
Intelligent Alarms
in Anesthesia:
An implementation
by
J.H.M. van Oostrom

EUT Report 89-E-229
ISBN 90-6144-229-X

October 1989

ISSN 0167- 9708

--~'~~f'~.':J.i.,:¥1f- ' .. __ . __ .<

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering

Eindhoven The Netherlands

INTELLIGENT ALARMS IN ANESTHESIA:

An implementation

by

J.H.M. van Oostrom

EUT Report 89-E-229

ISBN 90-6144-229-X

Eindhoven

October 1989

Coden: TEUEDE

This report was submitted in partial fulfillment of the
requirements for the degree of Master of Eleotrioal
Engineering at the Eindhoven University of l'eohnology,
The Netherlands.
The work Was oarried out from Maroh 1988 until Deoember' 1988
under responsibility of Professor J.E.W. Beneken, Ph.D.,
Division of Medioal Eleotrical Engineering, Eindhoven University
of Teohnology, at the Department of Anesthesiology, College of
Medioine, University of Florida, GainesviUe, Florida, under
supervision of M.L. Good, M.D., J.S. Gravenstein, M.D., and
J.J. van del" Aa, M.E.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Oostrom, J.H.M. van

Intelligent alarms in anesthesia: an implementation / by
J.H.M. van Oostrom. - Eindhoven: Eindhoven University of
Technology, Faculty of Electrical Engineering. - Fig., tab. -
(EUT report, ISSN 0167-9708, 89-E-229)
ISBN 90-6144-229-X '
Met lit.apg., reg.
SISO 608.1 UDC 616-089.5 NUGI 742
Trefw.: anesthesie; patientbewaking.

SUMMARY

Abnormal and potentially dangerous fault conditions in the

anesthesia breathing circuit include leaks, obstructions,
disconnects, incompetent valves and CO2 absorber malfunction.

Because the current alarms of monitoring devices are not specific

enough, there is a need for an intelligent alarms system that can

determine the integrity of the breathing circuit. Three signals

were measured at three different places: CO2 partial pressure at

the Y-piece, airway pressure at the patient side of the

inspiratory valve and airway flow at the patient side of the

expiratory valve. From these measurements features were extracted

for each signal, and the feature changes were analyzed. From

these analysis a rule base was designed, which was implemented

in an expert system by using the SIMPLEXYS expert systems

language. Real time signal analysis and feature extraction were
implemented in a multitasking environment. Initial tests were
performed.

It was found that an implementation of the total system was

possible on an IBM-AT with the multitasking environment MultiDos­

Plus. The intelligent alarms system was able to distinguish the

following malfunctions: incompetent inspiratory valve,
incompetent expiratory valve, exhausted CO2 absorber, obstruction

at the Y-piece, obstruction at the inspiratory hose and

obstruction at the expiratory hose. The rule set is currently

being expanded with rules for leaks and disconnects.

InteLligent ALarMs in Anesthesia i

SAMENVATTING

Abnormale en potentieel gevaarlijke foutencondities in het
beademings circuit dat tijdens anesthesie gebruikt wordt, bestaan

onder meer uit lekken, verstoppingen, losgeraakte verbindingen,

nietwerkende kleppen en een niet goed functionerende CO2

absorber. Orndat de huidige alarmering van de monitors niet

specifiek genoeg is en onvoldoende informatie geeft, is er
behoefte aan een intelligent alarmerings systeem dat kan

uitzoeken wat er mis is in het beademings circuit. V~~r de

implementatie wordt gebruik gemaakt van drie signalen die gemeten

worden op drie verschillende plaatsen: partiele CO2 druk bij het

T-stuk, druk in de inademings gedeelte van het beademings

circuit, gasstroom in het uitademings gedeelte van het beademings

circuit. uit deze metingen werden features gehaald, en de

veranderingen van de features werden geanalizeerd. Uit de

resultaten van deze analyze werd een regelset ontworpen, welke

in een expert systeem ge:implementeerd is m. b. v. de S IMPLEXYS

expert systeem taal. Real time analyze en feature berekening zijn

ge:implementeerd in een multitasking omgeving. Voorlopige tests

zijn uitgevoerd.
Een implementatie van het totale systeem bleek mogelijk te

zijn op een IBM-AT met de multitasking omgeving van MultiDos­

Plus. Het intelligente alarm systeem kon de volgende fouten

onderscheiden: niet-werkende inademings klep, niet-werkende
uitademings klep, uitgeputte CO2 absorber, verstopping van het

T-stuk, verstopping van de inademingsbuis en verstopping van de

uitademingsbuis. Op het moment wordt de regelset uitgebreid met

regels voor lekken en onderbrekingen.

Intelligent Alaras in Anesthesia ii

CONTENTS

SUMMARY

SAMENVATTING

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION .

Chapter 1: An introduction in Anesthesia
1.1 Introduction
1.2 Anesthesia machine
1.3 Ventilator

1.3.1 Ventilator settings
1.4 High pressure part
1.5 Low pressure part ..

1.5.1 Flow settings
1.6 Circle system
1.7 Scavenging system ..

Chapter 2: Signal measurement versus detection
2.1 Introduction •...•....•
2.2 What do we want to detect •...•
2.3 Which signal do we want to measure?

2.3.1 Monitors
2.3.2 Previous work

Chapter 3: Data analysis
3.1 Introduction
3.2 General approach
3.2.1 Phase detection

3.2.2 Parameter calculation
3.2.2.1 Calculating levels
3.2.2.2 Calculating slopes

3.2.3 Parameter validation
3.4 Pressure in the inspiratory limb
3.5 Flow in the expiratory hose

Chapter 4: Feature analysis ...•
4.1 Introduction
4.2 Normal curves versus malfunctions
4.3 Detection rules

Chapter 5: An introduction in expert systems
5.1 What is an expert system? .

5.1.1 Knowledge base ..•...•
5.1.2 Inference engine

5.2 SIMPLEXYS: an expert system building tool
5.2.1 The SIMPLEXYS rule compiler
5.2.2 A SIMPLEXYS program

5.3 Implementation in SIMPLEXYS

Intelligent ALarms in Anesthesia

page

i

ii

v

vi

vii

1
1
1
3
3
4
4
5
5
6

7
7
7
9
9
9

11
11
11
12
12
12
13
15
16
17

19
19
20
25

28
28
29
29
29
30
30
32

iii

Chapter 6: Program considerations
6.1 Introduction .•...

6.1.1 Signal analysis
6.1.2 Feature analysis
6.1.3 Rule evaluation

6.2 MultiDos-Plus .•...
6.3 Intertask communications

6.3.1 Information block
6.4 Implementation ••..

6.4.1 Flow measurement.

Chapter 7: Conclusions an Recommendations
7.1 Conclusions ..
7.2 Recommendations

LITERATURE • .

APPENDIX A: Programming tools

APPENDIX B: Manual utility routines

APPENDIX C: OMHEDA 5410 VOLUME MONITOR

IntelLigent Alaras in Anesthesia

33
33
33
34
34
35
35
36
37
38

40
40
40

42

44

45

55

iv

LIST OF FIGURES

Figure 1.1: Block diagram anesthesia system
Figure 1.2: Circle breathing circuit
Figure 2.1: Inspiratory valve
Figure 3.1: Normal CO2 signal
Figure 3.2: Simple electrical lung model
Figure 3.3: Normal pressure signal
Figure 3.4: Normal flow signal
Figure 4.1: CO2 features
Figure 4.2: CO2 features
Figure 4.3: Pressure features
Figure 4.4: Pressure features
Figure 4.5: Flow features
Figure 4.6: Flow features
Figure 5.1: The building of an expert system

Intelligent Alarms in Anesthesia

page

1
5

7

15
16

17
18

24
24
24
24
24
24
28

v

LIST OF TABLES

Table I: CO2 signal
Table II: Pressure signal
Table III: Flow signal ..
Table IV: Extracted features

Intelligent Alar.s in Anesthesia

page

15

17

18

19

vi

INTRODUCTION

This project was done as part of the fulfillment of the

requirements for a M.Sc. degree in Electrical Engineering at the
Eindhoven University of Technology, Division of Medical

Electrical Engineering, The Netherlands. The research was

performed at the University of Florida, College of Medicine,

Department of Anesthesiology in Gainesville, U.S.A. Funding for

the research was provided by Ohmeda in Madison WI, manufacturer

of anesthesia equipment.

Problem definition

Dur ing surgery, a patient is under anesthesia. This is an
induced state in which the patient is unconscious, insensitive

to pain, and the muscles of the patient are relaxed to the point

where respiration must be supported by external means; an

anesthesia system is used for this support. The risk of

anesthesia is small. It is estimated that between 2 and 10

anesthesia related incidents result in death for every 10,000

anesthetics [ORK86]. A large percentage of these incidents are
due to human error and equipment failure [C0078]. Monitoring

devices are used by the anesthesiologist for early detection of

unwanted situations. Most monitors are equipped with alarms that

generate a sound when a user settable threshold has been
exceeded. At some critical moments, many monitors can and will

sound an alarm and the clinician is overwhelmed with an abundance
of tones; it is the clinician's task to analyze the multitude of

unspecific alarms and reach a conclusion about what exactly is
going on.

An unwanted situation can be the result of either an equipment
malfunction or a patient problem. The first thing the

anesthesiologist does is to check the equipment. If this appears

to work well, the anesthesiologist checks the patient. It is our
goal to develop a system that helps the anesthesiologist to reach

a conclusion about the nature of the alarm situation. This stUdy

is a start; it focusses on the integrity of the anesthesia

system.

If we let a computer monitor the anesthesia system (in the

Intelligent Alarlls in Anesthesia vii

same way as the anesthesiologist does) and if we give the
computer the same knowledge the anesthesiologist uses to reach

a conclusion about the source of the alarm, such an aid could be
developed. This report describes how a clinician monitors the
anesthesia system and how to implement this knowledge in a

computer so that an intelligent (alarms) system can be developed,
that aids the clinician to reach a conclusion about the possible
problem more rapidly.

Problem approach

For now, we

integrity of the

a description of

see chapter 1).

limit our intelligent alarms system to the

breathing system of the anesthesia system (for

the anesthesia system and the breathing system

A definition of what can go wrong with the breathing system
has to be made. It has to be determined which signals have to be
measured and where in the system they have to be measured. A
continuous analysis of these measurements has to be made to

determine whether a malfunction exists and if so, what exactly.

Symbolic data will be derived from the signals and these will be

given to an expert system containing the domain specific

knowledge, which will reach a conclusion about the integrity of

the breathing circuit. The following is a list of tasks that

needed to be done to implement an intelligent alarms system.

These tasks will be described in this report.

- Define the malfunctions that we want to detect.
Make a comprehensive list of all dangerous malfunctions

by interviewing anesthesiologists and studying the used

anesthesia system (chapter 2).

- Define which signals must be measured to detect these

malfunctions, and where in the system they must be measured.

Find out which monitors are normally used and which

monitors are available. Place the sensors so that an

optimal malfunction detection can take place (chapter 2).

- Record the signals that result after wilful introduction of

Intelligent AlarBs in Anesthesia viii

the earlier defined malfunctions (with a simulated patient).
Sample the signals so they can be processed by a computer,
and plot them.

- Analyze the recorded data, define and extract their important
features.

Define important features for every signal, calculate the
features (chapter 3).

- Analyze the features, define how these features change for
every malfunction.

Extract detection rules for every malfunction (chapter
4) •

- Incorporate the derived knowledge in an expert system.
Make an expert system that reaches a conclusion about the
integrity of the system, using a set of detection rules
(chapter 5).

A real time implementation of the intelligent alarms system
has been made; it is described in chapter 6.

IntelLigent ALaras in Anesthesia ix

Chapter 1: An introduction in Anesthesia

1.1 Introduction

Anesthesia is a state of unconsciousness, analgesia (the
blocking of pain), and relaxation of the muscles. This state is
needed during surgery to help the surgeon perform the operation.
The anesthetic state is induced by an anesthesiologist, usually
a physician trained to administer anesthetics.

The most common method in the U.S.A. to obtain anesthesia is
inhalation of one or more anesthetic gases. Because all the
patient's muscles are relaxed, he can not breathe himself. The
anesthetic mixture, a mixture of anesthetic gas(es) and oxygen,
prepared by an anesthesia machine and supplied by a ventilator,
is forced into the patient via a breathing circuit and through
a tube brought into the trachea (endotracheal tube).

1.2 Anesthesia machine

There are several different anesthesia machines in use. I will
concentrate on the Ohmeda Modulus II Anesthesia System, which is
used in Shands hospital in Gainesville.

The Modulus II is most often used with a circle breathing
system. In a circle system the gases, exhaled by the patient, are
reused. A great advantage of this method is that the quantity of
anesthetic agent that is needed decreases, because the exhaled
(unused) fraction of the agent is reused. In the patient'S lungs
CO2 is replaced by oxygen, so the patient exhales CO2 that has to
be removed from the breathing circuit; this is done by the CO2

absorber.

The following 5 parts can be identified in the inhalation
anesthesia system:

- High pressure system
connections to the wall outlet or gas tanks.

Intelligent ALarms in Anesthesia 1

1.1 :

circle
systeIIl

Block

• •

anesthe
composed by J.S. Gravenstein M.D.

- Low pressure system

system

Ventilalor/
Scavenging

Syst.eIll

flow control valves with flow meters, vaporizer to

administer anesthetics.

- Scavenging system

excess gas outlet.

- Ventilator system

ventilator, hand bag.

- Circle breathing system
CO2 absorber, hoses to connect to the patient,

endotracheal tube, unidirectional valves.

The high pressure and low pressure systems together are called

the anesthesia machine.

Intelligent Alar.s in Anesthesia 2

1 . 3 Ventilator

The ventilator is the driving source of the anesthesia system.
This device forces the gas mixture via the breathing circuit into
the patient. In case of an emergency, a hand bag in the system
can be used to manually ventilate the patient.

1.3.1 Ventilator settings

The ventilator can be set to accommodate patients of different
age, weight, physical condition and the type of operation.

Typical controls on an anesthesia ventilator are:

- Minute volume dial
This dial is used to set the number of liters per minute
of gas delivered to the lung.

- Rate dial

This dial is used to set the respiratory rate (number of
breaths per minute).

- I:E ratio dial
This dial is used to set the ratio of inspiration time
to expiration time.

Some basic principles to set these values are:

- Minute volume = Tidal volume * Respiratory rate.
At normal respiratory rates, the tidal volume shoUld be lO­
IS ml/kg body weight. This is the inspired tidal volume; it
is delivered to the patient during the period called the
inspiration time. There is also an expired tidal volume. It
is different from the inspired tidal volume because the
expired gas is at a different pressure, at a different
temperature, has a different composition, and because the
respiratory quotient is not exactly equal to one.

- Inspiratory Flow = Minute volume * (1 + Ell).
The inspiratory flow (which is constant,
of the system) must deliver the gas

InteLligent Alarms in Anesthesia

due to the mechanics
volume during the

3

inspiratory part of the respiratory period; it is determined
by the speed at which the tidal volume is transferred from
the bellows to the patient. In general, lower inspiratory
flows produce a lower peak inspiratory pressure and lead to
a better distribution of gas within the lungs. The flow rate
should be adjusted to allow for an inspiratory/expiratG'rY
ratio no greater than 1, in order to provide for adequate
expiration. Inspiratory flow rates of 40-50 L/min are usually
used.in adult patients.

- Alveolar respiration should be adjusted to maintain the PaC02

(alveolar CO2 level) at 30-35 torr* (by adjustments of
respiratory rate, tidal volume, and I:E ratio).

- Regardless of the respiratory rate and the inspiratory flow
rate, it is recommended that the I:E ratio is more than 1:1;
otherwise there is not enough time for exhalation. [LIC74]

1.4 High pressure part

Two or more gases can be used with the Modulus II. Usually
Oxygen and Nitrous oxide are used. For every gas it is possible
to choose between wall supply or tank supply.

1.5 Low pressure part

Flow control valves set the flow of every gas. The flow control
valves for oxygen and nitrous oxide are mechanically
interconnected. This 1S done to be sure there is a minimum oxygen
concentration of 25% in the gas mixture delivered to the patient
[OHMS3]. Vaporizers are used to add anesthetics to the gas
mixture (nitrous oxide is an anesthetic gas, but by itself it
does not provide a sufficient anesthesia). An oxygen flush valve
allows the anesthesiologist to temporarily give the patient an
extra dose of oxygen.

* . 1 torr 15 aLMOst equal to 1 MMHg. 1 kPa is equal to 7.5 .-Kg.

Intelligent Alar.s in Anesthesia 4

1.5.1 Flow settings

Not only the ventilator dials need to be set, also the fresh
gas flow has to be set. Usually two gases are used: 02 and N20.
So the total gas flow and the fraction of 02 (Fi02) can be set.

The Fi02 should be such that the concentration 02 in the
mixture is at least 21%. The Fi02 should be as low as possible to
avoid the toxicity of high concentrations of oxygen. For patients
with normal lungs 40% 02 is usually adequate, but during short
periods 100% can be necessary.

1.6 Circle system

The circle system consists of two parts: the inspiratory limb
and the expiratory limb. When the ventilator cycle starts, the
inspiratory valve opens and the expiratory valve closes. Gas

1""':"'---, i nsp ira tory
valve

inspirator!,!
hose

• •

fresh
9as

., C02

• • •

absorber

• !'-:,...".---;."'.=-= • ...",-" ---;.:-' •• I,--,c---'.=-ven til a t or

expiratory
valve

Figure 1.2: Circle breathing circuit

Intelligent Alarms in Anesthesia 5

(both fresh gas and gas recirculated through the CO2 absorber)

flows through the inspiratory hose into the patient.

During expiration, the inspiratory valve closes and the
expiratory valve opens, allowing gas to flow through the

expiratory hose back into the ventilator and scavenging system.
The patient's inflated lungs empty passively, much like a balloon

deflates, after the ventilator has delivered the set tidal
volume.

The CO2 absorber is a canister filled with soda lime, which

scrubs the gases passing through it from CO2 , The soda lime has

to be replaced regularly, because it gets exhausted after

extensive use.

1.7 Scavenging system

The scavenging system exists of an excess gas bag and some

valves. During expiration the ventilator bellows gets filled. If
the bellows overfills and hits the top of its case, the excess

gas goes into the excess gas bag. If even more gas arrives, a

valve opens and the gas exits the system. The scavenging system

is needed to prevent the operation room from getting polluted

with anesthetic gas mixtures.

Intelligent Alarms in Anesthesia 6

Chapter 2: Signal measurement versus detection

2.1 Introduction

Our goal is to derive a conclusion about the integrity of the

breathing circuit from information present in the signals

measured in or near the breathing circuit. Many things can go

wrong with the breathing circuit of an anesthesia machine. With

the current technology, it is difficult to conclude what exactly

goes wrong, because several different monitors may give partially

overlapping and quite unspecific alarms.

Our first task is to find out which malfunctions should be

detected and alarmed on. Secondly, we have to determine which

signals are to be measured in the breathing circuit and where we

should measure these signals in order to best detect these

malfunctions.

2.2 What do we want to detect

The circle breathing circuit exists of disposable plastic
hoses, unidirectional valves, and a COz absorber. Because the

hoses have to be easily replaceable, leaks and disconnects can

occur. If the hoses kink, an obstruction may result. As indicated

in 1.6, the soda lime of the COz absorber can get exhausted,

resulting in inadequate ventilation by QQz rebreathing.

The uni-directional valves consists of a disc that elevates

when the pressure on one side higher is than the pressure on the

other side. The disc's movement is limited by a retainer. The

disc is made of flexible plastic, and when it becomes moist

(humidity of expired gas is high) it is possible that the ~

gets stuck in the open position. The dome is transparent and

removable, so a stuck valve can be confirmed and repaired.

IntelLigent Alarms in Anesthesia 7

Disc Retainer

Valve Dille

FTOTn AbsOTbeT To Patient

Figure 2.1: Inspiratory valve

From the information we have

interviews with anesthesiologists

automatically detect the following

about the system and from

we have set as our goal to

malfunctions:

Exhausted CO2 absorber

Incompetent Inspiratory valve

Incompetent Expiratory valve

Obstruction Endotracheal tube

Obstruction Inspiratory hose
Obstruction Expiratory hose

Leak Inspiratory hose

Disconnect Inspiratory hose

Leak Expiratory hose

Disconnect Expiratory hose

Leak V-piece

Disconnect v-piece

Leak Ventilator hose
Disconnect ventilator hose

Leak CO2 canister

Leak Endotracheal tube cuff
Disconnect Endotracheal tube cuff

Leak Fresh Gas Flow

Disconnect Fresh Gas Flow

Intelligent Alarms in Anesthesia 8

2.3 Which signal do we want to measure?

In order to detect malfunctions, several signals will have to
be measured from the circle system. If possible, we would like
to use the standard set of measurements.

2.3.1 Monitors

We want to detect malfunctions in a system where gases flOW,
and where CO2 is added and extracted. The logical thing to do is
to measure CO2 , pressure and flow. In anesthesia monitoring CO2
and pressure are usually monitored, but flow monitoring is not
cornmon. It is much more cornmon to measure expired volume, the
integral of the (expiratory) flow over the expiratory period.
CO2 , pressure and volume monitors are now standard and widely
available. In the Ohmeda Modulus II the Ohmeda 5200 CO2 monitor,
the Ohmeda 5500 airway pressure monitor and the 5410 volume
moni tor are used. Other signals, like O2 percentage, oxygen
saturation, blood pressure and anesthetic agent percentage, are
usually measured by additional monitors. In a system where flow
and CO2 monitoring are the major features, we choose to use CO2 ,

pressure and flow signals.

2.3.2 PreVious work

Previous work has been done in this field by Rob Bastings
[BAS87) and Jan van der Aa [AA87). They measured CO2 , pressure
and flow signals at the Y-piece. As result of these measurement
they could detect 5 clusters of malfunctions:

cluster 1:
Endotracheal tube leak
Leak in expiratory hose
Ventilator tube leak

cluster 2:
Leak in inspiratory hose
Partial disconnect of the fresh gas flow

Intelligent Alar., in Anesthesia 9

cluster 3:
Incompetent inspiratory valve

cluster 4:
Incompetent expiratory valve
Exhausted CO2 absorber

cluster 5:
Increased airway resistance (obstructions)

It was not possible to distinguish between malfunctions within
a cluster. The advantage of an integrated sensor at the Y-piece,
that they used, is that there is only one sensor that has to be
placed. The disadvantage is that malfunctions far from the
sensors are hard to pick up and because all sensors are located
in one place, the detection is not optimal. Ideally we would like
to have a sensor in every limb of our system, but this would
require a very complicated build-up of the system, with a higher
possibility of errors, and a higher possibility of sensor
malfunction.

Traditionally, in the Modulus II with circle breathing system,
the CO2 is measured at the Y-piece, pressure in the inspiratory
hose and flow in the expiratory hose. This is the setup we choose
to use. It gives us the advantage of using standard equipment and
thus easier testing, because we can setup our system with a
standard anesthesia system.

Intelligent Alarms in Anesthesi6 10

Chapter 3: Data analysis

3.1 Introduction

If a computer program is to derive conclusions from analog
signal wave forms, samples of the wave forms are needed as input
to the computer. On practical grounds, we conclude that for our
signals a sample rate of 20 Hz is enough to extract the important
information from these samples.

3.2 General a~~roach

First we have to determine the kind of information the signals
contain. A set of features of each signal has to be defined, so
that the feature set resembles the signal's clinically useful
information closely.

We limit our signals to (almost) periodic signals, that can
be described by a sequence of segments with the following
attributes:

- horizontal
- slope
- exponential curve

{ HORIZ }
{ SLOPE }
{ EXPON }

Each attribute has parameters associated with it. HORIZ has
start-time, end-time, level. SLOPE has start-time, end-time,
start.-value, slope. EXPON has start-time, end-time, time­
constant.

A-priori information about the signal must be available to
know in which phase (or segment) the signal is (every phase has
an attribute associated with it).

So a signal analysis routine consists of the following parts:

- phase detection
Determines in which phase the signal is.

- parameter calculation
Calculates the parameters for each phase.

Intelligent Alarms in Anesthesia 11

- parameter validation

Determines if the parameter can be calculated.

3.2.1 Phase detection

Phase detection is more difficult than it seems at first. with
well-defined, noise-free signals, it would not be difficult, but

data from patients is corrupted with noise and artifacts. To
determine the phase, we can use both the signal and the
derivative. Limits have to be set to determine the phase. This

work was done by Rob Bastings [BAS87]. The next quote from his

report describes his method of phase detection. "The samples are

filtered with a digital low pass filter (moving average filter,

HvO) to obtain a mean value. A positive and negative amplitude

can be obtained by filtering the samples above and below the mean

value. The low and high thresholds are defined as the sum of the

mean value and 50% of the positive and negative amplitude
respectively. (..•) This method decreases the number of false

level detections.

An estimation of the derivative is used to determine if a high

or low level is reached." ([BAS87] p. 24,25)

3.2.2 Parameter calculation

The parameters that have to be calculated are slopes (of a

curve segment), levels (of a horizontal line) and time constants

(of a curve segment). The developed signal-processing routines
are robust with regard to noise, i.e. noisy data still yield a

good enough result. They are ~ artifact-resistant; artifacts

must be detected (and removed) by another method.

3.2.2.1 Calculating leVels

In the calculation of the level of what we call 'a horizontal

line', (in practice this line will be noisy, and it will not
always be strictly horizontal either), two levels can be

important: the maximum and the minimum. In some cases the maximum
is important, in other cases the minimum. In the ideal

lntell igent ALarD in Anesthesia 12

'horizontal line', the maximum and the minimum are of course the
same.

Maximum and minimum can be calculated with the following
algorithm:

if

if

sample , max
sample (min

max = sample;
min = sample;

A proper initialization of max and min is needed (eg. min ,=
highest possible minimum if the search is for a minimum).

3.2.2.2 Calculating slopes

Since our signal is noisy, the slopes must be calculated in a
way such that noisy signal values yield an accurate value for the
slope.

Assume that our data points are modelled by the line

y = ax + b (3.1)

We want to calculate a. If the kth data point has an error
(distance from the line) with magnitude

The sum of the errors over all m data points is

m

1:

k=1

(3.2)

(3.3)

Since this error sum is a function of a and b, a and b can be
chosen so that the function has a minimum. We actually use a
different function (3.4) to minimize (the least squares method;
its computations are easier and its results better understood),
but the results are similar.

(a,b)

Intelligent Alaras in Anesthesia

m
2

=1: (aXk + b - Yk)

k=1
(3.4)

13

The conditions to minimize this are:

= 0, = o.

Applying this results in:

m
L 2 (aXk + b - Yk) xk = 0

k=l

m
L 2 (aXk + b - Yk) = 0

k=l

(3.5)

(3.6a)

(3.6b)

Taking in account that t.1 1 = m, the solution for a and b is:

m m m
a = lId (m L xkYk - L xk L Yk)

k=l k=l k=l
(3.7a)

m m m m
b = lId (m L x 2 L XkYk - L Xk L Yk

k=l k k=l k=l k=l
(3.7b)

where

(3.8)

[CHE8S)

We use equations (3.7a) and (3.8) to calculate the slope of a
curve.

3.2.2.3 Calculation time constants

For an exponential curve a similar calculation is used to
calculate the time constant T, were we take the natural logarithm
of the samples, minus the offset of the exponential curve.

Y = exp(-Tx) + Yo (3.9)

In(y - Yo) = -Tx (3.10)

Intelligent Alar.s in Anesthesia 14

y' = -Tx (3.11)

Our signals are assumed to have only the attributes described

above. In order to represent the signal by segments having only
these attributes, we must have a-priori information about the

signals to be able to describe the signal as a sequence of
segments (phases). We have to determine which attribute a signal
has in which segment, and hence which features need to be

calculated when.

3.2.3 Parameter validation

Parameter validation is done for EXPON and SLOPE. In our

algorithms, if less than ten samples are available for slope

calculation, the feature value is not valid (the calculated slope

will not be reliable enough). All the other features are always
calculated, because at this stage the intelligence to determine

if a feature is valid or not is not available. This will be
available in a later stage (an expert system).

3.3 CO2 siQ"nal

The CO2 signal, measured at the V-piece, consists of 2 major

parts: 1) the plateau during expiration, 2) the zero plateau

during inspiration.

status

1
2
3
4

attribute

HORIZ
SLOPE
HORIZ
SLOPE

Table I: CO2 signal

Intelligent ALarMs in Anesthesia

feature

Inspired CO2 level
Up slope
Expired CO2 level
Down slope

15

InnH91
88

G8

411
i~

2111

3
/

.4
8~ __ ~ __ ~'~1~ ____ ~~, __ ~ ______ ~ __________ __

8 :I G 9 t2 tS to
Figure 3.1: Normal CO2 signal

During inspiration, gas (fresh gas and gas through the CO2
absorber) is forced into the patient. This gas normally does n
ot contain any CO2. During expiration the CO2 level will increase

until it reaches a level that is approximately equal to the
alveolar CO2 level.

The CO2 signal at the Y-piece is described in table I and in
figure 3.1.

3.4 Pressure in the inspiratory limb

A breathing circuit with a lung can be modeled by a resistor­
capacitance circuit.

Figure 3.2: Simple electrical lung model

The flow is modelled with the current I, the pressure with
vOltage v.
Equationo~

(3.12)

Intelligent Alar.s in Anesthesia 16

I = (V - Vc)/R (3.13)

During inspiration, the gas is forced into the patient with a

constant flow (I=constant). So V c has a linear increase (from eq.
3.12) and V also has a linear increase because of eq. (3.13).

During expiration the capacitor
of the lungs) is discharged,
decrease.

status

1
2
3

attribute

SLOPE
EXPON
HORIZ

Table II: Pressure signal

IcMH20J

16

12

8

4

1/
/

;
..

f'
'.2

\
,/

..
3

;

(representing mostly compliance
resulting in an exponential

feature

up slope, maximum
time constant
minimum

/- /-
0 : r

: ',-"
i

;
'--

B~--~--~----~--~----~--~---------
B 3 6 9 12 15 18 (secJ

Figure 3.3: Normal pressure signal

The pressure signal in the inspiratory hose is described in

table II and in figure 3.3.

3.5 Flow in the expiratory hose

As described in 3.4, the flow through the
during inspiration is constant. Since only

expiratory limb is measured, no flow is

inspiration. Only when the expiratory valve is

measured. When the expiratory valve opens at

Intelligent Alarms in Anesthesia

inspiratory hose

the flow in the

measured during

open, flow can be

the beginning of

17

expiration, there is a steep increase in the flow. As described
in 3.4, the capacitor discharges and hence the flow decreases
exponentially.

IPl1/s) .,
. \ . '.

22 \1 :3 \

7 "- ''--- 2 ',-
~.

'\........
-8

-23

-38
a 3 S 9 i2 i!: i9 lsecl

Figure 3_4: Normal flow signal

The expiratory flow signal is described in table III and in
figure 3.4.

status

1
2
3

attribute

EXPON
HORIZ

Table III: Flow signal

Intelligent Alarms in Anesthesia

feature

time constant
minimum
maximum

18

Chapter 4: Feature analysis

4.1 Introduction

The set of features, that describe all the relevant information
in the signals, has been defined earlier. The features to be

extracted are described in table IV [BAS87).

flow:
FLW MIN
FLW MAX
FLW B TIME
FLW INS T

- -
FLW_EXP_T
FLW_EX_VOL
FLW_T_CONST

pressure:
PRS MIN
PRS MAX
PRS B TIME
PRS_INS_T
PRS EXP T - -
PRS SLOPE
PRS T CONST

C02 INS
C02-EXP
C02 B TIME
C02 DO TIME
C02-EXP T
c02=up3TR
C02 DO STR

minimum flow. [Liters/min)
maximum flow. [Liters/min)
breath time by flow. [sec)
inspiration time by flow. [sec)
expiration time by flow. [sec)
expired volume. [Liters)
time constant downstroke fl~wec)

minimum pressure. [cmH20)
maximum pressure (PIP). [cmH20)
breath time by pressure. [sec)
inspiration time by pressur~sec)
expiration time by pressure~sec)
up slope pressure. [cmH20/sec)
time constant downstr press~sec)

inspired CO2 pressure level~mmHg)
expired CO2 pressure level. [mmHg)
breath time by CO2 , [sec)
'inspiration time' by CO2 , [sec)
expiration time by CO2 , [sec)
CO2 up stroke. [mmHg/sec)
CO2 down stroke. [mmHg/sec)

Table IV: Extracted features

From the values of the features in this set, conclusions have

to be reached about the integrity of the breathing system. An

expert system (see chapter 5) will be used in the diagnosis of
the breathing system. Such a system uses symbolic input, often

with names like 'normal' and 'abnormal', where 'normal' is not

a numerical value, but a logical onei it indicates that some
feature is within some range operationally defined to include all

'normal' values. In this application, the following three

statuses were sufficient to describe the necessary features:

lntelligent Ata~ms in Anesthesia 19

UC Unchanged

The feature value is within a band around a normal value*.

UP Up

The feature value is higher than the upper threshold.

DN Down

The feature value is lower than the lower threshold.

The thresholds were defined as 20% higher and 20% lower than
the normal value or 'baseline'. This gives a 40% 'normality

band'. This relative value (the band width is expressed as a

percentage) gives problems if 'normal' is close to zero.
Therefore a band width of 2 (-1 to +1) was taken if the feature's

value was smaller than 5. This is useful for the CO2 and flow

signals, because their minimum is zero.

The values used here are arbitrary values. More research needs

to be done about how to derive 'baselines' and how to set the

detection bands, in order to get optimum detection. This research

is planned for the future.

4.2 Normal curves versus malfunctions

In order to know how the signals (or rather the features)
behave in the case of a malfunction, we measured the three

signals with the set of malfunctions of 2.2, generated by the

anesthesia simulator (a modified anesthesia system that can

introduce a number of malfunctions [GOOB7]).

The data from these measurements were analyzed, and the

features were extracted with the techniques described in chapter

3. The feature values were plotted in graphs in order to compare
the time course of the values, that result from any single

malfunction, with the normal values.

*Nor.al value ;s the value of a feature when there are no malfunctions or disturbances. A feature
value that didn't change over a certain period of tiMe can be called a normal value, since the
anesthesiologist didn't find it necessary to change somethinQ.

Intelligent Alar.s in Anesthesia 20

The absolute changes of all features during a malfunction was

obtained and listed. For a list of the used abbreviations and

units, see table IV. The format of these tables is:

signal FEATURE normal value -, malfunction value

BS_C02_ABSORBER: 'there is an exhausted C02 absorber'

flow:
pressure:
CO2 :

* normal
normal
C02_INS_P
C02 DO STR

o -, 5
111 118 -,

INCOMP_INS_VALVE: 'there is an incompetent inspiratory valve'

flow: FLW EX VOL 36 -, 15
FLW MAX 32 -, 16

pressure: DQrIDal
CO2 : CO2 INS P 0 -, 5 - ** C02 EXP-P 48 -, 60 (slow response) - -

C02_DO_STR 118 -, 20
C02 UP STR 100 -, 120 (slow response)

INCOMP_EXP_VALVE: 'there is an incompetent expiratory valve'

flow: FLW_EXP_VOL 36 -, 20
FLW MIN 0 -, -11

pressure: DQl:Jllal
CO2 : CO2 INS P 0 -, 18 -

CO2 EXP P 50 -, 60 (very slow response) -CO2 DO STR 118 -, 90 -
CO2 UP STR 100 -, 70 -

OBST_ET_TUBE: 'there is an obstruction in the endotracheal tube'

flow: FLW EX VOL 36 -, 33
FLW T CONST 1 -, 2.5
FLW MAX 32 -, 15

pressure: PRS MAX 13 -, 28
PRS SLOPE 6 -, 13 -PRS _T_CONST 1 -, 3 (noisy)

CO2 : CO2 UP STR 100 -, 65 -

OBST_INSP_HOSE: 'there is an obstruction in the inspiratory hose'

flow:
pressure:

*

FLW EX VOL
PRS MAX

36 -, 33
13 -, 29

D2tmA1 means that all the features of this signal are normal.

** It takes a few breaths to reach this value.

Intelligent Alarms in Anesthesia 21

PRS SLOPE
noriiial

6 -, 13

OBST_EXP_HOSE: 'there is an obstruction in the expiratory hose'

flow: FLW_T_CONST 1 -, 2.5
FLW MAX 32 -, 15

pressure: PRS T CONST 1 -, 1.7
CO2 : DQriiial

DISC Y PIECE: 'there is a disconnect at the Y-piece'

flow:

pressure:
CO2

FLW EX_VOL
FLW MAX - . signal flat
signal flat

36 -, 7
32 -, 20

DISC_INSP_HOSE: 'there is a disconnect of the inspiratory hose'

flow:

pressure:
CO2

FLW_EX_VOL
FLW MAX
signal flat
signal flat

36 -, 8
32 -, 20

DISC_EXP_HOSE: 'there is a disconnect of the expiratory hose'

flow:

pressure:
CO2 :

FLW_EX_VOL
FLW MAX
signal flat
signal flat

36 -, 7
32 -, 20

DISC FGF: 'there is a disconnect of the Fresh Gas Flow'

flow: FLW EX VOL 36 -, 20
FLW_MAX 32 -, 22

pressure: PRS_MAX 13 -, 4
PRS T CONST 1 -, 0.5

CO2 : CO2 _DO_STR 118 -, 180
CO2 UP STR 100 -, 80

DISC_VENT_HOSE: 'there is a disconnect of the ventilator hose'

flow:
pressure:
CO2 :

signal flat
signal flat
signal flat

* signal flat lteons that the signals have so little variation that no breath detection could be
perforited.

Intelligent Alarms in Anesthesia 22

Leaks of three different sizes were measured. Leaks of sizes

1.5rnrn, 2rnrn and 3rnrn (diameter) were introduced. The format of the
following result table is:

signal FEATURE normal value -, 1.5rnrn, 2rnrn, 3rnrn leaks

LEAK_Y_PIECE:

flow: FLW_EX_VOL 28 -, 21, 18, 15
FLW_MAX 38 -, 32, 28, 23

pressure: PRS_MAX 18 -, 16, 15, 14
PRS SLOPE 6 -, 4.5, 4, 3
PRS T CONST 0.3 -> 1, 3, 6

CO2 : C02 DO STR 100 -> 30, 40, 50
C02::::DO::::TIME 1.5 -, 3.5, 4.5, 4.5

LEAK INSP_HOSE:

flow: FLW EX VOL 28 -, 21, 19, 15
FLW MAX 37 -, 32, 29, 25

pressure: PRS T CONST 0.3 -, 2, 4, 6
PRS_MIN 7 -, 7, 7, 6
PRS_MAX 18 -, 16, 15, 13

CO2: CO2 DO STR 100 -> 70, 70, 50 -

LEAK_EXP_HOSE:

flow: FLW_EX_VOL 28 -, 21, 19, 15
FLW MAX 37 -, 32, 28, 25

pressure: PRS MAX 18 -, 16, 15, 14
PRS T CONST 1.2 -, 2, 4, 6
PRS SLOPE 6 -, 6, 6, 3.5 -CO2: CO2 DO STR 100 -, 50, '"50, 60 -CO2 DO TIME 1.8 -, 1. 8, 1. 8, 4.2 -

LEAK_VENT_HOSE:

flow: FLW_MAX 38 -, 33, 32, 30
PRS EX VOL 28 -, 27, 22, 21

pressure: PRS MAX 18 -, 16, 15, 13
PRS SLOPE 6 -, 5, 4, 3 -
PRS T CONST 0.3 -, 2, 4, ?

CO2 : CO2 DO TIME 1.5 -, 1. 5, 1.5, 3.5 -
CO2 DO STR 100 -, 100, 100, 30 -

Examples of the graphs are given in figures 4.1 to 4.6. The

feature values during a malfunction have to be compared with the

values in the normal situation (right and left picture). The

graphs give a good impression of the stability of the features

Intelligent Alarms in Anesthesia 23

in the normal situation.

Normal curves
'o,--------------------------------,

'SO

'0

ls~,:-~.=,~,~, ~-,=,~,=o~--:c,,~."'c::-~~,,~,~,~-:,~,=,,~-:,~,~,,:--'o
time

- Ic02 -+- Eco2 -&- UPstr -.!r- 0081'

CO2 ! •• !u •••

Figure 4.1: CO2 features

Normal curves
'0,-------------------------------,

"
- t - ,- 1- \- + - 1--+--+--- - -l---

o

, 0
o _S "!IS lt56 18 co:"'. 20:l1.1Xl38.6r...S 2!>51 Q!i58 ~OO5 2.~11 gO 78 5586.2001 gO

time

Figure 4.3: Pressure features

Normal curves
15 ---------------------.- '0

30

"

"
." L~_:::"::_'_::::::::~_:::c::_~::':_~_::::':::_-~_=_c=--'o

1'115 111.'6 3280 _510 5Q "~I 72.76 8!1.10

time

- min -+- ma~ -b- ex VOl -R--- TconSI

Figure 4.5: Flow features

Intelligent AlarMs in Anesthesia

Incompetent Insp. valve
30 ."
" A

" " A

"
" ,
o

., 0
10.00 233{) 3785 61.10 114 M n.8S 111115 10(,00 111.80 137.10

time

-lc02 -+- Eco2 ~ UPSI' ---b- DOSlr

C02 le81u, ••

Figure 4.2: CO2 features

Incomp. Insp. valve
30 •

'"
,

_/ I , I , I !- , 1- I t 1-+- +-1-1 I-I

'" '-, If ~~--"~ -.;._-~{t--4~_'j-~-
o/r~~¥ ,

0 . ,
'" 23.00 :II! 35 (fj,70 1\:1.10 16 .• 0 89_!!1:> 100 00 "1135 13"1,05

time

-+- rna_ -+- slope -b- Teons!

p'~.u'e r ... ,u, .. ~

Flgure 4.4: Pressure features

Incomp. Insp valve
.0

-15 :.-......-L--L..-.1-I~_'--_~~---' 0
~fjO \125 lG.M 431105120105583.85911011060130601.380 16715

IIrne

- mLn ·i - m8~ -6-- 6, ~ --11-- TeOns!

Figure 4.6: Flow features

24

4.3 Detection rules

From the measurements described in the previous paragraph, the

attributes YD, ~ or unchanged can be added to each feature in

case of a malfunction. A description of every malfunction can be

made in the form of rules, that describe the status of the

feature set. The detection rules were derived from the

differences between the values of the normal and the disturbed

features. A straight forward translation of the observations for

rule BS_C02_ABSORBER would be:

FLOW normal and PRESSURE normal and and

Now, for all rules, we take the following three steps:

1. delete all

default. In

features that are normal;

this example, this gives the

normal is the

following rule:

2. delete features that are superfluous, especially if they

are unreliable or noisy. In this example, there are none

of those.

3. Add enough features to make the rule unique, i.e. prevent

the rule from being true if other problems arise. In this

example, C02_INS_up does occur with other problems, ego

INCOMP_INS VALVE and INCOMP_EXP_VALVE (see the list

above). This step is the most difficult; it requires a

thorough (expert level) understanding of the problem. This

step may reintroduce features that are normal or features

that are llQt up or llQt down. In the example, the following

rule is obtained:

After these steps, no two rules should be equivalent, nor should

any rule be subsumed under another rule (a SIMPLEXYS knowledge

acquisition tool to automatically perform these tests is under

IntelLigent ALarms in Anesthesia 25

development).

The list of all rules is as follows:

BS C02 ABSORBER: - -
C02_INS_up and FLW_EX_VOL_unchanged and not FLW_MIN_down
The rule uses inspired CO2 because the C~ is not scrubbed out by the CO2 absorber. The flow and pressure

signaLs are norDBL.

INCOMP_INS_VALVE:
FLW_EX_VOL_down and FLW_MAX_down and C02_DO_STR_down
and not FLW_MIN_down
Expi red flow and MaXillU1l flow are down because in thi s case expi rat ion takes place through both the

expiratory hose ADd the inspiratory hose. The CO2 downstroke is prolonged, because during the first part

of the inspiration the gas, that is already in the inspiratory hose, passes the CO2 monitor. This gas

contains CO2, because it is the previous exhaled gas. There is no reverse flow in the expiratory hose.

INCOMP_EXP_VALVE:
FLW MIN down - -
There is reverse flow through the expiratory hose, because inspiration takes place through the inspiratory

ADd expiratory hose.

OBST INSP HOSE: - -

The slope of the pressure is up, because the resistance of the inspiratory circuit has changed. The pressure

DaXiMUM is up, because there is a pressure build-up caused by an increased airway pressure.

OBST EXP HOSE: - -
FLW_T_CONST_up and PRS_T_CONST_Up
The time constants of flow and pressure are up, because the resistance of the expiratory circuit has

changed.

OBST ET TUBE:
OBST INSP HOSE and OBST EXP HOSE - - - -
According to the feature changes, it appears that there is an obstruction both in the inspiratory hose and

the expiratory hose.

DISC Y PIECE:
DISC PATIENT HOSE - -

DISC EXP HOSE: - -
DISC PATIENT HOSE - -

Intelligent Alarms in Anesthesia 26

DISC_INS_HOSE:
DISC_PATIENT_HOSE

DISC_PATIENT_HOSE:
FLW_EX_VOL_down and FLW_MAX_down and PRS_flat and C02_flat
There is no breath detection on the pressure and CO2 signals. The expiratory flow is down. When the

inspiratory hose is disconnected, flow will only be detected if the disconnect occurs at the absorber side
of the sensor.

DISC_FGF:
FLW EX VOL_down
PRS_T_CONST_down

and and

Less gas, and at a lower pressure, will flow into the system if the fresh gas hose is disconnected.

DISC_VENT_HOSE:
GENERAL_FAILURE

and

There is no breath detection at all, because the driving force failed. There is no gas flow in the syste..

GENERAL_FAILURE:
C02_flat and FLW flat and PRS_flat

The leak rules are currently under development. Proposed rules
are given below:

LEAK PATTERN:
FLW EX VOL down and FLW MAX down
PRS=T_CONST_Up and C02_DO_STR_down

LEAK Y PIECE:

and PRS MAX down - -

LEAK=PATTERN and C02_DO_TIME_up and PRS_SLOPE_down

LEAK INS HOSE:
LEAK=PATTERN and PRS_MIN_down

LEAK_EXP_HOSE: {== LEAK_Y_PIECE }
LEAK_PATTERN and PRS_SLOPE_down and C02_DO_TIME_up

LEAK_VENT_HOSE: { == LEAK_Y_PIECE }
LEAK_PATTERN and PRS_SLOPE_down and C02_DO_TIME_up

Intelligent Alarms in Anesthesia

and

27

Chapter 5: An introduction in expert systems

5.1 What is an expert system?

Ever since the invention of the computer, man tried to let

computers think like humans. Computers are mainly used to do

straight forward things, which usually contain a lot of

repetition. This is mostly non-intelligent work. In order to let

a computer solve problems like humans do, that computer program
has to be intelligent. One approach to make a program intelligent

is to provide it with lots of high-quality, specific knowledge
about some problem area. These programs are called expert

systems.

The biggest problem with building an expert system is to define

what knowledge should be used, how to obtain the knowledge and

how to implement it. Figure 5.1 shows the participants in

building an expert system and their relations.

Toolbuilder

Expert System

Domain

Expert
hl..,ds
and l.sI

Knowledge \/1---",1 Expert
Building Tool Usn engineer System

Bulld,s,

... nnn.
Clnd ",.'5 Adds

dolo

Clerical

Staff

End-user
u •• ,

Figure 5.1: The building of an expert system
From Waterman p.8 [WATB6J

The domain expert is the person who has the knowledge about

the particular problem area. The knowledge engineer is the person
who collects the knowledge and implements it in the expert

system. The knowledge can be acquired by interviewing the domain

Intelligent Alarms in Anesthesia 28

expert. An expert system building tool is used to implement the

knowledge into a computer program. The path to follow when

building an expert system is straight forward. Problems arise

when interviewing the domain expert to extract his knowledge. The

expert often cannot define his knowledge in a precise,
unambiguous way. Another problem arises when the knowledge has

to be represented in a computer program. There are hardly any
general purpose expert system building tools available for

general purpose, and usually a new tool is designed for every

application.

An expert system consists of two major parts: the knowledge

base and the inference engine [WAT861.

5.1.1 Knowledge base

Most expert systems are rule based. That means that the

knowledge is contained in rules like ".if an animal has a long

neck .and eats leafs .th.e.n it is a giraffe". Advantage of this

method is that rules are easy to read and easily understood.

Another method of implementing knowledge is a semantic net.

States and relations between the states are described. In a

semantic net it is well described how some part of the knowledge
influences another part of the knowledge. With semantic nets

searching is optimized and checks on correctness are easier to
perform.

5.1.2 Inference engine

The inference engine manipulates the knowledge so that a
solution of the problem can be reached. Some expert system

building tools have a complete inference engine built in, with

other tools the inference process is defined by the way the

knowledge is implemented (eg. how the rules are defined).

5.2 SIMPLEXYS: an expert system building tool

There are many expert system building tools on the market, but

none of them is capable of reaching a solution in a short time.
Speed was usually not a primary design issue. In our application,

Intelligent Alarms in Anesthesia 29

a conclusion about the integrity of the breathing circuit has to
be reached every breath (eg. every 6 seconds). An expert system
that could run in a real time environment was desired.

At the Eindhoven University of Technology, an expert system
building tool named SIMPLEXYS (SIMPLe EXpert sYStem) was designed
by J.A. Blom of the Division of Medical Electrical Engineering.
A first version of SIMPLEXYS was available for our development.

SIMPLEXYS is an expert system building tool based on a semantic
network, although the nodes of the network are defined by rules.
The semantic network consists of a collection of nodes (rules)
and relations (relations, that specify how a rule uses other
rules). A rule is either a primitive that represents an atomic
concept (therefore no other rules are needed in its evaluation),
or it is a composite: a higher level concept, some type of
combination of other rules. The rules that represent the
conclusions to be evaluated are called gQal rules or simply the
goals.

Conclusions (goal rules) are evaluated by evaluating their
constituent rules, if any, recursively, until the recursion ends
when finally the primitive rules are reached. This type of
evaluation is called backward chaining [BLOSS).

5.2.1 The SIMPLEXYS rule compiler

The SIMPLEXYS expert system language is written in Pascal (a
C version is forthcoming) and the rules are compiled to Pascal
code by the SIMPLEXYS rule compiler. Pascal procedures and
variables can be defined, for example to perform some action when
a rule becomes true (display a message, control a process etc.).
These procedures and variables are contained in the Pascal code
file with the compiled rules. This code file can be compiled with
a Pascal compiler, resulting in a fast and efficient program.

5.2.2 A SIMPLEXYS program

A definition of the syntax of the SIMPLEXYS expert systems
language is beyond the scope of this thesis, but a few concepts
will be shown in the following small example program:

InteLligent Alarms in Anesthesia 30

00 DECLS
01 type up_do_uc_nv = (UP, DN, UC, NV);
02 var flw_min : uc_do_uc_nv;
03
04 procedure message(mess_text: string);
05 begin
06 writeln(mess text);
07 end;
08
09 INITG
10 {put all the global initialization code here}
11 {executed only once}
12
13 INITR
14 {put all the run initialization code here}
15 {executed every run}
16
17 RULES
18 exit: 'exit the expert system program'
19 BTEST keypressed
20
21 running: 'The breathing circuit expert system is running'
22 STATE
23 INITIALLY TR
24 THEN GOAL: INCOMP_EXP VALVE
25
26 INCOMP_EXP_VALVE:'There is an incompetent expiratory

valve'
27 (FLW_MIN_DOWN)
28 THEN DO message('Incompetent expiratory valve');
29
30 FLW MIN DOWN: 'There is reverse flow'
31 BTEST (flw min = DN)
32
33 PROCESS
34 ON exit FROM running TO *

line 00:

line 09:

line 13:

line 17:

The code in the DECLS part is Pascal code with the
procedures and Pascal variables definition.
The Pascal code in the INITG part is executed only
when the expert system program is started up. For
example if a serial port has to be initialized.
The Pascal code in the INITR part is executed when
a new run of the expert system is started.
The RULES part contains the SIMPLEXYS rules with the
knowledge. If the exit rule becomes true (if a key
is hit), the program stops looping. In the running
rule the goal of the expert system is defined. The
inference engine will try to evaluate the goal rule.

Intelligent ALarms in Anesthesia 31

line 19:

line 22:

line 23:

line 27:

line 27:

line 33:

line 34

BTEST is a boolean test which returns the evaluation

of the following test.

A STATE rule defines which goals are to be evaluated

if that STATE rule's value is true. Here the only

goal is INCOMP_EXP_VALVE.

Rules can have one of four values: True(TR),

False(FA), Possible (PO) and Undefined(UD). Initially

all the rules are UD. When a rule is evaluated it
becomes TR, FA or PO. If PO is the result of an

evaluation, neither TR nor FA could be assigned to

the rule. In that case, an alternative path of

evaluation could possibly be followed to reach a

conclusion. With the INITIALLY keyword a rule can be

assigned a initial value other than UD.

In this example, rule INCOMP_EXP_VALVE needs only the

evaluation of rule FLW_MIN_DOWN.
THEN DO is used if an action has to be performed when

the rule evaluates to true.

The PROCESS section describes the dynamics of the
rule evaluation process: when to evaluate which

rules.

The expert system program continuously loops until

the exit rule becomes true.

5.3 Implementation in SIMPLEXYS

SIMPLEXYS proved to be a useful tool for the implementation

of our intelligent alarms system. It provides both a fast expert
system and an easy interface with a powerful language like

Pascal. A language like Pascal is needed because interfacing

routines which interface with other parts of the system have to

be written.

Intelligent Alarms in Anesthesia 32

Chapter 6: Program considerations

6.1 Introduction

Our intelligent alarms system can be divided into the following
three functional parts, each of which has been described in
previous chapters.

- Signal analysis (chapter 3)

- Feature analysis (chapter 4)

- Rule evaluation (chapter 5)

In this chapter we describe how these parts work together. The
problems encountered during the implementation and their
solutions are described.

6.1.1 Signal analysis

We assume that the data is sampled with a frequency of 20 Hz.
These samples are the input for the signal analysis routines. The
signal analysis consists of the following parts (see chapter 3):

- phase detection
determines in which phase (segment) a signal is

- feature update
updates the current feature calculation

Every sample has to be processed in order to determine in which
phase a signal is, and if the phase has changed. Once the phase
has been determined, it is known from a-priori knowledge which
calculations have to be performed. For every sample the feature
currently calculated has to be updated.

The signal analysis part is a loop that is executed for each
sample, i.e. 20 times per second. This loop consists of
procedures for sample retrieval, with timing provided by an AID
converter (the program waits until a new sample is available),

Intelligent Alarms in Anesthesia 33

phase detection (and therefore breath detection) and feature
calculation.

6.1.2 Feature analysis

After the signal analysis has been performed and a complete
breath was detected, the features are available for the features
analysis part (see chapter 4). The detection of a breath is not
straight forward. Three signals are now analyzed; because the
sensors are not in the same place, and because there is some
delay between the physical input to the sensor and the electrical
signal output from the sensor (especially the CO2 monitor), the
completion of a breath will be detected at a different time for
each signal. We choose to solve this problem by waiting until in
all signals a full breath is detected; a breath detected flag
will then be set. If one signal did not detect a breath within
a certain time (eg. 10 seconds), all the features of that signal
will be set to not valid (NV) and the breath detected flag will
be set. The advantage of this method is that the information that
~ available will be analyzed, even if some other information is
missing. The feature analysis is on a breath to breath basis.

6.1.3 Rule evaluation

The rule evaluation part (written in the SIMPLEXYS expert
systems language, see chapter 5) takes the symbolic information
from the feature analysis part, evaluates the rules and displays
the result of the evaluation (alarm messages).

The rule evaluation is also performed on a breath to breath
basis.

If all three parts have to be incorporated into the same

program, the problem is that one part has to run 20 times per
second, and two other parts have to run every breath (eg.
approximately every 6 seconds). Either the feature analysis with
the rule evaluation has to run in 1/20 second or there has to be
a multi-tasking operating system where several tasks can run at
the same time.

The computing power and memory of an IBM-AT or compatible is
sufficient for this task. However, the operating system mostly

Intelligent Alarms in Anesthesia 34

used for these machines (MS-DOS) is a single tasking operating
system. There are several multi-tasking operating systems for the
IBM-AT (eg. XENIX, a sort of UNIX or MS-WINDOWS, a graphical
multi-tasking environment), but these programs tend to demand a
lot of memory and/or a special compiler. There is a mUlti-tasking
shell on the market, that does not have these drawbacks, and that
accommodates our needs: MultiDos-Plus by Nanosoft Associates
(Natick, MA).

6.2 MultiDos Plus

MultiDoS-Plus is a multi-tasking extension to MS-DOS. It allows
the users to load mUltiple programs in their computer and have
them run concurrently.

At start-up, the MultiDos-Plus program will replace the
interrupt driven system services for screen and keyboard I/O,
disk access and DOS functions with its own routines. MultiDos­
Plus assigns CPU time slices to the various programs. Programs
with higher priority receive more time slices than programs with
lower priority. The time slice interval is based on the timer
interrupt in the computer and is about 55 milliseconds in the
IBM-AT. Programs which cannot execute for any reason (waiting for
keyboard input, waiting for disk access etc.) are not assigned
time slices.

A program that runs under MultiDos-Plus can be in one of two
states: foreground or background. Only one program at a time can
be in the foreground. If a program is in the background, screen
I/O is written to an invisible screen. There are commands to put
a program in the background or foreground.

MultiDos-Plus provides message queues, which can be read by
any task, to make communication (data) or task control:possible
(eg. timing by signal and wait) [MUL86j.

6.3 Intertask communications

In our system three tasks have to run at the same time:

- Task 1: Analyze (signal analysis)

Intelligent Alaras in Anesthesia 35

- Task 2: Features (feature analysis)

- Task 3: BS-expert (expert system)

Communication between the tasks is necessary, because data has
to flow from task 1 to task 2 and from task 2 to task 3. It is
also necessary for one task to be able to control the other

tasks. Therefor a control queue for every task was defined; each
task monitors its control queue and the other tasks can put

control characters in it. Five message queues were defined:

DATA

task 1

task 2

CONTROL

task 1

task 2

task 3

-) task
-) task

2

3

QUEUE NUMBER

5

6

1

2

3

A set of control characters, that is recognized by all the

tasks, was defined for the control queue:

A Abort task

S Suspend task
R Reset baselines

N New log file

6.3.1 Information block

An information block was defined to hold all the information

available about the system. The information block contains the
latest information on a breath to breath basis. For every signal
it contains some information like the name of the signal, whether

the monitor was calibrated or not, etc. It also contains the

features that describe the signal with information like name,

value, unit etc. The information block is defined as follows:

INFORMATION BLOCK

Intelligent Alarms in Anesthesia 36

SIGNALl

name

available(Y/N)

calibrated(Y/N/ONGOING)
cal.time

FEATUREl

name

unit

value

valid(Y/N)

accepted(Y/N)

stat(UP/DN/UC)

dyn(UP/DN/UC)

PhysLowLimit

PhysHighLimit

FEATURE2 ••..

FEATURE3 .•••

SIGNAL2 •...

FEATUREl

FEATURE2

(signal name)

(monitor present and working?)*

(monitor calibrated)*

(time when last calibrated)*

(feature name)

(unit of feature)

(value of feature)

(value valid or not?)

(valid accepted or not?)H

(static status)

(dynamic status)H

(lower physical limit)H

(upper physical limit)H

The information block is filled by several tasks. Every time
more information becomes available, the block is updated. Every

task can extract information from the information block. The

expert system for example can use the feature names to give

feedback to the anesthesiologist. Currently only the static

status is used by the expert system, but expansion of the part

of the information that is used is expected.

6.4 Implementation

An implementation of the described techniques resulted in a

demonstration prototype. In this prototype the data is read out

of a data file. Message queue 4 is used by task 3 to signal task

1 that the run of the expert system is ready, and that new

• This information is currently not available from the MOnitors.

H
Currently not used (reserved for future use)

IntelLigent Alarms in Anesthesia 37

features can be sent. This was necessary because the file read
routine does not have any timing in it, and the features would
be overflowing the data message queue if no signal and wait were
performed.

The programs for the three tasks were written, and the
communication between the tasks was made. Only the SIMPLEXYS
expert system is in the foreground during normal execution. The
expert system program also provides some control functions to
control the other tasks. The keyboard is monitored by the program
and the other tasks can be suspended, aborted etc. A simple user
interface is made existing of a line with available comments at
the top of the screen, a line at the bottom of the screen where
messages can appear like "suspending", "aborting" etc. The center
of the screen is used to print the messages resulting from the
evaluation by the expert system.

For demonstration purpose it was desired that the data could
be shown on a screen. Since MultiDos-Plus only supports the low
resolution CGA graphics of an IBM AT(PC), a second PC was used
to display the curves on a high resolution EGA screen. A serial
communications routine for the two machines was written. The
samples (one for every signal) are sent to the serial port when
they are read out of the file. The other PC runs an interrupt
based receive program that interrupts when a byte is received at
the serial port. The interrupt service routine gets the byte from
the port and puts it into a ring buffer. with this method no byte
will ever be lost (provided there is no noise on the line). If
three floating point values (12 bytes using the Microsoft C
compiler) are received, the three samples are displayed.

6.4.1 Flow measurement

Ohmeda provided three monitors to measure the necessary signals

in the breathing circuit: the Ohmeda 5200 CO2 monitor, the Ohmeda
5500 airway pressure monitor and the Ohmeda 5410 volume monitor.
The CO2 and the pressure monitors have an analog output at the
back. These signals are easy to sample with an AID converter
board in the PC. The volume monitor does not provide an analog
flow signal; instead it provides a pulse every time 3 ml gas has
passed through the sensor. A signal that can be either high or
low determines the direction of the flow. A routine that counts

Intelligent Alaras in Anesthesia 38

the pulses was written. An interrupt is generated for every pulse

and the interrupt service routine counts the pulses and

determines the flow direction. Appendix C describes this routine.

Intelligent Alarms in Anesthesia 39

Chapter 7: Conclusions an Recommendations

7.1 Conclusions

It was possible to build a working prototype of the intelligent

alarms expert system on an IBM-AT in the multitasking environment

of MultiDos-Plus. Tests were performed on a second data set that

was obtained from the anesthesia simulator; this is another data

set than the development set. The system was twice as fast

compared to a run in real time. The following malfunctions could

be identified:

- Incompetent inspiratory valve

- Incompetent expiratory valve

- Exhausted CO2 absorber

- Obstruction at the Y-piece

Obstruction in the inspiratory hose

Obstruction in the expiratory hose

It is expected that leaks and disconnects can also be detected,

but it will be difficult to distinguish between all the leaks and

disconnects. New rules for the leaks and disconnects are
currently under development.

Apart from some unexplainable crashes during startup, MultiDos­
Plus is good way to do multitasking under the single task

operating system MS-DOS.

7.2 Recommendations

1. The rules for the disconnect and the leaks have to

be implemented. Extensive tests of the intelligent alarms
system have to be performed with both simulator data and

real patient data. Although it is not possible to

introduce malfunctions while ventilating a real patient

it is important to test the system in a normal situation

to see how it behaves in the real, violent environment of

the operating room.

Intelligent Alerms in Anesthesia 40

2. The use of the information block has to be
reconsidered; it causes some overhead when it is sent from
one task to another and at this moment hardly any
information of the block is used. It is a good way to
present the information, but if the information expanses,
it may slow down the system.

3. Implementation of more sensors (second flow device,

ventilator settings) can provide a more accurate detection

of malfunctions.

4. The way the time constants of the flow and pressure

are calculated has to be reconsidered. They do not provide

a very stable calculation of the time constants.

Intelligent Alar.s in Anesthesia 41

LITERATURE

[AA87] Aa, J.J. van der
Monitoring the integrity of the circle breathing systp.m
during general anesthesia with mechanical ventilation.
M.Sc. thesis. Department of Electrical Engineering,
University of Florida, Gainesville, 1987.

[BAS87] Bastings, R.H.A.
Towards the deve~opment of an intelligent alarm system in
anesthesia.
M.Sc. thesis (1987). Faculty of Electrical Engineering,
Eindhoven University of Technology, 1989.
EUT Report 89-E-227

[BL088] B1om, J.A.
The SIMPLEXYS expert systems toolbox.
Preliminary version of a Ph.D. thesis, chapter 7, to be
submitted to the Eindhoven University of Technology in 1990.

[CHE8S] Cheney, E.W. and D.R. Kincaid
Numerical mathematics and computing. 2nd ed.
Belmont, Cal.: Wadsworth, 1985.

[C0078] Cooper, J.B. and R.S. Newbower, C.D. Long, B. McPeek
Preventable anesthesia mishaps: A study of human factors.
Anesthesiology, Vol. 49 (1978), p. 399-406.

[G0087] Good, M.L. and S. Lampotang,G.L. Gibby, J.S. Gravenstein
Training in anesthesiology: Critical event simulation.
Scientific Exhibit. Annual Meeting of the American Society
of Anesthesiologists, Atlanta, Ga., 10-14 Oct. 1987.

[LIC74] Lichtiger, M. and F. Moya (eds.)
Introduction to the practice of anesthesia.
New York: Harper & Row, 1974.

[MUL86] Mu1tiDos, a Multi tasking program for PC-DOS. Program manual.
Nanosoft Associates, 13 Westfield Road, Natick, MA 01760.
1986.

[OHM83] Ohmeda Modulus II. Operation manual.
Madison, Wis.: Ohmeda, 1983.

Intelligent Alar~s in Anesthesia 42

[ORK86] Orkin, F .K.
Anesthetic systems.
In: Miller, R.D., Anaesthesia. 2nd ed. New York: Churchill
Livingstone, 1986.

[WAT86] Waterman, D.A.
A guide to expert systems.
Reading, Mass.: Addison-Wesley, 1986.
Teknowledge series in knowledge engineering

Intelligent Alarms in Anesthesia 43

APPENDIX A: Programming tools

The data analysis program and the feature extraction program

are written in C and compiled with the Microsoft C compiler

version 4.0 (at this moment a change to version 5.1 is made). The

expert system is written in SIMPLEXYS and compiled by the

SIMPLEXYS rule compiler and the Turbo Pascal compiler version

4.0.

For the C programs some utility routines, to be used in both

programs, were written. The source code is contained in "uti!. c".

The data analysis routines are contained in "anal. c"; several

include files are needed for this (see fig. A.1). "anal.c" and

"uti!. c" were compiled and Microsofts library utility was used

to put both object files in "alarms .lib". The data analysis

("analyze.c") and the feature extraction ("features.c") have to
be linked with this library.

co2def'.h
p~def'.h
f'lwdef'.h
fl'aMe.h
analco2.c
ana I PI'S. C
analf'lw.c
defines.h
flagdef.h

analyze

C
~~~~~t· h f eat u res -+ d!:jnaM i c. h 1---------1_ • 

• 
o 

bsexpert 

IntelLigent Alarms in Anesthesia 44 



APPENDIX B: Manual utility routines 
error 

'" Swmnary 

int error( str ); 
char *str; pointer to error string to print 

'" Description 

The funtion error() prints the error string on the screen, prints 
a dos error string if possible, and aborts the program that calls 
the function. 

'" Return Value 

No return value. 

'" See Also 

'" Example 

/* exit on error */ 

char filename[801; 
FILE *data; 

if ( ( data = fopen( filename, "w" ) ) -- NULL) 
error( filename ); 

/* the program is aborted if the file cannot be opened */ 

InteLligent Alarms in Anesthesia 45 



* Swmnary 

int get_features( 
int address; 
int len; 
int queue; 

* Description 

address, len, queue ) 
address of message 
number of bytes in message 

queue number (1-31) 

The function get_features () gets 'len' bytes for the message 
queue 'queue'. The bytes are stored consecutive, starting at 
'address', so complex structures can also be send. This function 
is designed for the small mOdel of the compiler. That means that 
all data is in one segment, and that the addresses only consist 
of the offset. An address is a pointer to a variable. 
If there is no message in the queue, the function starts waiting 
until one arrives. 

* Return Value 

There is no return value. 

* See Also 

* Example 

/* get a message out of queue 5 */ 

struct SIGNAL signal_frame[3]; /* defined in "frame.h" */ 

get_features ( signal_frame, 3*sizeof( struct SIGNAL ), 5 )i 

Intelligent Alarms in Anesthesia 46 



* Summary 

int get_timet t ); 
char *t; 

* Description 

pointer to time array; 

This function gets the date and time as a string, and stores it 
in array 't'. The array will contain 26 characters, and has the 
form: 

Tue Jul 26 15:05:11 1988\0\0 

* Return Value 

There is no return value. 

* See Also 

* Example 

/* get the time and date */ 

char current_time[26J; 
*/ 

/* string lenght will always be 26 

get_time ( current_time ); 

printf( "%s\n", current time); 

Intelligent Alarms in Anesthesia 47 



* Sunnnary 

int init_flag( fIg )i 
int flgi 

* Description 

16 bits to be zeroed 

The function init_flag() sets a 16 bits variable to zero. This 
can be used for the 16 bits flag structures. 

* Return Value 

No return value 

* See Also 

* Example 

/* initialize flag structure */ 

struct C02 FLAG flagi 

init_flag( flag )i 

Intelligent Alarms in Anesthesia 

/* defined in co2def.h */ 

48 



* Sununary 

* Description 

The function multi_dos_test, tests whether the program is started 
up from DOS or MULTI-DOS. If the program was started from DOS the 
function prints an error message, and aborts. 

* Return Value 

No return value 

* See Also 

send_features, get_features, get_control, send control 

* Example 

/* test for multi-dos */ 

test_queue( queue )j /* never done if no multi-dos */ 

Intelligent Alarms ln Anesthesia 49 



* Swmnary 

int printf_bin( flg ); 
int flag; 

* Description 

16 bits to be printed 

The function printf_bin() prints a 16 bit variable as O's and 
l's. No return is added. This can be used to print a 16 bit flag 
structure. 

* Return Value 

No return value 

* See Also 

* Example 

/* print a flag */ 

struct C02_FLAG flag; 

flag.be = 1; 
flag.to = 0; 
printf_bin( flag ); 
printf( "\n"); 

Intelligent Alarms in Anesthesia 

/* defined in eo2def.h */ 

50 



send_control, getcontrol 

.. Sununary 

int send_control ( 
int queuei 
char Ci 

queue, c ) i 
queue to send to 

character to send 

char get_control( queue )i 
int queuei queue to receive from 

.. Description 

The functions send_control() and get_control() send or get one 
character to or from the specified queue 'queue'. These functions 
are built from send_features() and get_features(). Get_control() 
\o/aits for a message if no message is available. 

* Return Value 

Function get_control() returns the character from the queue. 
Function send_control() has no return value. 

.. See Also 

* Example 

/* send a character to queue 1 and get it out of there */ 

char controli 

send_control ( 1, "A" )i 

control = get_control( 1 )i 

if ( control=='A' ) exit( 1 )i 

Intelligent ALarms in Anesthesia 51 



send features 

* Summary 

int send_features( 
int addressi 
int leni 
int queuei 

* Description 

address, len, queue )i 
address of message 
number bytes in message 

queue number (1-31) 

The function send_features() sends 'len' bytes to the specified 
message queue, starting from 'address'. Complex structures can 
also be send, as long as the data of these structures are 
continuous in the memory. This function is designed for the small 
model of the compiler. That means that all data is in one 
segment, and that the addresses only consist of the offset. An 
address is a pointer to a variable. 

* Return Value 

There is no return value. 

* See Also 

* Example 

/* send features to queue 5 */ 

struct SIGNAL signal_frarne(3]i /* defined in "frarne.h" */ 

send_features ( signal_frame, 3*sizeof( struct SIGNAL ), 5 )i 

intelligent Alarms in Anesthesia 52 



* Summary 

int suspend( nr ); 
int nr; 

.. Description 

suspend 

task number 

The function suspend() stops the program and waits for the 
character 'G' in its queue; In this case the task number is the 
queue number. 

* Return Value 

There is no return value. 

.. See Also 

.. Example 

/* suspend the program */ 

control = get_control( 5 ); 

if ( control=='S' ) suspend( 1 ); 

Intelligent Alarms in Anesthesia 53 



* Sununary 

int test_queue( queue ); 
int queue; 

* Description 

message queue number 

The function test_queue() tests if there is a message in the 
specified queue. This can be used if the program wants to do some 
other task while waiting for a message (test the keyboard for a 
key for example). 

* Return Value 

Test_queue() returns 0 if no message is avaiable and returns 1 
if there is a message in the queue. 

* See Also 

send_features, 
multi_dos_test 

* Example 

get_features, 

/* get a message from queue 1 */ 

send_control, 

/* display keystrokes while waiting */ 

while ( !test_queue( 1 ) ) 
{ 
if (kbhit() ) printf("%c", getch() ); 

} 

control = get_control( 1 )i 

Intelligent Alarms in Anesthesia 

get_control, 

54 



APPENDIX C: OMHEDA 5410 VOLUME MONITOR 

This paper describes how an Ohmeda 5410 Volume Monitor can be 
interfaced with a IBM AT(XT), in order to get the flow, using the 
standard serial port (RS-232). 

Signals 

According to the 5410 Service Manual (page 36), the 5410 
provides an Expired Flow signal at pin 3 of connector J2. The 
direction of the signal is given on pin 4 (high is reverse flow). 
Jumpers PJ3 and PJ4 have to be jumpered for transducer signals. 

The signal on pin 3 will give a pulse for approximately every 
3 milliliters of gas flow through the transducer. 

Counting pulses 

The only thing that has to be done is to count the pulses in 
one period of time (e.g. 1 second). The current flow can then be 
calculated by: flow := counter*3/delta. 'Counter' is the number 
of pulses received in period 'delta' (e.g 1 second). The numeric 
value of the flow derived by this formula will be the average 
flow over the period 'delta'. 

RS-232 IBM AT(XT) interrupts 

Because the flow pulses will come at an irregular time 
interval, the best way to count them is a method based on 
interrupts. The IBM machines provide two hardware interrupt 
channels for communications (one for COM1, one for COM2). 

Four classes of these hardware interrupts are possible: 

00 change in modem status register 
01 transmitter holding register empty 
10 data received 
11 reception error or break condition received 

We choose to use the interrupt when data is received. Any of 
the other interrupts could also be used. If this interrupt is 
enabled it gives a hardware interrupt when pin RD (3 on DB25, 2 
on DB9) goes from low to high. Interrupt OB is given if COM2 is 
used, OC if COM1 is used. The following part of C code should be 
used to initialize the registers of the serial port (COMl). 

outp( Ox3fb, 0 )i 
outp( Ox3fc, OxOB )i 
inp ( Ox3fd ) i 
outp( Ox3f9, 1 )i 

/* clear line control register */ 
/* set RTS, DTR, user aux input '2 */ 
/* read line status register */ 
/* enable interrupt on data received* / 

In order to use any hardware interrupt, the corresponding bit 
in the interrupt mask register (IMR) has to be set. For the 
communication interrupt of COM1 this is done by: 

Intelligent Alarms in Anesthesia 55 



in 
and 
out 

aI, 21H 
aI, efH 
dx, 21H 

;get the content of IMR 
;set bit for COM1 
;send byte 

WritinQ an interrupt service routine 

Because we use an interrupt to update our counter, we have to 
provide an interrupt routine that replaces the current interrupt 
routine. Because the Microsoft C compiler doesn't provide a way 
to write such a routine, it is written in assembler. 
Basics of an interrupt routine: 

- push the used registers on stack 
- do the tasks you want to do 

DO NOT use DOS, because it is not re-entrant 
- pop the registers from stack 
- IRET instruction 

Because we want to use a variable in our interrupt routine 
that is shared by our C program, we have to make sure that the 
data segment is set to DGROUP (the name the MSC compiler uses for 
its small model data segment). If an interrupt is invoked, this 
is not automatically done. We also have to make sure that all 
names that we use for segments are the same as in the assembler 
program. See Microsoft C manual for details. 

If the interrupt is a hardware interrupt, the interrupt service 
routine should end with: 

mov aI, 20H 
out 20H, al 

This will clear the 'in service register' so that interrupts at 
a lower level as the one just completed, are re-enabled. 

When the interrupt service routine is written, the address of 
the beginning of the routine has to be placed in the interrupt 
vector table. The interrupt vector table occupies 4 bytes 
(segment:offset) for every interrupt, starting with interrupt O. 
The begin address of the vector table is 0000:0000. The address 
for the interrupt service routine OC should thus be written at 
(0000:0030 hexadecimal). 

Implementation 

The interrupt service routine written to get the flow pulses 
from the Ohmeda 5410 Volume Monitor replaces the current 
interrupt OC routine. COMI is used to connect the flowmeter. 

The interrupt routine tests status of the pin carrier detect 
(CD) by reading the modem status register. If CD is low the 
routine increases the counter, else it decreases the counter. 

If pin 3 of connector J2 is connected to data received (RD) 
and pin 4 is connected to carrier detect (CD), the counter 
represents the volume passed since the last counter reset in 
amounts of 3 mI. When time information is known, the flow can be 
calculated. 

Intelligent Alarms in Anesthesia 56 



The pin connections from the Volume Monitor to a DB9 serial 
plug are: 

5410 PC (DB9) 

1 (ground) --------, 
3 (PULSE) --------, 
4 (EXP FLOW) --------, 

Li tcrature 

Jourdain, R.L. 

5 (ground) 
2 (RD) 
1 (CD) 

Programmer's problem solver for the IBM PC, XT & AT. 
Englewood Cliffs, N.J.: Brady Communications/Prentice-Hall, 1986. 

Ohmeda 5410 and 5420 volume [Jonitor. Service manual. 
Madison, Wis.: BOC Group Inc., Product Service Department, 
Ohmeda, 1987. 

Intelligent Alarms in Anesthesia 57 





(205) 

(206) 

Butterweck, H.J. and J.H.F. Ritzerfeld, M.J. Werter 
FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS:~iew. 
EUT Report 88-E-205. 1988. ISBN 90-6144-205-2 

Bollen, M.H.J. and G.A.P. Jacobs 

ISSN 0167-9708 
Coden: TEUEDE 

EXTrNSIVE TESTING OF AN ALCORTiHM FOR TRAVELLING-WAVE-BASED DIRECTIONAL 
DETECTION AND PHASE-SELECTION BY USING TWDNFIL ANO EMTP. 
EUT Report 88-E-2D6. 1988. IS8N 90-6144-206-0 

(207) Schuurman, W. and M.P.H. Weenink 
STABILITY OF A TAYLOR-RELAXED CYLINDRICAL PLASMA SEPARATED FROM THE WALL 
8Y A VACUUM LAYER. 
EUT Report 88-E-2D7. 1988. ISBN 90-6144-207-9 

(208) Lucassen, F.H.R. and H.H. van de Ven 
A NOTAl ION CONVENTION IN RIGID RDBDT MODELLING. 
EUT Report 88-E-208. 1988. IS8N 90-6144-208-7 

(209) Jozwiak, L. 

(210) 

MINIMAL REALIZATION OF SEQUENTIAL MACHINES: The method of maximal 
adjacencies. 
EUT Report 88-E-209. 1988. IS8N 90-6144-209-5 

Lucassen, F.H.R. and H.H. van de Ven 
OPTIMAL 8DDY FIXED COORDINATE SYSTEMS IN NEWTON/EULER MODELLING. 
EUT Report 88-E-210. 1988. IS8N 90-6144-210-9 

(211) Boom, A.J.J. van den 
Hoo-CONTROL: An exploratory study. 
EUT Report 88-E-211. 1988. IS8N 90-6144-211-7 

(212) Zhu Yu-Cai 

(213) 

ONITHE ROBUST STABILITY OF MIMO LINEAR FEED8ACK SYSTEMS. 
EUT Report 88-E-212. 1988. ISBN 90-6144-212-5 

Zhu Yu-Cai, M.H. Driessen, A.A.H. Damen and P. 
A"NEW SCHEME FOR IDENTIFICATION AND CONTROL. 
EUT Report 88-E-213. 1988. ISBN 90-6144-213-3 

Eykhoff 

(214) Bollen, M.H,J. and C.A.P. Jacobs 
IMPLEMENTATION OF AN ALGORTfHMifOR TRAVELLING-WAVE-8ASED DIRECTIONAL 
DETECTION. 
Eur Report 89-E-214. 1989. ISBN 90-6144-214-1 

(215) Hoei jmakers, M.J. en J.M. Vleeshouwers 
EEN MODEL VAN DE SYNCHRONE MACHINE MET GELIJKRICHTER, GESCHIKT VODR 
REGELDOELEINDEN. 
EUl Report 89-E-215. 1989. ISBN 90-6144-215-X 

(216) Pineda de Cyvez, J. 
LASER: A LAyout Sensitivity ExploreR. Report and user's manual. 
EUT Report 89-E-216. 1989. IS8N 90-6144-216-8 

(217) Duarte, J.L. 

(218) 

(219 ) 

(220) 

MINAS: An algorithm for systematic state assignment of sequential 
machines - computational aspects and results. 
EUT Report 89-E-217. 1989. ISBN 90-6144-217-6 

KOWP' M.M.J.L. van de 
S TWARE SET-UP FOR DATA PROCESSING OF DEPOLARI2ATION DUE TO RAIN 
AND ICE CRYSTALS IN THE OLYMPUS PROJECT. 
EUT Report 89-E-218. 1989. ISBN 90-6144-218-4 

Koster, C.J.P. and L. Stok 
~ETWORK TO ARTWOR~utomatic schematic diagram generation. 
un i<1!port A9-E-219. 1989. ISBN 90-6144-219-2 

Wi I I elll!.. , F.t1.J. 
CONVERSES FOR WRITE-UNIDIRECTIONAL MEMORIES. 
EUT Report 89-E-220. 1989. ISBN 90-6144-220-6 

(221) Kalasek, V.K.I. and W.M.C. van den Heuvel 
L-5WITCH: A PC-program for computing transient voltages and currents during 
switching off three-phase inductances. 
EUT Report 89-E-221. 1989. IS8N 90-6144-221-4 



Eindhoven Universit of Technolo Research Re arts 
acu ty 0 ectrlca nglneerlng 

ISSN 0167-9708 
Coden: TEUEDE 

(222) J6~wiak, L. 
THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE SEPARATE REALIZATION 
OF THE NEXT-STATE AND OUTPUT FUNCTIONS. 

(223) 

EUT Report 89-E-222. 1989. ISBN 90-6144-222-1 

Jozwiak, L. 
THE Bit FULL-DECOMPOSITION OF SEQUENTIAL MACHINES. 
EUT Report 89-E-223. 1989. ISBN 90-6144-223-0 

(224) Book of abstracts of the first Benelux-Japan Workshop on Information and 
Communication Theory, Eindhoven, The Netherlands, 3-5 September 1989. 
Ed. by Han Vinck. 
EUT Report ~224. 1989. ISBN 90-6144-224-9 

(225) Hoeijmakers, M.J. 
A POSSIBILiTY TO INCORPORATE SATURATION IN THE SIMPLE, GLOBAL MODEL 
OF A SYNCHRONOUS MACHINE WITH RECTIFIER. 

(226) 

EUT Report 89-E-22S. 1989. ISBN 90-6144-225-7 

~ah~~i' R.P. and E.M. van Veldhuizen) W.R. Rut£ers, L.H.Th. Rietjens 
XP MENTS ON INITIAL BEHAViOUR OF CORONA eEN RATED WITH ELECTRICAL 

PULSES SUPERIMPOSED ON DC BIAS. 
EUT Report 89-E-226. 1989. ISBN 90-6144-226-5 

(227) Bastings, R.H.A. 
TOWARD THE DEVELOPMENT OF AN INTELLIGENT ALARM SYSTEM IN ANESTHESIA. 
EUT Report 89-E-227. 1989. ISBN 90-6144-227-3 

(228) Hekker, J.J. 
~ER ANIMATED GRAPHICS AS A TEACHING TOOL FOR THE ANESTHESIA MACHINE 

(229) 

SIMULATOR. 
EUT Report 89-E-228. 1989. ISBN 90-6144-228-1 

Oostroffi, J.H.M. van 
INTELLIGENT ALARMS IN ANESTHESIA: An implementation. 
EUT Report B9-E-229. 1989. ISBN 90-6144-229-X 


	Summary
	Samenvatting
	Contents
	List of figures
	List of tables
	Introduction
	1.1 Introduction
	1.2 Anesthesia machine
	1.3 Ventilator
	1.4 High pressure part
	1.5 Low pressure part
	1.6 Circle system
	1.7 Scavening system
	2. Signal measurement versus detection
	2.1 Introduction
	2.2 What do we want to detect
	2.3 Which signal do we want to measure?
	3. Data analysis
	3.1 Introduction
	3.2 General approach
	3.3 CO2 signal
	3.4 Pressure in the inspiratory limb
	3.5 Flow in the expiratory hose
	4. Feature analysis
	4.1 Introduction
	4.2 Normal curves versus malfunctions
	4.3 Dtection rules
	5.An introduction in expert systems
	5.1 What is an expert system?
	5.2 SIMPLEXYS : an expert system building tool
	5.3 Implementation in SIMPLEXYS
	6. Program considerations
	6.1 Introduction
	6.2 MultiDos-Plus
	6.3 Intertask communications
	6.4 Implementation
	7. Conclusions an recommendationds
	7.1 Conclusions
	7.2 Recommendations
	Literature
	Appendix A : programming tools
	Appendix B : manual utility routines
	Appenidx C : omheda 5410 volume monitor
	Literature



