
Technische Universität Wien

Diplomarbeit

XML Databases for Augmented Reality

ausgeführt am
Institut für Softwaretechnik und Interaktive Systeme

der Technischen Universität Wien

unter Anleitung von
Ao.Univ.Prof. DI. Dr. Dieter Schmalstieg

und DI. Dr. Gerhard Reitmayr
als verantwortlich mitwirkenden Assistenten

durch
Werner Frieb
Treustraße 57

1200 Wien

Wien, 02. Oktober 2004

.

Contents

1 Introduction 9

2 Related work 11

2.1 XML . 11

2.1.1 Introduction . 11

2.1.2 The building blocks of XML 12

2.1.3 Using namespaces . 15

2.1.4 Selecting data with XPath . 16

2.1.5 Applying transformations using XSLT 17

2.1.6 Querying documents using XQuery 18

2.1.7 Defining languages using XML Schema 20

2.1.8 Working with XML documents 21

2.2 XML Databases . 23

2.2.1 Introduction . 23

2.2.2 Data-centric vs. Document-centric XML data 24

2.2.3 Relational Databases . 25

2.2.4 XML-enabled databases . 25

2.2.5 Native XML Databases . 25

2.3 Database interfaces . 26

2.3.1 Introduction . 26

2.3.2 Borland VCL . 27

2.3.3 Microsoft MFC . 28

2.3.4 XML:DB API . 28

2.3.5 XinCJ - Xindice C++ API . 30

3 Problem Description 31

3.1 Introduction . 31

3.2 XML Database server . 32

3.3 Client interface . 32

3.4 Data representation in form of SoXML 33

1

2 CONTENTS

3.5 Specification of a test application . 35

3.6 Implementation . 35

4 Choosing a database product 37

4.1 Introduction . 37

4.2 Tamino . 37

4.2.1 Installation . 38

4.2.2 Applications . 38

4.2.3 Database features . 39

4.2.4 API’s . 39

4.2.5 Documentation . 39

4.3 Xindice . 40

4.3.1 Installation . 40

4.3.2 Applications . 41

4.3.3 Database features . 42

4.3.4 API’s . 42

4.3.5 Documentation . 43

4.4 eXist . 43

4.4.1 Installation . 43

4.4.2 Applications . 43

4.4.3 Database features . 43

4.4.4 API’s . 44

4.4.5 Documentation . 44

4.5 Conclusion . 44

5 Design 47

5.1 Overview . 47

5.2 Environment analysis . 47

5.3 Design issues . 48

5.3.1 Portability (P) . 49

5.3.2 Modularity and Reusability (M) 49

5.3.3 Usability and Acceptability (U) 50

5.3.4 Performance (S) . 50

5.3.5 Extensibility (E) . 51

5.3.6 Scalability, Availability and Security 51

5.3.7 Cost . 51

5.4 Selecting an interface . 52

5.4.1 Tamino API for C . 52

5.4.2 HTTP Client API for ActiveX 53

CONTENTS 3

5.4.3 Native HTTP Client API . 53

5.4.4 Conclusion . 54

5.5 System architecture . 54

5.5.1 XML:DB API . 55

5.5.2 System model . 55

5.5.3 Client . 56

5.5.4 Server . 57

5.5.5 Workflow of a query . 58

5.6 API Classes . 59

5.6.1 HTTPConnection . 59

5.6.2 String as query result type . 60

5.7 Conclusion . 60

6 Implementation 61

6.1 Client . 61

6.1.1 Database access classes . 61

6.1.2 Transformation classes . 64

6.1.3 SoXML DOM Model classes 64

6.1.4 Optimizing the API . 65

6.2 Server . 66

6.2.1 Server components . 67

6.2.2 Studierstube Passthru Servlet 69

6.2.3 Performance problems . 71

7 Sample application 73

7.1 Introduction . 73

7.2 BAUML Language . 73

7.3 BAUMLBrowser Application . 75

7.3.1 Features . 75

7.3.2 Core component . 76

7.3.3 User interface . 76

7.3.4 Implementation . 76

8 Summary 79

A Database Comparison Charts 81

B Database API manual 89

B.1 Database access module . 89

B.1.1 Getting started . 90

4 CONTENTS

B.1.2 Sample database . 91

B.1.3 Retrieving objects from the database 92

B.1.4 Transforming query results . 94

B.1.5 Advanced topics . 98

B.2 SoXML DOM Model module . 99

B.2.1 Getting started . 100

B.2.2 Parsing an XML document . 101

B.2.3 Constructing an XML document 103

C BAUMLBrowser manual 105

C.1 User Interface Guide . 105

C.1.1 Tree control . 105

C.1.2 Graphics window . 106

C.1.3 Setting application options . 107

C.1.4 Connecting to a database . 107

C.1.5 Inserting new objects . 107

C.1.6 Updating objects . 108

C.1.7 Deleting objects . 108

C.1.8 Saving objects . 108

C.1.9 Object intersection test . 109

C.1.10 ”Has point” operation . 109

C.2 Core Component . 109

C.2.1 Basic concept . 110

C.2.2 Class initialization . 110

C.2.3 Establishing a connection . 111

C.2.4 Reading nodes from the database 112

C.2.5 Getting object data . 113

C.2.6 Updating objects . 114

C.2.7 Special functions . 115

D Installation and Configuration guide 117

D.1 Installation . 117

D.1.1 Hardware prerequisites . 117

D.1.2 Software prerequisites . 117

D.1.3 Installation procedure . 118

D.2 Creating databases and collections 120

D.2.1 Creating a database . 120

D.2.2 Creating a collection . 120

D.2.3 Providing a database scheme 121

CONTENTS 5

D.2.4 Inserting documents . 121

D.3 Configuring the fixed stylesheet . 121

6 CONTENTS

Abstract

The application of XML, an upcoming storage and communication format, requires

an appropriate organisational system, if a certain quantity of document entities is

exceeded. Generally, this can be best accomplished by employing a database system,

which is targeted towards this technology, namely an XML Database.

This master thesis implements such a system for the Interactive Media Systems

Group at Vienna University of Technology. Starting from the choice of three candidate

databases, we have selected the one, which is best complying with the requirements

of the Institute. According to the Client/Server architecture, we have installed and

set up a central database server as a common storage system. The client applications

accessing this database are part of Studierstube, an Augmented Reality system, which

is the current research project of the group. In order to seamlessly integrate the XML

database technology into Studierstube applications, we have designed and implemented

a programming interface, which provides access to the database using XML query

languages like XPath and XQuery. Finally, the implementation of the system was

tested by means of a sample application, which processes XML documents stored in

the database.

CONTENTS 7

Kurzfassung

Der Einsatz von XML, dem standardisierten Dokument- und Kommunikationsformat,

erfordert ein geeignetes Organisationssystem, wenn eine große Anzahl von Dokumenten

verwaltet werden muss. Datenbanken eignen sich im allgemeinen am besten, um diese

Aufgabe zu bewerkstelligen. Im Kontext von XML ist dies am effizientesten durch

den Einsatz einer XML Datenbank zu erreichen, die direkte Unterstützung für diese

Technologie bietet.

Diese Diplomarbeit implementiert ein derartiges Datenbanksystem für die Interactive

Media System Group der Technischen Universität Wien. Ausgehend von einer Auswahl

von drei Kandidat-Datenbanken, haben wir diejenige ausgesucht, die am besten den

Anforderungen des Instituts entspricht. Gemäß Client/Server-Architektur, wurde von

uns ein zentraler Datenbankserver installiert, der als gemeinsam genutzter Speicher

dient. Die Client-Anwendungen, die auf diesen Server zugreifen, sind Teil des Augmented

Reality Systems Studierstube, dem aktuellen Forschungsprojekt der Gruppe. Um die

XML Datenbank-Technologie in Studierstube Anwendungen zu integrieren, haben

wir eine Programmierschnittstelle entworfen und implementiert, die den Zugriff auf

die Datenbank mit Hilfe der XML Abfragesprachen XPath und XQuery ermöglicht.

Abschließend haben wir die Implementierung des Systems mit Hilfe einer Beispielanwen-

dung getestet, die XML Dokumente verarbeitet, welche in der Datenbank gespeichert

sind.

8 CONTENTS

Acknowledgements

First of all, I would like to thank my parents, who made it possible for me to start

studying computer sciences. Hopefully, now I can give something back and my mother

has a reason to be a bit proud of her son.

A big ”Thank You” also goes to my professor DI Dr. techn. Dieter Schmalstieg,

who offered me this project and always provided me with resources and people in no

time, thereby avoiding unnecessary delays in the progress of my work.

Furthermore, I would like to thank Dr. techn. Gerhard Reitmayr for supporting

me with ideas and suggestions that helped me designing the software and to solve

a lot of arising implementation problems. And, in particular, for his patience and

understanding with my situation, when I was indignant and impatient.

Special thanks and two big kisses for Magistra Elisabeth Lahner-Altmann and

Gudrun Wakolbinger, for proofreading my work and helping me to get rid of many

errors.

And, last but not least, a ”Thank You” to all of my friends, who supported me

mentally during this work, especially in hard times. Special thanks go to Matthias

Kramer, who encouraged me to proceed with my work in the most difficult phase.

Chapter 1

Introduction

XML was seen as a miracle drug for the software industry, when it was introduced

and standardized by the W3C consortium in 1998. Rumors and wild speculations

were spread. It was said that this technology would revolutionize and completely

change computer technology, especially the Internet. Now, a few years later, these

thoughts have turned out to be a hype. The revolution did not take place and COBOL

based computer systems are still used by several banks. Instead, XML is going to

be established as a standard in a slower, but quite steady way. The advantages of a

common readable data format are increasingly outweighing the fears of management

staff to fail at employing a new technology.

The idea of describing data with the help of a meta language is by no means new.

XML is originating from SGML, the Standard Generalized Markup Language, which

was conceived in the 1960s-1970s and standardized by the ISO organization in 1986.

So, one can ask, why did it take so long for a good idea to be employed by a bigger

community? SGML is, compared to XML, much more customizable and thus, more

expensive to implement. Furthermore, at that time computer memory was much

more expensive than it is today. It was seen as a waste of resources and money to

use several bytes of computer memory in order to store a single byte of information,

as it is common with XML.

The worldwide proliferation of PC systems and the resulting deterioration on

prices for computer memory enabled the distribution of this technology. Strictly

speaking, the additional bytes needed by XML to store data are not really wasted,

but provide information about the structure of the data. This way, it is possible

to write generic applications, which can process many kinds of different document

formats. This advantage can not be achieved when using a proprietary binary data

format. Nowadays, the ever growing pool of Open Source Software offers a vast

amount of freely available applications and utilities, which support the processing of

XML data.

As with many new technologies, universities and research labs are the first ones

9

10 CHAPTER 1. INTRODUCTION

employing them, like the Interactive Media Systems Group at Vienna University of

Technology did with XML. Meanwhile, a large number of different XML documents

have been accumulated as single files stored on workstation computers of staff members.

Thus, the file system is not an adequate storage medium any more, and another

solution is needed to manage the data. Since databases have proven to be a good

technology to store and query data in a scalable manner, the idea was born to employ

an XML database as a replacement for the file system.

At the time of writing, XML Databases are a relatively new technology. The

experiences in their robustness and usefulness are quite limited, compared to those

with Relational Databases. Thus, it was not even clear, whether they are matured

enough to be utilized for a project like that. Therefore, this thesis can also be seen

as an experiment to check out the current state of XML Database technology. And,

to anticipate it, it turned out to be an experiment with a successful outcome.

Reading the problem statement of this thesis, one may think that this is an easy

task, which can be accomplished in no time - as the author admittedly was, when he

started his work. Due to the youth of this technology several problems needed to be

solved, which came across us mainly during the implementation phase. Nevertheless,

the author does not regret having started this project, since he learned much about

the upcoming XML technology. Hopefully, this work is a contribution to support the

development of the Studierstube system and will serve as a base for further projects.

Chapter 2

Related work

2.1 XML

2.1.1 Introduction

XML is, like many other names in the information technology, an abbreviation and

stands for the term Extensible Markup Language. It is a text based meta language

for the definition of computer languages, which describe the syntax and structure of

data. As a markup language, the syntax of XML is based on tags and attributes, and

thus, looks quite similar to HTML. But, in contrast to the fixed language constructs

of HTML, XML allows to define your own tags and attributes. In this way, it is

possible to create your own XML language.

Originating from SGML, the Standard Generalized Markup Language, XML was

standardized in its first version by the World Wide Web Consortium in 1998. Since

then it has achieved a great acceptance in the worldwide computer industry and is

supported by many companies, including the big ones like Microsoft, Sun and IBM.

XML was originally intended as a universal data format in order to facilitate

the exchange of information between applications. But, due to its popularity, it

has entered many different fields of the information technology [6]. Until today, a

number of languages have been defined, which are based on XML. Among them there

are standardized languages like XHTML for World Wide Web applications, WML for

WAP-phones, MATHML for mathematical expressions and XMLRPC for interprocess

communication. In the course of the introduction of XML Databases, XML has even

begun to be a partial replacement for Relational Databases.

Employing XML for storing data has many advantages over the usage of a proprietary

binary data format. XML is platform independent, readable by humans, supports

localization and is based on an international standard. Moreover, the common syntax

of XML languages enables its users to share a wide range of tools, applications and

related technologies like editors, parsers and XML processors. This way, projects

11

12 CHAPTER 2. RELATED WORK

utilizing XML can benefit from a big common pool of software applications and thus

save time and money.

The following sections give an overview of the language features and related

technologies like XSLT, XPath and XML Schema. Since a comprehensive description

of XML is far out of the scope of this work, we will only discuss the basic features

and refer to literature when needed.

2.1.2 The building blocks of XML

XML is a standardized meta language - or also meta document format - which is purely

based on Unicode text. It is used to describe elements and structures of documents.

The W3C XML standard defines a set of rules, which specifies the building blocks and

syntax of a well-formed XML document. As the term ”markup language” already

reveals, the most characteristic entities of XML are marks, which are called tags.

A tag is a text, which is enclosed by angle brackets (<>). Tags are used to label

and structure the content of an XML document. When defining a new document

format, which is based on XML, one has to specify his own set of tags according to

the type of data he wants to handle. The W3C standard only specifies the syntax

rules for these tags, but does not say anything about their meaning. This is left to

the creator of this new document format.

Additional to these tags the W3C standard specifies further entities, which can be

used to form a document. The following sections give an overview of these entities,

which an XML document can, or respectively, has to be composed of.

XML Declaration

Each well-formed XML document has to start with a declaration, which specifies the

XML version and the character encoding used in the document, the so-called XML

Declaration. It has to be the foremost item of a document. The following example

specifies to use XML version 1.0 and character encoding UTF-8:

<?xml version="1.0" encoding="UTF -8"?>

This declaration tells an application, which processes the document, how to interpret

the remainder of the XML document. Although the W3C standard defines it as

obligatory, it is often omitted in practice.

Tags

Tags are used to define the logical structure of an XML document. A tag is a text,

which is enclosed by angle brackets (<>). There are always pairs of tags: A start

2.1. XML 13

tag and an end tag, which enclose a part of a document and thus give it a certain

meaning. The name of the end tag is the name of the start tag preceded by a ”/”.

Such a pair of tags is also referred to as ”XML element”. The following example

shows an XML element, which marks a text as a caption:

<caption > The building blocks of XML </caption >

Start and an end tags without any text between them are called ”empty elements”.

Since it is quite usual to use empty elements, the W3C standard defines an abbreviated

form for that. Instead of writing:

<caption ></caption >

one can also write

<caption/>

Normally, an XML document will contain more than one XML element. There are

two ways to align multiple elements. The first way is to align them serially, like in

the following example, which represents a list of two captions.

<caption > The building blocks of XML </caption >
<caption > Using namespaces </caption >

The second way is by nesting them. This enables to structure a document hierarchically.

The following example shows how previous captions can be defined as part of an article

element.

<article >
<caption > The building blocks of XML </caption >
<caption > Using namespaces </caption >

</article >

There is one exception, where it is not allowed to align XML elements serially. This is

the root tag of the document. The W3C standard specifies that a well-formed XML

document must have only one topmost tag and all other tags have to be part of it.

14 CHAPTER 2. RELATED WORK

Attributes

Beside the way to store data between a pair of tags, it is also possible to store data

in form of attributes. An attribute is a named parameter, which can be attached

to a start tag. Each start tag can own an arbitrary number of attributes. This is

accomplished by adding the name of the attribute, followed by a ”=” sign and the

value of the attribute enclosed in apostrophes. The following example shows a list of

two articles, where the title of the article and the name of the author are stored in

attributes.

<article title="XML and Databases" author="Ronald Bourret">
This paper gives a high -level overview of how
to use XML with databases. It describes how ...

</article >
<article title="eXist: An Open Source Native XML Database"
author="Wolfgang Meier">

eXist is an Open Source effort to develop
a native XML database system , which ...

</article >

Basically it does not matter, whether to use a pair of tags or an attribute to store

a value, as long as it can be expressed as a single line string. The biggest difference

between tags and attributes is, that attributes cannot be further structured like tags.

Attributes are well suited to store atomic values, whereas tags are used when storing

structured or big sized data.

CData

Some characters, like angle brackets, commas and apostrophes have a special meaning

in XML. They cannot be used directly in regular text sections. Though there is a

way to include them by using special expressions, sometimes a text must be kept in

its original form. This is where the CData section comes into play. It allows to store

arbitrary text in an XML document. The following example shows how you can use

this language element to include special characters in an article.

<article >
<![CDATA[Here can come any text ,
including special characters
like <,> and &]
]>

</article >

A CData section is always enclosed by the strings ”<![CDATA[” and ”]]>”.

Refer to [7] for a more comprehensive description of the CData element.

2.1. XML 15

Processing instruction

The processing instruction (PI) is a convenient way to include additional information

for applications, which process the XML document. A PI starts with ”<?” followed

by the name of the application. It can hold any number of attributes and is ended

by the string ”?>”. The following example shows a PI, which defines two debugging

attributes.

<?myapp debug="yes" output="print"?>

Comment

The comment tag is used to include annotations in an XML document, which are

not part of the document content. Everything between the strings ”<!–” and ”–>”

is treated as comment. The following example shows an annotation containing the

name of the author.

<!-- Created by Tom Jones -->

2.1.3 Using namespaces

When working with XML, it happens, that one wants to use the same name for two

different XML tags. For example, think of the tag ”address”, which could be used to

hold a persons home address as well as the network address of a computer. Using the

same name for different purposes, would lead to a name conflict, because we would

not be able to distinguish between these tags. This name conflict can be resolved by

the use of namespaces, which can be specified in any start tag. The following example

shows how aforementioned ”address” tags can be used side by side in the same XML

document.

<?xml version="1.0" encoding="UTF -8"?>

<form xmlns:person="http://www.mydomain.com/xml/person"
xmlns:computer="http: //www.mydomain.com/xml/computer">

<person:address >New York , Broadway 173</person:address >
<computer:address >192.168.0.10 </computer:address >

</form>

16 CHAPTER 2. RELATED WORK

The root tag ”form” contains the declaration of two namespaces, ”person” and

”computer”, which start with ”xmlns” followed by ”:” and a shortcut for the namespace,

called namespace prefix. The string, which is assigned to these attributes, is used to

identify the namespace and is usually a worldwide unique URI (Universal Resource

Identifier). The namespace prefix is then utilized in the remaining document to refer

to these declarations. It is written preceding to the tag, followed by ”:” and the name

of the tag. This way, the two ”address” tags can be distinguished from each other.

See [8] for a comprehensive description of XML namespaces.

2.1.4 Selecting data with XPath

XPath is a standardized addressing scheme for selecting a node or a set of nodes from

XML data. The selected nodes can then be further processed by an application or by

other languages like XSLT or XQuery. In fact, XPath is specified as part of XSLT,

the W3C standard for XML transformation, which is described later in this chapter.

XPath allows to specify a location path, which defines the context of the nodes to

find, and a condition the selected nodes must satisfy. These path expressions look very

much like directory paths, when working with a computer file system. But XPath

path expressions support several relationships, which are called axis. For example

there is a child, parent, sibling or ancestor axis.

XPath also defines a library of standard functions for working with strings, numbers

and Boolean expressions. These functions can be called in the conditional part of an

XPath statement in order to specify further properties of the selected nodes.

Assume a library, which stores scientific articles in form of XML documents and

that the following XML example represents a section of this library:

<library >
<article title="XML and Databases" author="Ronald Bourret">

This paper gives a high -level overview of
how to use XML with databases. It describes how ...

</article >
<article title="eXist: An Open Source Native XML Database"

author="Wolfgang Meier">
eXist is an Open Source effort to develop
a native XML database system , which ...

</article >
...

</library >

Assume further, that we want to select all articles written by Ronald Bourret from

the library. Using XPath, the statement doing this, would look like the following line.

/library/article[@author="Ronald Bourret"]

2.1. XML 17

The first part of the statement, the path expression ”/library/article”, selects all

articles of the library. The subsequent conditional part, which is always enclosed

in brackets, then reduces the selected set to those articles, which contain an author

attribute with the value ”Ronald Bourret”.

For further information concerning XPath, see W3Schools XPath Tutorial [9] and

[10] for a comprehensive set of practical examples explaining the various ways of

selecting data with XPath.

2.1.5 Applying transformations using XSLT

XSLT, which stands for the term Extensible Stylesheet Language Transformations, is

a programming language, especially developed for the transformation of XML data.

An XSLT document, also called stylesheet, contains rules and statements, which

define how to transform the data. Using this language an XML document can be

transformed to any text format, including HTML and XML. Since XSLT is defined

using XML, an XSLT program is also an XML document - it follows the syntactical

rules of XML, too.

The basic principle of how an XSLT stylesheet works, is to select certain parts

of an XML document and apply a transformation to them. It works a bit like a

pattern matching mechanism, where the patterns are specified by XPath expressions

(see previous section). The XPath expression selects the parts of the documents,

which should be transformed in a certain way. The transformation is then defined

by special XSLT statements, which access the data stored in the XML fragment and

copy, transform or rearrange them in a new way. The transformation is applied for

each XML fragment matching the XPath expression. In general, an XSLT stylesheet

contains multiple pattern matching/transformation statements, which are executed

successively.

Since an XSLT document is just plain text, a special application is needed to

interpret the included statements and apply them to an XML document. Such an

application is called XSLT processor. There are a number of freely available XSLT

processors, which can be downloaded from the Internet, like Xalan from the Apache

project, or Saxon, which was written by Michael Kay.

In the following example we will compile a list of all articles contained in the

library document of the previous section. The resulting document should contain the

article’s title and the name of the author separated by a comma.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org /1999/ XSL/Transform">

18 CHAPTER 2. RELATED WORK

<xsl:output method="text"/>

<xsl:template match="/library/article">
<xsl:value-of select = "@title"/>
<xsl:text >, </xsl:text >
<xsl:value-of select = "@author"/>

</xsl:template >

</xsl:stylesheet >

Since an XSLT stylesheet is an XML document, the first line has to contain the XML

declaration. The second line defines the root element ”xsl:stylesheet” of the stylesheet

and declares the namespace of the XSLT language. The subsequent ”xsl:output”

statement then sets the output method to plain text. The XSLT output statement

supports the methods text, html and xml. The fourth line defines a template element,

the pattern matching part of the stylesheet, which selects all articles from the source

document by passing the XPath expression ”/library/article” in the attribute ”match”.

Within the template element we extract the title and author attributes from the

current XML fragment and add a comma between them. The template element is

called for each article of the source document and adds the selected attributes to the

output list. The result of applying the stylesheet to the source document is then a

list, separated by comma, like the following:

XML and Databases, Ronald Bourret
eXist - An Open Source Native XML Database, Wolfgang Meier ...

In order to learn more about the XSLT language, we recommend to read the XSLT

tutorial by W3Schools [11].

2.1.6 Querying documents using XQuery

In addition to the languages XPath and XSLT, the W3C Consortium is currently

working on a draft of a new XML query language, called XQuery. Though some

details may still be a subject of change, the specification of this language already

seems to have reached its final phase, at the time of writing. The current version has

already been implemented in a number of projects, including the XML Databases

Tamino and eXist.

XQuery is a combination of the features of XPath and XSLT and, to some extent,

can be seen as a replacement for these two. XQuery syntax has some similarities to

the syntax of SQL [7] and is therefore often referred to as the SQL for XML. One

big advantage to XSLT is - due to its non-XML syntax - its improved readability for

humans and thus it is much easier to learn.

2.1. XML 19

The XML Query language has more than one syntax. In order to store XQuery

statements in an XML document using a syntax that is compliant with the requirements

of XML, the W3C Consortium has specified another syntax, called XQueryX. Since

there is a bijective relation between XQuery and XQueryX, they can be exchanged

for each other according to the current application.

Another advantage to the combination of XPath/XSLT is the improved support

for datatypes in XQuery. The datatypes of XQuery are based on those of XML

Schema (see next section), which provides a really extensive range. Moreover, it

even allows to extend these, in order to define and customize own types. Hereby,

the introduction of XQuery also eliminated the biggest deficiency of XML query

languages, which was the poor support of datatypes.

Though there is a common sense that update queries are an important part of a

query language, due to time reasons they have not been included in the first version

of XQuery. So, utilizing a W3C compliant implementation of XQuery, we still have

to use alternative ways to update documents, like XUpdate. Other vendors, like

Software AG, the maker of Tamino, have forgone to be compliant with the standard

and released an extended version of XQuery, which supports update operations for

inserting, updating and deleting data. Since Software AG is a member of the W3C

XML working group, we can expect that similar update operations will be introduced

in one of the future versions of XQuery.

The following example demonstrates how to use XQuery in order to implement

the task of the previous section. We presented an XSLT stylesheet, which extracts

the title and the author from a list of articles stored in an XML document. In this

example, we use the ”For-Let-Where-Return” clause (spelled FLOWER) of XQuery

to implement this.

FOR $a IN input()/library/article
WHERE $a/@author="Ronald Bourret"
RETURN <result>

$a/@title, $a/@author
</result>

The FOR statement specifies the working set of the query, which in our example is the

list of all articles contained in the XML document. Furthermore in this statement,

the items of the set are bound to the variable ”$a”. The WHERE clause then reduces

this set to the articles written by Ronald Bourret by testing the ”author” attribute.

Finally, the RETURN clause is called for each matching instance of the set and thus

returns the list of articles. As one can see, compared to the XSLT code of the previous

example, the solution using XQuery is rather short and much more readable.

If you want to learn more about this forthcoming standard, we recommend to read

[12] and to have a look at [13] and [14].

20 CHAPTER 2. RELATED WORK

2.1.7 Defining languages using XML Schema

The XML specification only gives a general description of the building blocks of a

well-formed XML document. But it does not include a method to define rules for a

specific, user defined XML language. Therefore, the W3C Consortium standardized

a special language, which accomplishes this, namely XML Schema.

XML Schema, which is itself an XML language, provides ways to specify the

valid elements and structures of an XML document. The fact, that XML Schema is

formally expressed in XML, allows applications to process schemes in the same way

as any XML document. This enables them to share a common code base and to save

a lot of work and time. Actually, many of the XML parsers support the use of XML

Schema, thus providing a way to automatically check whether a document follows

certain rules, or not.

The specification of the sophisticated mechanisms of XML schema [15] is quite

extensive and a comprehensive explanation of them fills whole books. Thus, we can

only give an overview of the most important features and refer to further literature

for interested readers. As usual in this chapter, we will also give a short example,

which showcases the syntax of this language.

Since the basic building blocks of XML are tags and attributes, XML Schema

provides means to specify, which of these entities are allowed in a certain context. In

addition to defining datatypes for element content and attribute values, XML Schema

includes mechanisms to define sequences of elements in a certain order, to restrict the

number of allowed occurrences of an element, to define default values and to declare

an element as optional, just to name the most important. Structures can be built by

nesting elements and declaring arrays and lists of elements.

One of the biggest advantages, that comes along with the introduction of XML

Schema, is the improved support for datatypes in XML. As mentioned in the section

about XQuery, XML Schema provides an extensive range of datatypes we can choose

from. Among them are numeric types like byte, int and float - string types like string,

token, ID - date and time types - and types for storing binary data likes hexBinary

or base64Binary. This enriches the capabilities of defining XML languages a lot and

at the same time reduces the chances of error-prone type conversions, which would

be necessary otherwise. Furthermore, by utilizing this type system, one is able to

exactly specify the content of a valid XML document.

Another powerful feature of XML Schema is the possibility to declare user defined

types and elements. In the manner of object oriented languages, XML Schema allows

to derive new types and elements from existing ones. Depending on the kind of

inheritance used, which can be restriction or extension, the derived types support a

reduced or extended range of allowed elements and values. Several predefined types

2.1. XML 21

of XML Schema are defined by utilizing this inheritance scheme, thus establishing

a hierarchy analog to class hierarchies of object oriented programming languages.

The technique of creating new types by derivation is one of the key features of XML

Schema, since it has already proven its usefulness in many software projects for years.

In the following example we define an XML Schema for the article element, which

we used in the previous sections.

<?xml version="1.0" encoding="UTF -8"?>

<xs:schema xmlns:xs="http//www.w3.org /2001/ XMLSchema">

<xs:element name="article">
<xs:complexType >

<xs:attribute name="title" type="xs:string"/>
<xs:attribute name="author" type="xs:string"/>

</xs:complexType >
</xs:element >

</xs:schema >

Above XML Schema starts with the XML declaration followed by the root element

”xs:schema”, which is always the topmost element. Since the XML Schema specification

defines a namespace, we need to declare it here, too. Next comes the definition of

the article element, which is of complex type, because it owns two attributes. The

attributes for the title and the author of the article are then declared as child elements

of the ”xs:complexType” tag using the ”xs:attribute” element. Finally, the datatype

of both attributes is specified as simple string, because they should be able to store

any text.

For further reading we recommend to study the tutorials at [16] and [17] and the

W3C specification at [15].

2.1.8 Working with XML documents

Until now, we have seen how XML documents are structured and discussed related

technologies to query, transform and describe XML data. This section deals with the

question how one can work with XML data within programming languages.

In the course of the introduction of XML, a number of tools and libraries have

been created to facilitate the processing of XML data within software applications,

each of them embarking on a different strategy. All of these libraries have one

thing in common: They serve as an interface between an application and XML data.

Meanwhile, two of these interfaces have evolved into a standard, namely DOM and

SAX.

22 CHAPTER 2. RELATED WORK

DOM

DOM, the Document Object Model, standardized by the W3C Consortium [18],

defines a set of classes and methods to access the elements of an XML document.

When using DOM to process an XML document, a parser reads in the XML text and

creates a tree of objects, which represents the elements contained in the document.

The advantage of this method is, that the document is read in as a whole, thus

enabling an application to randomly access and manipulate all of the elements.

Whereas the disadvantage is given by high memory requirements and the delay

resulting from the parsing process, which an application has to wait for until it can

access the document content.

SAX

Alternatively to the DOM Model there exists another ”de facto” standard for accessing

XML data. SAX, the Simple API for XML [19], uses an event oriented strategy to

pass the content of an XML document to an application. When the parser reads

in the document, it generates events for each XML entity found in the document.

An application can then process these events, by deriving a new class from a special

interface class and overwriting its virtual callback methods. This way, an application

can selectively process certain document entities and leave out the remaining parts.

Compared to DOM, this method needs much less memory, but, as disadvantage, it

requires to store and manage context information if needed.

Other techniques

Additionally to DOM and SAX, there are further techniques to deal with XML

documents. These will not be discussed here. For the sake of completeness, we

have compiled the following list. See the literature references in order to read more

about alternative ways to DOM and SAX.

• XML Data Binding - Bindings of XML data to programming language structures

[23]

• JAXB - Java Architecture for XML Binding [25]

• JAXP - The Java API for XML Processing [20]

• JDOM - The Java Document Object Model [21]

• DOM4J - Document Object Model for Java [22]

2.2. XML DATABASES 23

2.2 XML Databases

2.2.1 Introduction

The conventional way to manage XML documents is to store them as files in a

directory structure on a computer drive. This approach follows a natural way of

keeping data as documents, since XML is a document format and documents are

usually kept in files. So, for instance, applications that need to manage structured

configuration data, can do this conveniently by utilizing XML as storage medium in

form of files.

Due to the popularity of XML, the amount of data that is organized using XML

has enormously increased in the past few years. The more data a system has to

manage, the harder it is to keep it consistent. Handling a large number of XML

documents in form of single files and using the directory structure to organize them,

can become very impractical, soon. And, if the number goes into the thousands,

this can become an impossible mission and an appropriate storage system, usually a

database, is needed.

Apart from managing large amounts of data, there are several more reasons that

speak for employing a database in a project. So, for instance, by utilizing indexes,

a database usually provides a better performance than a file system. Furthermore,

a database is capable of managing concurrent access of multiple users, offers data

integrity functions, transactions, triggers and a lot more. In regard to XML, such a

database system is called XML Database.

The term ”XML Database” subsumes all available database systems, which are

capable of storing and retrieving XML documents. This can be accomplished either

by utilizing conventional Relational Databases or by databases, which are especially

designed for the storage of XML documents. Ronald Bourret [27] distinguishes

between the following three types of XML Databases.

• Relational databases (supporting XML)

• XML-enabled databases

• Native XML databases

The key to choose the right one for a particular application lies in the structure of

the data, which needs to be processed. Thus, we have to have a look on the different

forms of XML data first. The subsequent sections then discuss the different properties

and features of these database types.

24 CHAPTER 2. RELATED WORK

2.2.2 Data-centric vs. Document-centric XML data

According to their structure, XML documents can be roughly divided into two categories:

Data-centric XML documents and document-centric XML documents [27]. Though

it is not always clear to which category a document should be added to, it makes

sense to distinguish between these two categories. It helps to choose an appropriate

storage technology.

Data-centric documents

Data-centric documents are characterized by a fairly regular structure with fine-

grained data (small independent units of data at element and attribute level) and

with little or no mixed content (XML tags mixed with text). These are documents,

which have a structure similar to that of a relational database table and could possibly

originate from it. The following XML document showcases an example for a data-

centric document, which stores patient data of a hospital.

<?xml version="1.0" encoding="UTF -8"?>

<patients >
<patient >

<firstname >Otmar </firstname >
<lastname >Bauer </lastname >
<assuranceid >1234 -56678</assuranceid >
<street >123 Main street </street >
<city>Vienna </city>
<country >Austria </country >

</patient >
<patient >

<firstname >Fred</firstname >
<lastname >Mayer </lastname >
<assuranceid >432 -83474</assuranceid >
<street >124 Haydn street </street >
<city>Eisenstadt </city>
<country >Austria </country >

</patient >
...

</patients >

Document-centric documents

The second category, document-centric documents, are characterized by a less regular

or irregular structure with larger grained data and a lots of mixed content. These are

documents, which are usually designed for human consumption and typically do not

fit well into a relational database scheme. For example, to stay within the hospital

domain, it could be a diagnostic description of a doctor like the following.

2.2. XML DATABASES 25

<?xml version="1.0" encoding="UTF -8"?>

<diagnosis >
The patient <firstname >Otmar </firstname >
<lastname >Bauer </lastname > was admitted to the
<ward>surgery </ward>,because of a
<admission_diagnose >broken arm</admission_diagnose >.

</diagnosis >

Though both categories of XML documents, data-centric and document-centric, follow

the XML specification, there is a big difference between them regarding the needed

storage technology. The following sections discuss the different techniques with regard

to the structure of the documents they can handle.

2.2.3 Relational Databases

This type of XML Database uses a table-based mapping to store particular XML

documents in a Relational Database. It models XML documents as a single table or

as a set of tables. The model is directly derived from the schema of the document,

complex elements are mapped to tables and simple elements and attributes are

mapped to columns. Since there is a direct structural relationship between the

database tables and the XML document, it cannot be used for any XML documents

that do not match the format.

The table-based mapping is most suitable to handle data-centric documents, when

transferring data between two relational databases.

2.2.4 XML-enabled databases

XML-enabled databases use an object-relational mapping. Therefore, XML documents

are modeled as a tree of objects, which are specific to the data in the documents.

The model is then mapped to Relational Databases using object-relational mapping

techniques or SQL 3 object views. What means, that classes are mapped to tables,

scalar properties are mapped to columns and object-valued properties are mapped to

primary key/foreign key values.

This technique can handle data-centric and document-centric XML documents,

though it does not support mixed content well.

2.2.5 Native XML Databases

Native XML Databases are designed especially to store XML documents. Their

internal logical model is based on XML, but is not a question of the physical storage

26 CHAPTER 2. RELATED WORK

model. The physical backend of this database type can still be a Relational Database,

like the first version of eXist showed.

One important characteristic of Native XML Databases is, that they preserve

important properties of XML documents (like element order) and XML specific

elements (like processing instructions and comments). Which means that, what one

puts in, will also come out. A further characteristic is the support for XML query

languages like XPath or XQuery. Naturally, Native XML Databases should also offer

common database features like transactions and multi user access.

Native XML Databases are best used, when the data is semi-structured. The

structure varies and a mapping to a Relational Database is difficult to achieve. For

instance, object oriented tree structures, which make use of derivation, would need

an additional table for each derived class. Native XML Databases can handle both

categories of XML documents, data-centric as well as document-centric.

Finally, depending on the database architecture they use, Native XML Databases can

be further divided into text-based and model-based databases. Text-based databases

store XML documents as text, thus storing an identical copy of the data, which

is put in. This gives text-based XML Databases a tremendous speed advantage,

when retrieving entire documents or document fragments, compared to the solutions

mentioned. Though they also can encounter performance problems, when retrieving

data, which is different from the predefined hierarchy.

Model-based databases build an internal object model of the XML document and

store this model. Some databases store the model in Relational Databases, others in

object-oriented databases or they store the model as persistent DOM, like the recent

version of eXist. They have the same performance characteristics like text-based

databases. Whether they are faster or slower than text-based systems is not clear.

Future applications will show which approach is the better one.

2.3 Database interfaces

2.3.1 Introduction

In order to benefit from the long running experience of approved database interfaces,

this section investigates the design of several programming interfaces for databases.

All of these interfaces are implemented using an object oriented language, preferably

C++, because our implementation language is C++, too. Thereby, the focus of our

attention is directed mainly to class collaboration and derivation. We will analyze

how these class libraries work and try to pick out the approaches, which fit our needs

best.

2.3. DATABASE INTERFACES 27

Figure 2.1: Collaboration diagram of VCL database classes

Due to the fact that there have not been many XML Database API’s released

until now - only two we know of - we will also have a look at two SQL Database

API’s. Basically, they follow the same approach as their XML counterpart. They

provide classes to query databases and have to handle the resulting data in some way.

In principle, they only differ in the syntax of query scripts and in the type of query

results. Therefore, analyzing the design of this interfaces makes sense, too.

2.3.2 Borland VCL

Borland VCL [29], the Visual Component Library, is a class library originating from

Borland Delphi (Object Pascal), which has been made available for C++. This library

includes a set of classes, which are designed for database access, mainly for Relational

Databases, which support SQL. The collaboration diagram in figure 2.1 on page 27

shows the most important classes of this library, which are involved in a database

query.

TDatabase represents a physical database. It supports operations to connect

(Open()) and disconnect (Close()) to a particular database and methods for transactions

(StartTransaction(), Commit(), Rollback()). A database query is represented by the

class TQuery, which holds a SQL script and additional connection parameters. When

calling the Open() method of TQuery, the SQL query is executed against a database,

which is passed in the member variable ”Database”. In consequence, TDatabase runs

the query and stores the result in an instance of TTable. The query result can then

28 CHAPTER 2. RELATED WORK

Figure 2.2: Collaboration diagram of MFC ODBC database classes

be accessed in the ”Fields” member variable of TTable.

Though there are more classes, which can be utilized for other tasks like managing

sessions or running batch jobs, the previous paragraph describes the basic scenario for

querying databases in VCL. This quite simple, but efficient and easy to use approach

is worth to be considered in our design.

2.3.3 Microsoft MFC

MFC, the Microsoft Foundation Classes [28], is a C++ class library for developing

MS-Windows based applications. It supports database operations by providing different

sets of classes for different types of databases. Figure 2.2 on page 28 depicts a

collaboration diagram of the classes for ODBC database access.

The approach used by the classes in figure 2.2 is quite similar to that of Borland’s

VCL, though with different class names. There is a CDatabase class, which supports

operations for connection and transaction and a class CRecordSet for storing the

result set of database queries. The main difference to the VCL approach is, that

there is no separate class for queries. SQL queries are executed by calling the Open()

method of CRecordSet, which thereby covers both tasks, querying and storing result

sets. As long as there is only a single query parameter to keep track of - here in form

of an SQL string - this approach seems to be sufficient. Whereas the VCL solution

seems to be better, when a query supports several parameters, because in this way

they can be reused more easily in another context.

2.3.4 XML:DB API

The XML:DB API [30] is the standard programming interface for XML Databases.

It is targeted towards all object oriented programming languages, but has only been

implemented for Java so far. The class library is intended to be vendor neutral and

2.3. DATABASE INTERFACES 29

Figure 2.3: Collaboration diagram of XML:DB API database classes

thus has been designed to provide as much flexibility as possible. For this reason, it

is also the most complex interface of those examined here.

We will only discuss the most important aspects of this class library here. For the

interested readers we recommend to read the introduction written by Kimbro Staken

[31] and to have a look at the API specification [30].

Figure 2.3 on page 29 shows a collaboration diagram of the main classes of this

API. In the middle of this figure one finds the Collection class, which is the counterpart

to the classes TDatabase and CDatabase of the previous sections. It represents an

XML Database collection, which generally contains a set of XML documents and

further sub collections. A collection is the data source of queries and the destination of

updates, which are represented by the classes XPathQueryService and XUpdateQuery-

Service. The resulting XML documents or document fragments of a query are stored

in an instance of ResourceSet, whose items can be iterated by ResourceIterator.

These items are stored in objects of the XMLResource and BinaryResource type

(not depicted here because of the lack of space), which are derived from the abstract

base class Resource.

A bit misleading is the name of the class Database, which is actually not an

interface for an XML Database as one could suppose, but a vendor specific implementation

of a database driver. These implementations are managed by the class DatabaseManager,

which is also the starting point for an application using the API. DatabaseManager

30 CHAPTER 2. RELATED WORK

provides access to particular XML Databases, by providing instances of the class

Collection.

In order to be modular and extensible, non-basic features are implemented as

services by deriving new classes from the abstract base class Service. So, for instance,

the collection management features (CollectionManagementService) and transactions

(TransactionService) have been implemented this way.

In order to get a version of this API, which complies with the lowest level of the

standard (core level 0), one has to support the basic framework and thus, has to

implement most of the classes in figure 2.3. At the time of writing, even vendors

like Software AG, the maker of the Tamino XML Database, have not completely

implemented this standard API for their database product. Hopefully, future versions

will.

2.3.5 XinCJ - Xindice C++ API

The XinCJ class library [32] is an attempt to implement a programming interface for

the XML Database Xindice. It is a C++ Java Native Interface wrapper for Xindice

implementing a subset of the XML:DB interface and thus allows to access the Xindice

XML Database from C++. It tries to match the original Java class structure as closely

as possible.

Unfortunately, the development of this class library has been suspended in an early

state and currently it does not seem that it will ever be finished. Nevertheless we

had a look at this implementation. We were once more disappointed to find it poorly

documented and a bit quirky. Maybe the increasing demand for XML applications

will motivate someone to continue this work at a later time.

Chapter 3

Problem Description

3.1 Introduction

This chapter specifies the conceptual formulation of this project, or in other words,

describes the task, which was consigned to the author of this thesis. It defines the goal

of the project by describing the basic features of the applications and the content of

the documents, which should be included in the final result. (We have also included

some of the details, that have only been verbally discussed later in the project.)

Studierstube is a scientific platform for contriving and developing Augmented

Reality applications. Naturally, in the context of research, a large number of documents

and a lot of resulting data has to be managed. Up to now, the collaborators of this

platform solely utilized the file system of their workstations to persistently store and

organize the accruing data. As one can imagine, at a certain point, this form of

organization will come across its limits. When a certain amount of data is exceeded

or the data needs to be interconnected and easily shared between the collaborators,

an appropriate storage system, i.e. a database, is needed.

The research data, which needs to be managed by the database system, varies

strongly in its structure, from flat relational tables to deeply structured recursive

trees. Since XML is best suitable to handle a wide spectrum of document formats,

the decision was made to store future data as XML documents. In order to share

these documents, a central XML Database should then serve as a common storage

system.

Essentially, the task is now, to select an appropriate database product, to install

the server application on a computer of the Institute, as well as to enable the connection

of Studierstube applications to the server.

31

32 CHAPTER 3. PROBLEM DESCRIPTION

3.2 XML Database server

Since the implementation of a fully featured database server is out of the scope

of this work, we need to employ one of the products, which are available on the

market. Currently, the number of alternatives is still a bit limited. Thus, the choice

of candidates can be narrowed down to the following three databases:

• Tamino [33], a commercial product of Software AG

• Xindice [34], an Open Source project of the Apache group, and

• eXist [35], another Open Source database, founded by Wolfgang Meier

At the time of writing, XML Databases are a relatively new technology. They cannot

be expected to be fully matured yet. Since that, we need more information about

them to facilitate our decision for a particular candidate.

Thus, the first step of this work will be to install these databases on a computer

in order to gain first experiences and to check out the features they support. Thereby

the focus of the investigation should be directed to programming interfaces and to

administration applications, which are available for each candidate. Especially, a tool

is needed to maintain the data, preferably one providing a graphical user interface.

Furthermore, the databases should support an XML query language like XPath

or XQuery, and an update language like XUpdate. Advanced database features like

multi user access, transactions and backup strategies are not that important, but

cannot be completely neglected, since this work is part of a long running project. In

the case of a successful outcome, it will be the base for several other works.

Results of this work step:

• Test installation of the database candidates on a test server

• A report, which is describing and comparing their features, with focus on

programming interfaces

3.3 Client interface

In order to connect Studierstube applications to the database server, a C++ library

should be developed on top of the database API, mainly for reading access. (In the

following text this library is also referred as Studierstube XML Database API.) This

library should be designed in a way, which optimizes the usability for Studierstube

applications. A database query should then support the following features:

3.4. DATA REPRESENTATION IN FORM OF SOXML 33

• Specification of the source database:

– Network address of the server and database

– Specification of the wanted data by the query language XPath

• Query results in the following forms:

– XML document as text in the computer memory

– XML-DOM as SoXML model (see below)

• Specification of an XSLT Transformation, which is applied to the query result

on the server side

• Specification of an XSLT Transformation, which is applied to the query result

on the client side

For the processing of XSLT a library, like Xalan, should be selected and linked

to the library. Furthermore, query parameters, like XSLT style sheets and XPath

statements, should be easily reusable within an application. A suitable object oriented

container class has to be designed to achieve this. The client API should also be

designed in a modular manner, that is possible to utilize only parts of the API. In

particular, the transformation features should be usable also by Non-Studierstube

applications.

Results of this work step:

• A specification of the Client API

3.4 Data representation in form of SoXML

Studierstube is built on top of Coin2 (formerly Open Inventor), a toolkit for the

interaction and rendering of 3D graphics. Coin uses a scene graph model, where

graphical objects are represented as nodes of a tree. In order to integrate XML data

into this model, a connection between XML and Coin is needed. The hierarchical

tree structure of the scene graph can be used as a base for an XML DOM model.

This way, Studierstube applications will be able to access XML data in the same way

as graphical objects.

In order to implement this feature, a new class, which is derived from the Coin base

class SoGroup, can be defined as the following structure:

34 CHAPTER 3. PROBLEM DESCRIPTION

SoXML {
SoSFString name
SoMFString attributes
SoMFString values
SoSFString content

}

SoSFString and SoMFString are Coin classes for the representation of single strings

(S) and string arrays (M).

The tag name of an XML element is hold by ”name”, its text content is stored in

the member variable ”content”. Attribute names are stored in ”attributes”, attribute

values in ”values”. Nested elements are put into the child list of SoGroup.

Example. Assume the following XML fragment:

<el1 attr1="A">
<el2 attr2="1.1" el3="B">

<el3 attr4="true" />
<el4>Hello</el4>

</el2>
</el1>

This fragment can be converted by an XSLT stylesheet into following SoXML representation:

XMLElement {

name "el1"
attributes ["attr1"]
values ["A"]

XMLElement {
name "el2"
attributes ["attr2","attr3"]
values ["1.1","B"]

XMLElement {
name "el3"
attributes ["attr4"]
values ["true"]

}

XMLElement {
name "el4"
content "hello"

}
}

}

3.5. SPECIFICATION OF A TEST APPLICATION 35

In case the SoXML model is represented as text in main memory, it can be easily

converted to a corresponding scene graph.

Results of this work step:

• Specification of SoXML

Eventually, namespaces should be also regarded in the design. Therefore, the definition

of XMLElement must be extended as in the following example:

SoXML {
SoSFString name
SoSFString namespace
SoMFString attributes
SoMFString values
SoMFString attributeNS
SoSFString content

}

Alternatively, the namespace could be stored as a prefix in the string variables ”name”

and ”attribute”, like ”ns:name”. But probably, this might not comfortable enough

for the users of the library, because in this way the string needs to be parsed first.

3.5 Specification of a test application

An application should be designed to test the implemented components with real and

large data. This application has to use SoXML for data representation in order to

demonstrate the connection to Coin.

Results of this work step:

• Specification of a test application

3.6 Implementation

The last step of this work is to implement and test all of previously described features.

Results of this work step:

• Implementation of the Studierstube XML Database API

• Implementation of the SoXML component

• Implementation of the test/sample application

36 CHAPTER 3. PROBLEM DESCRIPTION

• Documentation of the components and applications in form of manuals and web

pages

Chapter 4

Choosing a database product

4.1 Introduction

The first step of this work was to evaluate and select an appropriate XML Database

for this project. Since the data to be processed concerns differently structured XML

documents, the choice was quickly narrowed down to one of the following three

Native XML Databases: An older version of Tamino [33], a commercial product

developed by Software AG. Xindice [34], an Open Source XML database by the

Apache Group and eXist [35], an Open Source XML database founded by Wolfgang

Meier at the Technical University Darmstadt, Germany. There are a plenty of other

commercial alternatives, which did not come into consideration, just because they

were not available to us and there are further Open Source solutions, which simply

did not fit our requirements. We were looking for a Native XML Database system,

supporting XPath [9] and XUpdate, which comes with a set of usable and working

administration applications, preferably with support for sever side XSLT processing

and a C++ API for easy integration into our system.

This chapter tries to evaluate and compare aforementioned systems, showing the

strengths and weaknesses of each in order to have a basis to select one for our task.

Additionally, appendix A of this work contains several charts, which list and compare

the features we were interested in.

4.2 Tamino

Tamino [33] is a commercial Native Database system, developed by Software AG.

First of all it has to be mentioned that the version used for this evaluation (v3.1.2)

is not the latest version available, which is version v4.1.4 at the time of writing.

Unfortunately we did not have a possibility to upgrade to the latest version and so

we had to stick to the older one. Therefore everything said here does not apply to the

37

38 CHAPTER 4. CHOOSING A DATABASE PRODUCT

latest version, which has undergone major improvements. (Most notably the added

support for XQuery [12] and the XML:DB API [31]).

4.2.1 Installation

Installing Tamino was not as easy as one would expect. The first attempt to run

the installation program failed because of Tamino’s licensing system: The version

we have does not install on Windows XP, because it is restricted to be set up on

Windows 9x or Windows 2000. Using Windows 2000 instead of XP helped.

At first the installation wizard asks to setup an HTTP-server, preferably Apache,

which is included on the CD. This server is needed, because some of the supplied

applications, in particular the main administration application Tamino Manager, are

implemented as web applications. Done this and starting the installation program

again, the next thing we had to do was to update Internet Explorer and the Microsoft

Java VM. Using Internet Explorer as client-side browser application, one needs to have

a more recent version of Java VM than the one that comes with Windows 2000.

Already a bit exasperated by the length of the installation procedure, we had to

discover that Microsoft is not supporting the Java VM anymore. After an odyssey to

find a way to get this update, we succeeded by running the Windows update function

and installed Java VM 3810 and in the end Tamino.

4.2.2 Applications

The Tamino database system comes with a number of applications. The following

sections will try to give a short description of each program.

Tamino Manager, implemented as web-application, lets tune and configure the

database server from a remote location, manage databases and run the backup/restore

function.

Tamino Schema Editor, a Java application, is needed to edit Tamino’s own XML

Schema, an adopted version of the W3C schema. On the one hand it enhances

this schema by adding logical and physical properties, which describe storage and

indexing information. On the other hand it lacks of support for the more advanced

features of XML Schema, like derivation, recursion and complex basic datatypes.

These limitations seriously restrict the area of application of this language, especially

when one needs to work with recursive data structures.

Tamino Explorer, another Java application, is used to browse the database through

an explorer-like user interface. Database contents can be viewed and edited quite

comfortably. The Query windows allows to commit XPath queries to the database

server and to view and inspect the result set.

4.2. TAMINO 39

The last application to mention is Tamino Interactive Interface, a simple Web-

form for querying and updating the database using a Web browser.

All in all, the impression of the delivered applications is quite good, with pleasing user

interfaces and useful features. None of them ever crashed or had troubles connecting

to the database during the test.

4.2.3 Database features

Since this is an older version of Tamino it lacks of support for a query language

capable of doing updates. As a consequence, partial updates of documents in the

database are not available. It is only possible to update documents as a whole. More

mature are the features for querying the database. W3C’s XPath query language has

been implemented in an extended form and - in order to cause confusion - is called

X-Query. (Note the dash between the X and the Q.)

On the one hand X-Query enhances XPath with additional functions and operators,

and offers the use of variables as well, but on the other hand there are some W3C

functions left out, which means that it is not fully W3C compliant. Tamino also allows

to define a schema for data structures. Using W3C’s schema definition language as

basis, Tamino’s schema language covers - in addition to the standardized features

- the definition of database indexes and the use of data types for elements and

attributes. The feature to define data types is unique among the tested candidates

and is especially useful when working with a lot of data-centric information.

4.2.4 API’s

As usual within the XML domain, most of the programming language API’s are

written in Java. Although there is a JAXP and JDOM implementation, this version

of Tamino does not implement the de facto standard API for Java, the XML:DB API.

Support for C++ is given in form of an Active-X control which communicates to the

server over HTTP. Server side XSLT processing can be implemented using XTension,

the interface for enhancing server functionality.

4.2.5 Documentation

If there is one thing outstanding in Tamino, then it is the documentation and help

system. There are about 3000 pages describing Tamino’s features and applications,

including pictures, graphics and many practical examples and about 1500 additional

pages documenting SQL and ODBC features. Although the HTML search function

40 CHAPTER 4. CHOOSING A DATABASE PRODUCT

is not as comfortable as the one within the native Windows help system, it is still

useful and helps to cut through this vast amount of information.

4.3 Xindice

Xindice [34] formerly known as dbXML, is part of the Apache XML project. It is an

Open Source XML database developed by volunteers under the Apache license. In

spite of the fact, that the first official version (version 1.0) of Xindice was released

more than a year ago, it is currently undergoing major changes. As a result of

this modifications there are actual two different versions of Xindice now, each of it

providing different features. Although the newer version (v1.1) is still in beta state,

it is the one discussed here, because it represents the future of Xindice. Differences

to the older version are mentioned when it’s relevant.

4.3.1 Installation

Due to the very short installation documentation that comes with Xindice, it took

us several hours to find out how to get a working system with a running server,

get the command line tools working and the XMLdbGUI graphical client application

connecting properly. In order to share my experience, I’ll try to give a short installation

guide including some tips on installing Xindice.

On the download page [34] you can see that Xindice 1.1 is delivered in form of three

zipped files. The two files named ”xml-xindice-xxx-war.zip” and ”xml-xindice-xxx-

jar.zip” contain the binary distribution and ”xml-xindice-xxx-src.zip” contains the

source distribution. The source distribution is needed when you want to contribute

to the project or when you want to use the included Jetty servlet engine. We use the

binary distribution instead.

Because support for the standalone server version has been dropped in the current

release, the database server of Xindice is delivered as a servlet and hence needs

a servlet engine like Apache Tomcat to be installed first. Installation of Tomcat

is straightforward, just download the setup program and follow the instructions.

Next copy the *.war-file, which is included in ”xml-xindice-xxx-war.zip”, into the

”webapps” folder of Tomcat and restart the Tomcat application. It will then unpack

the *.war-file and install the servlet. The *.war-file can be safely deleted then.

Note: When using Tomcat 4.1 as servlet engine you have to rename the *.war-file

to ”xindice.war” before installation, otherwise you will not be able to connect to the

database server!

Furthermore, it is recommended to make more memory available to Xindice than

4.3. XINDICE 41

64MB, which is the default configuration. Add the parameter ”-Xmx999m” to the

startup line of the Tomcat server, where 999 stands for the maximum size of memory

(in megabytes) used for Tomcat. You should then check the installation by browsing

to ”http://localhost:8080/xindice”. If the installation was successful, a web page for

browsing the database, called ”The ugly debug tool”, will show up.

Next, we install the command-line client tools, which are included in ”xml-xindice-

xxx-jar.zip”. Unpack the contents of the zip-file to ”C:\Xindice”. If you use this

directory you will not have to edit the batch file ”xindice.bat”, which starts the

command line programs. Hint : If the batch file is not working properly, this is most

likely because of missing quotation marks around environment variables. Attention!

This does not apply to the environment variable ”%CL%”. Check the installation of

the command line tools by starting the following line from a command prompt:

Xindice lc -c xmldb:xindice://localhost:8080/db.

This should list the current database content, which of course only consists of the

system collections at the very beginning.

Next, we install XMLdbGUI, a Java application with a graphical user interface

used to browse and edit database content. Since the full version of XMLdbGUI

currently only supports Xindice 1.0 and the included Java libraries are already out

of date, it is recommended to download the light version and copy the required

files as described in the documentation. Furthermore you will need to edit the

configuration file ”conf.xml”, which is also explained in the documentation that comes

with XMLdbGUI. Hint : Use the URI ”xmldb:xindice://localhost:8080”, if you do not

get a connection to the database.

4.3.2 Applications

On the Internet one finds a number of client applications written for Xindice, although

most of them did not leave beta states until today.

Most outstanding are Xindice Webadmin, a simple web interface for creating collections,

querying and uploading data and XMLdbGUI, a Java application with similar features.

Unfortunately, due to the changes made to the new database version, applications

like Xindice Browser, which access the database directly, do not work with Xindice

anymore.

All in all, the user interface provided by the applications does not cover all features

of Xindice. In order to be able to adjust and fine tune database specific settings,

42 CHAPTER 4. CHOOSING A DATABASE PRODUCT

one still has to edit configuration files by hand. The availability of XMLdbGUI as a

comfortable user interface seems to be the crucial factor for the usability of Xindice.

4.3.3 Database features

Xindice is currently supporting XPath, XUpdate and additionally SiXDML, a simplified

non-standard query language. The XPath implementation is taken from the Apache

Xalan project, which is said to be fully W3C compliant. But this W3C specification

does not cover XPath queries across collections and recursive queries of sub collections,

which are currently not supported by Xindice. Database indexes are important to

speed up queries. Therefore Xindice offers manual indexes, which means, that for

each element one wants to be included in the index, one has to add an entry in the

Xindice configuration file.

The note in the Xindice FAQ [34], that the database does not process big sized

documents made us to do a simple test. We took the sample phonebook files that

come with Tamino (they are stepwise sized from 1000 entries up to 8000 entries,

which matches 470KB to 3,7MB), tried to insert them into the database and then

run some queries.

Using Xindice out of the box, with the default maximum main memory setting

of 64MB, resulted in memory exceptions and wrong or empty query results. This

malfunction could be eliminated by increasing this memory limit to 256MB. Though

we then got correct query results, we noticed that inserting more big sized documents

into the database dramatically decreased query speed.

The problem with big sized documents originates from the storage and indexing

technique used by Xindice [36]. Documents are stored as a whole into the database

and each time a part of the document needs to be read or written it must be completely

loaded into the memory. Furthermore indexes do not store positional information of

tags in documents, but are solely used to find candidate documents for queries and

updates.

4.3.4 API’s

Xindice supports the XML:DB API for Java and a language independent XML-RPC

API, which takes the place of the CORBA API of version 1.0. Server side XSLT

processing is currently not available.

4.4. EXIST 43

4.3.5 Documentation

There is a documentation, which is dedicated to the latest version of Xindice and

reflects the changes made to the database. While it can be said to be accurate,

currently it lacks of a comprehensive installation guide and a description of the XML-

RPC API, which is needed when working with programming languages other than

Java.

4.4 eXist

eXist [35] [38] is another Open Source project founded by Wolfgang Meier. Like

Xindice, eXist is completely implemented in Java.

4.4.1 Installation

Installing eXist is simply accomplished by copying and unpacking the supplied *.zip

or *.war file to a proper location of a hard disk and by editing an environment variable.

The eXist database server supports three modes of operation: Standalone, servlet

and embedded mode, each of which has its own advantages and disadvantages. In

order to run eXist in servlet mode the distribution already contains the servlet engine

Jetty, so there is no need to install one. For starting and stopping the server and

client applications, there are some batch files supplied. We had to edit these batch

files slightly to get them to work.

4.4.2 Applications

eXist comes with an integrated, combined graphical and command-line Java application

called Client Shell. It offers functions for managing collections, querying and uploading

data and for creating database backups. This application is similar to the previously

mentioned XMLdbGUI, which can be used with eXist, too.

Furthermore eXist comes with a local copy of its web site, which includes several

simple forms for upload, query and a web administration interface.

All in all, to adjust database specific features, one still has to edit the configuration

file of eXist with the help of a text editor, but the daily used functions are covered

sufficiently by the Client Shell and by XMLdbGUI.

4.4.3 Database features

eXist currently supports XPath and XUpdate and support for XQuery is on its way.

Though, on the one hand XPath is implemented with extensions, offering additional

44 CHAPTER 4. CHOOSING A DATABASE PRODUCT

functions to speed up query times, its implementation is not fully W3C compliant,

because it has not been finished yet.

To improve query speed eXist makes use of an automated full text index, which

can also be turned off if necessary. Furthermore the user is able to adjust the nesting

level of the index, which means that solely element tags down to a distinct hierarchy

level are covered by the index. This indexing strategy seems to be a good tradeoff

between user comfort and index size. Hereby, the database user does not have to

think too much about indexes, but query speed and storage costs can be kept within

an acceptable range.

In contrast to Xindice, eXist uses a B-Tree data model to organize XML documents.

Additionally, document fragments are stored as persistent DOM [37]. Due to this,

eXist can be expected to handle big sized documents better than Xindice.

4.4.4 API’s

eXist supports a number of different API’s, depending on the server mode used. First

of all is the XML:DB API, the de facto standard Java API for XML Databases. The

feature to query the database from a web browser is provided by the HTTP-API. This

API also supports server side XSLT processing. Furthermore, there are two language

independent APIs, namely XML-RPC and SOAP. The second one is implemented as

a Java servlet and therefore only available when running eXist within Tomcat or any

other servlet container.

4.4.5 Documentation

Though eXist has the smallest documentation set out of the three databases, it is

still useable and informative.

4.5 Conclusion

Taking into account that the latest version of Tamino has undergone major improvements

and hopefully also got a less complicated installation procedure, it will be the first

choice, if one does not mind its costs. It convinces by providing a well done set of

client applications and, last but not least, a really extensive help system.

If Tamino is too expensive and if one can temporarily live with an incomplete

implementation of XPath, eXist is the way to go. Though it is still in beta state

it seems to be stable enough to be employed for a project. It provides sufficient and

accurate documentation in order to implement own client applications.

4.5. CONCLUSION 45

Next choice would be the elder version of Tamino. But then one will have to

live without the feature to update documents with XUpdate, what can become

cumbersome, very soon.

Unfortunately, the current version of Xindice can not be recommended by us to be

utilized for this project. The missing XML-RPC documentation, the problems with

big sized documents, the lack of support for server side XSLT processing and last but

not least the recurring rumor that it should be retired, give it the lowest rank out of

the three candidates. But future will show what happens to it.

46 CHAPTER 4. CHOOSING A DATABASE PRODUCT

Chapter 5

Design

”Everything should be made as simple as possible,

but not simpler.”

Albert Einstein

5.1 Overview

This chapter discusses the design of the Studierstube XML Database system. Having

analyzed and compared the usability of the three candidate databases (see previous

chapter), we decided to employ Tamino, a commercial database system of Software

AG. Now, we will elaborate a system concept, that meets our needs and integrates

the features offered by Tamino.

Starting from the specification we first analyze the future operating environment

of our project. Then we work out a number of common design issues like portability

and reusability, in order to ensure and improve the quality of our work. The topics

outlined here serve as a basis for the next chapters, where we select an appropriate

programming interface for the client and develop a model of the planned system

architecture. Then we split up the model into two parts, namely server and client.

Each of these parts is then discussed and refined separately. Finally, we evaluate the

end result and try to point out the pros and cons of our work.

5.2 Environment analysis

A system can hardly ever be built completely on its own. Most of the time you

will have to consider the environment, in which the system has to operate. Just like

in our case, where the operating environment is given by the local area network of

the Institute. Hence, we need to have a look at this network in order to properly

47

48 CHAPTER 5. DESIGN

Figure 5.1: Local area network of the Institute

integrate the database system. Figure 5.1 on page 48 illustrates the basic structure

of the network.

Staff members and students work on Desktop PCs running different operating

systems like Microsoft Windows or Linux. The TCP/IP network, which they are

connected to, enables them to share common resources, like printers and file servers.

Additional to the local workstations, the resources can be accessed from outside of the

LAN through a firewall. These are important details, because we want our database

to be accessible in the same ways.

Recent projects of the Institute deal with navigation systems and will use our

database as primary storage medium. In the context of their work, the collaborators

of these projects often have to leave the building and thus have to access the network

from outside. We have to consider that, when we choose one of the database interfaces

provided by Tamino.

The technology used in this network to access resources is the widely adopted

Client/Server architecture. The Tamino database system is designed following the

paradigms of this technology. It provides a database server and several interfaces,

which can be used on the client side to access the database. Thus, it perfectly fits

into the network of the Institute and we can benefit from utilizing the Client/Server

model and get enhanced flexibility, centralized management of data, lower total cost

and so forth.

5.3 Design issues

Generally, developers tend to concentrate on the functional features of their architectures,

and seldom address the ways in which their architectures support quality concerns

such as portability, modularity and usability [1]. We will try to overcome this

deficiency by defining a set of design criteria according to the requirements of our

project.

5.3. DESIGN ISSUES 49

The functional aspects of the system have already been outlined in the specification.

In this chapter, we will work out the characteristics of a solution to our problem.

Neglecting the constraining facts of the real working environment at first and thinking

about an ideal system, helps to get the most out of our work and allows to obtain

a broader view of the problem domain. Moreover, by clarifying things that remain

informal otherwise, we get some kind of checklist that serves as a basis for design

decisions. The considerations made here will influence the overall system design and

have a major impact on which components we chose.

In the following sections we investigate software characteristics like portability,

modularity and reusability and evaluate whether they are important to us or not.

For those, considered to be important, we will outline what has to be done to achieve

them. This also includes characteristics, which are regarded as negligible at the

moment, but could possibly turn out to be essential for future versions of the project.

5.3.1 Portability (P)

As today’s PC systems become more and more heterogeneous, designing portable

software becomes an important issue. Studierstube is available for several operating

systems (Linux, IRIX, Windows). Most important of all are Windows and Linux,

which run on the desktop computers of Institute’s staff members.

Hence, it is required that we consider this when designing our software. At least

the client side of our system should be portable between these operating systems.

Generally speaking, it will not be necessary to demand such a flexibility from the

server side. Since Tamino is also available for above operating systems, except for

IRIX, we should try to accomplish this portability for the server, too. Thus, we

demand:

(P1) The entire system, including the server, should be portable between different

operating systems.

We can realize this by selecting appropriate components and programming languages,

which are also available for mentioned operating systems.

5.3.2 Modularity and Reusability (M)

Though the importance of modularity seems to be widely appreciated, the enormous

increases in the quantity of software production in the past decades have not yet led

to a similar increase in the quality of software. Modularity is the key to improve

software quality and to build robust applications [2]. Sticking to this paradigm, we

50 CHAPTER 5. DESIGN

can acquire reliable and reusable components and reduce the effort of testing the

implementation. Furthermore, a modular design enables us to easily exchange parts

of the system at a later point of time, if necessary. Since these are worthwhile features

in general, we demand that:

(M1) The system should be built of components, which can be exchanged and reused

later.

In order to reach this goal, we apply the techniques of object oriented design, information

hiding and modularization of both, data and processing. We will split up the system

into small, reasonable units, with tight interfaces between them.

5.3.3 Usability and Acceptability (U)

Usability is a function of the ease of use and the acceptability of a product; where ease

of use affects the user performance and satisfaction, and acceptability affects whether

or not the product is used [3]. Usability related questions usually deal with the design

of graphical user interfaces in order to improve the productivity and acceptance of

an application. Likewise, the same characteristics can be applied to programming

interfaces, which are the user interfaces for developers. According to [4], the usability

of the languages and libraries that developers use, even have a significant impact on

their ability to successfully complete a set of development tasks.

Serious usability work includes tasks like investigating the target user group,

creating usage scenarios, running usability studies and so forth. Since this is out

of the scope of our work, we will take an easier approach and try to improve the

usability of the client by keeping it as simple as possible, while still providing all of

the required features. We should aim to get:

(U1) A simple, easy to learn and easy to handle API

(U2) An easy to use setup procedure for the client

5.3.4 Performance (S)

The tests of the Xindice server revealed (see previous chapter), that we can not simply

act on the assumption that the database system delivers an acceptable performance.

Depending on the structure and size of the retrieved data, the response time of a

query can vary heavily. Additional to the time needed by the database server to

execute a query and deliver it to the client, some time will be required to accomplish

several post processing steps on the client. An overall response time for a typical

5.3. DESIGN ISSUES 51

query beyond a few seconds will frustrate users and could even demolish our work

completely. Therefore we demand that:

(S1) The response time of a typical query, including post processing, should be kept

within the range of a few seconds (at maximum 5 seconds).

Since we can hardly impact the performance of the server, apart from adjusting its

configuration, performance tuning will mainly be an issue of optimizing the source

code of the client.

5.3.5 Extensibility (E)

This section discusses topics regarding possible future extensions to the database

system. This mainly covers typical database related features, which are standard in

most database products, but not explicitly required by our specification. Nevertheless,

we want to consider these features in our design, that an easy integration is possible

at a later point of time:

(E1) The client should be completely independent of the particular database used,

in order that the database server can be transparently replaced.

(E2) A subsequent integration of transactions should be considered.

(E3) User authentication should be considered.

(E4) Support for binary data and Unicode should be considered.

5.3.6 Scalability, Availability and Security

Scalability, Availability and Security are important aspects of system design in many

projects, especially when they deal with databases. However, we do not consider these

characteristics to be relevant to our project. Anyhow the former two are mainly a

matter of the database server and the latter is partially accomplished by our demand

for authentication (E3).

5.3.7 Cost

Since this is a non-commercial project, we do not have a big budget at our disposal

that can be spent on resources. Therefore, we will have to rely on royalty-free software,

preferably Open Source Software, when we are in need of additional third party

products.

52 CHAPTER 5. DESIGN

5.4 Selecting an interface

Preceding to the system design we have to select the interface we want to use at the

client side. Each interface needs additional components in order to be able to work

properly. Therefore, the decision for a particular interface has a great impact on the

structure of our system, especially to that of the server.

Tamino provides several ways to access the database, among them are interfaces

for Java, Java Script and Microsoft.NET / C#. These three options are out of

question to us, because we have to use the implementation language of Studierstube,

namely C++.

When reducing the available possibilities on the basis of programming languages, the

following interfaces are left:

• Tamino API for C

• HTTP Client API for ActiveX

• Native HTTP Client API

The following sections investigate these interfaces in order to have a basis for our

decision. If appropriate, we refer to the previously outlined design characteristics by

their code.

5.4.1 Tamino API for C

The Tamino API for C allows client applications to access a Tamino XML Server in a

direct way, without going through a web server, like most other Tamino APIs. Since

this API is entirely written in the programming language C, it is very well suited

for client applications written in C or C++. The Tamino API for C is available for

Windows as well as for UNIX platforms. It provides roughly the same functionality

as the X-Machine programming interface. (The X-Machine interface is a low level

interface to Tamino, which offers a set of commands for storing, retrieving and deleting

database objects, creating or erasing collections or schemas, performing transaction

processing and diagnostic testing.)

In order to run an existing application that uses the Tamino API for C one needs

the library for webserverless access and a local installation of the Software AG product

eXtended Transport Services, which is part of the Tamino setup.

The Pros and cons of this interface are:

+ Portable between platforms (P1)

5.4. SELECTING AN INTERFACE 53

+ Good performance due to direct access to the X-Machine (S1)

+ Supports transactions and user authentication (E2,E3)

+ Supports binary data and Unicode (E4)

– Does not support server side XSLT processing

– Needs a local installation of eXtended Transport Services (U2)

5.4.2 HTTP Client API for ActiveX

The HTTP Client API for ActiveX consists of two controls, which communicate

with the Tamino XML Server at HTTP protocol level. One is for accessing and

manipulating XML documents and the other for non-XML documents, including

binary data. It is a more convenient way of communicating with the server than using

the native HTTP protocol. Since it uses ActiveX technology, it is only available for

the Microsoft Windows operating systems. The API offers a number of properties

and methods to manipulate data in Tamino via document names, perform queries,

local and distributed transactions and for lock management. The API’s methods

return a DOM object as a result or require a DOM object as input. The DOM model

supported by the ActiveX API is the Microsoft DOM.

In order to use the API from within an application, you need the Microsoft

Foundation Classes library and Microsoft Internet Explorer version 5.x or 6.x to be

installed on the system.

The Pros and cons of this interface are:

+ Supports transactions and user authentication (E2,E3)

+ Supports binary data and Unicode (E4)

– Does not support server side XSLT processing

– No portability between platforms due to the ActiveX technology

– Reduced performance because of the use of DOM (S1) Services (U2)

5.4.3 Native HTTP Client API

Last but not least, the database can simply be accessed by utilizing the HTTP

protocol. This requires a prior installation of an HTTP server on the server computer

and an additional module, which connects the server to the database. As with the

54 CHAPTER 5. DESIGN

Tamino API for C, the native interface communicates directly with the X-Machine,

and thus, shares the same functionality.

Furthermore, the HTTP API can be used in conjunction with the Tamino Passthru

Servlet, a Java component, which runs on the server and supports the execution of

XSLT stylesheets. The Passthru Servlet in turn can only be executed in a proper

system environment, namely a java servlet engine.

The Pros and cons of this interface are:

+ Portable between platforms (P1)

+ Good performance due to direct access to the X-Machine (S1)

+ Supports server side XSLT processing

+ Does not require additional software on the client (U2)

+ Supports transactions and user authentication (E2,E3)

+ Supports binary data and Unicode (E4) Services (U2)

5.4.4 Conclusion

As one can easily see, the best choice out of these three is the last one, the Native

HTTP interface. Apart from the mentioned properties, there are further arguments

to choose this interface:

First, the HTTP protocol is designed for transporting text data. Since XML

documents are completely made of plain text lines, this is quite suitable for that.

Second, most other vendors also provide an HTTP interface for their XML Database.

Thus, migrating to a different database, if needed, is much easier than it would be,

when we would use the proprietary API for C.

Third, server side XSLT processing is only supported by the Tamino Passthru

Servlet, which implies the use of the native interface. This way, we can save work and

must not develop a server process, which implements the XSLT processing.

Fourth, the usage of the HTTP protocol facilitates the routing of database queries

over firewalls and proxies.

5.5 System architecture

This section discusses the architecture of the system and the components it is composed

of. Before proceeding to the description of the system model, a few words have to be

said about the standard XML Database API.

5.5. SYSTEM ARCHITECTURE 55

5.5.1 XML:DB API

Since the XML:DB Initiative already defined an open standard for accessing XML

Databases, namely the XML:DB API, one could argue that this is the right way to

implement the client interface. Although we considered to follow this standard at

first, we decided to use our own approach for the following reasons:

• Due to its architecture, the XML:DB API is quite flexible to use, but relatively

complicated to handle. This is in contrast to our demand for usability (U1).

• In order to be as flexible as possible the class framework of the XML:DB API

covers a lot of features like a driver concept, a service mechanism, collection

management and several more. While these are worthwhile features in general,

they are not needed for our solution. Thus, we would have to invest a lot of work

in order to implement the basic framework, just to comply with the standard.

• The XML:DB API neither supports the query language XQuery nor the execution

of server side stylesheets. Thus, we would have to implement a new service

extension, for instance, like XQueryServiceWithStylesheets, which does not comply

with the standard. Which in turn would foil the utilization of the standard.

• Though the XML:DB API is defined using IDL, an implementation in C++ can

be quite quirky. See the XinCJ implementation to get an impression of what

that means.

Thus it is clear, why a simple, but efficient implementation of the client interface

looks much more reasonable.

5.5.2 System model

After completing all preparatory work for the design, we are now ready to create a

model of our system. It is meant to describe the logical structure of the system and

should outline all of the major components the system is composed of. Furthermore,

each component should get a well defined task and a well defined interface in order

to be easily replaceable (M1).

By employing the Client/Server architecture for our project, we are able to split up

the system into two major blocks, namely client and server, which are interconnected

by an interface based on the HTTP protocol. Hence, we can treat them as separate

units and design them (almost) independently.

Each of these blocks can then be further divided into several components. We

identify these components by analyzing the requirements of the specification and by

applying the paradigms of object oriented design, most notably encapsulation and

56 CHAPTER 5. DESIGN

Figure 5.2: Dataflow diagram of the system architecture

inheritance. Using object oriented terminology, we can also speak of objects instead

of components.

Figure 5.2 on page 56 illustrates the system architecture by means of a dataflow

diagram. It shows a typical scenario of the system, where a Studierstube application

queries the Tamino database utilizing the proposed client interface. Rectangles

framed by a bold line denote planned components, which have to be implemented

by us, whereas existing applications and components are marked by a thin frame.

Arrows between these components indicate the direction of the data flow that is

caused by the query. Solid arrows show the data flow of the client request and dotted

arrows the response of the database server. The dashed line in the middle of the

diagram divides the system into client and server, which are discussed separately in

the following sections.

5.5.3 Client

The left side of figure 5.2 depicts the client, which is designed according to our own

approach instead of implementing the XML:DB API. All topics discussed in this

section refer to this part of the diagram. The components with a bold frame together

form the Studierstube XML Database API, which can be utilized by Studierstube

applications to query the database and to process XML data. Each of these components

5.5. SYSTEM ARCHITECTURE 57

can be thought of as an instance of a C++ class offering various methods.

The most important part of this diagram is the Query/Database pair, which is

used to execute database queries. This concept is adopted from the Borland VCL

class library, because of its simplicity and effectiveness. The basic idea is to have

a dedicated, passive container class, which subsumes all parameters related to a

database query in a single component. This set of parameters, which is represented

by the class Query, includes the XPath or XQuery script and the path to the server

side stylesheet. Due to this design the same query can be consecutively executed on

different databases.

The class Database is an abstraction of a database instance available on the server.

(Remember: Tamino is capable of serving multiple databases at the same time.) The

job of this class is to store network related parameters, manage an HTTP connection

to the server and to translate query parameters to HTTP requests. This way we

are also getting a layer, making it transparent, which interface is used to access the

database.

According to our demand for reusability (M1), we provide the HTTP connection

in form of a dedicated class, encapsulating the parameters and features, which are

associated with this protocol.

The remaining components implement the post processing features of the API,

which can be optionally applied to a query response. The class Transformer offers

methods to execute a locally hosted stylesheet. Since there are freely available XML

processors, which can be downloaded from the Internet, we use one of these packages

to implement this feature. The same applies to the class Parser, which uses an XML

Parser to create a SoXML DOM model from an XML document and vice versa.

For the lack of space, the SoXML DOM model is depicted only by a single symbol

in figure 5.2. Usually, this model consists of a tree of nodes, which represent the

elements and tags of the corresponding XML document.

5.5.4 Server

The right side of figure 5.2 shows the server, which is completely composed of existing

components. This means that we do not have to develop any new components for

this part of the system. All we need to do is install, configure and optimize the

components of the server in order to make them work properly together.

Since we want to perform server side stylesheet processing, we need an XSLT

processor on the server, which can be used by the Tamino Passthru Servlet to

transform the query results. As with the client, this feature will be implemented

by integrating one of the freely available software packages.

The Tamino Passthru Servlet in turn needs a proper operating environment in

58 CHAPTER 5. DESIGN

order to be executed. For this purpose, we have to install a Java servlet engine and

embed the Passthru Servlet into it. Normally, an additional web server would not be

required to run a servlet, but in this implementation, the Passthru Servlet utilizes

the web server to access the database by forwarding the query request to it. For the

ease of reading we have omitted this step in the diagram of figure 5.2. Furthermore,

the web server is needed to run Tamino Manager, the administration application of

the database system.

5.5.5 Workflow of a query

Having introduced all of the components of the client and the server, this section

explains how they work together in order to query the database. Therefore we discuss

the scenario depicted in figure 5.2. The numbers on the arrows in this diagram indicate

the order of the performed steps. In the following, we will refer to these numbers.

(1.) If we want to query the database, we have to use an instance of the class Query

and pass the query script and the path of the server side stylesheet to it.

(2.) Then we execute the query on a Database object, which creates a corresponding

HTTP request.

(3.) The Database object sends the request over the network to the web server by

utilizing the HTTPConnection component.

(4.) The server forwards it to the servlet engine and thus to the Tamino Passthru

Servlet.

(5.-8.) Then the servlet analyses the HTTP request and extracts the part, which

contains the path of the stylesheet. The remaining HTTP request is then sent back

to the web server (not depicted here), which executes the query on the database

(5a.). When the database server returns, the servlet applies the stylesheet to the

query result (5b.) and delivers the processed data back to the Database object (6.-8.).

(9.-12.) The Database object passes the query result to the application (9.), once

the HTTP response is validated, and thus completes the database query. The query

result can now be post processed using the classes Transformer (11.) and Parser (12.).

5.6. API CLASSES 59

Figure 5.3: UML class diagram of the Studierstube XML Database API

5.6 API Classes

This section presents the design of the Studierstube XML Database API classes in

form of a UML class diagram (see figure 5.3 on page 59). For the ease of reading we

included only the most important attributes and operations. Most classes are self-

explanatory, because we have already discussed their features in the previous chapter.

Therefore, we will merely discuss topics, which are in need of further explanation.

5.6.1 HTTPConnection

Normally, HTTP is a stateless protocol and thus would not require a dedicated start-

and endpoint as provided by the ”open()”/”close()” methods of the HTTPConnection

class. But the Keep-Alive extension to HTTP, as defined by the HTTP/1.1 draft,

allows persistent connections. These long-lived HTTP sessions allow multiple requests

to be sent over the same TCP connection, and, as a consequence, will speed up

database queries. Moreover, adding the ”open()”/”close()” pair to these classes

facilitates to replace the HTTP protocol by any connection-oriented protocol at a

later point of time, if necessary (M1).

60 CHAPTER 5. DESIGN

In order to support authentication (E3) we also added the parameters ”username”

and ”password” to the ”open()” methods of the classes HTTPConnection and Database.

5.6.2 String as query result type

Examining the ”execute()” method of the class Database reveals that the data type

of a query result is a string. This is in contrast to our demand for the support of

binary data and Unicode (E4). Here we preferred simplicity (U1) over extensibility

(E4). Our first draft of the API provided a resource class to store arbitrary query

results, but this turned out to be impractical. Anyway, binary data can be encoded

in strings, for example in form of Uuencoded text, if really needed.

5.7 Conclusion

This section resumes the system design and tries to point out the pros and cons of

our approach with the help of the following list:

Pros

+ Depending on the components we choose, we can achieve a completely portable

system. (P1)

+ The client system can even be divided into three independent parts: Query&Database,

Transformer, Parser&SoXML (M1)

+ We have developed a fairly simple solution for the problem (U1), which can be

installed simply by adding the modules to the Studierstube setup (U2).

+ Due to direct access to the X-Machine, we can expect a good performance (S1).

+ The usage of HTTP facilitates the exchange of the underlying database (E1).

+ Transactions can be supported by adding appropriate methods to the Database

class (E2).

+ User Authentication has been considered (E3).

Cons

– Support for binary data and Unicode was dropped for simplicity (E4)

Chapter 6

Implementation

In this chapter we present the implementation of our project. We give an in-depth

explanation of the system components and show how they work together. In this

regard, we investigate the classes and applications involved in the implementation

and discuss topics concerning the performance of the system. Furthermore, at this

point, we replace all remaining abstract components of the design with appropriate,

real software packages. As in the previous chapter, we discuss client and server

separately.

6.1 Client

The client side of the system consists of a C++ class library and several third party

software packages. The classes of this library can be divided into three logical groups:

The database access classes, the transformation classes and the classes for generating

the SoXML DOM Model. The standard C++ class string serves as an interface

between these groups. Thus, each of them can be compiled and used independently.

In the following we discuss each of these groups separately.

6.1.1 Database access classes

The database access classes provide the database query features of the client API.

As outlined in the design chapter, we use the HTTP protocol to access the Tamino

database. Thus, we need an appropriate, portable software package, which enables

us to communicate through a TCP/IP network. Since the Studierstube system uses

the ACE package to implement networking functions and ACE is a well designed,

highly portable and approved C++ network library, we chose to use ACE as well.

However, the drawback of utilizing ACE is - although it supplies the basic networking

components for building client applications - it does not provide direct support for

the HTTP protocol. Therefore, we had to implement the protocol by using the ACE

61

62 CHAPTER 6. IMPLEMENTATION

Figure 6.1: UML class diagram of the Database access classes

socket classes as depicted in figure 6.1 on page 62.

The HTTPConnection class encapsulates the implementation of the HTTP protocol

in a way that it is easily reusable by other applications and classes. Hence, the

class Database can utilize an instance of HTTPConnection to transmit the query

parameters as corresponding HTTP requests. The next section shows how this

translation is accomplished.

Accessing Tamino using HTTP

One of the central parts of the Tamino XML Database is the XML-engine, also

referred to as X-Machine. This engine provides an HTTP based interface, which

offers various operations to access the XML data store. The X-Machine interface

allows to send special commands to the engine either encoded in URLs, when using

the HTTP GET method, or as multipart form data, when using the HTTP POST

method. If the GET method is used, the commands are provided in the URL as

keyword/value pairs in the search part of the URL (The part that is separated by

a question mark.) This way the X-Machine is accessible through a wide range of

operations. Those utilized by the Database class are described in the following table.

6.1. CLIENT 63

Command Meaning
xql Retrieves one or more objects using the XPath query language
xquery Specifies a query using the XQuery query language
xslsrc Executes a server-side stylesheet;

additionally supported by the Tamino Passthru Servlet

Assume that we want to get a list of all surnames of our staff members and their

personal data is contained in the database ”addresses” and the collection ”staff”.

Using the query language XPath, the corresponding HTTP request would look like

this:

http://hostname/tamino/addresses/staff?_xql=person/surname

Where ”hostname” stands for the IP address of the database server and ”person” for

the XML root tag of the data. Multiple keyword/value pairs can be connected by

using an ampersand (&).

The objects returned by this query are enclosed in the HTTP response body inside

an XML document. By default, the document consists of elements and attributes

defined in the Tamino namespace

”http://namespaces.softwareag.com/tamino/response2” using the prefix ”ino”. See

the section ”Database access module” of the developer manual in order to get an

explanation of how this document is mapped to our own namespace.

Limitations of the Apache web server

Some web servers restrict the length of the URLs that they can process. In the case

of the Apache web server this limit is around 8KB for the total sum of all query

parameters. Especially when using the insert and update features of XQuery, where

whole XML objects have to be passed to the X-Machine, this limit can be exceeded

with ease. Since we plan to process big sized objects, which are magnitudes bigger

than the limit, we had to overcome this problem by utilizing the HTTP POST method

instead of the GET method. This way we were able to shift the query scripts, which

are stored in the parameter ” xquery”, to the body of the HTTP request and so

reduce the size of the URL. The remaining parameters are still transmitted in the

search part of the URL.

The servlet path

The Database class provides a static member variable called ”servletpath”. This

string variable holds the path, which points to the location of the Passthru servlet.

By default, it is set to the value ”ino/servlet/transform/tamino” and only depends

on the configuration of the database server. It has to be updated, when the servlet

is stored in a different location.

64 CHAPTER 6. IMPLEMENTATION

Figure 6.2: UML class diagram of the Transformation classes

6.1.2 Transformation classes

The second group of the client interface is represented by the transformation classes.

It supports the execution of XSLT stylesheets in order to transform XML documents.

Thus, we needed to find an appropriate XSLT processor, which can be used to

implement this feature.

The current Studierstube setup already includes a recent version of the XML parser

Xerces C++, which is developed by the Apache group. Since the members of this

group are usually known for delivering well done products and they also feature a

portable XSLT processor, namely Xalan C++, it was the candidate of first choice for

our project. The Transformer class of the client API is utilizing this XSLT processor

library (see figure 6.2 on page 64). In order to facilitate the handling of this library,

Transformer builds a simple wrapper around the Xalan library and offers an interface,

which is much easier to learn and understand.

6.1.3 SoXML DOM Model classes

The SoXML DOM Model classes cover the features to transform an XML document

to a simple DOM model and vice versa. Since the Xerces C++ parser is already part

of the Studierstube project, we employed it to implement the translation. In order

to feed the parser with an XML document, which is contained in a Standard C++

stream, we had to implement an appropriate class providing streams as input source.

We accomplished this by deriving the classes StreamInputStream and StreamInputSource

from the Xerces base classes BinInputStream and InputSource as depicted in figure

6.3 on page 65.

6.1. CLIENT 65

Figure 6.3: UML class diagram of the SoXML DOM Model classes

In order to be able to use the SAX interface of Xerces, we had to derive a new

class from Defaulthandler, namely Sax2Handler. The Sax2Handler class implements

the actual translation process by overwriting the virtual methods of it’s base class.

The output of this translation process is a tree, which is composed of instances of

the classes SoXML and SoXMLText. In order to access this tree with the scene graph

operations of Coin2, we derived these classes from the Coin base class SoNode and

SoGroup. Read the section ”SoXML DOM Model module” of the developer manual

in order to get additional details about these classes.

6.1.4 Optimizing the API

While developing the demonstration application BAUMLBrowser we found that the

performance of the client API was somewhat poor. It took about 20 seconds to query

and process the mid-sized BAUML object ”Karlskirche bd”, what we found way too

long. The basic steps involved in this operation are to query the database, apply

a stylesheet in order to extract the result set (”getResult.xslt”) and apply a second

stylesheet (”bauml2iv.xslt”) to transform it into a Coin script. After we profiled

the concerned BAUMLBrowser method ”getRepresentation()” we got the following

66 CHAPTER 6. IMPLEMENTATION

surprising results:

Processing times before optimization
Operation Time Time

(seconds) (percentage)
getRepresentation() 19.3 sec 100%
querying the database 1.9 sec 10%
applying the stylesheet ”getResult.xslt” 11.7 sec 60%
applying the stylesheet ”bauml2iv.xslt” 5.9 sec 30%

From the table above one can see that applying the two stylesheets took about 90%

of the entire operation, while the query itself only took 10%!

Further investigation and profiling revealed the reason for this performance problem.

The stringstream template classes <sstream> of the Microsoft C++ runtime library

are implemented in a way, that slows down string stream processing. Fortunately, this

library contains another string stream implementation, namely <strstream>, which

performs much better. Simply by replacing the stream library, we were able to

significantly speed up the processing, which is shown in the following table.

Processing times after optimization
Operation Time Time

(seconds) (percentage)
getRepresentation() 5.9 sec 100%
querying the database 1.9 sec 32%
applying the stylesheet ”getResult.xslt” 2.3 sec 38%
applying the stylesheet ”bauml2iv.xslt” 1.7 sec 28%

The processing time of each operation is now about one third of the entire task and

the overall performance gain is about 300%.

6.2 Server

This section discusses the implementation of the database server. Apart from modifying

the Passthru Servlet, the work that had to be done was mainly a matter of installation

and configuration.

The following section describes which components were chosen in order to implement

the server and how they are configured to work together. Then we discuss why the

Passthru Serlvet had to be adopted and the modifications which were made to it. The

last section deals with some unexpected and strange performance problems which

came up when the server was tested with big sized XML documents.

6.2. SERVER 67

Figure 6.4: Diagram of server components and scripts

6.2.1 Server components

As outlined in the design chapter, an essential portion of the database server is made

of third party software. Since we decided to employ the Tamino Passthru Servlet in

our project, we also needed to choose a servlet engine and a web server in order to

properly run the servlet. Figure 6.4 on page 67 depicts the logical structure of the

server including the most important configuration scripts. In the following sections

we only discuss the function of these components, (see the appendix of this work for

a detailed description of how to install them).

Apache Web Server

Apart from the fact that several other components of the Tamino XML server require

the installation of a web server, the Tamino Passthru Servlet needs one in order to

query database. Basically, this task can be carried out by any web server, which is

capable of forwarding requests to particular web locations. Since the Tamino setup

68 CHAPTER 6. IMPLEMENTATION

procedure directly supports the use of the Microsoft IIS and that of the Apache web

server, it is easiest to employ one of these two. As Apache is, in contrast to the

Microsoft IIS, free of any charges and we only need it to implement the database

access, we decided to employ Apache. Furthermore, Apache is available for several

operating systems, including Windows and Linux (design request P1), and, at the

time of writing, the most popular web server on the Internet and thus a well tested

piece of software.

Tomcat servlet engine

Every Java servlet needs a proper operating environment in order to be executed. In

principle the Tamino Passthru Servlet can be used with any Java servlet container

that supports the Java servlet specification version 1.2. Since the main environment

used by the Software AG developer team was Tomcat 4 and the Tamino manual

gives detailed instructions on installation and configuration, we decided to employ

this version of Tomcat. Furthermore, it is freely available from the Apache website,

completely written in Java (design request P1) and used in the official reference

implementation for the Java Servlet technologies.

Note: There is also a later version of Tomcat available (version 5.x), but this one is

not compatible with the Tamino Passthru Servlet, because it does not support

the JSP 1.2 specifications anymore.

MOD JK module

The MOD JK module is a plug-in to Apache that handles the communication between

the Apache web server and Tomcat. It is, of course, also available for UNIX platforms.

Studierstube Passthru Servlet

The Studierstube Passthru Servlet is an enhanced version of the Tamino Passthru

Servlet. It supports the execution of an additional, fixed, server-side stylesheet. This

is discussed in detail later in this chapter.

Xalan XSLT processor

Since we want to execute stylesheets on the server, we need an XSLT processor to

accomplish this. The Tamino Passthru Servlet will work with any XSLT processor

that implements the Java API defined in the JAXP 1.1 specification. There are

several, freely available processors we can choose from, for example Saxon, XSLTC,

jd.xslt and Xalan-J.

6.2. SERVER 69

In order to get transformation results, which are as close as possible to that of

the client (when using the same stylesheet), we decided to employ the Java version of

Xalan, Xalan-J. This facilitates to shift the execution of a stylesheet from the client

to the server and vice versa, without the need to modify it.

Configuration scripts

The configuration scripts depicted in figure 6.4 are an important part of the database

server, because they define how the components are interconnected. In the following

section we give a short description for each of the scripts.

httpd.conf is the main configuration file of the Apache web server. The Tamino

setup modifies this file in order to enable HTTP access to the database and for

the execution of its web-based services. Furthermore it includes a link to the

configuration script of Tomcat.

apache-connector.conf is responsible for loading the MOD JK module and defines

the mount points of the servlets. Furthermore it includes a link to the workers.properties

configuration script.

workers.properties gives Tomcat information about where to listen for requests

from the Apache web server.

web.xml is the main configuration script of a Tomcat servlet. It defines the mapping

of URLs to servlet code and provides a set of user-defined parameters, which

can be used to configure the servlet. In the case of the Studierstube Servlet, one

of these parameters points to the fixed server-side stylesheet ”stbresult.xsl”.

6.2.2 Studierstube Passthru Servlet

The Studierstube Passthru Servlet, also referred to as Studierstube Servlet, is a modification

of the Tamino Passthru Servlet. It enhances the original Tamino servlet by adding

support for the execution of an additional, fixed stylesheet. This stylesheet is executed

prior to the user defined stylesheet, which can be specified by client applications using

the ”stylesheet” member variable of the Query class.

Since there is no common standard for result sets of XML Databases so far, each

database manufacturer is defining its own format. The purpose of the enhancement to

the Tamino Passthru Servlet is to transform the query results of the Tamino database

server into a form, which is specified by us. Without this transformation the code

of the client applications would highly depend on Tamino and thus, make it very

difficult to replace the database server at a later point of time. As mentioned in the

previous section, the stylesheet defining the fixed transformation can be configured

70 CHAPTER 6. IMPLEMENTATION

in the ”web.xml” script of the servlet. Read the developer manual of the Client API

for more details about the usage of this servlet.

Modifying the servlet

Due to a lack of source code documentation, it was quite difficult to modify the

servlet and to integrate the extension. In order to facilitate further enhancements of

the servlet, this section gives an overview of the modifications made.

The complete Java source code of the servlet can be found in the Java directory

”com.softwareag.tamino.passthru”. Included in this directory is a class called TaminoFilter,

which is derived from the class HttpServlet. This is the only class which needed to

be modified. In order to preserve the original source code, the first step was to copy

it to a new class called StudierstubeFilter. Appropriate comments are given for all

modifications being made.

At startup time of the servlet the method ”init()” reads several parameters from

the configuration file ”web.xml”. We added an additional parameter called ”fixedStylesheet”

to it, which contains the URL of the fixed stylesheet. The processing of the stylesheets

is implemented in the ”doGet()” method, which is called upon each HTTP GET/POST

request. We had to restructure this method in order to add the extension and moved a

portion of its code to a new method ”cacheFile()”, which caches the compiled version

of stylesheets. Prior to the user defined stylesheet, which is stored in the HTTP

parameter ” xslsrc”, we apply the fixed stylesheet and write the transformation result

back to the variable ”xmlSource”, which is then used by the remaining part as input

source.

The following section lists the most important variables used and intends to facilitate

the understanding of the ”doGet()” method.

fixedStylesheet: A member variable storing the path to the fixed stylesheet; it is

initialized by the method ”init()”

xslstr: A local string variable storing the path of the stylesheet contained in the

” xslsrc” HTTP parameter.

xmlSource: A string variable storing the intermediate results of the stylesheet processing.

xmlResult: A string variable storing the final result of the stylesheet processing.

6.2. SERVER 71

Compiling the servlet

The command line script ”build.cmd” in the ”\bin” directory of the Passthru Servlet

compiles the source code and creates the Java library ”passthru.jar”, which can then

be copied to Tomcat’s servlet folder. For a successful compilation we needed the

following prerequisites.

Sun Java SDK 1.3.x The Passthru Servlet was developed by using version 1.3.x of

the Java SDK. Though it is not a problem to execute it under a later version,

it did fail to successfully compile using Java SDK 1.4.1.

JSDK 2.0 The Java Servlet development kit.

JAXP 1.1 The Java API library for XML processing.

6.2.3 Performance problems

During the system test we stumbled over a strange problem regarding the performance

of the Tamino database server. While the query response time was usually within

the range of a few seconds when using a certain test data set, it abruptly became

worse, after new XML objects were added to this set. Depending on the size of these

objects the response time was even extended up to two minutes.

Luckily, with the help of a service member of Software AG, we were able to solve

this problem. The internal cache size of the XQuery processor is set to a very low

value by default and thus creates a bottleneck in the query engine. We were advised

to insert the string parameter ”XQuery document cache size” (type REG SZ) into

the Windows registry to the key

”HKEY LOCAL MACHINE/SOFTWARE/SoftwareAG/

Tamino/servers/<database name>” and set its value to 100 (Megabytes).

After that, the original performance of the server was restored. Even if we doubled

the size of the test data then it did not have a noteworthy impact on the query speed.

72 CHAPTER 6. IMPLEMENTATION

Chapter 7

Sample application

7.1 Introduction

Having completed the implementation of the client API and the modifications on

the server, we wanted to test the software by means of a small sample application.

In order to obtain something more useful than a simple demonstration application,

we searched for a proper task in the scope of the Studierstube project. We wanted

to run the software in a real world environment and, at the same time, achieve an

application, which can be utilized later, too. At last the SignPost subproject offered

what we were looking for.

SignPost is a Studierstube application that is able to guide a person through an

unfamiliar building. It is an Augmented Reality navigation system, where the person

wears a mobile equipment consisting of a head mounted display, a camera and a

tracking system. SignPost relies on an XML-based data structure, called Building

AUgmentation Markup Language (BAUML), that holds geometric information of

rooms and buildings, as well as the placement of markers, which allow to determine

the current position of the user.

Since one of the future application fields of our XML Database is to provide

BAUML data, we decided to write a small application, which is capable of browsing

and manipulating BAUML documents stored in a database. The following sections

present this application, called BAUMLBrowser, after giving a basic introduction to

the BAUML language.

7.2 BAUML Language

BAUML is an XML language for the representation of geometric information. It

allows to describe any object or set of objects by specifying the position of its vertices

and surfaces in a three dimensional coordinate system. Some BAUML objects can

be further refined and described in more detail by adding a set of child objects. The

73

74 CHAPTER 7. SAMPLE APPLICATION

resulting data structure is a tree of BAUML objects, where each additional tree level

refines the associated objects above. Due to its recursive definition, BAUML allows

an infinite nesting of objects and thus enables to specify an arbitrary level of detail.

There are several types of BAUML objects, embedded in a type hierarchy, and

each type defines a different aspect of the BAUML language. The most basic types

are listed in the following text.

ObjectType is the basic object type. It defines an ”annotation” tag and an ”id”

attribute. All other object types are directly or indirectly derived from it.

SpatialObjectType is derived from ObjectType. It is the basic type for all spatial

objects and defines a ”pose” tag and a ”representation” tag.

SpatialContainerType is derived from SpatialObjectType. It is the basic type for

all spatial objects containing child objects. It defines a ”children” tag.

The geometric information mentioned above (vertices and surfaces) is stored in the

”representation” tag of the SpatialObjectType. All spatial objects must be derived

from this type and they must utilize this tag in order to specify their representation.

The same counts for the ”children” tag of the SpatialContainerType, which holds a

list of child objects and thus describes the parent object in more detail.

These are all abstract types forming the base of the BAUML language. Abstract

means that there must not be instances of these types, but instead they are used

to derive further types from them. In addition to these abstract types, BAUML

also defines concrete elements like SpatialObject, SpatialContainer, Room, Building,

ARToolkitMarker and Waypoint, which are all derived from the above types. Each

of these elements extends its basic type with additional tags and attributes specific

to its needs.

In the following example, we use the BAUML language to define a model of a simple

rectangular room (width=5, depth=10, height=3) consisting of a floor and four walls.

<SpatialObject id="Simple room" baseType="SpatialObjectType">
<annotation >

Simple room model for demonstration purposes
</annotation >
<representation >

<Vertex position="0 0 0"/>
<Vertex position="5 0 0"/>
<Vertex position="5 10 0"/>
<Vertex position="0 10 0"/>
<Vertex position="0 0 3"/>

7.3. BAUMLBROWSER APPLICATION 75

<Vertex position="5 0 3"/>
<Vertex position="5 10 3"/>
<Vertex position="0 10 3"/>
<Polygon type="floor" vertices="0 1 2 3"/>
<Polygon type="wall" vertices="0 1 5 4"/>
<Polygon type="wall" vertices="1 2 6 5"/>
<Polygon type="wall" vertices="2 3 7 6"/>
<Polygon type="wall" vertices="0 3 7 4"/>

</representation >
</SpatialObject >

Since this room has no doors or windows, we use the generic SpatialObject type for

that. We define the model by specifying the eight vertices of the cuboid and five

polygons (a floor and four walls). For this aim, the ”vertices” attribute of a polygon

tag contains a list of numbers, indexes of the cuboid vertices. Furthermore, we have

annotated the object in order to document its use. If we use the BAUMLBrowser

application this model can be depicted as in figure 7.1 on page 77.

This example only demonstrates the most basic features of BAUML language. Read

chapter 5 of [5] in order to get a comprehensive description of the language concepts

and more advanced features.

7.3 BAUMLBrowser Application

BAUMLBrowser is our test application for the Studierstube XML Database API. It

was written to test the functionality and usability of the API and was meant to gain

first experiences utilizing an XML Database in a real world application. Therefore,

it covers all of the features offered by the API and thus can be seen as a reference

for implementing Studierstube XML Database clients. Apart from that, it is a handy

tool when dealing with BAUML documents, which are stored in an XML Database.

7.3.1 Features

BAUMLBrowser is a Microsoft Windows application, which is capable of browsing

and editing BAUML documents stored in an XML Database. It covers features for

viewing the structure of a BAUML document, displaying a graphical representation of

BAUML objects, converting BAUML data from and to Coin2 scripts and editing the

nodes of a BAUML document. The editing capabilities include functions for inserting,

updating and deleting BAUML objects. In addition to that, the application offers

two special functions: A function for testing object intersection and one for testing

point inclusion.

76 CHAPTER 7. SAMPLE APPLICATION

7.3.2 Core component

In order to be able to reuse the features of the browser in other applications, we have

separated the parts, which are independent of the operating system. All functions,

which are not related to the Microsoft Windows system, have been encapsulated

in a class called BAUMLBrowser. Mostly, this concerns functions, which are not

dealing with the user interface of the application. The BAUMLBrowser class builds

a layer on top of the database API and offers functions to access and process BAUML

documents. This way, the browser can be easily ported to other operating systems

like Linux.

The appendix of this work contains a developer manual, which gives a comprehensive

description of this class in order to implement a database browser.

7.3.3 User interface

Since BAUML is a data format, which is based on a tree structure, we decided to

give the application an Explorer-like user interface. BAUMLBrowser is a so-called

dialog based application, which means that its user interface basically consists of a

single window containing all the widgets needed for operation. At the left side of the

dialog (see figure 7.2 on page 77) one finds a tree view displaying the structure and

the nodes of a BAUML document. It can be used to browse through a document

and to select certain BAUML objects for manipulation. Right to the tree view is a

Coin viewer window, which shows a graphical representation of the currently selected

BAUML object. Furthermore, the dialog contains various widgets, which are used to

connect to a database and to edit the contents of a BAUML document. The appendix

of this work contains a user interface guide, which explains the meaning of the various

widgets and describes how one can use the application to edit a BAUML document.

Read it to see some screenshots of the application and to get further information

about its user interface.

7.3.4 Implementation

During the implementation of the browser, we stumbled over a strange performance

problem. This topic has already been treated in the implementation chapter and thus

will not be discussed here any further.

7.3. BAUMLBROWSER APPLICATION 77

Figure 7.1: Simple room model

Figure 7.2: Screenshot of the BAUMLBrowser application

78 CHAPTER 7. SAMPLE APPLICATION

Chapter 8

Summary

This work is the base for employing an XML database system for Studierstube applications.

It shows that it is possible to utilize this new technology in the context of Augmented

Reality. Though there are still features missing, like full XML Schema support and

insert, delete and update of root level documents, the installed database product

proved to be a useful storage medium for a certain spectrum of XML documents.

Furthermore, we are expecting, that one of the next releases of Tamino will also

remove those last deficiencies.

On top of the database, we have implemented an API for Studierstube applications,

the Studierstube XML Database API, which enables to seamlessly integrate XML

Database functionality.

Thus, Augmented Reality applications can be realized, which work with big data

sets, much bigger than it is possible with single XML documents on a file basis. So,

for instance, it is possible to store and retrieve detailed, comprehensive graphical

information, which originates from urban geographical information systems. Another

conceivable application is to employ the database for storing the state of distributed

Studierstube applications and utilize it to exchange information between them. The

potentials of applications are virtually unlimited.

The API can be easily extended to support advanced database features like

transactions and sub collections. In order to fully benefit from employing an XML

Database system, we recommend to implement these features in a future project.

79

80 CHAPTER 8. SUMMARY

Appendix A

Database Comparison Charts

81

General

Product name Tamino Xindice eXist

Home URL http://www.tamino.com/
http://xml.apache.org/xi
ndice

http://exist.sourceforge.n
et/

Version
v3.1.2.1

(Sept 2002)
v1.1b3-dev
(Dec 2003)

v0.9.2
(Aug 2003)

License Commercial Open Source Open Source

Supported Platforms

Windows NT
Windows 2000
Sun Solaris 7 and 8
IBM AIX 4.3.3
HP-UX 11.0
SuSE Linux for Intel
and IBM S/390
OS/390 mainframe

Implemented in Java,
platform independent.

Tested on

MS Windows

Unix/Linux

Implemented in Java,
platform independent.

Tested on

Windows 2000

Windows XP

Linux (SuSE 7.1,
Mandrake 9.1)

Solaris 8

Required Software
before installation

Apache Web Server
>= 1.3.24
Microsoft Java Virtual
Machine >= 3805
(hard to get)

Sun Java SDK
Version 1.3 or higher
Tomcat Servlet
Container Version
4.1.12 or higher

Sun Java SDK Version
1.4

Test system

Intel Pentium III-800Mhz with 256 MB RAM
MS Windows 2000 Professional (German) with Service Pack 4
Internet Explorer 6, Service Pack 4
Windows Update (Security update & Java VM 3810)
MS Office 97 - Word, Excel, Power Point, Access (German), Frontpage 2000
(German)
MS Visual C++ 6 (English)
Sun Java 2 SDK v1.4.2_02
Apache v1.3.24 Web server
Tamino XML Server 3.1.2 Patch Level 1
Tomcat Servlet Container v4.1.12
Xindice v1.0 and v1.1b3-dev
eXist v0.92

XML standards

Tamino XIndice eXist

XPath
Path-like data query

Yes, in an adopted form
called X-Query or XQL

Yes, implemented by
Xalan Yes

XQuery
SQL-like data query

No
No Yes, but not complete yet

XSD
XML Schema Definition

Yes, in a form called
Tamino schema, not fully
compliant with the
standard

No No

XSL/XSLT
Data Transformation
(Server side)

Yes, by using X-Tension
and a third-party XSLT
processor

No Yes, when using HTTP

XUpdate
Data update No

Yes, using the Lexus
implementation

Yes, but not complete yet

SiXDML
Simple XML Data
Manipulation Language

No
Yes, by sixdml at
sourceforge

No

DTD
Document Type
Definition

Yes, by importing into
Tamino Schema Editor

No
Yes

XPointer
Data Selection No

No
Yes, partially

XLink
Links across document
boundaries

Yes
No

No

XInclude
Including document
fragments

No
Yes, partially

Yes

Database features

Tamino XIndice eXist

Schema support
Yes, but not mandatory No No

Collection support
Yes, but no support for
nesting

Yes, but no support for
XPath queries across
collections

Yes

Indexes Yes, based on schemas Yes, user indexes only Yes, automatic full text
index

Server extensions
X-Tension service
(Java, C, C++)

Yes, by programming
extensions for the servlet
engine

Yes, by programming
extensions for the
servlet engine

Transaction support Yes No No

Authorization
mechanism

Yes, at different object
levels

No Yes, Unix-like access
permissions for
users/groups at
collection- and
document level

Multi user access,
concurrency

Yes, designed for high
concurrence.

Unclear Yes

Update granularity

"The smallest unit of
XML that Tamino can
process is a
document.You can use
NodeLevelUpdate if you
use Microsoft Internet
Information Server (IIS)
as your web gateway to
Tamino."

Logically at node level
and
physically at document
level

At node level

Backup/Restore
strategy

Yes. Done manually in
Tamino Manager.

No
(Shutdown, Copy&Delete
complete database)

Yes. Done via
Command-Line or Gui
Client.

Programmatic APIs

Tamino XIndice eXist
Language independent API's

SAX
Simple API for XML

Yes, as part of Tamino
API for Java

Yes, implemented in Java Yes, implemented in Java
as part of the XML:DB API

DOM
Document Object
Model

HTTP Client API for
ActiveX (C++, Visual
Basic), Java, JScript

Tamino API for Java
(DOM2)

Yes, implemented in Java Yes, implemented in Java
as part of the XML:DB API

Java only API's

XML:DB API
Data update (JDBC
for XML)

No Yes, Core Level 1
implementation

+ XUpdateQueryService
+
CollectionManagementServ
ice

Yes, Core Level 1
implementation

+ UserManagementService
+
DatabaseInstanceManager
+ IndexQueryService

JAXP
Java API for XML
Processing

Yes
No No

JDOM
Java Document
Object Model

Yes
No No

Other
API for the X-Machine
programming language

XinCJ a subset of the
XML:DB interface for C++

Documentation

Tamino XIndice eXist

Available formats
HTML
PDF

HTML
PDF

HTML

Size ~ 3000 printable pages ~ 80 printable pages ~ 50 printable pages

Quality

Very good, with many
examples, although
sometimes a bit
digressing

Good, but missing a
comprehensive
installation guide and
XML-RPC
documentation

Small, but accurate

Search functions
Full-text HTML search
engine

None None

Supported network protocols

Tamino XIndice eXist
HTTP
Query the database with
a web browser

Yes
No, just document
retrieval by Xindice
HTTP

Yes (in standalone
mode)

XML-RPC
Remote procedure calls
using XML over HTTP

No
Yes, by Xindice XML-
RPC module written in
Java

Yes, by Apache XML-
RPC

WebDAV
Web-based Distributed
Authoring and
Versioning

Yes
Yes, by XinCon and
Xindice Webadmin (in
servlet mode)

Yes, by XinCon (in
servlet mode)

SOAP
Simple Object Access
Protocol

No No Yes (in servlet mode)

Applications

 Tamino XIndice eXist

System
configuration &
administration

Tamino Manager a
graphical web
application

Xindice Webadmin a
graphical web
application
(in servlet mode only)

eXist Client Shell an
integrated and
combined Command-
Line and Gui Java
Client based on
XML::DB API

DTD & Schema
editors

Tamino Schema
Editor, a graphical
Java application,
editing a schema as a
tree

-
-

Data editors

Tamino X-Plorer a
graphical Java
application
Tamino Interactive
Interface, a simple
form-based web-
interface

Xindice Webadmin a
graphical web
application
(in servlet mode only)
YAB is an Explorer-like
browser for Xindice
(Java)
XDataFinder v0.6 is an
application for
browsing and querying
XML files and native
XML databases (Java)
XinCon a web &
webdav administration
interface
XIndice Browser v0.85
a tool to browse a local
Xindice 1.0 database
(Java)

eXist Client Shell - an
integrated and
combined graphical
and command-line
Java application
eXist x-admin
interface - a simple
administrative web-
interface

XMLdbGUI v1.3.1 is an application that allows the user
to browse and modify databases conforming to the
XML:DB API specification (Java)

Data
import/export

Tamino Data Loader
(Command line)
Java Loader
(Command line)

Xindice command line
client Export/import
collections to/from files
in a directory hierarchy

eXist Client Shell -
using the upload and
backup feature

Pros & Cons

Tamino XIndice eXist
+ Good and extensive
documentation
+ Good administration
applications
+ Support for schema's and data
types
+ Sophisticated database engine

+ Supports standard API's
+ Additional embedded mode

+ Supports standard API's
+ Good administration
applications
+ Automated index generation
+ Additional embedded mode

- No support for XUpdate, it's not
possible to update documents
partially
- Less support for standard API's
- Needs MS Java VM >= 3805,
which is hard to get
- Expensive

- Does not support querying
across collections and
subcollections
- Inappropriate storage technology
- Only manual indexes
- Is said to be retired

- No manual indexes
- XPath and XUpdate
implementation not complete yet
- Still in beta state

Other free available XML Databases
Product URL Comment

dbXML http://www.dbxml.com/
Seems that the Open Source Version is a performance reduced lite
version of the commercial product.

Ashpool
http://ashpool.sourcefor
ge.net/

Uses standard SQL92 syntax to query, add, update, and delete XML
documents

4Suite,
4Suite
Server

http://4suite.org/
4Suite is a collection of Python tools for XML processing and object
database management.

Berkeley
DB XML

http://www.sleepycat.co
m/products/xml.shtml

Berkeley DB XML is supplied as a library that links directly into the
application's address space. No support for XUpdate.

DBDOM
http://dbdom.sourcefor
ge.net/

Is an implementation of the DOM over a relational database.

ozone http://ozone-db.org/
A Java based, object-oriented database management system. No
support for XPath or XUpdate.

XDBM
http://sourceforge.net/p
rojects/xdbm

Is "based upon the DOM standard".

XDB
http://zvon.org/index.p
hp?nav_id=61

Built on a relational database.

Appendix B

Database API manual

The Studierstube XML Database API is a programming interface, which provides

access to a Tamino XML Database. Using the API, you can query and update XML

documents in a database, transform query results using XSLT and build a DOM

Model for accessing the data. The API is logically divided into two modules, which

can be used independently of each other:

• Database access module - Provides classes for database access and data transformation

• SoXML DOM Model module - Provides classes to build a DOM model based on

Open inventor nodes

B.1 Database access module

Tamino XML Server is a data management system for storing XML documents. It

helps with finding and managing XML data and to search effectively the information.

A single Tamino server is able to run several databases, which can be accessed by

name, and is able to supply many clients. A Tamino database is organized in form of

collections. A collection is the largest unit of information within a database and can

contain multiple XML documents. You can think of it as a folder in a file system,

with the difference that it stores XML documents instead of files.

In order to search for information within a collection, Tamino supports two query

languages, XQuery and XPath. Since XQuery is the standard query language in

Tamino and a superset of XPath, the following sections will focus on it. Beside

the ability to retrieve objects or parts of an object, Tamino XQuery is capable of

inserting, updating and deleting objects and also to compose the query result using

constructors. It, more or less, combines the features of XPath and XSLT in one

comprehensive query language. Although we recommend to use XQuery, because

this will be the future standard for XML Databases, it is up to you to choose the

89

90 APPENDIX B. DATABASE API MANUAL

Figure B.1: Collaboration diagram of database access classes

appropriate language for your database application. Both alternatives have their

own advantages and disadvantages. If you, for example, already own a set of XSLT

stylesheets matching your needs you will prefer to use the combination of XPath and

XSLT. Whereas it will be a good idea to choose XQuery, if you start a new project

from scratch.

The following sections assume that you are familiar with the basics of Tamino XQuery.

The documentation of Tamino [24] includes a comprehensive guide about it. Read it

first, it will help you to understand this manual.

B.1.1 Getting started

This section describes the Database access module, which is part of the Studierstube

XML Database API. The Database access module is a small set of C++ classes,

providing access to a Tamino XML Database and for executing XSLT transformations.

It consists of the three classes Database, Query and Transformer. The class Database

manages a connection to an XML Database server, handling the transport of database

queries and query results over a TCP/IP network. It also provides a method to

execute queries in form of instances of the class Query, which holds a query script

and other query related parameters. Query results can then be further processed

with XSLT stylesheets using the Transformer class. See figure B.1 on page 90 for an

illustration of how these classes collaborate. The discussed classes are marked by a

bold frame.

The following sections will take you step by step through some typical basic

operations you will probably want to do. They will teach you how to use the

classes to connect to a database server, query and update XML documents, how to

B.1. DATABASE ACCESS MODULE 91

interpret database responses and how to process query results with XSLT stylesheets.

Furthermore, a section that discusses advanced database topics is included. It is

recommended to read this guide from the beginning to the end, so that you will have

a complete overview after you have finished reading.

B.1.2 Sample database

The following sections rely on code examples, which work on a database containing

information about staff meetings. Assume that we have created an XML Database

”stuff” and a collection ”meetings”. An XML document of this collection stores

information about our staff members’ meetings. Further assume, that the database

already contains the following document.

<meetings >
<meeting number="1">

<title >XML for Augmented Reality </title>
<date>1/3/2004 </date>
<people >

<person >
<firstname >Edward </firstname >
<lastname >Samson </lastname >

</person >
<person >

<firstname >Ernestine </firstname >
<lastname >Johnson </lastname >

</person >
<person >

<firstname >Betty </firstname >
<lastname >Richardson </lastname >

</person >
</people >

</meeting >
<meeting number="2">

<title >XML databases </title>
<date>31/5/2004 </date>
<people >

<person >
<firstname >Ernestine </firstname >
<lastname >Johnson </lastname >

</person >
<person >

<firstname >Betty </firstname >
<lastname >Richardson </lastname >

</person >
</people >

</meeting >
</meetings >

The root tag <meetings> of this sample document contains a list of the staff meetings,

which have been held. Currently there are two meetings in the list. A meeting,

92 APPENDIX B. DATABASE API MANUAL

enclosed by the tag <meeting>, is identified by a unique ”number” attribute, stores

a ”title”, the ”date” when the meeting was and a list of ”people” participating. For

each ”person” of the ”people” list there are two child tags containing the persons first

name and last name. This will be the basic data for the source code examples of the

next sections.

B.1.3 Retrieving objects from the database

Using the database, which was defined in the previous section, this section shows how

to open the database and how to run a simple query on it. For the ease of reading

assume that all operations of the following code example succeed, so that we do not

have to add any error handling code to it. Anyway, there is a special section about

error handling later in this manual.

//1. include header files

#include <stbxml/Database.h>
#include <stbxml/Query.h>
#include <string >

//2. use namespaces

using namespace std;
using namespace stbxml;

//3. Define and open the database

Database database;
database.open("192.168.0.1", "stuff");

//4. Setup a Query object

Query query;
query.language = Query :: XQUERY;
query.query = "input ()/ meetings/meeting/title";

//5. Run the query on the database

string response;
database.execute(query , "meetings", response)

//6. Print the result

printf("%s", response.c_str ());

//7. Close the database

database.close ();

(1.) First of all you need to include the correct header files. The ones related to

the database API reside in the folder ”stbxml”, which should be in the search path

of your compiler. This example uses the classes Database, Query and the standard

C++ class string to store the response of the database server.

B.1. DATABASE ACCESS MODULE 93

(2.) All classes of the database API are defined in the namespace ”stbxml” in order

to avoid name conflicts. It is a good idea to specify the namespace, in order to work

with simpler class names.

(3.) These lines declare a Database object and open a connection to the database

”stuff” on an XML server with the following IP address ”192.168.0.1”. By the way,

the open method also supports the usage of a host name instead of an IP address.

Keep in mind, that the current implementation of the open method does not check

for the existence of the database or collection. Thus, take care of supplying correct

names to it.

(4.) Since the Query class supports two query languages, namely XQuery and XPath,

you have to specify which language should be used when defining the query. Here we

use the language XQuery to specify a query command, which retrieves a list of all

meeting titles contained in the database.

(5.-6.) Then we run the query on the database collection ”meetings” by calling the

method ”execute()” of the database object. The response of the database server is

stored in the string variable ”response” and printed (6.) to standard output.

(7.) The final step closes the connection to the database.

Next, we will analyze the answer of the database server, which should contain the

result set of the query. As you probably expect, the database answers in form of an

XML document.

When all operations have been successfully executed, the output of the sample program

should look like the following text.

<?xml version="1.0" encoding="UTF -8"?>

<stbxml:response
xmlns:stbxml="http: //www.studierstube.org/xml/xmldb/response" ... >

<stbxml:message >
<ino:message ino:returnvalue="0">

<ino:messageline >XQuery Request processing </ino:messageline >
</ino:message >
<ino:message ino:returnvalue="0">

<ino:messageline >XQuery Request processed </ino:messageline >
</ino:message >

</stbxml:message >
<stbxml:result >

<title >XML for Augmented Reality </title>

94 APPENDIX B. DATABASE API MANUAL

<title >XML databases </title>
</stbxml:result >

</stbxml:response >

Since the schema of an XML Database result has not been standardized until now

and each database server uses a different format, we decided to define our own format

in order to be independent of the manufacturer.

The root element ”stbxml:response” of the result document declares a namespace

”stbxml”, which is used to identify responses of the Studierstube database server. It

is composed of the sub elements ”message” and ”result”, which are also declared in

this namespace. These sub elements are mandatory and thus always present in a

response document.

The ”message” part contains manufacturer specific information about the query,

most notably error messages. You will find this information useful, when debugging

your application.

Whereas the ”result” part holds the actual result set of the query, the data you are

interested in. When using XQuery, the schema of this part will be the one which you

defined in your query and is more or less manufacturer independent. You will need to

extract the result set from the database response in order to be able to further process

the information. The easiest way to achieve this is by using the class Transformer,

which has not been discussed so far. It is shown in form of an example in the next

section.

B.1.4 Transforming query results

In addition to the query operations, which were introduced in the previous section,

the Database access module also offers ways to process information using XSLT

stylesheets. There are two possibilities, which we will discuss separately: You can

choose between client-side stylesheets and server-side stylesheets or even use both

alternatives when needed. While the server uses the Java version of the Xalan

transformer, the client transformation is implemented using the C++ version. Due

to the fact that these are independent projects, the output of both alternatives

sometimes shows minor differences when running the same stylesheet. Keep that

in mind when you decide to change the side of transformation at a later point. You

will have to adjust your stylesheet accordingly. But don’t worry, this can be done

with little effort.

B.1. DATABASE ACCESS MODULE 95

Client side transformation

Client side transformation is supported by the class Transformer, which is part of

the Database access module. Transformer is a wrapper class around the Xalan C++

library and tries to hide the quite flexible, but sometimes really complex, interface

of Xalan. The following example uses this class to extract the result set from the

database response of the previous section. For this purpose we need an appropriate

stylesheet, which implements the extraction. The following stylesheet is copied from

the BAUMLBrowser demo application and does exactly what we want.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org /1999/ XSL/Transform"
xmlns:stbxml="http: //www.studierstube.org/xml/xmldb/response">

<xsl:output method="xml" indent="yes" omit-xml-declaration="yes"/>

<xsl:template match="/">
<xsl:copy-of select = "/stbxml:response/stbxml:result /*"/>

</xsl:template >

</xsl:stylesheet >

The stylesheet copies the content of the path ”/stbxml:response/stbxml:result” to the

output, when the root ”/” of the input document is reached. Note that we had to

declare the Studierstube namespace in line two to be able to access the right tags.

Assuming that this stylesheet is stored in the file ”getresult.xslt”, the following code

example shows how to apply the transformation to the server response of the previous

section. It extends the previous source code sample by adding a transformation before

the output is printed to the screen.

...
///added 1: we additionally need the Transformer header file

#include <transformer.h>

...

//5. Run the query on the database

string response;
database.execute(query , "meetings", response)

///added 2: Extract the query result

Transformer transformer;
transformer.applyStylesheet("getresult.xslt", response);

//6. Print the result

printf("%s", response.c_str ());
...

96 APPENDIX B. DATABASE API MANUAL

After including the header file (added 1.), we add an instance of Transformer and

call the method ”applyStylesheet()” (added 2.) to transform the server response by

applying the stylesheet file ”getresult.xslt”. The processed result set and thus the

program output, will then look like the following text.

<title>XML for Augmented Reality</title>

<title>XML databases</title>

Server side transformation

Beside the possibility to run client side transformations, the database access module

also supports the execution of stylesheets on the server. You will prefer this method,

if you want to keep network bandwidth low or use some basic stylesheets in many

different applications, for example. The downside of this method is, that the server

load increases with the execution of each stylesheet and that the server’s error messages

are discarded before the result reaches the client. This might be an annoying fact,

when it comes to debug your application. You will have to temporarily disable the

execution of the stylesheet in your source code in order to find out what is wrong.

The transformation is specified by setting the parameter ”stylesheet” of the class

Query, which is used in the example of the previous section. This parameter is a URL

identifying the location of the stylesheet. The stylesheet might be retrieved from file

store, or directly from the XML server. If the value of the parameter is an absolute

URL, the stylesheet is retrieved using that URL. If the value of the parameter is

a relative URL, the stylesheet is retrieved from the server, as a named document

relative to the collection of the current query. See the following examples:

Assume that the queries are run on the collection ”meetings” in the database ”staff”.

When the query of the first example is executed, it processes the result of this query

using the stylesheet ”getresult.xslt” found in collection ”stylesheets” of the database

”staff”.

query.stylesheet="../stylesheets/getresult.xslt"

The second example obtains the stylesheet from the file store of the web server, not

from the XML server. Here, the stylesheet ”getresult.xslt” is located in the directory

”stylesheets” of the local web server.

query.stylesheet="http://localhost/stylesheets/getresult.xslt"

B.1. DATABASE ACCESS MODULE 97

Updating documents

The W3C consortium has already passed a standard for the XML query language

XQuery. But the current version, 1.0, does not comprise any update operations. The

Tamino XQuery language enhances this standard by supporting additional language

constructs for inserting, updating, deleting and renaming parts of XML documents.

All operations work on the node level, which means you are able to update all parts

of a document, which can be addressed by an XPath expression, even at attribute

level.

All update operations begin with the keyword update. The following example

utilizes the update functions of XQuery to insert an additional person to the second

meeting record of our sample collection ”meetings”. For this reason we substitute the

query definition (4.) of our source example with a query that performs the update.

//4. Insert a new person

Query query;

query.language = Query:: XQUERY;

query.query =
"update for $a in input ()/ meetings/meeting
where $a/@number="2"
do insert
<person >

<firstname >David </firstname >
<lastname >Johnson </lastname >
</person >

into $a/people";

As a result, the document will contain the additional element and the database server

will respond with a document, which indicates whether the operation was successful

or not. Apart from ”into” there are two other keywords that you can use when

inserting element nodes. Using ”preceding” the element nodes will be inserted as

preceding siblings to the update node. Using ”following” the element nodes will be

inserted as siblings following the update node.

The ”delete”, ”update” and ”rename” operations are specified using a similar

language construct. The ”For-Let-Where”-clause selects the nodes, which should be

updated, and allows to define variables and the ”do”-clause specifies how the data

should be changed. Read the Tamino documentation [24] about XQuery for further

details.

98 APPENDIX B. DATABASE API MANUAL

B.1.5 Advanced topics

This section deals with topics, which did not fit into one of the previous sections,

while still being important enough to be mentioned when working with Tamino in

the real world.

Limitations of Tamino XQuery

Though Tamino XQuery enhances the W3C standard with update operations, it

lacks some of the features mentioned. The following list mentions the most important

drawbacks and limitations when working with Tamino:

• XQuery does not support the unabbreviated syntax of location paths using

named axes. For example, it is not possible to use the ancestor axis in XQuery.

This should be changed in the next release of Tamino.

• Not all of the functions specified by the W3C consortium have been implemented

yet. As a workaround they can be implemented using Tamino server extensions.

• It is not possible to insert or delete a document of a collection using XQuery.

Which means that you have to use an external tool like Tamino XPlorer to

insert and delete top level nodes.

The document identifier ino:id

Normally, a query is working on all documents contained in the current collection.

Though sometimes it is necessary to restrict the scope of a query to one specific

document. Since there is no standard way to achieve this, each manufacturer has

implemented it’s own solution. In Tamino each document gets a unique identifier,

namely ”ino:id”, which can be used to refer to this document in a query. The following

XQuery example shows how to retrieve the document with the ino:id ”100”. Note,

that you have to specify the namespace for Tamino functions, because the function

”getInoId()”, which delivers the document ID of any node, is specific to Tamino.

declare namespace
tf="http://namespaces.softwareag.com/tamino/TaminoFunction";
for $a
in input()/*
where tf:getInoId($a)="100"
return $a

If the the ”where”-clause was omitted in this query, it would change the result set to

all documents of the collection instead of the document with ino:id ”100”.

B.2. SOXML DOM MODEL MODULE 99

Nested collections

Although this is a de facto standard of XML Databases, Tamino does not yet provide

any support for nested collections. It means, that you are not able to divide a

collection into further sub collections. If you are in need of utilizing sub collections

for your project, you will have to map the tree structure of your design to the flat

collection structure of Tamino by using an appropriate naming scheme.

Error handling

When working with the Database access module, you are utilizing a number of different

components, each of which can fail to operate successfully. The error messages

produced by these components, which contain details about the error reason, are

delivered in quite different formats. Some components use plain text, others HTML

and the third one XML in order to help the user solve the problem. To be able to

subsume these different formats into one, the Database access module uses the most

common of these, the text format. Most of the module’s methods return a Boolean

value indicating whether the operation was successful or not. In the case of a failure

you can call the ”getLastError()” method of the object to find out what was going

wrong. The format of this message depends on the component, which caused the

error.

As mentioned before, the result of a query operation can also contain an error

message, even when the ”Database::execute()” method returns true. The Database

class does not analyze the server response, because it cannot distinguish between an

error message and a valid database response. When using server side stylesheets one

can produce any imaginable output, which also includes error messages. Thus, it is

left to the user to decide, whether a server response is a valid query result or not.

B.2 SoXML DOM Model module

This section describes the SoXML DOM Model module, which is part of the Studierstube

Database API. The SoXML DOM Model provides a simple document object model to

represent and process XML data. When using this model you are able to access and

update the content and structure of XML documents. It offers operations to convert

the text representation of XML documents to a simple tree based object model and

vice versa. The nodes of this tree model are made of objects, which are derived from

Coin base classes, like SoNode and SoGroup. The parent-child relationship of the

tree nodes is directly mapped to the model of Coin and implemented by utilizing the

data structures of SoGroup. That way, XML data can be seamlessly integrated into

a Coin scene graph and being processed by using standard Coin methods, like tree

100 APPENDIX B. DATABASE API MANUAL

parsing and callback actions.

The advantage of deploying the SoXML DOM Model in your application is that

it is easy to learn and use and its direct integration into Coin, while the drawbacks

are that it does not support all kinds of XML tags, only provides simple methods

to deal with namespaces and does not feature any data types. Probably the most

useful application of the SoXML DOM Model is for reading and writing simply

structured configuration data, that does not require sophisticated XML processing.

The following sections show how you can utilize the classes of this module to read

and write XML based configuration data and how to access and modify its content.

B.2.1 Getting started

The SoXML DOM Model module consists of three classes, namely the classes Parser,

SoXML and SoXMLText. The Parser class can be seen as the active part of the

module. It provides methods to parse and serialize XML data, where ”parse” means

to convert XML text to a SoXML DOM Model and ”serialize” stands for generating

text from a DOM tree. Parser uses the SAX interface of the C++ Xerces parser in

order to convert an XML document to a DOM model, whereas the opposite way is

accomplished by utilizing the tree traversing mechanisms of Coin.

When parsing an XML document, the parser class creates a tree, which is composed

of instances of the classes SoXML and SoXMLText. As mentioned before, the model

supports only a limited set of XML elements, or to be more precise, it supports

XML tags, attributes and text data. Any other elements, like XML comments and

processing instructions, though they are allowed to be present, are discarded during

the parsing process.

An XML tag is represented by the class SoXML, which also stores the attributes

of the tag and a list of its child elements. This child list can contain an arbitrary

number of SoXML and SoXMLText objects in any order. Due to the fact that an

XML document owns at least one tag, which is called root or document node, and

that the SoXML DOM model does not provide any document class, the root node of a

SoXML tree is always an instance of the class SoXML. Whereas the third class of this

module, SoXMLText, which holds the text fragments of an XML document, is always

a leaf node. Figure B.2 on page 101 illustrates the collaboration of aforementioned

classes.

Following the solid arrows, the XML document on the left side of figure B.2 is

fed to the Parser by calling its method ”parse()”, which creates the SoXML tree on

the right side. The root object ”root” of this tree contains two child objects. One

SoXMLText object storing the text ”Hello world !” and one SoXML object holding

the content of the tag ”element”. The dotted line shows the opposite way, where the

B.2. SOXML DOM MODEL MODULE 101

Figure B.2: Collaboration diagram of SoXML classes

SoXML tree is serialized by the parser and generates an XML document.

B.2.2 Parsing an XML document

This section shows how to parse an XML file and how to access the tags and attributes

of the resulting SoXML tree. Imagine that we are writing an application, which uses a

configuration file based on XML. These application settings should cover the language

of the application and the background and foreground color of the main window. For

this purpose we create an XML file with the following content.

<appSettings >
<language >eng</language >
<color bg="white" fg="black"/>

</appSettings >

The root element ”appSettings” of this document embeds two child tags, which define

the configuration data for our application. The tag ”language” encloses a token,

setting the application language to English and the tag ”color” contains the attributes

”bg” and ”fg”, which sets the background color to white and the foreground color to

black. Assume, that this script is stored in a file named ”configuration.xml”. The

following code example parses this file and prints the contained settings to the screen.

//1. Include header files

#include <stbxml/Parser.h>
#include <stbxml/SoXML.h>
#include <stbxml/SoXMLText.h>

102 APPENDIX B. DATABASE API MANUAL

//2. Use the DB API namespace

using namespace stbxml;

//3. Parse the configuration file

Parser parser;
SoXML* appSettings = parser.parseFile("configuration.xml");

//4. Get child tags

SoXML* language = appSettings ->getChildByName("language");
SoXML* color = appSettings ->getChildByName("color");

//5. Print the content of the tags

printf("language =%s\n", language ->getText (). getString ());
printf("background =%s\n", color ->getAttributeByName("bg"). getString ());
printf("foreground =%s\n", color ->getAttributeByName("fg"). getString ());

(1.) The database API header files are located in the folder ”stbxml”, which should

be included in the search path of your compiler. First of all we need to include the

header files of the SoXML module.

(2.) In order to be able to use the SoXML classes without specifying any namespace

prefix, we declare the namespace ”stbxml”.

(3.) Then we use the class Parser to parse the configuration file and create a SoXML

DOM model by calling the ”parseFile()” method of the class, which takes a file path as

input parameter. Other input sources, like streams and URLs are also supported by

this class. After successfully parsing, the tree’s root node gets stored in the variable

”appSettings”. In the case of an error the parse method would return NULL to

indicate that something was going wrong. You can then call the ”getLastError()”

method of the class to obtain further details about the error. Let us assume that the

operation succeeds, though.

(4.) Starting from the root node, we access the child tags of the document by calling

the method ”getChildByName()”, which is provided by the class SoXML. This is

much more convenient than accessing the tags by using the member functions of the

base class SoGroup. Knowing that Whitespace characters, like carriage return and

space, also generate SoXMLText objects, which are stored in the child list, we cannot

access the child tags simply by specifying a constant index. This means that the first

object in the child list of the ”appSettings” element in the example above will be an

SoXMLText object containing ”\n ” and not the child tag ”language”, as one would

probably expect. Thus, utilizing the ”getChildByName()” method really makes sense.

B.2. SOXML DOM MODEL MODULE 103

(5.) Finally, the last part of the example prints the content of the tags to the screen.

The language token is extracted by using the method ”getText()”, which concatenates

all text objects contained in the tag ”language” and the background and foreground

attributes of the ”color” tag are accessed with the help of the ”getAttributeBy-

Name()” method, which delivers the value of an attribute by supplying its name.

The output of the sample program should then look like this:

language=eng
background=white
foreground=black

B.2.3 Constructing an XML document

In contrast to the previous section, this section shows how to construct and serialize

an XML document from scratch by utilizing the SoXML classes. First we will build

a SoXML DOM model in memory, which represents the XML document, then we

serialize the document using the class Parser and finally we write the result of this

process to disk. This way, for instance, you are able to create a default configuration

file solely from within your application. The following example constructs the XML

document of the previous section and stores it to the file ”configuration.xml”.

// Include header files

#include <string >
#include <fstream >

...

//1. Create the root tag

SoXML* appSettings = new SoXML("appSettings");

//2. ref the root object

appSettings ->ref();

//3. Add the language tag

SoXML* language = new SoXML("language");
language ->addChild(new SoXMLText("eng"));
appSettings ->addChild(language);

//4. Add the color tag

SoXML* color = new SoXML("color");
color ->addAttribute("bg", "white");
color ->addAttribute("fg", "black");
appSettings ->addChild(color);

//5. Serialize the DOM tree using a parser object

104 APPENDIX B. DATABASE API MANUAL

Parser parser;
string xmlText = parser.serialize(appSettings);

//6. Write the XML document to a file

ofstream os("configuration.xml");
os << xmlText;

//7. unref the root object

appSettings ->unref ();

(1.) After including all necessary header files and defining the namespaces to use,

we create the root tag of the document. This is accomplished by using a special

constructor of the SoXML class, which takes the name of the tag as parameter.

(2.) Since the SoXML class is derived from SoGroup, we also need to increment the

reference counter in order to be able to access the object.

(3.) Then we create the child tag ”language”, add a text object to its child list holding

the value of the tag and add it to the child list of the ”appSettings” tag.

(4.) Next, the ”color” tag is created and the attributes storing the background and

foreground color are added to it by calling the method ”addAttribute()”, which takes

the name and the value of the new attribute. Having done this, we have finished

constructing the DOM model and are ready to convert it to text format.

(5.-6.) We instantiate a Parser object, call the ”serialize()” method and pass the

root object of the DOM model to it. The result of the conversion is buffered in the

string variable ”xmlText” and then written to the XML file ”configuration.xml” (6.)

(7.) Finally, the reference counter of the root object needs to be decreased in order

to delete it.

Appendix C

BAUMLBrowser manual

This manual describes the BAUMLBrowser application, a database browsing tool,

which is used to browse and manipulate geometric information stored in an XML

Database. BAUML, the ”Building AUgmentation Markup Language”, is an XML

language to store geometric information of buildings and parts of those buildings like

walls, floors and corridors. The recursive definition of the language allows to create a

tree structure of spatial objects, where objects are composed of a number of smaller

objects.

The BAUMLBrowser application is capable of viewing and browsing such a BAUML

tree and offers functions to insert, update and delete tree nodes. On the one hand

it is an example application that demonstrates the usage of the Studierstube XML

Database API and on the other hand it provides a reusable layer on top of this API

to process BAUML documents. The following sections describe the user interface of

the application and the reusable core component.

C.1 User Interface Guide

BAUMLBrowser is a dialog based application written with Microsoft Visual C utilizing

the Microsoft Foundation Classes (MFC). The following section describes the meaning

of the various control elements of this dialog and how you can use it to edit a BAUML

document.

C.1.1 Tree control

Figure C.1 on page 106 shows a screenshot of the BAUMLBrowser application dialog.

On the left side of the dialog you see a tree control displaying the structure of the

BAUML objects which are stored in the database collection. Each node in the tree

control matches a BAUML object in the database and each child node of a tree

node corresponds to a child object of a BAUML object. Other element tags, like

105

106 APPENDIX C. BAUMLBROWSER MANUAL

Figure C.1: BAUMLBrowser user interface

”representation” and ”pose” tags, which can also be part of a BAUML object are not

shown by the browser. The name of such a tree node is composed of the object type

name (i.e. the name of the XML element that represents the object) and the value

of its ’id’ attribute, if available. The plus sign you can see on the left side of some of

the tree nodes indicates that the corresponding BAUML object contains some child

objects. Click on it with the left mouse button to open the list of child nodes.

C.1.2 Graphics window

Right to the tree control of figure C.1 you can see a window showing the graphical

representation of a room object. An embedded Coin viewer is used to display the

representation part of the BAUML objects. You can view an object simply by

selecting it with the mouse in the tree control. The title bar on top of the viewer

window then shows the name of the object viewed. If an object does not have a

representation part the text ”no representation” is displayed instead. Consider that

the representation of an object does not include the representation parts of its child

objects.

C.1. USER INTERFACE GUIDE 107

Figure C.2: BAUMLBrowser options dialog

C.1.3 Setting application options

The first thing you need to do, when working with the browser application is to set

up the basic application options. Select the ”Options” item from the program menu

to open the dialog, which is depicted in figure C.2 on page 107.

Enter the correct host name or IP address of your XML Database server into the

”Host” field. The ”Port” and ”Serlvet path” fields depend on the server installation

and default to 80 for the port and ”stbxml/servlet/transform/tamino” for the servlet

path. Leave them unchanged if not told otherwise. Close the dialog by clicking on

the ”OK” Button. This saves the application options in the application configuration

file. Consider that you need to close an open database connection and reconnect to

apply the new settings.

C.1.4 Connecting to a database

The next step after configuration is to open a connection to an existing XML Database

server. On top of the dialog in figure C.1 you see two edit fields named ”Database” and

”Collection”. Enter the name of the database and collection you want to browse and

press the button ”Connect”. After establishing a connection the application reads in

the top level objects and the text of the ”Connect” button changes to ”Disconnect”.

C.1.5 Inserting new objects

On the bottom left side of the application dialog in figure C.1 you find a number

of buttons that offer operations to edit the current BAUML document. Located on

the left is the button for inserting new objects. Press the button ”Insert...” to open

a file dialog which allows you to select a file to be inserted into the database. This

operation supports two file types. You can either insert a BAUML object from an

*.xml-file or from an Coin *.iv-script.

108 APPENDIX C. BAUMLBROWSER MANUAL

The first alternative creates a new BAUML object which is identical to the

contents of the *.xml-file. Consider that this operation does not check the contents of

the file. It is the responsibility of the user to ensure the validity of the inserted data.

The second alternative creates a new SpatialContainer object with a representation

part that complies with the contents of the *.iv-file. Since the BAUML format

represents all geometric data in form of polygons, Inventor shapes like cubes and

spheres need to be converted to an appropriate form. With the exception of IndexedFaceSet,

all shapes in the *.iv-file are transformed to a triangle representation using the triangle

callback action of Coin. Whereas all polygons contained in an IndexedFaceSet shape

are added to the representation as they are. During conversion any transformations

defined in the Coin script are applied to the data. The newly created object is then

inserted at the end of the child list of the currently selected object and the tree view

is updated to reflect the changes.

Consider that is not possible to insert top level objects into the database with

BAUMLBrowser. Use the Tamino Xplorer utility to accomplish that.

C.1.6 Updating objects

The update operation supports the same file types as the insert operation. Everything

said about file validation and conversion applies to the update operation as well. Press

the button ”Update...” to open a file dialog and select an *.xml or *.iv file, which

is used to update the currently selected BAUML object. Updating from an *.xml

file replaces the selected object with the content of the *.xml file. Whereas updating

from an *.iv file replaces only the representation part of the current BAUML object.

C.1.7 Deleting objects

The delete operation removes objects from the BAUML tree. Press the button

”Delete...” to remove the currently selected object from the database. Consider that

it is not possible to delete top level objects from the database with BAUMLBrowser.

Use the Tamino Xplorer utility to do that.

C.1.8 Saving objects

The save operation stores a BAUML object or its representation to a file. Press the

button ”Save...” to open a file dialog and choose a directory and a filename. You can

either save the currently selected object to an *.xml file in BAUML format or you

can save only the representation part of the object as an Open Inventor scene graph

to an *.iv file.

C.2. CORE COMPONENT 109

C.1.9 Object intersection test

The intersection operation tests whether the representation parts of two BAUML

objects share a common region in space. In order to be able to use this function you

need to select two objects from the tree view at first. Selecting two objects is done

by clicking the first object with the left mouse button and clicking on a second object

while holding the Ctrl-key. This enables the ”Do intersect?” button at the bottom of

the graphics viewer in figure C.1. Press the button to start the test. The application

then presents the result of the test in a message box showing either the string ”YES”,

when an intersection was found, or ”NO”, otherwise. Keep in mind that this test is a

bit limited due to the implementation of the SoIntersectionDetectionAction class of

Coin. Which means that an intersection is only found, when the planes of the surface

of two objects do intersect. So for example, if an object is completely contained in

the other one, the intersection test will show a negative result.

C.1.10 ”Has point” operation

The ”Has Point?” operation tests whether a certain three-dimensional point is contained

in the representation part of a BAUML object. On the bottom right of the application

dialog you find three edit controls named ”X”, ”Y” and ”Z”. Here you enter the

Cartesian world coordinates of your point to be tested. This function accepts floating

point values if necessary. Start the test by pressing the ”Has point?” button on the

left of the edit controls. The application then presents the test result in a message

box showing either the string ”YES”, when the point is inside the object, or ”NO”,

otherwise.

C.2 Core Component

This section describes the BAUMLBrowser C++ class, the core component of the

BAUMLBrowser application. This class encapsulates the parts of the application

which are independent of the Windows operating system and the Microsoft MFC

class library. Thus it facilitates porting the Windows application to another operating

system like Linux. The class basically defines a layer on top of the Studierstube

XML Database API, which provides operations to deal with BAUML documents

contained in an XML Database collection. This covers functions to insert, update

and delete BAUML objects and their representation, as well as transformations of this

representations to and from Coin scene graph scripts. In addition to that, two test

functions have been implemented for checking object intersection and point position.

The following sections show the basic ideas behind this component and illustrate how

to utilize it to implement a database browser.

110 APPENDIX C. BAUMLBROWSER MANUAL

C.2.1 Basic concept

A BAUML document can be basically seen as a tree of BAUML objects. Each node of

this tree is a target for manipulation through the user. Thus a mechanism is needed

to uniquely identify each node. This is the job of the Node class. A Node object

stores the location of a BAUML object and additional information like object type

and name, which can be used to label nodes of a tree control. The Node class is

a convenient way to work with BAUML objects, without having to deal with XML

related implementation details. All database related methods make use of this class.

When working with these methods you first get information about existing BAUML

objects in form of Nodes and then use these Nodes to identify the BAUML object you

want to update. Reading the entire content of a database at once would be quite time

and memory consuming. Instead, only the information needed at the moment should

be requested. As a tradeoff between reading all at once and getting the information

node by node, BAUMLBrowser provides a method to get information about all child

elements of a BAUML object. This way it is possible to traverse the BAUML tree

beginning at the root node down to the leaf nodes, while keeping time and memory

requirements within a reasonable limit. Moreover, this is exactly what you need to

successively fill a tree control.

C.2.2 Class initialization

Before you are able to connect to a database, several initialization steps have to be

performed. The following code example showcases the correct calling sequence of the

methods used to setup a browser instance.

BAUMLBrowser browser;
...

//1. init the browser class

browser.init ();

//2. set the Stylesheet directory to the current working directory

browser.setStylesheetDirectory(GetCurrentDirectory ());

//3. verify that all stylesheet files exist

string msg;
if (! browser.verifyStylesheets(msg)) {

printf(msg.c_str ());
exit (-1);

}

//4. load application options

BAUMLBrowser :: Options options;

C.2. CORE COMPONENT 111

if (options.read ())
browser.setOptions(options);

(1.) First of all the BAUMLBrowser class needs to be initialized by calling the ”init()”

method. This initializes the third party libraries used by the browser like Parser and

Transformer.

(2.) The next step is to set up the directory, where the stylesheet files reside.

Normally, this is the directory path of the BAUMLBrowser executeable. Consider

that you have to specify an absolute path here, so that the browser component is able

to locate the stylesheets in the case the current working directory is changed during

program execution.

(3.) Next, you should verify that all stylesheet files exist, which are needed by the

browser. This is done by calling the method ”verifyStylesheet()”. In the case a

stylesheet file is missing an error message is returned by the function, which can be

reported to the user.

(4.) Finally, the fourth and last step loads application options from an XML configuration

file. See the section about configuration for further details on application parameters.

C.2.3 Establishing a connection

After successful initialization, a connection to the database must be established,

before you can start browsing it. At this point you need to know the name of the

database and collection you want to edit. Use the ”open()” method to accomplish

this.

BAUMLBrowser browser;

...
browser.open("MyDatabase", "MyCollection");
...

Keep in mind that the current implementation of this function does not check for the

existence of the database or collection. Thus, take care of supplying correct names

to it.

112 APPENDIX C. BAUMLBROWSER MANUAL

C.2.4 Reading nodes from the database

This section shows how to gain information about BAUML objects contained in a

database. As mentioned before, BAUMLBrowser uses the Node class to represent

BAUML objects. A Node instance does not contain the XML object itself, but the

information needed to build up a tree control illustrating the structure of the BAUML

tree. Furthermore it holds location information, which is required to identify the

associated BAUML object. The following code is a simplified version of the update

function of the BAUMLBrowser application. It adds child items to an existing tree

control item.

void CBAUMLBrowserDlg :: AddChildItems(HTREEITEM hItem) {
//1. get the associated node of the tree view item

BAUMLBrowser ::Node *node =
(BAUMLBrowser ::Node*) m_TreeCtrl.GetItemData(hItem);

//2. get all child items of the node from the database

BAUMLBrowser :: NodeVector childList;
m_Browser.getNodeChildren(node , childList);

//3. for each node found in the database

// insert a new treeview item

for (int i=0; i<childList.size (); i++)
{

TVINSERTSTRUCT tvInsert;
BAUMLBrowser ::Node *childNode = childList[i];

//the new items are children of the current item

tvInsert.hParent = hItem;

//4. set the name of the new item

tvInsert.item.pszText = _T(childNode ->getName (). c_str ());

//5. add a plus sign , if the Node has children

tvInsert.item.cChildren = childNode ->hasChildren () ? 1 : 0;

//store the Node object in the treeview item

tvInsert.item.lParam = LPARAM(childNode);

// insert the item into the treeview

m_TreeCtrl.InsertItem (& tvInsert);
}

}

(1.) Each tree view item is associated with a Node object stored in the ”ItemData”

field. The first line of the code example above gets this object by calling the ”GetItemData()”

method of the tree control. This is Windows specific code, but other operating systems

will have similar methods to store user data in a tree control.

C.2. CORE COMPONENT 113

(2.) The next step reads out all child items of this node from the database into

a variable of type NodeVector, which is a container for dynamically created Node

objects.

(3.-5.) The resulting list of child nodes is then processed and for each child node

a new item is added to the tree view. Properties like the name of the node (4.)

and its parenthood (5.) determine the appearance and the state of the new tree

view item. Using this function a tree control can be filled step by step with node

information, starting at the root node (by passing NULL as the first parameter to

”getNodeChildren()”) up to the leave nodes of a BAUML document. The structure

of the tree view items then reflects the parent-child relationship of these BAUML

objects.

C.2.5 Getting object data

While the previous section showed how to gain structural information from the

database, this section will teach you how to get data about specific objects. The

following code example is taken from the BAUMLBrowser application. It is part of

a function, which displays the representation part of a BAUML object.

//1. various objects used in this example

// create a Coin viewer object

BAUMLBrowser browser; SoWinExaminerViewer* viewer = ...
// select an existing node to be displayed

BAUMLBrowser ::Node *node = ...

//2. get the representation part of the current node

string ivData = browser.getRepresentation (*node);

//3. setup an input buffer for the SoDB:: readAll () function

SoInput in;
in.setBuffer ((void*) ivData.c_str(), ivData.length ());

//4. make a scenegraph from the text representation

SoSeparator* root = NULL;
root = SoDB:: readAll (&in);

//5. show the scene graph in the viewer

viewer ->setSceneGraph(root);

viewer ->show ();

(1.) In order to keep this example short assume that a Coin viewer object has already

been created and the BAUMLBrowser node to be viewed has been selected, too.

114 APPENDIX C. BAUMLBROWSER MANUAL

(2.) The BAUMLBrowser class provides various methods for getting object data.

Probably the most interesting of these is the ”getRepresentation()” function. It reads

the representation part of a BAUML object from the database and converts it to a

Coin script.

(3.-4.) Using an input buffer the Coin script is delivered to the ”readAll()” function

(4.), which creates a Coin scene graph.

(5.) This scene graph can then be displayed by the viewer object.

C.2.6 Updating objects

This section introduces functions for inserting, updating and deleting whole BAUML

objects and functions to insert and update their representation part. Inserting an

object to a node means to append it to the child list of the corresponding object in

the database, while update and delete operations process the object itself.

Keep in mind that data manipulation functions like ”insert()” and ”delete()”

change the relative position of all sibling objects following the processed object. Thus,

the position information of these siblings, which is stored in Node objects, becomes

invalid. BAUMLBrowser corrects this simply by rereading the entire child list of

the parent object. This has proven to be a very straightforward and reliable way to

overcome this effect.

Furthermore, a restriction you should know of is that you cannot insert and delete

top level objects using the BAUMLBrowser class. This is caused by limitations of the

Tamino XQuery language, which is not able to act at this level. Instead, use Tamino

Xplorer as a workaround for this task. The following example reads a BAUML object

from a file on disk and adds it to the child list of an object in the database.

//1. Browser and node object

BAUMLBrowser browser;
// select an existing node

BAUMLBrowser ::Node *node = ...

//2. Path of the file to be inserted

string filePath = "NewBAUMLObject.xml";

//3. read the file into a string

string s = readFile(filePath);

//4. append the object to the child list of <node >

browser.insertObject (*node , s);

C.2. CORE COMPONENT 115

(1.) Analogue to the previous example, assume that a Node object has been selected

to which you want to add a new child object.

(2.)(3.) Using the function ”readFile()” the child object is loaded from disk and

stored in a string variable.

(4.) Finally, the content of the file is added to the child list of the BAUML object by

calling ”insertObject()”.

C.2.7 Special functions

Beside the standard operations for querying and updating the database, the BAUMLBrowser

class provides two test functions for object intersection and point inclusion. The

”intersect()” method tests if the representation part of two BAUML objects share a

common region in space. It uses the SoIntersectionDetectionAction class of Coin to

implement this functionality. Due to this, the test is a bit limited, meaning that an

intersection is found, only when the planes of the surface of two objects do intersect.

So, for example, if an object is completely contained in the other one, the intersection

test will fail, although it should deliver a positive result.

The second operation ”containsPoint()” tests, whether a certain three-dimensional

point is contained in the representation part of a BAUML object. It does this by

intersecting the object with a ray, which starts at the test point, and counting the

intersection points. In case of an odd quantity of intersection points, the test point

lies inside the object, otherwise outside. The following example tests, whether the

three dimensional point (x=1,y=2,z=3) is inside an object and writes the result of

the test to standard out.

//1. Browser and node object

BAUMLBrowser browser;
// select an existing node

BAUMLBrowser ::Node *node = ...

//2. Test if the point (1,2,3) is inside the object

if (browser.containsPoint (*node , 1.0, 2.0, 3.0))
printf("Yes! The point is inside.");

else
printf("No, the object does not contain the point.");

(1.) The first lines of this example instantiate a BAUMLBrowser class and select a

Node object, which is then used in the test.

116 APPENDIX C. BAUMLBROWSER MANUAL

(2.) Then the representation part of the BAUML object, which is represented by the

variable node, is tested wether it includes the point (1,2,3) by calling the browsers

”containsPoint()” method. Finally, depending on the test result, an appropriate

message is printed.

Appendix D

Installation and Configuration
guide

This appendix lists the software needed and describes the necessary steps to install

and configure an XML server for Studierstube. The installation procedure also includes

the server side part of the Studierstube XML Database API. It is strongly recommended

to use the same versions of the software packages as specified here, since these are

the versions the software was developed and tested for.

D.1 Installation

D.1.1 Hardware prerequisites

The required hardware components are mainly determined by prerequisites of the

Tamino XML server, which currently are:

• Intel Pentium III, at minimum 450 MHz

• 256 MB RAM minimum

• approximately 600 MB free disk space

For an up-to-date list of prerequisites see the Tamino XML Starterkit web page

(www.xmlstarterkit.com).

D.1.2 Software prerequisites

The following software packages and documents are needed for a complete installation

of the Studierstube XML database:

• Windows 2000 Professional and Server or Windows XP Professional

117

118 APPENDIX D. INSTALLATION AND CONFIGURATION GUIDE

• Java 2 SDK Version 1.4.1 05

• Apache Web Server 2.0.43 (included in the Tamino setup)

• Apache Tomcat 4.1.29

• mod jk 1.2.5 2.0.47.dll

• Tamino Passthru Servlet

• Studierstube Passthru Servlet

• Server side stylesheet

D.1.3 Installation procedure

Install a compatible Operating System

The current version of Tamino XML server supports the following Windows versions:

• Windows 2000 Professional and Server

• Windows XP Professional

Hint: With Windows 2000 you will need to update Internet Explorer to a recent

version (6.0)

Install Java

Get Java 2 SDK Version 1.4.1 05 by downloading it from Sun’s Java developer web

page (java.sun.com). Install it to the default installation directory C:\j2sdk1.4.1 05

using the default settings.

Hint: This SDK already includes the Java versions of Apache Xerces and Xalan,

therefore these components need not to be installed separately.

Install Apache Web server

Install Apache Web Server 2.0.43. This web server version should be included with

Tamino. In the case it is not included, you can download it from the Apache Web

Server page (www.apache.org). Choose ”Typical installation” from the menu and

follow the installation instructions.

D.1. INSTALLATION 119

Install Tamino XML Server

Install Tamino XML Server 4.1.4. Choose ”Complete” setup from the menu and use

the default settings. You should have an installation CD for the Tamino software.

Otherwise you can get a 30-day trial version at the XML Starterkit page of

Software AG (www.xmlstarterkit.com). You will also need to register to get a valid

license file via e-mail.

Hint: You will need to reboot the system after installation.

Install Apache Tomcat

Install Apache Tomcat 4.1.29. This servlet container is needed to run the software,

which executes the server side XSLT transformation. Download it from the Apache

Jakarta Project page (jakarta.apache.org). During installation you will be asked to

point to a directory containing a Java SDK, choose the one you have installed before

and install Tomcat as ”NT Service”

Install MOD JK DLL

Install mod jk 1.2.5 2.0.47.dll - This DLL is needed to connect Tomcat and the Apache

Web Server. Get it from the Apache web page (www.apache.org) and copy it to

C:\Program Files\Apache Group\Apache2\modules

Add the Passthru Servlets

Copy the contents of the Tomcat ”webapps” directory from Studierstube Subversion

server to ”C:\Program Files\Apache Group\Tomcat 4.1\webapps”. This directory

contains the Tamino Passthru Servlet and the Studierstube Passthru Servlet.

Configure Tomcat

Copy the files from the Tomcat configuration (from Studierstube Subversion server)

directory to ”C:\Program Files\Apache Group\Tomcat 4.1\conf” and adjust the path

settings as necessary.

Add the server side stylesheet

Copy the contents of the Apache ”htdocs\stylesheets” (from Studierstube Subversion

server) directory to ”C:\Program Files\Apache Group\Apache2\htdocs\stylesheets”.

120 APPENDIX D. INSTALLATION AND CONFIGURATION GUIDE

Configure Apache Webserver

Add the line

Include "C:/Program Files/Apache Group/Tomcat4.1
/conf/apache-connector.conf"

to the Apache configuration file at

”C:\Program Files\Apache Group\Apache2\conf\httpd.conf”

D.2 Creating databases and collections

This section is a quick guide to database and collection management. It is meant

solely as a starting point for working with Tamino databases. For a comprehensive

description of this topic read the documentation that comes with Tamino.

D.2.1 Creating a database

Probably the first thing you want to do after installation is to set up a database.

This is accomplished by using the web application Tamino Manager. After login by

providing an administrator’s user name and password you see a list of managed hosts

at the top left of the Explorer window. Normally, this list will contain only one item,

the name of your database server. Click on it and go to ”Tamino/Databases”. At

the bottom left side of the Explorer window you will find a button labeled ”Create

database”. Click on it and provide a name for your database. Push the button

”Finish” to create the database.

In order to be able to access a database from a client application, the database

has to be started first. When selecting your database from the database list, you will

find a button labeled ”Startup database”. A click on it will start the server process,

which manages your database.

Hint: You can also automate the startup process at server boot time by editing the

server properties of your database and setting the parameter ”autostart” to

”yes”.

D.2.2 Creating a collection

Since XML Databases are organized in form of collections, you will need to create a

collection, too. Start the Tamino X-plorer application and login to your server by

clicking on the server name with the right mouse button and select ”connect” from

the local menu. Provide an administrator’s user name and password. (The first time

D.3. CONFIGURING THE FIXED STYLESHEET 121

logging in you will also need to provide the name of your database.) Right click at

your database in the tree window and select ”New Collection”. Provide a name for

your collection and push ”create”.

D.2.3 Providing a database scheme

In order to work with your database collection you will also need to define a schema of

the XML documents it should contain. You do this by right clicking your database in

Tamino X-plorer and selecting ”Define Schema”. As a starting point we have provided

a simple schema here, which defines an element named ”MyElement”, which is able

to hold arbitrary content. You will need to rename the string ”MyElement” according

to the name of your XML root tag.

<?xml version = "1.0" encoding = "UTF -8"?>
<xs:schema xmlns:xs =
"http://www.w3.org /2001/ XMLSchema" xmlns:tsd =
"http:// namespaces.softwareag.com/tamino/TaminoSchemaDefinition">

<xs:annotation >
<xs:appinfo >

<tsd:schemaInfo name = "MyElement">
<tsd:collection name = "MyCollection"/>

<tsd:doctype name = "MyElement">
<tsd:logical >

<tsd:content >closed </tsd:content >
</tsd:logical >

</tsd:doctype >
</tsd:collection >

</tsd:schemaInfo >
</xs:appinfo >

</xs:annotation >
<xs:element name = "MyElement"/>

</xs:schema >

D.2.4 Inserting documents

Since root level documents can not be inserted using the ”Studierstube XML Database

API”, you need Tamino X-plorer to accomplish this. After login right click on your

database in the tree window and select ”Insert instance” from the local menu. This

will open up a dialog, which let’s you point to an XML document for insertion.

D.3 Configuring the fixed stylesheet

The modified version of the Tamino Passthru servlet, the Studierstube Passthru

Servlet, offers a feature to apply a server-side stylesheet to each query result. It is

122 APPENDIX D. INSTALLATION AND CONFIGURATION GUIDE

meant to translate Tamino namespaces to namespaces, which are independent from

the manufacturer. The name of the stylesheet used by the servlet can be configured by

editing the ”web.xml” configuration file, which is located in the ”webapps/stbxml/WEB-

INF” directory of Tomcat. The ”servlet” tag of this XML file contains a list of

initialization parameters, which are passed to the servlet at startup time. Assuming

that the stylesheet is located in the web directory /stylesheets, the parameter, which

points to the fixed stylesheet would look like the following example:

<init -param >
<param -name>fixedStylesheet </param -name>
<param -value >

http:// localhost/stylesheets/stbresult.xsl
</param -value >

</init -param >

The tag ”param-name” is the name of the parameter, which we have added, and

must be set to ”fixedStylesheet”. The tag ”param-value” contains an URL pointing

to the stylesheet. In the case of an absolute URL, this URL is used to retrieve the

stylesheet. In the case of a relative URL, for example ”/stylehsheet/stbresult.xsl” the

stylesheet is loaded directly from the Tamino database, where the first part of the

path refers to the collection containing the stylesheet. In this example the name of

the collection would be ”stylesheets”.

List of Figures

2.1 Collaboration diagram of VCL database classes 27

2.2 Collaboration diagram of MFC ODBC database classes 28

2.3 Collaboration diagram of XML:DB API database classes 29

5.1 Local area network of the Institute 48

5.2 Dataflow diagram of the system architecture 56

5.3 UML class diagram of the Studierstube XML Database API 59

6.1 UML class diagram of the Database access classes 62

6.2 UML class diagram of the Transformation classes 64

6.3 UML class diagram of the SoXML DOM Model classes 65

6.4 Diagram of server components and scripts 67

7.1 Simple room model . 77

7.2 Screenshot of the BAUMLBrowser application 77

B.1 Collaboration diagram of database access classes 90

B.2 Collaboration diagram of SoXML classes 101

C.1 BAUMLBrowser user interface . 106

C.2 BAUMLBrowser options dialog . 107

123

124 LIST OF FIGURES

Bibliography

[1] Rick Kazman, Leonard J. Bass, Mike Webb, and Gregory D. Abowd. ”SAAM:
A method for analyzing the properties of software architectures”. In International
Conference on Software Engineering, pages 81–90. ICSE, 1994.

[2] Karl Crary, Robert Harper, Peter Lee, Frank Pfenning. ”Modularity Matters
Most”. Carnegie Mellon University, Pittsburgh. October 31, 2001.

[3] Nigel Bevan, Jurek Kirakowski and Jonathan Maissel. ”What is Usability?”. In
Proceedings of the 4th International Conference on HCI, Stuttgart, September 1991

[4] Steven Clarke. ”Measuring API Usability”. Dr. Dobb’s Journal Special Windows/.NET
Supplement, May 2004

[5] Gerhard Reitmayr. ”On Software Design for Augmented Reality”. Dissertation
at Technical University of Vienna. 2004.

[6] Helmut Erlenkötter. ”XML Extensible Markup Language von Anfang an”. Rowohlt
Taschenbuch Verlag. September 2003. ISBN 3 499 61209

[7] David Gulbransen, et al.”Using XML”. Second Edition, Que Publishing June
2002, ISBN 0-7897-2748-x

[8] W3C Consortium. ”Extensible Markup Language (XML)”.
http://www.w3.org/XML, 1996-2003

[9] W3Schools. ”XPath Tutorial”. http://www.w3schools.com/xpath

[10] Miloslav Nic, Jiri Jirat. ”XPath Tutorial”.
http://www.zvon.org/xxl/XPathTutorial/General/examples.html. 2000

[11] W3Schools. ”XSLT Tutorial”. http://www.w3schools.com/xsl

[12] W3Schools. ”XQuery Tutorial” http://www.w3schools.com/xquery

[13] W3Consortium. ”XQuery 1.0. An XML Query language”.

125

126 LIST OF FIGURES

http://www.w3.org/TR/xquery

[14] W3Consortium. ”XML Syntax for XQuery 1.0. (XQueryX)”.
http://www.w3.org/TR/xqueryx

[15] W3Consortium. ”XML Schema”. http://www.w3c.org/XML/Schema

[16] W3Schools. ”XML Schema Tutorial”. http://www.w3schools.com/schema

[17] Roger L. Costello. ”XML Schema Tutorial”. http://www.xfront.com/xml-schema.html.
2001

[18] W3Consortium. ”Document Object Model (DOM)”. http://www.w3c.org/DOM

[19] Official website for SAX. http://www.saxproject.org/

[20] Sun Microsystems. ”Java API for XML Processing”. http://java.sun.com/xml/jaxp

[21] Open Source Project. ”JDOM- Java Document Object Model”. http://www.jdom.org/

[22] Open Source Project. ”DOM4J - Document Object Model for Java”. http://dom4j.org/

[23] Ronald Bourret. ”XML Data Binding Resources”.
http://www.rpbourret.com/xml/XMLDataBinding.htm. 2001-2004

[24] Software AG. ”Tamino XML Database Documentation”. Tamino Version 4.1.4.1.
2004

[25] Ed Ort, Bhakti Mehta. ”Java Architecture for XML Binding (JAXB)”. http://java.sun.com/developer/technicalArticles/WebServices/jaxb/index.html.
March 2003

[26] INCITS H2 and ISO/IEC JTC1/SC32/WG3 standards groups. ”SQLX - SQL
& XML Working Together”. http://www.sqlx.org/

[27] Ronald Bourret. ”XML and Databases”.
http://www.rpbourret.com/xml/XMLAndDatabases.htm. July, 2003

[28] Microsoft Corp. MFC Reference Library. ”ODBC classes”.
http://msdn.microsoft.com/library/en-us/vclib/html/ mfc odbc classes.asp

[29] Borland C++ Builder 6 User manual.

[30] XML:DB Initiative. ”Application Programming Interface for XML Databases”.
http://xmldb-org.sourceforge.net/xapi/. 2000-2003.

LIST OF FIGURES 127

[31] Kimbro Staken. ”An Introduction to the XML:DB API”.
http://www.xml.com/pub/a/2002/01/09/xmldb api.html. January 09, 2002.

[32] Hauke von Bremen. ”XinCJ - Xinidice C++ Database API”.
http://www.codexperts.com/download.html

[33] Software AG. Websites for the XML Database Tamino.
http://www.softwareag.com/tamino
http://www.xmlstarterkit.com

[34] Apache group. Website for the XML Database Xindice.
http://xml.apache.org/xindice/

[35] Wolfgang Meier. Website for the XML Database eXist.
http://exist-db.org

[36] James Bates, Kevin O’Neill. ”Xindice internals”
http://xml.apache.org/xindice/dev/guide-internals.html

[37] Hendrik Seffler. ”XML Datenbank Exist”. http://www.informatik.hu-berlin.de/ seffler/2-
ausarbeitung.pdf. HU Berlin.

[38] Wolfgang Meier. ”eXist: An Open Source Native XML Database”. http://exist-
db.org/webdb.pdf. Darmstadt University of Technology.

