Statica User Manual

($)Statica

Enterprise Static IPs

Table of Contents
l. Getting Started

Ruby Quick Start Guide

Python Quick Start Guide

Node .js Quick Start Guide

PHP Quick Start Guide

.NET Quick Start Guide

Java Quick Start Guide

SOCKS Quick Start Guide

Choosing between the HTTP and SOCKS proxies

Il. Using with Node

Getting started with Node.js standard http library
Accessing a MySQL Database via a Static IP from Node.js

Accessing a SOAP service from Node.js with a Static IP

lll. Using with PHP

Accessing an FTP server from a Static IP in PHP

IV. Platform Integrations

Extract Statia credentials from VCAP_SERVICES
IBM Bluemix

V. Using with Ruby

Getting started with the rest-client gem

Getting started with the httparty gem

Getting started with the httpclient gem

Sending files via a Static IP with Ruby SFTP

Access RETS services via a Static IP with the ruby-rets gem
Getting started with the Net::HTTP

Accessing a firewalled LDAP Server from Ruby via Statica

VI. Using with Phyton

Getting started with urllib2

VIl. Using with .NET

Accessing a SOAP service from .NET MVC Controller with a Static IP

l. Getting Started
Ruby Quick Start Guide

Installation

When you sign up you will be provided with a unique username and password and a
connection string that you can use when configuring your proxy service in your
application:

http://username:password@brooks.statica.i10:9293

All requests that you make via this proxy will appear to the destination server to
originate from one of the two static IPs you will be assigned when you sign up.

We recommend you store the connection string in an environment variable
STATICA_URL. If you have signed up via the add-ons platform on Heroku or
cloudControl this variable will be automatically set in your production environment.

Integration

Ruby has many HTTP client libraries but our favourite for HTTP interactions
is rest-client. You can run the below example in an irb session and verify that
the final IP returned is one of your two static IPs.

require "rest-client"

RestClient.proxy = ENV["STATICA_URL"] if ENV["STATICA_URL"]
res = RestClient.get("http://ip.jsontest.com™)

puts "Your IP was: #{res.body}"

https://github.com/rest-client/rest-client

Python Quick Start Guide

Installation

When you sign up you will be provided with a unique username and password and a
connection string that you can use when configuring your proxy service in your
application:

http://username:password@static.statica.io0:9293

All requests that you make via this proxy will appear to the destination server to
originate from one of the two static IPs you will be assigned when you sign up.

We recommend you store the connection string in an environment variable
STATICA URL. If you have signed up via the add-ons platform on Heroku or
cloudControl this variable will be automatically set in your production environment.

Integration

Python offers many different ways to make HTTP calls but for API requests we
recommend the requests library. It allows you to specify an authenticated proxy on a
per request basis so you can pick and choose when to route through your static IP
address.

import requests

import os

proxies = {

"http": os.environ['STATICA URL']
"https": os.environ['STATICA URL'
}

res = requests.get ("http://ip.Jjsontest.com/", proxies=proxies)
print res.text

]

http://username:password@static.statica.io:9293/
http://docs.python-requests.org/en/latest/
http://ip.jsontest.com/

Node .js Quick Start Guide

Installation

When you sign up you will be provided with a unique username and password
and a connection string that you can use when configuring your proxy service in
your application:

http://username:password@static.statica.i10:9293

All requests that you make via this proxy will appear to the destination server to
originate from one of the two static IPs you will be assigned when you sign up.

We recommend you store the connection string in an environment variable
STATICA _URL. If you have signed up via the add-ons platform on Heroku or
cloudControl this variable will be automatically set in your production environment.

Integration

Statica will work with the standard http library but we recommend using the
request library for ease of use.

var request = require('request');
var options = {

proxy: process.env.STATICA URL,
url: 'http://ip.]jsontest.com/',
headers: {

'User-Agent': 'node.js'

}

I

function callback (error, response, body) {
if ('error && response.statusCode == 200) {
console.log (body) ;

}

}

request (options, callback);

http://username:password@static.statica.io:9293/
http://ip.jsontest.com/

PHP Quick Start Guide

Installation

When you sign up you will be provided with a unique username and password and a
connection string that you can use when configuring your proxy service in your
application:

http://username:password@static.statica.i10:9293

All requests that you make via this proxy will appear to the destination server to
originate from one of the two static IPs you will be assigned when you sign up.

We recommend you store the connection string in an environment variable
STATICA URL. If you have signed up via the add-ons platform on Heroku or
cloudControl this variable will be automatically set in your production environment.

Integration

PHP cURL is the easiest way to make HTTP requests via Statica.

<?php

function lookup () {
Sstatica env = getenv ("STATICA URL");
$statica = parse url($statica env);

SproxyUrl = S$statical['host'].":".Sstatica['port'];
SproxyAuth = $statical['user'].":".S$Sstatica['pass'];
Ssurl = "http://ip.Jjsontest.com/";

$ch = curl init();

curl setopt(Sch, CURLOPT URL, Surl);

curl setopt Sch, CURLOPT RETURNTRANSFER, 1);

curl setopt (Sch, CURLOPT PROXY, SproxyUrl);

curl setopt Sch, CURLOPT PROXYAUTH, CURLAUTH BASIC);
curl setopt (Sch, CURLOPT PROXYUSERPWD, SproxyAuth);
Sresponse = curl exec($ch);

return Sresponse;

Py

}

Sres = lookup();
print r(Sres);

7>

http://username:password@static.statica.io:9293/
http://ip.jsontest.com/

.NET Quick Start Guide

Installation

When you sign up you will be provided with a unique username and password and a
connection string that you can use when configuring your proxy service in your
application:

http://username:password@static.statica.i10:9293

All requests that you make via this proxy will appear to the destination server to
originate from one of the two static IPs you will be assigned when you sign up.

We recommend you store the connection string in an environment variable
STATICA URL. If you have signed up via the add-ons platform on Heroku or
cloudControl this variable will be automatically set in your production environment.

Integration

This example is written in C# and uses the HttpWebRequest class to make a request
via Statica.

//Extract proxy connection details
string proxyUrl =
Environment.GetEnvironmentVariable ("STATICA URL");

System.Uri proxyUri = new System.Uri (url);

string cleanProxyURL = uri.Scheme + "://" + uri.Host
+":"+uri.Port;

string user = uri.UserInfo.Split(':") [0]

string password = uri.UserInfo.Split(':")[1]
HttpWebRequest request = (HttpWebRequest)

WebRequest.Create ("http://ip.jsontest.com/") ;

WebProxy myProxy = new WebProxy();

Uri newUri = new Uri (cleanProxyURL) ;

// Associate the newUri object to 'myProxy' object so that new
myProxy settings can be set.

myProxy.Address = newUri;

// Create a NetworkCredential object and associate it with the
// Proxy property of request object.

myProxy.Credentials = new NetworkCredential (user, password);
request.Proxy = myProxy;

HttpWebResponse httpWebResponse = request.GetResponse () as
HttpWebResponse;

// Get the stream containing content returned by the server.
Stream dataStream = httpWebResponse.GetResponseStream() ;

// Open the stream using a StreamReader for easy access.
StreamReader streamReader = new StreamReader (dataStream):;

// Read the content.
String responseFromServer = streamReader.ReadToEnd() ;

// Write the content.
Console.WritelLine (responseFromServer) ;

streamReader.Close () ;

http://username:password@static.statica.io:9293/
http://ip.jsontest.com/

dataStream.Close () ;

Java Quick Start Guide

Installation

When you sign up you will be provided with a unique username and password and a
connection string that you can use when configuring your proxy service in your
application:

http://username:password@static.statica.i10:9293

All requests that you make via this proxy will appear to the destination server to
originate from one of the two static IPs you will be assigned when you sign up.

We recommend you store the connection string in an environment
variable STATICA URL. If you have signed up via the add-ons platform on Heroku or
cloudControl this variable will be automatically set in your production environment.

Integration

You can use the standard Java libraries with Statica to access HTTP and HTTPS APIs
via your static IP. The below examples uses a custom class to encapsulate the Statica
proxy logic and an HttpURLConnection to make the HTTP request.

This sample uses the Java 8 Base64 class to encode the authorization String. If using
a version less than Java 8 you should use another Base64 encoder implementation,
such as the Apache Commons Codec.

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.Authenticator;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.zip.GZIPInputStream;
public class HTTPProxyDemo {
public static void main (String[] args) {
new HTTPProxyDemo () ;

}

public HTTPProxyDemo () {
StaticaProxyAuthenticator proxy = new
StaticaProxyAuthenticator () ;
String testUrl = "http://ip.jsontest.com/";
System.out.println (getResponse (proxy, testUrl));
}

public String getResponse (StaticaProxyAuthenticator proxy,
String urlToRead) {
String result = "";
try {
URL url = new URL (urlToRead) ;
HttpURLConnection conn = (HttpURLConnection)
url.openConnection () ;
conn.setRequestProperty ("Proxy-Authorization",
"Basic " + proxy.getEncodedAuth());
conn.setRequestProperty ("Accept-Encoding", "gzip"):;

http://username:password@static.statica.io:9293/
https://commons.apache.org/codec/
http://ip.jsontest.com/

Authenticator.setDefault (proxy.getAuth());
conn.setRequestMethod ("GET") ;
InputStream is = conn.getInputStream() ;
if (conn.getContentEncoding () !=null &&
conn.getContentEncoding () .equalsIgnoreCase ("gzip")) {
is = new GZIPInputStream(is);
}
byte[] buffer = new byte[1024];
int len;
ByteArrayOutputStream bos = new
ByteArrayOutputStream() ;
while (-1 != (len = is.read(buffer))) {
bos.write (buffer, 0, len);

}
result = new String (bos.toByteArray());
is.close () ;

} catch (IOException e) {
e.printStackTrace() ;

} catch (Exception e) {
e.printStackTrace() ;

}

return result;

import java.net.Authenticator;

import java.net.MalformedURLException;
import java.net.PasswordAuthentication;
import java.net.URL;

public class StaticaProxyAuthenticator extends Authenticator({
private String user, password, host;
private int port;
private ProxyAuthenticator auth;

public StaticaProxyAuthenticator () {
String proxyUrlEnv = System.getenv ("STATICA URL");
if (proxyUrlEnv!=null) {

try {
URL proxyUrl = new URL (proxyUrlEnv) ;
String authString = proxyUrl.getUserInfo();
user = authString.split(":")[0];
password = authString.split(":") [1];
host = proxyUrl.getHost()
port = proxyUrl.getPort();
auth = new ProxyAuthenticator (user,password);
setProxy (),

} catch (MalformedURLException e) {
e.printStackTrace();

}
else({
System.err.println("You need to set the environment
variable STATICA URL!");

}

private void setProxy () {
System.setProperty ("http.proxyHost", host);
System.setProperty ("http.proxyPort",
String.valueOf (port));
System.setProperty ("https.proxyHost", host) ;
System.setProperty ("https.proxyPort",
String.valueOf (port));
}

public String getEncodedAuth () {

//1f not using Java8 you will have to use another Base64
encoded, e.g. apache commons codec.

String encoded =
java.util.Base64.getEncoder () .encodeToString ((user + ":" +
password) .getBytes ()) ;

return encoded;

}

public ProxyAuthenticator getAuth () {
return auth;

}

class ProxyAuthenticator extends Authenticator ({
private String user, password;
public ProxyAuthenticator (String user, String password)

this.user = user;
this.password = password;

protected PasswordAuthentication
getPasswordAuthentication () {
return new PasswordAuthentication (user,
password.toCharArray()) ;
t
}

SOCKS Quick Start Guide

Statica provides a wrapper script that transparently forwards all outbound TCP traffic
through your Static IP. This is language independent but there are known issues with
certain Node.js connections hanging so please contact us if you have any issues.

If you're not sure whether to use the SOCKS proxy check out our HTTP vs SOCKS
article.

Please note: The wrapper is not compatible with OSX or Windows. We
recommend using a Virtual Machine running Ubuntu for development testing if
your main development environment does not run Linux.

Installing the Statica wrapper

Download and extract the wrapper in your app directory
$ cd /home/myuser/my-app

$ curl https://s3.amazonaws.com/statica-releases/statica-
socksify-latest.tar.gz | tar xz

$ echo "STATICA-LICENSE.txt" >> .gitignore
$ git add bin/statica vendor/dante
S git commit -m "Add Statica socksify"

Now you can prepend the statica wrapper to your standard commands to
transparently route all traffic through your Static IPs. For example to run a Rails
server:

bin/statica rails s

Controlling what traffic goes through proxy

You can provide a standard subnet mask to only route traffic to certain IP subnets via
the STATICA_MASK environment variable. The mask supports sub-network
specifications (e.g., 192.0.2.22/24), single addresses (192.0.2.22/32), host names
(e.q., ftp.example.org), or domain names (e.g., .example.org). A domain name
specification will match any host in that domain.

export STATICA MASK="100.30.68.0/24"

All outbound traffic to 100.30.68.* would be routed via your Static IPs. Multiple masks
can be provided by comma separating the mask values:

export STATICA MASK="100.30.68.0/24,99.29.68.0/24"

http://support.statica.io/solution/articles/5000535000-choosing-between-the-http-and-socks-proxies
https://s3.amazonaws.com/statica-releases/statica-socksify-latest.tar.gz

Choosing between the HTTP and SOCKS proxies

With every Statica plan you have the option of using our HTTP or SOCKSS5 proxies.
This article outlines the differences and what factors should influence your decision.

HTTP vs SOCKS comparison

The majority of our customers use our HTTP proxy. This allows you to route any HTTP
calls via our proxy including secure requests over HTTPS. HTTP proxies are natively
supported in most of the common programming languages and HTTP client libraries
SO are easy to integrate.

SOCKS proxies are more versatile as they operate at a lower level than HTTP and can
proxy TCP connections to arbitrary IP addresses. This allows you to proxy higher level
protocol interactions like FTP or LDAP. SOCKS is supported at the socket level in a lot
of the major languages but most client libraries do not natively support it which makes

it harder to integrate in to your application.

Due to the ease of integration if you are accessing an HTTP or HTTPS API you should

use our HTTP proxy. If you are using a different protocol then you should switch to
SOCKS.

Common HTTP Use Cases

+ Accessing an HTTP API
+ Accessing an HTTPS API

Common SOCKS Use Cases

+ Accessing an MySQL database
* Accessing an LDAP service
+ Transferring files via Secure FTP

ll. Using with Node
Getting started with Node.js standard http library

This example assumes your STATICA_URL environment variable is set and contains
your unique connection string.

To access an HTTP API you can use the standard HTTP library in Node.js but must
ensure you correctly set the “Host” header to your target hostname, not the proxy
hostname.

var http, options, proxy, url;
http = require ("http");

url = require("url");

proxy = url.parse (process.env.STATICA URL);
target = url.parse("http://ip.Jjsontest.com/");

options = {
hostname: proxy.hostname,
port: proxy.port || 80,

path: target.href,
headers: {

"Proxy-Authorization": "Basic " + (new
Buffer (proxy.auth) .toString ("base64")),
"Host" : target.hostname

}
b

http.get (options, function (res) {
res.pipe (process.stdout) ;
return console.log("status code", res.statusCode);

1)

http://ip.jsontest.com/

Accessing a MySQL Database via a Static IP from
Node.js
You can route all database traffic via a Static IP in Node.js using Statica. Currently

there is a limitation in that you can't use the built in connection pooling so this is not
recommended for high traffic applications.

var mysgl = require('mysqgl2');

var url = require("url");

var SocksConnection = require('socksjs');
var remote_options = {

host:'your-database.eu-west-1.rds.amazonaws.com',
port: 3306

i

var proxy = url.parse (process.env.STATICA URL);
var auth = proxy.auth;

var username = auth.split (":") [0]

var pass = auth.split(":") [1]

var sock options = {

host: proxy.hostname,

port: 1080,

user: username,

pass: pass

t

var sockConn = new SocksConnection(remote options,
sock options)

var dbConnection = mysqgl.createConnection ({

user: 'dbuser',

database: 'dbname',

password: 'dbpassword',

stream: sockConn

1) ;

dbConnection.query ('SELECT 1+1 as testl;', function(err, rows,
fields) {

if (err) throw err;

console.log('Result: ', rows);
sockConn.dispose() ;

P

dbConnection.end () ;

Accessing a SOAP service from Node.js with a
Static IP

The node-soap library is a great library for connecting to SOAP services from your
node.js app but it does not support sending traffic over authenticated proxies.

We have forked node-soap to read in the QUOTAGUARDSTATIC_URL environment
variable and route all traffic via our proxy so that you can send requests via your
Static IP. Statica uses should manually set the QUOTAGUARDSTATIC_URL variable to
match their STATICA_URL variable for this to work.

To use replace your current node-soap dependency with our repo https://github.com/
quotaguard/node-soap

For example in your package.json:

{

"name": "foo",
"version": "0.0.0",
"dependencies": {

"node-soap": "quotaguard/node-soap"
}
}

https://github.com/quotaguard/node-soap

lll. Using with PHP

Accessing an FTP server from a Static IP in PHP

You can access an FTP server via Statica from your PHP application so that your
traffic always appears to come from the same IP address. This solution uses PHP
cURL and our SOCKS5 proxy which is accessible on port 1080:

Using with an unauthenticated FTP Server

<?php
$statica env = getenv ("STATICA URL");
$statica = parse url($statica env);

SproxyUrl = S$statica['host'].":1080";

SproxyAuth = $statica['user'].":".S$Sstatica['pass'];
print SproxyUrl;

Scurl = curl init();

curl setopt(Scurl, CURLOPT URL,"ftp://ftp.gnu.org");
curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

curl setopt (Scurl, CURLOPT PROXY, SproxyUrl);
curl_setopt($curl, CURLOPT_PROXYAUTH, CURLAUTH_BASIC);
curl setopt (Scurl, CURLOPT PROXYUSERPWD, SproxyAuth);
curl_setopt($curl, CURLOPT_PROXYTYPE, CURLPROXY_SOCKS5);

Sresult = curl exec (Scurl);
curl close (Scurl);

print S$result;

>

Using with an authenticated FTP Server

If your FTP server requires a username and password you just need to set the extra
CURLOPT_USERPWD parameter.

<?php

Susername "myftpuser";

Spassword = "myftppw";

$statica env = getenv ("STATICA URL");
$statica = parse url(Sstatica env);

SproxyUrl = S$statical['host'].":1080";

SproxyAuth = $statica['user'].":".S$Sstatica['pass'];
print SproxyUrl;

Scurl = curl init();

// This example will not work with this FTP server as it does
not require username/password!

curl setopt(Scurl, CURLOPT URL,"ftp://ftp.gnu.org");

curl setopt (Sch, CURLOPT USERPWD, "Susername:S$password");
curl setopt (Scurl, CURLOPT RETURNTRANSFER, 1);

curl setopt(Scurl, CURLOPT PROXY, SproxyUrl);

curl setopt (Scurl, CURLOPT PROXYAUTH, CURLAUTH BASIC);

curl setopt(Scurl, CURLOPT PROXYUSERPWD, SproxyAuth);

curl setopt (Scurl, CURLOPT PROXYTYPE, CURLPROXY SOCKSD));

Sresult = curl exec (Scurl);
curl close (Scurl);

print Sresult;

?>

ftp://ftp.gnu.org
ftp://ftp.gnu.org

IV. Platform Integrations

Extract Statia credentials from VCAP_ SERVICES
Working with VCAP_SERVICES

Our documentation assumes that your Statica credentials are available in the form of
a connection string in the STATICA_URL environment variable. On CloudFoundry
based platforms like IBM Bluemix, Pivotal and RedHat Openshift this is not the case
so you need slightly different code to access your Statica credentials by extracting
them from the VCAP_SERVICES environment variable.

The VCAP_SERVICES entry looks like the following:

{"statica":[{"name":"Staticalnstance", "label":"statica", "tags":
[1,"plan":"starter","credentials":
{"STATICA_URL":STATICA_URL}}]}

Extract the variable using the snippets below and then continue with our standard
documented solutions.

In Java

String vcapServices = System.getenv ("VCAP SERVICES");
JsonRootNode root = new JdomParser () .parse (vcapServices);
JsonNode mysglNode = root.getNode ("statica");

JsonNode credentials =
mysglNode.getNode (0) .getNode ("credentials") ;

String staticaURL = credentials.getStringValue ("STATICA URL");

In Ruby
credentials = proxyURL = "'
if !ENV['VCAP_SERVICES'].blank?
JSON.parse(ENV['VCAP_SERVICES']).each do |k, Vv|
if 'k.scan("statica") .blank?
credentials = v.first.select {|kl,vl] k1l ==
"credentials"} ["credentials"]
proxyURL = credentials["STATICA URL"]
end
end
end

In Python

statica service = json.loads(os.environ['VCAP SERVICES'])
['statica'] [0]

credentials = statica service['credentials']

statica url = credentials['STATICA URL']

In Node.js/Javascript

var vcap services = JSON.parse (process.env.VCAP SERVICES)
var staticaUrl = vcap services(['statica']
[0] .credentials.STATICA URL

In PHP

Svcap = Json decode (getenv ("VCAP _SERVICES"), true);
Sstatica env = Svcap["statica"][0] ["credentials"]
["STATICA_URL"];

IBM Bluemix

Statica is available on the IBM Bluemix Catalog. Binding the add-on will provide you
with access to our HTTP and SOCKS proxies with your connection string
automatically populated in the VCAP_SERVICES environment variable.

Getting Started

For examples on how to integrate Statica with your application check out our Quick
Start Guides below. Before you head off there be aware of the one major Bluemix
difference to our standard documentation, working with VCAP_SERVICES.

Working with VCAP_SERVICES

Learn how to extract your Statica credentials by following our VCAP_SERVICES
guide.

With the credentials you can then follow one of our quick start guides to get up and
running.

Generic Quick Start Guides

+ Java

* Ruby

+ Python
* Node.js
« PHP

Rails Starter App

If you're developing in Rails you can clone our IBM Bluemix Rails with Statica sample
app and get going in minutes.

https://console.ng.bluemix.net/?ace_base=true/#/store/cloudOEPaneId=store&serviceOfferingGuid=b3ac3c8e-b30d-4497-bf2e-27cee33fa077&fromCatalog=true
http://support.statica.io/solution/articles/5000614142-extract-statia-credentials-from-vcap-services
http://support.statica.io/solution/categories/5000102929/folders/5000163030/articles/5000534975-java-quick-start-guide
http://support.statica.io/solution/categories/5000102929/folders/5000163030/articles/5000534944-ruby-quick-start-guide
http://support.statica.io/solution/categories/5000102929/folders/5000163030/articles/5000534967-python-quick-start-guide
http://support.statica.io/solution/categories/5000102929/folders/5000163030/articles/5000534968-node-js-quick-start-guide
http://support.statica.io/solution/categories/5000102929/folders/5000163030/articles/5000534971-php-quick-start-guide
https://github.com/getstatica/bluemix-rails-sample

V. Using with Ruby

Getting started with the rest-client gem

Integrating with the rest-client gem is a one-liner. This will print out one of your Statica
IPs:

require "rest-client"
RestClient.proxy = ENV["STATICA URL"] if ENV["STATICA URL"]
res = RestClient.get ("http://ip.Jjsontest.com")

puts "Your IP was: #{res.body}"

Getting started with the httparty gem
HTTParty is a Ruby library for making HTTP requests and integrates easily with
Statica:

The following code snippet will print out one of your Static IP addresses.

require 'httparty'

proxy = URI (ENV["STATICA URL"])

options = {http proxyaddr:

proxy.host,http proxyport:proxy.port,

http proxyuser:proxy.user, http proxypass:proxy.password}

response = HTTParty.get ('http://ip.jsontest.com/',options)

puts response.body, response.code, response.message,
response.headers.inspect

Getting started with the httpclient gem

httpclient is a Ruby gem allowing you to execute HTTP commands. You can route
these commands easily via a Static IP by integrating with Statica:

require 'httpclient'

statica = URI(ENV["STATICA URL"])

proxy url = statica
client = HTTPClient.new(proxy url)
prx user = statica.user

prx password = statica.password
client.set proxy auth(prx user, prx password)
res = client.get ("http://ip.jsontest.com/")
puts res.body

Sending files via a Static IP with Ruby SFTP

http://ip.jsontest.com/
http://ip.jsontest.com/
https://github.com/nahi/httpclient
http://ip.jsontest.com/

Secure FTP allows you to transfer data securely between servers. You can use the
Ruby SFTP library to route SFTP transfers via Statica allowing you to lock down
access to our Static IP addresses:

require 'net/ssh'

require 'uri'

require 'net/sftp'

require 'net/ssh/proxy/http'
statica = URI (ENV["STATICA URL"])

proxy =
Net::SSH: :Proxy::HTTP.new(statica.host,statica.port, :user =>
statica.user, :password=>statica.password)

Net::SSH.start ('1.1.1.1"', 'sftpuser’',
{:port => 22,

:proxy => Proxy,

:password => 'sftppw'}) do |ssh|

ssh.sftp.connect do |sftp|
sftp.dir.foreach("/") do |entry|
puts entry.longname

end

end

end

Access RETS services via a Static IP
with the ruby-rets gem

ruby-rets is a Ruby client to allow you retrieve real estate data from RETS servers.
You can easily integrate it with Statica for IP locked RETS servers:

require "ruby-rets"
proxy = URI(ENV["STATICA URL"])

client = RETS::Client.login(:url => "http://rets.example.com:
6103/rets2 1/Login", :username => "<retsuser>",

:password => "<rets-password>", :http => {

tproxy => {

taddress => proxy.host,

:port => proxy.port,

:username => proxy.user,

:password => proxy.password

}

})
p client

Getting started with the Net::HTTP

https://github.com/estately/rets
http://www.rets.org/

Net::HTTP is Ruby's native HTTP library. For any complex web service interactions
we recommend rest-client but for simple cases net/http is ok.

require 'uri
require 'net/http'

proxy = URI(ENV["STATICA URL"])

h = Net::HTTP.new('ip.jsontest.com', 80,proxy.host, proxy.port,
proxy.user, proxy.password)

response = h.get("/")

p response.body

Accessing a firewalled LDAP Server
from Ruby via Statica

As part of our service we offer a SOCKS5 proxy which is accessible on your assigned
Statica server on port 1080. SOCKS5 provides TCP level proxying so can handle all
sorts of traffic including LDAP.

Ruby has a great LDAP library which can handle the bulk of the work but at the
moment it doesn't support sending traffic via a proxy. To get around this we have
produced a patched version of net-ldap which routes all LDAP traffic through our
SOCKS proxy. This requires a patched version of socksify-ruby so you just need to
install these two gems from our Github repository.

#Gemfile
gem 'socksify', github: "quotaguard/socksify-ruby", branch:
"master"
gem 'net-ldap', github: "quotaguard/ruby-net-ldap", branch:
"master"

Once installed set a QUOTAGUARDSTATIC_URL variable to match your
STATICA_URL variable. The patched Ruby Net LDAP client looks for a hardcoded
QUOTAGUARDSTATIC_URL variable (the previous name for our Statica service).

https://github.com/ruby-ldap/ruby-net-ldap

VI. Using with Phyton
Getting started with urllib2

This example assumes your STATICA_URL environment variable is set and contains
your unique connection string.

urllib2 is a basic library used for HTTP communication in Python and uses
environment variables to set a proxy service.

In your application initialization you should set the http_proxy variable to match
the STATICA_URL.

Assign Statica to your environment's http_proxy variable

os.environ['http proxy'] = os.environ['STATICA URL']

To test in the Python interpreter

import urllib2, os

os.environ['http proxy'] = os.environ['STATICA URL']
url = 'http://ip.jsontest.com/"

proxy = urllib2.ProxyHandler ()

opener = urllib2.build opener (proxy)

in = opener.open (url)

res = in_ .read()

print res

http://ip.jsontest.com/

VIl. Using with .NET

Accessing a SOAP service from .NET MVC
Controller with a Static IP

This example assumes your STATICA_URL environment variable is set and contains
your unique connection string.

Here we show how to use Statica to access a SOAP service from a .NET MVC web
controller. This example should also apply to other WebRequests made from an MVC
controller.

A common use case is from your MVC controller you want to access an IP-whitelisted
service that uses SOAP but the web service object does not have a "proxy" property
that allows you to specify the Statica proxy service.

Solution: Create a proxy object and | use it as a property of the WebRequest MVC
class, which will send all following requests via the proxy.

The solution is split in to two parts, the configuration in your web.config (which on
Azure can be done from your management console) and the MVC Controller itself.

MVC Controller

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

using Bank.Webservices; // fictitious namespace name for your
webservice's reference

using System.Diagnostics;

using System.Xml;

using System.Net;

using System.Web.Configuration;

public class PaymentController : Controller

{

[HttpPost]

// this 1is usually a form result, so attribute of action is
HttpPost

public ActionResult Index (string anyTokenYouUseWithYourBank)
{

string StaticaProxyAddress =
WebConfigurationManager.AppSettings["Statica Proxy URI"];

// to get the Proxy Uri from Web.config

string StaticaUser =
WebConfigurationManager.AppSettings["Statica User"];
// to get the Proxy User from Web.config

string StaticaPassword =
WebConfigurationManager.AppSettings["Statica Password"];
// to get the Proxy Password from Web.config

var proxy = new WebProxy(StaticaProxyAddress) ;
// we create a new proxy object

proxy.Credentials = new NetworkCredential (StaticaUser,
StaticaPassword) ;
// we give the proxy the Statica credentials

WebRequest.DefaultWebProxy = proxy;
// thanks to WebRequest, from here on every request of this
controller will pass through the proxy

var soapClientObject = new WSBankSocapClient(); //fictitious
name for the banks's web service

var result =

soapClientObject .GrabSomethingOnTheNet (anyTokenYouUseWithYourB
ank) ;

// now our WS call goes passes Proxy and in the variable result
we have the web service's result

// we use the result here
return Redirect ("http://newpage") ;

}
}

Configuration (web.config)

The section to add the keys to is <configuration><appSettings> (which you can also
directly modify in the Azure Console):

<appSettings>

<!-- keys for Statica-->

<add key="Statica Proxy URI" value="http://
yourStaticaUser:yourStaticaPasswordldeu-west-1-
babbage.statica.i10:9293"/>

<add key="Statica User" value="yourStaticaUser"/>

<add key="Statica Password" value="yourStaticaPassword"/>
<!-- end of keys for Statica-->

</appSettings>

This solution was kindly contributed by Riccardo Moschetti, a Microsoft MCSD Web
Applications specialist.

http://newpage/
http://yourStaticaUser:yourStaticaPassword@eu-west-1-babbage.statica.io:9293/
http://www.riccardo-moschetti.org/

