function as input.
Reading Port A will return the instantaneous digital state information composed of bit
information of pins configured as input together with bit information of those port
bits configured as output. Note that PTAs content is not modified by reset. To give a
simple example let us initialize Port A bits PTA6-PTA2 to function as input, and
PTA7, PTA1-PTA0 as output. The data direction register DDRA has to be set equal to
binary 10000011. or hex $83.

MOV #$83,DDRA

would do the necessary initialization.

Port B

PTB7–PTB0 are general purpose, bidirectional I/O port pins, which are also shared
as inputs to the analog-to-digital converter (ADC). The Port B Data Direction Register
(DDRB) is used to define the direction of operation of each bit. A zero in a bit position
makes the corresponding port bit to function as an input, whereas a one makes it
function as an output. Reset clears the DDRB, thereby making the whole Port B input.
Data written to Port B Data Register (PTB) is stored in that register, even when it is
configured to function as input. Reading Port B will return the instantaneous digital
state information composed of bit information of pins configured as input together
with bit information of those port bits configured as output. Note that PTBs content is
not modified by reset. The channel select bits of the ADC Status and Control Register
(ADSCR) define which ADC channel/port pin will be used as the input signal. The
ADC overrides the port I/O logic by forcing that pin as input to the ADC. The
remaining ADC channels/port pins are controlled by the port I/O logic and can be
used as general-purpose I/O. Writes to PTB or DDRB will not have any effect on the
port pin that is selected by the ADC. Read of a port pin in use by the ADC will return
a logic 0. Care should be taken when using a port pin as both an analog and digital
input simultaneously to prevent switching noise from corrupting the analog signal.

Port C

PTC6–PTC0 are general purpose, bidirectional I/O port pins. These port pins also

45

have selectable pullups when configured as input. The pullups are automatically

disengaged when configured as output. The pullups are selectable on an individual
port bit basis. PTC0-PTC4 have higher current sink/source capability (15 mA). The
Port C Data Direction Register (DDRC) is used to define the direction of operation of
each bit. A zero in a bit position makes the corresponding port bit to function as an
input, whereas a one makes it function as an output. Reset clears the DDRC, thereby
making the whole Port C input. Data written to Port C Data Register (PTC) is stored in
that register, even when it is configured to function as input. Reading Port C will
return the instantaneous digital state information composed of bit information of pins
configured as input together with bit information of those port bits configured as
output. Note that PTCs content is not modified by reset.

Port D

PTD7–PTD0 are special-function, bidirectional I/O port pins. PTD0–PTD3 can be
programmed to be serial peripheral interface (SPI) pins, while PTD4–PTD7 can be
individually programmed to be timer interface module (TIM1 and TIM2) pins. These
port pins also have selectable pullups when configured as input. The pullups are
automatically disengaged when configured as output. The pullups are selectable on
an individual port bit basis. When Port D is used as a general-purpose I/O port, the
Port D Data Direction Register (DDRD) is used to define the direction of operation of
each bit. A zero in a bit position makes the corresponding port bit to function as an
input, whereas a one makes it function as an output. Reset clears the DDRD, thereby
making the whole Port D input. Data written to Port D Data Register (PTD) is stored
in that register, even when it is configured to function as input. Reading Port D will
return the instantaneous digital state information composed of bit information of pins
configured as input together with bit information of those port bits configured as
output. Note that PTDs content is not modified by reset. Using the SPI and/or timer
will automatically allocate port D pins for those functions.

Port E

PTE0–PTE1 are general-purpose, bidirectional I/O port pins. These pins can also
be programmed to be the serial communications interface (SCI) pins. Using these pins
as general-purpose I/O, they are programmed like all the other port pins. Activating
the serial communication interface both for reception and transmission will however
connect the PTE0 pin to the SCI transmitter to become the transmit data (TxD) pin,
and the PTE1 pin to the SCI receiver to become the receive data (RxD) pin respectively.

As a general rule for any CMOS integrated circuit, any unused input or I/O port
pin configured as input should be tied to an appropriate logic level (either VDD or VSS).
Although the I/O ports of the MC68HC908GP32 do not require termination, terminating
unused inputs is recommended to reduce power consumption, noise pick-up, and the
possibility of static damage.

3-4 Memory Map

46

Having a 16-bit program counter, the CPU08 can address 216 = 65536 or 64 Kbytes

of memory space. The memory map of the MC68HC908GP32, shown in Figure 3-4,
includes:

• 32 Kbytes of FLASH memory, 32256 bytes of user space
• 512 bytes of random-access memory (RAM)
• 36 bytes of user-defined vectors
• 307 bytes of monitor ROM

I/O Registers
64 Bytes

RAM
512 Bytes

Unimplemented
32192 Bytes

FLASH Memory
32256 Bytes

$0000
$003F
$0040
$023F

$0240
$7FFF

$8000
$FDFF
$FE00
$FE01
$FE02

SIM Break Status Register (SBSR)
SIM Reset Status Register (SRSR)

Reserved (SUBAR)
SIM Break Flag Control Register (SBFCR)

Interrupt Status Register 1 (INT1)
Interrupt Status Register 2 (INT2)
Interrupt Status Register 3 (INT3)

Reserved

$FE03
$FE04
$FE05
$FE06
$FE07
$FE08
$FE09
$FE0A
$FE0B
$FE0C

FLASH Control Register (FLCR)
Break Address Register High (BRKH)
Break Address Register Low (BRKL)

Break Status and Control Register (BRKSCR)
LVI Status Register (LVISR)

Unimplemented
3 Bytes

$FE0D
$FE0F

Unimplemented 16 Bytes
Reserved

$FE10
$FE1F

Monitor ROM
307 Bytes

Unimplemented
43 Bytes

FLASH Block Protect Register (FLBPR)
Unimplemented

93 Bytes

FLASH Vectors
36 Bytes

$FE20
$FF52

$FF53
$FF7D

$FF7F
$FFDB

$FFDC
$FFFF

$FF7E

Figure 3-4. MC68HC908GP32 Memory Map

Accessing an unimplemented location can cause an illegal address reset if illegal
address resets are enabled. In the memory map unimplemented locations are shaded.

47

Accessing a reserved location can have unpredictable effects on MCU operation. In

Figure 3-4, reserved locations are marked with the word Reserved. Figure 3-5 shows
all control, status, and data registers.

PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0

PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0

0
PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0

PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0

Unaffected by reset

Unaffected by reset

Unaffected by reset

Unaffected by reset

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Port A Data Register
(PTA)
$0000

Port B Data Register
(PTB)
$0001

Port C Data Register
(PTC)
$0002

Port D Data Register
(PTD)
$0003

Data Direction Register A
(DDRA)

$0004

Data Direction Register B
(DDRB)

$0005

Read:

Write:

Reset:

Read:

Write:

Reset:

Data Direction Register C
(DDRC)

$0006

Data Direction Register D
(DDRD)

$0007

DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0

DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0

DDRD7 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0

0

0 0 0 0 0 0 0 0

PTE1 PTE0Port E Data Register
(PTE)
$0008

Read:

Write:

Reset:

Unimplemented
$0009

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

0 0 0 0 0 0

Unaffected by reset

0 0 0 0 0 0 0 0

Unimplemented
$000A

Unimplemented
$000B

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Data Direction Register E
(DDRE)

$000C

PTE1 PTE0
0 0 0 0 0 0

0 0 0 0 0 0 0 0

= Unimplemented R = Reserved U = Unaffcted

Read:

Write:

Reset:

Port A Input Pullup Enable
Register (PTAPUE)

$000D

PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

48

Figure 3-5. Control, Status, and Data Registers (Sheet 1 of 6)

PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0

PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0

SPRIE
DMAS

SPMSTR CPOL CPHA SPWOM SPE SPTIE

SPRF
ERRIE

OVRF MODF SPTE
MODFEN SPR1 SPR0

Unaffected by reset

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Port A Input Pullup Enable
Register (PTCPUE)

$000E

Port D Input Pullup Enable
Register (PTDPUE)

$000F

SPI Control Register
(SPCR)

$0010

SPI Status and Control
Register (SPSCR)

$0011

SPI Data Register
(SPDR)

$0012

SCI Control Register 1
(SCC1)

$0013

Read:

Write:

Reset:

Read:

Write:

Reset:

SCI Control Register 2
(SCC2)

$0014

SCI Control Register 3
(SCC3)

$0015

R7 R6 R5 R4 R3 R2 R1 R0

LOOPS ENSCI TXINV M WAKE ILTY PEN PTY

T8 DMARE DMATE ORIE NEIE FEIE PEIE

SCTE TC SCRF IDLE OR NF FE PE

R8

0 0 0 0 1 0 0 0

SCI Status Register 1
(SCS1)

$0016

Read:

Write:

Reset:

SCI Status Register 2
(SCS2)

$0017

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Unaffected by reset

0 0 0 0 0 0 0 0

SCI Data Register
(SCDR)

$0018

SCI Baud Rate Register
(SCBR)

$0019

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Keyboard Status and
Control Register

(INTKBSCR)
$001A

IMASKK MODEK
0 0 0 0 KEYF 0

0 0 0 0 0 0 0 0

= Unimplemented R = Reserved U = Unaffcted

Read:

Write:

Reset:

Keyboard Interrupt Enable
Register (INTKBIER)

$001B

KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0

0 0 0 0 0 0 0 0

U U 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0

T7 T6 T5 T4 T3 T2 T1 T0

SCTIE TCIE SCRIE ILIE TE RE RWU SBK

BKF RPF

R7 R6 R5 R4 R3 R2 R1 R0

T7 T6 T5 T4 T3 T2 T1 T0

SCP1 SCP0 R SCR2 SCR1 SCR0

ACKK

49

Figure 3-5. Control, Status, and Data Registers (Sheet 2 of 6)

TBR2 TBR1 TBR0
TACK

TBIE TBON R

0 0 0 0 IRQF1

ACK1
IMASK1 MODE1

OSC-
STOPENB

SCIBD-
SRC

COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3† SSREC STOP COPD

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Time Base Control Module
Register (TBCR)

$001C

IRQ Status and Control
Register (INTSCR)

$001D

Configurationl Register 2
(CONFIG2) †

$001E

Configuration Register 1
(CONFIG1) †

$001F

Timer 1 Status and Control
Register (T1SC)

$0020

Timer 1 Counter Register
High (T1CNTH)

$0021

Read:

Write:

Reset:

Read:

Write:

Reset:

Timer 1 Counter Register
Low (T1CNTL)

$0022

Timer 1 Counter Modulo
Register High (T1MODH)

$0023

Bit7 6 5 4 3 2 1 Bit0

TOF
TOIE TSTOP

TRST

0
PS2 PS1 PS0

0 0 0 0 0 0 0 0

Timer 1 Counter Modulo
Register Low (T1MODL)

$0024

Read:

Write:

Reset:

Timer 1 Channel 0
Register High (T1CH0H)

$0026

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

0 0 0 0 0 0 0 0

Timer 1 Channel 0
Register Low (T1CH0L)

$0027

Timer 1 Channel 1Status
and Control Register

(T1SC1)
$0028

0 0 0 0 0 0 0 0

Timer 1 Channel 1
Register High (T1CH1H)

$0029

TOV1 CH1MAX
CH1F

CH1E
0

MS1A ELS1B

0 0 0 0 0 0 0 0

Read:

Write:

Reset:

Timer 1 Channel 0 Status
and Control Register

(T1SC0)
$0025

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

TBIF

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ELS1A

0

0

0 0 0 0 0 0

0

0
0 0 0 0 0 0 0 0

Bit15 14 13 12 11 10 9 Bit8

Bit15 14 13 12 11 10 9 Bit8

Bit7 6 5 4 3 2 1 Bit0

CH0F
CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX

0

Bit15 14 13 12 11 10 9 Bit8

Bit7 6 5 4 3 2 1 Bit0

Indetermined after reset

Indetermined after reset

0

Bit15 14 13 12 11 10 9 Bit8

Indetermined after reset
† One-time writable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset)

= Unimplemented R = Reserved U = Unaffcted

50

Figure 3-5. Control, Status, and Data Registers (Sheet 3 of 6)

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Timer 2 Status and Control
Register (T2SC)

$002B

Timer 2 Counter Register
High (T2CNTH)

$002C

Timer 2 Counter Register
Low (T2CNTL)

$002D

Timer 2 Counter Modulo
Register High (T2MODH)

$002E

Timer 2 Counter Modulo
Register Low (T2MODL)

$002F

Read:

Write:

Reset:

Read:

Write:

Reset:

Timer 2 Channel 0 Status
and Control Register

(T2SC0)
$0030

Timer 2 Channel 0
Register High (T2CH0H)

$0031

0 0 0 0 0 0 0 0

Timer 2 Channel 0
Register Low (T2CH0L)

$0032

Read:

Write:

Reset:

Timer 2 Channel 1 Status
and Control Register (T2SC1)

$0033

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

0 0 0 0 0 0 0 0

Timer 2 Channel 1
Register High (T2CH1H)

$0034

Timer 2 Channel 1
Register Low (T2CH1L)

$0035

0 0 0 0 0 0 0 0

PLL Control Register
(PCTL)

$0036 0 0 1 0 0 0 0 0

= Unimplemented R = Reserved U = Unaffcted

Read:

Write:

Reset:

PLL Bandwidth Control
Register (PBWC)

$0037

AUTO
LOCK

ACQ
0 0 0 0

R

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit15 14 13 12 11 10 9 Bit8

Bit7 6 5 4 3 2 1 Bit0

Bit7 6 5 4 3 2 1 Bit0

Bit7 6 5 4 3 2 1 Bit0

14 13 12 11 10 9 Bit8Bit15

TOF
TOIE TSTOP

TRST

0
PS2 PS1 PS0

0

0

Bit15 14 13 12 11 10 9 Bit8

Bit7 6 5 4 3 2 1 Bit0

CH0F
CH0IE MS0B MS0A ELS0B ELS0A TOV0

0

Indetermined after reset

CH0MAX

1 1 1 1 1 1 1 1

Indetermined after reset

Indetermined after reset

CH1F
CH1IE

0
MS1A ELS1B ELS1A TOV1

0
CH1MAX

Bit15 14 13 12 11 10 9 Bit8

Bit7 6 5 4 3 2 1 Bit0

Indetermined after reset

Indetermined after reset

PLLIE
PLLF

PLLON BCS PRE1 PRE0 VPR1 VPR0

Timer 1 Channel 1
Register Low (T1CH1L)

$002A

51

Figure 3-5. Control, Status, and Data Registers (Sheet 4 of 6)

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

PLL Multiplier Select
Register High (PMSH)

$0038

PLL VCO Select Range
Register (PMRS)

$003A

PLL Reference Divider
Select Register (PMDS)

$003B

Analog-to-Digital Status and
Control Register (ADSCR)

$003C

Analog-to-Digital Data
Register (ADR)

$003D

Read:

Write:

Reset:

Read:

Write:

Reset:

Analog-to-Digital Input
Clock Register (ADCLK)

$003E

Unimplemented
$003F

0 0 0 0 0 0 0 1

SIM Break Status
Register (SBSR)

$FE00

Read:

Write:

Reset:

SIM Reset Status
Register (SRSR)

$FE01

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

1 0 0 0 0 0 0 0

SIM Upper Byte Address
Register (SUBAR)

$FE02

SIM Break Flag Control
Register (SBFCR)

$FE03

0 0 0 0 0 0 0 0

Interrupt Status Register 1
(INT1)
$FE04 0 0 0 0 0 0 0 0

= Unimplemented R = Reserved U = Unaffcted

Read:

Write:

Reset:

Interrupt Status Register 2
(INT2)
$FE05 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 1 0 0 0 0 0 0

COCO
AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

0 0 0 0
MUL11 MUL10 MUL9 MUL8

0 0 0 0
RDS3 RDS2 RDS1 RDS0

PIN COP ILOP ILAD MODRST LVI 0POR

ADIV2 ADIV1 ADIV0 ADICLK
R R R R

1 1 1 1 1 1 1 1

Indetermined after reset

R R R R R R R R

BFCE R R R R R R R

PLL Multiplier Select
Register Low (PMSL)

$0039

MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0

0 0 0 0 0 0 0 0

VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0

0 1 0 0 0 0 0 0

R

R R R R R R R R

0 0 0 0

R R R R R R
SBSW

R
†

0 0 0 0 0 0 0 0

0

IF6 IF5 IF4 IF3 IF2 IF1 0 0

R R R R R R R R

IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7

R R R R R R R R

† Writing a logic 0 clears SBSW.

52

Figure 3-5. Control, Status, and Data Registers (Sheet 5 of 6)

Read:

Write:

Reset:

Interrupt Status Register 3
(INT3)
$FE06

Read:

Write:

Reset:

Read:

Write:

Reset:

Reserved
$FE07

FLASH Control Register
$FE08

Break Address Register
High (BRKH)

$FE09

Read:

Write:

Reset:

Break Address Register
Low (BRKL)

$FE0A

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

Read:

Write:

Reset:

0 0 0 0 0 0 0 0

Break Status and Control
Register (BRKSCR)

$FE0B

LVI Status Register
(SBFCR)

$FE0C

0 0 0 0 0 0 0 0

FLASH Block Protect
Register (FLBPR)†

$FF7E

= Unimplemented R = Reserved U = Unaffcted

Read:

Write:

Reset:

COP Control Register
(COPCTL)

$FFFF

0 0 0 0 0 0 IF16 IF15

R R R R R R R R

0 0 0 0
HVEN MASS ERASE PGM

BRKE BRKA
0 0 0 0 0 0

LVIOUT 0 0 0 0 0 0 0

R R R R R R R R

0 0 0 0 0 0 0 0

BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0

† Non-volatile FLASH register

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Low byte of reset vector

Writing clears COP counter (any value)

Unaffected by reset

Unaffected by reset

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit15 14 13 12 11 10 9 Bit8

Bit7 6 5 4 3 2 1 Bit0

Figure 3-5. Control, Status, and Data Registers (Sheet 6 of 6)

3-5 Configuration Register (CONFIG)

This section describes the configuration registers, CONFIG1 and CONFIG2. The
configuration registers enable or disable these options:

• Stop mode recovery time (32 or 4096 CGMXCLK cycles)
• COP time-out period (218 – 24 or 213 – 24 CGMXCLK cycles)
• STOP instruction
• Computer operating properly (COP)
• Low-voltage inhibit (LVI) module control and voltage trip point selection
• Enable/disable the oscillator (OSC) during stop mode

The configuration registers are used in the initialization of various system options [1].
The configuration registers can be written once after each reset. All of the configuration

53

register bits are cleared during reset. Since the various options affect the operation of

the MCU, it is recommended that these registers be written immediately after reset.
The configuration registers may be read at anytime.

On the MC68HC908GP32 device, the option except LVI5OR3 are one-time writable
by the user after each reset. The LVI5OR3 bit however, is one-time writable by the
user only after each POR (power-on reset). The CONFIG registers are not in the
FLASH memory but are special registers containing one-time writable latches after
each reset. Sheet 3 of 6 of Figure 3-5 shows both CONFIG registers, their bits, and
reset states.

OSCSTOPENB – Oscillator Stop Mode Enable Bar Bit
OSCSTOPENB enables the oscillator to continue operating even during stop
mode if set to one. This is useful for driving the timebase module to allow it to
generate periodic wakeup while in stop mode.

1 = Oscillator enabled to operate during stop mode
0 = Oscillator disabled during stop mode (default)

SCIBDSCR – SCI Baud Rate Clock Select Source Bit
 SCIBDSCR controls the clock source used for the SCI. The settings of this bit
affects the frequency at which the SCI operates.

1 = Internal data bus clock used as clock source for SCI
0 = External oscillator used as clock source for SCI

COPRS – COP Rate Select Bit
COPRS selects the COP timeout period. Reset clears COPRS.

1 = COP timeout period = 213 - 24 CGMXCLK cycles
0 = COP timeout period = 218 - 24 CGMXCLK cycles

LVISTOP – LVI Enable in stop Mode Bit
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to
operate during the stop mode. Reset clears LVISTOP.

1 = LVI enabled during stop mode
0 = LVI disabled during stop mode

LVIPWRD – LVI Power Disable Bit
LVIPWRD disables the LVI module.

1 = LVI module power disabled
0 = LVI module power enabled

LVI5OR3 – LVI 5 volt or 3 volt Operating Mode Bit
LVI5OR3 selects the voltage operating mode of the LVI module. The voltage
mode selected for the LVI should match the operating VDD.

1 = LVI operates in 5 volt mode.
0 = LVI operates in 3 volt mode.

SSREC – Short Stop Recovery Bit
SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles

54

instead of a 4096 CGMXCLK cycle delay. Note that exiting the stop mode by

pulling reset low, will result in the long stop recovery mode. Using an external
crystal oscillator, do not set the SSREC bit.

1 =Stop mode recovery after 32 CGMXCLK cycles
0 = Stop mode recovery after 4096 CGMXCLK cycles

STOP – STOP Instruction Enable Bit
The STOP bit enables the programmer to enable/disable the STOP instruction. If
the bit is set, the STOP instruction is enabled, and when executed, will enable
interrupts and stop the clock oscillator, putting the MCU in its lowest power
consuming state. If however the bit is clear, the STOP instruction is disabled, and
when executed will be treated as an illegal opcode.

COPD – COP Disable Bit
The COPD – COP Disable Bit disables the Computer Operating Properly (COP)
module if set. The default (state after reset) state of the COPD bit is zero, and the
COP module is enabled.

References

1. Motorola Inc., “MC68HC908GP32/H Technical Data” Revision 4
2. Motorola Inc., “AN2105/D, Power-On, Clock Selection, and Noise Reduction

Techniques for the Motorola MC68HC908GP32”, Application Note, 2001

55

The MC68HC908GP32 Programmable Timers

4-1 Introduction

Real-time applications can be realized writing tightly timed programs. Doing so
the microcontroller will spend precise amounts of time in each routine and all operations
can be synchronized. To time operations in this way is extremely inefficient and
costly, since the MCUs main job will be timing instead of computing and decision
making. In addition program code has to be written in such a way that its execution
time is data independent. This is if not impossible, very hard to realize, and generally
increases code complexity.

Due to this fact, microcontrollers incorporate various complexity programmable
hardware timers, which are used to do the timed operations under program control.
Programmable hardware timers can be used for many purposes, including measuring
the pulse width of an input signal, and simultaneously generating an output signal of
certain duration. Pulse widths for both input and output signals can vary from several
microseconds to many seconds. Also generation of periodic interrupts at various rates
is possible. The Motorola MC68HC908GP32 has two programmable timer modules:

• Timebase Module (TBM),
• Timer Interface Module (TIM).

This chapter provides a detailed description of the operation of the two modules.
It concludes with few examples which are intended to illustrate various features. In
order to implement these types of applications, the reader must become familiar with
the registers which control and access the modules.

4-2 Timebase Module (TBM)

This section describes the timebase module (TBM). The TBM will generate periodic
interrupt at user selectable rates using a counter clocked by the external crystal clock
CGMXCLK. This TBM version uses 15 divider stages, eight of which are user selectable.
Features of the TBM module include:

• Software programmable 1-Hz, 4-Hz, 16-Hz, 256-Hz, 512-Hz, 1024-Hz, 2048-
Hz, and 4096-Hz periodic interrupt using external 32768 Hz crystal.

• User selectable oscillator clock source enable during stop mode to allow
periodic wakeup from stop.

The counter is initialized to all zeros when the TBON bit in the Timebase Control
Register (TBCR) is cleared. The counter, shown in Figure 4-1, starts counting when the

56

TBON bit is set.

TBON

CGMXCLK
÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2

÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2

000
001
010
011
100
101
110
111

M
ux

TB
R2

TB
R1

TB
R0

TA
CK

R

TBIF TBIE

TBMINT

Figure 4-1. Timebase Block Diagram

When the counter overflows at the tap selected by TBR2:TBR0, the TBIF bit gets set. If
the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by
writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the
timebase module, the interrupt is generated at approximately half of the overflow
period. Subsequent events occur at the exact period.

Table 4-1. Timebase Rate Selection for OSC1 = 32768 Hz

TBR2

0
0
0
0
1
1
1
1

TBR1

0
0
1
1
0
0
1
1

TBR0

0
1
0
1
0
1
0
1

Divider

32768
8192
2048
128
64
32
16
8

Hz
1
4

16
256
512

1024
2048
4096

ms
1000
250
62,5
~3,9
~2
~1

~0,5
~0,24

Timebase Interrupt Rate

Timebase rate selection is programmed by the TBR2:TBR0 bits in the TBCR as shown

57

in Table 4-1.

Let us now build a simple application. The circuit shown in Figure 4-2 will be
used to display single digit hexadecimal numbers 0 to F, incrementing by one, precisely
every second. The hardware will consist of an octal inverting buffer (ULN2803), seven
current limiting resistors, a common anode LED display, and a push-button (SW1).
The segment current is limited by the 100 ohm resistors to approximately 25 mA for a
red LED display.

I0
I1
I2
I3
I4
I5
I6
I7
Vss

O0
O1
O2
O3
O4
O5
O6
O7
Vcl

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18
U2

ULN2803A

R1

100R R2

100RR3

100R R4

100RR5

100R R6

100RR7

100R

+5V

Port A

Bit 7

Bit 0
U1

68HC908GP32

b

dot

a

A

c

e
d

f
g

DISP1

R8

100R

Figure 4-2. Timebase Application Experiment

Bit 7 of Port A is connected to a push-button (SW1). Activating the internal pullup
resistor of bit7 of the port, there is no need for an external pullup resistor. C1 capacitor
is used to aid debouncing of the push-button contact, and R8 to limit the capacitor
discharge current for push-button contact protection. Figure 4-3 gives the flowcharts
for system initialization and timebase interrupt service routine. The experiments
software is of stand-alone type with all necessary hardware initialization of the GP32
hardware.

At program startup, first the clock generator module is programmed to make the
MCU run at 8MHz bus clock for a 32768 Hz crystal. After Port A, memory, and the
timebase have been initialized, the program continuously checks the status of the
push-button. If the push-button is depressed once, timebase interrupts are disabled to
stop the incrementation of the display every second. Depressing the push-button a
second time will reenable timebase interrupts, and thereby resume incrementing the
display. All interrupt vectors used and unused have been defined to recover also from
non-experiment interrupts. The timebase interrupt service routine reads contents of
memory location DIGIT into X register in order to access the seven-segment information
from the lookup table in indexed mode of addressing. After storing this information
in Port A data register, X is incremented by one and compared against its upper limit

58

of 16. If X is less than 16, it is saved back in location DIGIT, else X is cleared and then

saved. Finally the TACK bit in the TBCR is set to clear the timebase interrupt request.

TBOI, Interrupt
Service Routine

Read DIGIT
info into X

Load 7-segment
data into A indexed

Store A in
Port A

Increment X

X = 16 ?
No

Yes

Clear X

Save X in DIGIT

Return

Compare X
against 16

Set TACK bit
in TBCR

Initialization
Routine

Make Port A
bits 6 to 0 output

Clear location
DIGIT

Clear TBON and set
TACK bit in TBCR
Select 1 Hz rate,

enable TBIE
Set TBON bit

in TBCR
Enable maskable

interrupts

Enable Port A
bits 7 pullup

Test Port A
bit 7

bit 7 = high ?

No

Yes

Disable timebase
interrupts

Test Port A
bit 7

bit 7 = high ?
No

Yes
Test Port A

bit 7

bit 7 = high ?

No

Yes

Initialize Clock
Generator Module

Figure 4-3. Timebase Application Experiment Flowchart

59

*
* Port, Timebase and CGMC registers
*
PTA EQU $00 Port A data register
DDRA EQU $04 Port A data direction register
PTAPUE EQU $0D Port A input pullup enable reg.
TBCR EQU $1C Timebase control register
CONFIG1EQU $1F Config Register
PCTL EQU $36 PLL Control Register
PBWC EQU $37 PLL Bandwidth Control Register
PMSH EQU $38 PLL Multiplier Select Register High
PMSL EQU $39 PLL Multiplier Select Register Low
PMRS EQU $3A PLL VCO Range Select Register
PMDS EQU $3B PLL Reference Divider Select Register
*
* RAM location DIGIT definition
*

ORG $40
DIGIT RMB 1 Temporary save area for digit data
*
* Port, CGMC, and Timebase initialization
*

ORG $8000 Point to start of FLASH
*
* Program clock generator module (optional)
* For 8 MHz bus clock and 32768 Hz crystal
*
START MOV #$31,CONFIG1 MCU runs w/o LVI and COP support

BCLR 5,PCTL Turn off PLL
MOV #$00,PCTL Set P=0 for PRE[1:0]
MOV #$02,PCTL Set E=2 for VPR[1:0]
MOV #$D1,PMSL Set N=977 for MUL[11:0]
MOV #$03,PMSH
MOV #$D0,PMRS Set L=208 for VRS[7:0]
MOV #$01,PMDS Set R=1 for RDS[3:0]
BSET 5,PCTL Turn on PLL
BSET 7,PBWC Enable Auto Bandwidth Control
BRCLR 6,PBWC,* Loop until LOCK bit set
BSET 4,PCTL Select VCO clock as system clock

*
TBINIT MOV #$7F,DDRA Make Port A bits 6 to 0 output

MOV #$80,PTAPUE Enable pullup for bit 7
CLRX
STX DIGIT Set location DIGIT to zero
MOV #$08,TBCR Clear TBON, set TACK, select 1 Hz

TBIEN LDA #$04 Enable timebase interrupts
STA TBCR

60

ORA #$02 Let counter run TBON = 1

STA TBCR
CLI Enable interrupts

KEYD1 BRSET 7,PTA,KEYD1 Is push-button depressed ? If yes,
BCLR 2,TBCR Disable timebase interrupts

KEYD2 BRCLR 7,PTA,KEYD2 Wait for push-button release
BRSET 7,PTA,TBIEN Is push-button again depressed ?

* If yes, go to TBIEN.
*
* Seven segment lookup table
*
SEVTBL FCB $3F Seven segment 0

FCB $06 Seven segment 1
FCB $5B Seven segment 2
FCB $4F Seven segment 3
FCB $66 Seven segment 4
FCB $6D Seven segment 5
FCB $7D Seven segment 6
FCB $07 Seven segment 7
FCB $7F Seven segment 8
FCB $67 Seven segment 9
FCB $77 Seven segment A
FCB $7C Seven segment B
FCB $39 Seven segment C
FCB $5E Seven segment D
FCB $79 Seven segment E
FCB $71 Seven segment F

*
* Timebase interrupt service routine
*
TBOI LDX DIGIT Load DIGIT into X register

LDA SEVTBL,X Load accumulator with 7 segment data
STA PTA Save 7 segment data in Port A
INCX Increment digit number
CPX #$10 Compare against limit of 16
BNE NEXT If not limit, go to save
CLRX Force digit = 0

NEXT STX DIGIT Save digit value in DIGIT
LDA TBCR Set TACK bit in TBCR to
ORA #$08 clear interrupt request
STA TBCR

TBRET RTI Return from interrupt
*
* Vector definitions
*

ORG $FFDC
FDB TBOI Timebase interrupt service routine vector
FDB TBRET Dummy A/D vector

61

FDB TBRET Dummy keyboard vector

FDB TBRET Dummy SCI transmit vector
FDB TBRET Dummy SCI receive vector
FDB TBRET Dummy SCI error vector
FDB TBRET Dummy SPI transmit vector
FDB TBRET Dummy SPI receive vector
FDB TBRET Dummy TIM2 overflow vector
FDB TBRET Dummy TIM2 channel 1 vector
FDB TBRET Dummy TIM2 channel 0 vector
FDB TBRET Dummy TIM1 overflow vector
FDB TBRET Dummy TIM1 channel 1 vector
FDB TBRET Dummy TIM1 channel 0 vector
FDB TBRET Dummy CGM vector
FDB TBRET Dummy IRQ vector
FDB TBRET Dummy SWI vector
FDB START Reset vector
END

4-3 Timer Interface Module (TIM)

This section describes the timer interface (TIM) module. The TIM is a 2-channel
timer that provides a timing reference with input capture, output compare, and pulse-
width-modulation functions. Figure 4-4 is a block diagram of the TIM. The GP32 has
two timer interface modules which are denoted as TIM1 and TIM2. Features of the
TIM include:

• Two input capture/output compare channels:
– Rising-edge, falling-edge, or any-edge capture trigger
– Set, clear, or toggle output compare action

• Buffered and unbuffered pulse-width-modulation (PWM) signal generation
• Programmable TIM clock input with 7-frequency internal bus clock prescaler

selection
• Free-running or modulo up-count operation
• Toggle any channel pin on overflow
• TIM counter reset and stop bits
• I/O port bit(s) software configurable with pullup device(s) if configured as

input port bit(s).

The text that follows describes both timers, TIM1 and TIM2. The TIM input/output
(I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1),
where “1” is used to indicate TIM1 and “2” is used to indicate TIM2. The two TIMs
share four Port D I/O pins. The full names of the TIM I/O pins are listed in Table 4-2.

62

Table 4-2. Timer Pin Name Conventions

TIM Generic Pin Names: T[1,2]CH0
PTD4/T1CH0
PTD6/T2CH0

T[1,2]CH1
PTD5/T1CH1
PTD7/T2CH1

TIM1
TIM2

Full TIM
Pin Names:

The two TIM channels (per timer) are programmable independently as input capture
or output compare channels. If a channel is configured as input capture, then an
internal pullup device may be enabled for that pin.

The TIM clock source can be one of seven prescaler outputs. The prescaler generates
seven clock rates from the internal bus clock. Table 4-3 lists clock divider ratios as a
function of the PS[2:0] bits in each TIM status and control register.

PRESCALER
PRESCALER

SELECT

PS2 PS1 PS0

INTERNAL
BUS CLOCK

TSTOP
TRST

16-BIT COUNTER

16-BIT COMPARATOR

TMODH:TMODL

TOF
TOIE

INTER-
RUPT

LOGIC

PORT
LOGIC

INTER-
RUPT
LOGIC

PORT
LOGIC

INTER-
RUPT
LOGIC

TOV0
CH0MAX

CH0IE

TOV1
CH1MAX

CH1IE

MS0B

CH0F

CH1F

16-BIT COMPARATOR

TCH0H:TCH0L

16-BIT LATCH

IN
TE

RN
AL

 B
US

MS0A

ELS0B ELS0A

16-BIT COMPARATOR

TCH1H:TCH1L

16-BIT LATCH
MS1A

ELS1B ELS1A

T[1,2]CH0

T[1,2]CH1
CHANNEL 1

CHANNEL 0

Figure 4-4. 68HC908GP32 TIM Block Diagram (per timer)

63

Table 4-3. Prescaler Selection

PS2-PS0
000
001
010
011
100
101
110
111

TIM Clock Source
Internal bus clock ÷1
Internal bus clock ÷2
Internal bus clock ÷4
Internal bus clock ÷8

Internal bus clock ÷16
Internal bus clock ÷32
Internal bus clock ÷64

Not available

The core of each timer as seen in Figure 4-4 is the 16-bit counter, counting
continuously the prescaled bus clock . Each timers counter can be stopped by setting
the TSTOP bit in its status and control register. Each TIM counter register is coupled
to a read/write TIM modulo register containing the modulo value for the TIM counter.
The 16-bit counter is reset to $0000 in the next clock cycle after reaching the terminal
value given in the modulo register. In addition to this the counter and the prescaler
flip-flops can be reset to $0000 by writing a one to the TRST bit. The 16-bit output of
the counter is routed to three 16-bit comparators and two 16-bit latches. The 16-bit
comparators of channel 0 and channel 1 compare the instantaneous value of the counter
against the content of the respective TIM channel register. At a match, the TIM can set,
clear, or toggle the channel pin. This event is called output compare which will set the
CH0F/CH1F flag, and can generate if enabled, a TIM CPU interrupt request. Having
two independent timers with two channels, it is possible to generate four independently
timer output compares.

The 16-bit latches will latch the instantaneous 16-bit counter value whenever a
predefined external event occurs. This event can be a rising or falling edge of a timer
pin defined as an input. Such an event is called input capture. The polarity of the edge
is programmable by the ELSxB:ELSxA bits of the TIM channel status and control
registers, and an input capture will set the CH0F/CH1F flag, and can generate if
enabled, a TIM CPU interrupt request.

Most of the programming of the 16-bit counter is done using the TIM status and
control register (TSC). The TIM status and control register bits are defined as follows:

TOF – TIM Overflow Flag Bit
This read/write flag bit is set when the TIM counter resets to $0000 after
reaching the modulo value programmed in the TIM counter modulo registers
(reset presets the modulo registers to $FFFF). Clear TOF by reading the TSC when
TOF is set and then writing a logic zero to TOF. If another TIM overflow occurs
before the clearing sequence is completed, then writing logic zero to TOF has no
effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing
of TOF. Reset clears the TOF bit. Writing a logic one to TOF has no effect.

1 = TIM counter has reached modulo value

64

0 = TIM counter has not reached modulo value

TOIE – TIM Overflow Interrupt Enable Bit
This read/write bit enables TIM overflow interrupts when the TOF bit becomes
set. Reset clears the TOIE bit.

1 = TIM overflow interrupts enabled
0 = TIM overflow interrupts disabled

TSTOP – TIM Stop Bit
This read/write bit stops the TIM counter. Counting resumes when TSTOP is
cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears
the TSTOP bit.

1 = TIM counter stopped
0 = TIM counter active

Note that the TSTOP bit should be cleared before entering wait mode if the TIM is
required to exit wait mode.

TRST – TIM Reset Bit
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting
TRST has no effect on any other registers. Counting resumes from $0000. TRST is
cleared automatically after the TIM counter is reset and always reads as logic
zero. Reset clears the TRST bit.

1 = Prescaler and TIM counter cleared
0 = No effect

Note that setting the TSTOP and TRST bits simultaneously stops the TIM counter at a
value of $0000.

PS2-PS0 – Prescaler Select Bits
These read/write bits select one of the seven prescaler outputs as the input to the
TIM counter as shown in Table 4-3.

The two read-only TIM counter registers contain the high and low bytes of the
value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the
low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched
TCNTL value until TCNTL is read. Reset clears the TIM counter registers.

Each TIM counter register is coupled to a read/write TIM modulo register containing
the modulo value for the TIM counter. When the TIM counter reaches the modulo
value, the overflow flag (TOF) is set, and the TIM counter resumes counting from
$0000 at the next clock. Writing to the high byte (TMODH) inhibits the TOF bit and
overflow interrupts until the low byte (TMODL) is written. Reset presets the TIM
counter modulo registers to the maximum value of $FFFF. Changing the modulo
registers while the counter is running needs special attention. The modulo should be
changed as soon as the counter has been reset to $0000.

In addition to the TSC each channel of the timer has a so called TIM channel

65

status and control register. Per channel basis, input capture, output compare and

PWM generation can be programmed using this register. The TIM channel status and
control register bits are defined as follows:

CHxF – Channel x Flag Bit
When channel x is an input capture channel, this read/write bit is set when an
active edge occurs on the channel x pin. When channel x is an output compare
channel, CHxF is set when the value in the TIM counter register matches the
value in the TIM channel x registers.
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading
TIM channel x status and control register with CHxF set and then writing a logic
zero to CHxF. If another interrupt request occurs before the clearing sequence is
complete, then writing logic zero to CHxF has no effect. Therefore, an interrupt
request cannot be lost due to inadvertent clearing of CHxF.
Reset clears the CHxF bit. Writing a logic one to CHxF has no effect.

1 = Input capture or output compare on channel x.
0 = No input capture or output compare on channel x.

CHxIE – Channel x Interrupt Enable Bit
This read/write bit enables TIM CPU interrupts on channel x. Reset clears the
CHxIE bit.

1 = Channel x CPU interrupt requests enabled
0 = Channel x CPU interrupt requests disabled

MSxB – Mode Select Bit B
This read/write bit selects buffered output compare/PWM operation. MSxB
exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers.
Setting MS0B disables the channel 1 status and control register and reverts TCH1
to general purpose I/O. Reset clears the MSxB bit.

1 = Buffered output compare/PWM operation enabled
0 = Buffered output compare/PWM operation disabled

MSxA – Mode Select Bit A
When ELSxB:A ≠ 00, this read/write bit selects either input capture operation or
unbuffered output compare/PWM operation. See Table 4-4 for details.

1 = Unbuffered output compare/PWM operation
0 = Input capture operation

When ELSxB:A = 00, this read/write bit selects the initial output level of the
TCHx pin. See Table 4-4 for details.

1 = Initial output level low
0 = Initial output level high

Note that it is good practice to set the TSTOP and TRST bits in the TSC before changing
a channel function by writing to the MSxB or MSxA bit.

66

Table 4-4. Mode, Edge, and Level Selection

X0

X1

00
00
00

01
01
01
1X
1X
1X

00

00

01
10
11

01
10
11
01
10
11

MSxB:MSxA ELSxB:ELSxA Mode Configuration

Output
preset

Input
capture

Pin under port control;
initial output level high
Pin under port control;
initial output level low

Capture on rising edge
Capture on falling edge

Capture on rising or falling edge

Output
compare
or PWM

Buffered output
compare or

buffered PWM

Toggle output on compare
Clear output on compare
Set output on compare

Toggle output on compare
Clear output on compare
Set output on compare

ELSxB and ELSxA – Edge/Level Select Bits
When channel x is an input capture channel, these read/write bits control the
active edge-sensing logic on channel x. When channel x is an output compare
channel, ELSxB and ELSxA control the channel x output behavior when an

output compare occurs. When ELSxB and ELSxA are both clear, channel x is not
connected to port D, and pin PTDx/TCHx is available as a general purpose I/O pin.
Reset clears ELSxB and ELSxA. Table 4-4 shows in detail how ELSxB and ELSxA
work.

TOVx – Toggle On Overflow Bit
When channel x is an output compare channel, this read/write bit controls the
behavior of the channel x output when the TIM counter overflows. When channel
x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit.

1 = Channel x pin toggles on TIM counter overflow.
0 = Channel x pin does not toggle on TIM counter overflow.

CHxMAX – Channel x Maximum Duty Cycle Bit
When the TOVx bit is set at logic zero, setting the CHxMAX bit forces the duty
cycle of buffered and unbuffered PWM signals to 100%. As Figure 4-5 shows, the
CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at
the 100% duty cycle level until the cycle after CHxMAX is cleared.

67

TCHx

CHxMAX

OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW

OUTPUT
COMPARE

OUTPUT
COMPARE

OUTPUT
COMPARE

OUTPUT
COMPARE

PERIOD

Figure 4-5. CHxMAX Latency

The TIM channel registers are of read/write type and contain either the captured
TIM counter value of the input capture function or the output compare value of the
output compare function. The state of the TIM channel registers after reset is unknown.
In input capture mode, reading the high byte of the TIM channel x registers (TCHxH)
inhibits input captures until the low byte (TCHxL) is read. In output compare mode,
writing to the high byte of the TIM channel x registers (TCHxH) inhibits output
compares until the low byte (TCHxL) is written.

4-3-1 Input Capture/Output Compare Applications

Let us have some simple applications in order to understand the functions of TIM
better. The first application will generate a 1000 Hz 50% duty cycle square wave at
Port D bit4 (PTD4) for 1 second duration. To generate this waveform we will use the
toggle output on output compare feature and let the output toggle for each half cycle
for a total of 2000 times. The output compare event will generate an interrupt request.
The MCU is assumed to run at 8 MHz bus clock. For 1000 Hz each half-cycle would
last 500 microseconds. The following is the listing of an initialization subroutine plus
the interrupt service routine.

*
* MC68HC908GP32 Bus clock 8 MHz
* 1000 Hz square wave generation
* at PTD4 example
*
T1SC EQU $20 Timer 1 Status and Control Register
T1CNTH EQU $21 Timer 1 Counter Register High
T1CNTL EQU $22 Timer 1 Counter Register Low
T1MODH EQU $23 Timer 1 Counter Modulo Register High
T1MODL EQU $24 Timer 1 Counter Modulo Register Low
T1SC0 EQU $25 Timer 1 Channel 0 Status and Control Register
T1CH0H EQU $26 Timer 1 Channel 0 Register High
T1CH0L EQU $27 Timer 1 Channel 0 Register Low
*

ORG $40
COUNT RMB 2 Half-cycle counter

68

*

* Port D and TIM1 initialization subroutine
*
INIT1k LDA T1SC Arm TOF clear operation

LDA #$33 stop & reset counter, increment at 1MHz,
STA T1SC no counter overflow interrupt
LDA T1SC0 Arm CH0F flag clear
MOV #$54,T1SC0 Chan.0, output compare w. inter., toggle output
LDHX #$FFFF Set counter modulo to maximum
STHX T1MODH
LDHX #2000 Initialize half-cycle counter
STHX COUNT
BCLR 5,T1SC Let counter run
CLI Enable interrupts
RTS Return to calling program

*
* Output compare interrupt service routine
* For 1 kHz each half-cycle is 500 microseconds long
*
OUT1k BCLR 7,T1SC0 Clear CH0F flag in T1SC0

LDHX T1CH1H Get output compare time
AIX #$64 Add 100 microseconds
AIX #$64 Add 100 microseconds
AIX #$64 Add 100 microseconds
AIX #$64 Add 100 microseconds
AIX #$64 Add 100 microseconds
STHX T1CH1H Save as new output compare value
LDHX COUNT
AIX #-1 decrement half cycle counter
STHX COUNT
BEQ END1kHz 2000 half cycles finished
RTI Return

*
END1k BCLR 6,T1SC0 disable channel 0 interrupts

RTI Return
*

ORG $FFF4
FDB OUT1k TIM1 chan.1 output compare service vector
END

Some applications, like electronic ignition, require generation of an output signal
after reception of an input (trigger) signal. Usually there has to exist a well defined
time delay between the input and output signal. To generate such input related output
signals, the software has to know the time stamp of the inut (trigger) signal in order to
calculate the time instant for the output. Adding the required delay and to the time
stamp of the trigger we can easily find the time of the output signal. The input capture
function of TIM will automatically register the instant of the trigger signal in the TIM
channel register of the relevant input channel as a 16-bit number. Adding the required

69

delay and storing the sum in the other channels register configured to function as

output compare the signal can be generated.

Let us now design such an application. Assume PTD4/T1CH0 used as input
capture port for the falling edge trigger signal, and PTD5/T1CH1 used for output
compare function. Assume also the delay between input and output to be 100 µs and
bus clock frequency equal to 8 MHz. The output pulse duration should be 300 µs.

100µs

300µs

PTD4

PTD5

Figure 4-6. Output pulse delayed from trigger

Figure 4-6 shows the input at port pin PTD4 as well as the output waveform at port
pin PTD5. Let us write a small subroutine which initializes to TIM and two interrupt
service programs, one for input capture and one for output compare interrupts.

*
* MC68HC908GP32 Bus clock 8 MHz
* Delayed pulse generation example
*
PTD EQU $03 Port D data register
DDRD EQU $07 Port D data direction register
CONFIG1EQU $1F Config Register
T1SC EQU $20 Timer 1 Status and Control Register
T1CNTH EQU $21 Timer 1 Counter Register High
T1CNTL EQU $22 Timer 1 Counter Register Low
T1MODH EQU $23 Timer 1 Counter Modulo Register High
T1MODL EQU $24 Timer 1 Counter Modulo Register Low
T1SC0 EQU $25 Timer 1 Channel 0 Status and Control Register
T1CH0H EQU $26 Timer 1 Channel 0 Register High
T1CH0L EQU $27 Timer 1 Channel 0 Register Low
T1SC1 EQU $28 Timer 1 Channel 1 Status and Control Register
T1CH1H EQU $29 Timer 1 Channel 1 Register High
T1CH1L EQU $2A Timer 1 Channel 1 Register Low
*
* Port D and TIM1 initialization subroutine
*
INITPUL MOV #$31,CONFIG1 MCU runs w/o LVI and COP support

BCLR 5,PTD Force PTD5 low
BSET 5,DDRD Force PTD5 to be output
LDA T1SC Arm TOF clear operation
LDA #$33 stop & reset counter, increment at 1MHz
STA T1SC

70

LDHX #$FFFF Set counter modulo to maximum

STHX T1MODH
LDA T1SC0 Arm CH0F flag clear
MOV #$48,T1SC0 Chan.0, input capture w. inter., falling edge
LDA T1SC1 Arm CH1F flag clear
MOV #$10,T1SC1 Chan.1, no output comp., initial output level low
BCLR 5,T1SC Let counter run
CLI Enable interrupts
RTS Return to calling program

*
* Input capture interrupt service routine
*
INCAP BCLR 7,T1SC0 Clear CH0F flag in T1SC0

LDHX T1CH0H Get input capture time
AIX #$64 Add 100 microseconds
STHX T1CH1H Save as output compare value
BCLR 7,T1SC1 Clear CH1F flag in T1SC1
MOV #$5C Chan.1, output comp. w. inter., set on compare
RTI

*
* Output compare interrupt service routine
*
OUTCP BRSET 2,T1SC1,OUT1 Branch if first output compare to set output

LDA T1SC1 Arm CH1F flag clear
MOV #$10,T1SC1 Chan.1, no output comp., initial output level low
RTI

OUT1 BCLR 7,T1SC1 Clear CH1F flag in T1SC1
LDHX T1CH1H Get output compare time
AIX #$64 Add 100 microseconds
AIX #$64 Add 100 microseconds
AIX #$64 Add 100 microseconds
STHX T1CH1H Save as new output compare value
RTI

*
* Timer counter overflow routine
* (Never called, since TOIE clear)
*
OUTD BCLR 7,T1SC

RTI
*

ORG $FFF2
FDB OUTD TIM1 overflow service vector
FDB OUTCP TIM1 chan.1 output compare service vector
FDB INCAP Dummy TIM1 chan.0 input capture service vector
END

71

4-3-2 Pulse Width Modulation (PWM) Applications

Using the timer output compare function together with the toggle on overflow
feature, PWM waveforms can easily be generated. A typical PWM waveform of period
T and pulse width t is shown in Figure 4-7. To generate such a PWM waveform, one
channel of a timer has to be programmed to force the channel output to low level at
output compare and to toggle output level at counter overflow.

Period T

Overflow Overflow Overflow

Pulse width t

Output compare Output compare

V

Figure 4-7. PWM Period and Pulse Width

Pulse width modulation (PWM) is a very useful method to obtain analog output
from a digital circuit using the averaging or low-pass filter property of an external
circuit. Using PWM and a low-pass filter it is possible to generate DC or slowly
varying voltages in the range zero to V if the digital output voltage is V volts. The
filtered PWM average DC output voltage is equal to

V V t

T
DC =

where t is the PWM pulse width, and T the PWM period.

The low-pass averaging filter has to attenuate frequency components at and above
the 1/T sufficiently to make the analog output resemble a DC voltage. The 16-bit
counter can be shortened by the modulo register to any count less than 216 = 65536 to
implement less resolving PWM generators. The frequency (1/T) of the PWM can be
adjusted in a wide range by selecting different bus frequency prescaler ratios and
counter modulo settings.

Typical applications include programmable DC voltage generation for electronic
equipment and motor speed control. Let us now build a simple permanent magnet
DC motor speed control application making use of the circuit given in Figure 4-8.
MCU timer module 1, channel 0 output at port D bit 4 (PTD4) drives a power MOSFET.
Applying +5 volts to the gate of the MOSFET turns it sufficiently on to apply the full
+12 volt supply to the motor armature. Applying 0 volts to gate of the MOSFET turns
it completely off, disconnecting the motor from the power supply. The freewheeling
diode D1, will conduct the inductive armature current during this time and avoid

72

both armature current discontinuity and inductive voltage spiking.

MTP4N05L

Q1

100R

R1

M MOT1

PTD4

MCU GND

+ 12 V

12 V return

Figure 4-8. Permanent magnet DC motor PWM drive

Figure 4-9 shows the voltage at PTD4 VPTD for a 50% duty cycle PWM waveform and
the motor armature current Iarm as a function of time.

VPTD4

t

t

I arm

5

1

Figure 4-9. Motor armature current and PWM output waveform

To obtain a silent and smooth speed control, armature current fluctuations in the
motor have to be small, and the PWM frequency has to be selected much higher than
dictated by the armature time constant (L/R). Typical PWM frequency values may
vary from multiples of 100 Hz to several kilohertz. The following software listing will
program the TIM1 channel 0 to an eigth bit resolution 3906 Hz PWM generator to be
used with the circuit given in Figure 4-8.
*
* MC68HC908GP32 Bus clock 8 MHz
* 3906 Hz 8-bit PWM generator on PTD4
*
PTD EQU $03 Port D data register

73

DDRD EQU $07 Port D data direction register

CONFIG1EQU $1F Config Register
T1SC EQU $20 Timer 1 Status and Control Register
T1CNTH EQU $21 Timer 1 Counter Register High
T1CNTL EQU $22 Timer 1 Counter Register Low
T1MODH EQU $23 Timer 1 Counter Modulo Register High
T1MODL EQU $24 Timer 1 Counter Modulo Register Low
T1SC0 EQU $25 Timer 1 Channel 0 Status and Control Register
T1CH0H EQU $26 Timer 1 Channel 0 Register High
T1CH0L EQU $27 Timer 1 Channel 0 Register Low
*

ORG $40
DUTY RMB 1 Duty cycle
*
* TIM1 initialization subroutine
*
PWMD4 MOV #$31,CONFIG1 MCU runs w/o LVI and COP support

LDA T1SC Arm TOF clear operation
LDA #$73 stop & reset counter, increment at 1MHz,
STA T1SC counter overflow interrupt
LDA T1SC0 Arm CH0F flag clear
MOV #$5A,T1SC0 Chan.0, output compare w. inter., clear output
LDHX #$00FF Set counter modulo to 256
STHX T1MODH
LDA DUTY Read duty cycle
ADD T1CH0L Add to output compare low byte
STA T1CH0L Store sum low
LDA T1CH0H Get high byte
ADC #0 Add possible carry from low byte addition
STA T1CH0H Save high byte
BCLR 5,T1SC Let counter run
CLI Enable interrupts
RTS Return to calling program

*
* Output compare interrupt service routine
*
OUTCP BCLR 7,T1SC0 Clear CH0F flag in T1SC1

RTI
*
* Timer counter overflow routine
*
OUTOV BCLR 7,T1SC

RTI
*

ORG $FFF2
FDB OUTOV TIM1 overflow service vector
FDB OUTCP TIM1 chan.1 output compare service vector
END

74

Before calling subroutine PWMD4 the desired duty cycle value has to be stored in
location DUTY.

75

Analog Input/Output

5-1 Introduction

The world in which we live is truly analog, but microprocessors are strictly digital
devices. Data taken from anything that is tested or measured will usually appear in
analog form and is difficult to handle, process, or store for later use without introducing
considerable error. In data acquisition, control and communication it is vital that
analog signals be processed by the microprocessor; however, the data must first be
converted into a form usable by the digital computer using an analog-to-digital converter
(A/D). Then after the digital processing is complete, the digits must be reconverted to
analog form by a digital-to-analog converter (D/A) to interface with the real world.

The applications of A/D and D/A converters are almost unlimited. As the state-
of-the-art of semiconductor technology advances, the cost of these conversion systems
will continue to drop, and more system designers will be able to use A/D and D/As,
which were before economically or physically impractical. A few current uses include:
telemetry systems, all digital voltmeters, computer controlled measuring systems,
speech and image processing systems, closed loop process control systems (i.e. chemical
plants, steel mills, robots, etc.), and hybrid computers.

Speed and accuracy of the devices will dictate different conversion methods. A/D
and D/A converters range from very slow, inexpensive techniques to ultra-fast
expensive ones.

5-2 D/A Conversion

The output of a D/A converter can be an analog voltage or current. Most of the
integrated D/A converters have current outputs because of higher speed. Figure 5-1
shows how to interface an 8-bit current output DAC-08 digital to analog converter to
PortA of the GP32 and obtain unipolar voltage output with the LF356 opamp as a
current-to-voltage converter. The reference current of the DAC is programmed to 2
milliamperes by means of the 2k49 resistor interconnecting the Vref+ input and the
+2,5 Volt reference supply. The 1k feedback resistor in the opamp circuit sets the full
scale output voltage to 1 Volt.

The PWM capability of the GP32 allows us to build simple, yet precise voltage
output digital to analog converters. As stated in the previous chapter, the low pass
filtered or averaged output of the repetitive pulse waveform of adjustable duty cycle
will give an unloaded DC output voltage in the range of zero to supply voltage of the
microcontroller. Figure 5-2 shows a simple RC type averaging low-pas filter and Figure

76

5-3 shows a second order active low-pass filter, which also buffers the output voltage.

0 to +1 Volt

Port A

Bit 7

Bit 0

U1

I7
I6
I5
I4
I3
I2
I1
I0

V+
Vref+
Vref-
Iout+
Iout-

Comp

V-
Vlc

5

6

7

8

9

10

11

12

13

14

15

4

2

16

1

3

U2

DAC-08

1
U3

R1

2k49

R4

1k

-

+

2

3

6

U4

LF356N

C1

100nF

C2

100nF

+5V

-5V

R5

22k

C3

1nF

Figure 5-1.¬¬8-bit unipolar output using the DAC-08

PW M input Analog output

R1 R2

Figure 5-2. Simple RC filter for PWM analog output

The circuit in Figure 5-3 can be modified by adding gain to the op-amp circuit to

77

obtain much larger output voltage swing.

PW M input
Analog output

R1 R2

-

+

2

3

6
U1

LF356N

-5V

+12V

Figure 5-3. Second order active low-pass filter for PWM analog output

5-3 A/D Conversion

Analog-to-Digital conversion can be accomplished by a myriad of techniques. To
state just a few types in decreasing speed order, we will find the “Parallel or Flash ”
type, the “Pipelined” or “Subranging” type, the “Sigma-Delta” type, the “Successive
Approximation” type, the “Tracking” type, the “Single slope” and “Dual Slope
Integrating ” type of converters. The Parallel or Flash type is primarily used for very
high speed A/D conversion in the several hundreds and thousands of megahertz
range, the successive approximation type is used for the kilohertz to megahertz range
and the dual slope integrating type is used for very slow applications in the few hertz
range as in case of digital multimeters. As a function of the necessary sampling rate
either a dual slope integrating or successive approximation type A/D converter is
used in most microcontroller applications.

Analog signal input to a digital system is a complex engineering problem. An
A/D conversion system is made up of three blocks as shown in Figure 5-4. Most types
of A/D converters require that the input signal is held constant during the entire
conversion process. This requires either a sample and hold or a track and hold circuit
to be placed in front of the A/D converter. From basic sampling theory developed by
Shannon, any analog variable can be completely specified as a discrete time series,
provided that sampling is performed at a frequency higher than the Nyquist frequency.
That is, above twice the frequency of the highest frequency component present in the
analog signal. If the analog signal does not conform to this limitation then an over-lapping
phenomenon known as aliasing can occur. In practice, the analog input signal is
bandlimited by using a suitable low-pass filter to attenuate the higher frequency
components, so avoiding digitizing incorrect values due to under-sampling.

78

Digital

Output
Anti-aliasing
low pass filter

Track / Hold A/D Converter
Analog

Input

Figure 5-4.¬¬A/D converter system block diagram

All physical (realizable) low-pass filters with a monotonic pass-band and
transmission zeros at infinity will have a magnitude response characteristic similar to
the one shown in Figure 5-5.

1 2 4 100,1

0 dB

- 20 dB

- 40 dB

- 60 dB

- 80 dB

| H (jw)

ω

Figure 5-5.¬¬Magnitude response of a 5th order Butterworth low-pass filter

Popular filters are the Bessel and Butterworth polynomial types. The Bessel type
filters are characterized to have constant group delay (linear phase response) extending
far into the stop-band with a gradual magnitude cutoff, whereas the Butterworth type
filters have flat magnitude response in the pass-band and steeper response compared
to the Bessel type in the stop-band at an expense of being not linear phase. The
magnitude response of a Butterworth low-pass filter of order n will be:

|H(jω)|2 = 1/1+ω2n

If an 8-bit A/D converter is to be built, the low-pass filter has to attenuate spectral
components at half the sampling frequency by a factor of at least 2-9=512 (one-half bit
of 8-bits = -54 dB) not to introduce detectable aliasing. If the sampling frequency is
chosen to be four times the cutoff frequency of the filter, the order of the Butterworth
filter according to the above formula has to be at least nine. Increasing the sampling
frequency to six times the filters cutoff frequency will reduce the necessary Butterworth
filter order to six.

Correct sampling of the bandlimited signal is also a difficult task due to short
aperture time required for given frequency signal and A/D converter resolution as
shown in Figure 5-6. Suppose that we want to digitize an audio signal bandlimited to
4 kHz to 8 bits of resolution. Since we can tolerate only one-half least significant bit of

79

error, the total sampling aperture error has to be less than 2-9 with respect to full-scale.

The resulting maximum aperture time Ta will be 78 nanoseconds, which can be realized
using discrete MOS transistors or CMOS analog gate IC’s. If however, the resolution is
increased to 12 bits, Ta will be reduced to 5 nanoseconds, which is too short to be
realized with MOS transistors or CMOS analog gate IC’s used as analog switches. Due
to this fact sample and hold circuits are replaced by track and hold circuits, which let
the holding capacitor voltage precisely track the input voltage waveform.

Voltage

Time
Ta

∆V

Figure 5-6.¬¬Aperture time Ta and amplitude uncertainty ∆V

Most of the microcontrollers having an on-chip A/D converter use a successive
approximation type. The MC68HC908GP32 has an 8-bit resolution successive
approximation type A/D converter. The Successive Approximation type of A/D is a
serial system which uses a D/A in a feedback loop. It is relatively slow compared to
other types of high-speed A/Ds, but its low cost, ease of construction, and system
operational features more than make up for its lack of speed in many applications.

Figure 5-7 shows the block diagram of the system. In operation, the system enables
the bits of the D/A one at a time, starting with the most significant bit (MSB). As each
bit is enabled, the comparator gives an output signifying that the input signal is
greater or less in amplitude than the output of the D/A. If the D/A output is greater
than the input signal, the bit of trial is reset, else left unmodified. The system does this
probing with the MSB first, then the next most significant bit, etc. After all the bits of
the D/A have been tried, the conversion cycle is complete and an “End of Conversion”
signal (pulse) is generated. The system stays idle until another “Start Conversion”
signal (pulse) is received.

+
–

+
–

Vin Comparator

D/A

Vref
I ref

I out

Digital Word Output
S/A

Register

End of Conversion
Start Conversion

Clock

80

Figure 5-7.¬¬Successive Approximation A/D Block Diagram

The GP32 on-chip analog-to-digital converter (ADC) provides eight pins for
sampling external sources at pins PTB7/AD7–PTB0/AD0. The analog multiplexer
allows the single ADC to select one of eight ADC channels as ADC voltage in (ADCVIN).
ADCVIN is converted by the successive approximation register based analog-to-digital
converter. When the conversion is completed, ADC places the result in the ADC data
register and sets a flag plus it may also generate an interrupt.

PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share
with the ADC channels. The channel select bits define which ADC channel/port pin
will be used as the input signal.

DDRBx

PTBx

WRITE DDRB
RESET

WRITE PTB

READ DDRB

INTERNAL
DATA BUS

PTBx

DISABLE

DISABLE

CHANNEL
SELECT

ADC DATA
REGISTER

ADC

ADCH4-ADCH0

ADC
CHANNEL x

CLOCK
GENERATOR

INTERRUPT
LOGIC

CONVERSION
COMPLETE

(COCO)

READ PTB

AIEN
CGMXCLK

BUS CLOCK

ADIV2-ADIV0 ADICLK

ADC CLOCK

ADC
VOLTAGE IN

(ADV)IN

Figure 5-8. ADC Block Diagram

The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The
remaining ADC channels/port pins are controlled by the I/O logic and can be used as
general purpose I/O. Writes to the port register or DDR will not have any effect on
the port pin that is selected by the ADC. Read of a port pin in use by the ADC will
return a logic zero.

When the input voltage to the ADC equal VREFH, the ADC converts the signal to
$FF (full scale). If the input voltage to the ADC equal VSSAD, the ADC converts it to $00.

81

Input voltages between VREFH and VSSAD are a straight-line linear conversion. All other

input voltages will result in $FF, if greater than VREFH. Special attention has to be given
for the input voltage not to exceed the analog supply voltages VDDAD and VSSAD. One
8-bit result register (ADR), is provided. This register is updated each time an ADC
conversion completes.

The ADCH4 to ADCH0 bits in the ADC Status and Control Register (ADSCR)
select which of the eight input pins will be multiplexed to the ADC. As can be seen
from Table 5-1, not all of the 32 possible bit combinations are valid. Some are reserved,
while two are for testing zero and full scale conversion. The last combination is to turn
off power from the ADC block in case it is not to be used, and energy consumption
has to be reduced.

Table 5-1. Multiplexer Channel Select
ADCH4

0
0
0
0
0
0
0
0

1
1
1
1
1

ADCH3
0
0
0
0
0
0
0
0

1
1
1
1
1

ADCH2
0
0
0
0
1
1
1
1

0
1
1
1
1

ADCH1
0
0
1
1
0
0
1
1

1
0
0
1
1

ADCH0
0
1
0
1
0
1
0
1

1
0
1
0
1

Input Select
PTB0/AD0
PTB1/AD1
PTB2/AD2
PTB3/AD3
PTB4/AD4
PTB5/AD5
PTB6/AD6
PTB7/AD7
Reserved
Reserved
Reserved
VREFH
VSSAD

ADC Power off

Conversion starts after a write to the ADSCR. One conversion will take between
16 and 17 ADC clock cycles. The ADIVx and ADICLK bits should be set to provide an
ADC clock frequency between 500 kHz and 1,048 MHz. Electrical specs are given for 1
MHz operation. Table 5-2 gives all information for the clock divider settings. ADC
input clock source is selected by the ADICLK bit in the ADC Clock Register (ADCLK).
A one in the ADICLK bit will select the internal bus clock as the clock source, whereas
a zero will select the CGMXCLK. Note that the CGMXCLK can be used only if it is
equal or higher than 1MHz.

82

Table 5-2. ADC Clock Divide Ratio
ADIV2

0
0
0
0
1

ADIV1
0
0
1
1
X

ADIV0
0
1
0
1
X

ADC Clock Rate
ADC input clock ÷1
ADC input clock ÷2
ADC input clock ÷4
ADC input clock ÷8
ADC input clock ÷16

The remaining bits of the ADSCR are used and programmed as follows:

COCO – Conversion complete
When the AIEN bit is a logic zero, the COCO is a read-only bit which is set each
time a conversion is completed except in the continuous conversion mode where
it is set after the first conversion. This bit is cleared whenever the ADSCR is
written or whenever the ADR is read.
If the AIEN bit is logic one, the COCO is a read/write bit, which should be
cleared to logic zero during initialization for CPU to service the ADC interrupt
request. Reset clears this bit.

1 = Conversion completed (AIEN = 0)
0 = Conversion not completed (AIEN = 0) / CPU interrupt (AIEN = 1)

AIEN – ADC Interrupt Enable Bit
When this bit is set, an interrupt is generated at the end of an ADC conversion.
The interrupt signal is cleared when the data register is read or the status/control
register is written. Reset clears the AIEN bit.

1 = ADC interrupt enabled
0 = ADC interrupt disabled

ADCO – ADC Continuous Conversion Bit
When set, the ADC will convert samples continuously and update the ADR register
at the end of each conversion. Only one conversion is completed between writes
to the ADSCR when this bit is cleared. Reset clears the ADCO bit.

1 = Continuous ADC conversion
0 = One ADC conversion

5-4 A/D Conversion Applications

Let us now have some sample applications for the ADC. The first experiment is to
learn how to use the on-board A/D converter and display the conversion result on a
two digit seven segment LED display. Figure 5-9 shows the circuit diagram of the
hardware. The integrated circuit ULN2803A is an octal inverting driver capable of
sinking high currents. PortA bit7 is used to select one of the LED displays at a time. As
can be seen from the circuit, DISP1 is powered by Q1 when PortA bit7 is low, and
DISP2 is powered when PortA bit7 is high. If we lit up the two displays alternately at

83

a sufficient rate, the human eye will perceive both lit up simultaneously. In this way

we can multiplex the display and save seven I/O pins plus a second driver IC. The
only additional circuit elements are three transistors and four resistors. Using the
timebase interrupt to switch from one display to the other at rate of 512 Hz, will
refresh the display at a rate of 256 Hz. The ADC will be used in the continuous
conversion mode and the A/D result will be read during the timebase interrupt service

84

routine after DISP2 has been lit up. The necessary software is listed below.

I0
I1
I2
I3
I4
I5
I6
I7
Vss

O0
O1
O2
O3
O4
O5
O6
O7
Vcl

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

ULN2803A

U2

100R

R1

100R

R2

100R

R3

100R

R4

100R

R5

100R

R6

100R

R7

+5V

Port A

Bit 7

Bit 0

68HC908GP32

U1

b

dot

a

A

c

e
d

f
g

DISP1

b

dot

a

A

c

e
d

f
g

DISP2

sA

sB

sC

sD

sE

sF

sG

sA
sB
sC
sD
sE
sF
sG

sA
sB
sC
sD
sE
sF
sG

Q3

P2N2222A

R8

22k

R9

2k2 R10

4k7

R11

2k2

PTA0

VSSAD/VREFL

VDDAD/VREFH

MCU VDD

MCU GND (VSS)

Q1 P2N2907A

Q2 P2N2907A

Figure 5-9. ADC test and display experiment

85

*
* Measure external voltage and display result in hex
* MC68HC908GP32 Bus clock 8 MHz
*
PTA EQU $00 Port A data register
DDRA EQU $04 Port A data direction register
TBCR EQU $1C Timebase control register
CONFIG1EQU $1F Config Register
T1SC EQU $20 Timer 1 Status and Control Register
T1CNTH EQU $21 Timer 1 Counter Register High
T1CNTL EQU $22 Timer 1 Counter Register Low
T1MODH EQU $23 Timer 1 Counter Modulo Register High
T1MODL EQU $24 Timer 1 Counter Modulo Register Low
T1SC0 EQU $25 Timer 1 Channel 0 Status and Control Register
T1CH0H EQU $26 Timer 1 Channel 0 Register High
T1CH0L EQU $27 Timer 1 Channel 0 Register Low
ADSCR EQU $3C ADC Status and Control Register
ADR EQU $3D ADC Data Register
ADCLK EQU $3E ADC Clock Register
*

ORG $40
ADRES RMB 1 ADC result
*
* System initialization subroutine
*
RVOLT MOV #$31,CONFIG1 MCU runs w/o LVI and COP support

MOV #$20,ADSCR Init ADC no interrupts, channel 0, continuous
MOV #$70,ADCLK conversion, internal bus clock divide by 8 mode
CLR PTA Initilize to turn off display
MOV #$FF,DDRA Make Port A all output
MOV #$48,TBCR Clear TBON, set TACK, select 512 Hz
LDA #$04 Enable timebase interrupts
STA TBCR
ORA #$02 Let counter run TBON = 1
STA TBCR
CLI Enable interrupts
RTS

* If yes, go to TBIEN.
*
* Seven segment lookup table
*
SEVTBL FCB $3F Seven segment 0

FCB $06 Seven segment 1
FCB $5B Seven segment 2
FCB $4F Seven segment 3
FCB $66 Seven segment 4
FCB $6D Seven segment 5

86

FCB $7D Seven segment 6

FCB $07 Seven segment 7
FCB $7F Seven segment 8
FCB $67 Seven segment 9
FCB $77 Seven segment A
FCB $7C Seven segment B
FCB $39 Seven segment C
FCB $5E Seven segment D
FCB $79 Seven segment E
FCB $71 Seven segment F

*
* Timebase interrupt service routine
*
TBIR LDA TBCR Set TACK bit in TBCR to

ORA #$08 clear interrupt request
STA TBCR
CLRH clear high portion of index
BRCLR 7,PTA,TBIR2 If PortA bit7 clear, lit up DISP2
LDA ADRES Get saved ADC value
NSA swap nibbles
AND #$0F mask high nibble
TAX transfer to X
LDA SEVTBL,X get seven segment code
STA PTA turn on DISP1 with upper nibble data
RTI

TBIR2 LDA ADRES Get saved ADC value
AND #$0F mask high nibble
TAX transfer to X
LDA SEVTBL,X get seven segment code
ORA #$80 set bit7 to turn on DISP2
STA PTA Turn on DISP2
LDA ADR Read ADC result
STA ADRES Save

TBRET RTI Return from interrupt
*
* Vector definitions
*

ORG $FFDC
FDB TBIR Timebase interrupt service routine vector
END

The second application will augment the PWM motor drive experiment given in
Chapter 4, by adding a potentiometer to the circuit to input the speed in terms of a
voltage between zero to VDD as shown in Figure 5-10. The ADC is configured to make
one conversion every time triggered. At every timer counter overflow (3906 Hz) the
interrupt service routine will read the A/D conversion result, store it in memory
location DUTY and update the PWM duty cycle. The software listing for the experiment

87

is given below.

*
* Motor Speed Control
* MC68HC908GP32 Bus clock 8 MHz
* 3906 Hz 8-bit PWM generator on PTD4
* Analog speed input at PTA0
*
CONFIG1EQU $1F Config Register
T1SC EQU $20 Timer 1 Status and Control Register
T1CNTH EQU $21 Timer 1 Counter Register High
T1CNTL EQU $22 Timer 1 Counter Register Low
T1MODH EQU $23 Timer 1 Counter Modulo Register High
T1MODL EQU $24 Timer 1 Counter Modulo Register Low
T1SC0 EQU $25 Timer 1 Channel 0 Status and Control Register
T1CH0H EQU $26 Timer 1 Channel 0 Register High
T1CH0L EQU $27 Timer 1 Channel 0 Register Low
ADSCR EQU $3C ADC Status and Control Register
ADR EQU $3D ADC Data Register
ADCLK EQU $3E ADC Clock Register
*

ORG $40
DUTY RMB 1 Duty cycle
*
* System initialization subroutine
*
MOTOR MOV #$31,CONFIG1 MCU runs w/o LVI and COP support

MOV #$00,ADSCR Init ADC no interrupts, channel 0, one conversion
MOV #$70,ADCLK at a time, internal bus clock divide by 8 mode
LDA T1SC Arm TOF clear operation
LDA #$73 stop & reset counter, increment at 1MHz,
STA T1SC counter overflow interrupt
LDA T1SC0 Arm CH0F flag clear
MOV #$5A,T1SC0 Chan.0, output compare w. inter., clear output
LDHX #$00FF Set counter modulo to 256
STHX T1MODH
CLRA Default to zero speed
STA DUTY Save duty cycle
ADD T1CH0L Add to output compare low byte
STA T1CH0L Store sum low
LDA T1CH0H Get high byte
ADC #0 Add possible carry from low byte addition
STA T1CH0H Save high byte

TAD BRCLR 7,ADSCR,TAD Wait for first A/D conversion done
CLR ADSCR Start a new A/D conversion
BCLR 5,T1SC Let counter run
CLI Enable interrupts
RTS Return to calling program

*

88

* Output compare interrupt service routine

*
OUTCP BCLR 7,T1SC0 Clear CH0F flag in T1SC1

RTI
*
* Timer counter overflow routine
*
OUTOV BCLR 7,T1SC

LDA ADR Read A/D converter result
STA DUTY Save in DUTY
CLR ADSCR Start a new A/D conversion
ADD T1CH0L Add to output compare low byte
STA T1CH0L Store sum low
LDA T1CH0H Get high byte
ADC #0 Add possible carry from low byte addition
STA T1CH0H Save high byte
RTI

*
ORG $FFF2
FDB OUTOV TIM1 overflow service vector
FDB OUTCP TIM1 chan.1 output compare service vector
END

MTP4N05L

Q1

100R

R1

M MOT1

PTD4

MCU GND (VSS)

+ 12 V

12 V return

PTA0

VSSAD/VREFL

VDDAD/VREFH

MCU VDD
R4

100R

Figure 5-10. PWM drive for DC motor with speed control

References

89

1. Motorola Inc., “MC68HC908GP32/H Technical Data” Revision 4

Serial Data Communication

6-1 Introduction

When digital data is to be transferred between microcomputers and/or
microcomputer peripheral equipment, it is usually moved byte-wide. Depending upon
the distance and interconnection between the communicating devices, data might be
transferred in parallel or serial format. If all eight bits of a byte are sent at a time, it is
called parallel transmission. Parallel transmission of data requires in addition to eight
data lines and ground handshake lines to synchronize data transfer between the two
recipients. Due to the multi-wire interconnection, parallel data transfer is economically
restricted to short distances. For long distances one would like to minimize the number
of lines.

The communications line is the medium that carries the messages in a data
communication system. The line consists of one or more channels, where a channel is
defined as a means of one-way transmission. A channel can carry information in
either direction but only one direction at a time. The direction of information flow is
determined by the characteristics of the devices at each end of the channel. If the
direction of flow cannot be changed and there is only one channel present, i.e. it is a
one-way communication system, the communication is called simplex. If however,
there are transmit/receive switches on both sides of the single channel such that by
means of a driving software the switches can be controlled, the communication can be
either-way or half-duplex. The hardware is then known as a two-wire line. If we setup
a communication line with two channels, we have the capability of sending information
in both directions at the same time. Usually, one channel carries information in one
direction, and the other channel carries information in the backward direction. If the
terminal equipment at each end of the line is capable of transmitting and receiving
simultaneously, the entire system is capable of simultaneous two-way data flow. Such
a system is referred to as a full-duplex system. The hardware is then known as a
four-wire line.

For most computer communication purposes four wires (one for sending, one for
reception, and two for signal return) are sufficient. In this case data has to be transferred
one bit at a time. Sending one bit at a time requires a conversion of the byte to be sent
to bit-serial format using a shift register at the transmitter and another shift register at
the receiver to convert the bit stream back to byte format. Therefore synchronization
of receiver and transmitter shift registers is essential. As a function of the synchronization
involved, the communication is called asynchronous or synchronous. Details of both
types of communication will be given in the following sections.

Whenever information is transferred from one physical location to another, it is
often the case that data arriving at the intended destination differs from the data sent.
This is an unavoidable consequence of information transfer due to the presence of
noise in the transmission channel or malfunctioning equipment. Since errors occur
randomly, the problem is one of probabilities. Error control is often a matter of adding

90

clues to messages to allow the receiver to answer the question: Is the data at the

receiver the same as the data that left the transmitter? Chief methods of error detection
will be covered in the chapter of error detection.

If the communication is not of the point-to-point type, and there are multiple
nodes in the communication system, the whole is usually called a communication
network. Frequency and phase response characteristic of the communication channel
and/or presence of a network may necessitate the use of line coding. Details and
examples of line coding will be treated in its specific chapter.

6-2 Asynchronous Data Communication

Asynchronous transmission is used at low to high data rates where random length
gaps between individual data bytes may occur. Due to this fact each data byte has to
be framed individually to resynchronize the receiver at the beginning of a new byte.
Each block of information together with an optional parity bit is embedded between
an active-low start bit and one or more active-high stop bits as shown in Figure 6-1
and 6-2. In general, the start signal is the same length, or time width, as an information
unit. The stop signal is usually 1, 1.5, or 2 times the length of the information signal.

GapFramed byte Framed byte Framed byte

Data bits Data bits Data bits

Idle line
Start bit Stop bit

Idle line

Figure 6-1.¬¬Asynchronous data transmission

Framed data with optional parity bit

Idle line
Start bit Stop bit(s)

Idle line

Mark Level ("1" level)

Space Level ("0" level)

Bit
0

Bit
7

Pari
ty

Figure 6-2.¬¬A framed data byte

During idle line, the receiver continuously hunts for a falling edge which indicates
beginning of a start bit. Upon detection of the falling edge, the receiver will start to
sample the incoming signal at a predefined rate. Receivers usually construct the bit
information by averaging multiple samples accumulated during one bit time to reduce
the probability of false detection due to noise spikes and waveform aberrations.

Bit rate, number of data bits per frame, presence of a parity bit and kind, and
number of stop bits used have to be set equal on both communicating sites in order to

91

guarantee error free communication. Most common standard bit rates (bits/second =

baud) used around the world are as follows:

50 Non US teletypewriter and telex machines,
110 US teletypewriter and telex machines,
300 Low speed computer communication,
600 Low speed computer communication,
1200 Medium speed computer communication,
2400 Medium speed computer communication,
4800 High speed computer communication,
9600 High speed computer communication,
19200 High speed computer communication,
38400 Very high speed computer communication,
76800 Very high speed computer communication,
115200 Very high speed computer communication,
230400 Very high speed computer communication.

Number of bits used per frame is a related to the length of the alphabet in use. An
alphabet is composed of characters for control, punctuation, letters, and numerals.
One standard code used for computer communication is the seven bit (US)ASCII
(United States of America Standard Code for Information Interchange) code comprising
128 characters. The ASCII code makes use of only English letters and therefore cannot
be used in the non-english speaking majority of the world. The ASCII code is extended
to eight bits to accommodate an additional 128 characters for international characters.
The international standards organization ISO is working to establish a world-wide
standard character set.

Character codes in the range of $00 to $1F inclusive are control characters, codes
$20 to $7E comprise punctuation, numerals, upper and lower case letters. Character
$7F is the delete or rubout control character. The group of control characters can be
split up into character groups for text formatting, printer carriage and mechanism
control, communication device and data flow control. The bit encoding for some of the
control characters and a description provide as follows:

SOH $01 (Start of Header). This character identifies the beginning of the
message header.

STX $02 (Start of Text). STX indicates termination of a header and start of
the text characters.

ETX $03 (End of Text). ETX terminates a block of characters that
started with STX or SOH. A block is an entity that is transmitted
together without any intervening control characters.

EOT $04 (End of Transmission). This character identifies termination of a
transmission, consisting of one or more blocks. It is also used as a
poll response when a secondary station has no data to transmit.

ENQ $05 (Enquiry). ENQ identifies the end of a poll or selection sequence.
In a poll sequence, a primary station solicits a secondary station
for any data to be transmitted from the secondary station to the
primary station. In a selection sequence, a primary station sends

92

data to a secondary station.

ACK $06 (Acknowledge). ACK acknowledge that the previous block was
received without error.

BEL $07 (Bell). Character sent to acoustically alert receiving station.
BS $08 (Backspace). Character to backspace cursor on displaying or

printing head on printing device by one character.
HT $09 (Horizontal Tab). Character to advance cursor or printing head to

new position.
LF $0A (Line Feed). Character to advance displaying or printing device to

new line.
FF $0C (Form Feed). Character to advance displaying or printing device

to top of next page.
CR $0D (Carriage Return). Character to move displaying or printing device

to start of line.
DLE $10 (Data Link Escape). A transmission control character which will

change the meaning of a limited number of contiguously following
characters. It is used exclusively to provide supplementary data
transmission control functions.

DC1 $11 (Device Control 1). Character sent to let the other side resume
transmission. Also called “Control-Q” because of keyboard entry.

DC3 $13 (Device Control 3). Character sent to pause transmission of the
other side. Also called “Control-S” because of keyboard entry.

NAK $15 (Negative Acknowledgment). NAK indicates that the block
received had an error.

SYN $16 (Synchronous Idle). This control character establishes and
maintains synchronization on the link. It is also used as a null
character for the idle condition of the link.

ETB $17 (End of Transmission Block). ETB indicates end of a block of
characters that started with SOH or STX.

Data flow control is one of the most important issues in asynchronous
communication. Due to buffer size, other physical or software limitations the receiver
is able to receive only a limited number of characters as a continuous block. Usually
the receiver has to process the incoming data, and depending upon the receivers
processing speed versus data incoming rate, variable length gaps in the data flow are
necessary to avoid data loss at the receiver. To pause the transmitting side the receiver
has to send out a control character, and to let the sending side resume transmission it
has to send another control character. These control characters are $13 (Control-S) and
$11 (Control-Q) respectively.

6-3 Synchronous Data Communication

Synchronous data communication is utilized if lengthy data packets are to be
transmitted at maximum efficiency. Data exchange between networked computers
and digital telephone systems make use of synchronous data communication. In this
case data is sent in tight synchronism to a bit rate clock and start and stop bits
between individual data bytes are missing. Each packet of information is embedded

93

between multiple bytes as shown in Figure 6-3.

Sync.
Byte(s)

Address
field

Length Information (data)
field

Frame Check
Sequence

Idle line

Figure 6-3.¬¬One packet or frame of data

Since in synchronous data transmission an idle line condition is equivalent to a
data byte of $FF, one or two synchronization bytes have to be used to indicate a start
of a frame. The address field is optional and is used only to direct a message in
network to a unique destination. The length field indicates the total number of bytes
in the information field and the frame check sequence is made up of two bytes which
contain information to check data integrity of the whole frame except the sync. bytes.

Timing of the bit stream can be done in two ways; in tight synchronism to a bit
clock sent along with the data using an extra signal line or by use of self clocking data
forms like FM1, FM0 or Manchester coding.

6-3-1 Special Types of Synchronous Communication

To enable simple, fast, yet reliable serial communication between a processor and
peripheral devices special kinds of synchronous serial communication schemes have
been developed. The two most frequently used schemes are the serial peripheral
interface (SPI) and the inter-integrated circuit (I2C). Most microcontrollers have one or
both of these communication interfaces.

The serial peripheral interface interconnects a master with a slave device as shown
in Figure 6-4. The slave device can be a peripheral or another microprocessor.

SHIFT REGISTER

SHIFT REGISTER

BAUD RATE
GENERATOR

MISO

MOSI

SPSCK

SS

MISO

MOSI

SPSCK

MASTER DEVICE SLAVE DEVICE

SS
VDD

Figure 6-4. Full-Duplex Master-Slave Communication

Data transfer is controlled and initiated by the master device. Communication is full-

94

duplex and both master and slave will transmit and receive data simultaneously in

synchronism with the bit clock SPSCK generated by the master. The slave select SS
pins state determines operation as master or slave. Figure 6-5 shows one of the four
possible transmission formats and timing for the SPI interface.

SPSCK CYCLE #
FOR REFERENCE
SPSCK; CPOL = 1

CPHA = 1
MOSI

FROM MASTER
MISO

FROM SLAVE

1 2 3 4 5 6 7 8

MSB LSB

MSB LSB

Figure 6-5. Transmission Format and Timing

Double buffering in the SPI interface hardware allows seamless transmission and
reception of data at high clock rates.

The inter-integrated circuit (I2C) communication scheme is a multichip
communication network. It is similar in format and timing of the SPI interface, but
more than one master and slave devices can be connected to the so called I2C bus. The
I2C bus has been developed by Philips [2] to primarily control various chips in a color
television set by the on-board microcontroller. Two wires, serial data (SDA) and serial
clock (SCL) carry information between the IC’s connected to the bus. All bus drivers
are of open-collector or open-drain type and a passive resistive pull-up is used to pull
the bus lines up into the inactive state. Figure 6-6 shows two devices connected to the
I2C bus.

Device 1 Device 2Q1 Q2
Q3 Q4

U1 U2 U3 U4

Vdd

SCLKN1out DATAN1out SCLKN2out DATAN2out

SCLKinSCLKin DATAinDATAin

SCL Serial clock

SDA Serial Data

95

Figure 6-6. Connection of I2C interfaces to the I2C bus

Figure 6-7 shows the data transfer timing on the I2C bus. The data on the SDA line
must be stable during the HIGH period of the clock. The HIGH or LOW state of the
data line can only change when the clock signal on the SCL line is LOW. Since the I2C
bus wires make use of resistive pull-up, printed circuit wiring capacitance plus device
capacitance limits bit rates to 100 kHz. In contrary to the SPI interface the I2C bus
communication protocol makes use of a start condition and stop condition. Multi byte
data transfer between a start and stop condition allows lengthy data patterns to be
transferred.

SDA

SCL

MSB

1 2 7 8 9
ACK

1 2 3-8 9
ACKS

START
CONDITION

P
STOP

CONDITION

Figure 6-7. Data transfer timing on the I2C bus

Since the I2C bus is a multi slave network, each slave device has to have a unique
address which is sent as the first byte in one block of multi-byte data. After each byte
sent by the master, the slave has to respond with an acknowledge bit. The message
receiver has to pull down the SDA line during the acknowledge clock pulse, so that it
remains stable LOW during the high period of this clock pulse.

6-4 Error detection

If the receiver has perfect information concerning the transfer, the entire message
can be reliably reconstructed at the receiver. In such a case, the penalties of errors
during transmission can be avoided. These cases are covered in the discipline of error
correction. In the absence of perfect knowledge, the clues in the transmitted message
might be sufficient to determine the presence of a transmission error. This is embodied
in the error detection discipline. Error detection is the foundation on which error
correction is based.

To establish a connection between sender and receiver and to transfer information
reliably standard procedures and conventions, called protocols are used. Among the
rules established by a protocol are provisions for detection and recovering from error
conditions and control of data flow. The protocol must provide a means for detecting
the presence of an error. One of the chief methods of detecting errors is to provide
check bits. These are extra bits added to the transmitted data which provide clues to
the receiver concerning the nature of the transmitted data. Using these clues, the
receiving station can detect the presence of an error and take the appropriate recovery
action. These check bits (often called Block Check Characters – BCC) make up the
trailer field of the transmission block. They are generated by a checking algorithm

96

which is usually applied only to the information field of a block. Since the check bits

effectively repeat a part of the data, they are called redundant bits.

Each block of data transmitted is error-checked at the receiving station in one of
several ways, depending on the code and the functions employed. These checking
methods are Vertical Redundancy Checking (VRC), which is parity checking by character
as the data is received; and either Longitudinal Redundancy Checking (LRC) or Cyclic
Redundancy Checking (CRC), which check the block after it is received. After each
transmission of a block, the receiving station normally replies with a control character
of type positive (ACK) acknowledgment (data accepted, continue sending) or with a
control character of type negative (NAK) acknowledgment (data not accepted, retransmit
previous block). Retransmission of a block of data following an initial NAK is usually
attempted a limited number of times as defined in the protocol in use.

Vertical Redundancy Checking (VRC) is an odd or even parity check performed
on a per-character basis and requires a parity check bit position in each character. If
individual characters are represented by eight bits, seven may be used to represent the
actual numbers and letters, and the eight may be reserved for checking purposes. The
presence or absence of the eight bit provides the inherent checking feature. For example,
in an even parity check, the parity bit is used to make the total number of one bits in
the character even. If the character contains four zeros and three ones, then a one bit is
inserted as the parity bit.

Longitudinal Redundancy Checking (LRC) is a technique for checking the entire
message or block of data. In this case, an exclusive “OR” logic is used for all the bits in
the message and the resulting character, called the Block Check Character (BCC), is
transmitted as the last character in the block. The receiving device independently
performs the same counting procedure and generates a Block Check Character. It then
compares its own BCC character with the one received. If they are not identical, an
error condition exists, and the sending device is notified that an error condition exists
within the block. LRC is frequently used in conjunction with VRC to increase the error
detection capability within a system.

Cyclic Redundancy Checking (CRC) is a more sophisticated method of block
checking than LRC. This type of error checking involves a polynomial division of the
data stream by a CRC polynomial. The 1’s and 0’s of the data become the coefficients
of the dividend polynomial while the CRC polynomial is preset. The division uses
subtraction modulo 2 (no carries) and the remainder serves as the Cyclic Redundancy
Check. The receiving station compares the transmitted remainder with its own computed
remainder, and an equal condition indicates that no error has occurred.

There are many constants that may be used to perform the CRC division. Two of
the most popular versions are called CRC-16 (which uses a polynomial x16 + x15 + x2
+ 1) and CRC-CCITT (which uses a polynomial of the form x16 + x12 + x5 + 1). Each
generates a 16-bit BCC. CCITT, the International Consultative Committee for Telephony
and Telegraphy, is responsible for usage standards.

The use of the various reliability safeguards varies with the intended use of the

97

data communications medium. For short data transfers VRC is adequate. If the data

channel is characterized by error bursts, it may be advisable to use a combination of
VRC and LRC. For large transfers of data, the overhead of the foregoing methods
cannot be tolerated if efficient use is to be obtained from the communication system.
In these cases cyclic redundancy checks are generally used because of their ability to
check large blocks of data using few check characters.

For the I2C bus the acknowledge bit is obligatory and verifies each byte as received.
There is however no error checking of the data performed.

6-5 Line coding

In non-return to zero (NRZ) encoding, a 1 is represented by high level and a 0 is
represented by a low level. In non-return to zero inverted (NRZI) encoding, a 1 is
represented by no change in level and a 0 is represented by a change in level. In
bi-phase mark (FM1) a transition occurs at the beginning of each bit cell. A 1 is
represented by an additional transition at the center of the bit cell and a 0 is represented
by no additional transition at the center of the bit cell. In bi-phase space (FM0) a
transition occurs at the beginning of each bit cell. A 0 is represented by an additional
transition at the center of the bit cell and a 1 is represented by no additional transition
at the center of the bit cell. Manchester encoding always produces a transition at the
center of the bit cell. A 0 is represented by a transition from 0 to 1, and a 1 is represented
by a transition from 1 to 0.

Bit
Clock

NRZ
encoding

FM1
encoding

Start 0 1 2 3 4 5 6 7 Stop IdleIdle
Bit Bit

Data: 01001101 ($4D)

1 0 1 1 0 0 1 0

FM0
encoding

Manchester
encoding

NRZI
encoding

Figure 6-8.¬¬Line Encoding Methods

98

Since NRZ and NRZI type encoded signals have a DC component and defined
polarity, they require a correctly polarized DC coupled transmission medium. FM and
Manchester encoding however, do not have a DC component and polarity and thus
can be transmitted over AC coupled media. The ISO 8802-3 10 Megabit per second
Ethernet standard of computer networking makes use of Manchester encoding.

6-6 Electrical Line Interface Standards

Majority of computers and their peripherals are constructed of logic using TTL
logic levels. Serial communication peripheral chips or ports all have TTL level input
and output signals which are not suitable for transmission over lengthy cables. Signals
have to be converted from TTL to suitable levels for the respective transmission hardware
(cable) before transmission and have to be converted back to TTL level at the receiver
input. As computer industry matured the need for data transmission standards became
apparent. Key considerations in selecting a data transmission standard are line length,
bit rate, environment (noise conditioning along the transmission path), number of
transmitters and receivers allowed on line, and whether or not the system will have to
interface with other existing or future systems.

Transmission line standards can be split into two categories according to the
signal generators electrical equivalent:

• Current source (current loop) or
• Voltage source

The most frequent standards are described in the following chapters, and Table
6-1 enables the reader to compare their characteristics.

6-6-1 The 20 mA Current Loop

The first standard used in serial data communication was to the 20 mA current
loop adopted from the Teletypewriter (TTY). The TTY is an electromechanical device
designed to send and receive 10 ASCII characters per second. One character is made
up of 11 bits resulting in a data rate of 110 baud. Electrically the TTY is characterized
by a steady 20 mA DC current flowing in the keyboard and printer circuits, when no
data is being transmitted. This is called the mark level and coincides with logic 1 TTL
level. The current is interrupted (called space level), when a logic 0 TTL level is sent,
such as the start bit of a character. Figure 6-9 shows the TTY interface and the way 20
mA regulated current loops can be generated.

99

+5V

TTY

24V

Serial Out

Serial In

Tx Data

Rx Data

1 k

4k7
1k

33Ω1k

µ1

1 k

4N25

4N25

TTL
logic

Logic Ground

Line Ground

BD137

BC547

1 N 4002

74 LS 14

Keyboard & Reader

Printer
Mechanism

Contacts

+

–

Figure 6-9.¬¬Optically isolated 20 mA current loop interface for TTY

Note that optocouplers are used to isolate the TTY circuit from the rest, and a
single -24 Volt supply is used to power the current loop electronics. If the wire or
cable to the terminal is very long, it can be exposed to interference from AC power
lines, other TTYs, radio signals, or even atmospheric discharges. Keeping the ground
and supply wires of the digital side electrically separated from the 20 mA loop side by
means of the optocoupler circuit will isolate such undesired noise. The current loop is
supplied with a negative supply (-24V) with respect to ground to electrochemically
protect the long cables from corrosion. The contacts in the TTY are designed to work
with up to 130 Volt and will not work reliably with very low voltages like 5 Volt, since
insulating oxides or even particles of dirt will form on the contacts in time. The -24
Volt supply will break through the oxides and provide reliable performance.

6-6-2 The RS-232 Interface

To overcome the speed shortcomings of the simple current loop, the RS-232 standard
was introduced in 1962, which has become very widely used throughout the industry.
This standard was developed for single ended data transmission over short distances
and slow data rates. A mark level signal is represented by a negative voltage on the
transmission line, again to protect the lines from electrochemical corrosion. RS-232 has
undergone multiple revisions, and the electrical characteristics of the last one RS-232-D,
is given in Table 6-1. The international version is given in CCITT recommendation
V.28, which is similar, but differs slightly on some rarely used circuits.

RS-232 drivers and receivers are voltage level converters with logic inversion as
shown in Figure 6-10. The Motorola MC1488 RS232C line driver needs plus and minus
12 Volt supplies, which have to be supplied by the computer. A novel RS-232D
receiver/driver interface chip, the Maxim MAX232 has a built in charge pump type
voltage converter to generate the positive and negative supplies for the line driver
from the regular +5 Volt logic supply.

100

Table 6-1.¬¬Some line interface standards

RS423

Single Ended

1 Driver
10 Receivers

1200

100 k

±6V

±3,6V min
±6,0V max

450Ω min

Controlled
Determined by cable
length & data rate

NA

±100 µA max
@ ±6V

>4 kΩ

±200 mV

RS422A (V11)

Differential

10 Drivers
10 Receivers

1200

10 M

+6V
-0,25V

±2V min

100Ω

NA

±100 µA max
-0,25V ≤ Vcm ≤ 6V

±100 µA max
-0,25V ≤ Vcm ≤ 6V

>4 kΩ

±200 mV
-7V ≤ Vcm ≤ 7V

RS485

Differential

32 Drivers
32 Receivers

1200

10 M

+12V
-7V

±1,5V min

60Ω

NA

±100 µA max
-7V ≤ Vcm ≤ 12V

±100 µA max
-7V ≤ Vcm ≤ 12V

>12 kΩ

±300 mV
-12V ≤ Vcm ≤ 12V

Parameter

Mode of Operation

Number of Drivers and
Receivers Allowed on Line

Maximum cable legth (m)

Maximum data rate (Baud)

Maximum Common Mode
Voltage

Driver Output Signal

Driver Load

Driver Slew Rate

Driver Output
Resistance (high Z state)

Receiver Input Resistance

Receiver Sensitivity

Power On

Power Off

RS232D (V28)

Single Ended

1 Driver
1 Receiver

15

20 k

±25V

±5V min
±15V max

3 kΩ - 7 kΩ

30V/µs max

NA

300Ω

3 kΩ - 7 kΩ

±3V

101

C1+
V+
C1-
C2+
C2-
V-

T1O
R1I
R1O
T1I
T2I
R2O
R2I
T2O

Max232

Gnd

Vcc

Tx Data

RTS

CTS

Rx Data

TTL logic
levels

RS232 logic
levels

1/2 MC1489

1/2 MC1488

+12V

-12V
+5V

NOTE : The transmitter MC1488 needs a separate ±12 Volt supply

10µF

10µF

10µF

10µF

RS232 logic
levels

GND

TTL logic
levels

Tx Data

RTS

GND

+5 Volt

CTS
Rx Data

Figure 6-10.¬¬Two different RS232 interfaces

6-6-3 The RS-423 Interface

Today’s higher performance data communication systems are rapidly making
RS-232 inadequate, with the need to transmit data faster and over longer distances.
RS-423 is a newer standard for single ended applications which extends the maximum
data rate to 100 thousand baud at distances up to 100m and the maximum distance to
1200m at up to 1000 baud.

6-6-4 The RS-422 Interface

For data rates faster than 100 kilobaud over long distances, differential data
transmission should be used to nullify effects of ground shifts and noise signals which

102

appear as common mode voltages on the driver outputs and receiver inputs. RS-422

was defined for this purpose and allows data rates up to 10 million baud (up to 12m)
and line lengths up to 1200m (up to 100 kilobaud). Drivers designed to meet this
standard are capable of transmitting a 2V minimum differential signal to a twisted
pair of line terminated in 100Ω. The receivers are capable of detecting a ±200 mV
differential signal in the presence of a common signal from -7V to +7V.

6-6-5 The RS-485 Interface

The EIA (Electronic Industries Association) has defined a new standard, RS-485,
patterned after RS-422 and specified for extended multipoint interface. It allows up to
32 driver-receiver pairs on a common data bus, and at the same time satisfy the
requirements of RS-422. The key features of RS-485 compared to RS-422 are:

• Common mode range, +6V to -0,25V in RS422, is extended to +12V to -7V.
• The drivers are protected against bus contention by employing output current

limiting and thermal protection.
• Receiver common mode range is extended from ±7V to ±12V, while

maintaining ±300 mV sensitivity.
• Receiver input impedance increase from 4kΩ minimum to 12 kΩ minimum.

A typical bus application is shown in Figure 6-11, where multiple devices are
connected to the same data bus, and a repeater to extend the maximum cable length at
a given data rate or the number of devices connected.

R

D

R D

R D

Modem

CRT Terminal

CPU

SN75176A SN75176A

R D

CPU

SN75176A

R D

Printer

120Ω termination
RD

R D
120Ω termination

Twisted-Pair Line

CPU

R D

CRT Terminal

SN75176A

SN75178A

SN75177A

Bidirectional
Repeater

R D

SN75176A

120Ω termination

Figure 6-11.¬¬A typical RS485 schematic

At high operation speeds, stub lengths (line connecting drivers, receiver, etc. to
the main bus twisted pair) should be kept as short as possible (less than 30 cm) to
eliminate possibility of reflections.

Note that in Figure 6-11 all drivers and receivers are connected with the same
polarity to enable usage of NRZ line coding. If in a network like in Figure 6-11 very
high common mode voltage differences exist between devices, transformer coupling
and polarity independent FM or Manchester coding can be used as shown in Figure
6-12. Apple® Macintosh® computers make use of such a transformer coupled circuit

103

in their AppleTalk® network.

R

D

1/4 MC3487

1 : 1
turn
ratio

1/4 MC3486

1 kΩ
1 kΩ

120Ω

R

D

1/4 MC3487

1/4 MC3486

1 kΩ

1 kΩ

1 : 1
turn
ratio

RD

1 kΩ1 kΩ

1 : 1
turn ratio

1/4
MC 3487 1/4

MC 3486

Doubly terminated transmission line

120Ω

Figure 6-12.¬¬Transformer coupled RS422A network

6-7 Modems

If the communicating parts are separated by a large distance, dedicated data lines
would become excessively expensive and hard to maintain. Instead the present telephone
network could be used by adding so called modems on each side. Telephone systems
are designed to transmit audio signals in the frequency range 300 Hz to 3400 Hz and
the systems phase response is usually not linear. Due to this fact a digital signals
containing a DC component are not suitable for direct transmission over telephone
lines.

To get around the problems associated with dc signalling, AC signalling is used.
This can be accomplished by using FM or Manchester type line coding instead of NRZ
or by using a modulator-demodulator (MODEM) unit, which might first compress the
data and than shift the data spectrum to fit the transmission media’s characteristic.
Common techniques are ASK (Amplitude Shift Keying), FSK (frequency shift keying),
PSK (phase shift keying), and QAM (Quadrature Amplitude Modulation).

6-8 The GP32 on-chip Serial Peripheral Interface (SPI)

Figure 6-13 shows the 68HC908GP32 microcontrollers on-chip serial peripheral
interface (SPI) block diagram which includes the following features:

• Full-duplex operation
• Master and slave modes
• Double-buffered operation with separate transmit and receive registers
• Four master mode frequencies (maximum = bus frequency ÷ 2)
• Maximum slave mode frequency = bus frequency
• Serial clock with programmable polarity and phase
• Two separately enabled interrupts:

– SPRF (SPI receiver full)
– SPTE (SPI transmitter empty)

• Mode fault error flag with CPU interrupt capability

104

• Overflow error flag with CPU interrupt capability

• Programmable wired-OR mode
• I2C (inter-integrated circuit) compatibility
• I/O (input/output) port bit(s) software configurable with pullup device(s)

if configured as input port bit(s).

7 6 5 4 3 2 1 0
SHIFT REGISTER

TRANSMIT DATA
REGISTER

RECEIVE DATA
REGISTER

PIN
CONTROL

LOGIC

MISO

MOSI

SPSCK

SS

CLOCK
LOGIC

M
S

SPMSTR CPHA CPOL

SPI
CONTROL

MODFEN
ERRIE
SPTIE
SPRIE
DMAS
SPE

SPWOM

SPRF
SPTE
OVRF
MODF

CLOCK
SELECT

SPR1 SPR0

CLOCK
DIVIDER

÷2
÷8

÷32
÷128

SPMSTR SPE

CGMOUT ÷2
FROM SIM

INTERNAL BUS

RESERVED
TRANSMITTER CPU IRQ REQUEST

RESERVED
RECEIVER/ERROR
CPU IRQ REQUEST

Figure 6-13. SPI Module Block Diagram

The SPI I/O pin names are SS (slave select), SPSCK (SPI serial clock), MOSI
(master out slave in), and MISO (master in slave out). The SPI four I/O pins with four
parallel PortD I/O pins. The SPI module allows full-duplex, synchronous, serial
communication between the MCU and peripheral devices, including other MCUs.
Software can poll the SPI status flags or SPI operation can be interrupt driven. The SPI

105

can operate in master or slave mode.

6-8-1 SPI in Master Mode

The SPI operates in master mode when the SPI master bit in the SPI control
register, SPMSTR, is set. Configure the SPI modules as master or slave before enabling
them. Always enable the master SPI before the slave, and disable the slave SPI before
the master.

Only a master SPI module can initiate transmissions. Software begins the
transmission from a master SPI module by writing to the transmit data register. If the
shift register is empty, the byte immediately transfers to the shift register, setting the
SPI transmitter empty bit, SPTE in the SPI control register SPCR. The byte begins
shifting out with the most significant bit on the MOSI pin under the control of the
serial clock. The SPR1 and SPR0 bits control the baud rate generator and determine
the speed of the shift register as can be seen in Figure 6-13. Through the SPSCK pin,
the baud rate generator of the master also controls the shift register of the slave
peripheral.

As the byte shifts out on MOSI pin of the master, another byte shifts in from the
slave on master’s MISO pin. The transmission ends when the receiver full bit in the
SPSCR, SPRF, becomes set. At the same time that SPRF becomes set, the byte from the
slave transfers to the receive data register. In normal operation, SPRF signal end of a
transmission. Software clears SPRF by reading the status and control register SPSCR
with SPRF set and then reading the SPI data register SPDR. Writing to the SPI data
register clears the SPTE bit.

6-8-2 SPI in Slave Mode

The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the
SPSCK pin is the serial clock input from the master MCU. Before a data transmission
occurs, the SS must remain low until the transmission is complete. In a slave SPI
module, data enters the shift register under the control of the serial clock from the
master SPI module. After a byte enters the shift register of a slave SPI, it transfers to
the receive data register, and the SPRF bit is set. To prevent an overflow condition,
slave software then must read the receive data register before another full byte enters
the shift register.

When the master SPI starts a transmission, the data in the slave shift register
begins shifting out on the MISO pin. The slave can load its shift register with a new
byte for the next transmission by writing to its transmit data register SPDR. The slave
must write to its transmit data register at least one bus cycle before the master starts
the next transmission. Otherwise, the byte already in the slave shift register shifts out
on the MISO pin. Data written to the slave shift register during a transmission remains
in a buffer until the end of the transmission.

When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission.
When CPHA is clear, the falling edge of SS starts a transmission.

106

6-8-3 SPI Transmission Formats

During an SPI transmission, data is simultaneously transmitted (shifted out serially)
and received (shifted in serially). A serial clock synchronizes shifting and sampling on
the two serial data lines. A slave select line allows selection of an individual slave SPI
device; slave devices that are not selected do not interfere with SPI bus activities. On a
master SPI device, the slave select line can optionally be used to indicate multiple-master
bus contention.

Software can select any of four combinations of serial clock (SPSCK) phase and
polarity using two bits in the SPCR as shown in Figure 6-14. The clock polarity is
specified by the CPOL control bit, which selects an active high or low clock and has no
significant effect on the transmission format.

SPSCK CYCLE #
FOR REFERENCE

SPSCK; CPOL=0
CPHA = 0

SPSCK; CPOL=1
CPHA = 0

MOSI
FROM MASTER

MISO
FROM SLAVE

SS; TO SLAVE

SPSCK; CPOL=0
CPHA = 1

SPSCK; CPOL=1
CPHA = 1

MOSI
FROM MASTER

MISO
FROM SLAVE

1 2 3 4 5 6 7 8

LSB

LSB

LSB

LSB

MSB

MSB

MSB

MSB

Figure 6-14. SPI Transmission Formats

6-8-4 SPI Registers

The SPI is programmed using its three registers, SPI Control Register (SPCR), SPI
Status and Control Register (SPSCR), and the SPI Data Register (SPDR). The SPI Control
Register bits function as follows:

SPRIE – SPI Receiver Interrupt Enable Bit
This read/write bit enables CPU interrupt requests generated by the SPRF bit in

107

the SPSCR. The SPRF bit is set when a byte transfers from the shift register to the

receive data register. Reset clears the SPRIE bit.
1 = SPRF CPU interrupt enabled
0 = SPRF CPU interrupt disabled

DMAS – DMA Select Bit
Since there is no DMA module on this microcontroller this bit has no effect on
the SPI. This bit always reads as a zero.

SPMSTR – SPI Master Bit
This read/write bit selects master or slave mode operation. Reset clears SPMSTR
bit.

1 = Master mode
0 = Slave mode

CPOL – Clock Polarity Bit
This read/write bit determines the logic state of the SPSCK pin between trans-
missions (idle state). To transmit data between SPI modules, the SPI modules
must have identical CPOL values. Reset clears the CPOL bit.

CPHA – Clock Phase Bit
This read/write bit controls the timing relationship between the serial clock and
SPI data. To transmit data between SPI modules, the SPI modules must have
identical CPHA values. When CPHA = 0, the SS pin of the slave SPI module
must be set to logic 1 between bytes. Reset sets the CPHA bit.

SPWOM – SPI Wired-OR Mode Bit
This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO
so that those pins become open-drain outputs. An external pullup resistor on
each pin is required in this case. The open-drain outputs are obligatory in I2C
bus compatible operation of the SPI. Reset clears the SPWOM bit.

1 = Wired-OR SPSCK, MOSI, and MISO pins
0 = Normal push-pull SPSCK, MOSI, and MISO pins

SPE – SPI Enable
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of
the SPI. Reset clears the SPE bit.

1 = SPI module enabled
0 = SPI module disabled

SPTIE – SPI Transmit Interrupt Enable
This read/write bit enables CPU interrupt requests generated by the SPTE bit in
the SPSCR. SPTE is set when a byte transfers from the transmit data register to
the shift register. Reset clears the SPTIE bit.

1 = SPTE CPU interrupt requests enabled
0 = SPTE CPU interrupt requests disabled

The SPI status and control register contains flags to signal these conditions:

108

• Receive data register full
• Failure to clear SPRF bit before next byte is received (overflow error)
• Inconsistent logic level on SS pin (mode fault error)
• Transmit data register empty
• Enable error interrupts
• Enable mode fault error detection
• Select master SPI baud rate

The SPI Status and Control Register bits function as follows:

SPRF – SPI Receiver Full Bit
This clearable, read-only flag is set each time a byte transfers from the shift
register to the receive data register. SPRF generates a CPU interrupt request if the
SPRIE bit in the SPSCR is set also. During an SPRF CPU interrupt, the CPU clears
SPRF by reading first the SPSCR and then the SPI data register. Reset clears the
SPRF bit.

1 = Receive data register full
0 = Receive data register not full

ERRIE – Error Interrupt Enable Bit
This read/write bit enables the MODF and OVRF bits to generate CPU interrupt
requests. Reset clears this bit.

1 = MODF and OVRF can generate CPU interrupt requests.
0 = MODF and OVRF cannot generate CPU interrupt requests.

OVRF – Overflow Bit
This clearable, read-only flag is set if software does not read the byte in the
receive data register before the next full byte enters the shift register. In an
overflow condition, the byte already in the receive data register is unaffected,
and the byte that is shifted in last is lost. Clear the OVRF bit by reading the
SPSCR with OVRF set and then reading the receive data register. Reset clears the
OVRF bit.

1 = Overflow occurred
0 = No overflow occurred

MODF – Mode Fault Bit
This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a
transmission with the MODFEN bit set. In a master SPI, the MODF flag is set if
the SS pin goes low at any time with the MODFEN bit set. Clear the MODF bit by
reading the SPSCR with MODF set and then writing to the SPCR. Reset clears the
MODF bit.

1 = SS pin at inappropriate logic level
0 = SS pin at appropriate logic level

SPTE – SPI Transmitter Empty Bit
This clearable, read-only flag is set each time the transmit data register transfers a
byte into the shift register. SPTE generates an SPTE CPU interrupt request if the

109

SPTIE bit in the SPSCR is set also. During an SPTE CPU interrupt, the CPU clears

the SPTE bit by writing to the transmit data register. Note that writing to the SPI
data register while the SPTE bit is high will cause loss of previous data. Reset sets
the SPTE bit.

1 = Transmit data register empty
0 = Transmit data register not empty

MODFEN – Mode Fault Enable Bit
This read/write bit, when set to one, allows the MODF flag to be set. If the
MODF flag is set, clearing the MODFEN does not clear the MODF flag. If the SPI
is enabled as a master and the MODFEN bit is low, then the SS pin is available as
a general purpose I/O. If however, the MODFEN bit set, then this pin is not
available as a general purpose I/O. When the SPI is enabled as a slave, the SS pin
is not available as a general purpose I/O regardless of the value of MODFEN. If
the MODFEN bit is low, the level of the SS pin does not affect the operation of an
enabled SPI configured as a master. For an enabled SPI configured as a slave,
having MODFEN low only prevents the MODF flag from being set. It does not
affect any other part of SPI operation.

SPR1 and SPR0 – SPI Baud Rate Select Bits
In master mode, this read/write bits select one of four baud rates as shown in
Table 6-2. SPR1 and SPR0 have no effect in slave mode. Reset clears SPR1 and
SPR0.

Table 6-2. SPI Master Baud Rate Selection

SPR1 and SPR0
00
01
10
11

Baud Rate Divisor
2
8

32
128

Use this formula to calculate the SPI baud rate:

Baud rate CGMOUT

BD
 =

•2

where CGMOUT is the base clock output of the clock generator module (CGM) and
BD the baud rate divisor.

The SPI data register (SPDR) consists of the read-only receive data register and
the write-only transmit data register. Writing to the SPDR writes data to the transmit
data register, whereas reading the SPDR reads data from the receive data register.
Due to this fact do not use read-modify-write instructions on the SPDR.

110

6-9 The GP32 on-chip Serial Communication Interface (SCI)

This section describes the serial communications interface (SCI) module, which
allows high-speed asynchronous communications with peripheral devices and other
MCUs. Features of the SCI module include:

• Full-duplex operation
• Standard mark/space non-return-to-zero (NRZ) format
• 32 programmable baud rates
• Programmable 8-bit or 9-bit character length
• Separately enabled transmitter and receiver
• Separate receiver and transmitter CPU interrupt requests
• Programmable transmitter output polarity
• Two receiver wakeup methods:

– Idle line wakeup
– Address mark wakeup

• Interrupt-driven operation with eight interrupt flags:
– Transmitter empty
– Transmission complete
– Receiver full
– Idle receiver input
– Receiver overrun
– Noise error
– Framing error
– Parity error

• Receiver framing error detection
• Hardware parity checking
• 1/16 bit-time noise detection
• Configuration register bit, SCIBDSRC, to allow selection of baud rate clock

source

The SCI I/O (input/output) lines are implemented by sharing PortE parallel I/O port
pins. The receive data input (RxD) shares the PortE bit1 (PTE1) pin and the transmit
data output shares the PortE bit0 (PTE0) pin. Enabling the receiver will automatically
assign PTE1 to function as the RxD input and enabling the transmitter will similarly
assign PTE0 to function as the TxD output.

Figure 6-15 shows the structure of the SCI module. The SCI allows full-duplex,
asynchronous, NRZ, double-buffered serial communication among the MCU and remote
devices, including other MCUs. The transmitter and receiver operate independently,
although they use the same baud rate generator. During normal operation, the CPU
monitors the status of the SCI, writes data to be transmitted, and processes received
data. The baud rate clock source for the SCI can be selected via the configuration bit,
SCIBDSRC, of the CONFIG2 register ($001E). Source selection values are shown in

111

Figure 6-15.

INTERNAL BUS

SCI DATA
REGISTER

RECEIVE
SHIFT REGISTER TR

AN
SM

IT
TE

R
IN

TE
RR

UP
T

CO
NT

RO
L

RE
CE

IV
ER

IN
TE

RR
UP

T
CO

NT
RO

L

ER
RO

R
IN

TE
RR

UP
T

CO
NT

RO
L

SCI DATA
REGISTER

TRANSMIT
SHIFT REGISTER

PTE1
RxD

PTE0
TxD

TXINV

R8

T8

SCTIE

TCIE
SCRIE

ILIE

TE

RE

RWU
SBK

SCTE

TC

SCRF

IDLE

OR

NF

FE

PE

ORIE

NEIE

FEIE

PEIE

WAKEUP
CONTROL

RECEIVE
CONTROL

FLAG
CONTROL

TRANSMIT
CONTROL

LOOPS

ENSCILOOPS

BKF

RPF
M

WAKE

ILTY

PEN
PTY

DATA SELECTION
CONTROL

PRE-
SCALER

BAUD
DIVIDER

÷16

÷4

ENSCI

SCIBDSRC
FROM

CONFIG

SL
A B

IT
12

CG
M

XC
LK

SL=0 =>X=A
SL=1 =>X=B

X

Figure 6-15. SCI Module Block Diagram

The SCI uses the standard NRZ data format and both transmitter and receiver can
accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1
(SCC1) determines character length.

112

6-9-1 SCI Character Transmission

During an SCI transmission, the transmit shift register shifts a character out to the
PTE0/TxD pin. The SCI data register (SCDR) is the write-only buffer between the
internal data bus and the transmit shift register. When transmitting 9-bit data, bit T8
in the SCI control register 3 (SCC3) is the ninth bit (bit 8). To initiate an SCI transmission:

1. Enable the SCI by writing a logic 1 to the enable SCI (ENSCI) in the control
register 1 (SCC1).

2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE)
in SCI control register 2 (SCC2).

3. Clear the SCI transmitter empty bit by first reading SCI status register 1
(SCS1) and then writing to the SCDR.

4. Repeat step 3 for subsequent transmission.

At the start of a transmission, transmitter control logic automatically loads the transmit
shift register with a preamble of logic 1s. After the preamble shifts out, control logic
transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically
goes into the least significant bit position of the transmit shift register. A logic 1 stop
bit goes into the most significant bit position.

The SCI transmitter empty bit SCTE, in SCS1 becomes set when the SCDR transfers
a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept
new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in
SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request.

When the transmit shift register is not transmitting a character, the PTE0/TxD pin
goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCC1,
the transmitter and receiver relinquish control of the port E pins.

Writing a logic 1 to the send break bit, SBK in SCC2 loads the transmit shift
register with a break character. A break character contains all logic 0s and has no start,
stop, or parity bit. Break character length depends on the M bit in SCC1. As long as
SBK is at logic 1, transmitter logic continuously loads break characters into the transmit
shift register. After software clears the SBK bit, the shift register finishes transmitting
the last break character and then transmits at least one logic 1. The automatic logic 1 at
the end of a break character guarantees the recognition of the start bit of the next
character.

The SCI recognizes a break character when a start bit is followed by eight or nine
logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character
has these effects on SCI registers:

• Sets the framing error bit (FE) in SCS1
• Sets the SCI receiver full bit (SCRF) in SCS1
• Clears the SCI data register (SCDR)
• Clears the R8 bit in SCC3

113

• Sets the break flag (BKF) in SCS2

• May set the overrun (OR), noise flag (NF), parity error (PE), or reception in
progress flag (RPF) bits.

If there is exists a random length gaps between individual data bytes, the transmitter
will send a logic 1 level, or idle line condition. If the TE bit is cleared during a
transmission, the PTE0/TxD pin becomes idle after completion of the transmission in
progress. Clearing and then setting the TE bit during a transmission queues an idle
character to be sent after the character currently being transmitted. This idle character
contains all logic 1s and has no start, stop, or parity bit. Its length depends on the M
bit in the SCC1.

Special attention has to be given in toggling the TE bit. When queueing an idle
character, return the TE bit to logic 1 before the stop bit of the current character shifts
out to the TxD pin. Setting TE after the stop bit appears on the TxD pin causes data
previously written to the SCDR to be lost. Therefore it is advised to toggle the TE bit
for a queued idle character when the SCTE bit becomes set and just before writing the
next byte to the SCDR.

The transmit inversion bit (TXINV) in the SCC1 reverses the polarity of transmitted
data. All transmitted bits including idle, break, start, and stop bits, are inverted when
TXINV is at logic 1. Unless the hardware requires this condition, this operation is
meaningless.

The SCI transmitter can generate CPU interrupts under the following two
conditions:

• SCI transmitter empty (SCTE) – If the SCI transmit interrupt enable bit,
SCTIE, in SCC2 is set, and the SCTE bit gets set due to transfer of the data
in the SCDR to the shift register, a transmitter CPU interrupt request is
generated.

• Transmission complete (TC) – The TC bit in SCS1 indicates that the transmit
shift register and the SCDR are empty and no break or idle character has
been generated. The transmission complete interrupt enable bit, TCIE, in
SCC2 enables the TC bit to generate transmitter CPU interrupt requests.

6-9-2 SCI Character Reception

The SCI receiver accommodate either 8-bit or 9-bit data. The M in SCC1 determines
the character length. A logic 1 in the M bit will force 9-bit reception. When receiving
9-bit data, bit R8 in the SCC2 is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is
a copy of the eight bit (bit 7). During an SCI reception, the receive shift register shifts
characters in from PTE1/RxD pin. The SCI data register (SCDR) is the read-only
buffer between the internal data bus and the receive shift register.

After a complete character shifts into the receive shift register, the data portion of
the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCS1 becomes

114

set, indicating that the received byte can be read. If the receive interrupt enable bit,

SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request.

The receiver samples the PTE1/RxD pin at the RT clock rate. The RT clock has a
frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is
resynchronized at the following times (see Figure 6-16):

• After every start bit
• After the receiver detects a data bit change from logic 1 to logic 0

(after the majority of data bit samples at RT8, RT9, and RT10 returns a
valid logic 1 and the majority of the next RT8, RT9, and RT10 samples
returns a valid logic 0)

To locate the start bit, data recovery logic does an asynchronous search for a logic 0
preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT
clock begins to count to 16.

RT
1

RT
2

RT
3

RT
4

RT
5

RT
6

RT
7

RT
8

RT
9

RT
10

RT
11

RT
12

RT
13

RT
14

RT
15

RT
16

RT
1

RT
2

RT
3

RT
4

RT
1

RT
1

RT
1

RT
1

RT
1

START BIT
QUALIFICATION

START BIT
VERIFICATION

DATA
SAMPLING

PTE1/RxD

SAMPLES

RT
CLOCK

RT CLOCK
STATE

RT CLOCK
RESET

START BIT LSB

Figure 6-16. Receiver Data Sampling

To verify the start bit and to detect noise, data recovery logic takes samples at
RT3, RT5, and RT7. Start bit verification is not successful if any two of the three
verification samples are logic 1s.

To determine the value of a data bit and to detect noise, recovery logic takes
samples at RT8, RT9, and RT10; and majority of these samples will determine the logic
level of the data. The noise flag NF , in the SCS1, will be set if not all three samples are
identical.

Similarly, to verify a stop bit and to detect noise, data bit determination logic is
used and checked against a logic 1 level. If the data recovery logic does not detect a
logic 1 where the stop bit should be in an incoming character, it sets the framing error
bit, FE, in SCS1. The FE bit is set at the same time that the SCRF bit is set.

The following sources can generate CPU interrupt requests from the SCI receiver:

• SCI receiver full (SCRF) – The SCRF bit in SCS1 indicates that the receive

115

shift register has transferred a character to the SCDR. SCRF can generate a

receiver CPU interrupt request if the SCI receive interrupt enable bit SCRIE,
in SCC2 is also set.

• Idle input (IDLE) – The IDLE bit in SCS1 indicates that 10 or 11 consecutive
logic 1s shifted in from the PTE1/RxD pin. The idle line interrupt enable
bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests.

The following receiver error flags in SCSI can generate CPU interrupt requests:
• Receiver overrun (OR) – The OR bit indicates that the receive shift register

shifted in a new character before the previous character was read from the
SCDR. The previous character remains in the SCDR, and the new character
is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to
generate SCI error CPU interrupt requests.

• Noise flag (NF) – The NF bit is set when the SCI detects noise on incoming
data or break characters, including start, data, and stop bits. The noise
error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI CPU
interrupt requests.

• Framing error (FE) – The FE bit in SCS1 is set when a logic 0 occurs where
the receiver expects a stop bit. The framing error interrupt enable bit, FEIE,
in SCC3 enables FE to generate SCI error CPU interrupt requests.

• Parity error (PE) – The PE bit is set when the SCI detects a parity error in
incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables
PE to generate SCI error CPU interrupt requests.

6-9-3 SCI I/O Registers

The SCI has three control registers SCC1, SCC2, and SCC3, two status registers
SCS1, and SCS2, one data register SCDR, and one baud rate register SCBR. Let us
examine the function of all bits in those registers. The SCI control register 1 (SCC1)
makes use of the following bits:

LOOPS – Loop Mode Select Bit
This read/write bit enables loop mode operation. In loop mode the PTE1/RxD
pin is disconnected from the SCI, and the transmitter output goes directly into
the receiver input. Both the receiver and transmitter must be enabled to use loop
mode. Reset clears the LOOPS bit.

1 = Loop mode enabled
0 = Normal operation enabled

ENSCI – Enable SCI Bit
This read/write bit enables the SCI and the baud rate generator. Clearing ENSCI
sets the SCTE and TE bits in SCS1 and disables transmitter interrupts. Reset
clears the ENSCI bit.

1 = SCI enabled
0 = SCI disabled

TXINV – Transmit Inversion Bit

116

This read/write bit reverses the polarity of transmitted data. Reset clears the

TXINV bit.
1 = Transmitter output inverted
0 = Transmitter output not inverted (normal)

M – Mode (Character Length) Bit
This read/write bit determines whether SCI characters are eight or nine bits long.
(See Table 6-3.) The ninth bit can serve as an extra stop bit, as a receiver wakeup
signal, or as a parity bit. Reset clears the M bit.

1 = 9-bit SCI characters
0 = 8-bit SCI characters

WAKE – Wakeup Condition Bit
This read/write bit determines which condition wakes up the SCI: a logic 1

(address mark) in the most significant bit position of a received character or an idle
condition on the PTE1/RxD pin. Reset clears the WAKE bit.

1 = Address mark wakeup
0 = Idle line wakeup

ILTY – Idle Line Type Bit
This read/write bit determines when the SCI starts counting logic 1s as idle
character bits. The counting begins either after the start bit or after the stop bit. If
the count begins after the start bit, then a string of logic 1s preceding the stop bit
may cause false recognition of an idle character. Beginning the count after the
stop bit avoids false idle character recognition, but requires properly synchronized
transmissions. Reset clears the ILTY bit.

1 = Idle character bit count begins after stop bit
0 = Idle character bit count begins after start bit

PEN – Parity Enable Bit
This read/write bit enables the SCI parity function. (See Table 6-3.) When enabled,
the parity function inserts a parity bit in most significant bit position. Reset clears
the PEN bit.

1 = Parity function enabled
0 = Parity function disabled

PTY – Parity Bit
This read/write bit determines whether the SCI generates and checks for odd or
even parity. (See Table 6-3.) Reset clears the PTY bit. Note that changing the PTY
bit in the middle of a transmission or reception can generate a parity error.

1 = Odd parity
0 = Even parity

117

Table 6-3. Character Format Selection

M

0
1
0
0
1
1

PEN and
PTY
0x
0x
10
11
10
11

Start
Bits

1
1
1
1
1
1

Parity

None
None
Even
Odd
Even
Odd

Stop
Bits

1
1
1
1
1
1

Character
Length
10 bits
11 bits
10 bits
10 bits
11 bits
11 bits

Control Bits Character Format

SCI Control Register 2

The SCI control register 2 (SCC2) makes use of the following bits:

SCTIE – SCI Transmit Interrupt Enable Bit
This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt
requests. Reset clears the SCTIE bit.

1 = SCTE enabled to generate CPU interrupt
0 = SCTE not enabled to generate CPU interrupt

TCIE – Transmission Complete Interrupt Enable Bit
This read/write bit enables the TE bit to generate SCI transmitter CPU interrupt
requests. Reset clears the TCIE bit.

1 = TC enabled to generate CPU interrupt requests
0 = TC not enabled to generate CPU interrupt requests

SCRIE – SCI Receive Interrupt Enable Bit
This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt
requests. Reset clears the SCRIE bit.

1 = SCRF enabled to generate CPU interrupt
0 = SCRF not enabled to generate CPU interrupt

ILIE – Idle Line Interrupt Enable Bit
This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt
requests. Reset clears the ILIE bit.

1 = IDLE enable to generate CPU interrupt requests
0 = IDLE not enabled to generate CPU interrupt requests

TE – Transmitter Enable Bit
Setting this read/write bit begins the transmission by sending a preamble of 10
or 11 logic 1s from the transmit shift register to the PTE0/TxD pin. If software
clears the TE bit, the transmitter completes any transmission in progress before
the PTE0/TxD returns to the idle condition (logic 1). Clearing and then setting
the TE during a transmission queues an idle character to be sent after the character

118

currently being transmitted. Reset clears the TE bit. Note that writing to the TE

bit is not allowed when the enable SCI bit (ENSCI) is clear.
1 = Transmitter enabled
0 = Transmitter disabled

RE – Receiver Enable Bit
Setting this read/write bit enables the receiver. Clearing the RE bit disables the
receiver but does not affect receiver interrupt flags. Reset clears the RE bit. Note
that writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear.

1 = Receiver enabled
0 = Receiver disabled

RWU – Receiver Wakeup Bit
This read/write bit puts the receiver in a standby state during which receiver
interrupts are disabled. The WAKE bit in SCC1 determines whether an idle line
or an address mark brings the receiver out of the standby state and clears the
RWU bit. Reset clears the RWU bit. The wakeup feature is very useful in networked
multi-microcontroller applications as will be explained later in this chapter.

1 = Standby state (Wakeup feature enabled)
0 = Normal operation

SBK – Send Break Bit
Setting and then clearing this read/write bit transmits a break character followed
by a logic 1. The logic 1 after the break character guarantees recognition of a
valid start bit. If SBK remains set, the transmitter continuously transmits break
characters with no logic 1s between them. Reset clears the SBK bit. Note that the
SBK bit should never be toggled immediately after setting the TE bit. Doing so
would force the transmitter to send a break character instead of transmitter start
preamble.

1 = Transmit break characters
0 = No break characters being transmitted

SCI Control Register 3

The SCI control register 3 (SCC3) makes use of the following bits:

R8 – Received Bit 8
When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit8) of
the received character. R8 is received at the same time that the SCDR receives the
other 8 bits. When the SCI is receiving 8-bit characters, R8 is a copy of the eight
bit (bit 7). Reset has no effect on R8.

T8 – Transmitted Bit 8
When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit

(bit¬8) of the received character. T8 is loaded into the transmit shift register at the
same time that the SCDR is loaded into the transmit shift register. Reset has no
effect on T8. Note that software has to write first to T8 and then to SCDR to

119

transmit a correct 9-bit character.

DMARE – DMA Receive Enable Bit
Since this MCU has no DMA module, assure that this bit is clear.

DMATE – DMA Transfer Enable Bit
Since this MCU has no DMA module, assure that this bit is clear.

ORIE – Receiver Overrun Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests generated by the
receiver overrun bit, OR. Reset clears ORIE.

1 = SCI error CPU interrupt request from OR bit enabled
0 = SCI error CPU interrupt request from OR bit disabled

NEIE – Receiver Noise Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests generated by the
noise error bit, NE. Reset clears NEIE.

1 = SCI error CPU interrupt request from NE bit enabled
0 = SCI error CPU interrupt request from NE bit disabled

FEIE – Receiver Framing Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests generated by the
framing error bit, FE. Reset clears FEIE.

1 = SCI error CPU interrupt request from FE bit enabled
0 = SCI error CPU interrupt request from FE bit disabled

PEIE – Receiver Parity Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests generated by the
parity error bit, PE. Reset clears PEIE.

1 = SCI error CPU interrupt request from PE bit enabled
0 = SCI error CPU interrupt request from PE bit disabled

SCI Status Register 1

The first of the two SCI status registers, SCS1, makes use of the following bits:

SCTE – SCI Transmitter Empty Bit
This clearable, read-only bit is set when the SCDR transfers a character to the
transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request.
When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU
interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with
SCTE set and then writing to SCDR. Reset sets the SCTE bit.

1 = SCDR data transferred to transmit shift register
0 = SCDR data not transferred to transmit shift register

TC – Transmission Complete Bit
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break

120

character is being transmitted. TC generates an SCI transmitter CPU interrupt

request if the TCIE bit in SCC2 is also set. TC is automatically cleared when data,
preamble or break is queued and ready to be sent. There may be up to 1,5
transmitter clocks of latency between queueing data, preamble, and break and
the transmission actually starting. Reset clears the TC bit.

1 = No transmission in progress
0 = Transmission in progress

SCRF – SCI Receiver Full Bit
This clearable, read-only bit is set when the data in the shift register transfers to
the SCI data register SCDR. SCRF can generate an SCI receiver CPU interrupt
request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU interrupt
request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set
and then reading the SCDR. Reset clears SCRF.

1 = Received data available in SCDR.
0 = No new received data available in SCDR.

IDLE – Receiver Idle Bit
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on
the receiver input. IDLE generates an SCI error CPU interrupt request if the ILIE
bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then
reading the SCDR. After the receiver is enabled, it must receive a valid character
that sets the SCRF bit before an idle condition can set the IDLE. Also, after the
IDLE bit has been cleared, a valid character must again set the SCRF bit before an
idle condition can set the IDLE bit. Reset clears the IDLE bit.

1 = Receiver input idle
0 = Receiver input active (or idle since the IDLE bit was cleared)

OR – Receiver Overrun Bit
This clearable, read-only bit is set when software fails to read the SCDR before
the receive shift register receives the next character. The OR bit generates an SCI
error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the
shift register is lost, but the data already in the SCDR is nor affected. Clear the
OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the
OR bit.

1 = Receive shift register full and SCRF = 1
0 = No receiver overrun

Software latency may allow an overrun to occur between reads of SCS1 and
SCDR in the flag-clearing sequence. The slightly delayed read of SCDR does not
clear the OR bit because OR was not set when SCS1 was read. As a result, the
second byte is lost. In such critical applications that are subject to software latency
or in which it is important to know which byte is lost due to an overrun, the
flag-clearing routine can check the OR bit in a second read of SCS1 after reading
the data register.

NF – Receiver Noise Flag Bit
This clearable, read-only bit is set when the SCI detects noise on the PTE1/RxD
pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set.

121

Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF

bit.
1 = Noise detected
0 = No noise detected

FE – Receiver Framing Error Bit
This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE
generates an SCI error CPU interrupt request if the FEIE bit in SCC3 is also set.
Clear the FE bit by reading SCS1 wit FE set and then reading the SCDR. Reset
clears the FE bit.

1 = Framing error detected
0 = No framing error detected

PE – Receiver Parity Error
This clearable, read-only bit is set when the SCI detects a parity error in incoming
data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3 is also set.
Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset
clears the PE bit.

1 = Parity error detected
0 = No parity error detected

SCI Status Register 2

SCI status register 2 contains only two flags to signal either detection of a break
character or incoming data.

BKF – Break Flag Bit
This clearable, read-only bit is set when the SCI detects a break character on the
PTE1/RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character
transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt
request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR.
Once cleared, BKF can become set again only after logic 1s appear on the PTE1/RxD
pin followed by another break character. Reset clears the BKF bit.

1 = Break character detected
0 = No break character detected

RPF – Reception in Progress Flag Bit
This read-only bit is set when the receiver detects a logic 0 during the RT1 time
period of the start bit search (See Figure 6-16). RPF does not generate an interrupt
request. RPF is reset after the receiver detects false start bits (usually from noise
or a baud rate mismatch) or when the receiver detects an idle character. Polling
RPF before disabling the SCI module or entering stop mode can show whether a
reception is in progress.

1 = Reception in progress
0 = No reception in progress

122

SCI Data Register

The SCI data register (SCDR) is the buffer between the internal data bus and the
receive and transmit shift registers. Reset has no effect on data in the SCI data register.
Reading address $0018 accesses the read-only received data bits, R7:R0. Writing to
address $0018 writes the data to be transmitted, T7:T0. Due to this fact do not use
read-modify-write instructions on SCDR.

SCI Baud Rate Register

The baud rate register (SCBR) selects the baud rate for both the receiver and the
transmitter. The bits in the SCBR are grouped in two parts. SCP1:SCP0 determine the
prescaler ratio as shown in Table 6-4, and SCR2:SCR0 determine the baud rate divisor
as shown in Table 6-5. Table 6-6 shows all combinations of Table 6-4 and Table 6-5 for
different MCU bus clock frequencies. For any MCU bus frequency fBUS the baud rate of
the SCI can be calculated as follows:

baud rate f

PD BD
BUS =

× ×64

where PD is the prescaler divisor and BD the baud rate divisor.

Table 6-4. SCI Baud Rate Prescaling

SCP1 and SCP0
00
01
10
11

Prescaler Divisor (PD)
1
3
4
13

Table 6-5. SCI Baud Rate Selection

SCR2, SCR1,
and SCR0

000
001
010
011
100
101
110
111

Baud Rate
Divisor (BD)

1
2
4
8

16
32
64
128

123

Table 6-6. SCI Baud Rate Selection Examples

SCP1:SCP0

00
00
00
00
00
00
00
00
01
01
01
01
01
01
01
01
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11

SCR2:SCR0

000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111

8 MHz
Baud rate

125000
62500
31250
15625
7812,5
3906
1953
977

41666
20833
10417
5208
2604
1302
651
326

31250
15625
7812,5
3906
1953
977
488
244

9615
4808
2404
1202
601
300
150
75

4,9152 MHz
Baud rate

76800
38400
19200
9600
4800
2400
1200
600

25600
12800
6400
3200
1600
800
400
200

19200
9600
4800
2400
1200
600
600
150
5908
2954
1477
738
369
185
92
46

MCU Bus frequency

6-10 Serial Communication Operations

The SCI must be initialized prior to operation by a sequence which sets up all
Control Registers. Let us initialize the SCI for 9600 baud, 8-bit data, no parity, no
wakeup, and no interrupts operation for a MCU bus clock frequency of 4,9152 MHz in
subroutine SCION. Subroutine OUTSCI transmits the character in the accumulator by
first checking the SCTE bit in SCS1 for a logic 1, and then storing accumulator data in
SCDR. Subroutine INSCI receives a data byte in the accumulator. At subroutine return
the carry flag in the condition code register indicates whether a new character has
been received and is in the accumulator or not. No receiver error checking is performed.

*
* SCION - Initialize SCI
*
SCC1 EQU $13 SCI Control Register 1
SCC2 EQU $14 SCI Control Register 2

124

SCC3 EQU $15 SCI Control Register 3

SCS1 EQU $16 SCI Status Register 1
SCS2 EQU $17 SCI Status Register 2
SCDR EQU $18 SCI Data Register
SCBR EQU $19 SCI Baud Rate Register
CONFIG1EQU $1F Config Register
*

ORG $100
*
* SCI initialization subroutine
*
SCION MOV #$31,CONFIG1 MCU runs w/o LVI and COP support

MOV #$40,SCC1 Enable SCI, 8-bits, no parity
MOV #$03,SCBR Adjust baud rate
MOV #$0C,SCC2 Enable receiver & transmitter
LDA SCS1 Clear SCRF bit
LDA SCDR
RTS

*
* OUTSCI - Send character in accumulator
*
OUTSCI BRCLR 7,SCS1,OUTSCI Wait until SCTE is set

STA SCDR Store data to be sent
RTS

*
* INSCI – Receive SCI character in accumulator
* Output : C=0; if no data ready,
* C=1; A = received character.
*
INSCI PSHX Save X on stack

LDX SCS1 Get SCI status
LDA SCDR Get received data
LSLX Shift SCS1 left until
LSLX SCRF bit is in carry
LSLX
PULX Restore original X
RTS Return
END

The simple subroutines given about have to be augmented for more complex
serial communication purposes. Error detection and processing plus data flow control
using Control-S/Control-Q are typical add-ons necessary.

6-11 Networking Microcontrollers

Many distributed control applications are efficiently realized using a multi
microcontroller system and controlling each processor over a network. In case that

125

more than two microcontrollers are communicating via common serial data lines, each

recipient has to be addressable individually and a special communication protocol has
to be established. In such case communications are message oriented where a message
can be transmitted with no significant idle time within the interior of the message, and
the address of the recipient is included at the beginning of the message. Interrupt
driven serial reception and transmission routines are required to improve overall
microcontroller throughput. To increase microcontroller throughput even further all
non-interested parties on the network are required not to respond to every byte of all
messages. The Wake-up feature is provided to allow all non-interested MCUs to
disregard the remainder of a message if serial communications are structured in
accordance with the above conditions. Figure 6-17 shows the construction of a simple
idle line delimited network message packet.

Destination
Address

Information (data)
field

Idle line

Source
Address

Idle line

Figure 6-17. Simple Multi-Microcontroller Network Message

After an idle line or address mark condition, a typical receiver interrupt service
routine would compare the first incoming byte (Destination Address) against its own
address identity number and continues to receive additional information bytes in case
the addresses match. Else the microcontroller software can set RWU bit in SCC2 to let
its receiver fall asleep (ignore additional incoming characters) until it wakes up by an
idle line or address mark.

References

1. Motorola Inc., “MC68HC908GP32/H Technical Data” Revision 4
2. Philips Components Division, “I2C-bus compatible ICs” Data Handbook IC12a,

1989

126

APPENDIX 1

Instruction Set Summary (Continued)

ADC #opr
ADC opr
ADC opr
ADC opr,X
ADC opr,X
ADC ,X
ADC opr,SP
ADC opr,SP

ADD #opr
ADD opr
ADD opr
ADD opr,X
ADD opr,X
ADD ,X
ADD opr,SP
ADD opr,SP

AIS #opr

AIX #opr

AND #opr
AND opr
AND opr
AND opr,X
AND opr,X
AND ,X
AND opr,SP
AND opr,SP

ASL opr
ASLA
ASLX
ASL opr,X
ASL ,X
ASL opr,SP

ASR opr
ASRA
ASRX
ASR opr,X
ASR ,X
ASR opr,SP

BCC rel

BCLR n,opr

BCS rel

BEQ rel

BGE rel

Add with Carry

Add without Carry

Add Immediate Value (Signed) to SP

Add Immediate Value (Signed) to H:X

Logical AND

Arithmetic Shift Left
(Same as LSL)

Arithmetic Shift Right

Branch if Carry Bit Clear

Clear Bit n in M

Branch if Carry Bit Set (Same as BLO)

Branch if Equal

Branch if Greater Than or Equal To
(Signed Operands)

Source
Form Operation Description

A <– (A) + (M) + (C)

A <– (A) + (M)

SP <– (SP) + (16 << M)

H:X <– (H:X) + (16 << M)

A <– (A) & (M)

PC <– (PC) + 2 + rel ? (C) = 0

Mn <– 0

PC <– (PC) + 2 + rel ? (C) = 1

PC <– (PC) + +2 + rel ? (Z) = 1

PC <– (PC) + 2 + rel ? (N ⊕ V) = 0

Effect on
CCR

V H I N Z C Ad
dr

es
s

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

I MM

I MM

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

DIR
INH
INH
IX1
IX
SP1

DIR
INH
INH
IX1
IX
SP1

REL

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

REL

REL

REL

A9
B9
C9
D9
E9
F9

9EE9
9ED9

AB
BB
CB
DB
EB
FB

9EEB
9EDB

A7

AF

A4
B4
C4
D4
E4
F4

9EE4
9ED4

38
48
58
68
78

9E68

37
47
57
67
77

9E67

24

11
13
15
17
19
1B
1D
1F

25

27

90

ii
dd
hh ll
ee ff
ff

ff
ee ff

ii
dd
hh ll
ee ff
ff

ff
ee ff

ii

ii

ii
dd
hh ll
ee ff
ff

ff
ee ff

dd

ff

ff

dd

ff

ff

rr

dd
dd
dd
dd
dd
dd
dd
dd

rr

rr

rr

2
3
4
4
3
2
4
5

2
3
4
4
3
2
4
5

2

2

2
3
4
4
3
2
4
5

4
1
1
4
3
5

4
1
1
4
3
5

3

4
4
4
4
4
4
4
4

3

3

3

–

–

0

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

C 0
b7 b0

b7 b0
C

127

Instruction Set Summary (Continued)

BGT rel

BHCC rel

BHCS rel

BHI rel

BHS rel

BIH rel

BIL rel

BIT #opr
BIT opr
BIT opr
BIT opr,X
BIT opr,X
BIT ,X
BIT opr,SP
BIT opr,SP

BLE rel

BLO rel

BLS rel

BLT rel

BMC rel

BMI rel

BMS rel

BNE rel

BPL rel

BRA rel

BRCLR n,opr,rel

BRN rel

BRSET n,opr,rel

Branch if Greater Than (Signed)

Branch if Half Carry Bit Clear

Branch if Half Carry Bit Set

Branch if Higher

Branch if Higher or Same
(Same as BCC)

Branch if IRQ Pin High

Branch if IRQ Pin Low

Bit Test

Branch if Less Than or Equal To
(Signed)

Branch if Lower (Same as BCS)

Branch if Lower or Same

Branch if Less Than (Signed)

Branch if Interrupt Mask Clear

Branch if Minus

Branch if Interrupt Mask Set

Branch if Not Equal

Branch if Plus

Branch Always

Branch if Bif n in M Clear

Branch Never

Branch if Bit n in M Set

Source
Form Operation Description

PC <– (PC) + 2 + rel ? Z | (N ⊕ V) = 0

PC <– (PC) + 2 + rel ? (H) = 0

PC <– (PC) + 2 + rel ? (H) = 1

PC <– (PC) + 2 + rel ? (C) | (Z) = 0

PC <– (PC) + 2 + rel ? (C) = 0

PC <– (PC) + 2 + rel ? IRQ = 1

PC <– (PC) + 2 + rel ? IRQ = 0

(A) & (M)

PC <– (PC) + 2 + rel ? Z | (N ⊕ V) = 1

PC <– (PC) + 2 + rel ? (C) = 1

PC <– (PC) + 2 + rel ? (C) | (Z) = 1

PC <– (PC) + 2 + rel ? (N ⊕ V) = 1

PC <– (PC) + 2 + rel ? (I) = 0

PC <– (PC) + 2 + rel ? (N) = 1

PC <– (PC) + 2 + rel ? (I) = 1

PC <– (PC) + 2 + rel ? (Z) = 0

PC <– (PC) + 2 + rel ? (N) = 0

PC <– (PC) +2 + rel

PC <– (PC) + 3 + rel ? (Mn) = 0

PC <– (PC) +2

PC <– (PC) + 3 + rel ? (Mn) = 0

Effect on
CCR

V H I N Z C Ad
dr

es
s

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

rr

rr

rr

rr

rr

rr

rr

ii
dd
hh ll
ee ff
ff

ff
ee ff

rr

rr

rr

rr

rr

rr

rr

rr

rr

rr

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

rr

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

3

3

3

3

3

3

3

2
3
4
4
3
2
4
5

3

3

3

3

3

3

3

3

3

3

5
5
5
5
5
5
5
5

3

5
5
5
5
5
5
5
5

–

–

–

–

–

–

–

0

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

REL

REL

REL

REL

REL

REL

REL

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

REL

REL

REL

REL

REL

REL

REL

REL

REL

REL

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

REL

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

92

28

29

22

24

2F

2E

A5
B5
C5
D5
E5
F5

9EE5
9ED5

93

25

23

91

2C

2B

2D

26

2A

20

01
03
05
07
09
0B
0D
0F

21

00
02
04
06
08
0A
0C
0E

128

Instruction Set Summary (Continued)

ADC #opr
ADC opr
ADC opr
BSET n,opr
ADC opr,X
ADC ,X
ADC opr,SP
ADC opr,SP

BSR rel

CBEQ opr,rel
CBEQA #opr,rel
CBEQX #opr,rel
CBEQ opr,X+,rel
CBEQ X+,rel
CBEQ opr,SP,rel

CLC

CLI

CLR opr
CLRA
CLRX
CLRH
CLR opr,X
CLR ,X
CLR opr,SP

CMP #opr
CMP opr
CMP opr
CMP opr,X
CMP opr,X
CMP ,X
CMP opr,SP
CMP opr,SP

COM opr
COMA
COMX
COM opr,X
COM ,X
COM opr,SP

CPHX #opr
CPHX opr

CPX #opr
CPX opr
CPX opr
CPX opr,X
CPX opr,X
CPX ,X
CPX opr,SP
CPX opr,SP

DAA

Set Bit n in M

Branch to Subroutine

Compare and Branch if Equal

Clear Carry Bit

Clear Interrupt Mask

Clear

Compare A with M

Complement (One's Complement)

Compare H:X with M

Compare X with M

Decimal Adjust A

Source
Form Operation Description

Mn <– 1

PC <– (PC) + 2; push (PCL)
SP <– (SP) - 1; push (PCH)

SP <– (SP) - 1; PC <– (PC) + rel

PC <– (PC) + 3 + rel ? (A) - (M) = $00
PC <– (PC) + 3 + rel ? (A) - (M) = $00
PC <– (PC) + 3 + rel ? (A) - (M) = $00
PC <– (PC) + 3 + rel ? (A) - (M) = $00
PC <– (PC) + 2 + rel ? (A) - (M) = $00
PC <– (PC) + 4 + rel ? (A) - (M) = $00

C <– 0

I <– 0

M <– $00
A <– $00
X <– $00
H <– $00
M <– $00
M <– $00
M <– $00

(A) - (M)

M <– (M) = $FF - (M)
A <– (A) = $FF - (A)
X <– (X) = $FF - (X)
M <– (M) = $FF - (M)
M <– (M) = $FF - (M)
M <– (M) = $FF - (M)

(H:X) - (M:M+1)

(X) - (M)

(A)

Effect on
CCR

V H I N Z C Ad
dr

es
s

M
od

e

C
yc

le
s

10
12
14
16
18
1A
1C
1E

AD

31
41
51
61
71

9E61

98

9A

3F
4F
5F
8C
6F
7F

9E6F

A1
B1
C1
D1
E1
F1

9EE1
9ED1

33
43
53
63
73

9E63

65
75

A3
B3
C3
D3
E3
F3

9EE3
9ED3

72

dd
dd
dd
dd
dd
dd
dd
dd

rr

dd rr
ii rr
ii rr
ff rr
rr
ff rr

dd

ff

ff

II
dd
hh ll
ee ff
ff

ff
ee ff

dd

ff

ff

ii jj
dd

II
dd
hh ll
ee ff
ff

ff
ee ff

4
4
4
4
4
4
4
4

4

5
4
4
5
4
6

1

2

3
1
1
1
3
2
4

2
3
4
4
3
2
4
5

4
1
1
4
3
6

3
4

2
3
4
4
3
2
4
5

2

–

–

–

–

–

0

0

U

–

–

–

–

0

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

0

–

–

–

–

–

1

–

–

–

0

–

–

1

10

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

REL

DIR
I MM
I MM
IX1+
IX+
SP1

INH

INH

DIR
INH
INH
INH
IX1
IX
SP1

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

DIR
INH
INH
IX1
IX
SP1

I MM
DIR

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

INH

O
pc

od
e

O
pe

ra
nd

129

Instruction Set Summary (Continued)

DBNZ opr,rel
DBNZA rel
DBNZX rel
DBNZ opr,X,rel
DBNZ X,rel
DBNZ opr,SP,rel

DEC opr
DECA
DECX
DEC opr,X
DEC ,X
DEC opr,SP

DIV

EOR #opr
EOR opr
EOR opr
EOR opr,X
EOR opr,X
EOR ,X
EOR opr,SP
EOR opr,SP

INC opr
INCA
INCX
INC opr,X
INC ,X
INC opr,SP

JMP opr
JMP opr
JMP opr,X
JMP opr,X
JMP ,X

JSR opr
JSR opr
JSR opr,X
JSR opr,X
JSR ,X

LDA #opr
LDA opr
LDA opr
LDA opr,X
LDA opr,X
LDA ,X
LDA opr,SP
LDA opr,SP

LDHX #opr
LDHX opr

LDX #opr
LDX opr
LDX opr
LDX opr,X
LDX opr,X
LDX ,X
LDX opr,SP
LDX opr,SP

Decrement and Branch if Not Zero

Decrement

Divide

Exclusive OR M with A

Increment

Jump

Jump to Subroutine

Load A from M

Load H:X from M

Load X from M

Source
Form Operation Description

A <– (A) -1 or M <– (M) -1 or X <– (X) -1
PC <– (PC) + 3 + rel ? (result ≠ 0)
PC <– (PC) + 2 + rel ? (result ≠ 0)
PC <– (PC) + 2 + rel ? (result ≠ 0)
PC <– (PC) + 3 + rel ? (result ≠ 0)
PC <– (PC) + 2 + rel ? (result ≠ 0)
PC <– (PC) + 4 + rel ? (result ≠ 0)

M <– (M) - 1
A <– (A) - 1
X <– (X) - 1
M <– (M) - 1
M <– (M) - 1
M <– (M) - 1

A <– (H:A / X)
H <– Remainder

A <– (A ⊕ M)

M <– (M) + 1
A <– (A) + 1
X <– (X) + 1
M <– (M) + 1
M <– (M) + 1
M <– (M) + 1

PC <– Jump Address

PC <– (PC) + n (n = 1, 2, or 3)
Push (PCL); SP <– (SP) - 1
Push (PCH); SP <– (SP) - 1

PC <– Unconditional Address

A <– (M)

H:X <– (M:M + 1)

X <– (M)

Effect on
CCR

V H I N Z C Ad
dr

es
s

M
od

e

C
yc

le
s

DIR
INH
INH
IX1
IX
SP1

DIR
INH
INH
IX1
IX
SP1

INH

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

DIR
INH
INH
IX1
IX
SP1

DIR
EXT
IX2
IX1
IX

DIR
EXT
IX2
IX1
IX

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

I MM
DIR

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

3B
4B
5B
6B
7B

9E6B

3A
4A
5A
6A
7A

9E6A

52

A8
B8
C8
D8
E8
F8

9EE8
9ED8

3C
4C
5C
6C
7C

9E6C

BC
CC
DC
EC
FC

BD
CD
DD
ED
FD

A6
B6
C6
D6
E6
F6

9EE6
9ED6

45
55

AE
BE
CE
DE
EE
FE

9EEE
9EDE

dd rr
rr
rr
ff rr
rr
ff rr

dd

ff

ff

ii
dd
hh ll
ee ff
ff

ff
ee ff

dd

ff

ff

dd
hh ll
ee ff
ff

dd
hh ll
ee ff
ff

ii
dd
hh ll
ee ff
ff

ff
ee ff

ii jj
dd

ii
dd
hh ll
ee ff
ff

ff
ee ff

5
3
3
5
4
6

4
1
1
4
3
5

7

2
3
4
4
3
2
4
5

4
1
1
4
3
5

2
3
4
3
2

4
5
6
5
4

2
3
4
4
3
2
4
5

3
4

2
3
4
4
3
2
4
5

–

–

0

–

–

0

0

0

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

O
pc

od
e

O
pe

ra
nd

130

Instruction Set Summary (Continued)

LSL opr
LSLA
LSLX
LSL opr,X
LSL ,X
LSL opr,SP

LSR opr
LSRA
LSRX
LSR opr,X
LSR , X
LSR opr,SP

MOV opr,opr
MOV opr,X+
MOV #opr,opr
MOV X+,opr

MUL

NEG opr
NEGA
NEGX
NEG opr,X
NEG , X
NEG opr,SP

NOP

NSA

ORA #opr
ORA opr
ORA opr
ORA opr,X
ORA opr,X
ORA ,X
ORA opr,SP
ORA opr,SP

PSHA

PSHH

PSHX

PULA

PULH

PULX

ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X
ROL opr,SP

ROR opr
RORA
RORX
ROR opr,X
ROR ,X
ROR opr,SP

Logical Shift Left
(Same as ASL)

Logical Shift Right

Move

Unsigned Multiply

Negate (Two's Complement)

No Operation

Nibble Swap A

 Inclusive OR A and M

Push A onto Stack

Push H onto Stack

Push X onto Stack

Pull A from Stack

Pull H from Stack

Pull X from Stack

Rotate Left through Carry

Rotate Right through Carry

Source
Form Operation Description

(M) <– (M)

H:X <– (H:X) + 1 (IX+D, DIX+)

X:A <– (X) x (A)

M <– -(M) = $00 - (M)
A <– -(A) = $00 - (A)
X <– -(X) = $00 - (X)
M <– -(M) = $00 - (M)
M <– -(M) = $00 - (M)
M <– -(M) = $00 - (M)

None

A <– (A[3:0]:A[7:4])

A <– (A) | (M)

Push (A); SP <– (SP) - 1

Push (H); SP <– (SP) - 1

Push (X); SP <– (SP) - 1

SP <– (SP + 1); Pull (A)

SP <– (SP + 1); Pull (H)

SP <– (SP + 1); Pull (X)

Effect on
CCR

V H I N Z C Ad
dr

es
s

M
od

e

C
yc

le
s

DIR
INH
INH
IX1
IX
SP1

DIR
INH
INH
IX1
IX
SP1

DD
DIX+
I MD
IX+D

INH

DIR
INH
INH
IX1
IX
SP1

INH

INH

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

INH

INH

INH

INH

INH

INH

DIR
INH
INH
IX1
IX
SP1

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

34
44
54
64
74

9E64

4E
5E
6E
7E

42

30
40
50
60
70

9E60

9D

62

AA
BA
CA
DA
EA
FA

9EEA
9EDA

87

8B

89

86

8A

88

39
49
59
69
79

9E69

36
46
56
66
76

9E66

dd

ff

ff

dd

ff

ff

dddd
dd
ii dd
dd

dd

ff

ff

ff

ff

ii
dd
hh ll
ee ff
ff

ff
ee ff

dd

ff

ff

dd

ff

ff

4
1
1
4
3
5

4
1
1
4
3
5

5
4
4
4

5

4
4
4
4
3
5

1

3

2
3
4
4
3
2
4
5

2

2

2

2

2

2

4
1
1
4
3
5

4
1
1
4
3
5

0

–

–

–

0

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

0

–

–

–

–

–

–

–

–

–

–

–

–

0

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

0

–

–

–

–

–

–

–

–

–

Destination Source

C 0
b7 b0

C
b7 b0

0

O
pc

od
e

O
pe

ra
nd

C
b7 b0

C
b7 b0

131

Instruction Set Summary (Continued)

RSP

RTI

RTS

SBC #opr
SBC opr
SBC opr
SBC opr,X
SBC opr,X
SBC ,X
SBC opr,SP
SBC opr,SP

SEC

SEI

STA opr
STA opr
STA opr,X
STA opr,X
STA ,X
STA opr,SP
STA opr,SP

STHX opr

STOP

STX opr
STX opr
STX opr,X
STX opr,X
STX ,X
STX opr,SP
STX opr,SP

SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X
SUB opr,SP
SUB opr,SP

SWI

TAP

TAX

Reset Stack Pointer

Return from Interrupt

Return from Subroutine

Subtract with Carry

Set Carry Bit

Set Interrupt Mask

Store A in M

Store H:X in M

Enable IRQ Pin; Stop Oscillator

Store X in M

Subtract

Software Interrupt

Transfer A to CCR

Transfer A to X

Source
Form Operation Description

SP <– $FF

SP <– (SP) + 1; Pull (CCR)
SP <– (SP) + 1; Pull (A)
SP <– (SP) + 1; Pull (X)

SP <– (SP) + 1; Pull (PCH)
SP <– (SP) + 1; Pull (PCL)

SP <– (SP) + 1; Pull (PCH)
SP <– (SP) + 1; Pull (PCL)

A <– (A) - (M) - (C)

C <– 1

I <– 1

M <– (A)

(M:M + 1) <– (H:X)

I <– 0; Stop Oscillator

M <– (X)

A <– (A) - (M)

PC <– (PC) + 1; Push (PCL)
SP <– (SP) - 1; Push (PCL)

SP <– (SP) - 1; Push (X)
SP <– (SP) - 1; Push (A)

SP <– (SP) - 1; Push (CCR)
SP <– (SP) - 1; I <– 1

PCH <– Interrupt Vector High Byte
PCL <– Interrupt Vector Low Byte

CCR <– (A)

X <– (A)

Effect on
CCR

V H I N Z C Ad
dr

es
s

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

ii
dd
hh ll
ee ff
ff

ff
ee ff

dd
hh ll
ee ff
ff

ff
ee ff

dd

dd
hh ll
ee ff
ff

ff
ee ff

ii
dd
hh ll
ee ff
ff

ff
ee ff

1

7

4

2
3
4
4
3
2
4
5

1

2

3
4
4
3
2
4
5

4

1

3
4
4
3
2
4
5

2
3
4
4
3
2
4
5

9

2

1

–

–

–

–

0

0

–

0

–

–

–

–

–

–

1

–

–

0

–

–

1

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

1

–

–

–

–

–

–

–

INH

INH

INH

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

INH

INH

DIR
EXT
IX2
IX1
IX
SP1
SP2

DIR

INH

DIR
EXT
IX2
IX1
IX
SP1
SP2

I MM
DIR
EXT
IX2
IX1
IX
SP1
SP2

INH

INH

INH

9C

80

81

A2
B2
C2
D2
E2
F2

9EE2
9ED2

99

9B

B7
C7
D7
E7
F7

9EE7
9ED7

35

8E

BF
CF
DF
EF
FF

9EEF
9EDF

A0
B0
C0
D0
E0
F0

9EE0
9ED0

83

84

97

132

Instruction Set Summary (Continued)

TPA

TST opr
TSTA
TSTX
TST opr,X
TST ,X
TST opr,SP

TSX

TXA

TXS

WAIT

Transfer CCR to A

Test for Negative or Zero

Transfer SP to H:X

Transfer X to A

Transfer H:X to SP

Enable Interrupts; Stop Processor

Source
Form Operation Description

A <– (CCR)

(A) - $00
or

(X) - $00
or

(M) -$00

H:X <– (SP) + 1

SP <– (H:X) - 1

I bit <– 0;
inhibit CPU clocking until interrupted

Effect on
CCR

V H I N Z C Ad
dr

es
s

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

dd

ff

ff

1

3
1
1
3
2
4

2

1

1

1

–

0

–

–

–

–

–

–

–

–

–

0

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

INH

DIR
INH
INH
IX1
IX
SP1

INH

INH

INH

INH

85

3D
4D
5D
6D
7D

9E6D

95

9F

94

8F

A Acumulator n Any bit
C Carry/Borrow bit opr Operand (one or two bytes)
CCR Condition Code Register PC Program counter
dd Direct address of operand PCH Program counter high byte
dd rr Direct address of operand and relative offset of branch instruction PCL Program counter low
DD Direct to direct addressing mode REL Relative addressing mode
DIR Direct addressing mode rel Relative program counter offset byte
DIX+ Direct to indexed with post increment addressing mode rr Relative program counter offset byte
ee ff High and low bytes of offset in indexed, 16-bit offset addressing SP1 Stack pointer, 8-bit offset addressing mode
EXT Extended addressing mode SP2 Stack pointer, 16-bit offset addressing mode
ff Offset byte in indexed, 8-bit offset addressing SP Stack pointer
H Half-carry bit U Undefined
H Ihex register high byte V Overflow bit
hh ll High and low bytes of operand address in extended addressing X Index register low byte
I Interrupt mask Z Zero bit
ii Immediate operand byte & Logical AND
IMD Immediate source to direct destination addressing mode | Logical OR
IMM Immediate addressing mode ⊕ Logical EXCLUSIVE OR
INH Inherent addressing mode () Contents of
IX Indexed, no offset addressing mode -() Negation (two’s complement)
IX+ Indexed, no offset, post increment addressing mode # Immediate value
IX+D Indexed with postincrement to direct addressing mode << Sign extend
IX1 Indexed, 8-bit offset addressing mode <– Loaded with
IX1+ Indexed, 8-bit offset, post increment addressing mode ? If
IX2 Indexed, 16-bit offset addressing mode : Concatenated with
M Memory location Set or cleared
N Negative bit – Not affected

133

APPENDIX 2

The following pages give the source listings of some selected 68HC908GP32
experiments designed to be run on the low-cost GP32 kit designed and manufactured
by Beta Control of Czech Republic. These increasing complexity experiments are tested
and debugged, and make up a good starting base to learn microcontroller programming.

134

Experiment 1

; ***
; GP-INTRO.ASM
;
; Introduction program
; it's core is based on flash-led-slow (see it). Added value is
; pushbutton control
; note: comment out cgm_init call in main routine when use under
; debugger. Debugger don't like it :-)
; ***
; 5.3.2001 v2.0
; simulator - ok
; devbrd - ok

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

$Include 'gpregs.inc'

 org RamStart

internal_error ds 1 ; internal errors counter
count ds 3 ; timing counters

 org RomStart

;- CGM_INIT --
; cgm_init - initializes PLL and CGM to run from 32kHz XTAL @ BUSCLK=4.9152MHz
cgm_init:
 mov #$02,PCTL ; P (PRE) = 0 (Prescaler=1), E (VPR) = 2 (2^E = 4)
 mov #$80,PBWC ; Automatic bandwidth control
 mov #$02,PMSH ; Upper byte of $258 = PLL multiplier (N)
 mov #$58,PMSL ; Lower byte of $258 = PLL multiplier
 mov #$80,PMRS ; VCO range select (L) = $80
 mov #$01,PMDS ; PLL reference divider (R) = 1
 bset 5,PCTL ; Enable PLL
 brclr 6,PBWC,* ; wait until PLL stabilizes
 bset 4,PCTL ; switch clock source to PLL
 rts
;- CGM_INIT --

; - GPIO_INIT --
; all-gpios initialization - type: input, state: log.1
; except: PTD4,5 - LED are outputs, PTA2,3 - pushbuttons - pullups on

135

gpio_init:

 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD
 sta PTE
 mov #0,DDRA
 mov #0,DDRB
 mov #0,DDRB
 mov #$30,DDRD
 mov #0,DDRE
 mov #$0C,PTAPUE
 mov #$00,PTCPUE
 mov #$00,PTDPUE
 rts
;- GPIO_INIT ---

;- MAIN --
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx
 sta internal_error ; clear internal errors counter
 mov #$31,CONFIG1 ; MCU runs w/o LVI and COP support
 bsr gpio_init ; GPIO initialization
 bsr cgm_init

 mov #$20,PTD ; Y-LED on, R-LED off
 lda PTD
main_loop:
 eor #$30
 sta PTD
 mov #0,count+1 ; Wait for 5*65536*6us
 mov #0,count+2
 mov #5,count
main_wait:
 dbnz count+2,main_wait ; 5t = 2us
 dbnz count+1,main_wait ; 5t + 256x 5t = 1285t = 514us
 brset 2,PTA,main_noalter
 lda #$20
main_noalter:
 brset 3,PTA,main_noseam
 lda #$00
main_noseam:
 dbnz count,main_wait ; 5t + 256x (5t + 256x 5t) = 328965t = 132ms
 ; 5x (5t + 256x (5t + 256x 5t)) = 1644825t = 0.65s

136

 ; note: 2.46MHz CGMXCLK expected where 1t=400ns (9.83MHz

 ; external clk)
 ; note: w/o DBG (w/ 32kHz crystal) are all timings half
 bra main_loop ; runs infinitely

;- MAIN --

;- DUMMY_ISR ---
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

dummy_isr:
 inc internal_error
 rti
;- DUMMY_ISR ---

;- INTERRUPT VECTOR TABLE --
 org VectorStart
 dw dummy_isr ; Time Base Vector
 dw dummy_isr ; ADC Conversion Complete
 dw dummy_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; SPI Transmit Vector
 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector
 dw dummy_isr ; TIM1 Overflow Vector
 dw dummy_isr ; TIM1 Channel 1 Vector
 dw dummy_isr ; TIM1 Channel 0 Vector
 dw dummy_isr ; PLL Vector
 dw dummy_isr ; ~IRQ1 Vector
 dw dummy_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE --

137

Experiment 2

; **
; GP-TEST-PINWALK.ASM
;
; "Walking zero" - Generates sequential negative impulses
; on all I/O pins.
; Program loop starts with $FE (11111110) pattern and copies
; it on all PTx while rotating - zero goes through all bit positions
; 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 0 and back to bit 0.
; Program loop runs without any delays, user can expect waveforms
; in range of hundreths of kHz. All pins are in GPIO mode and act
; as output, special pins are not affected. Program runs infinitely.
; **
; 5.3.2001 V2.0
; simulator - ok
; devbrd - ok

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

$Include 'gpregs.inc'

 org RamStart

internal_error ds 1 ; internal errors counter

 org RomStart

; - GPIO_INIT --
; all-gpios initialisation - type: output, state: log.1, pullups-off
gpio_init:
 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD
 sta PTE
 sta DDRA
 sta DDRB
 sta DDRC
 sta DDRD
 sta DDRE
 clra
 sta PTAPUE
 sta PTCPUE

138

 sta PTDPUE

 rts
;- GPIO_INIT ---

;- MAIN --
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx ;
 sta internal_error ; clear internal errors counter
 mov #$31,CONFIG1 ; MCU runs w/o LVI and COP support
 bsr gpio_init ; GPIO initialization

 lda #$FE ; one active bit (log.0) will run over all pins
main_loop:
 sta PTA ; "the running bit is displayed on all ports
 sta PTB
 sta PTC
 sta PTD
 sta PTE
 asla ; shift one bit upwards
 adc #$0 ; and copy MSb to LSb
 bra main_loop ; runs infinitely

;- MAIN ---

;- DUMMY_ISR --
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

dummy_isr:
 inc internal_error
 rti
;- DUMMY_ISR --

;- INTERRUPT VECTOR TABLE ---
 org VectorStart
 dw dummy_isr ; Time Base Vector
 dw dummy_isr ; ADC Conversion Complete
 dw dummy_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; SPI Transmit Vector
 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector

139

 dw dummy_isr ; TIM1 Overflow Vector

 dw dummy_isr ; TIM1 Channel 1 Vector
 dw dummy_isr ; TIM1 Channel 0 Vector
 dw dummy_isr ; PLL Vector
 dw dummy_isr ; ~IRQ1 Vector
 dw dummy_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE ---

140

Experiment 3

; ***
; GP-BUSCYCLES.ASM
;
; Program is similar to "pinwalk", but defines accuracy of
; pulselengths. User can read out from oscilloscope pulsetimings
; and simply calculate one BUS cycle time duration. Commonly
; used unit is 1T = 1Tick = 1 BUS cycle.
; Program generates squarewave on pin PTD4 - yellow LED
; with low:high ratio 4T:7T.
; In debug mode w/ provided DBG PCB is BUSCLK=2.4576MHz
; (CGMXCLK=9.8304, BUSCLK=CGMXCLK/4), 1T=406.9ns
; Low pulse: 1.63us, high pulse: 2.85us
; Frequency: 223kHz (2.4576MHz/11)
; Program runs infinitely
; note: Similar program to this is GP-CGMSETUP, which sets-up
; internal PLL..
; ***
; 6.3.2001 v2.0
; simulator - ok
; devbrd - ok

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

$Include 'gpregs.inc'

 org RamStart

internal_error ds 1 ; internal errors counter

 org RomStart

; - GPIO_INIT ---
; all-gpios initialization - type: input, state: log.1
; except: PTD4,5 - LED are outputs, PTA2,3 - pushbuttons - pullups on
gpio_init:
 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD
 sta PTE
 mov #0,DDRA
 mov #0,DDRB

141

 mov #0,DDRB

 mov #$30,DDRD
 mov #0,DDRE
 mov #$0C,PTAPUE
 mov #$00,PTCPUE
 mov #$00,PTDPUE
 rts
;- GPIO_INIT ---

;- MAIN --
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx
 sta internal_error ; clear internal errors counter
 mov #$31,CONFIG1 ; MCU runs w/o LVI and COP support
 bsr gpio_init ; GPIO initialization

main_loop:
 bclr 4,PTD ; 4T
 bset 4,PTD ; 4T
 bra main_loop ; 3T
;- MAIN --

;- DUMMY_ISR ---
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

dummy_isr:
 inc internal_error
 rti
;- DUMMY_ISR ---

;- INTERRUPT VECTOR TABLE --
 org VectorStart
 dw dummy_isr ; Time Base Vector
 dw dummy_isr ; ADC Conversion Complete
 dw dummy_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; SPI Transmit Vector
 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector
 dw dummy_isr ; TIM1 Overflow Vector
 dw dummy_isr ; TIM1 Channel 1 Vector

142

 dw dummy_isr ; TIM1 Channel 0 Vector

 dw dummy_isr ; PLL Vector
 dw dummy_isr ; ~IRQ1 Vector
 dw dummy_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE --

143

Experiment 4

; ***
; GP-FLASH-LED-SLOW.ASM
;
; Program demostrates how to make delayloops for a long time
; and how to calculate duration of the delayloop
; Commonly used unit for CPU timings is 1T = 1Tick = 1 BUScycle
; It means 4T = 4 BUScycles. To convert this imaginary time to
; real world, user uses constant, 1/BUSFREQ, which says how time
; takes 1 buscycle, and multiplies number of ticks by this constant
; e.g.: In DBG environment runs MCU on 2.4576MHz BUSCLK, it gives
; approx. 406ns per 1 buscycle. 1T=406ns here.
; In CPU manual can be found, DIV instruction takes 7 buscycles,
; takes 7T, in this case takes 7*406ns=2.442us
; Program sets-up LEDs (one light, one not). In the loop
; complements their states and waits in delayloop for approx. 0.65s
; Runs infinitely.
; ***
; 6.3.2001 v2.0
; simulator - ok
; devbrd - ok

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

$Include 'gpregs.inc'

 org RamStart

internal_error ds 1 ; internal errors counter
count ds 3 ; timing counters

 org RomStart

; - GPIO_INIT --
; all-gpios initialisation - type: output, state: log.1, pullups-off
gpio_init:
 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD
 sta PTE
 sta DDRA
 sta DDRB

144

 sta DDRC

 sta DDRD
 sta DDRE
 clra
 sta PTAPUE
 sta PTCPUE
 sta PTDPUE
 rts
;- GPIO_INIT ---

;- MAIN --
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx
 sta internal_error ; clear internal errors counter
 mov #$31,CONFIG1 ; MCU runs w/o LVI and COP support
 bsr gpio_init ; GPIO initialization

 mov #$20,PTD ; Y-LED on, R-LED off
main_loop:
 lda PTD ; pin 19 - PTD4 - Yellow LED
 eor #$30 ; pin 18 - PTD5 - Red LED
 sta PTD
 clra ; Wait for 5*65536*6us
 sta count+1
 sta count+2
 mov #5,count
main_wait:
 dbnz count+2,main_wait ; 5t = 2us
 dbnz count+1,main_wait ; 5t + 256x 5t = 1285t = 514us
 dbnz count,main_wait ; 5t + 256x (5t + 256x 5t) = 328965t = 132ms
 ; 5x (5t + 256x (5t + 256x 5t)) = 1644825t = 0.65s
 ; note: 2.46MHz CGMXCLK expected where 1t=400ns (9.83MHz
 ; external clk)
 bra main_loop ; runs infinitely

;- MAIN ---

;- DUMMY_ISR --
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

dummy_isr:
 inc internal_error
 rti
;- DUMMY_ISR --

145

;- INTERRUPT VECTOR TABLE ---

 org VectorStart
 dw dummy_isr ; Time Base Vector
 dw dummy_isr ; ADC Conversion Complete
 dw dummy_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; SPI Transmit Vector
 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector
 dw dummy_isr ; TIM1 Overflow Vector
 dw dummy_isr ; TIM1 Channel 1 Vector
 dw dummy_isr ; TIM1 Channel 0 Vector
 dw dummy_isr ; PLL Vector
 dw dummy_isr ; ~IRQ1 Vector
 dw dummy_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE ---

146

Experiment 5

; ***
; GP-FLASH-LED-FAST.ASM
;
; Program demonstrates bit level control of I/O ports on LEDs
; Before main loop starts, program writes byte value to gate,
; where LEDs are connected - possibility to control all bits
; in gate (all devices on gate connected) by one instruction.
; Loop consists of sequence of bit oriented instructions, where
; are bits of gate controlled separately. Result is LED flashing
; Loop runs without delays on MCU fullspeed. Program is useful in
; debugging environment only, or with scope
; ***
; 5.3.2001 v2.0
; simulator - ok
; devbrd - ok

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

$Include 'gpregs.inc'

 org RamStart

internal_error ds 1 ; internal errors counter

 org RomStart

; - GPIO_INIT ---
; all-gpios initialisation - type: output, state: log.1, pullups-off
gpio_init:
 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD
 sta PTE
 sta DDRA
 sta DDRB
 sta DDRC
 sta DDRD
 sta DDRE
 clra
 sta PTAPUE
 sta PTCPUE

147

 sta PTDPUE

 rts
;- GPIO_INIT ---

;- MAIN --
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx
 sta internal_error ; clear internal errors counter
 mov #$31,CONFIG1 ; MCU runs w/o LVI and COP support
 bsr gpio_init ; GPIO initialization

main_loop:
 bclr 4,PTD ; pin 21 - PTD4 - Yellow LED
 bset 4,PTD
 bclr 5,PTD ; pin 22 - PTD5 - Red LED
 bset 5,PTD
 bra main_loop ; runs infinitely

;- MAIN ---

;- DUMMY_ISR --
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

dummy_isr:
 inc internal_error
 rti
;- DUMMY_ISR --

;- INTERRUPT VECTOR TABLE ---
 org VectorStart
 dw dummy_isr ; Time Base Vector
 dw dummy_isr ; ADC Conversion Complete
 dw dummy_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; SPI Transmit Vector
 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector
 dw dummy_isr ; TIM1 Overflow Vector
 dw dummy_isr ; TIM1 Channel 1 Vector
 dw dummy_isr ; TIM1 Channel 0 Vector
 dw dummy_isr ; PLL Vector

148

 dw dummy_isr ; ~IRQ1 Vector

 dw dummy_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE --

149

Experiment 6

; ***
; GP-FLASH-LED-TIM-POLL.ASM
;
; Program demonstrates TIMer unit in MCU. External effect is LED
; flashing based internally on TIM.
; Program nitializes timer to overflow (or reach modulo constant)
; twice per second. Program main loop waits for overflow, clears
; overflow flag and complemets LED states.
; Note to TIM programming:
; TIM's clock input for is BUSCLK. signal goes though prescaler,
; where is frequency divided by power of 2 (e.g. 64 here). Prescaler
; output is fed to modulo counter. Modulo counter count ticks
; on input signal (from prescaler) and can generate overflows.
; Handling can be interrupt driven or polled (here).
; To generate 2Hz overflow freq here:
; BUSCLK=2.4576MHz, prescaler is set to division by 64 and modulo
; counter is set to 19200. 2.4576MHz/64/19200 = 2Hz
; ***
; 5.3.2001 v2.0
; simulator - ok
; devbrd - ok

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

$Include 'gpregs.inc'

 org RamStart

internal_error ds 1 ; internal errors counter

 org RomStart

; - GPIO_INIT --
; all-gpios initialization - type: input, state: log.1
; except: PTD4,5 - LED are outputs, PTA2,3 - pushbuttons - pullups on
gpio_init:
 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD
 sta PTE
 mov #0,DDRA

150

 mov #0,DDRB

 mov #0,DDRB
 mov #$30,DDRD
 mov #0,DDRE
 mov #$0C,PTAPUE
 mov #$00,PTCPUE
 mov #$00,PTDPUE
 rts
;- GPIO_INIT --

;- TIMER_INIT ---
; timer_init: initializes timer to free run, no o.c., no i.c., leaves timer stopped
timer_init:
 mov #$36,T1SC ; Stop & reset, overflow interrupt disable, prescaler=64
 clr T1SC0 ; Inhibit all capture/compare functions
 clr T1SC1
 mov #$4A,T1MODH ; Modulo count = 19200 (4B00H)
 mov #$FF,T1MODL
 bclr 4,T1SC ; Un-reset TIMer
 rts
;- TIMER_INIT ---

;- MAIN ---
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx
 sta internal_error ; clear internal errors counter
 mov #$31,CONFIG1 ; MCU runs w/o LVI and COP support
 bsr gpio_init ; GPIO initialization
 bsr timer_init ; TIM initialization

 mov #$20,PTD ; Y-LED on, R-LED off
 bclr 5,T1SC ; start timer
main_loop:
 brclr 7,T1SC,* ; wait until timer overflows
 bclr 7,T1SC ; clear overflow flag
 lda PTD
 eor #$30 ; complement LED controlling bits (PTA2,3)
 sta PTD
 bra main_loop ; runs infinitely until both buttons pressed

;- MAIN ---

;- DUMMY_ISR --
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

151

dummy_isr:

 inc internal_error
 rti
;- DUMMY_ISR --

;- INTERRUPT VECTOR TABLE ---
 org VectorStart
 dw dummy_isr ; Time Base Vector
 dw dummy_isr ; ADC Conversion Complete
 dw dummy_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; SPI Transmit Vector
 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector
 dw dummy_isr ; TIM1 Overflow Vector
 dw dummy_isr ; TIM1 Channel 1 Vector
 dw dummy_isr ; TIM1 Channel 0 Vector
 dw dummy_isr ; PLL Vector
 dw dummy_isr ; ~IRQ1 Vector
 dw dummy_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE --

152

Experiment 7

; ***
; GP-FLASH-LED-TIM-INT.ASM
;
; Program demonstrates TIMer unit in MCU. External effect is LED
; flashing based internally on TIM. Handling is interrupt driven.
; Program nitializes timer to overflow (or reach modulo constant)
; twice per second. Program main loop only saves power here, all
; things are done in interrupt handler TIMER_ISR. Handler is called
; on every overflow (2x per second) and complements LED states.
; Note to TIM programming:
; TIM's clock input for is BUSCLK. signal goes though prescaler,
; where is frequency divided by power of 2 (e.g. 64 here). Prescaler
; output is fed to modulo counter. Modulo counter count ticks
; on input signal (from prescaler) and can generate overflows.
; Handling can be interrupt driven (here) or polled by TOF bit.
; To generate 2Hz overflow freq here:
; BUSCLK=2.4576MHz, prescaler is set to division by 64 and modulo
; counter is set to 19200. 2.4576MHz/64/19200 = 2Hz
; ***
; 5.3.2001 v2.0
; simulator - ok
; devbrd - ok

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

$Include 'gpregs.inc'

 org RamStart

internal_error ds 1 ; internal errors counter

 org RomStart

; - GPIO_INIT ---
; all-gpios initialization - type: input, state: log.1
; except: PTD4,5 - LED are outputs, PTA2,3 - pushbuttons - pullups on
gpio_init:
 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD
 sta PTE

153

 mov #0,DDRA

 mov #0,DDRB
 mov #0,DDRB
 mov #$30,DDRD
 mov #0,DDRE
 mov #$0C,PTAPUE
 mov #$00,PTCPUE
 mov #$00,PTDPUE
 rts
;- GPIO_INIT ---

;- TIMER_INIT --
; timer_init: initializes timer to free run, no o.c., no i.c., leaves timer stopped
timer_init:
 mov #$76,T1SC ; Stop & reset, overflow interrupt enable, prescaler=64
 clr T1SC0 ; Inhibit all capture/compare functions
 clr T1SC1
 mov #$4A,T1MODH ; Modulo count = 19200 (4B00H)
 mov #$FF,T1MODL
 bclr 4,T1SC ; Un-reset TIMer
 rts
;- TIMER_INIT ---

;- MAIN ---
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx
 sta internal_error ; clear internal errors counter
 mov #$31,CONFIG1 ; MCU runs w/o LVI and COP support
 bsr gpio_init ; GPIO initialization
 bsr timer_init ; TIM initialization

 mov #$20,PTD ; Y-LED on, R-LED off
 bclr 5,T1SC ; start timer
main_loop:
 wait ; reduce power consumption
 bra main_loop ; runs infinitely until both buttons pressed

;- MAIN ---

;- TIMER_ISR --
; timer_isr: happens approx twice per second and complements states of both LEDs
timer_isr:
 psha
 lda PTD
 eor #$30 ; complement LED controlling bits (PTA2,3)

154

 sta PTD

 pula
 bclr 7,T1SC ; clear TOF in TSC - handler is finishing
 rti
;- TIMER_ISR --

;- DUMMY_ISR --
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

dummy_isr:
 inc internal_error
 rti
;- DUMMY_ISR --

;- INTERRUPT VECTOR TABLE ---
 org VectorStart
 dw dummy_isr ; Time Base Vector
 dw dummy_isr ; ADC Conversion Complete
 dw dummy_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; SPI Transmit Vector
 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector
 dw timer_isr ; TIM1 Overflow Vector
 dw dummy_isr ; TIM1 Channel 1 Vector
 dw dummy_isr ; TIM1 Channel 0 Vector
 dw dummy_isr ; PLL Vector
 dw dummy_isr ; ~IRQ1 Vector
 dw dummy_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE --

155

Experiment 8

; ***
; GP-AD-TEMP-SENS-INT.ASM
;
; Program demonstrates, how to use A/D converter with LM35 conected
; to measure temperature (variations). Due to lack of external
; displaying devices, program compares actual temperature to
; reference presetted on start or on keypress. If is temperature
; higher, Red LED lights up, if lower, Yellow LED lights up.
; Mimimal difference (constant difference) must be exceeded.
; As noted further, all operations are interrupt driven. To see MCU
; activity, Both LEDs are periodicaly flashing (light in time of
; MCU activity).
;
; Note about scale:
; Temperature sensor is calibrated to 10mV/centrigrad w/ 0mV/0cent.
; A/D converter convert full scale (5V) to $FF and grond (0V) to 0.
; Conversion between measured value and temperature is:
; temp=100 * 5 * value / 256
; for lower accuracy (5V is not accurate 5V...) can be assumed
; 2 cetrigrads equal to 1 A/D unit
;
; Second advantage/demonstration of this program is power saving and
; interrupt driver operations. Main loop of this program consists
; of WAIT and STOP instructions only and all things are done in
; interrupt handlers.
;
; Sequence and handler dependencies follow:
; After init phase, program starts A/D measurement to set up
; reference. It is done in interrupts too. Main program starts
; reference measurement only and WAITs. A/D handler drops first
; measurement (for A/D stabilization) and restart A/D. Next
; measured value uses for reference update.
;
; Further (cyclic) operation:
; Most of time is MCU idle (consumes very low power) - STOPped
; The only running peripherals are oscillator, TBM and KBI modules
; MCU recovers from STOP by interrupt caused by TBM (periodicaly)
; or by KBI - pushbutton pressed.
; Both handlers (KBI_ISR, TBM_ISR) start A/D conversion and exit,
; MCU goes to WAIT mode, because A/D is running (low power mode)
; After A/D finishes conversion, MCU wakes up and starts AD_ISR,
; A/D handler.
; A/D handler drops measured value, due to fact, that first
; measurement after STOP or power up cannot be accurate (analog
; part stabilization) and restarts measurement.

156

; Next measured value is accurate and A/D handler looks in

; state register if new refrence requested or LEDs update only.
; LEDs update is caused periodicaly (secondly) by TBM, reference
; update is caused by keypress via KBI interrupt.
; After A/D handler finishes, MCU comes back to STOP.
;
; ***
; 4.3.2001 v2.0
; simulator - ok
; devbrd - ok
; note: in debug mode, replace STOP instruction by WAIT. STOP mode
; intereferes w/ debugger.
; note: In debugging mode runs CGMXCLK much faster (driven by external
; 9.8304 crystal) and LEDs update is done 300times per second.
; best demonstration with 32kHz xtal selected, w/o debug board

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

difference EQU $2 ; minimal difference between reference and actual temperature
 ; to display drift

$Include 'gpregs.inc'

 org RamStart

internal_error ds 1 ; internal errors counter
reference ds 1 ; reference value for comparation
state ds 1 ; state register - bit 0 - 0=idle, nothing to do
 ; 1=A/D is running, don't stop
 ; bit 1 - 0=running measurement is for
 ; LEDs update only
 ; 1=running measurement is for
 ; reference set-up
 ; bit 2 - 0=A/D stabilization
 ; 1=real measurement
 org RomStart

; - GPIO_INIT --
; all-gpios initialization - type: input, state: log.1
; except: PTD4,5 - LED are outputs, PTA2,3 - pushbuttons - pullups on
gpio_init:
 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD

157

 sta PTE

 mov #0,DDRA
 mov #0,DDRB
 mov #0,DDRB
 mov #$30,DDRD
 mov #0,DDRE
 mov #$0C,PTAPUE
 mov #$00,PTCPUE
 mov #$00,PTDPUE
 rts
;- GPIO_INIT --

;- TBM_INIT ---
; tbm_init - initializes TBM to do interrupt every 32k ticks (w/o DBG it takes 1 int per
; second,
; w/ DBG - 300 ints per second)
tbm_init:
 mov #$6,TBCR ; prescaler=32768, interrupts enabled, TBM on
 rts
;- TBM_INIT ---

;- KBI_INIT ---
; kbi_init - initializes KBI interface to make interrupt on keypress - user requests
; to set-up new reference
kbi_init:
 mov #$4,INTKBIER ; enables interrupt generation from PTA2
 mov #$0,INTKBSCR ; interrupt on falling edge, kbi enabled
 rts
;- KBI_INIT ---

;- AD_INIT --
; ad_init: Initializes A/D converter - continuous conversion, PLLclk/8
ad_init:
 mov #$70,ADCLK ; Prescaler=8, PLLclk selected
 ; WARNING! Name of this register in original documentation
 ; is ADICLK
 mov #$40,ADSCR ; Continuous conversion, CH9 (PTB0 - temperature sensor)
 ; selected
 ; Note: If you haven't fever or solder tool, change value
 ; to ADSCR
 ; to $41 (above) - you'll select potentiometer as input..
 rts
;- AD_INIT --

;- CGM_INIT ---
; cgm_init - initializes CGM and PLL, waits for PLL lock and switches MCU to run from PLL
; constants equal to run on 2.4576MHz BUSCLK
; for detailed description see chapter CGMC of user manual or example GP_CGMSET.ASM

158

cgm_init:

 mov #$01,PCTL ; P (PRE) = 0 (Prescaler=1), E (VPR) = 1 (2^E = 2)
 mov #$80,PBWC ; Automatic bandwidth control
 mov #$01,PMSH ; Upper byte of $12C = PLL multiplier (N)
 mov #$2C,PMSL ; Lower byte of $12C = PLL multiplier
 mov #$80,PMRS ; VCO range select (L) = $80
 mov #$01,PMDS ; PLL reference divider (R) = 1
 bset 5,PCTL ; Enable PLL
 brclr 6,PBWC,* ; wait until PLL stabilizes
 bset 4,PCTL ; switch clock source to PLL
 rts
;- CGM_INIT ---

;- MAIN ---
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx
 sta internal_error ; clear internal errors counter
 sta reference
 mov #$37,CONFIG1 ; MCU runs w/o LVI and COP support (w/ STOP enabled), and
 ; short STOP recovery
 ; because oscillator is running during STOP inhibition
 mov #$2,CONFIG2 ; Enable oscillator in STOP mode (otherwise TBM doesn't run)
 bsr cgm_init ; CGM and PLL initialization
 bsr gpio_init ; GPIO initialization
 bsr ad_init ; A/D converter initialization
 bsr kbi_init ; KBI module initialization
 bsr tbm_init ; timebase module initialization
 mov #$3,state ; state=1 causes new reference set-up in AD_ISR
 cli
 lda ADSCR ; A/D conversion start - on demand A/D conversion is started
 and #$5F ; by ADSCR write
 sta ADSCR
main_loop:
 lda state ; test for non-zero state
 tsta
 bne main_wait
 stop ; the only stop-able state is zero, any non-zero state flags
 bra main_loop
main_wait: ; don't stop, only wait because any unstop-able action is runnig
 wait
 bra main_loop
;- MAIN ---

;- AD_ISR ---

159

; ad_isr - handles requested A/D measurement

; according to state sets-up reference and updates LEDs
ad_isr:
 lda ADR ; read A/D result
 brclr 2,state,ad_isr_repeat ; bit2(state)=0 means, repeat measurement, last meas.
 ; was stabilization cycle after STOP recovery
 brclr 1,state,ad_isr_noset ; if bit1(state) is set, reference set-up will be done
 sta reference ; set-up reference
ad_isr_noset:
 clr state
 pshx
 lda PTD ; load LED status for upcomming update
 ora #$30
 tax
 lda ADR ; test, if current temperature exeeds limits upwardly
 add #difference
 bcs ad_isr_notup ; overflow on add means, boundary is unreachable out of range
 cmpa reference
 bhi ad_isr_notup
 txa ; upper limit crossed
 and #$EF
 tax
ad_isr_notup:
 lda ADR ; do the same for bottom limit
 sub #difference
 bcs ad_isr_notlow ; overflow here means, boundary is unreachable out of range
 cmpa reference
 blo ad_isr_notlow
 txa ; lower limit crossed
 and #$DF
 tax
ad_isr_notlow:
 stx PTD ; write new updated state to LEDs
 pulx
 rti
ad_isr_repeat:
 lda ADSCR ; A/D conversion start - on demand A/D conversion is started
 and #$5F ; by ADSCR write
 sta ADSCR
 bset 2,state ; this measurement was for stabilization only, next will be used.
 rti

;- AD_ISR --

;- KBI_ISR ---
; kbi_isr - handles user keypress - new reference set-up
kbi_isr:
 lda PTD ; complemet LED states - makes flash to indicate activity

160

 eor #$30

 sta PTD
 mov #$3,state ; state=3 => info for main, don't stop, only wait and for
 ; a/d handler - reference set-up
 bset 2,INTKBSCR ; acknowledges KBI interrupt request
 lda ADSCR ; A/D conversion start - on demand A/D conversion is started
 and #$5F ; by ADSCR write
 sta ADSCR
 rti
;- KBI_ISR ---

;- TBM_ISR ---
; tbm_isr - the only tast of this handler is to start A/D conversion
tbm_isr:
 lda PTD ; complemet LED states - makes flash to indicate activity
 eor #$30
 sta PTD
 lda ADSCR ; A/D conversion start - on demand A/D conversion is started
 and #$5F ; by ADSCR write
 sta ADSCR
 mov #$1,state ; state=1 => running A/D conversion causes LED updates only
 bset 3,TBCR ; acknowledges TBM interrupt
 rti
;- TBM_ISR ---

;- DUMMY_ISR ---
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

dummy_isr:
 inc internal_error
 rti
;- DUMMY_ISR ---

;- SWI_ISR ---
; SW interrupt handler - inside debugger causes SWI jump to monitor, in other cases jump
here
swi_isr: ; do nothing
 rti
;- SWI_ISR ---

;- INTERRUPT VECTOR TABLE --
 org VectorStart
 dw tbm_isr ; Time Base Vector
 dw ad_isr ; ADC Conversion Complete
 dw kbi_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector

161

 dw dummy_isr ; SPI Transmit Vector

 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector
 dw dummy_isr ; TIM1 Overflow Vector
 dw dummy_isr ; TIM1 Channel 1 Vector
 dw dummy_isr ; TIM1 Channel 0 Vector
 dw dummy_isr ; PLL Vector
 dw dummy_isr ; ~IRQ1 Vector
 dw swi_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE --

162

Experiment 9

; ***
; GP-AD-TEMP-SCI-INT.ASM
;
; Program demonstrates on demand A/D conversion with interrupt utilization and
; power saving. Program runs on the same philosophy as GP-AD-TEMP-POLL, but
; completely event-triggered by several interrupt handlers. Main loop waits
; and stops only.
; How things happen: Main program does complete initialization and sleeps.
; Keypress wakes MCU up by KBI handler. This handler starts A/D measurement
; and enables A/D interrupts and returns to main (which asleeps again).
; Conversion finish causes A/D interrupt, MCU wakes up restarts A/D again
; (first turn was for calibration only), asleeps, wakes up ans calculates
; measured temperature (A/D value to centigrad conversion). Fills SCI buffer
; with string, enables SCI and exits. SCI transmitter generates interrupts,
; when clear to next character. After all characters are sent, SCI handler
; disables SCI Tx interrupts, reurts to main and MCU asleeps again. That's
; all. Comm parameters: 9600, 8N1
; ***
; PTA1 keypress starts measurement and results transmission by SCI Tx
; both PTAs causes return to monitor
; 6.3.2001 v2.0
; simulator - ok
; devbrd - ok
; notes: ADICLK register (named in Motorola doc) is called ADCLK by PE micro..
; usefull w/ potentiometer connected to PTB1 socket too (change A/D to channel 1 -
; see line 52)
; expected timing: ICS mode (2.4576MHz), no CLK settings done
; Debugger interfere w/ STOP instruction, STOP instr. works only for first program
; run, until user requests monitor (PTA4 press)
; After that (continue execution) will program hang. See comments around line 120..

RAMStart EQU $0040
RomStart EQU $E000
VectorStart EQU $FFDC

state_idle EQU $0 ; Nothing to do, wait for KBI
state_adstabil EQU $1 ; KBI request for measurement, A/D stabilization started
state_admeas EQU $2 ; A/D stabilized (first measure done), real measurement started
state_send EQU $3 ; measurement done, sending data (this state is during all sending
 ; time)
state_monitor EQU $FF ; KBI module got jump to monitor request (both buttons pressed)

$Include 'gpregs.inc'

 org RamStart

163

internal_error ds 1 ; internal errors counter
buffer ds 8 ; serial Tx buffer
bufptr ds 2 ; pointer to actual buffer place (char to be written or to be send..)

state ds 1 ; state variable
temp0 ds 1 ; general temporary data storage
 org RomStart

; - GPIO_INIT --
; all-gpios initialization - type: input, state: log.1
; except: PTD4,5 - LED are outputs, PTA2,3 - pushbuttons - pullups on
gpio_init:
 lda #$FF
 sta PTA
 sta PTB
 sta PTC
 sta PTD
 sta PTE
 mov #0,DDRA
 mov #0,DDRB
 mov #0,DDRB
 mov #$30,DDRD
 mov #0,DDRE
 mov #$0C,PTAPUE
 mov #$00,PTCPUE
 mov #$00,PTDPUE
 rts
;- GPIO_INIT ---

;- CGM_INIT --
; cgm_init - initializes PLL and CGM to run from 32kHz XTAL @ BUSCLK=2.4576MHz
cgm_init:
 bclr 4,PTD ; turn on Yellow LED - clock moving starts
 mov #$01,PCTL ; P (PRE) = 0 (Prescaler=1), E (VPR) = 1 (2^E = 2)
 mov #$80,PBWC ; Automatic bandwidth control
 mov #$01,PMSH ; Upper byte of $12C = PLL multiplier (N)
 mov #$2C,PMSL ; Lower byte of $12C = PLL multiplier
 mov #$80,PMRS ; VCO range select (L) = $80
 mov #$01,PMDS ; PLL reference divider (R) = 1
 bset 5,PCTL ; Enable PLL
 brclr 6,PBWC,* ; wait until PLL stabilizes
 bset 4,PCTL ; switch clock source to PLL
 bset 4,PTD ; clock moving done, turn off yellow LED
 rts
;- CGM_INIT ---

;- KBI_INIT ---

164

; kbi_init: Initializes KBI module to generate interrupt on PTA1,4 fallig edge (keypress)

kbi_init:
 bset 1,INTKBSCR ; disable KBI ints
 mov #$0C,INTKBIER ; enable PTA2,3 as KBD pins
 bclr 0,INTKBSCR ; generate INT on falling edge only
 bclr 1,INTKBSCR ; enable KBI
 bset 2,INTKBSCR ; clobber any unwanted KBI requests from past
 rts
;- KBI_INIT --

;- SCI_INIT --
; initializes serial interface to normal operation on 9600, 8N1 (BUSCLK is 2.4576MHz)
; called after all measurements happen
sci_init:
 ldhx #buffer ; Clear serial buffer
 lda #8
sci_init_clr:
 clr ,X
 aix #1
 dbnza sci_init_clr
 clr bufptr ; Initialize tx pointer
 clr bufptr+1
 mov #$02,SCBR ; Bitrate=9600bd - 2.4576MHz /64 /1 /4
 mov #$40,SCC1 ; Normal operation, no loop, SCI enabled
 mov #$08,SCC2 ; Tx enabled, Rx disabled, Interrupts disabled (for this moment)
 mov #$00,SCC3 ; No error interrupts
 rts
;- SCI_INIT --

;- AD_INIT ---
; ad_init: Initializes A/D converter - conversion on request, BUSclk/2, int on complete
; ad_init:
 mov #$30,ADCLK ; Prescaler=2, BUSclk selected
; WARNING! Name of this register in original documentation is ADICLK
 mov #$40,ADSCR ; Conversion on request, CH0 (PTB0 - temperature sensor)
 ; selected
 rts
;- AD_INIT --

;- MAIN ---
; Everything begins here
Main:
 rsp ; stack pointer reset
 clra ; register init
 clrx
 sta temp0 ; initialized variables are better
 sta internal_error ; clear internal errors counter
 mov #$33,CONFIG1 ; MCU runs w/o LVI and COP support, STOP enabled

165

 mov #$03,CONFIG2 ; SCI runs from BUSclk, STOP enabled

 bsr gpio_init ; GPIO initialization
 bsr cgm_init ; ICG/CGM/PLL initialization
 bsr sci_init ; SCI initialization
 bsr kbi_init ; KBI module initialization
 bsr ad_init ; A/D converter initialization
 clr state ; initial state is zero
 cli ; enable interrupts
main_loop: ; all main_loop does is wait or stop
 lda state
 tsta
 beq main_stop
 cmpa #state_monitor ; To jump to monitor press both buttons (acquired by
 ; kbi_int)
 beq main_monitor
 bset 4,PTD
 wait ; non-zero states mean some internal activity - A/D conversion,
 bra main_loop ; SCI transmition, MCU cannot be STOPped, WAIT mode is
 ; suitable, and pwr consumption falls to 1/5
main_stop: ; when the state machine is in state 0, program waits for KBI
 bset 4,PTD ; turn off LEDs to indicate STOP mode
 bset 5,PTD ; MCU in STOP mode consumes about 1uA, but TBM and KBI remains active
 stop ; note: Be aware to leave TBM input clock running (see OSCENINSTOP in
 ; CONFIG reg.)
 bra main_loop
main_monitor:
 swi ; User requested (by PTA4 keypress) jump to monitor
 clr state
 bra main_loop ; Warning! Debugger interfere w/ STOP instruction, program is
 ; not able to continue after monitor entry and continue
 ; execution. If you want to do it, change STOP instruction
 ; by WAIT instruction. Power consumption will rise, but
 ; debugger will work :-)
 ; Simulator cooperates w/ STOP instruction correctly
;- MAIN --

;- BNDC --
; bndc - converts binary number in A reg to decimal equivalent and puts it in buffer
; (bufptr)
; returns string without trailing endchar, but with bufptr poiniting to position next
; to string.
; routine can be easily modificable to convert to any base <2;10> by modifying ldx <base>
; instrucion
bndc: clrh
 ldx #$0A ; Number is converted to decimal base
 div ; divide input number by divisor (base)
 pshh ; remainder is current digit place digit
 beq bndc_2 ; zero quotient means, conversion is finishing

166

 bsr bndc ; next digit..

bndc_2: pula ; get digit from stack
 add #'0' ; convert 0 -> '0'
 ldhx bufptr
 sta ,X ; put it to the buffer (H:X)
 aix #1
 sthx bufptr
 rts
;- BNDC ---

;- DUMMY_ISR --
; Dummy interrupt handler - these interrupt requests will normaly never be activated, but..

dummy_isr:
 inc internal_error
 rti
;- DUMMY_ISR --

;- KBI_ISR --
; kbi_isr: handles keypresses
kbi_isr:
 bclr 4,PTD
 brclr 3,PTA,kbi_isr_monitor ; Button PTA4 means jump to monitor
 brset 2,PTA,kbi_isr_end ; no interesting button configuration..
 lda state ; PTA1 only pressed, if we're waiting for it (state 0)
 tsta
 bne kbi_isr_end
 bclr 5,PTD ; Turn on LED to indicate activity
 mov #state_adstabil,state ; ..change state to adstabil
 lda ADSCR ; start a/d conversion (for stabilize)
 ora #$40
 sta ADSCR
 bra kbi_isr_end
kbi_isr_monitor: ; jump to monitor (set flag, real jump does main loop)
 mov #state_monitor,state
kbi_isr_end:
 bset 2,INTKBSCR ; acknowledge KBI int
 rti
;- KBI_ISR --

;- AD_ISR ---
; ad_isr: Services A/D conversion results
ad_isr:
 pshh
 bclr 4,PTD
 lda ADR
 lda state ; at which state we are?
 cmpa #state_adstabil ; ad_stabil state means drom measured data and redo

167

 ; measurement

 beq ad_isr_meas
 cmp #state_admeas ; ad_meas state means, measurement done, acquisite data
 bne ad_isr_error ; any other state and a/d interrupt is not allowed
 ldhx #buffer ; convert measured data to string
 sthx bufptr
 lda ADR
 ldx #$F5 ; calculate temperature: T=500*ADR/256 (in centigrades)
 mul ; ADR*250
 asla ; *2
 txa ; /256
 rola
 bsr bndc ; convert bin to dec string
 ldhx bufptr
 mov #$0D,temp0 ; advance string by CRLF and ending zero
 mov temp0,X+
 mov #$0A,temp0
 mov temp0,X+
 clr temp0
 mov temp0,X+
 ldhx #buffer
 sthx bufptr
 mov #state_send,state ; change state to send
 lda SCC2 ; start sci transmission by enabling SCI Tx interrupts
 ora #$C0
 sta SCC2
 bra ad_isr_end
ad_isr_meas: ; start real measurement
 lda ADSCR
 sta ADSCR
 mov #state_admeas,state ; change state to admeas
ad_isr_end: ; A/D in int mode doesn't need any acknowledges
 pulh
 rti
ad_isr_error:
 inc internal_error ; ad service handler detected internal error
 bra ad_isr_end
;- AD_ISR ---

;- SCITX_ISR --
; scitx_isr: handles sci char sent - puts next character to SCI
scitx_isr:
 pshh
 bclr 4,PTD
 lda state ; verify right state
 cmpa #state_send ; any state except state_send is invalid for this moment
 bne scitx_isr_error
 lda SCS1 ; verify if transmitter is capable to get new data

168

 and #$C0 ; TC bit must be set

 beq scitx_isr_end ; if not, do nothing
 ldhx bufptr ; read next character from buffer
 lda ,X
 tsta ; test for ending zero
 beq scitx_isr_fin
 aix #1 ; got real character, advance pointer
 sthx bufptr
 sta SCDR ; put new character to SCI to send
scitx_isr_end:
 pulh
 rti
scitx_isr_fin: ; no more characters to send
 bclr 7,SCC2 ; disable interrupts on ready for new data
 brclr 6,SCS1,scitx_isr_end ; before changing state to idle (STOP), all characters
 ; must be sent
 bclr 6,SCC2 ; disable interrupts on transmission complete
 mov #state_idle,state ; all chars sent, all done, sweet dreams.. STOP!
 bra scitx_isr_end
scitx_isr_error:
 inc internal_error ; handler detected invalid state
 bra scitx_isr_end
;- SCITX_ISR --

;- SWI_ISR --
; SW interrupt handler - inside debugger causes SWI jump to monitor, in other cases jump
here
swi_isr: ; do nothing
 rti
;- SWI_ISR --

;- INTERRUPT VECTOR TABLE ---
 org VectorStart
 dw dummy_isr ; Time Base Vector
 dw ad_isr ; ADC Conversion Complete
 dw kbi_isr ; Keyboard Vector
 dw scitx_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; SPI Transmit Vector
 dw dummy_isr ; SPI Receive Vector
 dw dummy_isr ; TIM2 Overflow Vector
 dw dummy_isr ; TIM2 Channel 1 Vector
 dw dummy_isr ; TIM2 Channel 0 Vector
 dw dummy_isr ; TIM1 Overflow Vector
 dw dummy_isr ; TIM1 Channel 1 Vector
 dw dummy_isr ; TIM1 Channel 0 Vector
 dw dummy_isr ; PLL Vector

169

 dw dummy_isr ; ~IRQ1 Vector

 dw swi_isr ; SWI Vector
 dw main ; Reset Vector
;- INTERRUPT TABLE --

170

