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SUMMARY 

Abnormal and potentially dangerous fault conditions in the 

anesthesia breathing circuit include leaks, obstructions, 
disconnects, incompetent valves and CO2 absorber malfunction. 

Because the current alarms of monitoring devices are not specific 

enough, there is a need for an intelligent alarms system that can 

determine the integrity of the breathing circuit. Three signals 

were measured at three different places: CO2 partial pressure at 

the Y-piece, airway pressure at the patient side of the 

inspiratory valve and airway flow at the patient side of the 

expiratory valve. From these measurements features were extracted 

for each signal, and the feature changes were analyzed. From 

these analysis a rule base was designed, which was implemented 

in an expert system by using the SIMPLEXYS expert systems 

language. Real time signal analysis and feature extraction were 
implemented in a multitasking environment. Initial tests were 
performed. 

It was found that an implementation of the total system was 

possible on an IBM-AT with the multitasking environment MultiDos­

Plus. The intelligent alarms system was able to distinguish the 

following malfunctions: incompetent inspiratory valve, 
incompetent expiratory valve, exhausted CO2 absorber, obstruction 

at the Y-piece, obstruction at the inspiratory hose and 

obstruction at the expiratory hose. The rule set is currently 

being expanded with rules for leaks and disconnects. 
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SAMENVATTING 

Abnormale en potentieel gevaarlijke foutencondities in het 
beademings circuit dat tijdens anesthesie gebruikt wordt, bestaan 

onder meer uit lekken, verstoppingen, losgeraakte verbindingen, 

nietwerkende kleppen en een niet goed functionerende CO2 

absorber. Orndat de huidige alarmering van de monitors niet 

specifiek genoeg is en onvoldoende informatie geeft, is er 
behoefte aan een intelligent alarmerings systeem dat kan 

uitzoeken wat er mis is in het beademings circuit. V~~r de 

implementatie wordt gebruik gemaakt van drie signalen die gemeten 

worden op drie verschillende plaatsen: partiele CO2 druk bij het 

T-stuk, druk in de inademings gedeelte van het beademings 

circuit, gasstroom in het uitademings gedeelte van het beademings 

circuit. uit deze metingen werden features gehaald, en de 

veranderingen van de features werden geanalizeerd. Uit de 

resultaten van deze analyze werd een regelset ontworpen, welke 

in een expert systeem ge:implementeerd is m. b. v. de S IMPLEXYS 

expert systeem taal. Real time analyze en feature berekening zijn 

ge:implementeerd in een multitasking omgeving. Voorlopige tests 

zijn uitgevoerd. 
Een implementatie van het totale systeem bleek mogelijk te 

zijn op een IBM-AT met de multitasking omgeving van MultiDos­

Plus. Het intelligente alarm systeem kon de volgende fouten 

onderscheiden: niet-werkende inademings klep, niet-werkende 
uitademings klep, uitgeputte CO2 absorber, verstopping van het 

T-stuk, verstopping van de inademingsbuis en verstopping van de 

uitademingsbuis. Op het moment wordt de regelset uitgebreid met 

regels voor lekken en onderbrekingen. 
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INTRODUCTION 

This project was done as part of the fulfillment of the 

requirements for a M.Sc. degree in Electrical Engineering at the 
Eindhoven University of Technology, Division of Medical 

Electrical Engineering, The Netherlands. The research was 

performed at the University of Florida, College of Medicine, 

Department of Anesthesiology in Gainesville, U.S.A. Funding for 

the research was provided by Ohmeda in Madison WI, manufacturer 

of anesthesia equipment. 

Problem definition 

Dur ing surgery, a patient is under anesthesia. This is an 
induced state in which the patient is unconscious, insensitive 

to pain, and the muscles of the patient are relaxed to the point 

where respiration must be supported by external means; an 

anesthesia system is used for this support. The risk of 

anesthesia is small. It is estimated that between 2 and 10 

anesthesia related incidents result in death for every 10,000 

anesthetics [ORK86]. A large percentage of these incidents are 
due to human error and equipment failure [C0078]. Monitoring 

devices are used by the anesthesiologist for early detection of 

unwanted situations. Most monitors are equipped with alarms that 

generate a sound when a user settable threshold has been 
exceeded. At some critical moments, many monitors can and will 

sound an alarm and the clinician is overwhelmed with an abundance 
of tones; it is the clinician's task to analyze the multitude of 

unspecific alarms and reach a conclusion about what exactly is 
going on. 

An unwanted situation can be the result of either an equipment 
malfunction or a patient problem. The first thing the 

anesthesiologist does is to check the equipment. If this appears 

to work well, the anesthesiologist checks the patient. It is our 
goal to develop a system that helps the anesthesiologist to reach 

a conclusion about the nature of the alarm situation. This stUdy 

is a start; it focusses on the integrity of the anesthesia 

system. 

If we let a computer monitor the anesthesia system (in the 
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same way as the anesthesiologist does) and if we give the 
computer the same knowledge the anesthesiologist uses to reach 

a conclusion about the source of the alarm, such an aid could be 
developed. This report describes how a clinician monitors the 
anesthesia system and how to implement this knowledge in a 

computer so that an intelligent (alarms) system can be developed, 
that aids the clinician to reach a conclusion about the possible 
problem more rapidly. 

Problem approach 

For now, we 

integrity of the 

a description of 

see chapter 1). 

limit our intelligent alarms system to the 

breathing system of the anesthesia system (for 

the anesthesia system and the breathing system 

A definition of what can go wrong with the breathing system 
has to be made. It has to be determined which signals have to be 
measured and where in the system they have to be measured. A 
continuous analysis of these measurements has to be made to 

determine whether a malfunction exists and if so, what exactly. 

Symbolic data will be derived from the signals and these will be 

given to an expert system containing the domain specific 

knowledge, which will reach a conclusion about the integrity of 

the breathing circuit. The following is a list of tasks that 

needed to be done to implement an intelligent alarms system. 

These tasks will be described in this report. 

- Define the malfunctions that we want to detect. 
Make a comprehensive list of all dangerous malfunctions 

by interviewing anesthesiologists and studying the used 

anesthesia system (chapter 2). 

- Define which signals must be measured to detect these 

malfunctions, and where in the system they must be measured. 

Find out which monitors are normally used and which 

monitors are available. Place the sensors so that an 

optimal malfunction detection can take place (chapter 2). 

- Record the signals that result after wilful introduction of 

Intelligent AlarBs in Anesthesia viii 



the earlier defined malfunctions (with a simulated patient). 
Sample the signals so they can be processed by a computer, 
and plot them. 

- Analyze the recorded data, define and extract their important 
features. 

Define important features for every signal, calculate the 
features (chapter 3). 

- Analyze the features, define how these features change for 
every malfunction. 

Extract detection rules for every malfunction (chapter 
4) • 

- Incorporate the derived knowledge in an expert system. 
Make an expert system that reaches a conclusion about the 
integrity of the system, using a set of detection rules 
(chapter 5). 

A real time implementation of the intelligent alarms system 
has been made; it is described in chapter 6. 
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Chapter 1: An introduction in Anesthesia 

1.1 Introduction 

Anesthesia is a state of unconsciousness, analgesia (the 
blocking of pain), and relaxation of the muscles. This state is 
needed during surgery to help the surgeon perform the operation. 
The anesthetic state is induced by an anesthesiologist, usually 
a physician trained to administer anesthetics. 

The most common method in the U.S.A. to obtain anesthesia is 
inhalation of one or more anesthetic gases. Because all the 
patient's muscles are relaxed, he can not breathe himself. The 
anesthetic mixture, a mixture of anesthetic gas(es) and oxygen, 
prepared by an anesthesia machine and supplied by a ventilator, 
is forced into the patient via a breathing circuit and through 
a tube brought into the trachea (endotracheal tube). 

1.2 Anesthesia machine 

There are several different anesthesia machines in use. I will 
concentrate on the Ohmeda Modulus II Anesthesia System, which is 
used in Shands hospital in Gainesville. 

The Modulus II is most often used with a circle breathing 
system. In a circle system the gases, exhaled by the patient, are 
reused. A great advantage of this method is that the quantity of 
anesthetic agent that is needed decreases, because the exhaled 
(unused) fraction of the agent is reused. In the patient'S lungs 
CO2 is replaced by oxygen, so the patient exhales CO2 that has to 
be removed from the breathing circuit; this is done by the CO2 

absorber. 

The following 5 parts can be identified in the inhalation 
anesthesia system: 

- High pressure system 
connections to the wall outlet or gas tanks. 

Intelligent ALarms in Anesthesia 1 



1.1 : 

circle 
systeIIl 

Block 

• • 

anesthe 
composed by J.S. Gravenstein M.D. 

- Low pressure system 

system 

Ventilalor/ 
Scavenging 

Syst.eIll 

flow control valves with flow meters, vaporizer to 

administer anesthetics. 

- Scavenging system 

excess gas outlet. 

- Ventilator system 

ventilator, hand bag. 

- Circle breathing system 
CO2 absorber, hoses to connect to the patient, 

endotracheal tube, unidirectional valves. 

The high pressure and low pressure systems together are called 

the anesthesia machine. 
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1 . 3 Ventilator 

The ventilator is the driving source of the anesthesia system. 
This device forces the gas mixture via the breathing circuit into 
the patient. In case of an emergency, a hand bag in the system 
can be used to manually ventilate the patient. 

1.3.1 Ventilator settings 

The ventilator can be set to accommodate patients of different 
age, weight, physical condition and the type of operation. 

Typical controls on an anesthesia ventilator are: 

- Minute volume dial 
This dial is used to set the number of liters per minute 
of gas delivered to the lung. 

- Rate dial 

This dial is used to set the respiratory rate (number of 
breaths per minute). 

- I:E ratio dial 
This dial is used to set the ratio of inspiration time 
to expiration time. 

Some basic principles to set these values are: 

- Minute volume = Tidal volume * Respiratory rate. 
At normal respiratory rates, the tidal volume shoUld be lO­
IS ml/kg body weight. This is the inspired tidal volume; it 
is delivered to the patient during the period called the 
inspiration time. There is also an expired tidal volume. It 
is different from the inspired tidal volume because the 
expired gas is at a different pressure, at a different 
temperature, has a different composition, and because the 
respiratory quotient is not exactly equal to one. 

- Inspiratory Flow = Minute volume * (1 + Ell). 
The inspiratory flow (which is constant, 
of the system) must deliver the gas 

InteLligent Alarms in Anesthesia 
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inspiratory part of the respiratory period; it is determined 
by the speed at which the tidal volume is transferred from 
the bellows to the patient. In general, lower inspiratory 
flows produce a lower peak inspiratory pressure and lead to 
a better distribution of gas within the lungs. The flow rate 
should be adjusted to allow for an inspiratory/expiratG'rY 
ratio no greater than 1, in order to provide for adequate 
expiration. Inspiratory flow rates of 40-50 L/min are usually 
used.in adult patients. 

- Alveolar respiration should be adjusted to maintain the PaC02 

(alveolar CO2 level) at 30-35 torr* (by adjustments of 
respiratory rate, tidal volume, and I:E ratio). 

- Regardless of the respiratory rate and the inspiratory flow 
rate, it is recommended that the I:E ratio is more than 1:1; 
otherwise there is not enough time for exhalation. [LIC74] 

1.4 High pressure part 

Two or more gases can be used with the Modulus II. Usually 
Oxygen and Nitrous oxide are used. For every gas it is possible 
to choose between wall supply or tank supply. 

1.5 Low pressure part 

Flow control valves set the flow of every gas. The flow control 
valves for oxygen and nitrous oxide are mechanically 
interconnected. This 1S done to be sure there is a minimum oxygen 
concentration of 25% in the gas mixture delivered to the patient 
[OHMS3]. Vaporizers are used to add anesthetics to the gas 
mixture (nitrous oxide is an anesthetic gas, but by itself it 
does not provide a sufficient anesthesia). An oxygen flush valve 
allows the anesthesiologist to temporarily give the patient an 
extra dose of oxygen. 

* . 1 torr 15 aLMOst equal to 1 MMHg. 1 kPa is equal to 7.5 .-Kg. 

Intelligent Alar.s in Anesthesia 4 



1.5.1 Flow settings 

Not only the ventilator dials need to be set, also the fresh 
gas flow has to be set. Usually two gases are used: 02 and N20. 
So the total gas flow and the fraction of 02 (Fi02) can be set. 

The Fi02 should be such that the concentration 02 in the 
mixture is at least 21%. The Fi02 should be as low as possible to 
avoid the toxicity of high concentrations of oxygen. For patients 
with normal lungs 40% 02 is usually adequate, but during short 
periods 100% can be necessary. 

1.6 Circle system 

The circle system consists of two parts: the inspiratory limb 
and the expiratory limb. When the ventilator cycle starts, the 
inspiratory valve opens and the expiratory valve closes. Gas 

1""':"'---, i nsp ira tory 
valve 

inspirator!,! 
hose 

• • 

fresh 
9as 

., C02 

• • • 

absorber 

• !'-:,...".---;."'.=-= • ...",-" ---;.:-' •• I,--,c---'.=-ven til a t or 

expiratory 
valve 

Figure 1.2: Circle breathing circuit 
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(both fresh gas and gas recirculated through the CO2 absorber) 

flows through the inspiratory hose into the patient. 

During expiration, the inspiratory valve closes and the 
expiratory valve opens, allowing gas to flow through the 

expiratory hose back into the ventilator and scavenging system. 
The patient's inflated lungs empty passively, much like a balloon 

deflates, after the ventilator has delivered the set tidal 
volume. 

The CO2 absorber is a canister filled with soda lime, which 

scrubs the gases passing through it from CO2 , The soda lime has 

to be replaced regularly, because it gets exhausted after 

extensive use. 

1.7 Scavenging system 

The scavenging system exists of an excess gas bag and some 

valves. During expiration the ventilator bellows gets filled. If 
the bellows overfills and hits the top of its case, the excess 

gas goes into the excess gas bag. If even more gas arrives, a 

valve opens and the gas exits the system. The scavenging system 

is needed to prevent the operation room from getting polluted 

with anesthetic gas mixtures. 
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Chapter 2: Signal measurement versus detection 

2.1 Introduction 

Our goal is to derive a conclusion about the integrity of the 

breathing circuit from information present in the signals 

measured in or near the breathing circuit. Many things can go 

wrong with the breathing circuit of an anesthesia machine. With 

the current technology, it is difficult to conclude what exactly 

goes wrong, because several different monitors may give partially 

overlapping and quite unspecific alarms. 

Our first task is to find out which malfunctions should be 

detected and alarmed on. Secondly, we have to determine which 

signals are to be measured in the breathing circuit and where we 

should measure these signals in order to best detect these 

malfunctions. 

2.2 What do we want to detect 

The circle breathing circuit exists of disposable plastic 
hoses, unidirectional valves, and a COz absorber. Because the 

hoses have to be easily replaceable, leaks and disconnects can 

occur. If the hoses kink, an obstruction may result. As indicated 

in 1.6, the soda lime of the COz absorber can get exhausted, 

resulting in inadequate ventilation by QQz rebreathing. 

The uni-directional valves consists of a disc that elevates 

when the pressure on one side higher is than the pressure on the 

other side. The disc's movement is limited by a retainer. The 

disc is made of flexible plastic, and when it becomes moist 

(humidity of expired gas is high) it is possible that the ~ 

gets stuck in the open position. The dome is transparent and 

removable, so a stuck valve can be confirmed and repaired. 
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Disc Retainer 

Valve Dille 

FTOTn AbsOTbeT To Patient 

Figure 2.1: Inspiratory valve 

From the information we have 

interviews with anesthesiologists 

automatically detect the following 

about the system and from 

we have set as our goal to 

malfunctions: 

Exhausted CO2 absorber 

Incompetent Inspiratory valve 

Incompetent Expiratory valve 

Obstruction Endotracheal tube 

Obstruction Inspiratory hose 
Obstruction Expiratory hose 

Leak Inspiratory hose 

Disconnect Inspiratory hose 

Leak Expiratory hose 

Disconnect Expiratory hose 

Leak V-piece 

Disconnect v-piece 

Leak Ventilator hose 
Disconnect ventilator hose 

Leak CO2 canister 

Leak Endotracheal tube cuff 
Disconnect Endotracheal tube cuff 

Leak Fresh Gas Flow 

Disconnect Fresh Gas Flow 
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2.3 Which signal do we want to measure? 

In order to detect malfunctions, several signals will have to 
be measured from the circle system. If possible, we would like 
to use the standard set of measurements. 

2.3.1 Monitors 

We want to detect malfunctions in a system where gases flOW, 
and where CO2 is added and extracted. The logical thing to do is 
to measure CO2 , pressure and flow. In anesthesia monitoring CO2 
and pressure are usually monitored, but flow monitoring is not 
cornmon. It is much more cornmon to measure expired volume, the 
integral of the (expiratory) flow over the expiratory period. 
CO2 , pressure and volume monitors are now standard and widely 
available. In the Ohmeda Modulus II the Ohmeda 5200 CO2 monitor, 
the Ohmeda 5500 airway pressure monitor and the 5410 volume 
moni tor are used. Other signals, like O2 percentage, oxygen 
saturation, blood pressure and anesthetic agent percentage, are 
usually measured by additional monitors. In a system where flow 
and CO2 monitoring are the major features, we choose to use CO2 , 

pressure and flow signals. 

2.3.2 PreVious work 

Previous work has been done in this field by Rob Bastings 
[BAS87) and Jan van der Aa [AA87). They measured CO2 , pressure 
and flow signals at the Y-piece. As result of these measurement 
they could detect 5 clusters of malfunctions: 

cluster 1: 
Endotracheal tube leak 
Leak in expiratory hose 
Ventilator tube leak 

cluster 2: 
Leak in inspiratory hose 
Partial disconnect of the fresh gas flow 
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cluster 3: 
Incompetent inspiratory valve 

cluster 4: 
Incompetent expiratory valve 
Exhausted CO2 absorber 

cluster 5: 
Increased airway resistance (obstructions) 

It was not possible to distinguish between malfunctions within 
a cluster. The advantage of an integrated sensor at the Y-piece, 
that they used, is that there is only one sensor that has to be 
placed. The disadvantage is that malfunctions far from the 
sensors are hard to pick up and because all sensors are located 
in one place, the detection is not optimal. Ideally we would like 
to have a sensor in every limb of our system, but this would 
require a very complicated build-up of the system, with a higher 
possibility of errors, and a higher possibility of sensor 
malfunction. 

Traditionally, in the Modulus II with circle breathing system, 
the CO2 is measured at the Y-piece, pressure in the inspiratory 
hose and flow in the expiratory hose. This is the setup we choose 
to use. It gives us the advantage of using standard equipment and 
thus easier testing, because we can setup our system with a 
standard anesthesia system. 

Intelligent Alarms in Anesthesi6 10 



Chapter 3: Data analysis 

3.1 Introduction 

If a computer program is to derive conclusions from analog 
signal wave forms, samples of the wave forms are needed as input 
to the computer. On practical grounds, we conclude that for our 
signals a sample rate of 20 Hz is enough to extract the important 
information from these samples. 

3.2 General a~~roach 

First we have to determine the kind of information the signals 
contain. A set of features of each signal has to be defined, so 
that the feature set resembles the signal's clinically useful 
information closely. 

We limit our signals to (almost) periodic signals, that can 
be described by a sequence of segments with the following 
attributes: 

- horizontal 
- slope 
- exponential curve 

{ HORIZ } 
{ SLOPE } 
{ EXPON } 

Each attribute has parameters associated with it. HORIZ has 
start-time, end-time, level. SLOPE has start-time, end-time, 
start.-value, slope. EXPON has start-time, end-time, time­
constant. 

A-priori information about the signal must be available to 
know in which phase (or segment) the signal is (every phase has 
an attribute associated with it). 

So a signal analysis routine consists of the following parts: 

- phase detection 
Determines in which phase the signal is. 

- parameter calculation 
Calculates the parameters for each phase. 

Intelligent Alarms in Anesthesia 11 



- parameter validation 

Determines if the parameter can be calculated. 

3.2.1 Phase detection 

Phase detection is more difficult than it seems at first. with 
well-defined, noise-free signals, it would not be difficult, but 

data from patients is corrupted with noise and artifacts. To 
determine the phase, we can use both the signal and the 
derivative. Limits have to be set to determine the phase. This 

work was done by Rob Bastings [BAS87]. The next quote from his 

report describes his method of phase detection. "The samples are 

filtered with a digital low pass filter (moving average filter, 

HvO) to obtain a mean value. A positive and negative amplitude 

can be obtained by filtering the samples above and below the mean 

value. The low and high thresholds are defined as the sum of the 

mean value and 50% of the positive and negative amplitude 
respectively. ( ..• ) This method decreases the number of false 

level detections. 

An estimation of the derivative is used to determine if a high 

or low level is reached." ([BAS87] p. 24,25) 

3.2.2 Parameter calculation 

The parameters that have to be calculated are slopes (of a 

curve segment), levels (of a horizontal line) and time constants 

(of a curve segment). The developed signal-processing routines 
are robust with regard to noise, i.e. noisy data still yield a 

good enough result. They are ~ artifact-resistant; artifacts 

must be detected (and removed) by another method. 

3.2.2.1 Calculating leVels 

In the calculation of the level of what we call 'a horizontal 

line', (in practice this line will be noisy, and it will not 
always be strictly horizontal either), two levels can be 

important: the maximum and the minimum. In some cases the maximum 
is important, in other cases the minimum. In the ideal 
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'horizontal line', the maximum and the minimum are of course the 
same. 

Maximum and minimum can be calculated with the following 
algorithm: 

if 

if 

sample , max 
sample ( min 

max = sample; 
min = sample; 

A proper initialization of max and min is needed (eg. min ,= 
highest possible minimum if the search is for a minimum). 

3.2.2.2 Calculating slopes 

Since our signal is noisy, the slopes must be calculated in a 
way such that noisy signal values yield an accurate value for the 
slope. 

Assume that our data points are modelled by the line 

y = ax + b (3.1) 

We want to calculate a. If the kth data point has an error 
(distance from the line) with magnitude 

The sum of the errors over all m data points is 

m 

1: 

k=1 

(3.2) 

(3.3) 

Since this error sum is a function of a and b, a and b can be 
chosen so that the function has a minimum. We actually use a 
different function (3.4) to minimize (the least squares method; 
its computations are easier and its results better understood), 
but the results are similar. 

(a,b) 
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m 
2 

=1: ( aXk + b - Yk ) 

k=1 
(3.4) 
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The conditions to minimize this are: 

= 0, = o. 

Applying this results in: 

m 
L 2 ( aXk + b - Yk ) xk = 0 

k=l 

m 
L 2 ( aXk + b - Yk ) = 0 

k=l 

(3.5) 

(3.6a) 

(3.6b) 

Taking in account that t.1 1 = m, the solution for a and b is: 

m m m 
a = lId ( m L xkYk - L xk L Yk ) 

k=l k=l k=l 
(3.7a) 

m m m m 
b = lId ( m L x 2 L XkYk - L Xk L Yk 

k=l k k=l k=l k=l 
(3.7b) 

where 

(3.8) 

[CHE8S) 

We use equations (3.7a) and (3.8) to calculate the slope of a 
curve. 

3.2.2.3 Calculation time constants 

For an exponential curve a similar calculation is used to 
calculate the time constant T, were we take the natural logarithm 
of the samples, minus the offset of the exponential curve. 

Y = exp(-Tx) + Yo (3.9) 

In(y - Yo) = -Tx (3.10) 

Intelligent Alar.s in Anesthesia 14 



y' = -Tx (3.11) 

Our signals are assumed to have only the attributes described 

above. In order to represent the signal by segments having only 
these attributes, we must have a-priori information about the 

signals to be able to describe the signal as a sequence of 
segments (phases). We have to determine which attribute a signal 
has in which segment, and hence which features need to be 

calculated when. 

3.2.3 Parameter validation 

Parameter validation is done for EXPON and SLOPE. In our 

algorithms, if less than ten samples are available for slope 

calculation, the feature value is not valid (the calculated slope 

will not be reliable enough). All the other features are always 
calculated, because at this stage the intelligence to determine 

if a feature is valid or not is not available. This will be 
available in a later stage (an expert system). 

3.3 CO2 siQ"nal 

The CO2 signal, measured at the V-piece, consists of 2 major 

parts: 1) the plateau during expiration, 2) the zero plateau 

during inspiration. 

status 

1 
2 
3 
4 

attribute 

HORIZ 
SLOPE 
HORIZ 
SLOPE 

Table I: CO2 signal 

Intelligent ALarMs in Anesthesia 

feature 

Inspired CO2 level 
Up slope 
Expired CO2 level 
Down slope 
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Figure 3.1: Normal CO2 signal 

During inspiration, gas (fresh gas and gas through the CO2 
absorber) is forced into the patient. This gas normally does n 
ot contain any CO2. During expiration the CO2 level will increase 

until it reaches a level that is approximately equal to the 
alveolar CO2 level. 

The CO2 signal at the Y-piece is described in table I and in 
figure 3.1. 

3.4 Pressure in the inspiratory limb 

A breathing circuit with a lung can be modeled by a resistor­
capacitance circuit. 

Figure 3.2: Simple electrical lung model 

The flow is modelled with the current I, the pressure with 
vOltage v. 
Equationo~ 

(3.12) 
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I = (V - Vc)/R (3.13) 

During inspiration, the gas is forced into the patient with a 

constant flow (I=constant). So V c has a linear increase (from eq. 
3.12) and V also has a linear increase because of eq. (3.13). 

During expiration the capacitor 
of the lungs) is discharged, 
decrease. 

status 

1 
2 
3 

attribute 

SLOPE 
EXPON 
HORIZ 

Table II: Pressure signal 
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minimum 
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Figure 3.3: Normal pressure signal 

The pressure signal in the inspiratory hose is described in 

table II and in figure 3.3. 

3.5 Flow in the expiratory hose 

As described in 3.4, the flow through the 
during inspiration is constant. Since only 

expiratory limb is measured, no flow is 

inspiration. Only when the expiratory valve is 

measured. When the expiratory valve opens at 

Intelligent Alarms in Anesthesia 

inspiratory hose 

the flow in the 

measured during 

open, flow can be 

the beginning of 
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expiration, there is a steep increase in the flow. As described 
in 3.4, the capacitor discharges and hence the flow decreases 
exponentially. 

IPl1/s) ., . ... 
. \ . '. 

22 \1 :3 \ 

7 "- ''--- 2 ',-
~. 

'\........ 
-8 

-23 

-38 
a 3 S 9 i2 i!: i9 lsecl 

Figure 3_4: Normal flow signal 

The expiratory flow signal is described in table III and in 
figure 3.4. 

status 

1 
2 
3 

attribute 

EXPON 
HORIZ 

Table III: Flow signal 
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feature 

time constant 
minimum 
maximum 
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Chapter 4: Feature analysis 

4.1 Introduction 

The set of features, that describe all the relevant information 
in the signals, has been defined earlier. The features to be 

extracted are described in table IV [BAS87). 

flow: 
FLW MIN 
FLW MAX 
FLW B TIME 
FLW INS T 

- -
FLW_EXP_T 
FLW_EX_VOL 
FLW_T_CONST 

pressure: 
PRS MIN 
PRS MAX 
PRS B TIME 
PRS_INS_T 
PRS EXP T - -
PRS SLOPE 
PRS T CONST 

C02 INS 
C02-EXP 
C02 B TIME 
C02 DO TIME 
C02-EXP T 
c02=up3TR 
C02 DO STR 

minimum flow. [Liters/min) 
maximum flow. [Liters/min) 
breath time by flow. [sec) 
inspiration time by flow. [sec) 
expiration time by flow. [sec) 
expired volume. [Liters) 
time constant downstroke fl~wec) 

minimum pressure. [cmH20) 
maximum pressure (PIP). [cmH20) 
breath time by pressure. [sec) 
inspiration time by pressur~sec) 
expiration time by pressure~sec) 
up slope pressure. [cmH20/sec) 
time constant downstr press~sec) 

inspired CO2 pressure level~mmHg) 
expired CO2 pressure level. [mmHg) 
breath time by CO2 , [sec) 
'inspiration time' by CO2 , [sec) 
expiration time by CO2 , [sec) 
CO2 up stroke. [mmHg/sec) 
CO2 down stroke. [mmHg/sec) 

Table IV: Extracted features 

From the values of the features in this set, conclusions have 

to be reached about the integrity of the breathing system. An 

expert system (see chapter 5) will be used in the diagnosis of 
the breathing system. Such a system uses symbolic input, often 

with names like 'normal' and 'abnormal', where 'normal' is not 

a numerical value, but a logical onei it indicates that some 
feature is within some range operationally defined to include all 

'normal' values. In this application, the following three 

statuses were sufficient to describe the necessary features: 
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UC Unchanged 

The feature value is within a band around a normal value*. 

UP Up 

The feature value is higher than the upper threshold. 

DN Down 

The feature value is lower than the lower threshold. 

The thresholds were defined as 20% higher and 20% lower than 
the normal value or 'baseline'. This gives a 40% 'normality 

band'. This relative value (the band width is expressed as a 

percentage) gives problems if 'normal' is close to zero. 
Therefore a band width of 2 (-1 to +1) was taken if the feature's 

value was smaller than 5. This is useful for the CO2 and flow 

signals, because their minimum is zero. 

The values used here are arbitrary values. More research needs 

to be done about how to derive 'baselines' and how to set the 

detection bands, in order to get optimum detection. This research 

is planned for the future. 

4.2 Normal curves versus malfunctions 

In order to know how the signals (or rather the features) 
behave in the case of a malfunction, we measured the three 

signals with the set of malfunctions of 2.2, generated by the 

anesthesia simulator (a modified anesthesia system that can 

introduce a number of malfunctions [GOOB7]). 

The data from these measurements were analyzed, and the 

features were extracted with the techniques described in chapter 

3. The feature values were plotted in graphs in order to compare 
the time course of the values, that result from any single 

malfunction, with the normal values. 

*Nor.al value ;s the value of a feature when there are no malfunctions or disturbances. A feature 
value that didn't change over a certain period of tiMe can be called a normal value, since the 
anesthesiologist didn't find it necessary to change somethinQ. 
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The absolute changes of all features during a malfunction was 

obtained and listed. For a list of the used abbreviations and 

units, see table IV. The format of these tables is: 

signal FEATURE normal value -, malfunction value 

BS_C02_ABSORBER: 'there is an exhausted C02 absorber' 

flow: 
pressure: 
CO2 : 

* normal 
normal 
C02_INS_P 
C02 DO STR 

o -, 5 
111 118 -, 

INCOMP_INS_VALVE: 'there is an incompetent inspiratory valve' 

flow: FLW EX VOL 36 -, 15 
FLW MAX 32 -, 16 

pressure: DQrIDal 
CO2 : CO2 INS P 0 -, 5 - ** C02 EXP-P 48 -, 60 (slow response) - -

C02_DO_STR 118 -, 20 
C02 UP STR 100 -, 120 (slow response) 

INCOMP_EXP_VALVE: 'there is an incompetent expiratory valve' 

flow: FLW_EXP_VOL 36 -, 20 
FLW MIN 0 -, -11 

pressure: DQl:Jllal 
CO2 : CO2 INS P 0 -, 18 -

CO2 EXP P 50 -, 60 (very slow response) -CO2 DO STR 118 -, 90 -
CO2 UP STR 100 -, 70 -

OBST_ET_TUBE: 'there is an obstruction in the endotracheal tube' 

flow: FLW EX VOL 36 -, 33 
FLW T CONST 1 -, 2.5 
FLW MAX 32 -, 15 

pressure: PRS MAX 13 -, 28 
PRS SLOPE 6 -, 13 -PRS _T_CONST 1 -, 3 (noisy) 

CO2 : CO2 UP STR 100 -, 65 -

OBST_INSP_HOSE: 'there is an obstruction in the inspiratory hose' 

flow: 
pressure: 

* 

FLW EX VOL 
PRS MAX 

36 -, 33 
13 -, 29 

D2tmA1 means that all the features of this signal are normal. 

** It takes a few breaths to reach this value. 
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PRS SLOPE 
noriiial 

6 -, 13 

OBST_EXP_HOSE: 'there is an obstruction in the expiratory hose' 

flow: FLW_T_CONST 1 -, 2.5 
FLW MAX 32 -, 15 

pressure: PRS T CONST 1 -, 1.7 
CO2 : DQriiial 

DISC Y PIECE: 'there is a disconnect at the Y-piece' 

flow: 

pressure: 
CO2 

FLW EX_VOL 
FLW MAX - . signal flat 
signal flat 

36 -, 7 
32 -, 20 

DISC_INSP_HOSE: 'there is a disconnect of the inspiratory hose' 

flow: 

pressure: 
CO2 

FLW_EX_VOL 
FLW MAX 
signal flat 
signal flat 

36 -, 8 
32 -, 20 

DISC_EXP_HOSE: 'there is a disconnect of the expiratory hose' 

flow: 

pressure: 
CO2 : 

FLW_EX_VOL 
FLW MAX 
signal flat 
signal flat 

36 -, 7 
32 -, 20 

DISC FGF: 'there is a disconnect of the Fresh Gas Flow' 

flow: FLW EX VOL 36 -, 20 
FLW_MAX 32 -, 22 

pressure: PRS_MAX 13 -, 4 
PRS T CONST 1 -, 0.5 

CO2 : CO2 _DO_STR 118 -, 180 
CO2 UP STR 100 -, 80 

DISC_VENT_HOSE: 'there is a disconnect of the ventilator hose' 

flow: 
pressure: 
CO2 : 

signal flat 
signal flat 
signal flat 

* signal flat lteons that the signals have so little variation that no breath detection could be 
perforited. 
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Leaks of three different sizes were measured. Leaks of sizes 

1.5rnrn, 2rnrn and 3rnrn (diameter) were introduced. The format of the 
following result table is: 

signal FEATURE normal value -, 1.5rnrn, 2rnrn, 3rnrn leaks 

LEAK_Y_PIECE: 

flow: FLW_EX_VOL 28 -, 21, 18, 15 
FLW_MAX 38 -, 32, 28, 23 

pressure: PRS_MAX 18 -, 16, 15, 14 
PRS SLOPE 6 -, 4.5, 4, 3 
PRS T CONST 0.3 -> 1, 3, 6 

CO2 : C02 DO STR 100 -> 30, 40, 50 
C02::::DO::::TIME 1.5 -, 3.5, 4.5, 4.5 

LEAK INSP_HOSE: 

flow: FLW EX VOL 28 -, 21, 19, 15 
FLW MAX 37 -, 32, 29, 25 

pressure: PRS T CONST 0.3 -, 2, 4, 6 
PRS_MIN 7 -, 7, 7, 6 
PRS_MAX 18 -, 16, 15, 13 

CO2: CO2 DO STR 100 -> 70, 70, 50 -

LEAK_EXP_HOSE: 

flow: FLW_EX_VOL 28 -, 21, 19, 15 
FLW MAX 37 -, 32, 28, 25 

pressure: PRS MAX 18 -, 16, 15, 14 
PRS T CONST 1.2 -, 2, 4, 6 
PRS SLOPE 6 -, 6, 6, 3.5 -CO2: CO2 DO STR 100 -, 50, '"50, 60 -CO2 DO TIME 1.8 -, 1. 8, 1. 8, 4.2 -

LEAK_VENT_HOSE: 

flow: FLW_MAX 38 -, 33, 32, 30 
PRS EX VOL 28 -, 27, 22, 21 

pressure: PRS MAX 18 -, 16, 15, 13 
PRS SLOPE 6 -, 5, 4, 3 -
PRS T CONST 0.3 -, 2, 4, ? 

CO2 : CO2 DO TIME 1.5 -, 1. 5, 1.5, 3.5 -
CO2 DO STR 100 -, 100, 100, 30 -

Examples of the graphs are given in figures 4.1 to 4.6. The 

feature values during a malfunction have to be compared with the 

values in the normal situation (right and left picture). The 

graphs give a good impression of the stability of the features 
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in the normal situation. 
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Figure 4.1: CO2 features 
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4.3 Detection rules 

From the measurements described in the previous paragraph, the 

attributes YD, ~ or unchanged can be added to each feature in 

case of a malfunction. A description of every malfunction can be 

made in the form of rules, that describe the status of the 

feature set. The detection rules were derived from the 

differences between the values of the normal and the disturbed 

features. A straight forward translation of the observations for 

rule BS_C02_ABSORBER would be: 

FLOW normal and PRESSURE normal and and 

Now, for all rules, we take the following three steps: 

1. delete all 

default. In 

features that are normal; 

this example, this gives the 

normal is the 

following rule: 

2. delete features that are superfluous, especially if they 

are unreliable or noisy. In this example, there are none 

of those. 

3. Add enough features to make the rule unique, i.e. prevent 

the rule from being true if other problems arise. In this 

example, C02_INS_up does occur with other problems, ego 

INCOMP_INS VALVE and INCOMP_EXP_VALVE (see the list 

above). This step is the most difficult; it requires a 

thorough (expert level) understanding of the problem. This 

step may reintroduce features that are normal or features 

that are llQt up or llQt down. In the example, the following 

rule is obtained: 

After these steps, no two rules should be equivalent, nor should 

any rule be subsumed under another rule (a SIMPLEXYS knowledge 

acquisition tool to automatically perform these tests is under 
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development). 

The list of all rules is as follows: 

BS C02 ABSORBER: - -
C02_INS_up and FLW_EX_VOL_unchanged and not FLW_MIN_down 
The rule uses inspired CO2 because the C~ is not scrubbed out by the CO2 absorber. The flow and pressure 

signaLs are norDBL. 

INCOMP_INS_VALVE: 
FLW_EX_VOL_down and FLW_MAX_down and C02_DO_STR_down 
and not FLW_MIN_down 
Expi red flow and MaXillU1l flow are down because in thi s case expi rat ion takes place through both the 

expiratory hose ADd the inspiratory hose. The CO2 downstroke is prolonged, because during the first part 

of the inspiration the gas, that is already in the inspiratory hose, passes the CO2 monitor. This gas 

contains CO2, because it is the previous exhaled gas. There is no reverse flow in the expiratory hose. 

INCOMP_EXP_VALVE: 
FLW MIN down - -
There is reverse flow through the expiratory hose, because inspiration takes place through the inspiratory 

ADd expiratory hose. 

OBST INSP HOSE: - -

The slope of the pressure is up, because the resistance of the inspiratory circuit has changed. The pressure 

DaXiMUM is up, because there is a pressure build-up caused by an increased airway pressure. 

OBST EXP HOSE: - -
FLW_T_CONST_up and PRS_T_CONST_Up 
The time constants of flow and pressure are up, because the resistance of the expiratory circuit has 

changed. 

OBST ET TUBE: 
OBST INSP HOSE and OBST EXP HOSE - - - -
According to the feature changes, it appears that there is an obstruction both in the inspiratory hose and 

the expiratory hose. 

DISC Y PIECE: 
DISC PATIENT HOSE - -

DISC EXP HOSE: - -
DISC PATIENT HOSE - -
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DISC_INS_HOSE: 
DISC_PATIENT_HOSE 

DISC_PATIENT_HOSE: 
FLW_EX_VOL_down and FLW_MAX_down and PRS_flat and C02_flat 
There is no breath detection on the pressure and CO2 signals. The expiratory flow is down. When the 

inspiratory hose is disconnected, flow will only be detected if the disconnect occurs at the absorber side 
of the sensor. 

DISC_FGF: 
FLW EX VOL_down 
PRS_T_CONST_down 

and and 

Less gas, and at a lower pressure, will flow into the system if the fresh gas hose is disconnected. 

DISC_VENT_HOSE: 
GENERAL_FAILURE 

and 

There is no breath detection at all, because the driving force failed. There is no gas flow in the syste.. 

GENERAL_FAILURE: 
C02_flat and FLW flat and PRS_flat 

The leak rules are currently under development. Proposed rules 
are given below: 

LEAK PATTERN: 
FLW EX VOL down and FLW MAX down 
PRS=T_CONST_Up and C02_DO_STR_down 

LEAK Y PIECE: 

and PRS MAX down - -

LEAK=PATTERN and C02_DO_TIME_up and PRS_SLOPE_down 

LEAK INS HOSE: 
LEAK=PATTERN and PRS_MIN_down 

LEAK_EXP_HOSE: {== LEAK_Y_PIECE } 
LEAK_PATTERN and PRS_SLOPE_down and C02_DO_TIME_up 

LEAK_VENT_HOSE: { == LEAK_Y_PIECE } 
LEAK_PATTERN and PRS_SLOPE_down and C02_DO_TIME_up 
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Chapter 5: An introduction in expert systems 

5.1 What is an expert system? 

Ever since the invention of the computer, man tried to let 

computers think like humans. Computers are mainly used to do 

straight forward things, which usually contain a lot of 

repetition. This is mostly non-intelligent work. In order to let 

a computer solve problems like humans do, that computer program 
has to be intelligent. One approach to make a program intelligent 

is to provide it with lots of high-quality, specific knowledge 
about some problem area. These programs are called expert 

systems. 

The biggest problem with building an expert system is to define 

what knowledge should be used, how to obtain the knowledge and 

how to implement it. Figure 5.1 shows the participants in 

building an expert system and their relations. 

Toolbuilder 

Expert System 

Domain 

Expert 
hl..,ds 
and l.sI 

Knowledge \/1---",1 Expert 
Building Tool Usn engineer System 

Bulld,s, 

... nnn. 
Clnd ",.'5 Adds 

dolo 

Clerical 

Staff 

End-user 
u •• , 

Figure 5.1: The building of an expert system 
From Waterman p.8 [WATB6J 

The domain expert is the person who has the knowledge about 

the particular problem area. The knowledge engineer is the person 
who collects the knowledge and implements it in the expert 

system. The knowledge can be acquired by interviewing the domain 
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expert. An expert system building tool is used to implement the 

knowledge into a computer program. The path to follow when 

building an expert system is straight forward. Problems arise 

when interviewing the domain expert to extract his knowledge. The 

expert often cannot define his knowledge in a precise, 
unambiguous way. Another problem arises when the knowledge has 

to be represented in a computer program. There are hardly any 
general purpose expert system building tools available for 

general purpose, and usually a new tool is designed for every 

application. 

An expert system consists of two major parts: the knowledge 

base and the inference engine [WAT861. 

5.1.1 Knowledge base 

Most expert systems are rule based. That means that the 

knowledge is contained in rules like ".if an animal has a long 

neck .and eats leafs .th.e.n it is a giraffe". Advantage of this 

method is that rules are easy to read and easily understood. 

Another method of implementing knowledge is a semantic net. 

States and relations between the states are described. In a 

semantic net it is well described how some part of the knowledge 
influences another part of the knowledge. With semantic nets 

searching is optimized and checks on correctness are easier to 
perform. 

5.1.2 Inference engine 

The inference engine manipulates the knowledge so that a 
solution of the problem can be reached. Some expert system 

building tools have a complete inference engine built in, with 

other tools the inference process is defined by the way the 

knowledge is implemented (eg. how the rules are defined). 

5.2 SIMPLEXYS: an expert system building tool 

There are many expert system building tools on the market, but 

none of them is capable of reaching a solution in a short time. 
Speed was usually not a primary design issue. In our application, 
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a conclusion about the integrity of the breathing circuit has to 
be reached every breath (eg. every 6 seconds). An expert system 
that could run in a real time environment was desired. 

At the Eindhoven University of Technology, an expert system 
building tool named SIMPLEXYS (SIMPLe EXpert sYStem) was designed 
by J.A. Blom of the Division of Medical Electrical Engineering. 
A first version of SIMPLEXYS was available for our development. 

SIMPLEXYS is an expert system building tool based on a semantic 
network, although the nodes of the network are defined by rules. 
The semantic network consists of a collection of nodes (rules) 
and relations (relations, that specify how a rule uses other 
rules). A rule is either a primitive that represents an atomic 
concept (therefore no other rules are needed in its evaluation), 
or it is a composite: a higher level concept, some type of 
combination of other rules. The rules that represent the 
conclusions to be evaluated are called gQal rules or simply the 
goals. 

Conclusions (goal rules) are evaluated by evaluating their 
constituent rules, if any, recursively, until the recursion ends 
when finally the primitive rules are reached. This type of 
evaluation is called backward chaining [BLOSS). 

5.2.1 The SIMPLEXYS rule compiler 

The SIMPLEXYS expert system language is written in Pascal (a 
C version is forthcoming) and the rules are compiled to Pascal 
code by the SIMPLEXYS rule compiler. Pascal procedures and 
variables can be defined, for example to perform some action when 
a rule becomes true (display a message, control a process etc.). 
These procedures and variables are contained in the Pascal code 
file with the compiled rules. This code file can be compiled with 
a Pascal compiler, resulting in a fast and efficient program. 

5.2.2 A SIMPLEXYS program 

A definition of the syntax of the SIMPLEXYS expert systems 
language is beyond the scope of this thesis, but a few concepts 
will be shown in the following small example program: 
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00 DECLS 
01 type up_do_uc_nv = (UP, DN, UC, NV); 
02 var flw_min : uc_do_uc_nv; 
03 
04 procedure message( mess_text: string ); 
05 begin 
06 writeln( mess text ); 
07 end; 
08 
09 INITG 
10 {put all the global initialization code here} 
11 {executed only once} 
12 
13 INITR 
14 {put all the run initialization code here} 
15 {executed every run} 
16 
17 RULES 
18 exit: 'exit the expert system program' 
19 BTEST keypressed 
20 
21 running: 'The breathing circuit expert system is running' 
22 STATE 
23 INITIALLY TR 
24 THEN GOAL: INCOMP_EXP VALVE 
25 
26 INCOMP_EXP_VALVE:'There is an incompetent expiratory 

valve' 
27 (FLW_MIN_DOWN) 
28 THEN DO message('Incompetent expiratory valve'); 
29 
30 FLW MIN DOWN: 'There is reverse flow' 
31 BTEST (flw min = DN) 
32 
33 PROCESS 
34 ON exit FROM running TO * 

line 00: 

line 09: 

line 13: 

line 17: 

The code in the DECLS part is Pascal code with the 
procedures and Pascal variables definition. 
The Pascal code in the INITG part is executed only 
when the expert system program is started up. For 
example if a serial port has to be initialized. 
The Pascal code in the INITR part is executed when 
a new run of the expert system is started. 
The RULES part contains the SIMPLEXYS rules with the 
knowledge. If the exit rule becomes true (if a key 
is hit), the program stops looping. In the running 
rule the goal of the expert system is defined. The 
inference engine will try to evaluate the goal rule. 
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line 19: 

line 22: 

line 23: 

line 27: 

line 27: 

line 33: 

line 34 

BTEST is a boolean test which returns the evaluation 

of the following test. 

A STATE rule defines which goals are to be evaluated 

if that STATE rule's value is true. Here the only 

goal is INCOMP_EXP_VALVE. 

Rules can have one of four values: True(TR), 

False(FA), Possible (PO) and Undefined(UD). Initially 

all the rules are UD. When a rule is evaluated it 
becomes TR, FA or PO. If PO is the result of an 

evaluation, neither TR nor FA could be assigned to 

the rule. In that case, an alternative path of 

evaluation could possibly be followed to reach a 

conclusion. With the INITIALLY keyword a rule can be 

assigned a initial value other than UD. 

In this example, rule INCOMP_EXP_VALVE needs only the 

evaluation of rule FLW_MIN_DOWN. 
THEN DO is used if an action has to be performed when 

the rule evaluates to true. 

The PROCESS section describes the dynamics of the 
rule evaluation process: when to evaluate which 

rules. 

The expert system program continuously loops until 

the exit rule becomes true. 

5.3 Implementation in SIMPLEXYS 

SIMPLEXYS proved to be a useful tool for the implementation 

of our intelligent alarms system. It provides both a fast expert 
system and an easy interface with a powerful language like 

Pascal. A language like Pascal is needed because interfacing 

routines which interface with other parts of the system have to 

be written. 
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Chapter 6: Program considerations 

6.1 Introduction 

Our intelligent alarms system can be divided into the following 
three functional parts, each of which has been described in 
previous chapters. 

- Signal analysis (chapter 3) 

- Feature analysis (chapter 4) 

- Rule evaluation (chapter 5) 

In this chapter we describe how these parts work together. The 
problems encountered during the implementation and their 
solutions are described. 

6.1.1 Signal analysis 

We assume that the data is sampled with a frequency of 20 Hz. 
These samples are the input for the signal analysis routines. The 
signal analysis consists of the following parts (see chapter 3): 

- phase detection 
determines in which phase (segment) a signal is 

- feature update 
updates the current feature calculation 

Every sample has to be processed in order to determine in which 
phase a signal is, and if the phase has changed. Once the phase 
has been determined, it is known from a-priori knowledge which 
calculations have to be performed. For every sample the feature 
currently calculated has to be updated. 

The signal analysis part is a loop that is executed for each 
sample, i.e. 20 times per second. This loop consists of 
procedures for sample retrieval, with timing provided by an AID 
converter (the program waits until a new sample is available), 
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phase detection (and therefore breath detection) and feature 
calculation. 

6.1.2 Feature analysis 

After the signal analysis has been performed and a complete 
breath was detected, the features are available for the features 
analysis part (see chapter 4). The detection of a breath is not 
straight forward. Three signals are now analyzed; because the 
sensors are not in the same place, and because there is some 
delay between the physical input to the sensor and the electrical 
signal output from the sensor (especially the CO2 monitor), the 
completion of a breath will be detected at a different time for 
each signal. We choose to solve this problem by waiting until in 
all signals a full breath is detected; a breath detected flag 
will then be set. If one signal did not detect a breath within 
a certain time (eg. 10 seconds), all the features of that signal 
will be set to not valid (NV) and the breath detected flag will 
be set. The advantage of this method is that the information that 
~ available will be analyzed, even if some other information is 
missing. The feature analysis is on a breath to breath basis. 

6.1.3 Rule evaluation 

The rule evaluation part (written in the SIMPLEXYS expert 
systems language, see chapter 5) takes the symbolic information 
from the feature analysis part, evaluates the rules and displays 
the result of the evaluation (alarm messages). 

The rule evaluation is also performed on a breath to breath 
basis. 

If all three parts have to be incorporated into the same 

program, the problem is that one part has to run 20 times per 
second, and two other parts have to run every breath (eg. 
approximately every 6 seconds). Either the feature analysis with 
the rule evaluation has to run in 1/20 second or there has to be 
a multi-tasking operating system where several tasks can run at 
the same time. 

The computing power and memory of an IBM-AT or compatible is 
sufficient for this task. However, the operating system mostly 
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used for these machines (MS-DOS) is a single tasking operating 
system. There are several multi-tasking operating systems for the 
IBM-AT (eg. XENIX, a sort of UNIX or MS-WINDOWS, a graphical 
multi-tasking environment), but these programs tend to demand a 
lot of memory and/or a special compiler. There is a mUlti-tasking 
shell on the market, that does not have these drawbacks, and that 
accommodates our needs: MultiDos-Plus by Nanosoft Associates 
(Natick, MA). 

6.2 MultiDos Plus 

MultiDoS-Plus is a multi-tasking extension to MS-DOS. It allows 
the users to load mUltiple programs in their computer and have 
them run concurrently. 

At start-up, the MultiDos-Plus program will replace the 
interrupt driven system services for screen and keyboard I/O, 
disk access and DOS functions with its own routines. MultiDos­
Plus assigns CPU time slices to the various programs. Programs 
with higher priority receive more time slices than programs with 
lower priority. The time slice interval is based on the timer 
interrupt in the computer and is about 55 milliseconds in the 
IBM-AT. Programs which cannot execute for any reason (waiting for 
keyboard input, waiting for disk access etc.) are not assigned 
time slices. 

A program that runs under MultiDos-Plus can be in one of two 
states: foreground or background. Only one program at a time can 
be in the foreground. If a program is in the background, screen 
I/O is written to an invisible screen. There are commands to put 
a program in the background or foreground. 

MultiDos-Plus provides message queues, which can be read by 
any task, to make communication (data) or task control:possible 
(eg. timing by signal and wait) [MUL86j. 

6.3 Intertask communications 

In our system three tasks have to run at the same time: 

- Task 1: Analyze (signal analysis) 
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- Task 2: Features (feature analysis) 

- Task 3: BS-expert (expert system) 

Communication between the tasks is necessary, because data has 
to flow from task 1 to task 2 and from task 2 to task 3. It is 
also necessary for one task to be able to control the other 

tasks. Therefor a control queue for every task was defined; each 
task monitors its control queue and the other tasks can put 

control characters in it. Five message queues were defined: 

DATA 

task 1 

task 2 

CONTROL 

task 1 

task 2 

task 3 

-) task 
-) task 

2 

3 

QUEUE NUMBER 

5 

6 

1 

2 

3 

A set of control characters, that is recognized by all the 

tasks, was defined for the control queue: 

A Abort task 

S Suspend task 
R Reset baselines 

N New log file 

6.3.1 Information block 

An information block was defined to hold all the information 

available about the system. The information block contains the 
latest information on a breath to breath basis. For every signal 
it contains some information like the name of the signal, whether 

the monitor was calibrated or not, etc. It also contains the 

features that describe the signal with information like name, 

value, unit etc. The information block is defined as follows: 

INFORMATION BLOCK 
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SIGNALl 

name 

available(Y/N) 

calibrated(Y/N/ONGOING) 
cal.time 

FEATUREl 

name 

unit 

value 

valid(Y/N) 

accepted(Y/N) 

stat(UP/DN/UC) 

dyn(UP/DN/UC) 

PhysLowLimit 

PhysHighLimit 

FEATURE2 ••.. 

FEATURE3 .••• 

SIGNAL2 •... 

FEATUREl ... . 

FEATURE2 ... . 

(signal name) 

(monitor present and working?)* 

(monitor calibrated)* 

(time when last calibrated)* 

(feature name) 

(unit of feature) 

(value of feature) 

(value valid or not?) 

(valid accepted or not?)H 

(static status) 

(dynamic status)H 

(lower physical limit)H 

(upper physical limit)H 

The information block is filled by several tasks. Every time 
more information becomes available, the block is updated. Every 

task can extract information from the information block. The 

expert system for example can use the feature names to give 

feedback to the anesthesiologist. Currently only the static 

status is used by the expert system, but expansion of the part 

of the information that is used is expected. 

6.4 Implementation 

An implementation of the described techniques resulted in a 

demonstration prototype. In this prototype the data is read out 

of a data file. Message queue 4 is used by task 3 to signal task 

1 that the run of the expert system is ready, and that new 

• This information is currently not available from the MOnitors. 

H 
Currently not used (reserved for future use) 
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features can be sent. This was necessary because the file read 
routine does not have any timing in it, and the features would 
be overflowing the data message queue if no signal and wait were 
performed. 

The programs for the three tasks were written, and the 
communication between the tasks was made. Only the SIMPLEXYS 
expert system is in the foreground during normal execution. The 
expert system program also provides some control functions to 
control the other tasks. The keyboard is monitored by the program 
and the other tasks can be suspended, aborted etc. A simple user 
interface is made existing of a line with available comments at 
the top of the screen, a line at the bottom of the screen where 
messages can appear like "suspending", "aborting" etc. The center 
of the screen is used to print the messages resulting from the 
evaluation by the expert system. 

For demonstration purpose it was desired that the data could 
be shown on a screen. Since MultiDos-Plus only supports the low 
resolution CGA graphics of an IBM AT(PC), a second PC was used 
to display the curves on a high resolution EGA screen. A serial 
communications routine for the two machines was written. The 
samples (one for every signal) are sent to the serial port when 
they are read out of the file. The other PC runs an interrupt 
based receive program that interrupts when a byte is received at 
the serial port. The interrupt service routine gets the byte from 
the port and puts it into a ring buffer. with this method no byte 
will ever be lost (provided there is no noise on the line). If 
three floating point values (12 bytes using the Microsoft C 
compiler) are received, the three samples are displayed. 

6.4.1 Flow measurement 

Ohmeda provided three monitors to measure the necessary signals 

in the breathing circuit: the Ohmeda 5200 CO2 monitor, the Ohmeda 
5500 airway pressure monitor and the Ohmeda 5410 volume monitor. 
The CO2 and the pressure monitors have an analog output at the 
back. These signals are easy to sample with an AID converter 
board in the PC. The volume monitor does not provide an analog 
flow signal; instead it provides a pulse every time 3 ml gas has 
passed through the sensor. A signal that can be either high or 
low determines the direction of the flow. A routine that counts 
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the pulses was written. An interrupt is generated for every pulse 

and the interrupt service routine counts the pulses and 

determines the flow direction. Appendix C describes this routine. 
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Chapter 7: Conclusions an Recommendations 

7.1 Conclusions 

It was possible to build a working prototype of the intelligent 

alarms expert system on an IBM-AT in the multitasking environment 

of MultiDos-Plus. Tests were performed on a second data set that 

was obtained from the anesthesia simulator; this is another data 

set than the development set. The system was twice as fast 

compared to a run in real time. The following malfunctions could 

be identified: 

- Incompetent inspiratory valve 

- Incompetent expiratory valve 

- Exhausted CO2 absorber 

- Obstruction at the Y-piece 

Obstruction in the inspiratory hose 

Obstruction in the expiratory hose 

It is expected that leaks and disconnects can also be detected, 

but it will be difficult to distinguish between all the leaks and 

disconnects. New rules for the leaks and disconnects are 
currently under development. 

Apart from some unexplainable crashes during startup, MultiDos­
Plus is good way to do multitasking under the single task 

operating system MS-DOS. 

7.2 Recommendations 

1. The rules for the disconnect and the leaks have to 

be implemented. Extensive tests of the intelligent alarms 
system have to be performed with both simulator data and 

real patient data. Although it is not possible to 

introduce malfunctions while ventilating a real patient 

it is important to test the system in a normal situation 

to see how it behaves in the real, violent environment of 

the operating room. 
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2. The use of the information block has to be 
reconsidered; it causes some overhead when it is sent from 
one task to another and at this moment hardly any 
information of the block is used. It is a good way to 
present the information, but if the information expanses, 
it may slow down the system. 

3. Implementation of more sensors (second flow device, 

ventilator settings) can provide a more accurate detection 

of malfunctions. 

4. The way the time constants of the flow and pressure 

are calculated has to be reconsidered. They do not provide 

a very stable calculation of the time constants. 
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APPENDIX A: Programming tools 

The data analysis program and the feature extraction program 

are written in C and compiled with the Microsoft C compiler 

version 4.0 (at this moment a change to version 5.1 is made). The 

expert system is written in SIMPLEXYS and compiled by the 

SIMPLEXYS rule compiler and the Turbo Pascal compiler version 

4.0. 

For the C programs some utility routines, to be used in both 

programs, were written. The source code is contained in "uti!. c". 

The data analysis routines are contained in "anal. c"; several 

include files are needed for this (see fig. A.1). "anal.c" and 

"uti!. c" were compiled and Microsofts library utility was used 

to put both object files in "alarms .lib". The data analysis 

("analyze.c") and the feature extraction ("features.c") have to 
be linked with this library. 

co2def'.h 
p~def'.h 
f'lwdef'.h 
fl'aMe.h 
analco2.c 
ana I PI'S. C 
analf'lw.c 
defines.h 
flagdef.h 

analyze 

C 
~~~~~t· h f eat u res -+ d!:jnaM i c. h 1---------1_ • 

• 
o 

bsexpert 
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APPENDIX B: Manual utility routines 
error 

'" Swmnary 

int error( str ); 
char *str; pointer to error string to print 

'" Description 

The funtion error() prints the error string on the screen, prints 
a dos error string if possible, and aborts the program that calls 
the function. 

'" Return Value 

No return value. 

'" See Also 

'" Example 

/* exit on error */ 

char filename[801; 
FILE *data; 

if ( ( data = fopen( filename, "w" ) ) -- NULL) 
error( filename ); 

/* the program is aborted if the file cannot be opened */ 
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* Swmnary 

int get_features( 
int address; 
int len; 
int queue; 

* Description 

address, len, queue ) 
address of message 
number of bytes in message 

queue number (1-31) 

The function get_features () gets 'len' bytes for the message 
queue 'queue'. The bytes are stored consecutive, starting at 
'address', so complex structures can also be send. This function 
is designed for the small mOdel of the compiler. That means that 
all data is in one segment, and that the addresses only consist 
of the offset. An address is a pointer to a variable. 
If there is no message in the queue, the function starts waiting 
until one arrives. 

* Return Value 

There is no return value. 

* See Also 

* Example 

/* get a message out of queue 5 */ 

struct SIGNAL signal_frame[3]; /* defined in "frame.h" */ 

get_features ( signal_frame, 3*sizeof( struct SIGNAL ), 5 )i 
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* Summary 

int get_timet t ); 
char *t; 

* Description 

pointer to time array; 

This function gets the date and time as a string, and stores it 
in array 't'. The array will contain 26 characters, and has the 
form: 

Tue Jul 26 15:05:11 1988\0\0 

* Return Value 

There is no return value. 

* See Also 

* Example 

/* get the time and date */ 

char current_time[26J; 
*/ 

/* string lenght will always be 26 

get_time ( current_time ); 

printf( "%s\n", current time); 
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* Sunnnary 

int init_flag( fIg )i 
int flgi 

* Description 

16 bits to be zeroed 

The function init_flag() sets a 16 bits variable to zero. This 
can be used for the 16 bits flag structures. 

* Return Value 

No return value 

* See Also 

* Example 

/* initialize flag structure */ 

struct C02 FLAG flagi 

init_flag( flag )i 
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* Sununary 

* Description 

The function multi_dos_test, tests whether the program is started 
up from DOS or MULTI-DOS. If the program was started from DOS the 
function prints an error message, and aborts. 

* Return Value 

No return value 

* See Also 

send_features, get_features, get_control, send control 

* Example 

/* test for multi-dos */ 

test_queue( queue )j /* never done if no multi-dos */ 
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* Swmnary 

int printf_bin( flg ); 
int flag; 

* Description 

16 bits to be printed 

The function printf_bin() prints a 16 bit variable as O's and 
l's. No return is added. This can be used to print a 16 bit flag 
structure. 

* Return Value 

No return value 

* See Also 

* Example 

/* print a flag */ 

struct C02_FLAG flag; 

flag.be = 1; 
flag.to = 0; 
printf_bin( flag ); 
printf( "\n"); 
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send_control, getcontrol 

.. Sununary 

int send_control ( 
int queuei 
char Ci 

queue, c ) i 
queue to send to 

character to send 

char get_control( queue )i 
int queuei queue to receive from 

.. Description 

The functions send_control() and get_control() send or get one 
character to or from the specified queue 'queue'. These functions 
are built from send_features() and get_features(). Get_control() 
\o/aits for a message if no message is available. 

* Return Value 

Function get_control() returns the character from the queue. 
Function send_control() has no return value. 

.. See Also 

* Example 

/* send a character to queue 1 and get it out of there */ 

char controli 

send_control ( 1, "A" )i 

control = get_control( 1 )i 

if ( control=='A' ) exit( 1 )i 
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send features 

* Summary 

int send_features( 
int addressi 
int leni 
int queuei 

* Description 

address, len, queue )i 
address of message 
number bytes in message 

queue number (1-31) 

The function send_features() sends 'len' bytes to the specified 
message queue, starting from 'address'. Complex structures can 
also be send, as long as the data of these structures are 
continuous in the memory. This function is designed for the small 
model of the compiler. That means that all data is in one 
segment, and that the addresses only consist of the offset. An 
address is a pointer to a variable. 

* Return Value 

There is no return value. 

* See Also 

* Example 

/* send features to queue 5 */ 

struct SIGNAL signal_frarne(3]i /* defined in "frarne.h" */ 

send_features ( signal_frame, 3*sizeof( struct SIGNAL ), 5 )i 

intelligent Alarms in Anesthesia 52 



* Summary 

int suspend( nr ); 
int nr; 

.. Description 

suspend 

task number 

The function suspend() stops the program and waits for the 
character 'G' in its queue; In this case the task number is the 
queue number. 

* Return Value 

There is no return value. 

.. See Also 

.. Example 

/* suspend the program */ 

control = get_control( 5 ); 

if ( control=='S' ) suspend( 1 ); 
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* Sununary 

int test_queue( queue ); 
int queue; 

* Description 

message queue number 

The function test_queue() tests if there is a message in the 
specified queue. This can be used if the program wants to do some 
other task while waiting for a message (test the keyboard for a 
key for example). 

* Return Value 

Test_queue() returns 0 if no message is avaiable and returns 1 
if there is a message in the queue. 

* See Also 

send_features, 
multi_dos_test 

* Example 

get_features, 

/* get a message from queue 1 */ 

send_control, 

/* display keystrokes while waiting */ 

while ( !test_queue( 1 ) ) 
{ 
if (kbhit() ) printf("%c", getch() ); 

} 

control = get_control( 1 )i 
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APPENDIX C: OMHEDA 5410 VOLUME MONITOR 

This paper describes how an Ohmeda 5410 Volume Monitor can be 
interfaced with a IBM AT(XT), in order to get the flow, using the 
standard serial port (RS-232). 

Signals 

According to the 5410 Service Manual (page 36), the 5410 
provides an Expired Flow signal at pin 3 of connector J2. The 
direction of the signal is given on pin 4 (high is reverse flow). 
Jumpers PJ3 and PJ4 have to be jumpered for transducer signals. 

The signal on pin 3 will give a pulse for approximately every 
3 milliliters of gas flow through the transducer. 

Counting pulses 

The only thing that has to be done is to count the pulses in 
one period of time (e.g. 1 second). The current flow can then be 
calculated by: flow := counter*3/delta. 'Counter' is the number 
of pulses received in period 'delta' (e.g 1 second). The numeric 
value of the flow derived by this formula will be the average 
flow over the period 'delta'. 

RS-232 IBM AT(XT) interrupts 

Because the flow pulses will come at an irregular time 
interval, the best way to count them is a method based on 
interrupts. The IBM machines provide two hardware interrupt 
channels for communications (one for COM1, one for COM2). 

Four classes of these hardware interrupts are possible: 

00 change in modem status register 
01 transmitter holding register empty 
10 data received 
11 reception error or break condition received 

We choose to use the interrupt when data is received. Any of 
the other interrupts could also be used. If this interrupt is 
enabled it gives a hardware interrupt when pin RD (3 on DB25, 2 
on DB9) goes from low to high. Interrupt OB is given if COM2 is 
used, OC if COM1 is used. The following part of C code should be 
used to initialize the registers of the serial port (COMl). 

outp( Ox3fb, 0 )i 
outp( Ox3fc, OxOB )i 
inp ( Ox3fd ) i 
outp( Ox3f9, 1 )i 

/* clear line control register */ 
/* set RTS, DTR, user aux input '2 */ 
/* read line status register */ 
/* enable interrupt on data received* / 

In order to use any hardware interrupt, the corresponding bit 
in the interrupt mask register (IMR) has to be set. For the 
communication interrupt of COM1 this is done by: 

Intelligent Alarms in Anesthesia 55 



in 
and 
out 

aI, 21H 
aI, efH 
dx, 21H 

;get the content of IMR 
;set bit for COM1 
;send byte 

WritinQ an interrupt service routine 

Because we use an interrupt to update our counter, we have to 
provide an interrupt routine that replaces the current interrupt 
routine. Because the Microsoft C compiler doesn't provide a way 
to write such a routine, it is written in assembler. 
Basics of an interrupt routine: 

- push the used registers on stack 
- do the tasks you want to do 

DO NOT use DOS, because it is not re-entrant 
- pop the registers from stack 
- IRET instruction 

Because we want to use a variable in our interrupt routine 
that is shared by our C program, we have to make sure that the 
data segment is set to DGROUP (the name the MSC compiler uses for 
its small model data segment). If an interrupt is invoked, this 
is not automatically done. We also have to make sure that all 
names that we use for segments are the same as in the assembler 
program. See Microsoft C manual for details. 

If the interrupt is a hardware interrupt, the interrupt service 
routine should end with: 

mov aI, 20H 
out 20H, al 

This will clear the 'in service register' so that interrupts at 
a lower level as the one just completed, are re-enabled. 

When the interrupt service routine is written, the address of 
the beginning of the routine has to be placed in the interrupt 
vector table. The interrupt vector table occupies 4 bytes 
(segment:offset) for every interrupt, starting with interrupt O. 
The begin address of the vector table is 0000:0000. The address 
for the interrupt service routine OC should thus be written at 
(0000:0030 hexadecimal). 

Implementation 

The interrupt service routine written to get the flow pulses 
from the Ohmeda 5410 Volume Monitor replaces the current 
interrupt OC routine. COMI is used to connect the flowmeter. 

The interrupt routine tests status of the pin carrier detect 
(CD) by reading the modem status register. If CD is low the 
routine increases the counter, else it decreases the counter. 

If pin 3 of connector J2 is connected to data received (RD) 
and pin 4 is connected to carrier detect (CD), the counter 
represents the volume passed since the last counter reset in 
amounts of 3 mI. When time information is known, the flow can be 
calculated. 
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The pin connections from the Volume Monitor to a DB9 serial 
plug are: 

5410 PC (DB9) 

1 (ground) --------, 
3 (PULSE) --------, 
4 (EXP FLOW) --------, 

Li tcrature 

Jourdain, R.L. 

5 (ground) 
2 (RD) 
1 (CD) 

Programmer's problem solver for the IBM PC, XT & AT. 
Englewood Cliffs, N.J.: Brady Communications/Prentice-Hall, 1986. 

Ohmeda 5410 and 5420 volume [Jonitor. Service manual. 
Madison, Wis.: BOC Group Inc., Product Service Department, 
Ohmeda, 1987. 
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