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EFFICIENT NON-BLOCKING 
K-COMPARE-SINGLE-SWAP OPERATION 

CROSS-REFERENCE TO RELATED 

APPLICATION(S) 
[0001] This application is a divisional of US. application 
Ser. No. 11/864,667, ?led Sep. 28, 2007, Which is a divisional 
ofU.S. application Ser. No. 10/670,495, ?led Sep. 24, 2003, 
Which claims priority, under 35 U.S.C. §119(e), of US. Pro 
visional Application No. 60/413,231, ?led Sep. 24, 2002, all 
of Which are incorporated herein by reference in their entirety. 

BACKGROUND 

[0002] 1. Field of the Invention 
[0003] The present invention relates generally to coordina 
tion amongst execution sequences in a multiprocessor com 
puter, and more particularly, to techniques for facilitating 
implementations of concurrent data structures and/or pro 
grams. 
[0004] 2. Description of the Related Art 
[0005] Interest in atomic multi-location synchroniZation 
operations dates back at least to the Motorola MC68030 chip, 
Which supported a double-compare-and-sWap operation 
(DCAS). See generally, Motorola, MC68030 User’s Manual, 
Prentice-Hall (1989). A DCAS operation generaliZes a com 
pare-and-sWap (CAS) to alloW atomic access to tWo loca 
tions. DCAS has also been the subject of recent research. See 
e.g., O. Agesen, D. Detlefs, C. Flood, A. GarthWaite, P. Mar 
tin, M. Moir, N. Shavit, and G. Steele, DCAS-based Concur 
rent Deques, Theory of Computing Systems, 35:349-386 
(2002); D. Detlefs, P. Martin, M. Moir, and G. Steele, Lock 
free Reference Counting, Distributed Computing, 15(4):255 
271 (2002); and M. GreenWald, Non-Blocking Synchroniza 
tion and System Design, Ph.D. Thesis, Stanford University 
Technical Report STAN-CS-TR-99-1624 (1999). 
[0006] In general, the implementation of concurrent data 
structures is much easier if one can apply atomic operations to 
multiple non-adjacent memory locations. HoWever, despite 
the early MC68030 support for DCAS and despite some 
research interest multi-location synchronization, current pro 
cessor architectures, by and large, support atomic operations 
only on small, contiguous regions of memory (such as a 
single or double Word). 
[0007] As a result, the current literature offers tWo extremes 
of nonblocking softWare synchroniZation support for concur 
rent data structure design: intricate designs of speci?c struc 
tures based on single-location operations such as compare 
and-sWap (CAS), and general-purpose multi-location 
transactional memory implementations. While the former are 
sometimes ef?cient, they are invariably hard to extend and 
generaliZe. The latter are ?exible and general, but typically 
costly. 
[0008] In an early paper, Herlihy and Moss described trans 
actional memory, a more general transactional approach 
Where synchroniZation operations are executed as optimistic 
atomic transactions in hardWare. See M. Herlihy and J. E. B. 
Moss, Transactional Memory Architectural Support for 
Lock-free Data Structures, In Proc. 20th Annual Interna 
tional Symposium on Computer Architecture (1993). 
[0009] Barnes proposed a softWare implementation of a 
K-location read-modify-Write. See e.g., G. Barnes, A Method 
for Implementing Lock-free Shared Data Structures, In Proc. 
5th ACM Symposium on Parallel Algorithms and Architec 
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tures, pp. 261-270 (1993). That implementation, as Well as 
those of others (see e.g., J. Turek, D. Shasha, and S. Prakash, 
Locking without Blocking: Making Lock-based Concurrent 
Data Structure Algorithms Nonblocking, In Proc. 1 1th ACM 
Symposium on Principles of Database Systems, pp. 212-222 
(1 992); A. Israeli and L. Rappoport, Disjoint-Access-Parallel 
Implementations of Strong Shared Memory Primitives, In 
Proc. 13th Annual ACM Symposium on Principles of Distrib 
uted Computing, pp. 151-160 (1994)) Was based on a coop 
erative method Where threads recursively help all other 
threads until an operation completes. Unfortunately, this 
method introduces signi?cant overhead as redundant “help 
ing” threads do the Work of other threads on unrelated loca 
tions because a chain of dependencies among operations 
exists. 
[0010] Shavit and Touitou coined the term softWare trans 
actional memory (STM) and presented the ?rst lock-free 
implementation of an atomic multi-location transaction that 
avoided redundant “helping” in the common case, and thus 
signi?cantly outperformed other lock-free algorithms. See N. 
Shavit and D. Touitou, Software Transactional Memory, Dis 
tributed Computing, 10(2):99-116 (1997). HoWever, the 
described formulation of STM Was restricted to “static” trans 
actions, in Which the set of memory locations to be accessed 
Was knoWn in advance. 
[0011] Moir, Luchangco and Herlihy have described an 
obstruction free implementation of a general STM that sup 
ports “dynamic” multi-location transactions. See commonly 
oWned, co-pending US. patent application Ser. No. 10/ 621, 
072, entitled “SOFTWARE TRANSACTIONAL MEMORY 
FOR DYNAMICALLY SIZABLE SHARED DATA 
STRUCTURES” ?led 16 Jul. 2003 naming Mark S. Moir, 
Victor Luchangco and Maurice Herlihy as inventors. Moir, 
Luchangco and Herlihy have also described an obstruction 
free implementation of a multi-location compare-and-sWap 
(KCAS) operation, i.e., a k-location compare-and-sWap on 
non-adjacent locations. See commonly-oWned, co-pending 
US. patent application Ser. No. 10/620,747, entitled 
“OBSTRUCTION-FREE MECHANISM FOR ATOMIC 
UPDATE OF MULTIPLE NON-CONTIGUOUS LOCA 
TIONS IN SHARED MEMORY” ?led 16 Jul. 2003 naming 
Mark S. Moir, Victor Luchangco and Maurice Herlihy as 
inventors. 
[0012] While such obstruction-free implementations can 
avoid helping altogether, thereby reducing the algorithm 
complexity of the algorithm and eliminating associated over 
heads, fur‘ther reductions are desired. Indeed, the strong 
semantics of the aforementioned techniques, e.g., full multi 
location transaction support, generally come at a cost. Fur 
ther, full multi-location transaction support may be overkill 
for some important softWare applications such as linked-list 
manipulations. What is needed is reasonably e?icient, though 
potentially-Weaker, multi-location operations that are general 
enough to reduce the design complexities of algorithms based 
on CAS alone. 

SUMMARY 

[0013] We have developed an obstruction-free implemen 
tation of an atomic k-location-compare single-sWap (KCSS) 
operation. Amongst other things, KCSS alloWs for simple non 
blocking manipulation of linked data structures by overcom 
ing a key algorithmic dif?culty in their design: i.e., making 
sure that While a pointer is being manipulated, neighboring 
parts of the data structure remain unchanged. Our implemen 
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tation is ef?cient in the typical uncontended case. For 
example, in some realizations, a successful k-location KCSS 
operation employs only tWo CAS operations, tWo stores, and 
2 k noncached loads When there is no contention. Our tech 
niques are supportable using a variety of single-location 
atomic read-modify-Write operations, such as CAS, LL/SC, 
etc. Accordingly, We believe that our results lend themselves 
to ef?cient and ?exible nonblocking manipulations of list 
based data structures using synchronization mechanisms 
available on many current processor architectures. Finally, 
While KCSS operation semantics provide a useful descriptive 
context for our techniques, these techniques apply more gen 
erally to transactions that read multiple locations but modify 
only a single location. 
[0014] In addition, as a building block for some implemen 
tations of our techniques, We have developed a mechanism for 
emulating load-linked (LL) and store-conditional (SC) opera 
tions for use in an LL/SC synchronization construct. One 
interesting exploitation is to provide LL/ SC synchronization 
in a processor that does not directly support load-linked and 
store-conditional operations. For example, our techniques 
may be used to provide emulation for LL/ SC synchronization 
(e.g., to support data structures and softWare designed for 
LL/ SC synchronization) on a processor architecture that sup 
ports CAS operations. Alternatively, our techniques may be 
employed to provide LL/SC synchronization With stronger 
semantics than provided by the LL and SC operations directly 
supported by a particular processor. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0015] The present invention may be better understood, and 
its numerous objects, features, and advantages made apparent 
to those skilled in the art by referencing the accompanying 
draWings. 
[0016] FIGS. 1A and 1B illustrate certain hazards that exist 
in attempts to implement, using single-location CAS, non 
blocking insertion and deletion operations on a linked list. 
[0017] FIGS. 2A and 2B illustrate certain hazards that exist 
in attempts to implement, using single-location CAS, non 
blocking deletion operations on a linked list. 
[0018] FIGS. 3, 4 and 5 illustrate respective uses of exem 
plary KCSS operations to simplify the design of a linked-list 
construct to support multiset operations. 
[0019] The use of the same reference symbols in different 
draWings indicates similar or identical items. 

DESCRIPTION OF THE PREFERRED 

EMBODIMENT(S) 
Terminology 

[0020] A shared data structure is a collection of data that 
can be accessed using an associated set of operations. A 
traditional Way to implement a shared data structure is to use 
mutual exclusion (locks) to ensure that multiple operations do 
not concurrently access (the same part of) the data structure 
concurrently. This approach has many disadvantages, as dis 
cussed in numerous papers in the literature. A signi?cant 
amount of research over the last decade or so has focused on 

designing nonblocking shared data structures, Which pre 
clude the use of locks and thereby avoid their associated 
disadvantages. 
[0021] Typically, tWo nonblocking conditions, lock-free 
dom and Wait-freedom, have been considered in the literature. 
In this description, We focus on a neW nonblocking condition, 
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obstruction-freedom, that We noW de?ne, in part, through 
contrast With the more conventionally understood nonblock 
ing conditions. 
[0022] Lock-freedom: An implementation of an operation 
is lock-free if after a ?nite number of steps of any execution of 
that operation, some operation execution completes (irre 
spective of the timing behavior of any concurrent operation 
executions). 
[0023] Wait-freedom: An implementation of an operation 
is Wait-free if after a ?nite number of steps of any execution of 
that operation, that operation execution completes (irrespec 
tive of the timing behavior of any concurrent operation execu 
tions). 
[0024] A shared data structure is lock-free or Wait-free if all 
its operations are lock-free or Wait-free respectively. Much of 
the dif?culty associated With designing lock-free and Wait 
free shared data structures is that When concurrent operations 
interfere With each other, We must ensure that at least one of 
them makes progress (all of them, in the Wait-free case). 
Ob struction-freedom relaxes this requirement. We explain in 
the next section Why obstruction-freedom is a useful property 
despite its Weaker progress guarantees. 
[0025] Obstruction-freedom: An implementation of an 
operation is obstruction-free if every operation execution that 
executes in isolation after some point completes after a ?nite 
number of steps. 
[0026] Observe that all three properties preclude the use of 
locks for synchronization because, if an operation acquires a 
lock and then fails, any other operation that requires that lock 
can never complete, regardless of hoW many steps it takes, 
even if it runs alone. 

[0027] As applied to transactions, the de?nitions above 
need to be extended slightly to preclude the possibility that 
every attempt to commit any transaction fails. Speci?cally, 
We have the folloWing nonblocking de?nitions for transac 
tions. 
[0028] Wait-free transactions: A transaction implementa 
tion is Wait-free if all its operations are Wait-free and any 
thread that repeatedly attempts to commit transactions even 
tually performs a successful commit. 
[0029] Lock-free transactions: A transaction implementa 
tion is lock-free if all its operations are lock-free and if some 
thread repeatedly attempts to commit transactions, then even 
tually some thread performs a successful commit. 
[0030] Obstruction-free transactions: A transaction imple 
mentation is obstruction-free if all its operations are obstruc 
tion-free and if some thread repeatedly attempts to commit 
transactions, and runs in isolation after some point, then it 
eventually performs a successful commit. 

Obstruction-Free Implementations 

[0031] Clearly, obstruction-freedom is a Weaker property 
than lock-freedom and Wait-freedom. Here, We explain Why 
We believe that it is nonetheless an important property to 
consider. 
[0032] First, We believe that obstruction-free implementa 
tions are likely to be substantially simpler to design than 
lock-free and especially Wait-free ones. This has numerous 
bene?ts including ease of modi?cation, ease of veri?cation, 
etc. In this speci?cation, We describe the ?rst nonblocking 
implementation of dynamic softWare transactional memory 
(STM); our implementation guarantees obstruction-freedom 
but not lock-freedom. It is simpler and more ef?cient than 
lock-free implementations of static STM. 
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[0033] Second, in some scenarios, We can exploit proper 
ties of the environment to ensure that every obstruction-free 
operation execution completes. For example, in a uniproces 
sor Where threads are scheduled by time slice, relatively short 
obstruction-free operations may be guaranteed to run alone 
for long enough to complete. Another example is in priority 
scheduled uniproces sors: an operation runs in isolation unless 
it is preempted by a higher priority operation. 
[0034] Third, in some scenarios, We might reason that, even 
though the system does not guarantee operations Will run in 
isolation for long enough to complete, We may determine by 
analysis or experiments that the “livelock” scenario that lock 
freedom precludes but obstruction-freedom admits does not 
occur in practice. 
[0035] Finally, an obstruction-free implementation can be 
augmented With a variety of different mechanisms that 
attempt to control the interactions betWeen concurrent opera 
tions in order to ensure that operations eventually complete. A 
simple example is to use “backoff.” Using this approach, 
operations Wait before retrying upon encountering interfer 
ence. Various schemes can be chosen for deciding hoW long to 
Wait. One choice is a combination of randomization and 
exponential back off, Which is very likely to cause operations 
to run long enough in isolation to complete. Such schemes 
can be effective for improving the performance of lock-free 
implementations by reducing contention, and We expect that 
they Will be similarly effective in alloWing obstruction-free 
operations to complete. Other “out of ban ” contention 
reduction mechanisms can also be employed, including 
mechanisms yet to be developed. The beauty of our approach 
is that the obstruction-free implementations themselves Will 
not have to be modi?ed (and therefore Will not have to be 
reveri?ed) in order to use a different contention reduction 
mechanisms. 
[0036] Other possible approaches include queuing and 
time stamping approaches, in Which threads agree amongst 
themselves to “Wait” for each other to ?nish. While simplistic 
applications of these ideas Would give rise to some of the 
same problems that the use of locks does, We have much more 
freedom in designing more sophisticated approaches for con 
tention reduction than When using locks, because correctness 
is not jeopardized by interrupting an operation at any time and 
alloWing another operation to continue execution. We expect 
that contention betWeen operations Will typically be quite 
rare, and that repeated retries Will rarely be necessary. In 
scenarios Where this is true, We bene?t from the simple and 
e?icient obstruction-free designs and only rarely invoke the 
more heavy-Weight contention reduction mechanisms. In 
contrast, in most lock-free and Wait-free implementations, the 
mechanisms that are used to ensure the respective progress 
properties impose signi?cant overhead in the typical case. 
[0037] Accordingly, building on these insights, We have 
developed simple, ef?cient nonblocking implementations of 
single-modi?cation transactions, including nonblocking 
implementations structured as an atomic k-location-compare 
single-sWap (KCSS) operation. KCSS veri?es the contents of k 
locations and modi?es one of them, all as a single atomic 
operation. One implementation of KCS S, When executed With 
out contention, requires only tWo CAS operations, tWo stores, 
and 2 k non-cached loads. It requires no memory barriers 
under the TSO memory model. 

[0038] The nonblocking progress condition that our imple 
mentation meets is obstruction-freedom. As detailed above, 
obstruction-freedom is a progress condition that tends to sim 
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plify the design of nonblocking algorithms by removing the 
need to provide strong progress guarantees in the algorithm 
itself (as required by Wait-freedom or lock-freedom). Simply 
put, obstruction-freedom guarantees a thread’s progress if 
other threads do not actively interfere for a suf?cient period. 
The de?nition is thus geared toWards the uncontended case, 
handling contended cases through orthogonal contention 
management mechanisms. Lock-based algorithms are not 
obstruction-free because a thread trying to acquire a lock can 
be blocked inde?nitely by another thread that holds the lock. 
On the other hand, a lock-free algorithm is also obstruction 
free because lock-freedom guarantees progress by some 
thread if some thread continuously take steps. 

A Motivating Example 

Manipulating Linked Data Structures 

[0039] KCSS is a natural tool for linked data structure 
manipulation; it alloWs a thread, While modifying a pointer, to 
check atomically that related nodes and pointers have not 
changed. An exploitation of general applicability is the imple 
mentation of nonblocking linked data structures With arbi 
trary insertions and deletions. 
[0040] Examples presented in FIGS. 1A and 1B and in 
FIGS. 1A and 1B illustrate some of the haZards that exist in 
straight-forward (though ultimately nai've) attempts to imple 
ment, using single-location CAS, nonblocking insertion and 
deletion operations on a simple linked list. The examples are 
meant to illustrate that CAS-based manipulation of a list is 
hard. Circled locations indicate the target addresses of CAS 
operations; crossed out pointers are the values before a CAS 
succeeds. 

[0041] In the example of FIGS. 1A and 1B, process (or 
thread) P is deletes node b from the list, While process (or 
thread) Q concurrently attempts to insert node c into the list. 
FIG. 1A illustrates partial sequences of instructions corre 
sponding to processes P and Q, each including a CAS opera 
tion intended to facilitate concurrent access to the list. FIG. 
1B illustrates the unintended results of the concurrent access; 
node c is not inserted in the list, but rather linked from deleted 
node b. FIGS. 2A and 2B illustrate an analogous competition 
betWeen deleting processes. Process (or thread) P is deletes 
node b from the list While process (or thread) Q concurrently 
attempts to delete node c. FIG. 2B likeWise illustrates the 
unintended results of the concurrent access; node c is not 
deleted from the list, but rather remains linked from node a. 

[0042] In short, the naive CAS based implementations sim 
ply do not Work. Although effective (and rather ingenious) 
nonblocking algorithms do exist for ordered list-based sets 
(see e.g., T. Harris, A Pragmatic Implementation 0fN0n 
blockingLinked Lists, In Proc. 15th International Symposium 
on Distributed Computing (2001); and M. Michael, High 
Performance Dynamic Lock-free Hash Tables and List-based 
Sets, In Proc. 14th Annual ACM Symposium on Parallel 
Algorithms and Architectures, pages 73-82 (2002)), these 
algorithms do not generaliZe easily to arbitrary linked data 
structures. For example, it is not clear hoW to modify these 
algorithms to implement multisets. 
[0043] By employing KCSS instead of CAS, We can sim 
plify the design of arbitrary nonblocking linked-list opera 
tions. In particular, KCSS alloWs us to con?rm that other 
pointers of the illustrated lists remain unchanged at a linear 
iZation point at Which We atomically perform the single sWap 
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used to effectuate the insert or delete operation. Furthermore, 
more complex data structures may also be supported. 
[0044] FIGS. 3, 4 and 5 illustrate how the use ofKCSS can 
signi?cantly simplify the design of a linked-list construct to 
support multiset operations. Each element in the multiset 
(i.e., an element with nonZero multiplicity) is represented by 
a node in the list, which stores the element’s multiplicity in a 
count ?eld. Inserts or deletes of such elements respectively 
increment or decrement the count (FIG. 3). Two- and four 
location KCSS operations are used to add and remove nodes by 
swapping one pointer, while con?rming nearby nodes have 
not changed (FIGS. 4 and 5). For simplicity, the illustrated 
implementation uses a 4CSS operation to make sure the adja 
cent nodes have not changed during node removal. We can 
achieve the same purpose using KCSS operations that access 
only two locations at the cost of a slightly more intricate 
algorithm. However, adding a small number of additional 
locations to a KCSS operation is not prohibitive because, as 
illustrated below, the cost of verifying each additional loca 
tion is quite low, only two noncached loads. In many cases, 
this is a reasonable tradeoff. 

[0045] In designing some implementations of our KCSS 
algorithm, we provide a simple and novel implementation of 
load-linked/store-conditional (LL/ SC) using CAS synchroni 
Zation; this implementation improves on previous results in 
that it can accommodate pointer values on all common archi 
tectures. In particular, ABA avoidance tags or ids need not be 
encoded integrally with pointer representations. We believe 
this algorithm is of independent signi?cance: it extends the 
applicability of LL/SC-based algorithms to all common 
architectures that support CAS. 

Preliminaries 

[0046] A k-location-compare single-swap (KCSS) opera 
tion takes k locations al . . . ak, k expected values el . . . ek, and 

a new value n1. If the locations all contain the expected values, 
the KCSS operation atomically changes the ?rst location al 
from el to nl and returns true; in this case, we say that the KCSS 
succeeds. Otherwise, the KCSS returns false and does not 
modify any memory location; in this case we say that it fails. 
In the next section, we present an implementation for KCSS 
using particular read, load-linked (LL), store-conditional 
(SC) and snapshot operations that we have also implemented. 
In this section, we describe more precisely the interface and 
semantics of the various operations, the correctness require 
ments, and our assumptions about the system. 

Operation Semantics 

[0047] We now describe the semantics of the operations for 
which we provide implementations in the next section. We 
consider a collection of locations. At any point in time, each 
location has an abstract value from a set of application values. 
As explained below, our implementation assumes some mild 
restrictions on this set. 

[0048] A KCSS(k, a[l . . . k], expvals[l . . . k], newval) 
operation returns false if for some ie[l,k], the abstract value 
of location a[i] differs from expvals[i]. If this operation 
returns true, then it also changes the abstract value of location 
a[l] to newval. The locations speci?ed by a must all be 
distinct. 

[0049] READ(a) and LL(a) operations return the abstract 
value of location a. An LL operation of thread p is said to be 
outstanding until p invokes an SC operation on the same loca 
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tion. The behavior of all operations is unde?ned if LL or KCSS 
is invoked by process p while p has outstanding LL operation 
on any location. While, it is straightforward to remove this 
restriction (see e.g., M. Moir, Practical Implementations of 
Non-blocking Synchronization Primitives, In Proc. 16th 
Annual ACM Symposium on Principles of Distributed Com 
puting, pp. 219-228 (1997) (presenting an ef?cient technique 
for generaliZing LL/ SC implementations so that LL/ SC 
sequences can be executed concurrently on different loca 
tions)), retaining it simpli?es our presentation. Accordingly, 
for simplicity of description and without limitation, we 
assume that LL and SC are used in pairs on the same location. 

[0050] The behavior of an SC(a) operation S by process p is 
unde?ned if it is invoked before any LL(a) operation by pro 
cess p has completed, or if there is not a previous LL(a) 
operation L by process p such that there is no LL, SC or KCSS 
operation invoked by process p between L and S. Otherwise, 
an SC(a) operation by process p returns true only if no other 
operation that changes the abstract value of location a has 
occurred since the preceding LL(a) operation by process p. We 
say that a SC operation succeeds if it returns true, and fails 
otherwise. To ensure that this operation is useful for imple 
menting obstruction-free data structures, we further require 
that an SC(a) operation succeeds if no other operation that 
accesses location a takes a step between the invocation of p’s 
preceding LL(a) operation and the completion of the SC(a) 
operation. Observe that this speci?cation allows a concurrent 
READ(a) operation to cause a SC(a) operation to fail; in fact, it 
would do so in our implementation. Although this possibility 
does not jeopardize obstruction-freedom, eliminating it 
would allow some concurrent operations to succeed that 
would otherwise fail, and thus, may be desirable. As later 
described, our implementation can easily be modi?ed to 
come close to this goal. 

[0051] A SNAPSHOT(m, a[l . . . m]) operation returns an 
array V [l . . . . m] such that, for each ie[l,m], V[i] is the 
abstract value of location a[i]. The locations speci?ed by a 
must be distinct. 

Correctness Condition 

[0052] Below we present obstruction-free, lineariZable 
implementations of the operations described above. Linear 
iZability implies that each operation appears to take effect 
instantaneously at some point between its invocation and its 
response; this point is the operation’s lineariZation point. 
Obstruction-freedom requires that if a thread p executes an 
operation, and after some point p runs without interference 
for long enough, then that operation will terminate. 
Interoperability with Dynamic Data Structures and Memory 
Management 
[0053] In our implementations of the above operations, 
each location initially holds its initial abstract value. Thus, 
locations can be dynamically allocated and initialiZed by a 
single thread, which is important for dynamic-siZed data 
structures. Our implementations also allow a location to be 
freed if no operation that speci?es this location as an argu 
ment is executing or will be invoked. Furthermore, they guar 
antee that there will always be a pointer to an object that could 
be accessed in the future. Thus, our operations do not affect 
memory management, and in particular, data structures based 
on our implementations “play nicely” with garbage collection 
and nonblocking memory management techniques. The gar 
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bage collector Would need to be modi?ed slightly to distin 
guish between pointers and tagged ids, Which are described 
below. 

System Model 

[0054] We assume a machine architecture (typically a 
shared memory multiprocessor) that supports lineariZable 
load, store, and CAS operations. It is straightforward to trans 
form these algorithms to Work in systems that provide LL and 
SC rather than CAS. In this case, native LL and SC operations 
should be directly used to replace the use of CAS in our 
implementations. Native LL and SC operations do not replace 
our implementations of the LL and SC operations because our 
implementations of these operations include additional func 
tionality designed to be compatible With the SNAPSHOT opera 
tion. Appropriate LL/ SC for CAS substitutions are knoWn in 
the art (see e.g., M. Moir, Practical Implementations ofNon 
blocking Synchronization Primitives, In Proc. 16th Annual 
ACM Symposium on Principles of Distributed Computing, 
pp. 219-228 (1997)). 
[0055] The semantics of a CAS operations Will be under 
stood With reference to the folloWing atomic code fragment: 

bool CAS(loc *a, value expval, value neWval) { 
atomically{ 

if (*a != expval) 
return false; 

*a = neWval; 
return true; 

[0056] Although We assume lineariZability, our algorithms 
are correct on multiprocessors that provide only the TSO 
memory model, Without adding memory barrier instructions; 
this is a side effect of the Way We use CAS. 

An Exemplary Implementation 

[0057] We noW describe our implementations of the READ, 
LL, SC, SNAPSHOT, and KCSS operations. We begin by explain 
ing a restricted version of the LL, SC, and READ operations, 
Which is correct if We need only these operations. We then 
explain hoW LL can be modi?ed slightly to support a simple 
SNAPSHOT operation. Finally We explain hoW We implement 
KCSS using LL, SC, and SNAPSHOT. 
[0058] Recall that an SC(a,v) operation by process p should 
succeed only if no other operation that modi?es location a is 
linearized betWeen the lineariZation points of p’s preceding 
LL(a) operation and p’s SC(a,v) operation. To overcome the 
ABA problem, previous implementations of LL/ SC from 
CAS have employed special “tags” or “version numbers” to 
be stored together With the application value in a location that 
can be accessed by CAS. This requirement severely restricts 
the range of values that can be stored by those SC implemen 
tations, and in particular, makes these implementations inap 
plicable for storing pointers in many architectures. 
[0059] Our goal is to design implementations that place 
much milder restrictions on the set of application values, in 
particular so that our implementations can access pointers on 
all common multiprocessor architectures. BeloW We specify 
these restrictions, Which are too Weak to alloW tag/version 
number techniques, and then explain hoW We can achieve our 
implementations despite these Weaker restrictions. 
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[0060] Each location can store either an application value 
or a tagged process id. The abstract value of a location that 
contains an application value is alWays that value; When the 
location contains a tagged id, it is a little more complicated, as 
We explain beloW. A tagged process id (tagged id for short) 
contains a process id and a tag. 
[0061] The only restriction We place on application values 
is that We have some Way to distinguish them from tagged ids. 
One simple Way to achieve this When the application value of 
interest is a pointer is to “steal” the loW-order bit to mark 
tagged ids: We can arrange that all locations are aligned on 
even byte boundaries so that the loW-order bit of every pointer 
is Zero (locations that Will be targets of CAS instructions are 
usually required to be Word-aligned anyWay). 
[0062] For convenience, We treat tags as if they Were 
unbounded integers. In today’s 64-bit architectures, We can 
use one bit to distinguish tagged ids, 15 bits for the process id 
and 48 bits for the tag, Which is more than enough to avoid the 
ABA problem that potentially arises as the result of tags 
Wrapping around. 

LL and SC 

[0063] We noW explain a simpli?ed version of our imple 
mentations of the LL and SC operations using the code that 
folloWs. 

typedefstruct locis { 
taggedidit tid; // used for SNAPSHOT 
valueit val; // atomically CASable 

} locit; 
void RESET(locit *a) { 
1: valueit oldval = a—>val; 

2: if(TAGGEDiID(oldval)) 
3: CAS (&a—>val, oldval, VALiSAVE[ID(oldval)]); 

valueit LL(locit *a) { 
4: While (true) { 
5: INCLMYLTAGGEDLID; // increment local tag 

valueit val = READ(a); 

VALiSAVE[MYiID] = val; 
if (CAS(&a->val, val, MYiTAGGEDiID» { 

a—>tid = MYLTAGGEDLID; // needed for SNAPSHOT 
return val; 

} 
bool SC(locit *a, valueit neWval) { 
11: return CAS (&a—>val, MYLTAGGEDLID, neWval); 

valueit READ (locit *a) { 
12: While (true) { 
13: valueit val = a—>val; 

14: if (!TAGGEDiID(val)) retum val; 
15: RESET(a); 

[0064] For the purposes of this simpli?ed version, the 
reader should ignore the tid ?eld of the location record (i.e., a 
location record is simply a memory location that contains an 
application value or a tagged id), and any code that accesses 
it, namely line 9. 
[0065] In order to implement LL(a) and SC(a,v) operations 
for process p, We need a Way to determine Whether the 
abstract value of location a has changed since the LL(a) opera 
tion Was linearized. Our approach is to have p’s LL(a) opera 
tion store a previously unused tagged id in location a (line 8). 
We ensure that the tagged id is neW by having p maintain a 
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local tag, Which it increments each time it needs a neW tagged 
id (line 5). As explained below, We do not alloW any operation 
that changes the abstract value of location a to be linearized 
While the tagged id of another process is in that location. 
Thus, if the SC(a,v) operation changes the contents of location 
a from the tagged id stored by the preceding LL(a) of the same 
process to V (i.e., the CAS in line 1 1 succeeds), then it changes 
the abstract value of location a to V While ensuring that the 
abstract value of location a has not changed since the previous 
LL(a) operation, as required. 
[0066] To guarantee obstruction-freedom, it is not su?i 
cient to prevent other operations from being linearized 
betWeen the lineariZation points of p’s LL(a) and SC(a,v) 
operations: We must guarantee that a thread that runs Without 
interference Will make progress. Therefore, it must be pos 
sible for a concurrent operation to remove p’s tagged id from 
location a (thereby causing p’s SC to fail), Without changing 
the abstract value of location a; this is achieved by the auxil 
iary RESET operation, Which is explained beloW. To make 
this possible, before attempting to store a neW tagged id in 
location a, p’s LL(a) operation ?rst stores the application value 
it intends to replace With its tagged id (line 6) in a special 
location VALiSAVE[p] (line 7). (Recall that p can have at most 
one outstanding LL operation, so a single location is su?i 
cient.) For noW, We can consider the abstract value of a loca 
tion that contains a tagged id of process p to be VALiSAVE[p]. 
Thus, it is easy to see that When p’s LL(a) operation replaces 
the application value in location a With a tagged id (line 8), the 
abstract value of location a does not change. Similarly, 
another operation that uses CAS to remove p’s tagged id can 
correctly determine the abstract value of location a in order to 
replace p’s tagged id With the correct abstract value by read 
ing VALiSAVE[p] (line 3). (Process p does not change VALi 
SAVE[p] While any location contains its tagged id. Also, there 
is no ABA problem When either p or another process removes 
p’s tagged id from location a, because p uses a fresh tagged id 
each time it stores a tagged id in location a and only process 
p stores a tagged id With p’s process id.) 
[0067] This completes the description of the LL(a) and SC(a, 
v) operations, except that We have not explained the READ(a) 
operation, Which is used by LL(a) (line 6). 

READ 

[0068] The READ operation determines the abstract value of 
location a. It ?rst reads location a (line 13). If the value read 
is an application value, then this Was the abstract value of 
location a When line 13 Was executed, so it can be returned 
(line 14). Otherwise, the abstract value of location a When line 
13 Was executed Was VALiSAVE[p] Where p is the process 
Who se id is in the tagged id read at line 13. Simply reading that 
location Would not necessarily provide the correct abstract 
value of location a because p might have changed the contents 
of this location since the READ(a) operation executed line 13. 
HoWever, because there can be no ABA problem on tagged 
ids, the READ(a) operation could read VALiSAVE[p] and then 
reread location a to con?rm that the same tagged id is still in 
location a. In this case, it could correctly lineariZe a read of the 
abstract value of location a at any point betWeen the tWo reads 
of location a. If We Wanted to support only LL, SC, and READ 
operations, this Would be correct and Would alloW a location 
to be read Without causing a concurrent LL/SC sequence on the 
same location to fail. HoWever, in code above, if a READ 
operation encounters a tagged id, it calls RESET in order to 
attempt to set location a back to its abstract value. As 
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explained later, this is useful to support the SNAPSHOT and 
KCSS operations that are presented next. 

SNAPSHOT 

[0069] We have adapted a Well-knoWn nonblocking tech 
nique, see Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, 
and N. Shavit, Atomic Snapshots of Shared Memory, Journal 
of the ACM (JACM), 40(4):873-890 (1993), to obtain an 
atomic snapshot of a number of locations. We repeatedly 
“collect” (i.e., read each location individually and record the 
values read) the values from the set of locations until We 
encounter a collect in Which none of the values collected has 
changed since it Was read in the previous collect. In this case, 
it is easy to see that, When the ?rst value is read in the last 
collect, all of the values read during the previous collect are 
still in their respective locations. A tricky detail is hoW to 
determine that a value has not changed since the last time it 
Was read. Because of the ABA problem, it is not su?icient to 
simply determine that the tWo values read Were the same: the 
location’s value may have changed to a different value and 
then changed back again betWeen these tWo reads. As 
explained beloW, We can determine a value has not changed 
using the tid ?eld (Which We have been ignoring until noW) 
associated With each location. This ?eld serves the same 
purpose as the tags (or version numbers) discussed earlier. 
HoWever, our implementation does not require them to be 
modi?ed atomically With the val ?eld, and therefore does not 
restrict applicability, as discussed earlier. 

[0070] Exemplary code for SNAPSHOT folloWs. 

= COLLECTiTAGGEDiIDS (m,a); 

S7: VA[1 ..m] = COLLECTiVALUES(rn,a); 
S8: VB[l..m] = COLLECTivALUES(m,a); 
S9: TB[1 ..m] = COLLECTiTAGGEDiIDSQma); 

$10: if (for all i, (TA[i] == TB [i]) && 
(VA[i] == VB [i])) 

S1 1: return VA; 

} 
} 

[0071] Observe that the basic structure (if We ignore tags 
for a moment longer) is essentially as described above: We 
collect the set of values tWice (lines S7 and S8) and retry if any 
of the values changed betWeen the ?rst read and the second 
(line S10). Observe further that COLLECTiVALUES uses READ 
to read the value of each location. Thus, it ensures that the 
abstract value it reads from a location a is stored in location a 
itself. As described earlier, for the abstract value of a location 
to change, some process must install a fresh tagged id in that 
location and subsequently change that tagged id to the neW 
abstract value. This entire sequence must occur betWeen the 
READ in the ?rst collect and the READ in the second. Therefore, 
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line 9 of the LL operation, Which stores the fresh tagged id in 
the tid ?eld of the location, must be executed betWeen the ?rst 
and second reads of the tid ?eld by the SNAPSHOT operation, 
Which Will therefore retry (see lines S6 and S9). This argu 
ment is simple, but it depends on the fact that READ resets a 
location that contains a tagged id. BeloW, We explain hoW our 
implementation can be modi?ed to avoid this requirement. 

KCSS 

[0072] Our KCSS implementation can be built using the 
operations described above and Will be understood With ref 
erence to the exemplary code that folloWs: 

bool KCSS(int k, (locit *) a[l..k], 
valueit expvals[l..k] , valueit neWval){ 
valueit oldvals[l..k] ; 

Kl: While (true) { 
K2: oldvals[l] = LL(a[l]); 
K3: oldvals[2..k] = SNAPSHOT(k-l,a[2..k]); 
K4: if (for some i, oldvals [i] != expvals[i]) { 
K5: SC(a[l], oldvals[l]); 
K6: return false; 

// try to commit the transaction 
K7: if (SC(a[l], neWval)) return true; 

]> // end While 
} 

[0073] The implementation itself is straightforward, but the 
lineariZation argument is trickier. The basic idea is to use LL 
and SC to change the value of location a[l] from expvals[l] to 
neWval (lines K2 and K7), and to use SNAPSHOT to con?rm 
that the values in locations a[2 . . .k] match expvals[2 . . .k] 

(lines K3 and K4). If any of the k values is observed to differ 
from its expected value (line K4), then the KCSS and returns 
false, as required (line K6). However, before returning, it 
attempts to restore a[l] to expvals[l] using SC (line K5), so 
that the previous LL operation is no longer outstanding, and 
thus, the process may subsequently invoke another LL or KCSS 
operation. 
[0074] If the SC in line K7 succeeds, then We knoW that the 
abstract value of location a[l] is expvals[l] for the entire 
interval betWeen the lineariZation point of the LL in line K2 
and the lineariZation point of the SC in line K7. In particular, 
this holds at the lineariZation point of the SNAPSHOT called in 
line K3, When the abstract values of a[2 . . . k] match expvals[2 
. . . k]. Thus, We can lineariZe the successful KCSS operation at 

that point. This is Where the lineariZation argument becomes 
slightly tricky: The actual value in location a[l] does not 
change to neWval until the SC in line K7 is linearized. HoW 
ever, the abstract value of that location changes at the linear 
iZation point of the KCSS operation, Which occurs earlier. 
Therefore, if any other operation observes the abstract value 
of that location betWeen the lineariZation points of the SNAP 
SHOT in line K3 and the SC in line K7, it Will see the Wrong 
abstract value and the implementation Will not be lineariZ 
able. To prevent this problem, We require READ to reset a 
location, rather than simply reading the VALiSAVE entry of 
the process Whose tagged id is in the location, and then 
con?rming that the tagged id is still in the location (as 
described earlier). This ensures that no process observes the 
Wrong abstract value in the interval betWeen the SNAPSHOT 
and the successful SC. As described beloW, We can relax this 
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requirement someWhat; We have presented our implementa 
tions Without these modi?cations in order to keep the presen 
tation simple and clear. 

Variations 

[0075] We have presented a simple and e?icient nonblock 
ing implementation of a dynamic collection of locations that 
supports READ, LL, SC, SNAPSHOT and KCSS operations. We 
have also explained a simple extension by Which We can 
support transactions that modify at most one location. These 
operations form a poWerful set of tools for designing rela 
tively simple obstruction-free implementations of important 
shared data structures such as linked lists. Because of the Way 
in Which We solve the ABA problem, our implementation is 
more ef?cient, more ?exible, and more Widely applicable for 
implementing linked data structures than the techniques used 
in recent direct implementations of lock-free linked lists. 
[0076] From the basic ideas We have presented in this 
paper, numerous possible optimiZations, extensions, and gen 
eraliZations are possible. We describe a feW of them here. 

Optimizing READ 

[0077] Our READ operation can be optimiZed by observing 
that if the CAS in line 3 thereof succeeds, then We have 
already determined the abstract value of the location being 
accessed, Which can be returned immediately Without reread 
1ng. 

Improving Concurrency 

[0078] As stated earlier, We can modify our implementation 
so that READ does not alWays have to reset a location that 
contains a tagged id: in some cases, reading a value from the 
VALiSAVE location of the process Whose tagged id is encoun 
tered, and then con?rming that the tagged id is still in the 
location is su?icient to determine the correct abstract value. 
This does not Work, hoWever, in cases in Which We lineariZe a 
modi?cation to the location accessed by a LL/SC pair at a point 
other than the lineariZation point of the SC operation. In the 
operations We have presented, this is the case only for LL/SC 
sequences that are part of a higher-level KCSS operation. 
Therefore, if We extend the interface of LL so that the invoker 
can specify Whether or not this is a “dangerous” use of LL/SC, 
then this information could be stored in the tagged id. Thus, 
READ could reset only When it encounters such LL/SC 
sequences, While alloWing other, simpler uses of LL/SC to 
proceed concurrently. 
[0079] This modi?cation Would complicate the SNAPSHOT 
implementation slightly. Recall that the argument given ear 
lier for the lineariZability of SNAPSHOT operations depends on 
READ alWays resetting a location if it contains a tagged id. This 
can be overcome by having SNAPSHOT also collect the tagged 
ids from locations for Which it has determined values Without 
resetting the location. As this Wouldbe done only if the tagged 
id is in the location on behalf of a nondangerous LL/SC 
sequence, the abstract value of the location does not change 
before that tagged id is removed from the location, so it is 
suf?cient for SNAPSHOT to con?rm that it has not. 

DCSS and CAS 

[0080] To implement a double-compare single-sWap 
(DCSS) operation (i.e., KCSS With k:2), We can replace the 
SNAPSHOT of k— l :1 location in our KCSS implementation With 
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a simple READ. Similarly, for a CAS on these locations, Which 
is simply a KCSS operation With kIl, the snapshot can be 
eliminated entirely. 
[0081] In some cases, such as the multiset example men 
tioned earlier, locations that support only read, CAS and 
DCSS operations are suf?cient. In cases such as this one, We 
can eliminate the tid ?eld (and the code that accesses it), as 
this ?eld Was used only for the SNAPSHOT operation. We can 
also implement CAS by using the native CAS instruction, 
resetting the location if it contains a tagged id. 

Optimizations to SNAPSHOT and KCSS 

[0082] The implementation of SNAPSHOT can be improved 
at the cost of muddying the presentation slightly. For 
example, the tags collected at line S9 can be used for the ?rst 
set of tags in the next iteration (We collect the tags again in the 
next iteration at line S6). Also, one can eliminate a complete 
sequence of reads from the snapshot, at the cost of a slightly 
more complex proof. We can also improve the performance of 
the KCSS by breaking the snapshot abstraction (for example, 
there is no need to take an entire snapshot if one of the early 
values read does not match the expected value). 

Single Modi?cation Transactions 

[0083] We chose the KCSS API to demonstrate our ideas 
because its semantics is easy to state and understand. HoW 
ever, the ideas presented here can be extended to support 
transactions that modify only a single location. The basic idea 
is to have transactional loads record the information collected 
in the ?rst half of the snapshot in our KCSS implementation, 
and transactional commit do the second half of the snap shot to 
determine if any of the values read had been modi?ed by a 
concurrent operation since being read by the transactional 
load. Interestingly, the implementation of this stronger 
semantics Would actually be someWhat more ef?cient than 
using READ and KCSS for the same purpose, because the READS 
and the ?rst half of the snap shot in KCSS are collapsed together 
into the transactional load. It Would also be straightforWard to 
provide a transactional “validate” operation that rechecks the 
values read so far in the transaction. 
[0084] We believe that the ability provided by KCSS to “con 
?rm” the abstract value of some locations, While modifying 
an-other, Will signi?cantly reduce the impact of ABA issues 
on algorithm designers. HoWever, such issues may still arise 
in some cases, and implementing the transactions as dis 
cussed above Would completely relieve designers of the bur 
den of dealing With this problem. 

Other Embodiments 

[0085] While the invention(s) is(are) described With refer 
ence to various implementations and exploitations, it Will be 
understood that these embodiments are illustrative and that 
the scope of the invention(s) is not limited to them. Terms 
such as alWays, never, all, none, etc. are used herein to 
describe sets of consistent states presented by a given com 
putational system, particularly in the context of correctness 
proofs. Of course, persons of ordinary skill in the art Will 
recognize that certain transitory states may and do exist in 
physical implementations even if not presented by the com 
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putational system. Accordingly, such terms and invariants 
Will be understood in the context of consistent states pre 
sented by a given computational system rather than as a 
requirement for precisely simultaneous effect of multiple 
state changes. This “hiding” of internal states is commonly 
referred to by calling the composite operation “atomic”, and 
by allusion to a prohibition against any process seeing any of 
the internal states partially performed. 
[0086] In some embodiments, the current invention may 
comprise a computer program product embodied in one or 
more computer readable media. 
[0087] Many variations, modi?cations, additions, and 
improvements are possible. For example, While application to 
particular concurrent shared objects and particular imple 
mentations thereof have been described, applications to other 
shared objects and other implementations Will also be appre 
ciated by persons of ordinary skill in the art. While much of 
description herein has focused on compare and sWap (CAS) 
based synchronization, other synchronization primitives may 
be employed. For example, based on the description herein, 
persons of ordinary skill in the art Will appreciate that other 
suitable constructs, including load-linked and store-condi 
tional operation pairs (LL/SC) may be employed, as Well. 
Plural instances may be provided for components, operations 
or structures described herein as a single instance. Finally, 
boundaries betWeen various components, operations and data 
stores are someWhat arbitrary, and particular operations are 
illustrated in the context of speci?c illustrative con?gura 
tions. Other allocations of functionality are envisioned and 
may fall Within the scope of the invention(s). 
[0088] In general, structures and functionality presented as 
separate components in the exemplary con?gurations may be 
implemented as a combined structure or component. Simi 
larly, structures and functionality presented as a single com 
ponent may be implemented as separate components. These 
and other variations, modi?cations, additions, and improve 
ments may fall Within the scope of the invention(s). 

1.-47. (canceled) 
48. A non-transitory computer-readable storage medium 

storing one or more instruction sequences executable on a 

multiprocessor to implement a linearizable, non-blocking 
synchronization operation con?gured to: 

verify contents of a plurality of targeted memory locations; 
and 

modify, at most, one of the locations. 
49. The non-transitory computer-readable storage medium 

of claim 48, Wherein the plurality of targeted memory loca 
tions comprises three or more memory locations. 

50. The non-transitory computer-readable storage medium 
of claim 48, Wherein the one or more instruction sequences 
comprise program instructions executable on the multipro 
cessor to implement a k-compare, single-sWap (KCSS) 
operation. 

51. The non-transitory computer-readable storage medium 
of claim 48, 

Wherein, in an uncontended execution thereof, the non 
blocking synchronization operation employs no more 
than tWo single-location synchronization operations. 

52.-106. (canceled) 

* * * * * 


