Karl-Franzens-Universitiat Graz

SRBT Tools User Manual

Susanne Potzi and Gudrun Wesiak

Berichte
aus dem

Institut fiir Psychologie
A-8010 Graz, Universitiatsplatz 2/I11

Institutsbericht Nr. 2004/1

SRBT Tools User Manual*

Susanne Potzi and Gudrun Wesiak!

Institut fiir Psychologie
Karl-Franzens-Unversitit Graz, Austria

April 16, 2004

*The described tools were developed within the Project Surmise Relations between Tests. The
project was financed by the Austrian National Science Fund (FWF) under the project number
P12726-SOZ granted to Dietrich Albert and Wilhelm Schappacher. The current version of
this document is online available at ht t p: / / wundt . uni - graz. at/ proj ect s/ srbt.

fCorrespondence concerning this manual should be mailed to gudrun. wesi ak@imni -
graz.at, cord. hockeneyer @ni-graz.at,or dietrich.al bert@ni-graz. at

The manpages of this TeXfile were produced automatically by OM, the Online Manual
system, version 0.2. (©1995 Cord Hockemeyer.

Contents

1 Introduction

1.1 Overview e e
1.2 Surmise Relations betweenItems
1.3 Surmise Relations betweenTests

2 File Formats

21 Filetypes
22 basisfile
23 datafile
24 disjpartitionfile o o oo
25 ihypothesis.
2.6 partitionfile oL Lo
27 patternfile
28 spacefile
29 srbifile e
210 structurefile
211 testrelation.

3 SRBI Specific Tools

3.1 combine-equ-items L Lo Lo
3.2 combine-two-items L
33 complete-srbi
34 gsclosure
35 g-constr
36 leeuwe e
3.7 parallelitems Lo

4 Tools for data evaluation and validation

41 count-data e
42 count-data-rmi.
43 count-patterns
44 delequ-data. o
45 delete-not-ans e
46 elim. e
47 elim-frequ

O 0 N ~N

13

16
16
18
19
19
20
21
22
23
24

27
27
28
29
29
30
31
33

35
35
36
37
38
39
40
41

48 elim-perc.
49 elim-stud e e
410 elimdpat
411 patt-statistics
412 selpat.
413 wvalid e e
Simulating student answers

51 learning-sim
52 mnoisy-learn-sim L L Lo
Tools for partitions and tests

6.1 connex-part
6.2 part-properties
6.3 random-part.
6.4 srbi-part2srbt
6.5 Srwt .. e e e
6.6 SIXt e e e
6.7 tests-properties
General Tools

7.0 bas2srbi e
72 mew2old e
7.3 old2new e
74 pat2data

Preface

This user manual describes the tools that were developed within the Project Surmise
relations between tests. The programs were written accompanying the mathematical de-
velopments and experimental data analysis. Thus, some tools are rather demand spe-
cific, while others are more general. Furthermore, the manual also includes some tools
for working with surmise relations between items. We refer the reader to the KST Tools
user manual by Cord Hockemeyer (2001) for further tools working on an item level.

As already mentioned above, the manual is the result of an interdisciplinary project
on surmise relations between tests, which was granted by the Austrian Science Fund
(FWEF) to Dietrich Albert and Wilhelm Schappacher. The mathematical part of the
project, which had a great influence on the development of the programs, was mainly
worked out by Silke Brandt. Furthermore, a few of the programs were written by
Alexander Wenzl and Ali Unlii gave some valuable comments to the actual realization
of the tools.

In order to use the tools, you can either apply for a user account at ht t p: / / wundt .
uni - graz. at/ ePsyt/ (limited WWW-version) or write an Email to KST@wndt . uni
graz. at (for the full version running on a solaris platform).

The manual is the first attempt to give an overview of the developed software and to
explain the functions of each tool to new users. We therefore invite all our readers to
give us their feedback on the tools themenselves, their descriptions, or eventual bugs.
We are thankful for all comments.

1 Introduction!

1.1 Overview

The theory of knowledge space, originally developed by Doignon and Falmagne (1985;
1999; Falmagne et al., 1990), is a non—numerical approach to the representation and
efficient diagnosis of knowledge in a given domain. In all knowledge domains or psy-
chometric tests, the set of items varies with respect to difficulty. By considering these
implicit dependencies (the so called surmise relation) among a set of problems, the cor-
rect or incorrect solutions to a subset of items can be inferred from previously obtained
responses. As an example, one might imagine a person who is capable of multiplying
fractions. Assuming that the same person will also be capable of multiplying real num-
bers, it would be inefficient to present problems containing this type of task. Hence,
by taking advantage of the implicit structure relating a set of problems, it is possible to
reduce the number of items presented in a test.

If the dependencies among items are specified by varying problem demands, it is fur-
thermore possible to obtain precise information on the testee’s knowledge state, i. e. of
the problem requirements he or she is able to meet. Thus, the knowledge space theory
provides a framework for more efficient testing procedures, which diagnose a person’s
knowledge state by specifying the problem demands the person is able to meet and/or
the underlying skills the person possesses.

The following sections give a short introduction into the concepts of a surmise relation
between items and a surmise relation between tests. The subsequent chapters contain
the manpages for tools used for working with surmise relations. The tools are dev-
ided into six main categories. The manual starts with a description of the file formats
required by the programs (Chapter 2), which is followed by tools for generating knowl-
edge spaces (Chapters 3) and tools for data evaluation and validation (Chapter 4). All
of the tools described in Chapters 3 and 4 refer to surmise relations between items.
Chapter 5 contains two programs for the simulation of answer patterns and in Chapter
6 tools for working with surmise relations between tests are introduced. Finally, Chap-
ter 7 describes some general tools for the transformation of different file types into each
other.

!This chapter is a reduced version of the introductory section on knowledge spaces in the doctoral thesis
of the second author (Wesiak, 2003)

Note, that this user manual is based on an online manual, which is also linked to the
KST tools user manual by Hockemeyer (2001). References to the KST Tools manual are
indicated by (1K) or (5K).

1.2 Surmise Relations between Items

Doignon and Falmagne (1985, 1999) defined the knowledge state of a person as the set
of items in a specified domain @ this individual is able to master under ideal condi-
tions. Accordingly, items of a specified domain are ordered on the basis of surmise or
prerequisite relations. A surmise relation is a binary relation on a set of items with the
following interpretation: whenever a subject solves an item = € (Q and we can surmise
from this performance that this subject is able to solve item y € @, as well, we say that
the pair (y, x) is in a surmise relation (we note y < z, ySz, (y,z) € S,or S C Q x Q). Sur-
mise relations are reflexive and transitive but not necessarily connex, i. e. they are quasi
or partial orders. The relation can be depicted as a Hasse diagram, where a descend-
ing line signifies that a correct solution of the lower item is surmisable from a correct
solution of the upper item (see Figure 1.1a).

a,b,c,d
a b,c,d
b c,d
N N
c d & d
N\
(a) (b) 0

Figure 1.1: Surmise relation (a) and its corresponding knowledge space (b) on a set) =
{a,b,c,d} of four items

This type of relationship is also called a prerequisite relation, meaning that mastering
item y is prerequisite for mastering item x.

Each item combination in accordance with a given surmise relation is called a quasi
ordinal knowledge state. Formally, a knowledge state K is defined by

KCQ& (Ve,yeQ,ySe Nz e K =y e K). (1.1)

Now, the set of all knowledge states is called knowledge structure (K). A knowledge
structure K which is closed under union and intersection is called a quasi ordinal knowl-
edge space (see Figure 1.1b). This means that for any two knowledge states K and L, their
union U and their intersection N are also knowledge states. A quasi ordinal knowledge
space consists of the family of all knowledge states including the empty set and the
complete set of items. According to the Birkhoff (1937), quasi orders on a set of items
establish a one-to—one correspondence between a surmise relation and its correspond-
ing quasi ordinal knowledge space. Thus, the quasi ordinal relation can be directly
inferred from the quasi ordinal space, and vice versa. In general, the advantage of or-
ganizing knowledge according to surmise or prerequisite relations is that the number
of possible item combinations, i.e. the powerset 2@ of all items, can be reduced to a
subset K C 29 of knowledge states.

1.3 Surmise Relations between Tests

So far, we have referred to single tests. However, in common psychological assessment
procedures we often deal with a set 7 of different tests that are related. The common
conception of the relations between tests is based on correlations. On the background
of Doignon and Falmagne’s framework, Albert (1995, Unlii et al.,2004; Brandt et al.;
Brandt, 1999; 2000; 2003) extended the concept of the surmise relation between items
(i. e. within tests) to a surmise relation between tests (SC T x T or S7x7). The advan-
tage of the concept of surmise relations between tests is that we can specify prerequisite
relations not only between single items but between subsets of items, i. e. entire tests, as
for example, between tests of cognitive or developmental functioning where the pos-
session of one ability may be prerequisite for some other ability.

The interpretation of a surmise or prerequisite relation between tests, i.e. (B, A) € S
or B S A, is that two tests A,B € T are in surmise relation from A to B, if one can
surmise from the correct solution of at least one item in test A the correct solution of a
non-empty subset of items in test B (see Figure 1.2). In other words, solving the item(s)
in test B (e.g. item b3 in Figure 1.2) is a prerequisite for the solution of a given set of
items in test A (e.g. item a; in Figure 1.2). Formally, the relation S C 7 x 7T is defined

by

BSA«s Ja€A:B,#0 VA BeT withB,=Bn[)Ka. (1.2)

ICq is the set of all knowledge states containing item a.

For a set of tests 7 = {A,B,C,...}, a surmise relation between tests has the prop-
erty of reflexivity but not necessarily transitivity, i. e. in general, it is not a quasi order.
However, there are special cases for which transitivity holds, namely left— and right-
covering surmise relations. In these cases, the transitive surmise relation between tests

B
A

Figure 1.2: Two tests A and B are in surmise relation from A to B (B S A)

Figure 1.3: Left-covering surmise relation from test A to test B (B S A)

can be inferred from the corresponding test knowledge structure (see below). However,
the reverse inference is not valid for a set of tests (Unlii et al., 2004).

The interpretation of a left—covering surmise relation (B S; A, see Figure 1.3) is that for
each item a € A there exists a nonempty subset of prerequisites in test B, i. e. a person
who doesn’t solve any item in B will not be able to solve any item in A, either. There
is no need to test this person on test A. Formally, we say that two tests A, B € T are in
left-covering surmise relation from test A to test B. The relation is defined by

BSAs YaeA:B,#0 VYA BeT (1.3)

Right—covering means, that for each item b € B, there exists at least one item a € A for
which b is a prerequisite (B S, A), i.e. failing to solve any item in test B implies a failure
on a subset of items in test A (see Figure 1.4). In other words, a person who solves all
items in test A is also able to solve all items in test B. Hence, there is no further need to
test the person on test B. Formally, we say that two tests A, B € T are in right—covering
surmise relation from test A to test B. The relation is defined by

BS As |JB.=B VABEeT (1.4)
acA

10

Figure 1.4: Right—covering surmise relation from test A to test B (B S, A)

Finally, we speak of a fotal-covering surmise relation, if all items in test B are prerequi-
site for some item @ € A and all items in A have a prerequisite b € B, i.e. the surmise
relation is left— as well as right-covering.

Aside of the surmise relation between tests, it is necessary to differentiate between var-
ious subsets of the surmise relation on the entire set of items. Sg,q denotes the
surmise relation on the whole set of items and is referred to as the surmise relation
between items (SRbI). The disjoint subsets of the surmise relation Sg,q on two tests A
and B are denoted Sa,4, SBzB, SazB, and Sgza. The sets Sa,4 and Sg,p are called
surmise relations within tests (SRwT), the sets S 4,5 and Sp;4 surmise relations across
tests (SRxT). Note that the number of pairs within and across tests equals the number
of pairs between items, when reflexive pairs are not taken into account. Each subset is
defined as follows:

5QzQ {(y,2) |2,y € Q AySz}
Saza = {(as,aj)|ai,a; € ANa;Saj}
Sz = {(bi,bj)|bi,bj € BAb;Sb;}
{(a,b)|a € A;b € BAaSbh}
{(bya)|a € A;b € BAbSa} (1.5)

SA:):B =
SBmA =

If a surmise relation fulfills either the condition S4,p or Sy, we speak of a surmise
relation between tests (ST;,;T or SRbT) as it is defined in terms of Equation 1.2. If S 4,
or Spg 4 fulfill the conditions specified in Equation 1.3 or 1.4, we speak of a left— respec-
tively right—covering surmise relation. Surmise relations between tests which fulfill
both conditions are called total-covering.

Extending the concepts of Doignon and Falmagne’s approach, a test knowledge state K;
is defined as the combination of item subsets per test (A4;, B;, . ..) person i is capable of

11

mastering. The collection of all test knowledge states K is called the test knowledge struc-
ture, which is defined as the pair (7, K), with T denoting the set of tests {4, B,C,...}.
If a test knowledge structure is closed under union U it is called test knowledge space, if
it is also closed under intersection N we speak of a quasi ordinal test kowledge space. As
for the surmise relation we differentiate between the knowledge space between items,
within, across, and between tests.

References

Albert, D. (1995). Surmise relations between tests. Talk at the 28th Annual Meeting of the
Society for Mathematical Psychology, University of California, Irvine, August.

Birkhoff, G. (1937). Rings of sets. Duke Mathematical Journal, 3, 443—-454.
Brandt, S. (2000). Surmise relations between tests. Unpublished documentation.

Brandt, S., Albert, D., & Hockemeyer, C. (1999). Surmise relations between tests - pre-
liminary results of the mathematical modelling. Electronic Notes in Discrete Mathemat-
ics, 2.

Brandt, S., Albert, D., & Hockemeyer, C. (2003). Surmise relations between tests - math-
ematical considerations. Discrete Applied Mathematics, 127(2), 221-239.

Doignon, J.-P. & Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. Inter-
national Journal of Man-Machine Studies, 23, 175-196.

Doignon,]J.-P. & Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer—Verlag.

Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P., & Johannesen, L. (1990). In-
troduction to knowledge spaces: How to build, test and search them. Psychological
Review, 97, 201-224.

Hockemeyer, C. (2001). Tools and utilities for knowledge spaces (2nd ed.). Unpublished
technical report, Institut fiir Psychologie, Karl-Franzens-Universitiat Graz, Austria.

Unlii, A., Brandt, S., & Albert, D. (2004). Test surmise relations, test knowledge structures,
and their characterizations. Submitted for publication.

Wesiak, G. (2003). Ordering inductive reasoning tests for adaptive knowledge assessments:
An application of surmise relations between tests. Unpublished doctoral dissertation,
Karl-Franzens—Universitat Graz, Graz, Austria.

12

2 File Formats

2.1 Filetypes — SRBT File formats

Synopsis

#SRBT|[version] [structtype] [encoding] [endian] [wordsize] [com
nment |

Description

This manpage describes the general file formats, as they are required by the SRBT tools.
Users, who are used to the old file formats (e.g. spacefile (5K) or basisfile (5K)), note that
the main extensions are the introduction of header-lines and the definition of additional
content types.

Usage

#SRBT [version] [structtype] [encoding] [endian] [wordsize] [com
ment |

#SRBT This string at the very beginning of the first line of a file denotes that the file is
for use with thel i bsr bt orl i bsr bi libraries.

version Version number of the file format. Currently: v2. 0

structtype This string describes the type of data contained in the file. Ten types of files
are currently supported (see below for more detailed descriptions of the various
file tyes):
basi s
space
structure
rel ati on (surmise relation between items)

13

dat a

di sj partiti on (disjoint partition)

partition

patterns

testrel ati on (surmise relation between tests)

i _hypot hesi s (partial hypothesis on a surmise relation between items)

Bases, relations, patterns, and partitions are always stored as ASCII text files, whereas
data, spaces, and structures can be stored in either ASCII or binary format.

encoding The encodi ng information specifies whether the data are stored in ASCI |
or in bi nary form.

endian The endi an information specifies (for binary files only) whether the storing
computer has a LI TTLE or a Bl Gendian processor. Default is Bl Gendian.

wordsize States are stored as a multiple of wor dsi ze bits (for binary files only). The
default value is 32. Specification of wor dsi ze requires a specification of endi an.

comment The possibility to specify a comment is primarily provided for use with the
ASCII files. The first line may contain a comment separated by a hash sign (#).
Subsequent lines beginning with a hash sign (#) may also contain comments.

For binary files, the format header line and optional comments are closed by a NUL (i.e.
0x00) character.

Additional Information for Items and Students/Tests

It is possible to store non-ambiguous identification numbers for each item and each
student or test in the file. These numbers will be called “item information numbers” and
"line information numbers’ in the following. The storage of these numbers is useful
especially in cases, in which the order of items is changed, items are removed, or items
are combined. The information lines require the following structure (for a detailed
description of the structure and interpretation of the below mentioned matrices see the
following sections on the respective filetypes):

Item information:

#* (column in the structure matrix): non-ambiguous item number(s), separated by a
blank.

Line information:

#+ (line in the structure matrix): non-ambiguous line number(s), separated by a blank.

14

Examples:

#* 4. 4
#* 6. 6
#* 6: 7

means, that the 4th column of the matrix contains the relationships for item number 4,
the 5th column for item number 6, and the 6th column for item number 7. Item number
5 has been removed.

1. 2 3
means, that the first column of the matrix contains the relationships for items number
2 and 3 (e.g. if the items 2 and 3 are equivalent).
For line numbers, the same structure applies.

ATTENTION: Counting of lines and columns starts with 0!!!

If a file is created automatically, an additional comment line is added, which specifies
the number of each item. For matrices with large numbers of items, this comment line
should simplify the counting of columns.

Remarks

The new SRBT file format was developed in order to ensure that users do not mingle
different file type specifications. This used to become a major problem with users hav-
ing only little computer experience. However, the tools should also be able to read files
in the old format.

If SRBT files are created manually, one should provide as many header information as
possible.

If a file of the wrong type (in the new format) is passed to a program, it may either
be rejected (with an appropriate error message) or converted (optionally issuing an
additional warning that a file of wrong type was passed over).

See also

basisfile (Sect. 2.2, p. 16), patternfile (Sect. 2.7, p. 20), srbifile (Sect. 2.9, p. 22), spacefile
(Sect. 2.8, p. 21)

15

2.2 basisfile — Format of basisfiles (v2.0)

Description

A basi sfil e is an ASCII file describing the basis of a knowledge space. It has the
following format:

The first line is the header-line containg information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

#SRBT v2.0 basis
The second line contains the number of items in the knowledge domain.
The third line contains the number of basis elements.

After these three lines you can add comments and identification numbers for items and
states in the basis (for a detailed description see Filetypes (Sect. 2.1, p. 13)).

The following lines contain the basis elements building a matrix where the columns
describe the items and the rows describe the basis elements. In each cell of this matrix
there is a ’0’ if the basis element does not contain the item, a ‘1’ if it is a clause for the
item, and a 2" otherwise.

For any set of knowledge states, a basis according to this specification can be computed
with the basis (1K) program.

Version information

This manpage describes version v2.0 of the basi sfi | e format. In version v1.0 no
headerlines and no additional comments and information to items and state numbers
are possible. Files of the old (v1.0) and new (v2.0) filetypes can be converted into each
other with the programs new2old (Sect. 7.2, p. 61) and old2new (Sect. 7.3, p. 62).

See also

basis (1K), spacefile (Sect. 2.8, p. 21), new2old (Sect. 7.2, p. 61), old2new (Sect. 7.3, p. 62)

2.3 datafile — Format of datafiles (v2.0)

16

Description

Dat af i | es can be stored in either ASCII or binary file format.

ASCII file format

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

#SRBT v2.0 data ASCII

The second line contains the number of items in the knowledge domain.

The third line contains the number of answer patterns.

After these three lines you can add comments and identification numbers for items and
students in the data structure (for a detailed description see Filetypes (Sect. 2.1, p. 13)).

The following lines contain the answer patterns: In each cell of this matrix there is a "1’
if the student answered the respective item (in column i) correctly and a '0’, otherwise.

Binary file format

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)). The file contains a sequence of | ong i nt eger numbers.
The first two numbers give the number of items and the number of answer patterns.
The following | ong i nt eger s build bitsets, one per knowledge state. A bitset con-
sists of as many | ong i nt eger s as are needed to represent the item set. This number
of | ong i nt eger s needed can be computedas(ltenmNo + BitsPerLong - 1) /
Bi t sPer Long where Bi t sPer Long is the machine

specific number of bits used to storea | ong i nt eger number.

In binary files you cannot add any comment lines. If you convert ASCII to binary files,
all additional information about items and lines is lost.

Warning

Using a binary dat af i | e on different hardware platforms may produce unexpected
results, because there may be different byte orders and therefore different bit orders.

17

Version information

This manpage describes version v2.0 of the dat af i | e format. The format changes
from v1.0 include additional format and meta information header lines (see spacefile

(5K)).

See also

structurefile (Sect. 2.10, p. 23), spacefile (Sect. 2.8, p. 21), new?2old (Sect. 7.2, p. 61),
old2new (Sect. 7.3, p. 62)

2.4 disjpartitionfile — Format of disjoint partitionfiles (v2.0)

Description

This manpage describes the format and header of a disjoint partition of items into tests.

The first line is the header-line containing information about version and filetype (File-
types (Sect. 2.1, p. 13):

#SRBT v2.0 disjpartition
The second line contains the number of items in the domain.
The third line contains the number of tests in the partition.

After these three lines you can add comments and identification numbers for items and
tests in the partition (for a detailed description see Filetypes (Sect. 2.1, p. 13)).

The following lines contain the partition of items into different tests. Each line of the
matrix corresponds to one test, in each cell of this matrix there is a 1" if the item belongs
to the test in the respective line, and a '0’, otherwise. In disjoint partition files each item
has to belong to exactly one test. It is not possible, that items belong to more than one
test or that items do not belong to any test at all.

See also

partitionfile (Sect. 2.6, p. 19)

18

2.5 1_hypothesis — File formats for partial input of relations
between items

This manpage describes the format and header of files for surmise relations between
items, if not all relationships in the investigated domain are known.

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

#SRBT v2.0 i_hypothesis
The second line contains the number of items.

After these two lines you can add comments and identification numbers for the items
in the file.

The following matrix describes a surmise relation between items, for which not all re-
lationships between the items are known. The files have the same structure as srbifiles
(seesrbifile,Sect. 2.9), where a 1" in line i and column j indicates, the the pair (i,))
is an element of the surmise relation S (iSj) and a ‘0" indicates that the pair is not an el-
ement of S. In addition to sr bi fi | es,thei _hypot hesi s file also supports the entry
'n’, which indicates, that you do not know, whether or not the pair (i) is element of S.

Example: You know, that the pair (i,j) is not element of S, but you do not know, whether
or not the pair (j,i) is element of S: you enter a ‘0" in the j-th column and i-th line of the
matrix and an 'n’ on the j-th line and i-th column of the matrix.

Warning

Currently this filetype is not supported by any program of this software package.

See also

Filetypes (Sect. 2.1, p. 13), srbifile (Sect. 2.9, p. 22)

2.6 partitionfile — Format of partitionfiles (v2.0)

Description

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

19

#SRBT v2.0 partition
The second line contains the number of items in the domain.
The third line contains the number of tests in the partition.

After these three lines you can add comments and identification numbers for items and
tests in the partition (for a detailed description see Filetypes (Sect. 2.1, p. 13)).

The following lines contain the partition of items into different tests. Each line of the
matrix corresponds to a test, in each cell of the matrix there is a "1” if the item belongs
to the test in the respective line and a 0’, if the item does not belong to the test.

Inpartitionfil esitispossible, thatitems belong to more than one test or that items
do not belong to any test at all.

See also

disjpartitionfile (Sect. 2.4, p. 18)

2.7 patternfile — Format of patternfiles (v2.0)

Description

A patternfil e stores the answers of students to a set of items, distinguishing be-
tween correct, incorrect, and not answered (e.g. skipped) items.

The first line is the header-line containg information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

#SRBT v2.0 patterns
The second line contains the number of items in the knowledge domain.
The third line contains the number of answer patterns.

After these three lines you can add comments and identification numbers for items
and students in the pattern structure (for a detailed description see Filetypes (Sect. 2.1,

p- 13)).

The following lines contain the answer patterns of students: In each cell of this matrix
there is a "1” if the student answered the respective item (in column i) correctly, a '0’, if
the answer is incorrect, and an 'x’, if the student did not answer the item at all.

20

See also

datafile (Sect. 2.3, p. 16), pat2data (Sect. 7.4, p. 63)

2.8 spacefile — Format of spacefiles (v2.0)

Description

A spacefi | e can be stored in either ASCII or binary file format. Both types describe
knowledge spaces in a very similar manner:

ASCII file format

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

#SRBT v2.0 space ASCII
The second line contains the number of items in the knowledge domain.
The third line contains the number of states in the knowledge space.

After these three lines you can add comments and identification numbers for items and
states in the space (for a detailed description see Filetypes (Sect. 2.1, p. 13)).

The following lines contain the knowledge states building a matrix where the columns
describe the items and the rows describe the knowledge states. In each cell of this
matrix there is a "1’ if the knowledge state does contain the respective item, and a "0’
otherwise.

Binary file format

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)). The file contains a sequence of | ong i nt eger numbers.
The first two numbers give the number of items and the number of knowledge states.
The following | ong i nt eger s build bitsets, one per knowledge state. A bitset con-
sists of as many | ong i nt eger s as are needed to represent the item set. This number
of I ong i nt egers needed can be computed as (1 temNo + BitsPerLong - 1)
| Bi t sPer Long where Bi t sPer Long is the machine specific number of bits used to
storeal ong i nt eger number.

21

In binary files you cannot add any comment lines. If you convert ASCII to binary files,
all additional information about items and lines is lost.

Warning

Using a binary spacef i | e on different hardware platforms may produce unexpected
results, because there may be different byte orders and therefore different bit orders.

Version information

This manpage describes version v2.0 of the spacefi | e format. The format changes
from v1.0 include additional format and meta information header lines (see spacefile
(5K)).

See also

basisfile (Sect. 2.2, p. 16), new2old (Sect. 7.2, p. 61), old2new (Sect. 7.3, p. 62)

2.9 srbifile — File formats for relationfiles between items

This manpage describes the format and header of files for surmise relations between
items (in this documentation they are either called r el ati onfil eorsrbifil e).

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

#SRBT v2.0 relation
The second line contains the number of items in the knowledge domain.

After these two lines you can add comments and identification numbers for items in
the srbi fil e (for a detailed description see Filetypes (Sect. 2.1, p. 13)).

The following lines describe the surmise relation between items in form of a matrix:
The matrix includes a 1" in column 7 and line j, iff item i is in surmise relation with
item j, so that j is prerequisite for i (jSi) and a ‘0’ otherwise. Because a surmise relation
is reflexive, the main diagonal contains always "1’s. If you want to complete a surmise
relation matrix in order to achieve transitivity, use the complete-srbi (Sect. 3.3, p. 29).

22

Warning

Please note that the introductionary string #SRBT is used for sr bi f i | es, too.

See also

Filetypes (Sect. 2.1, p. 13), complete-srbi (Sect. 3.3, p. 29)

2.10 structurefile — Format of structurefiles (v2.0)

Description

This manpage describes the format and header of files for storage of arbitrary structures
for working with knowledge spaces (parts of spaces, data, etc.).

A'structurefil ecan be stored in either ASCII or binary file format.

ASCII file format

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

#SRBT v2.0 structure ASCII
The second line contains the number of items in the knowledge domain.
The third line contains the number of states/data sets... in the structure.

After these two lines you can add identification numbers for items and/or states (for
a detailed description of the format of the information lines, see Filetypes (Sect. 2.1,

p. 13)).

The following lines contain the knowledge states building a matrix where the columns
describe the items and the rows describe the knowledge states. In each cell of this
matrix there is a '1” if the knowledge state does contain the item, and a ’0” otherwise.

Binary file format

The file contains a sequence of | ong i nt eger numbers. The first two numbers give
the number of items and the number of knowledge states. The following | ong i nt e-

23

ger s build bitsets, one per knowledge state. A bitset consists of as many | ong i nt e-

ger s as are needed to represent the item set. This number of | ong i nt eger s needed
canbe computedas (I temNo + BitsPerLong - 1) / BitsPerLongwhereBitsPer-
Long is the machine

specific number of bits used to storea | ong i nt eger number.

In binary files you cannot add any comment lines. If you convert ASCII to binary files,
all additional information about items and lines is lost.

Warning

Using a binary st ruct ur ef i | e on different hardware platforms may produce unex-
pected results, because there may be different byte orders and therefore different bit
orders.

Version information

This manpage describes version v2.0 of the st r uct ur ef i | e format. The format changes
from v1.0 include additional format and meta information header lines (see spacefile (
5K)).

See also

Filetypes (Sect. 2.1, p. 13), spacefile (Sect. 2.8, p. 21).

2.11 testrelation — File formats for surmise relations
between tests

This manpage describes the format and header of files for surmise relations between
tests. The file includes the general, the left-covering, and the right-covering surmise
relation between tests.

The first line is the header-line containing information about version and filetype (see
Filetypes (Sect. 2.1, p. 13)):

#SRBT v2.0 testrelation

The second line contains the number of tests.

24

After these two lines you can add comments and identification numbers for the tests in
the relationfile (for a detailed description see Filetypes (Sect. 2.1, p. 13)).

In this file, three different matrices are stored:

The first matrix describes the general surmise relation between tests: The matrix in-
cludes a “1’ in line A and column B, iff the tests are in a surmise relation from test B to
test A (ASB) and a ‘0’ otherwise. Because the relation is reflexive, the main diagonal
contains always "1’s.

The second matrix describes the right-covering, the third matrix the left-covering sur-
mise relation between tests. Both matrices follow the same structure as described
above. If thetestrel ationfil eis created automatically, there are comment lines
included between the three matrices.

See also

Filetypes (Sect. 2.1, p. 13), srbifile (Sect. 2.9, p. 22), srbi-part2srbt (Sect. 6.4, p. 56)

25

26

3 SRBI Specific Tools

3.1 combine-equ-items — Combine equivalent items

Synopsis

combine-equ-items srbifil e outputfile

Description

conbi ne- equ- i t ens combines equivalent items in a relation matrix for a surmise re-
lation between items. Two items i and j are called equivalent, iff iSj and jSi (S denotes
the surmise relation between items).

If, for example, the first and the second item in a srbi-matrix are equivalent, the second
line and the second column in the matrix are removed. In the ’item information lines’
the information is added, that the first line/column contains the relationships for the
(original) first and second item. Before combining equivalent items, the surmise rela-
tion is tested for reflexitivity and transitivity properties, and completed, if necessary
(see complete-srbi (Sect. 3.3, p. 29)).

The outputfile is a srbifile (Sect. 2.9, p. 22), in which all equivalent items have been
combined.

Usage

combine-equ-items srbifil e outputfile

See also

srbifile (Sect. 2.9, p. 22), complete-srbi (Sect. 3.3, p. 29)

27

3.2 combine-two-items — Combine two items

Synopsis

combine-two-items srbi -file outputfile iteml iten

Description

combi ne-t wo- i t ens combines two items in a surmise relation between items S (srbi-
matrix). You can specify, which items should be combined, but the given items have to
be either parallel or equivalent.

Two items i and j are called equivalent here, iff iSj and jSi (see also combine-equ-items
(Sect. 3.1, p. 27)).

Two items i and j are called parallel, iff there exist two other items x and y, so that xSi,
xSj and iSy, jSy (i.e. i and j have the same lower and upper neighbours). If, for exam-
ple, the first and the second item in a srbi-matrix are equivalent/parallel and should
be combined, the second line and the second column in the matrix are removed. In the
‘item information lines’ the information is added, that the first line/column contains
the relationships for the (original) first and second item. Before combining the speci-
tied items, the surmise relation is tested for reflexitivity and transitivity properties, and
completed, if necessary (see complete-srbi (Sect. 3.3, p. 29)).

The outputfile is a sr bi fi | e, in which the specified equivalent/parallel items have
been combined.

Usage

combine-two-items srbi -file outputfile iteml iten
itenl and i t enR are integer numbers between ‘0" and '"number of items - 1’. These
two items have to be either parallel or equivalent.

See also

srbifile (Sect. 2.9, p. 22), complete-srbi (Sect. 3.3, p. 29), combine-equ-items (Sect. 3.1,
p-27)

28

3.3 complete-srbi — Complete a srbi-matrix because of
reflexivity and transitivity properties

Synopsis

complete-stbisrbi-file outputfile

Description

conpl et e- srbi completes a surmise relation between items to fulfill the properties of
(1) reflexivity and (2) transitivity. This means, (1) that the main diagonal of the matrix
contains only "1’s, because each item is in a surmise relationship with itself (iSi). For
(2), any transitive surmise relation S containing the pairs (i,j) and (j,k) also contains the
pair (i,k). Thus, if there is a "1” in column j and line i (iSj) and a "1” in column k and line j
(jSk), the program sets a "1” in column k and line 7, too (because iSk is implied by iSj and
jSk). The outputfile is a srbifile (Sect. 2.9, p. 22) that contains the completed matrix.

Usage

complete-stbisrbi-file outputfile

See also

srbifile (Sect. 2.9, p. 22)

3.4 gs-closure — Compute the closure under intersection

Synopsis

gs-closure [Opti ons] structurefile outputfile

Description

gs- cl osur e computes the closure under intersection of a family of sets.

gs- cl osur e uses the algorithm developed by B. Ganter. The program is equivalent
to the program s-closure (5K), but with large spaces and a large number of items it has

29

the advantage, that it needs less computer memory. Because not all calculated states
have to be kept in memory, the algorithm needs only one state to calculate the nextin a
lexicografic order. The algorithm should especially be used for large numbers of states
and items.

Usage

gs-closure [Opti ons] structurefile outputfile
Theout putfil ewillbeastructurefile.
Options are:
-a| -asci i : Use ASCII format for structurefile (Sect. 2.10, p. 23).
- b| - bi nary: Use binary format for structurefile (Sect. 2.10, p. 23).

-v| -ver bose: Select informative output.

See also

datafile (Sect. 2.3, p. 16), structurefile (Sect. 2.10, p. 23), s-closure (5K)
Ganter, B. and Reuter, K. (1991). Finding all closed sets: A general approach. Order, §,
283-290.

3.5 g-constr — Compute the closure under union

Synopsis

g-constr [Opti ons] structurefile spacefile

Description

g- constr computes the closure under union of a family of sets. The i nputfile
can be a basisfile (Sect. 2.2, p. 16) or an arbitrary structure (see structurefile (Sect. 2.10,
p- 23)). The result is a knowledge space stored in a spacefile (Sect. 2.8, p. 21). g- const r
uses the algorithm developed by B. Ganter. Its main usage is the construction of knowl-
edge spaces from their bases. The program is equivalent to the program constr (5K), but
with large spaces and a large number of items it has the advantage, that it needs much
less memory.

30

Usage

g-constr [Opti ons] structurefile spacefile
Options are:

- a: Use ASCII format for spacefile (Sect. 2.8, p. 21).
- b: Use binary format for spacefile (Sect. 2.8, p. 21).

- v: Select informative output.

See also

basisfile (Sect. 2.2, p. 16), datafile (Sect. 2.3, p. 16), spacefile (Sect. 2.8, p. 21), structurefile
(Sect. 2.10, p. 23), constr (5K)

Ganter, B. and Reuter, K. (1991). Finding all closed sets: A general approach. Order, §,
283-290.

3.6 leeuwe — Compute the basis for a set of answer
patterns

Synopsis

leeuwe [Opti ons] datafile tol erance-| evel

Description

| eeuwe computes the basis of a quasi ordinal knowledge space from a given dat af i | e.
It uses the algorithm developed by Held and Korossy (1998), which is based on van
Leeuwe (1974). The program investigates for each pair of items i and j, whether the
pair (j,i) is an element of the surmise relation S on the set of items (jSi). In the strictest
case (the tolerance-level equals 0), a pair (j,i) is added to the surmise relation, if there
is no answer pattern with a correct answer to item i, but an incorrect answer to item j
(j is prerequisite for i). Setting the tolerance-level to a value greater than 0 allows for
the specified percentage of contradicting answer patterns. For example, assume a data
set of 100 answer patterns and a tolerance level of 5. In this case, all item pairs with 5
or less contradicting answer patterns (i.e. a correct answer to item i and an incorrect
answer to item j) are added to the surmise relation. The results are written to the screen
and the corresponding basis can be stored automatically in a basisfile (Sect. 2.2, p. 16).

31

The basis can be created with or without transitive closure (with tolerance levels greater
0, intransitive triplets may occur). In the case of intransitive triplets, | eeuwe looks for
the smallest transitive closure covering the empirical relation (i.e. pairs are added to
the relation in order to achieve transitivity).

Optionally, additional information such as the prerequisites for each item, the number
and kind of intransitive triplets, the Correlational Agreement coefficient (CA, see van
Leeuwe, 1974), or 2x2-item-relation-tables can be provided.

Usage

leeuwe [Opti ons] datafile tol erance-| evel
Options are:
- . Put out the pairs in the surmise relation in the format "i->j", with j being a prereg-
uisite for i.

-rc: Put out the prerequisites for each item in the format "prerequisites for item
i, k1"

-t : Putout the frequency of correct/correct (aij), correct/incorrect (bij), incorrect/correct
(cij), incorrect/incorrect (dij) cases for each item pair (j,i), as well as the values Tau
(t=(b+1)/(c+1), see Brandt, 2000) and CA (van Leeuwe, 1974).

- b: Put out the corresponding bases of the surmise relation and store it in a file named
dat afil e. i bas and dat af i | e. bas for the empirical relation and the relation
closed under transitivity respectively (dat af i | e matches the name of the input-
file without extension).

- i : Put out the intransitive triplets and the total number of triplets (separated by
trivial and non-trivial triplets)

- pj : Use only the correct answers to j as basis for the tolerance check (pairs which
are element of the surmise relation without the option -pj are written in brackets).

-v1: Force "format 1" for output
-v0: Force "format 0" for output
- d1: The inputfile has "format 1"
The programm accepts 3 different formats for input and output:

- Format 0: a data matrix without header lines.
- Format 1: corresponds to the old file format (see Filetypes (Sect. 2.1, p. 13)), i.e. the

32

number of items in the first line, the number of subjects in the second line, followed by
the data matrix.

- Format 2: corresponds to the new file format (see datafile (Sect. 2.3, p. 16)), i.e. the
#SRBT header line, the number of items in the second line, the number of subjects in
the third line, followed by the data matrix.

"Format 2" is default for output data. There is an auto-detection for input-data which is
able to distinguish between format 0 and 2. For input-data in format 1 use the -d1 flag.
Each row of the data matrix contains an answer pattern ("0" for incorrect, "1" for correct
answers). For all three file formats, there must not be any spaces between the answers.

Remarks

The program | eeuwe was first developed by T. Held and extended by A. Wenzl and C.
Hockemeyer.

See also

datafile (Sect. 2.3, p. 16), basisfile (Sect. 2.2, p. 16)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
8].

Held, T. and Korossy, K. (1998). Data analysis as a heuristic for establishing theoretically
founded item structures. Zeitschrift fuer Psychologie, 206, 169-188.

van Leeuwe, J. F.]. (1974). Item tree analysis. Nederlands Tijdschrift voor de Psychologie,
29, 475-484.

3.7 parallel-items — Investigate a surmise relation matrix for
parallel items

Synopsis

parallel-items srbi fil e

33

Description

paral | el -it ens investigates a surmise relation between items S (srbi-matrix) for
parallel items. Two items i and j are called parallel, iff there exist two other items x
and y, so that xSi, x5j and iSy, jSy (i.e. i and j have the same lower and upper neigh-
bours).

The results are printed to stdout.

Usage

parallel-items srbi fil e

Bugs

The definition of parallel items does not include special cases. Give a new definition!

See also

srbifile (Sect. 2.9, p. 22), combine-two-items (Sect. 3.2, p. 28)

34

4 Tools for data evaluation and validation

4.1 count-data — Count the frequencies of answer patterns
in a given data matrix

Synopsis

count-datadat afi | e newdatafil e [spacefil e]

Description

count - dat a counts the frequencies of answer patterns in a given data matrix. The
data matrix must be stored in a datafile (Sect. 2.3, p. 16) in either binary or ASCII format.
The frequencies of each line in the data matrix are printed to stdout. Optionally, if a
spacefile (Sect. 2.8, p. 21) is given, a tag shows, if the pattern is element of the space. In
the new- dat af i | e all repeated answer patterns are deleted and each pattern is stored
together with the respective line number(s) in the original dat afi | e.

Example:

Assume the following 4 answer patterns:

100

110

100

111

The out put fi | e includes the line information with the number(s) of the original an-
swer patterns for each line (attention: counting starts with '0’!) and the answer patterns
in the following form:

0: 0 2
1. 1
#* 2. 3
100

110

111

In this example, the answer pattern in the first line (No. 0) occured twice in the original

35

file (in the 1st and 3rd line), the two remaining patterns occured only once.

Usage

count-datadat afil e new datafil e [spacefil e]
spacefi | eis an optional parameter.

Bugs

Currently only ASCII output of the new- dat af i | e is possible.

See also

datafile (Sect. 2.3, p. 16), spacefile (Sect. 2.8, p. 21), count-patterns (Sect. 4.3, p. 37)

4.2 count-data-rm — Count the frequencies of answer
patterns in a given data matrix and delete trivial patterns

Synopsis

count-data-rm dat af i | e new datafil e [spacefil e]

Description

count - dat a- r mcounts the frequencies of answer patterns in a given data matrix.
The program works analogously to the program count-data (Sect. 4.1, p. 35), but all
trivial answer patterns (i.e. patterns where either all or none of the items are answered
correctly) are stored only once.

Example:

Assume the following 5 answer patterns:
100

110

111

111

100

36

The out put fi | e includes the line information with the number(s) of the original an-
swer patterns for each line (attention: counting starts with '0’!) and the answer patterns
in the following form: The trivial patterns are stored only once:

0. 0 4
1. 1
#* 2. 2
100
110
111

In this example, the answer pattern in the first line (No. 0) occured twice in the original
file (in the 1st and 5th line) and the pattern in the second line (No. 1) occured only once
(2nd line in the original file). The trivial pattern in the third line (No. 2) occured twice
(3rd and 4th line in the original file), but is stored only once (line 4 of the original file
has been removed).

Usage

count-data-rm dat afi | e new datafil e [spacefil e]
spacefi | eis an optional parameter.

Bugs

Currently only ASCII output of the new- dat af i | e is possible.

See also

datafile (Sect. 2.3, p. 16), spacefile (Sect. 2.8, p. 21), count-data (Sect. 4.1, p. 35)

4.3 count-patterns — Count the frequencies of answer
patterns in a given pattern matrix

Synopsis

count-patterns patternfil e new patternfile [spacefil e]

37

Description

count - pat t er ns counts the frequencies of answer patterns in a given matrix of an-
swer patterns. The matrix has to be stored in form of a patternfile (Sect. 2.7, p. 20).
The frequencies of all different answer patterns are printed to stdout. Optionally, if a
spacefile (Sect. 2.8, p. 21) is given, a tag shows, if the pattern is a potential element of
the space (for patterns containing "x’s we do not know, whether or not the pattern cor-
responds to a knoweldge state). In the new- patternfil e all repeated patterns are
deleted and each pattern is stored together with the respective line number(s) in the
original pat t er nfi | e (cf. count-data (Sect. 4.1, p. 35)).

Usage

count-patterns patternfil e new patternfile [spacefil e]
spacefi | eis an optional parameter.

See also

patternfile (Sect. 2.7, p. 20), spacefile (Sect. 2.8, p. 21), count-data (Sect. 4.1, p. 35)

4.4 del-equ-data — Delete equal answer patterns

Synopsis

del-equ-datadat afil e outputfile

Description

del - equ- dat a deletes equal answer patterns out of a dat af i | e. Item numbers of the
original file are kept, but the line information is removed. The outputfile is a datafile
(Sect. 2.3, p. 16), where each answer patterns occurs only once. If you want to keep the
line information, use the program count-data (Sect. 4.1, p. 35).

Usage

del-equ-datadat afil e outputfile

38

Bugs

Currently only ASCII output is possible.

See also

datafile (Sect. 2.3, p. 16), count-data (Sect. 4.1, p. 35)

4.5 delete-not-ans — Delete patterns with missing answers
to certain items

Synopsis

delete-not-ans patternfile datafile no_itens

Description

del et e- not - ans calculates for each item, how many students gave a (correct or in-
correct) answer to the item (0" or “1” in the matrix of answer patterns, but not 'x’). Then
the program deletes as many items as specified, starting with the item that has been
answered by the smallest number of students. Then the item with the second smallest
number of answers is deleted, etc. Afterwards, the patterns, which do not contain an-
swers to all of the remaining items, are deleted. The result is a datafile (Sect. 2.3, p. 16),
from which the specified number of items (no_i t ens) and the incomplete answer pat-
terns have been removed.

Usage

delete-not-ans patternfile datafile no_itens

See also

datafile (Sect. 2.3, p. 16), patternfile (Sect. 2.7, p. 20), patt-statistics (Sect. 4.11, p. 44)

39

4.6 elim — Eliminate answer patterns that contradict the
closure under union and intersection

Synopsis

elim [Options] datafile outputfile

Description

el i meliminates answer patterns in a datafile (Sect. 2.3, p. 16), that contradict the clo-
sure under union and intersection, which is an important property of quasi ordinal
knowledge spaces. el i mlooks, which answer patterns in the datafile do most fre-
quently contradict the assumption, that the union (intersection) of two arbitrary answer
patterns is again an answer pattern. The algorithm eliminates the patterns for which
the quotient "number of contradictions / frequency of the pattern” is a maximum. It
works recursive, until no contradictions to the closure under union and intersection are
left. Before using the program el i m the frequencies of the different patterns have to
be counted. This happens automatically by means of the program count-data (Sect. 4.1,
p- 35).

el i mprints to stdout, which answer patterns have been removed. The remaining pat-
terns are stored in the out put fi | e, which is again a datafile (Sect. 2.3, p. 16).

Usage

elim [Options] datafile outputfile

Options are:

- a: Use ASCII format for spacefile (Sect. 2.8, p. 21).
- b: Use binary format for spacefile (Sect. 2.8, p. 21).

- v: Select informative output.

See also

datafile (Sect. 2.3, p. 16), count-data (Sect. 4.1, p. 35), elim-frequ (Sect. 4.7, p. 41), elim-
perc (Sect. 4.8, p. 42), elim-stud (Sect. 4.9, p. 43), elim4pat (Sect. 4.10, p. 43)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
7].

40

4.7 elim-frequ — Eliminate answer patterns that contradict
the closure under union and intersection

Synopsis

elim-frequ dat afi | e outputfile frequency-percentage

Description

el i m frequ eliminates answer patterns in a datafile (Sect. 2.3, p. 16), that contradict
the closure under union and intersection, which is an important property of quasi or-
dinal knowledge spaces. The algorithm of this program is the same as in the program
elim (Sect. 4.6, p. 40) with the additional feature, that answer patterns exceeding a spec-
ified percentage of occurance are not eliminated. This means, that the answer patterns,
which occur more often than the given percentage of all answer patterns are not elimi-
nated, even if they include most contradictions.

For example, assume a data set containing 100 answer patterns and a specified f r equency-
per cent age of 5. Then all of the patterns, which occur more often than 5 times are not
eliminated.

Before using the program el i m f r equ, the frequencies of the different patterns have to
be counted. This happens automatically by means of the program count-data (Sect. 4.1,
p- 35).

el i m fr equ prints to stdout, which answer patterns have been removed. The remain-
ing patterns are stored in the out put f i | e, which is again a datafile (Sect. 2.3, p. 16).

Usage

elim-frequ dat afi |l e outputfile frequency-percentage

See also

datafile (Sect. 2.3, p. 16), count-data (Sect. 4.1, p. 35), elim (Sect. 4.6, p. 40), elim-perc
(Sect. 4.8, p. 42), elim-stud (Sect. 4.9, p. 43), elim4pat (Sect. 4.10, p. 43)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
7].

41

4.8 elim-perc — Eliminate answer patterns that contradict
the closure under union and intersection

Synopsis

elim-percdat afil e outputfile contradiction-percentage

Description

el i m per c eliminates answer patterns in a datafile (Sect. 2.3, p. 16), that contradict the
closure under union and intersection, which is an important property of quasi ordinal
knowledge spaces. The algorithm of this program is the same as in the program elim
(Sect. 4.6, p. 40) with the additional feature, that it terminates as soon as a specified
(maximal) percentage of contradictions is reached. This means that the algorithm does
not eliminate answer patterns until no contradictions are left, but terminates the elim-
ination process, when the number of contradictions becomes smaller than the given
percentage of acceptable contradictions.

For example, assume a data set containing 100 answer patterns and a specified cont r adi ct i on-
per cent age of 5. The algorithm terminates the elimination process, if the remaining
patterns lead to less than 5 contradictions with regard to a union and intersection closed
knowledge space.

Before using the program el i m per c, the frequencies of the different patterns have to
be counted. This happens automatically by means of the program count-data (Sect. 4.1,
p- 35).

el i m per ¢ prints to stdout, which answer patterns have been removed. The remain-
ing patterns are stored in the out put f i | e, which is again a datafile (Sect. 2.3, p. 16).

Usage

elim-percdat afil e outputfile contradiction-percentage

See also

datafile (Sect. 2.3, p. 16), count-data (Sect. 4.1, p. 35), elim (Sect. 4.6, p. 40), elim-frequ
(Sect. 4.7, p. 41), elim-stud (Sect. 4.9, p. 43), elim4pat (Sect. 4.10, p. 43)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
7].

42

4.9 elim-stud — Eliminate answer patterns that contradict
the closure under union and intersection

Synopsis

elim-stud datafil e outputfile no_patterns-1left

Description

el i m st ud eliminates answer patterns in a datafile (Sect. 2.3, p. 16), that contradict
the closure under union and intersection, which is an important property of quasi or-
dinal knowledge spaces. The algorithm of this program is the same as in the program
elim (Sect. 4.6, p. 40) with the additional feature, that it terminates as soon as (approx-
imately) the specified (minimal) number of different patterns is reached. This means
that the algorithm does not eliminate answer patterns until no contradictions are left,
but terminates the elimination process, when the number of different answer patterns
falls below the specified value for no_patterns-| eft. Before using the program
el i m st ud, the frequencies of the different patterns have to be counted. This happens
automatically by means of the program count-data (Sect. 4.1, p. 35).

el i m st ud prints to stdout, which answer patterns have been removed. The remain-
ing patterns are stored in the out put f i | e, which is again a datafile (Sect. 2.3, p. 16).

Usage

elim-stud datafil e outputfile no_patterns-left

See also

datafile (Sect. 2.3, p. 16), count-data (Sect. 4.1, p. 35), elim (Sect. 4.6, p. 40), elim-frequ
(Sect. 4.7, p. 41), elim-perc (Sect. 4.8, p. 42), elim4pat (Sect. 4.10, p. 43)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
7].

4.10 elim4pat — Eliminate answer patterns that contradict
the closure under union and intersection

43

Synopsis

elim4patpatternfile outputfile

Description

el i mipat eliminates answer patterns in a patternfile (Sect. 2.7, p. 20), that contradict
the closure under union and intersection, which is an important property of quasi or-
dinal knowledge spaces. el i mipat works with the same algorithm as the program
elim (Sect. 4.6, p. 40), but it works with answer patterns that include the possibility of
correct, incorrect, and not answered questions (see patternfile (Sect. 2.7, p. 20)).

For this program, the union (u) and intersection (s) of patterns are defined as follows:

(111 000 xxx) u (10x 10x 10x) = (111 10x 1xx)
(111 000 xxx) s (10x 10x 10x) = (10x 000 x0x)

Before using the program el i mipat, the frequencies of the different patterns have
to be counted. This happens automatically by means of the program count-patterns
(Sect. 4.3, p. 37).

el i mipat prints to stdout, which answer patterns have been removed. The remaining
patterns are written to the out put f i | e, which is again a patternfile (Sect. 2.7, p. 20).

Usage

elim4patpatternfile outputfile

See also

patternfile (Sect. 2.7, p. 20), count-patterns (Sect. 4.3, p. 37), elim (Sect. 4.6, p. 40)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
7].

4.11 patt-statistics — Calculate how many students gave an
answer to subsets of items in Q

44

Synopsis

patt-statistics patternfil e

Description

patt-statistics counts, how many students gave an answer (correct or incorrect)
to various subsets of items in the set Q of all items under investigation. The program
starts with counting the number of complete answer patterns, i.e. patterns with all
items answered (denoted by a ‘0" or "1’, but not an "x” in the patternfile (Sect. 2.7, p. 20)).
Then, the item that has been answered by the fewest students is deleted and the pro-
gram recounts the number of complete answer patterns for the remaining items. Once
again the item, which has been answered by the fewest students is deleted and the
number of complete answer patterns is recounted. This process continues until there
are only complete patterns left for the remaining set of items.

Finally, the program calculates how many items have to be deleted to get (1) the max-
imal number of students, that have answered all items, (2) the maximal number of
items, that have been answered by all students, and (3) the maximum of the product
‘items*students’ with all items answered.

The results are printed to stdout.
The program can be used to find the appropriate item number for the program delete-
not-ans (Sect. 4.5, p. 39).

Usage

patt-statistics patternfil e

See also

patternfile (Sect. 2.7, p. 20), delete-not-ans (Sect. 4.5, p. 39)

4.12 selpat — Select patterns with a given minimal
frequency of occurance

Synopsis

selpati nput-patternfile limt output-patternfile

45

Description

sel pat counts how often each answer pattern occurs and stores all patterns with the
specified minimal frequency of occurance (i.e. at least the given |'i m t) in an out-
putfile. Input and output files can either be datafiles or patternfiles (see Filetypes
(Sect. 2.1, p. 13)). Each pattern is stored as often as it occured in the original file (i nput -
patternfil e). If youwant to store each pattern just once, use the program count-data
(Sect. 4.1, p. 35) or count-patterns (Sect. 4.3, p. 37) (depending on whether the inputfile
is a datafile (Sect. 2.3, p. 16) or a patternfile (Sect. 2.7, p. 20)).

Usage

selpati nput-patternfile limt output-patternfile

Remarks

The program sel pat was written by A. Wenzl.

See also

datafile (Sect. 2.3, p. 16), patternfile (Sect. 2.7, p. 20), count-data (Sect. 4.1, p. 35), count-
patterns (Sect. 4.3, p. 37)

4.13 valid — Validate the fit of a surmise relation to a set of
answer patterns

Synopsis

validsrbifile datafile [-t]

Description

val i d validates the fit of a surmise relation to a set of answer patterns. Two indices
are used to indicate the quality of the fit: the Correlational Agreement coefficient (CA,
van Leeuwe, 1974; see also Held and Korossy, 1998) and the Gamma index (Goodman
and Kruskal, 1954). Additionally to the global indices, gamma values are given for

46

each item pair (i,j) and for each subject. Optionally, the frequencies of the four pos-
sible correct/incorrect combinations (a, b, ¢, and d) are provided for each item pair.
‘a’ represents the case incorrect/incorrect, ‘b’ stands for incorrect/correct, 'c’ for cor-
rect/incorrect, and ‘d’ for correct/correct. Furthermore, the value "tau’ (t=b/c, see
Brand, 2000), is given.

Usage

validsrbifile datafile [-t]

Options:

-t : Put out the abcd-tables for each pair of items

Remarks

The program val i d was written by A. Wenzl.

See also

datafile (Sect. 2.3, p. 16), srbifile (Sect. 2.9, p. 22)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
8].

Goodman. L.A. and Kruskal. W.H. (1972). Measures of association for cross classifica-
tions. Journal of the American Statistical Association, 67, 415-421.

Held, T. and Korossy, K. (1998). Data analysis as a heuristic for establishing theoretically
founded item structures. Zeitschrift fuer Psychologie, 206, 169-188.

van Leeuwe, J. F. J. (1974). Item tree analysis. Nederlands Tijdschrift voor de Psychologie,
29, 475-484.

47

48

5 Simulating student answers

5.1 learning-sim — Simulating students using the learning
path model

Synopsis

learning-sim basi sfil e outputfile probabilitiesfile no_students

Description

| ear ni ng- si msimulates the knowledge states of students using the learning path
model (Brandt 2000). From a given basis, the possible learning paths are calculated. The
probabi litiesfileincludes (1) the probabilities for the number of items learned
(e.g. the probabilitiy for learning half of the items is higher than the probability for
learning all items) and (2) the probabilities for learning item i rather than item j (for an
explanation of the exact meaning of the probabilities see Brandt, 2000, Chapter 7).

The probabi l'i ti esfil ehas the following form:

prob. for learning no item

prob. for learning 1 item

prob. for learning 2 items

prob. for learning all items

if you learn an item: prob. for learning item 1
prob. for learning item 2

prob. for learning item q

Let q be the number of items in the basis, then the first q+1 probabilities have to sum
up to '1” and the second q probabilities have to sum up to '1". The randomly (by means
of the given probabilities) chosen learning paths are written to stdout. The knowledge
states for all simulated students are stored in the outputfile, which is a datafile (Sect. 2.3,

49

p- 16). The resulting set of states is either equal to the space or a subset of the space.
Regarding the subsets of the space, those states occur more often, which include items
that are more probably learned. Furthermore, the items that are more probably learned,
occur more often in the learning paths. Careless errors and lucky guesses are not in-
cluded in the file. If you want to include careless errors and/or lucky guesses, use the
program noisy-learn-sim (Sect. 5.2, p. 50).

Usage

learning-sim basi sfil e outputfile probabilitiesfile no_students
The outputfile will be a datafile in ASCII format.

Bugs

Currently only ASCII output of the new datafile is possible.

See also

datafile (Sect. 2.3, p. 16), basisfile (Sect. 2.2, p. 16), noisy-learn-sim (Sect. 5.2, p. 50)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
7].

5.2 noisy-learn-sim — Simulating students making careless
errors and lucky guesses using the learning path model

Synopsis

noisy-learn-sim basi sfil e outputfile probabilitiesfile no_students beta
eta

Description

noi sy- | ear n- si msimulates the knowledge states of students using the learning path
model (Brandt, 2000). From a given basis, the possible learning paths are calculated.
The probabi i ti esfil eincludes (1) the probabilities for the number of items learned

50

(e.g. the probabilitiy for learning half of the items is higher than the probability for
learning all items) and (2) the probabilities for learning item i rather than item j (for an
explanation of the exact meaning of the probabilities see Brandt, 2000, Chapter 7).

The probabi l'i ti esfil e has the following form:

prob. for learning no item

prob. for learning 1 item

prob. for learning 2 items

prob. for learning all items

if you learn an item: prob. for learning item 1
prob. for learning item 2

prob. for learning item q

Let q be the number of items in the basis, then the first q+1 probabilities have to sum up
to '1” and the second q probabilities have to sum up to "1". The randomly (by means of
the given probabilities) chosen learning paths are written to stdout. After choosing the
states, in which the students are according to the given probabilities in the probability
tile, careless errors and lucky guesses are simulated. The value beta is the probability
for a lucky guess, the value eta for a careless error (both numbers have to be values
between 0 and 1). The simulated answer patterns are stored in the out put f i | e, which
is a datafile (Sect. 2.3, p. 16).

Usage

noisy-learn-sim basi sfil e outputfile probabilitiesfile no_students beta
eta
The outputfile will be a datafile in ASCII format.

Bugs

Currently only ASCII output of the new datafile is possible.

See also

datafile (Sect. 2.3, p. 16), basisfile (Sect. 2.2, p. 16), learning-sim (Sect. 5.1, p. 49)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
7].

51

52

6 Tools for partitions and tests

6.1 connex-part — Produce a connex disjoint partition of
items into tests

Synopsis

connex-partsrbifile outputfile

Description

connex- part creates a connex disjoint partition of items into tests (given a surmise
relation on the set of items). The program tries to generate as few tests as possible (only
one item per test would be a trivial solution that is always possible).

A test is called ‘connex’ here, if for each item i in the test there exists another item j
in the same test, so that iSj or jSi (S denotes the surmise relation between items). A
partition is called connex, if all tests in the partition are connex.

The out put f i | e is a disjoint partition file (see disjpartitionfile (Sect. 2.4, p. 18)).

Usage

connex-partsrbifile outputfile

See also

disjpartitionfile (Sect. 2.4, p. 18), srbifile (Sect. 2.9, p. 22)

6.2 part-properties — Investigate the properties of a
partition of items into tests

53

Synopsis

part-properties srbifile partitionfile

Description

part - properti es investigates the properties of a partition of items into tests using
the surmise relation between items.

The following properties are investigated:

- Is the whole partition connex?
- Is the whole partition transitive?

- Is the whole partition antisymmetric?

For a definition of the properties, see Brandt (2000, Chapter 5). The results are printed
to stdout.

Usage

part-properties srbifile partitionfile

Bugs

The properties right-, left-, and total-coveringness of the whole partition have to be
defined theoretically and included into the program.

See also

srbifile (Sect. 2.9, p. 22), partitionfile (Sect. 2.6, p. 19), tests-properties (Sect. 6.7, p. 58)

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
5].

54

6.3 random-part — Produce a random disjoint partition of
items into tests

Synopsis

random-part partition-kind no_itens no_tests outputfile

Description

random part produces a random disjoint partition of items into tests. There are five
possibilities for choosing the properties of the resulting disjoint partition:

- Random selection of the number of tests

- Specification of a maximal number of tests

- Specification of an exact number of tests

- Equal partitioning of the items into tests (only possible, if the number of items is a
multiple of the number of tests)

- Specification of a minimal number of items per test

The out put f i | e is a disjoint partition file (see disjpartitionfile (Sect. 2.4, p. 18)).

Usage

random-part partition-kind no_itens no_tests outputfile
Options for the kind of partition (partiti on- ki nd) are: Create a random disjoint
partition with

- r: arandomly chosen number of tests.

-m a given maximal number of tests.

-1 a given number of tests.

- €. an equal number of items per test.

- i <n>: a minimal number of 'n’ items per test.

55

Bugs

Option ’-r’ requires a value for the number of tests, which is, however, not used in the
program.

See also

disjpartitionfile (Sect. 2.4, p. 18)

6.4 srbi-part2srbt — Calculate the surmise relations
between tests out of a surmise relation between items
and a partition into tests

Synopsis

stbi-part2srbt srbifile partitionfile testrelation

Description

srbi - part 2sr bt calculates the general, right-, and left-covering surmise relations
between tests out of a given surmise relation between items and a partition of items
into tests. The results are printed to stdout, and the resulting surmise relations are
stored in a testrelation (Sect. 2.11, p. 24) file. The relations are written in form of three
matrices, one for the general surmise relation, one for the right-, and one for the left-
covering surmise relation: A ’1” in line A and column B means, that there is a surmise
relation from Test B to Test A (A S B with S denoting the surmise relation between tests).
The same goes for right- and leftcovering surmise relations.

Usage

stbi-part2srbt srbifile partitionfile testrelation

See also

testrelation (Sect. 2.11, p. 24), srbifile (Sect. 2.9, p. 22), partitionfile (Sect. 2.6, p. 19),
tests-properties (Sect. 6.7, p. 58)

56

Brandt S. (2000). Surmise Relations between Tests. Unpublished documentation [Chapter
2].

6.5 srwt — Look for surmise relations within tests

Synopsis

srwtsrbifile partitionfile outputfile

Description

Srw uses a surmise relation between items (srbifile (Sect. 2.9, p. 22)) and a partition of
these items into tests (partitionfile (Sect. 2.6, p. 19)) to extract the relationships between
items that belong to the same test. The program looks for all relationships within tests
(SRwT: both items belong to the same test). The results are printed to stdout. The
out put fi | e contains a srbi-matrix, in which all relationships across tests (SRxT: the
items belong to different tests) are set to '0".

Usage

srwtsrbifile partitionfile outputfile

See also

srbifile (Sect. 2.9, p. 22), partitionfile (Sect. 2.6, p. 19), srxt (Sect. 6.6, p. 57)

6.6 srxt — Look for surmise relations across tests
Synopsis

srxtsrbifile partitionfile outputfile

Description

Sr Xt uses a surmise relation between items (srbifile (Sect. 2.9, p. 22)) and a partition of
these items into tests (partitionfile (Sect. 2.6, p. 19)) to extract the relationships between

57

items that belong to different test. The program looks for all surmise relations across
tests (SRxT: the items belong to different tests). The results are printed to stdout. The
out put fi | e contains a srbi-matrix, in which all relationships within tests (SRwT: the
items belong to the same test) are set to 0"

Usage

srextsrbifile partitionfile outputfile

See also

srbifile (Sect. 2.9, p. 22), partitionfile (Sect. 2.6, p. 19), srwt (Sect. 6.5, p. 57)

6.7 tests-properties — Investigate the properties of the tests
of a given partition

Synopsis

tests-properties srbifil e partitionfile

Description

t est s- properti es investigates the properties of tests in a given partition using a
given surmise relation between items and a partition of the items into tests. For all
possible combinations of tests, the following properties are investigated:

- Is there a general, left-, right-, and /or total-covering surmise relation between tests?
For each pair of tests A and B, "TA S TB’ means, that there is a surmise relation
from Test B to Test A and 'TA 'S TB’ means, that there is no surmise relation
from Test B to Test A. The same goes for left-, right-, and total-covering surmise
relations, which are denoted by ’Sl, Sr, St’ respectively.

- Are the two tests antisymmetric?

- Is a given test connex?

For a definition of the properties, see Brandt (2000, Chapters 2 and 5). The results are
printed to stdout.

58

Usage

tests-properties srbifil e partitionfile

See also

srbifile (Sect. 2.9, p. 22), partitionfile (Sect. 2.6, p. 19), part-properties (Sect. 6.2, p. 53)

BrandtS. (2000). Surmise Relations between Tests. Unpublished documentation [Chapters
2 and 5].

59

60

7 General Tools

7.1 bas2srbi — Convert a basis into a surmise relation
Synopsis

bas2srbi basi sfile srbifile

Description

bas2sr bi converts a basisfile (Sect. 2.2, p. 16) into a surmise relation file (srbifile
(Sect. 2.9, p. 22)).

Usage

bas2srbi basi sfile srbifile

Remarks

The program bas2sr bi was written by A. Wenzl.

See also

basisfile (Sect. 2.2, p. 16), srbifile (Sect. 2.9, p. 22)

7.2 new2old — Change a file in new file format (v2.0) into a
file in old format

61

Synopsis

new?2old filename-new-format filename-old-format

Description

new2ol d changes a file in new file format (containing a header line and information
numbers, see Filetypes (Sect. 2.1, p. 13)) to a file in old format (see e.g. spacefile (5K)).
Information on the type of file as well as information numbers of items and lines are
lost with this transformation. new2ol d is currently used to work with KST-tools, which
only accept the old file format.

Usage

new?2old filename-new-format filename-old-format

See also
Filetypes (Sect. 2.1, p. 13), old2new (Sect. 7.3, p. 62)

7.3 old2new — Change a file in old file format into a file in
new format (v2.0)

Synopsis

old2new filename-old-format filename-new-format filetype

Description

ol d2newchanges a file in old file format into a file in new format (containing a header
line with information on the filetype) (see Filetypes (Sect. 2.1, p. 13)).

Usage

old2new filename-old-format filename-new-format filetype
filetype is one of the types of files frequently used with knowledge space theory (space,
basis, data,..., see Filetypes (Sect. 2.1, p. 13)).

62

See also

Filetypes (Sect. 2.1, p. 13), new2old (Sect. 7.2, p. 61)

7.4 pat2data — Change a patternfile into a datafile

Synopsis

pat2datapatternfile datafile

Description

pat 2dat a changes a patternfile (Sect. 2.7, p. 20) into a datafile (Sect. 2.3, p. 16). All
missing answers (denoted by an 'x” in the pat t er nf i | e) are viewed as incorrect an-
swers (denoted by ‘0’ ind the new dat afi | e).

Usage

pat2datapatternfile datafile

See also

patternfile (Sect. 2.7, p. 20), datafile (Sect. 2.3, p. 16)

63

