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Introduction
This chapter is the first of two chapters that together link the basic ideas of probabil-
ity explored in Chapter 6 with the techniques of statistical inference. Chapter 6 used
probability to describe the long-run relative frequency of occurrence of various types
of outcomes. In this chapter we introduce probability models that can be used to de-
scribe the distribution of values of a variable. In Chapter 8, we will see how these same
probability models can be used to describe the behavior of sample statistics. Such
models are essential if we are to reach conclusions based on a sample from the popu-
lation of interest.

In a chance experiment, we often focus on some numerical aspect of the outcome.
An environmental scientist who obtains an air sample from a specified location might
be especially concerned with the concentration of ozone (a major constituent of smog).
A quality control inspector who must decide whether to accept a large shipment of com-
ponents may base the decision on the number of defective components in a group of 20
components randomly selected from the shipment.

Before selection of the air sample, the value of the ozone concentration is uncer-
tain. Similarly, the number of defective components among the 20 selected might be
any whole number between 0 and 20. Because the value of a variable quantity such as
ozone concentration or number of defective components is subject to uncertainty, such
variables are called random variables.
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In this chapter we begin by distinguishing between discrete and continuous nu-
merical variables. We show how variation in both discrete and continuous numerical
variables can be described by a probability distribution; this distribution can then be
used to make probability statements about values of the random variable. Special em-
phasis is given to three commonly encountered probability distributions: the binomial,
geometric, and normal distributions.

........................................................................................................................................

7.1 Random Variables
In most chance experiments, an investigator focuses attention on one or more variable
quantities. For example, consider a management consultant who is studying the oper-
ation of a supermarket. The chance experiment might involve randomly selecting a
customer leaving the store. One interesting numerical variable might be the number of
items x purchased by the customer. Possible values of this variable are 0 (a frustrated
customer), 1, 2, 3, and so on. Until a customer is selected and the number of items
counted, the value of x is uncertain. Another variable of potential interest might be the
time y (minutes) spent in a checkout line. One possible value of y is 3.0 min and an-
other is 4.0 min, but any other number between 3.0 and 4.0 is also a possibility.
Whereas possible values of x are isolated points on the number line, possible y values
form an entire interval (a continuum) on the number line.

We use lowercase letters, such as x and y, to represent
random variables.*

Figure 7.1 shows a set of possible values for each type of
random variable. In practice, a discrete random variable al-
most always arises in connection with counting (e.g., the
number of items purchased, the number of gas pumps in use,
or the number of broken eggs in a carton). A continuous ran-
dom variable is one whose value is typically obtained by mea-

surement (temperature in a freezer compartment, weight of a pineapple, amount of
time spent in the store, etc.). Because there is a limit to the accuracy of any measur-
ing instrument, such as a watch or a scale, it may seem that any variable should be re-
garded as discrete. However, when there is a large number of closely spaced values,
the variable’s behavior is most easily studied by conceptualizing it as continuous. (Do-
ing so allows the use of calculus to solve some types of probability problems.)

D E F I N I T I O N

A numerical variable whose value depends on the outcome of a chance ex-
periment is called a random variable. A random variable associates a nu-
merical value with each outcome of a chance experiment.

A random variable is discrete if its set of possible values is a collection of
isolated points on the number line. The variable is continuous if its set of
possible values includes an entire interval on the number line.
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*In some books, uppercase letters are used to name random variables, with lowercase letters representing a par-
ticular value that the variable might assume. We have opted to use a simpler and less formal notation.

Possible values of a
continuous random variable

Possible values of a
discrete random variable

F igure 7.1 Two different types of random 
variables.
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........................................... . . . . . . . . . . . ....................................................................................

Example 7.1 Car Sales

Consider an experiment in which the type of car, new (N) or used (U), chosen by
each of three successive customers at a discount car dealership is noted. Define a
random variable x by

x � number of customers purchasing a new car

The experimental outcome in which the first and third customers purchase a new car
and the second customer purchases a used car can be abbreviated NUN. The associ-
ated x value is 2, because two of the three customers selected a new car. Similarly,
the x value for the outcome NNN (all three purchase a new car) is 3. We display
each of the eight possible experimental outcomes and the corresponding value of x
in the following table:

Outcome UUU NUU UNU UUN NNU NUN UNN NNN
x value 0 1 1 1 2 2 2 3

There are only four possible x values—0, 1, 2, and 3—and these are isolated points
on the number line. Thus, x is a discrete random variable.

■

In some situations, the random variable of interest is discrete, but the number of
possible values is not finite. This is illustrated in Example 7.2.

........................................... . . . . . . . . . . . ....................................................................................

Example 7.2 This Could Be a Long Game . . .

Two friends agree to play a game that consists of a sequence of trials. The game
continues until one player wins two trials in a row. One random variable of interest
might be

x � number of trials required to complete the game

Let A denote a win for Player 1 and B denote a win for Player 2. The simplest pos-
sible experimental outcomes are AA (the case in which Player 1 wins the first two
trials and the game ends) and BB (the case in which Player 2 wins the first two tri-
als). With either of these two outcomes, x � 2. There are also two outcomes for which
x � 3: ABB and BAA. Some other possible outcomes and associated x values are

7.1 ■ Random Variables 359

Outcomes x value

AA, BB 2
BAA, ABB 3
ABAA, BABB 4
ABABB, BABAA 5

ABABABABAA, BABABABABB 10
oo

and so on.
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Any positive integer that is at least 2 is a possible value. Because the values 
2, 3, 4, . . . are isolated points on the number line (x is determined by counting), x
is a discrete random variable even though there is no upper limit to the number of
possible values.

■

............................................. . . . . . . . . . . . . .................................................................................

Example 7.3 Stress

In an engineering stress test, pressure is applied to a thin 1-ft-long bar until the bar
snaps. The precise location where the bar will snap is uncertain. Let x be the distance
from the left end of the bar to the break. Then x � 0.25 is one possibility, x � 0.9 is
another, and in fact any number between 0 and 1 is a possible value of x. (Figure 7.2
shows the case of the outcome x � 0.6.) This set of possible values is an entire inter-
val on the number line, so x is a continuous random variable.

Even though in practice we may be able to measure the distance only to the near-
est tenth of an inch or hundredth of an inch, the actual distance could be any num-
ber between 0 and 1. So, even though the recorded values might be rounded because
of the accuracy of the measuring instrument, the variable is still continuous.

■

In data analysis, random variables often arise in the context of summarizing
sample data when a sample is selected from some population. This is illustrated in 
Example 7.4.

............................................. . . . . . . . . . . . . .................................................................................

Example 7.4 College Plans

Suppose that a counselor plans to select a random sample of 50 seniors at a large
high school and to ask each student in the sample whether he or she plans to attend
college after graduation. The process of sampling is a chance experiment. The
sample space for this experiment consists of all the different possible random sam-
ples of size 50 that might result (there is a very large number of these), and for
simple random sampling each of these outcomes is equally likely. Let

x � number of successes in the sample

where a success in this instance is defined as a student who plans to attend college.
Then x is a random variable, because it associates a numerical value with each of 
the possible outcomes (random samples) that might occur. Possible values of x are 
0, 1, 2, . . . , 50, and x is a discrete random variable.

■
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0 0.25 0.50 0.75 1.00

x = 0.6

F igure 7.2 The bar for
Example 7.3 and the outcome
x � 0.6.

■ E x e r c i s e s 7.1–7.7

7.1 State whether each of the following random variables
is discrete or continuous:
a. The number of defective tires on a car
b. The body temperature of a hospital patient

c. The number of pages in a book
d. The number of draws (with replacement) from a deck
of cards until a heart is selected
e. The lifetime of a lightbulb

......................................................................................................................

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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........................................................................................................................................

7.2 Probability Distributions for Discrete Random Variables
The probability distribution for a random variable is a model that describes the long-
run behavior of the variable. For example, suppose that the Department of Animal
Regulation in a particular county is interested in studying the variable x � number of
licensed dogs or cats for a household. County regulations prohibit more than five dogs
or cats per household. If we consider the chance experiment of randomly selecting a
household in this county, then x is a discrete random variable because it associates a
numerical value (0, 1, 2, 3, 4, or 5) with each of the possible outcomes (households)
in the sample space. Although we know what the possible values for x are, it would
also be useful to know how this variable behaves in repeated observation. What would
be the most common value? What proportion of the time would x � 5 be observed?
x � 3? A probability distribution provides this type of information about the long-run
behavior of a random variable.

7.2 ■ Probability Distributions for Discrete Random Variables 361

7.2 Classify each of the following random variables as ei-
ther discrete or continuous:
a. The fuel efficiency (mpg) of an automobile
b. The amount of rainfall at a particular location during
the next year
c. The distance that a person throws a baseball
d. The number of questions asked during a 1-hr lecture
e. The tension (in pounds per square inch) at which a ten-
nis racket is strung
f. The amount of water used by a household during a
given month
g. The number of traffic citations issued by the highway
patrol in a particular county on a given day

7.3 Starting at a particular time, each car entering an in-
tersection is observed to see whether it turns left (L) or
right (R) or goes straight ahead (S). The experiment ter-
minates as soon as a car is observed to go straight. Let y
denote the number of cars observed. What are possible y
values? List five different outcomes and their associated 
y values.

7.4 A point is randomly selected from 
the interior of a square, as pictured:

A D

B C

1 ft

Let x denote the distance from the lower left-hand corner
A of the square to the selected point. What are possible
values of x? Is x a discrete or a continuous variable?

7.5 A point is randomly selected on the surface of a lake
that has a maximum depth of 100 ft. Let y be the depth of
the lake at the randomly chosen point. What are possible
values of y? Is y discrete or continuous?

7.6 A person stands at the corner marked A of the square
pictured in Exercise 7.4 and tosses a coin. If it lands heads
up, the person moves one corner clockwise, to B. If the
coin lands tails up, the person moves one corner counter-
clockwise, to D. This process is then repeated until the
person arrives back at A. Let y denote the number of coin
tosses. What are possible values of y? Is y discrete or 
continuous?

7.7 A box contains four slips of paper marked 1, 2, 3, and
4. Two slips are selected without replacement. List the pos-
sible values for each of the following random variables:
a. x � sum of the two numbers
b. y � difference between the first and second numbers
c. z � number of slips selected that show an even number
d. w � number of slips selected that show a 4

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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If one possible value of x is 2, we often write p(2) in place of P(x � 2). Similarly,
p(5) denotes the probability that x � 5, and so on.

............................................. . . . . . . . . . . . . .................................................................................

Example 7.5 Hot Tub Models

Suppose that each of four randomly selected customers purchasing a hot tub at a
certain store chooses either an electric (E) or a gas (G) model. Assume that these
customers make their choices independently of one another and that 40% of all cus-
tomers select an electric model. This implies that for any particular one of the four
customers, P(E) � .4 and P(G) � .6. One possible experimental outcome is EGGE,
where the first and fourth customers select electric models and the other two choose
gas models. Because the customers make their choices independently, the multiplica-
tion rule for independent events implies that

Similarly,

and

The number among the four customers who purchase an electric hot tub is a random
variable. Let

x � the number of electric hot tubs purchased by the four customers

Table 7.1 displays the 16 possible experimental outcomes, the probability of each
outcome, and the value of the random variable x that is associated with each 
outcome.

The probability distribution of x is easily obtained from this information. Con-
sider the smallest possible x value, 0. The only outcome for which x � 0 is GGGG, so

p10 2 � P1x � 0 2 � P1GGGG 2 � .1296

P1GGGE 2 � 1.6 2 1.6 2 1.6 2 1.4 2 � .0864

 � .0576  1identical to P1EGGE 2 2 � 1.4 2 1.6 2 1.4 2 1.6 2 P1EGEG 2 � P1E 2P1G 2P1E 2P1G 2

 � .0576
 � 1.4 2 1.6 2 1.6 2 1.4 2 � P1E 2P1G 2P1G 2P1E 2 P1EGGE 2 � P11st chooses E and 2nd chooses G and 3rd chooses G and 4th chooses E 2

D E F I N I T I O N

The probability distribution of a discrete random variable x gives the
probability associated with each possible x value. Each probability is the
limiting relative frequency of occurrence of the corresponding x value when
the chance experiment is repeatedly performed.

Common ways to display a probability distribution for a discrete random
variable are a table, a probability histogram, or a formula.

362 C h a p t e r 7 ■ Random Variables and Probability Distributions
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There are four different outcomes for which x � 1, so p(1) results from summing the
four corresponding probabilities:

Similarly,

The probability distribution of x is summarized in the following table:

x Value 0 1 2 3 4
p(x) � Probability of Value .1296 .3456 .3456 .1536 .0256

To interpret p(3) � .1536, think of performing the chance experiment repeat-
edly, each time with a new group of four customers. In the long run, 15.36% of
these groups will have exactly three customers purchasing an electric hot tub. The
probability distribution can be used to determine probabilities of various events in-
volving x. For example, the probability that at least two of the four customers choose
electric models is

Thus, in the long run, 52.48% of the time a group of four hot tub purchasers will in-
clude at least two who select electric models.

■

A probability distribution table for a discrete variable shows the possible x values
and also p(x) for each possible x value. Because p(x) is a probability, it must be a num-
ber between 0 and 1, and because the probability distribution lists all possible x val-

 � .5248
 � p12 2 � p13 2 � p14 2P1x 	 2 2 � P1x � 2 or x � 3 or x � 4 2

 p14 2 � .0256
 p13 2 � 41.0384 2 � .1536
p12 2 � P1EEGG 2 � p � P1GGEE 2 � 61.0576 2 � .3456

 � .3456
 � 41.0864 2 � .0864 � .0864 � .0864 � .0864
 � P1EGGG 2 � P1GEGG 2 � P1GGEG 2 � P1GGGE 2 p11 2 � P1x � 1 2 � P1EGGG or GEGG or GGEG or GGGE 2
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Table 7.1 Outcomes and Probabilities for Example 7.5

Outcome Probability x Value Outcome Probability x Value

GGGG .1296 0 GEEG .0576 2
EGGG .0864 1 GEGE .0576 2
GEGG .0864 1 GGEE .0576 2
GGEG .0864 1 GEEE .0384 3
GGGE .0864 1 EGEE .0384 3
EEGG .0576 2 EEGE .0384 3
EGEG .0576 2 EEEG .0384 3
EGGE .0576 2 EEEE .0256 4
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ues, the sum of all the p(x) values must equal 1. These properties of discrete proba-
bility distributions are summarized in the following box.

A pictorial representation of a discrete probability distribution is called a
probability histogram. The picture has a rectangle centered above each pos-
sible value of x, and the area of each rectangle is the probability of the corre-
sponding value. Figure 7.3 displays the probability histogram for the proba-
bility distribution of Example 7.5.

In Example 7.5, the probability distribution was derived by starting with
a simple experimental situation and applying basic probability rules. When a
derivation from fundamental probabilities is not possible because of the com-
plexity of the experimental situation, an investigator often conjectures a prob-
ability distribution consistent with empirical evidence and prior knowledge. It
must also be consistent with rules of probability. Specifically,

1. p(x) 	 0 for every x value.
2.

............................................. . . . . . . . . . . . . .................................................................................

Example 7.6 Automobile Defects

A consumer organization that evaluates new automobiles customarily reports the
number of major defects on each car examined. Let x denote the number of ma-
jor defects on a randomly selected car of a certain type. A large number of auto-
mobiles were evaluated, and a probability distribution consistent with these obser-
vations is:

x 0 1 2 3 4 5 6 7 8 9 10
p(x) .041 .010 .209 .223 .178 .114 .061 .028 .011 .004 .001

The corresponding probability histogram appears in Figure 7.4. The probabilities 
in this distribution reflect the organization’s experience. For example, p(3) � .223
indicates that 22.3% of new automobiles had 3 major defects. The probability that
the number of major defects is between 2 and 5 inclusive is

P(2 � x � 5) � p(2) � p(3) � p(4) � p(5) � .724

If car after car of this type were examined, in the long run, 72.4% would have 2, 3,
4, or 5 major defects.

g
all x values 

p1x 2 � 1
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Propert ies  of  Discrete Probabi l i ty  Dis t r ibut ions

1. For every possible x value, 0 � p(x) � 1.
2. g

all x values 
p1x 2 � 1

p(x)

x

.1

0

.2

.3

.4

0 1 2 3 4

F igure 7.3 Probability his-
togram for the distribution of
Example 7.5.
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■ E x e r c i s e s 7.8–7.19

7.8 Let x be the number of courses for which a randomly
selected student at a certain university is registered. The
probability distribution of x appears in the following
table:

x 1 2 3 4 5 6 7
p(x) .02 .03 .09 .25 .40 .16 .05

a. What is P(x � 4)?
b. What is P(x � 4)?
c. What is the probability that the selected student is tak-
ing at most five courses?
d. What is the probability that the selected student is taking
at least five courses? more than five courses?
e. Calculate P(3 � x � 6) and P(3 � x � 6). Explain in
words why these two probabilities are different.

7.9 ▼ Let y denote the number of broken eggs in a ran-
domly selected carton of one dozen eggs. Suppose that the
probability distribution of y is as follows:

y 0 1 2 3 4
p(y) .65 .20 .10 .04 ?

a. Only y values of 0, 1, 2, 3, and 4 have positive proba-
bilities. What is p(4)?
b. How would you interpret p(1) � .20?
c. Calculate P(y � 2), the probability that the carton 
contains at most two broken eggs, and interpret this
probability.
d. Calculate P(y � 2), the probability that the carton
contains fewer than two broken eggs. Why is this smaller
than the probability in Part (c)?

■

We have seen examples in which the probability distribution of a discrete random
variable has been given as a table or as a probability (relative frequency) histogram. 
It is also possible to give a formula that allows calculation of the probability for 
each possible value of the random variable. Examples of this approach are given in
Section 7.5.

.05

0

.10

.15

.20

.25

0 1 2 3 4 5 6 7 8 9 10

p(x)

x

F igure 7.4 Probability
histogram for the distribu-
tion of the number of major
defects on a randomly se-
lected car.
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Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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e. What is the probability that the carton contains exactly
10 unbroken eggs?
f. What is the probability that at least 10 eggs are un-
broken?

7.10 A restaurant has four bottles of a certain wine in
stock. Unbeknownst to the wine steward, two of these bot-
tles (Bottles 1 and 2) are bad. Suppose that two bottles are
ordered, and let x be the number of good bottles among
these two.
a. One possible experimental outcome is (1,2) (Bottles 1
and 2 are the ones selected) and another is (2,4). List all
possible outcomes.
b. Assuming that the two bottles are randomly selected
from among the four, what is the probability of each out-
come in Part (a)?
c. The value of x for the (1,2) outcome is 0 (neither se-
lected bottle is good), and x � 1 for the outcome (2,4).
Determine the x value for each possible outcome. Then
use the probabilities in Part (b) to determine the probabil-
ity distribution of x.

7.11 Airlines sometimes overbook flights. Suppose that for
a plane with 100 seats, an airline takes 110 reservations.
Define the variable x as the number of people who actually
show up for a sold-out flight. From past experience, the
probability distribution of x is given in the following table:

x 95 96 97 98 99 100 101 102
p(x) .05 .10 .12 .14 .24 .17 .06 .04

x 103 104 105 106 107 108 109 110
p(x) .03 .02 .01 .005 .005 .005 .0037 .0013

a. What is the probability that the airline can accommo-
date everyone who shows up for the flight?
b. What is the probability that not all passengers can be
accommodated?
c. If you are trying to get a seat on such a flight and you
are number 1 on the standby list, what is the probability
that you will be able to take the flight? What if you are
number 3?

7.12 Suppose that a computer manufacturer receives com-
puter boards in lots of five. Two boards are selected from
each lot for inspection. We can represent possible outcomes
of the selection process by pairs. For example, the pair (1,2)
represents the selection of Boards 1 and 2 for inspection.
a. List the 10 different possible outcomes.
b. Suppose that Boards 1 and 2 are the only defective
boards in a lot of five. Two boards are to be chosen at ran-

dom. Define x to be the number of defective boards ob-
served among those inspected. Find the probability distri-
bution of x.

7.13 Simulate the chance experiment described in Exer-
cise 7.12 using five slips of paper, with two marked defec-
tive and three marked nondefective. Place the slips in a
box, mix them well, and draw out two. Record the number
of defective boards. Replace the slips and repeat until you
have 50 observations on the variable x. Construct a rela-
tive frequency distribution for the 50 observations, and
compare this with the probability distribution obtained in
Exercise 7.12.

7.14 Of all airline flight requests received by a certain
discount ticket broker, 70% are for domestic travel (D)
and 30% are for international flights (I). Let x be the num-
ber of requests among the next three requests received that
are for domestic flights. Assuming independence of suc-
cessive requests, determine the probability distribution of
x. (Hint: One possible outcome is DID, with the probabil-
ity (.7)(.3)(.7) � .147.)

7.15 Suppose that 20% of all homeowners in an
earthquake-prone area of California are insured against
earthquake damage. Four homeowners are selected at ran-
dom; let x denote the number among the four who have
earthquake insurance.
a. Find the probability distribution of x. (Hint: Let S de-
note a homeowner who has insurance and F one who does
not. Then one possible outcome is SFSS, with probability
(.2)(.8)(.2)(.2) and associated x value of 3. There are 15
other outcomes.)
b. What is the most likely value of x?
c. What is the probability that at least two of the four
selected homeowners have earthquake insurance?

7.16 A box contains five slips of paper, marked $1, $1,
$1, $10, and $25. The winner of a contest selects two slips
of paper at random and then gets the larger of the dollar
amounts on the two slips. Define a random variable w by
w � amount awarded. Determine the probability distribu-
tion of w. (Hint: Think of the slips as numbered 1, 2, 3, 4,
and 5, so that an outcome of the experiment consists of
two of these numbers.)

7.17 Components coming off an assembly line are either
free of defects (S, for success) or defective (F, for failure).
Suppose that 70% of all such components are defect-free.

366 C h a p t e r 7 ■ Random Variables and Probability Distributions
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........................................................................................................................................

7.3 Probability Distributions for Continuous 
Random Variables

A continuous random variable is one that has as its set of possible values an entire
interval on the number line. An example is the weight x (in pounds) of a newborn
child. Suppose for the moment that weight is recorded only to the nearest pound. Then
possible x values are whole numbers, such as 4 or 9. The probability distribution can
be pictured as a probability histogram in which the area of each rectangle is the prob-
ability of the corresponding weight value. The total area of all the rectangles is 1, and
the probability that a weight (to the nearest pound) is between two values, such as 6
and 8, is the sum of the corresponding rectangular areas. Figure 7.5(a) illustrates this.

Now suppose that weight is measured to the nearest tenth of a pound. There are
many more possible weight values than before, such as 5.0, 5.1, 5.7, 7.3, and 8.9. As
shown in Figure 7.5(b), the rectangles in the probability histogram are much narrower,
and this histogram has a much smoother appearance than the first one. Again, this his-
togram can be drawn so that the area of each rectangle equals the corresponding prob-
ability, and the total area of all the rectangles is 1.

Figure 7.5(c) shows what happens as weight is measured to a greater and greater
degree of accuracy. The sequence of probability histograms approaches a smooth curve.
The curve cannot go below the horizontal measurement scale, and the total area under
the curve is 1 (because this is true of every probability histogram). The probability that

7.3 ■ Probability Distributions for Continuous Random Variables 367

Components are independently selected and tested one by
one. Let y denote the number of components that must be
tested until a defect-free component is obtained.
a. What is the smallest possible y value, and what experi-
mental outcome gives this y value? What is the second
smallest y value, and what outcome gives rise to it?
b. What is the set of all possible y values?
c. Determine the probability of each of the five smallest y
values. You should see a pattern that leads to a simple for-
mula for p(y), the probability distribution of y.

7.18 A contractor is required by a county planning de-
partment to submit anywhere from one to five forms (de-
pending on the nature of the project) in applying for a
building permit. Let y be the number of forms required 
of the next applicant. The probability that y forms are re-
quired is known to be proportional to y; that is, p(y) � ky
for y � 1, . . . , 5.
a. What is the value of k? (Hint: .)
b. What is the probability that at most three forms are 
required?

g  p1  y 2 � 1

c. What is the probability that between two and four
forms (inclusive) are required?
d. Could for y � 1, 2, 3, 4, 5 be the proba-
bility distribution of y? Explain.

7.19 A library subscribes to two different weekly news
magazines, each of which is supposed to arrive in Wednes-
day’s mail. In actuality, each one could arrive on Wednes-
day (W), Thursday (T), Friday (F), or Saturday (S). Sup-
pose that the two magazines arrive independently of one
another and that for each magazine P(W) � .4, P(T) � .3,
P(F) � .2, and P(S) � .1. Define a random variable y by
y � the number of days beyond Wednesday that it takes
for both magazines to arrive. For example, if the first mag-
azine arrives on Friday and the second magazine arrives
on Wednesday, then y � 2, whereas y � 1 if both maga-
zines arrive on Thursday. Obtain the probability distribu-
tion of y. (Hint: Draw a tree diagram with two generations
of branches, the first labeled with arrival days for Maga-
zine 1 and the second for Magazine 2.)

p1y 2 � y2/50

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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x falls in an interval such as 6 � x � 8 is the area under the curve and above that
interval.

Many probability calculations for continuous random variables involve the fol-
lowing three events:

1. a � x � b, the event that the random variable x assumes a value between two given
numbers, a and b

2. x � a, the event that the random variable x assumes a value less than a given 
number a

3. b � x, the event that the random variable x assumes a value greater than a given
number b (this can also be written as x � b)

Figure 7.6 illustrates how the probabilities of these events are identified with areas un-
der a density curve.

ba ba

P(a < x < b)

P(x < a) P(b < x)

F igure 7.6 Probabilities
as areas under a probability
density curve.

D E F I N I T I O N

A probability distribution for a continuous random variable x is
specified by a mathematical function denoted by f(x) and called the density
function. The graph of a density function is a smooth curve (the density
curve). The following requirements must be met:

1. f (x) 	 0 (so that the curve cannot dip below the horizontal axis).
2. The total area under the density curve is equal to 1.

The probability that x falls in any particular interval is the area under the
density curve and above the interval.

368 C h a p t e r 7 ■ Random Variables and Probability Distributions

4 5 6 7 8 9 10

(a)

4 5 6 7 8 9 10

(c)

5 6 7 8 9

(b)

F igure 7.5 Probability distribution for birth weight: (a) weight measured to the near-
est pound; (b) weight measured to the nearest tenth of a pound; (c) limiting curve as
measurement accuracy increases; shaded area � P(6 � weight � 8).
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........................................... . . . . . . . . . . . ....................................................................................

Example 7.7 Application Processing Times

Define a continuous random variable x by x � amount of time (in minutes) taken by
a clerk to process a certain type of application form. Suppose that x has a probability
distribution with density function

The graph of f (x), the density curve, is shown in Figure 7.7(a). It is especially easy
to use this density curve to calculate probabilities, because it just requires finding the
area of rectangles using the formula

area � (base)(height)

The curve has positive height, 0.5, only between x � 4 and x � 6. The total area
under the curve is just the area of the rectangle with base extending from 4 to 6 and
with height 0.5. This gives

area � (6 � 4)(0.5) � 1

as required.
When the density is constant over an interval (resulting in a horizontal density

curve), the probability distribution is called a uniform distribution.
As illustrated in Figure 7.7(b), the probability that x is between 4.5 and 5.5 is

Similarly (see Figure 7.7(c)), because in this context x � 5.5 is equivalent to 5.5 �
x � 6, we have

According to this model, in the long run, 25% of all forms that are processed will
have processing times that exceed 5.5 min.

■

The probability that a discrete random variable x lies in the interval between two
limits a and b depends on whether either limit is included in the interval. Suppose, for
example, that x is the number of major defects on a new automobile. Then

P13 � x � 7 2 � p13 2 � p14 2 � p15 2 � p16 2 � p17 2

P15.5 � x 2 � 16 � 5.5 2 1.5 2 � .25

 � .5
 � 15.5 � 4.5 2 1.5 2 � 1base width 2 1height 2P14.5 � x � 5.5 2 � area of shaded rectangle

Density

0.5

4 5 6
Minutes

(a)

x

Density

0.5

4 4.5 5.5 4.5 5.55 6
Minutes

(b)

x

Density

0.5

4 5 6
Minutes

(c)

x

P(4.5 < x < 5.5) P(5.5 < x)

F igure 7.7 The uniform
distribution for Example 7.7.

f 1x 2 � b.5 4 � x � 6

0 otherwise
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whereas

However, if x is a continuous random variable, such as task completion time, then

because the area under a density curve and above a single value such as 3 or 7 is 0.
Geometrically, we can think of finding the area above a single point as finding the area
of a rectangle with width � 0. The area above an interval of values therefore does not
depend on whether either endpoint is included.

P13 � x � 7 2 � P13 � x � 7 2

P13 � x � 7 2 � p14 2 � p15 2 � p16 2

370 C h a p t e r 7 ■ Random Variables and Probability Distributions

For any two numbers a and b with a � b,

when x is a continuous random variable.

P1a � x � b 2 � P1a � x � b 2 � P1a � x � b 2 � P1a � x � b 2

Probabilities for continuous random variables are often calculated
using cumulative areas. A cumulative area is all of the area under the den-
sity curve to the left of a particular value. Figure 7.8 illustrates the cu-
mulative area to the left of .5, which is P(x � .5). The probability that x
is in any particular interval, P(a � x � b), is the difference between two
cumulative areas.

The probability that a continuous random variable x lies between a lower limit a and an upper
limit b is

 � P1x � b 2 � P1x � a 2P1a � x � b 2 � 1cumulative area to the left of b 2 � 1cumulative area to the left of a 2

The foregoing property is illustrated in Figure 7.9 for the case of a � .25 and 
b � .75. We will use this result extensively in Section 7.6 when we calculate proba-
bilities using the normal distribution.

For some continuous distributions, cumulative areas can be calculated using meth-
ods from the branch of mathematics called integral calculus. However, because we are
not assuming knowledge of calculus, we will rely on tables that have been constructed
for the commonly encountered continuous probability distributions.

.5 .75 1.250 .5 .75 1.250 .5 .75 1.250

P(.25 < x < .75) P( x < .75)
P( x < .25)

= –

F igure 7.9 Calculation
of P(a � x � b) using cu-
mulative areas.

.5

P(x < .5)

F igure 7.8 A cumulative area under
a density curve.
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■ E x e r c i s e s 7.20–7.26

7.20 Let x denote the lifetime (in thousands of hours) of 
a certain type of fan used in diesel engines. The density
curve of x is as pictured:

Shade the area under the curve corresponding to each
of the following probabilities (draw a new curve for
each part):
a.
b.
c.
d. The probability that the lifetime is at least 25,000 hr
e. The probability that the lifetime exceeds 25,000 hr

7.21 A particular professor never dismisses class early.
Let x denote the amount of time past the hour (minutes)
that elapses before the professor dismisses class. Suppose
that x has a uniform distribution on the interval from 0
to 10 min. The density curve is shown in the following
figure:

a. What is the probability that at most 5 min elapse be-
fore dismissal?
b. What is the probability that between 3 and 5 min
elapse before dismissal?

7.22 Refer to the probability distribution given in Ex-
ercise 7.21. Put the following probabilities in order,

1
10

100
Time

(minutes)

Density

x

P1x � 30 2P110 � x � 25 2P110 � x � 25 2

0 25 50

from smallest to largest:

. 

Explain your reasoning.

7.23 The article “Modeling Sediment and Water Column
Interactions for Hydrophobic Pollutants” (Water Research
[1984]: 1169–1174) suggests the uniform distribution on
the interval from 7.5 to 20 as a model for x � depth (in
centimeters) of the bioturbation layer in sediment for a
certain region.
a. Draw the density curve for x.
b. What is the height of the density curve?
c. What is the probability that x is at most 12?
d. What is the probability that x is between 10 and 15?
Between 12 and 17? Why are these two probabilities
equal?

7.24 Let x denote the amount of gravel sold (in tons) dur-
ing a randomly selected week at a particular sales facility.
Suppose that the density curve has height f (x) above the
value x, where

The density curve (the graph of f(x)) is shown in the fol-
lowing figure:

Use the fact that the area of a triangle
to calculate each of the following probabilities:

a. P a x �
1

2
b

� 1
2 1base 2 1height 2

Density

x

2

0 1 Tons

f 1x 2 � b2 11 � x 2 0 � x � 1

0 otherwise

P 12 � x � 3 2 , P 12 � x � 3 2 , P 1x � 2 2 , P 1x � 7 2
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Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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........................................................................................................................................

7.4 Mean and Standard Deviation of a Random Variable
We study a random variable x, such as the number of insurance claims made by a
homeowner (a discrete variable) or the birth weight of a baby (a continuous variable),
to learn something about how its values are distributed along the measurement scale.
The sample mean and sample standard deviation s summarize center and spread for
the values in a sample. Similarly, the mean value and standard deviation of a random
variable describe where the variable’s probability distribution is centered and the ex-
tent to which it spreads out about the center.

x

372 C h a p t e r 7 ■ Random Variables and Probability Distributions

b.

c.

d. (Hint: Use the results of Parts (a)–

(c).)
e. The probability that gravel sold exceeds ton
f. The probability that gravel sold is at least ton

7.25 Let x be the amount of time (in minutes) that a par-
ticular San Francisco commuter must wait for a BART
train. Suppose that the density curve is as pictured (a uni-
form distribution):

a. What is the probability that x is less than 10 min? more
than 15 min?

0.05

200
Minutes

Density

x

1
4

1
2

P a 1

4
� x �

1

2
b

P a x �
1

4
b

P a x �
1

2
b b. What is the probability that x is between 7 and 12 min?

c. Find the value c for which P(x � c) � .9.

7.26 Referring to Exercise 7.25, let x and y be waiting
times on two independently selected days. Define a new
random variable w by w � x � y, the sum of the two
waiting times. The set of possible values for w is the inter-
val from 0 to 40 (because both x and y can range from 0
to 20). It can be shown that the density curve of w is as
pictured (this curve is called a triangular distribution, for
obvious reasons!):

a. Verify that the total area under the density curve is equal
to 1. (Hint: The area of a triangle is .)
b. What is the probability that w is less than 20? less than
10? greater than 30?
c. What is the probability that w is between 10 and 30?
(Hint: It might be easier first to find the probability that 
w is not between 10 and 30.)

� 1
2 1base 2 1height 2

0.05

40200
Minutes

Density

w

The mean value of a random variable x, denoted by Mx describes where the probability dis-
tribution of x is centered.

The standard deviation of a random variable x, denoted by Sx describes variability in the
probability distribution. When sx is small, observed values of x will tend to be close to the
mean value (little variability). When the value of sx is large, there will be more variability in
observed x values.

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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Figure 7.10(a) shows two discrete probability distributions with the same standard
deviation (spread) but different means (center). One distribution has a mean of mx � 6
and the other has mx � 10. Which is which? Figure 7.10(b) shows two continuous prob-
ability distributions that have the same mean but different standard deviations. Which
distribution—(i) or (ii)—has the larger standard deviation? Finally, Figure 7.10(c)
shows three continuous distributions with different means and standard deviations.
Which of the three distributions has the largest mean? Which has a mean of about 5?
Which distribution has the smallest standard deviation? (The correct answers to our
questions are the following: Figure 7.10(a)(ii) has a mean of 6, and Figure 7.10(a)(i) has
a mean of 10; Figure 7.10(b)(ii) has the larger standard deviation; Figure 7.10(c)(iii) has

7.4 ■ Mean and Standard Deviation of a Random Variable 373

F igure 7.10 Some probability distributions: (a) different values of mx with the same
value of sx; (b) different values of sx with the same value of mx; (c) different values of
mx and sx.

.10

.20

.30

.40

0

0 2 4 6 8 10 12 14 16 18

(a)

(i) (ii)

p(x) p(x)

.10

.20

.30

.40

0

0 2 4 6 8 10 12 14 16 18

0.1

0.2

0

0 10 20

(b)

(i) (ii)

Density Density

0.1

0.2

0

0 10 20

Density Density Density

0.1

0.2

0

−5 5 15

(c)

(i) (ii)

0.1

0.2

0

−5 5 15
(iii)

0.1

0.2

0

−5 5 15
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the largest mean, Figure 7.10(c)(ii) has a mean of about 5, and Figure 7.10(c)(iii) has
the smallest standard deviation.)

It is customary to use the terms mean of the random variable x and mean of 
the probability distribution of x interchangeably. Similarly, the standard deviation of
the random variable x and the standard deviation of the probability distribution of x re-
fer to the same thing. Although the mean and standard deviation are computed differ-
ently for discrete and continuous random variables, the interpretation is the same in
both cases.

■ Mean Value of a Discrete Random Variable ................................................

Consider an experiment consisting of the random selection of an automobile licensed
in a particular state. Let the discrete random variable x be the number of low-beam
headlights on the selected car that need adjustment. Possible x values are 0, 1, and 2,
and the probability distribution of x might be as follows:

x value 0 1 2
Probability .5 .3 .2

The corresponding probability histogram appears in Figure 7.11.
In a sample of 100 cars, the sample relative frequencies might differ

somewhat from the given probabilities (which are the limiting relative
frequencies). We might see:

x value 0 1 2
Frequency 46 33 21

The sample average value of x for these 100 observations is then
the sum of 46 zeros, 33 ones, and 21 twos, all divided by 100:

As the sample size increases, each relative frequency approaches the correspond-
ing probability. In a very long sequence of experiments, the value of approaches

Notice that the expression for is a weighted average of possible x values; the
weight of each value is the observed relative frequency. Similarly, the mean value of
the random variable x is a weighted average, but now the weights are the probabilities
from the probability distribution, as given in the definition in the following box.

x

 � mean value of x
 � .70
 � 1.5 2 10 2 � 1.3 2 11 2 � 1.2 2 12 21probability that x � 0 2 10 2 � 1probability that x � 1 2 11 2 � 1probability that x � 2 2 12 2

x

 � .75
 � 1rel. freq. of 0 2 10 2 � 1rel. freq. of 1 2 11 2 � 1rel. freq. of 2 2 12 2
 � a 46

100
b 10 2 � a 33

100
b 11 2 � a 21

100
b 12 2

 x �
146 2 10 2 � 133 2 11 2 � 121 2 12 2

100
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p(x)

x

.1

.2

.3

.4

.5

0 21

F igure 7.11 Probability histogram for
the distribution of the number of head-
lights needing adjustments.
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........................................... . . . . . . . . . . . ....................................................................................

Example 7.8 Exam Attempts

Individuals applying for a certain license are allowed up to four attempts to pass the
licensing exam. Let x denote the number of attempts made by a randomly selected
applicant. The probability distribution of x is as follows:

x 1 2 3 4
p(x) .10 .20 .30 .40

Then x has mean value

■

It is no accident that the symbol mx for the mean value is the same symbol used
previously for a population mean. When the probability distribution describes how x
values are distributed among the members of a population (and therefore the proba-
bilities are population relative frequencies), the mean value of x is exactly the average
value of x in the population.

........................................... . . . . . . . . . . . ....................................................................................

Example 7.9 Apgar Scores

At 1 min after birth and again at 5 min, each newborn child is given a numerical rat-
ing called an Apgar score. Possible values of this score are 0, 1, 2, . . . , 9, 10. A
child’s score is determined by five factors: muscle tone, skin color, respiratory effort,
strength of heartbeat, and reflex, with a high score indicating a healthy infant. Let
the random variable x denote the Apgar score (at 1 min) of a randomly selected new-
born infant at a particular hospital, and suppose that x has the following probability
distribution:

x 0 1 2 3 4 5 6 7 8 9 10
p(x) .002 .001 .002 .005 .02 .04 .17 .38 .25 .12 .01

 � 3.00
 � .10 � .40 � .90 � 1.60
 � 11 2 1.10 2 � 12 2 1.20 2 � 13 2 1.30 2 � 14 2 1.40 2 � 11 2p11 2 � 12 2p12 2 � 13 2p13 2 � 14 2p14 2

 mx � a
x�1,2,3,4

x # p1x 2

7.4 ■ Mean and Standard Deviation of a Random Variable 375

D E F I N I T I O N

The mean value of a discrete random variable x, denoted by Mx, is com-
puted by first multiplying each possible x value by the probability of ob-
serving that value and then adding the resulting quantities. Symbolically,

The term expected value is sometimes used in place of mean value, and
E(x) is alternative notation for mx.

mx � a
all possible x values

 x # p1x 2
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The mean value of x is

The average Apgar score for a sample of newborn children born at this hospital may
be , or any one of a number of other possible values between 0
and 10. However, as child after child is born and rated, the average score will ap-
proach the value 7.16. This value can be interpreted as the mean Apgar score for the
population of all babies born at this hospital.

■

■ Standard Deviation of a Discrete Random Variable ...................................

The mean value mx provides only a partial summary of a probability distribution. Two
different distributions can have the same value of mx, yet a long sequence of sample
values from one distribution might exhibit considerably more variability than a long
sequence of values from the other distribution.

............................................. . . . . . . . . . . . . .................................................................................

Example 7.10 Defective Components

A television manufacturer receives certain components in lots of four from two dif-
ferent suppliers. Let x and y denote the number of defective components in randomly
selected lots from the first and second suppliers, respectively. The probability distri-
butions for x and y are as follows:

x .0 .1 .2 .3 4 y .0 .1 .2 3 4
p(x) .4 .3 .2 .1 0 p(y) .2 .6 .2 0 0

Probability histograms for x and y are given in Figure 7.12.
It is easy to verify that the mean values of both x and y are 1, so for either sup-

plier the long-run average number of defective components per lot is 1. However, the
two probability histograms show that the probability distribution for the second sup-
plier is concentrated closer to the mean value than is the first supplier’s distribution.

x � 7.05, x � 8.30

 � 7.16
 � 10 2 1.002 2 � 11 2 1.001 2 � p � 19 2 1.12 2 � 110 2 1.01 2 mx � 10 2p10 2 � 11 2p11 2 � p � 19 2p19 2 � 110 2p110 2
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p(x)

x

.1

.2

.3

.4

0 2

(a) (b)

3

µx = µy = 1

41

p(y)

y

.1

.2

.3

.4

.5

.6

0 2 3 41

F igure 7.12 Probability
distribution for the number
of defective components in
Example 7.10: (a) Supplier
1; (b) Supplier 2.
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When the probability distribution describes how x values are distributed among
members of a population (so that the probabilities are population relative frequencies)

and sx are the population variance and standard deviation (of x), respectively.

........................................... . . . . . . . . . . . ....................................................................................

Example 7.11 Defective Components Revised

For x � number of defective components in a lot from the first supplier in Ex-
ample 7.10,

Therefore sx � 1.0. For y � the number of defectives in a lot from the second 
supplier,

Then . The fact that sx � sy confirms the impression conveyed by
Figure 7.12 concerning the variability of x and y.

■

sy � 1.4 � .632

s2
y � 10 � 1 2 21.2 2 � 11 � 1 2 21.6 2 � 12 � 1 2 21.2 2 � .4

 � 1.0
 � 11 2 1.4 2 � 10 2 1.3 2 � 11 2 1.2 2 � 14 2 1.1 2 s2

x � 10 � 1 2 2p10 2 � 11 � 1 2 2p11 2 � 12 � 1 2 2p12 2 � 13 � 1 2 2p13 2

s2
x

7.4 ■ Mean and Standard Deviation of a Random Variable 377

The greater spread of the first distribution implies that there will be more vari-
ability in a long sequence of observed x values than in an observed sequence of y
values. For example, the y sequence will contain no 3’s, whereas in the long run,
10% of the observed x values will be 3.

■

As with s 2 and s, the variance and standard deviation of x involve squared devia-
tions from the mean. A value far from the mean results in a large squared deviation.
However, such a value contributes substantially to variability in x only if the probabil-
ity associated with that value is not too small. For example, if mx � 1 and x � 25 is a
possible value, then the squared deviation is (25 � 1)2 � 576. If, however, P(x � 25) �
.000001, the value 25 will hardly ever be observed, so it won’t contribute much to vari-
ability in a long sequence of observations. This is why each squared deviation is mul-
tiplied by the probability associated with the value to obtain a measure of variability.

D E F I N I T I O N

The variance of a discrete random variable x, denoted by , is com-
puted by first subtracting the mean from each possible x value to obtain the
deviations, then squaring each deviation and multiplying the result by the
probability of the corresponding x value, and finally adding these quantities.
Symbolically,

The standard deviation of x, denoted by Sx, is the square root of the 
variance.

s2
x � a

all possible x values
1x � m 2 2p1x 2

S2
x
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............................................. . . . . . . . . . . . . .................................................................................

Example 7.12 More on Apgar scores

Reconsider the distribution of Apgar scores for children born at a certain hospi-
tal, introduced in Example 7.9. What is the probability that a randomly selected
child’s score will be within 2 standard deviations of the mean score? As Fig-
ure 7.13 shows, values of x within 2 standard deviations of the mean are those
for which m � 2s � x � m � 2s.

From Example 7.9 we already have mx � 7.16. The variance is

and the standard deviation is

This gives (using the probabilities given in Example 7.9)

■

■ Mean and Standard Deviation When x Is Continuous .......... ......................

Figure 7.14 illustrates how the density curve for a continuous
random variable can be approximated by a probability histo-
gram of a discrete random variable. Computing the mean value
and the standard deviation using this discrete distribution gives
approximate values of mx and sx for the continuous random
variable x. If an even more accurate approximating probability
histogram is used (narrower rectangles), better approximations
of mx and sx result.

In practice, such an approximation method is often unnec-
essary. Instead, mx and sx can be defined and computed using methods from calculus.
The details need not concern us; what is important is that mx and sx play exactly the
same role here as they did in the discrete case. The mean value mx locates the center
of the continuous distribution and gives the approximate long-run average of many ob-
served x values. The standard deviation sx measures the extent that the continuous dis-
tribution (density curve) spreads out about mx and gives information about the amount
of variability that can be expected in a long sequence of observed x values.

............................................. . . . . . . . . . . . . .................................................................................

Example 7.13 A “Concrete” Example

A company receives concrete of a certain type from two different suppliers. Define
random variables x and y as follows:

x � compressive strength of a randomly selected batch from Supplier 1
y � compressive strength of a randomly selected batch from Supplier 2

 � .96
 � p15 2 � p � p19 2 � P14.66 � x � 9.66 2P1m � 2s � x � m � 2s 2 � P17.16 � 2.50 � x � 7.16 � 2.50 2

s � 11.5684 � 1.25

 � 1.5684
 � 10 � 7.16 2 21.002 2 � 11 � 7.16 2 21.001 2 � p � 110 � 7.16 2 21.01 2

 s2 � a 1x � m 2 2p1x 2 � a 1x � 7.16 2 2p1x 2
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2σ 2σ

µ – 2σ µ + 2σµ 

F igure 7.13 Values within
2 standard deviations of the
mean.

F igure 7.14 Approximating a density curve by
a probability histogram.
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Suppose that

mx � 4650 lb/in.2 sx � 200 lb/in.2

my � 4500 lb/in.2 sy � 275 lb/in.2

The long-run average strength per batch for many, many batches from Supplier 1
will be roughly 4650 lb/in.2. This is 150 lb/in.2 greater than the long-run average for
batches from Supplier 2. In addition, a long sequence of batches from Supplier 1
will exhibit substantially less variability in compressive strength values than will a
similar sequence from Supplier 2. The first supplier is preferred to the second both
in terms of average value and variability. Figure 7.15 displays density curves that are
consistent with this information.

■

■ Mean and Variance of Linear Functions and Linear Combinations .........

We have seen how the mean and standard deviation of one or more random variables
provide useful information about the variables’ long-run behavior, but we might also
be interested in the behavior of some function of these variables.

For example, consider the experiment in which a customer of a propane gas com-
pany is randomly selected. Suppose that the mean and standard deviation of the ran-
dom variable

x � number of gallons required to fill a customer’s propane tank

are known to be 318 gal and 42 gal, respectively. The company is considering two dif-
ferent pricing models:

Model 1: $3 per gal
Model 2: service charge of $50 � $2.80 per gal

The company is interested in the variable

y � amount billed

For each of the two models, y can be expressed as a function of the random variable x:

Model 1: ymodel 1 � 3x
Model 2: ymodel 2 � 50 � 2.8x

Both of these equations are examples of a linear function of x. The mean and stan-
dard deviation of a linear function of x can be computed from the mean and standard
deviation of x, as described in the following box.

4300 4500 4700 4900

µy = 4500
µx = 4650

y distribution (σy = 275)

x distribution (σx = 200)F igure 7.15 Density
curves for Example 7.13.
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We can use the results in the preceding box to compute the mean and standard de-
viation of the billing amount variable for the propane gas example, as follows:

For Model 1:

For Model 2:

The mean billing amount for Model 1 is a bit higher than for Model 2, as is the
variability in billing amounts. Model 2 results in slightly more consistency from bill
to bill in the amount charged.

Now let’s consider a different type of problem. Suppose that you have three tasks
that you plan to complete on the way home from school: stop at the public library to
return an overdue book for which you must pay a fine, deposit your most recent pay-
check at the bank, and stop by the office supply store to purchase paper for your com-
puter printer. Define the following variables:

x1 � time required to return book and pay fine
x2 � time required to deposit paycheck
x3 � time required to buy printer paper

We can then define a new variable, y, to represent the total amount of time to complete
these tasks:

Defined in this way, y is an example of a linear combination of random variables.

y � x1 � x2 � x3

 smodel 2 � 113,829.76 � 117.60 � 2.8142 2 s2
model 2 � s2

50�2.8x � 2.82s2
x � 12.8 2 2142 2 2 � 13,829.76

 mmodel 2 � m50�2.8x � 50 � 2.8mx � 50 � 2.81318 2 � 940.40

 smodel 1 � 115,876 � 126 � 3142 2 s2
model 1 � s2

3x � 32s2
x � 9142 2 2 � 15,876

 mmodel 1 � m3x � 3mx � 31318 2 � 954

380 C h a p t e r 7 ■ Random Variables and Probability Distributions

The Mean,  Var iance,  and Standard Deviat ion of  a L inear  Funct ion

If x is a random variable with mean mx and variance sx and a and b are numerical constants,
the random variable y defined by

y � a � bx

is called a linear function of the random variable x.
The mean of y � a � bx is

The variance of y is

from which it follows that the standard deviation of y is

sy � sa�bx � 0b 0sx

s2
y � s2

a�bx � b2s2
x

my � ma�bx � a � bmx
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For example, y � 10x1 � 5x2 � 8x3 is a linear combination of x1, x2 and x3 with 
a1 � 10, a2 � �5 and a3 � 8. It is easy to compute the mean of a linear combination
of xi if the individual means m1, m2, . . . , mn are known. The variance and standard de-
viation of a linear combination of the xi are also easily computed if the xi are inde-
pendent. Two random variables xi and xj are independent if any event defined solely by
xi is independent of any event defined solely by xj. When the xi are not independent,
computation of the variance and standard deviation of a linear combination of the xi is
more complicated; this case is not considered here.

7.4 ■ Mean and Standard Deviation of a Random Variable 381

If x1, x2, . . . , xn are random variables and a1, a2, . . . , an are numerical constants, the random
variable y defined as 

is a linear combination of the xi’s.

y � a2x1 � a1x2 � p � anxn

Mean, Var iance,  and Standard Deviat ion for  L inear  Combinat ions

If x1, x2, . . . , xn are random variables with means m1, m2, . . . , mn and variances ,
respectively, and

then

1.

This result is true regardless of whether the xi’s are independent.

2. When are independent random variables,

This result is true only when the xi’s are independent.

sy � sa1x1�a2x2�p�anxn
� 2a2

1s
2
1 � a2

2s
2
2 � p � a2

ns
2
n

s2
y � s2

a1x1�a2x2�p�anxn
� a2

1s
2
1 � a2

2s
2
2 � p � a2

ns
2
n

x1, x2, p , xn

my � ma1x1�a2x2�p�anxn
� a1m1 � a2m2 � p � anmn

y � a1x1 � a2x2 � p � anxn

s2
1, s

2
2, p , s2

n

Examples 7.14 –7.16 illustrate the use of these rules.

........................................... . . . . . . . . . . . ....................................................................................

Example 7.14 Freeway Traffic

Three different roads feed into a particular freeway entrance. Suppose that during a
fixed time period, the number of cars coming from each road onto the freeway is a
random variable with mean values as follows:

Road 1 2 3
Mean 800 1000 600
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With xi representing the number of cars entering from road i, we can define y �
, the total number of cars entering the freeway. The mean value of y is

■

............................................. . . . . . . . . . . . . .................................................................................

Example 7.15 Combining Exam Subscores

A nationwide standardized exam consists of a multiple-choice section and a free
response section. For each section, the mean and standard deviation are reported
to be

Standard 
Mean Deviation

Multiple Choice 38 6
Free Response 30 7

Let’s define x1 and x2 as the multiple-choice score and the free-response score, re-
spectively, of a student selected at random from those taking this exam. We are also
interested in the variable y � total score. Suppose that the total score is computed as

. What are the mean and standard deviation of y?
Because is a linear combination of x1 and x2, the mean of y is

What about the variance and standard deviation of y? To use Rule 2 in the preceding
box, x1 and x2 must be independent. It is unlikely that the value of x1 (a student’s
multiple-choice score) would be unrelated to the value of x2 (the same student’s free-
response score), because it seems probable that students who score well on one sec-
tion of the exam will also tend to score well on the other section. Therefore, it would
not be appropriate to calculate the variance and standard deviation from the given 
information.

■

............................................. . . . . . . . . . . . . .................................................................................

Example 7.16 Luggage Weights

A commuter airline flies small planes between San Luis Obispo and San Francisco.
For small planes, the baggage weight is a concern, especially on foggy mornings,
because the weight of the plane has an effect on how quickly the plane can ascend.
Suppose that it is known that the variable x � weight of baggage checked by a 

 � 98
 � 38 � 2130 2 � mx1

� 2mx2

 my � mx1�2x2

y � x1 � 2x2

y � x1 � 2x2

 � 2400
 � 800 � 1000 � 600
 � mx1

� mx2
� mx3

 my � mx1�x2�x3

x1 � x2 � x3
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■ E x e r c i s e s 7.27–7.44

7.27 An express mail service charges a special rate for
any package that weighs less than 1 lb. Let x denote the
weight of a randomly selected parcel that qualifies for this
special rate. The probability distribution of x is specified
by the following density curve:

Use the fact that area of a trapezoid � (base)(average 
of two side lengths) to answer each of the following 
questions:
a. What is the probability that a randomly selected pack-
age of this type weighs at most 0.5 lb? between 0.25 and
0.5 lb? at least 0.75 lb?

1

0.5

x

Density

Density = 0.5 + x

1.0

1.5

0

b. It can be shown that and What is the
probability that the value of x is more than 1 standard 
deviation from the mean value?

7.28 The probability distribution of x, the number of de-
fective tires on a randomly selected automobile checked at
a certain inspection station, is given in the following table:

x 0 1 2 3 4
p(x) .54 .16 .06 .04 .20

a. Calculate the mean value of x.
b. What is the probability that x exceeds its mean value?

7.29 Exercise 7.9 introduced the following probability dis-
tribution for y � the number of broken eggs in a carton:

y 0 1 2 3 4
p(y) .65 .20 .10 .04 .01

a. Calculate and interpret .
b. In the long run, for what percentage of cartons is the
number of broken eggs less than my? Does this surprise you?

my

s2
x � 11

144.mx � 7
12
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randomly selected passenger has a mean and standard deviation of 42 and 16, re-
spectively. Consider a flight on which 10 passengers, all traveling alone, are flying.
If we use xi to denote the baggage weight for passenger i (for i ranging from 1 to
10), the total weight of checked baggage, y, is then

Note that y is a linear combination of the xi. The mean value of y is

Since the ten passengers are all traveling alone, it is reasonable to think that the ten
baggage weights are unrelated and that the xi are independent. (This would not be a
reasonable assumption if the 10 passengers were not traveling alone.) Then the vari-
ance of y is

and the standard deviation of y is

■

sy � 12650 � 50.596

 � 2560
 � 162 � 162 � p � 162

 s2
y � s2

x1
� s2

x2
� p � s2

x10

 � 420
 � 42 � 42 � p � 42

 my � mx1
� mx2

� p � mx10

y � x1 � x2 � p � x10

................................................................................................................

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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c. Why doesn’t 
Explain.

7.30 Referring to Exercise 7.29, use the result of Part (a)
along with the fact that a carton contains 12 eggs to deter-
mine the mean value of z � the number of unbroken eggs.
(Hint: z can be written as a linear function of x.)

7.31 The mean value of x, the number of defective tires,
whose distribution appears in Exercise 7.28, is .
Calculate and .

7.32 Exercise 7.8 gave the following probability distribu-
tion for x � the number of courses for which a randomly
selected student at a certain university is registered:

x 1 2 3 4 5 6 7
p(x) .02 .03 .09 .25 .40 .16 .05

It can be easily verified that m � 4.66 and s � 1.20.
a. Because m � s � 3.46, the x values 1, 2, and 3 are
more than 1 standard deviation below the mean. What is
the probability that x is more than 1 standard deviation
below its mean?
b. What x values are more than 2 standard deviations away
from the mean value (i.e., either less than m� 2s or
greater than m� 2s)? What is the probability that x is
more than 2 standard deviations away from its mean value?

7.33 Suppose that for a given computer salesperson, the
probability distribution of x � the number of systems sold
in one month is given by the following table:

x 1 2 3 4 5 6 7 8
p(x) .05 .10 .12 .30 .30 .11 .01 .01

a. Find the mean value of x (the mean number of systems
sold).
b. Find the variance and standard deviation of x. How
would you interpret these values?
c. What is the probability that the number of systems sold
is within 1 standard deviation of its mean value?
d. What is the probability that the number of systems sold
is more than 2 standard deviations from the mean?

7.34 A local television station sells 15-sec, 30-sec, and
60-sec advertising spots. Let x denote the length of a ran-
domly selected commercial appearing on this station, and
suppose that the probability distribution of x is given by
the following table:

x 15 30 60
p(x) .1 .3 .6

sxs2
x

mx � 1.2

my � 10 � 1 � 2 � 3 � 4 2 /5 � 2.0. a. Find the average length for commercials appearing on
this station.
b. If a 15-sec spot sells for $500, a 30-sec spot for $800,
and a 60-sec spot for $1000, find the average amount paid
for commercials appearing on this station. (Hint: Consider
a new variable, y � cost, and then find the probability dis-
tribution and mean value of y.)

7.35 An author has written a book and submitted it to a
publisher. The publisher offers to print the book and gives
the author the choice between a flat payment of $10,000
and a royalty plan. Under the royalty plan the author would
receive $1 for each copy of the book sold. The author thinks
that the following table gives the probability distribution of
the variable x � the number of books that will be sold:

x 1000 5000 10,000 20,000
p(x) .05 .30 .40 .25

Which payment plan should the author choose? Why?

7.36 A grocery store has an express line for customers
purchasing at most five items. Let x be the number of
items purchased by a randomly selected customer using
this line. Give examples of two different assignments of
probabilities such that the resulting distributions have the
same mean but quite different standard deviations.

7.37 ▼ A gas station sells gasoline at the following prices
(in cents per gallon, depending on the type of gas and ser-
vice): 315.9, 318.9, 329.9, 339.9, 344.9, and 359.7. Let
y denote the price per gallon paid by a randomly selected
customer.
a. Is y a discrete random variable? Explain.
b. Suppose that the probability distribution of y is as 
follows:

y 315.9 318.9 329.9 339.9 344.9 359.7
p(y) .36 .24 .10 .16 .08 .06

What is the probability that a randomly selected customer
has paid more than $3.20 per gallon? Less than $3.40 per
gallon?
c. Refer to Part (b), and calculate the mean value and
standard deviation of y. Interpret these values.

7.38 A chemical supply company currently has in stock 
100 lb of a certain chemical, which it sells to customers 
in 5-lb lots. Let x � the number of lots ordered by a ran-
domly chosen customer. The probability distribution of x
is as follows:

x 1 2 3 4
p(x) .2 .4 .3 .1

384 C h a p t e r 7 ■ Random Variables and Probability Distributions
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a. Calculate the mean value of x.
b. Calculate the variance and standard deviation of x.

7.39 Return to Exercise 7.38, and let y denote the amount 
of material (in pounds) left after the next customer’s order
is shipped. Find the mean and variance of y. (Hint: y is a
linear function of x.)

7.40 An appliance dealer sells three different models of
upright freezers having 13.5, 15.9, and 19.1 cubic feet of
storage space. Let x � the amount of storage space pur-
chased by the next customer to buy a freezer. Suppose that
x has the following probability distribution:

x 13.5 15.9 19.1
p(x) .2 .5 .3

a. Calculate the mean and standard deviation of x.
b. If the price of the freezer depends on the size of the
storage space, x, such that Price � 25x � 8.5, what is 
the mean value of the variable Price paid by the next 
customer?
c. What is the standard deviation of the price paid?

7.41 ▼ To assemble a piece of furniture, a wood peg must
be inserted into a predrilled hole. Suppose that the diame-
ter of a randomly selected peg is a random variable with
mean 0.25 in. and standard deviation 0.006 in. and that the
diameter of a randomly selected hole is a random variable
with mean 0.253 in. and standard deviation 0.002 in. Let
x1 � peg diameter, and let x2 � denote hole diameter.
a. Why would the random variable y, defined as y �
x2 � x1, be of interest to the furniture manufacturer?
b. What is the mean value of the random variable y?
c. Assuming that x1 and x2 are independent, what is the
standard deviation of y?
d. Is it reasonable to think that x1 and x2 are independent?
Explain.
e. Based on your answers to Parts (b) and (c), do you
think that finding a peg that is too big to fit in the pre-
drilled hole would be a relatively common or a relatively
rare occurrence? Explain.

7.42 A multiple-choice exam consists of 50 questions.
Each question has five choices, of which only one is 
correct. Suppose that the total score on the exam is com-
puted as

where x1 � number of correct responses and x2 � number 
of incorrect responses. (Calculating a total score by 

y � x1 �
1

4
x2

subtracting a term based on the number of incorrect re-
sponses is known as a correction for guessing and is de-
signed to discourage test takers from choosing answers at
random.)
a. It can be shown that if a totally unprepared student an-
swers all 50 questions by just selecting one of the five an-
swers at random, then and . What is the
mean value of the total score, y? Does this surprise you?
Explain.
b. Explain why it is unreasonable to use the formulas
given in this section to compute the variance or standard
deviation of y.

7.43 Consider a large ferry that can accommodate cars
and buses. The toll for cars is $3, and the toll for buses is
$10. Let x and y denote the number of cars and buses, re-
spectively, carried on a single trip. Cars and buses are ac-
commodated on different levels of the ferry, so the number
of buses accommodated on any trip is independent of the
number of cars on the trip. Suppose that x and y have the
following probability distributions:

x 0 1 2 3 4 5
p(x) .05 .10 .25 .30 .20 .10

y 0 1 2
p(y) .50 .30 .20

a. Compute the mean and standard deviation of x.
b. Compute the mean and standard deviation of y.
c. Compute the mean and variance of the total amount of
money collected in tolls from cars.
d. Compute the mean and variance of the total amount of
money collected in tolls from buses.
e. Compute the mean and variance of z � total number of
vehicles (cars and buses) on the ferry.
f. Compute the mean and variance of w � total amount
of money collected in tolls.

7.44 Consider a game in which a red die and a blue die
are rolled. Let xR denote the value showing on the upper-
most face of the red die, and define xB similarly for the
blue die.
a. The probability distribution of xR is

xR 1/1 1/2 1/3 1/4 1/5 1/6
p(xR) 1/6 1/6 1/6 1/6 1/6 1/6

Find the mean, variance, and standard deviation of xR.
b. What are the values of the mean, variance, and stan-
dard deviation of xB? (You should be able to answer this
question without doing any additional calculations.)

mx2
� 40mx1

� 10
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........................................................................................................................................

7.5 Binomial and Geometric Distributions
In this section we introduce two of the more commonly encountered discrete proba-
bility distributions: the binomial distribution and the geometric distribution. These dis-
tributions arise when the experiment of interest consists of making a sequence of di-
chotomous observations (two possible values for each observation). The process of
making a single such observation is called a trial. For example, one characteristic of
blood type is Rh factor, which can be either positive or negative. We can think of an
experiment that consists of noting the Rh factor for each of 25 blood donors as a se-
quence of 25 dichotomous trials, where each trial consists of observing the Rh factor
(positive or negative) of a single donor.

We could also conduct a different experiment that consists of observing the Rh
factor of blood donors until a donor who is Rh-negative is encountered. This second
experiment can also be viewed as a sequence of dichotomous trials, but the total num-
ber of trials in this experiment is not predetermined, as it was in the previous example,
where we knew in advance that there would be 25 trials. Experiments of the two types
just described are characteristic of those leading to the binomial and the geometric
probability distributions, respectively.

■ Binomial Distributions . . . . . . . .................................................................................

Suppose that we decide to record the gender of each of the next 25 newborn children
at a particular hospital. What is the chance that at least 15 are female? What is the
chance that between 10 and 15 are female? How many among the 25 can we expect
to be female? These and other similar questions can be answered by studying the bi-
nomial probability distribution. This distribution arises when the experiment of inter-
est is a binomial experiment, that is, an experiment having the characteristics listed in
the following box.

386 C h a p t e r 7 ■ Random Variables and Probability Distributions

c. Suppose that you are offered a choice of the following
two games:

Game 1: Costs $7 to play, and you win y1 dollars, where 
y1 � xR � xB.

Game 2: Doesn’t cost anything to play initially, but you
“win” 3y2 dollars, where y2 � xR � xB. If y2 is
negative, you must pay that amount; if it is posi-
tive, you receive that amount.

For Game 1, the net amount won in a game is w1 �
y1 � 7 � xR � xB � 7. What are the mean and standard
deviation of w1?
d. For Game 2, the net amount won in a game is w2 �
3y2 � 3(xR – xB). What are the mean and standard devia-
tion of w2?
e. Based on your answers to Parts (c) and (d), if you had
to play, which game would you choose and why?

Propert ies  of  a B inomial  Exper iment

A binomial experiment consists of a sequence of trials with the following conditions:

1. There are a fixed number of observations called trials.
2. Each trial can result in one of only two mutually exclusive outcomes labeled success (S) and

failure (F).
3. Outcomes of different trials are independent.
4. The probability that a trial results in S is the same for each trial.

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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The term success here does not necessarily have any of its usual connotations.
Which of the two possible outcomes is labeled “success” is determined by the random
variable of interest. For example, if the variable counts the number of female births
among the next 25 births at a particular hospital, then a female birth would be labeled
a success (because this is what the variable counts). If male births were counted in-
stead, a male birth would be labeled a success and a female birth a failure.

One illustration of a binomial probability distribution was given in Example 7.5.
There, we considered x � number among four customers who selected an electric
(as opposed to gas) hot tub. This is a binomial experiment with four trials and P(suc-
cess) � P(E) � .4. The 16 possible outcomes, along with their probabilities, were dis-
played in Table 7.1.

Consider now the case of five customers, a binomial experiment with five trials.
Here the binomial distribution tells us the probability associated with each of the pos-
sible x values 0, 1, 2, 3, 4, and 5. There are 32 possible outcomes, and 5 of them yield
x � 1: SFFFF, FSFFF, FFSFF, FFFSF, and FFFFS.

By independence, the first of these outcomes has probability

The probability calculation will be the same for any outcome with only one success 
(x � 1). It does not matter where in the sequence the single success occurs. Thus

Similarly, there are ten outcomes for which x � 2, because there are 10 ways to select
two from among the five trials to be the S’s: SSFFF, SFSFF, . . . , and FFFSS. The
probability of each results from multiplying together (.4) two times and (.6) three
times. For example,

and so

 � .34560
 � 110 2 1.4 221.6 2 3 � P1SSFFF 2 � p � P1FFFSS 2 p12 2 � P1x � 2 2

 � .03456
 � 1.4 221.6 2 3 P1SSFFF 2 � 1.4 2 1.4 2 1.6 2 1.6 2 1.6 2

 � .25920
 � 15 2 1.05184 2 � .05184 � .05184 � .05184 � .05184 � .05184
 � P1SFFFF or FSFFF or FFSFF or FFFSF or FFFFS 2 p11 2 � P1x � 1 2

 � .05184
 � 1.4 2 1.6 24 � 1.4 2 1.6 2 1.6 2 1.6 2 1.6 2 P1SFFFF 2 � P1S 2P1F 2P1F 2P1F 2P1F 2
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The binomial random variable x is defined as

x � number of successes observed when a binomial experiment is performed

The probability distribution of x is called the binomial probability distribution.
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The general form of the distribution here is

This form was seen previously where p(2) � 10(.4)2(.6)3.
Let n denote the number of trials in the experiment. Then the number of outcomes

with x S’s is the number of ways of selecting x from among the n trials to be the suc-
cess trials. A simple expression for this quantity is

number of outcomes with x successes

where, for any positive whole number m, the symbol m! (read “m factorial”) is de-
fined by

and 0! � 1.

m! � m1m � 1 2 1m � 2 2 p 12 2 11 2

�
n!

x!1n � x 2 !

 � 1no. of outcomes with x S’s 2 # 1.4 2 x1.6 2 5�x
 � 1no. of outcomes with x S’s 2 # 1probability of any particular outcome with x S’s 2 p1x 2 � P1x S’s among the five trials 2

388 C h a p t e r 7 ■ Random Variables and Probability Distributions

The B inomial  Dis t r ibut ion

Let

n � number of independent trials in a binomial experiment
p � constant probability that any particular trial results in a success*

Then

The expressions or nCx are sometimes used in place of . Both are read as “n

choose x” and represent the number of ways of choosing x items from a set of n. The binomial 
probability function can then be written as

or

*Some sources use p to represent the probability of success rather than p. We prefer the use of Greek letters for character-
istics of a population or probability distribution, thus the use of p.

p1x 2 � nCxp
x11 � p 2 n�x  x � 0, 1, 2, p , n

p1x 2 � an

x
bpx11 � p 2 n�x  x � 0, 1, 2, p , n

n!

x!1n � x 2 !an

x
b

 �
n!

x!1n � x 2 ! px11 � p 2 n�x  x � 0, 1, 2, p , n

 p1x 2 � P1x successes among n trials 2

Notice that the probability distribution is specified using a formula that allows
calculation of the various probabilities rather than by giving a table or a probability
histogram.

07-W4959  10/7/08  3:06 PM  Page 388



........................................... . . . . . . . . . . . ....................................................................................

Example 7.17 Computer Monitors

Sixty percent of all computer monitors sold by a large computer retailer have a flat
panel display and 40% have a CRT display. The type of monitor purchased by each
of the next 12 customers will be noted. Define a random variable x by

x � number of monitors among these 12 that have a flat panel display

Because x counts the number of flat panel displays, we use S to denote the sale of 
a flat panel monitor. Then x is a binomial random variable with n � 12 and p �
P(S) � .60. The probability distribution of x is given by

The probability that exactly four monitors are flat panel displays is

If group after group of 12 purchases is examined, the long-run percentage of
those with exactly four flat panel monitors will be 4.2%. According to this calcula-
tion, 495 of the possible outcomes (there are 212 � 4096) have x � 4.

The probability that between four and seven (inclusive) are flat panel displays is

Since these outcomes are disjoint, this is equal to

Notice that

so the probability depends on whether � or � appears. (This is typical of discrete
random variables.)

■

The binomial distribution formula can be tedious to use unless n is small. Appen-
dix Table 9 gives binomial probabilities for selected n in combination with various val-
ues of p. Appendix Table 9 should help you practice using the binomial distribution
without getting bogged down in arithmetic.

 � .278
 � p15 2 � p16 2P14 � x � 7 2 � P1x � 5 or x � 6 2

 � .547
 � .042 � .101 � .177 � .227

 �
12!

4!8!
 1.6 2 41.4 2 8 � p �

12!

7!5!
 1.6 2 71.4 2 5

P14 � x � 7 2  � p14 2 � p15 2 � p16 2 � p17 2

P14 � x � 7 2 � P1x � 4 or x � 5 or x � 6 or x � 7 2

 � .042
 � 1495 2 1.6 241.4 2 8
 �

12!

4!8!
 1.6 2 41.6 2 8

 p14 2 � P1x � 4 2

p1x 2 �
12!

x!112 � x 2 !  1.6 2 x1.4 2 n�x  x � 0, 1, 2, p , 12
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Although p(x) is positive for every possible x value, many probabilities are zero
to three decimal places, so they appear as .000 in the table. More extensive binomial
tables are available. Alternatively, most statistics software packages and graphing cal-
culators are programmed to calculate these probabilities.

■ Sampling Without Replacement Usually, sampling is carried out without re-
placement; that is, once an element has been selected for the sample, it is not a candi-
date for future selection. If the sampling was accomplished by selecting an element
from the population, observing whether it is a success or a failure, and then returning
it to the population before the next selection is made, the variable x � number of suc-
cesses observed in the sample would fit all the requirements of a binomial random
variable. When sampling is done without replacement, the trials (individual selections)
are not independent. In this case, the number of successes observed in the sample does
not have a binomial distribution but rather a different type of distribution called a hy-
pergeometric distribution. The probability calculations for this distribution are even
more tedious than for the binomial distribution. Fortunately, when the sample size n is
much smaller than N, the population size, probabilities calculated using the binomial
distribution and the hypergeometric distribution are very close in value. They are so
close, in fact, that statisticians often ignore the difference and use the binomial prob-
abilities in place of the hypergeometric probabilities. Most statisticians recommend
the following guideline for determining whether the binomial probability distribution
is appropriate when sampling without replacement.
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Using Appendix Table 9

To find p(x) for any particular value of x,

1. Locate the part of the table corresponding to your value of n (5, 10, 15, 20, or 25).
2. Move down to the row labeled with your value of x.
3. Go across to the column headed by the specified value of p.

The desired probability is at the intersection of the designated x row and p column. For ex-
ample, when n � 20 and p � .8,

p(15) � P(x � 15) � (entry at intersection of n � 15 row and p � .8 column) � .175

Let x denote the number of S’s in a sample of size n selected without replacement from a 
population consisting of N individuals or objects. If (n/N ) � 0.05, i.e., at most 5% of the pop-
ulation is sampled, then the binomial distribution gives a good approximation to the probabil-
ity distribution of x.

. . . . . . . . . . . .................................. . . . . . . . . . . . . .................................................................................

Example 7.18 Security Systems

A Los Angeles Times poll (November 10, 1991) reported that almost 20% of South-
ern California homeowners questioned had installed a home security system. Sup-
pose that exactly 20% of all such homeowners have a system. Consider a random
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sample of n � 20 homeowners (much less than 5% of the population). Then x, the
number of homeowners in the sample who have a security system, has (approxi-
mately) a binomial distribution with n � 20 and p � .20. The probability that five
of those sampled have a system is

The probability that at least 40% of those in the sample—that is, eight or more—
have a system is

If, in fact, p � .20, only about 3% of all samples of size 20 would result in at least 8
homeowners having a security system. Because P(x 	 8) is so small when p � .20,
if x 	 8 were actually observed, we would have to wonder whether the reported
value of p � .20 is correct. Although it is possible that we could observe x 	 8 when
p � .20 (this would happen about 3% of the time in the long run), it might also be
the case that p is actually greater than .20. In Chapter 10, we show how hypothesis-
testing methods can be used to decide which of two contradictory claims about a
population (e.g., p � .20 or p � .20) is more plausible.

The binomial formula or tables can be used to compute each of the 21 probabili-
ties p(0), p(1), . . . , p(20). Figure 7.16 shows the probability histogram for the bino-
mial distribution with n � 20 and p � .20. Notice that the distribution is skewed to
the right. (The binomial distribution is symmetric only when p � .5.)

■

■ Mean and Standard Deviation of a Binomial Random Variable A binomial ran-
dom variable x based on n trials has possible values 0, 1, 2, . . . , n, so the mean value is

mx � a xp1x 2 � 10 2p10 2 � 11 2p11 2 � p � 1n 2p1n 2

p(x)

x

.20

.10

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F igure 7.16 The bino-
mial probability histogram
when n � 20 and p � .20.

 � .031
 � .022 � .007 � .002 � .000 � p � .000
 � p18 2 � p19 2 � p � p120 2 P1x 	 8 2 � P1x � 8, 9, 10, p , 19, or 20 2

 � .175
 � 1entry in x row and p � .20 column in Appendix Table 9 1n � 20 2 2 p15 2 � P1x � 5 2
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and the variance of x is

These expressions appear to be very tedious to evaluate for any particular values of n
and p. Fortunately, algebraic manipulation results in considerable simplification, mak-
ing summation unnecessary.

 � 10 � mx 2 2p10 2 � 11 � mx 2 2p11 2 � p � 1n � mx 2 2p1n 2
 s2

x � a 1x � mx 2 2 # p1x 2
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The mean value and the standard deviation of a binomial random variable are, respectively,

and sx � 1np11 � p 2mx � np

............................................. . . . . . . . . . . . . .................................................................................

Example 7.19 Credit Cards Paid in Full

Newsweek (December 2, 1991) reported that one-third of all credit card users pay
their bills in full each month. This figure is, of course, an average across different
cards and issuers. Suppose that 30% of all individuals holding Visa cards issued by
a certain bank pay in full each month. A random sample of n � 25 cardholders is
to be selected. The bank is interested in the variable x � number in the sample who
pay in full each month. Even though sampling is done without replacement, the
sample size n � 25 is most likely very small compared to the total number of credit
card holders, so we can approximate the probability distribution of x using a bino-
mial distribution with n � 25 and p � .3. We have defined “paid in full” as a suc-
cess because this is the outcome counted by the random variable x. The mean value
of x is then

and the standard deviation is

The probability that x is farther than 1 standard deviation from its mean value is

■

The value of sx is 0 when p � 0 or p � 1. In these two cases, there is no uncer-
tainty in x: We are sure to observe x � 0 when p� 0 and x � n when p� 1. It is also
easily verified that p(1 � p) is largest when p � .5. Thus the binomial distribution
spreads out the most when sampling from a 50–50 population. The farther p is from
.5, the less spread out and the more skewed the distribution.

 � .382 1using Appendix Table 9 2 � p10 2 � p � p15 2 � p110 2 � p � p125 2 � P1x � 5 2 � P1x 	 10 2 P1x � mx � sx or x � mx � sx 2 � P1x � 5.21 or x � 9.79 2

sx � 1np11 � p 2 � 1251.30 2 1.70 2 � 15.25 � 2.29

mx � np � 251.30 2 � 7.5
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■ Geometric Distributions . ....................................................................................

A binomial random variable is defined as the number of successes in n independent tri-
als, where each trial can result in either a success or a failure and the probability of suc-
cess is the same for each trial. Suppose, however, that we are not interested in the num-
ber of successes in a fixed number of trials but rather in the number of trials that must be
carried out before a success occurs. Two examples are counting the number of boxes of
cereal that must be purchased before finding one with a rare toy and counting the num-
ber of games that a professional bowler must play before achieving a score over 250.

The variable

x � number of trials to first success

is called a geometric random variable, and the probability distribution that describes
its behavior is called a geometric probability distribution.

7.5 ■ Binomial and Geometric Distributions 393

Suppose an experiment consists of a sequence of trials with the following conditions:

1. The trials are independent.
2. Each trial can result in one of two possible outcomes, success and failure.
3. The probability of success is the same for all trials.

A geometric random variable is defined as

x � number of trials until the first success is observed (including the success trial) 

The probability distribution of x is called the geometric probability distribution.

For example, suppose that 40% of the students who drive to campus at your univer-
sity carry jumper cables.Your car has a dead battery and you don’t have jumper cables,
so you decide to stop students who are headed to the parking lot and ask them whether
they have a pair of jumper cables.You might be interested in the number of students you
would have to stop before finding one who has jumper cables. If we define success as a
student with jumper cables, a trial would consist of asking an individual student for help.
The random variable x � number of students who must be stopped before finding one
with jumper cables is an example of a geometric random variable, because it can be
viewed as the number of trials to the first success in a sequence of independent trials.

The probability distribution of a geometric random variable is easy to construct.
We use p to denote the probability of success on any given trial. Possible outcomes
can be denoted as follows:

x � Number 
of Trials to 

Outcome First Success

S 1
FS 2
FFS 3

FFFFFFS 7
oo

oo
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............................................. . . . . . . . . . . . . .................................................................................

Example 7.20 Jumper Cables

Consider the jumper cable problem described previously. For this problem, p � .4,
because 40% of the students who drive to campus carry jumper cables. The proba-
bility distribution of

x � number of students who must be stopped before 
finding a student with jumper cables

is

The probability distribution can now be used to compute various probabilities.
For example, the probability that the first student stopped has jumper cables (i.e.,
x � 1) is

The probability that three or fewer students must be stopped is

■

 � .784
 � .4 � .24 � .144
 � 1.6 2 01.4 2 � 1.6 2 11.4 2 � 1.6 2 21.4 2

P1x � 3 2 � p11 2 � p12 2 � p13 2

p11 2 � 1.6 2 1�11.4 2 � 1.6 2 01.4 2 � .4

p1x 2 � 1.6 2 x�11.4 2  x � 1, 2, 3, p
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Each possible outcome consists of 0 or more failures followed by a single success. So,

x � 1 failures followed by a success on trial x

Because the probability of success is p for each trial, the probability of failure for each
trial is 1 � p. Because the trials are independent,

This leads us to the formula for the geometric probability distribution.

 � 11 � p 2 x�1p

 � 11 � p 2 11 � p 2 p 11 � p 2p � P1F 2P1F 2 p P1F 2P1S 2 p1x 2 � P1x trials to first success 2 � P1FF p FS 2

 � P1FF p FS 2 p1x 2 � P1x trials to first success 2

Geometr ic Probabi l i ty  Dis t r ibut ion

If x is a geometric random variable with probability of success � p for each trial, then

p1x 2 � 11 � p 2 x�1p  x � 1, 2, 3, p

©
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■ E x e r c i s e s  7.45–7.63

7.45 Consider two binomial experiments.
a. The first binomial experiment consists of six trials.
How many outcomes have exactly one success, and what
are these outcomes?
b. The second binomial experiment consists of 20 trials.
How many outcomes have exactly 10 successes? exactly
15 successes? exactly 5 successes?

7.46 Suppose that in a certain metropolitan area, 9 out of
10 households have a VCR. Let x denote the number among
four randomly selected households that have a VCR, so x is
a binomial random variable with n � 4 and p� .9.
a. Calculate p(2) � P(x � 2), and interpret this probability.
b. Calculate p(4), the probability that all four selected
households have a VCR.
c. Determine P(x � 3).

7.47 ▼ The Los Angeles Times (December 13, 1992) re-
ported that what airline passengers like to do most on long
flights is rest or sleep; in a survey of 3697 passengers, al-
most 80% did so. Suppose that for a particular route the
actual percentage is exactly 80%, and consider randomly
selecting six passengers. Then x, the number among the
selected six who rested or slept, is a binomial random
variable with n � 6 and p � .8.
a. Calculate p(4), and interpret this probability.
b. Calculate p(6), the probability that all six selected pas-
sengers rested or slept.
c. Determine P(x 	 4).

7.48 Refer to Exercise 7.47, and suppose that 10 rather
than 6 passengers are selected (n � 10, p � .8), so that
Appendix Table 9 can be used.
a. What is p(8)?
b. Calculate P(x � 7).
c. Calculate the probability that more than half of the se-
lected passengers rested or slept.

7.49 Twenty-five percent of the customers entering a 
grocery store between 5 P.M. and 7 P.M. use an express
checkout. Consider five randomly selected customers, and
let x denote the number among the five who use the ex-
press checkout.
a. What is p(2), that is, P(x � 2)?
b. What is P(x � 1)?
c. What is P(2 � x)? (Hint: Make use of your computa-
tion in Part (b).)
d. What is P(x � 2)?

7.50 A breeder of show dogs is interested in the number
of female puppies in a litter. If a birth is equally likely to
result in a male or a female puppy, give the probability
distribution of the variable x � number of female puppies
in a litter of size 5.

7.51 The article “FBI Says Fewer than 25 Failed Polygraph
Test” (San Luis Obispo Tribune, July 29, 2001) states that
false-positives in polygraph tests (i.e., tests in which an in-
dividual fails even though he or she is telling the truth) are
relatively common and occur about 15% of the time. Sup-
pose that such a test is given to 10 trustworthy individuals.
a. What is the probability that all 10 pass?
b. What is the probability that more than 2 fail, even
though all are trustworthy?
c. The article indicated that 500 FBI agents were required
to take a polygraph test. Consider the random variable x �
number of the 500 tested who fail. If all 500 agents tested
are trustworthy, what are the mean and standard deviation
of x?
d. The headline indicates that fewer than 25 of the 500
agents tested failed the test. Is this a surprising result if all
500 are trustworthy? Answer based on the values of the
mean and standard deviation from Part (c).

7.52 Industrial quality control programs often include in-
spection of incoming materials from suppliers. If parts are
purchased in large lots, a typical plan might be to select
20 parts at random from a lot and inspect them. A lot might
be judged acceptable if one or fewer defective parts are
found among those inspected. Otherwise, the lot is rejected
and returned to the supplier. Use Appendix Table 9 to find
the probability of accepting lots that have each of the fol-
lowing (Hint: Identify success with a defective part):
a. 5% defective parts
b. 10% defective parts
c. 20% defective parts

7.53 An experiment was conducted to investigate whether
a graphologist (a handwriting analyst) could distinguish a
normal person’s handwriting from that of a psychotic. A
well-known expert was given 10 files, each containing
handwriting samples from a normal person and from a
person diagnosed as psychotic, and asked to identify the
psychotic’s handwriting. The graphologist made correct
identifications in 6 of the 10 trials (data taken from Statis-
tics in the Real World, by R. J. Larsen and D. F. Stroup
[New York: Macmillan, 1976]). Does this evidence indi-
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cate that the graphologist has an ability to distinguish the
handwriting of psychotics? (Hint: What is the probability
of correctly guessing 6 or more times out of 10? Your an-
swer should depend on whether this probability is rela-
tively small or relatively large.)

7.54 Suppose that the probability is .1 that any given citrus
tree will show measurable damage when the temperature
falls to 30�F. If the temperature does drop to 30�F, what is
the expected number of citrus trees showing damage in or-
chards of 2000 trees? What is the standard deviation of the
number of trees that show damage?

7.55 Thirty percent of all automobiles undergoing an 
emissions inspection at a certain inspection station fail the
inspection.
a. Among 15 randomly selected cars, what is the proba-
bility that at most 5 fail the inspection?
b. Among 15 randomly selected cars, what is the probabil-
ity that between 5 and 10 (inclusive) fail to pass inspection?
c. Among 25 randomly selected cars, what is the mean
value of the number that pass inspection, and what is the
standard deviation of the number that pass inspection?
d. What is the probability that among 25 randomly se-
lected cars, the number that pass is within 1 standard devi-
ation of the mean value?

7.56 You are to take a multiple-choice exam consisting of
100 questions with 5 possible responses to each question.
Suppose that you have not studied and so must guess (se-
lect one of the five answers in a completely random fash-
ion) on each question. Let x represent the number of cor-
rect responses on the test.
a. What kind of probability distribution does x have?
b. What is your expected score on the exam? (Hint: Your
expected score is the mean value of the x distribution.)
c. Compute the variance and standard deviation of x.
d. Based on your answers to Parts (b) and (c), is it likely
that you would score over 50 on this exam? Explain the
reasoning behind your answer.

7.57 Suppose that 20% of the 10,000 signatures on a cer-
tain recall petition are invalid. Would the number of in-
valid signatures in a sample of size 1000 have (approxi-
mately) a binomial distribution? Explain.

7.58 A coin is spun 25 times. Let x be the number of
spins that result in heads (H). Consider the following rule
for deciding whether or not the coin is fair:

Judge the coin fair if 8 � x � 17.
Judge the coin biased if either x � 7 or x 	 18.

a. What is the probability of judging the coin biased
when it is actually fair?
b. What is the probability of judging the coin fair when
P(H) � .9, so that there is a substantial bias? Repeat for
P(H) � .1.
c. What is the probability of judging the coin fair when
P(H) � .6? when P(H) � .4? Why are the probabilities so
large compared to the probabilities in Part (b)?
d. What happens to the “error probabilities” of Parts (a)
and (b) if the decision rule is changed so that the coin is
judged fair if 7 � x � 18 and unfair otherwise? Is this a
better rule than the one first proposed? Explain.

7.59 A city ordinance requires that a smoke detector be
installed in all residential housing. There is concern that
too many residences are still without detectors, so a costly
inspection program is being contemplated. Let p be the
proportion of all residences that have a detector. A random
sample of 25 residences is selected. If the sample strongly
suggests that p � .80 (less than 80% have detectors), as
opposed to p 	 .80, the program will be implemented.
Let x be the number of residences among the 25 that have
a detector, and consider the following decision rule: Re-
ject the claim that p � .8 and implement the program if
x � 15.
a. What is the probability that the program is imple-
mented when p � .80?
b. What is the probability that the program is not imple-
mented if p � .70? if p � .60?
c. How do the “error probabilities” of Parts (a) and (b)
change if the value 15 in the decision rule is changed to 14?

7.60 Suppose that 90% of all registered California voters
favor banning the release of information from exit polls 
in presidential elections until after the polls in California
close. A random sample of 25 California voters is to be
selected.
a. What is the probability that more than 20 voters favor
the ban?
b. What is the probability that at least 20 voters favor
the ban?
c. What are the mean value and standard deviation of the
number of voters who favor the ban?
d. If fewer than 20 voters in the sample favor the ban, is
this at odds with the assertion that (at least) 90% of the
populace favors the ban? (Hint: Consider P(x � 20) when
p � .9.)

7.61 Sophie is a dog that loves to play catch. Unfortu-
nately, she isn’t very good, and the probability that she
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........................................................................................................................................

7.6 Normal Distributions
Normal distributions formalize the notion of mound-shaped histograms introduced in
Chapter 4. Normal distributions are widely used for two reasons. First, they provide a
reasonable approximation to the distribution of many different variables. They also
play a central role in many of the inferential procedures that will be discussed in later
chapters.

Normal distributions are continuous probability distributions that are bell
shaped and symmetric, as shown in Figure 7.17. Normal distributions are
sometimes referred to as a normal curves.

There are many different normal distributions, and they are distinguished
from one another by their mean m and standard deviation s. The mean m of
a normal distribution describes where the corresponding curve is centered,
and the standard deviation s describes how much the curve spreads out
around that center. As with all continuous probability distributions, the total

area under any normal curve is equal to 1. Three normal distributions are shown in
Figure 7.18. Notice that the smaller the standard deviation, the taller and narrower the
corresponding curve. Recall that areas under a continuous probability distribution
curve represent probabilities, so when the standard deviation is small, a larger area is
concentrated near the center of the curve and the chance of observing a value near the
mean is much greater (because m is at the center).

The value of m is the number on the measurement axis lying directly below the top
of the bell. The value of s can also be ascertained from a picture of the curve. Consider
the normal curve in Figure 7.19. Starting at the top of the bell (abovem� 100) and mov-
ing to the right, the curve turns downward until it is above the value 110.After that point,
it continues to decrease in height but is turning upward rather than downward. Similarly,
to the left of m� 100, the curve turns downward until it reaches 90 and then begins to
turn upward. The curve changes from turning downward to turning upward at a distance
of 10 on either side of m, so s� 10. In general, s is the distance to either side of m at
which a normal curve changes from turning downward to turning upward.
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catches a ball is only .1. Let x be the number of tosses re-
quired until Sophie catches a ball.
a. Does x have a binomial or a geometric distribution?
b. What is the probability that it will take exactly two
tosses for Sophie to catch a ball?
c. What is the probability that more than three tosses will
be required?

7.62 Suppose that 5% of cereal boxes contain a prize and
the other 95% contain the message, “Sorry, try again.”
Consider the random variable x, where x � number of
boxes purchased until a prize is found.
a. What is the probability that at most two boxes must be
purchased?
b. What is the probability that exactly four boxes must be
purchased?

c. What is the probability that more than four boxes must
be purchased?

7.63 ▼ The article on polygraph testing of FBI agents ref-
erenced in Exercise 7.51 indicated that the probability of a
false-positive (a trustworthy person who nonetheless fails
the test) is .15. Let x be the number of trustworthy FBI
agents tested until someone fails the test.
a. What is the probability distribution of x?
b. What is the probability that the first false-positive will
occur when the third person is tested?
c. What is the probability that fewer than four are tested
before the first false-positive occurs?
d. What is the probability that more than three agents are
tested before the first false-positive occurs?

F igure 7.17 A normal 
distribution.

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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If a particular normal distribution is to be used to describe the behavior of a random
variable, a mean and a standard deviation must be specified. For example, a normal dis-
tribution with mean 7 and standard deviation 1 might be used as a model for the distri-
bution of x � birth weight. If this model is a reasonable description of the probability
distribution, we could use areas under the normal curve with m � 7 and s � 1 to ap-
proximate various probabilities related to birth weight. The probability that a birth
weight is over 8 lb (expressed symbolically as P(x � 8)) corresponds to the shaded area
in Figure 7.20(a). The shaded area in Figure 7.20(b) is the (approximate) probability
P(6.5 � x � 8) of a birth weight falling between 6.5 and 8 lb.
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µ = 10, σ = 5

µ = 40, σ = 2.5

µ = 70, σ = 100.05

0

0.10

0.15

100500

DensityF igure 7.18 Three nor-
mal distributions.

80 90 µ = 100 110 120

Curve turns downward

Curve turns upwardCurve turns upward

σ = 10 σ = 10

F igure 7.19 Mean m
and standard deviation s for
a normal curve.

(a)

7

P(x > 8)

P(6.5 < x < 8)

8

(b)

7 86

F igure 7.20 Normal
distribution for birth weight:
(a) shaded area � P(x �8);
(b) shaded area �
P(6.5 � x � 8).
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Unfortunately, direct computation of such probabilities (areas under a normal
curve) is not simple. To overcome this difficulty, we rely on a table of areas for a ref-
erence normal distribution, called the standard normal distribution.

Few naturally occurring variables have distributions that are well described by the
standard normal distribution, but this distribution is important because it is also used in
probability calculations for other normal distributions. When we are interested in find-
ing a probability based on some other normal curve, we first translate our problem into
an equivalent problem that involves finding an area under the standard normal curve. A
table for the standard normal distribution is then used to find the desired area. To be able
to do this, we must first learn to work with the standard normal distribution.

■ The Standard Normal Distribution ...................................................................

In working with normal distributions, we need two general skills:

1. We must be able to use the normal distribution to compute probabilities, which are
areas under a normal curve and above given intervals.

2. We must be able to characterize extreme values in the distribution, such as the
largest 5%, the smallest 1%, and the most extreme 5% (which would include the
largest 2.5% and the smallest 2.5%).

Let’s begin by looking at how to accomplish these tasks when the distribution of in-
terest is the standard normal distribution.

The standard normal or z curve is shown in Figure 7.21(a). It is centered at m� 0,
and the standard deviation, s � 1, is a measure of the extent to which it spreads out

D E F I N I T I O N

The standard normal distribution is the normal distribution with

m � 0 and s � 1 

The corresponding density curve is called the standard normal curve. It is
customary to use the letter z to represent a variable whose distribution is 
described by the standard normal curve. The term z curve is often used in
place of standard normal curve.
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z curve

(a)

0 1 2 3–3 –2 –1

z 

Cumulative area =
area to the left of z value

(b)

0 1 2 3–3 –2 –1

A particular z value

F igure 7.21 (a) A stan-
dard normal (z) curve and
(b) a cumulative area.
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A portion of the table of standard normal curve areas appears in Figure 7.22. To
find the area under the z curve to the left of 1.42, look in the row labeled 1.4 and the
column labeled .02 (the highlighted row and column in Figure 7.22). From the table,
the corresponding cumulative area is .9222. So

z curve area to the left of 1.42 � .9222

We can also use the table to find the area to the right of a particular value. Because
the total area under the z curve is 1, it follows that

These probabilities can be interpreted to mean that in a long sequence of obser-
vations, roughly 92.22% of the observed z values will be smaller than 1.42, and 7.78%
will be larger than 1.42.

 � .0778
 � 1 � .9222

 1z curve area to the right of 1.42 2 � 1 � 1z curve area to the left of 1.42 2
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about its mean (in this case, 0). Note that this picture is consistent with the Empirical
Rule of Chapter 4: About 95% of the area (probability) is associated with values that
are within 2 standard deviations of the mean (between �2 and 2), and almost all of the
area is associated with values that are within 3 standard deviations of the mean (be-
tween �3 and 3).

Appendix Table 2 tabulates cumulative z curve areas of the sort shown in Fig-
ure 7.21(b) for many different values of z. The smallest value for which the cumula-
tive area is given is �3.89, a value far out in the lower tail of the z curve. The next
smallest value for which the area appears is �3.88, then �3.87, then �3.86, and so
on in increments of 0.01, terminating with the cumulative area to the left of 3.89.

Using the Table of  S tandard Normal  Curve Areas

For any number z* between �3.89 and 3.89 and rounded to two decimal places, Appendix
Table 2 gives 

(area under z curve to the left of z*) � P(z � z*) � P(z � z*) 

where the letter z is used to represent a random variable whose distribution is the standard nor-
mal distribution.

To find this probability, locate the following:

1. The row labeled with the sign of z* and the digit to either side of the decimal point (for ex-
ample, �1.7 or 0.5)

2. The column identified with the second digit to the right of the decimal point in z* (for ex-
ample, .06 if z* � �1.76) 

The number at the intersection of this row and column is the desired probability, P(z � z*).
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........................................... . . . . . . . . . . . ....................................................................................

Example 7.21 Finding Standard Normal Curve Areas

The probability P(z � �1.76) is found at the intersection of the �1.7 row and the
.06 column of the z table. The result is

P(z � �1.76) � .0392

as shown in the following figure:

In other words, in a long sequence of observations, roughly 3.9% of the observed
z values will be smaller than �1.76. Similarly,

P(z � 0.58) � entry in 0.5 row and .08 column of Table 2 � .7190

0–1.76

z curve

Shaded area = .0392
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0.0              .5000           .5040           .5080           .5120            .5160           .5199
0.1              .5398           .5438           .5478           .5517            .5557           .5596
0.2              .5793           .5832           .5871           .5910            .5948           .5987
0.3              .6179           .6217           .6255           .6293            .6331           .6368
0.4              .6554           .6591           .6628           .6664            .6700           .6736
0.5              .6915           .6950           .6985           .7019            .7054           .7088
0.6              .7257           .7291           .7324           .7357            .7389           .7422
0.7              .7580           .7611           .7642           .7673            .7704           .7734
0.8              .7881           .7910           .7939           .7967            .7995           .8023
0.9              .8159           .8186           .8212           .8238            .8264           .8289
1.0              .8413           .8438           .8461           .8485            .8508           .8531
1.1              .8643           .8665           .8686           .8708            .8729           .8749
1.2              .8849           .8869           .8888           .8907            .8925           .8944
1.3              .9032           .9049           .9066           .9082            .9099           .9115
1.4              .9192           .9207           .9222           .9236            .9251           .9265
1.5              .9332           .9345           .9357           .9370            .9382           .9394
1.6              .9452           .9463           .9474           .9484            .9495           .9505
1.7              .9554           .9564           .9573           .9582            .9591           .9599
1.8              .9641           .9649           .9656           .9664            .9671           .9678

  z*              .00               .01               .02               .03                .04               .05

P(z � 1.42)

F igure 7.22 Portion of
the table of standard normal
curve areas.
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as shown in the following figure:

Now consider P(z � �4.12). This probability does not appear in Appendix Table 2;
there is no �4.1 row. However, it must be less than P(z � �3.89), the smallest 
z value in the table, because �4.12 is farther out in the lower tail of the z curve.
Since P(z � �3.89) � .0000 (that is, zero to four decimal places), it follows that

P(z � �4.12) � 0

Similarly,

P(z � 4.18) � P(z � 3.89) � 1.0000

from which we conclude that

P(z � 4.18) � 1

■

As illustrated in Example 7.21, we can use the cumulative areas tabulated in Appen-
dix Table 2 to calculate other probabilities involving z. The probability that z is larger
than a value c is

P(z � c) � area under the z curve to the right of c � 1 � P(z � c)

In other words, the area to the right of a value (a right-tail area) is 1 minus the corre-
sponding cumulative area. This is illustrated in Figure 7.23.

F igure 7.23 The relationship between an upper-tail area and a cumulative area.

Similarly, the probability that z falls in the interval between a lower limit a and an up-
per limit b is

That is, P(a � z � b) is the difference between two cumulative areas, as illustrated in
Figure 7.24.

 � P1z � b 2 � P1z � a 2 P1a � z � b 2 � area under the z curve and above the interval from a to b

c

P(z > c)
=

1

–

c

P(z ≤ c)

0

z curveShaded area = .7190

0.58
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........................................... . . . . . . . . . . . ....................................................................................

Example 7.22 More About Standard Normal Curve Areas

The probability that z is between �1.76 and 0.58 is

as shown in the following figure:

The probability that z is between �2 and �2 (within 2 standard deviations of its
mean, since m � 0 and s � 1) is

as shown in the following figure:

This last probability is the basis for one part of the Empirical Rule, which states that
when a histogram is well approximated by a normal curve, roughly 95% of the val-
ues are within 2 standard deviations of the mean.

0
2.00–2.00

Shaded area = .9544
z curve

 � .95
 � .9544
 � .9772 � .0228

 P1�2.00 � z � 2.00 2 � P1z � 2.00 2 � P1z � �2.00 2

0–1.76 0.58

Shaded area = .6798
z curve

 � .6798
 � .7190 � .0392

 P1�1.76 � z � 0.58 2 � P1z � 0.58 2 � P1z � �1.76 2
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ba b a

P(a < z < b)

=

P(z < b)

P(z < a)
–

F igure 7.24 P(a � z � b) as the difference between the two cumulative areas.
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The probability that the value of z exceeds 1.96 is

as shown in the following figure:

That is, 2.5% of the area under the z curve lies to the right of 1.96 in the upper tail.
Similarly,

■ 

■ Identifying Extreme Values ...............................................................................

Suppose that we want to describe the values included in the smallest 2% of a distri-
bution or the values making up the most extreme 5% (which includes the largest 2.5%
and the smallest 2.5%). Let’s see how we can identify extreme values in the distribu-
tion by working through Examples 7.23 and 7.24.

............................................. . . . . . . . . . . . . .................................................................................

Example 7.23 Identifying Extreme Values

Suppose that we want to describe the values that make up the smallest 2% of the
standard normal distribution. Symbolically, we are trying to find a value (call it z*)
such that

P(z � z*) � .02

This is illustrated in Figure 7.25, which shows that the cumulative area
for z* is .02. Therefore we look for a cumulative area of .0200 in the
body of Appendix Table 2. The closest cumulative area in the table is
.0202, in the �2.0 row and .05 column; we will use z* � �2.05, the
best approximation from the table. Variable values less than �2.05 make
up the smallest 2% of the standard normal distribution.

Now suppose that we had been interested in the largest 5% of all
z values. We would then be trying to find a value of z* for which

P(z � z*) � .05

 � .90
 � .8997
 � 1 � .1003
 � 1 � P1z � �1.28 2 P1z � �1.28 2 �  area to the right of �1.28

Shaded area = .0250

z curve

0
1.96

 � .0250
 � 1 � .9750

 P1z � 1.96 2 � 1 � P1z � 1.96 2
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Smallest
2%

z curve

z*{

.02

0

F igure 7.25 The smallest 2% of
the standard normal distribution.
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as illustrated in Figure 7.26. Because Appendix Table 2 always works
with cumulative area (area to the left), the first step is to determine

area to the left of z* � 1 � .05 � .95

Looking for the cumulative area closest to .95 in Appendix Table 2, we find
that .95 falls exactly halfway between .9495 (corresponding to a z value of
1.64) and .9505 (corresponding to a z value of 1.65). Because .9500 is ex-
actly halfway between the two areas, we use a z value that is halfway be-
tween 1.64 and 1.65. (If one value had been closer to .9500 than the other,
we would just use the z value corresponding to the closest area). This gives

Values greater than 1.645 make up the largest 5% of the standard normal distribu-
tion. By symmetry, �1.645 separates the smallest 5% of all z values from the others.

■ 

........................................... . . . . . . . . . . . ....................................................................................

Example 7.24 More Extremes

Sometimes we are interested in identifying the most extreme (un-
usually large or small) values in a distribution. Consider describ-
ing the values that make up the most extreme 5% of the standard
normal distribution. That is, we want to separate the middle 95%
from the extreme 5%. This is illustrated in Figure 7.27.

Because the standard normal distribution is symmetric, the
most extreme 5% is equally divided between the high side and the
low side of the distribution, resulting in an area of .025 for each 
of the tails of the z curve. Symmetry about 0 implies that if z* de-
notes the value that separates the largest 2.5%, the value that sepa-
rates the smallest 2.5% is simply �z*.

To find z*, first determine the cumulative area for z*, which is 

area to the left of z* � .95 � .025 � .975

The cumulative area .9750 appears in the 1.9 row and .06 column of Appendix
Table 2, so z* � 1.96. For the standard normal distribution, 95% of the variable val-
ues fall between �1.96 and 1.96; the most extreme 5% are those values that are ei-
ther greater than 1.96 or less than �1.96.

■ 

■ Other Normal Distributions ...............................................................................

We now show how z curve areas can be used to calculate probabilities and to describe
values for any normal distribution. Remember that the letter z is reserved for those
variables that have a standard normal distribution; the letter x is used more generally
for any variable whose distribution is described by a normal curve with mean m and
standard deviation s.

Suppose that we want to compute P(a � x � b), the probability that the variable
x lies in a particular range. This probability corresponds to an area under a normal
curve and above the interval from a to b, as shown in Figure 7.28(a).

z* �
1.64 � 1.65

2
� 1.645
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z curve

z*0

.05

Largest 
5%

F igure 7.26 The largest 5% of
the standard normal distribution.

Middle
95%

Most extreme 5%

z*−z*

.025.025

.95

F igure 7.27 The most extreme 5% of the
standard normal distribution.
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Our strategy for obtaining this probability is to find an equivalent problem in-
volving the standard normal distribution. Finding an equivalent problem means deter-
mining an interval (a*, b*) that has the same probability for z (same area under the
z curve) as does the interval (a, b) in our original normal distribution (Figure 7.28(b)).
The asterisk is used to distinguish a and b, the values from the original normal distri-
bution with mean m and standard deviation s, from a* and b*, the values from the
z curve. To find a* and b*, we simply calculate z scores for the endpoints of the inter-
val for which a probability is desired. This process is called standardizing the end-
points. For example, suppose that the variable x has a normal distribution with mean
m � 100 and standard deviation s � 5. To calculate

P(98 � x � 107)

we first translate this problem into an equivalent problem for the standard normal dis-
tribution. Recall from Chapter 4 that a z score, or standardized score, tells how many
standard deviations away from the mean a value lies; the z score is calculated by first
subtracting the mean and then dividing by the standard deviation. Converting the
lower endpoint a � 98 to a z score gives

and converting the upper endpoint yields

Then

P(98 � x � 107) � P(�.40 � z � 1.40)

The probability P(�.40 � z � 1.40) can now be evaluated using Appendix Table 2.

b* �
107 � 100

5
�

7

5
� 1.40

a* �
98 � 100

5
�

�2

5
� �.40
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Equal area

µ 0 b*a*ba

P(a < x < b) P(a* < z < b*)

(a) (b)

F igure 7.28 Equality of
nonstandard and standard
normal curve areas.

F inding Probabi l i t ies

To calculate probabilities for any normal distribution, standardize the relevant values and then
use the table of z curve areas. More specifically, if x is a variable whose behavior is described
by a normal distribution with mean m and standard deviation s, then 

P(x � b) � P(z � b*)
P(a � x) � P(a* � z) [Equivalently, P(x � a) � P(z � a*)]

P(a � x � b) � P(a* � z � b*)
(continued)
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Example 7.25 Children’s Heights

Data from the article “The Osteological Paradox: Problems in Inferring Prehistoric
Health from Skeletal Samples” (Current Anthropology [1992]: 343–370) suggest
that a reasonable model for the probability distribution of the continuous numerical
variable x � height of a randomly selected 5-year-old child is a normal distribution
with a mean of m � 100 cm and standard deviation s � 6 cm. What proportion of
the heights is between 94 and 112 cm?

To answer this question, we must find

P(94 � x � 112)

First, we translate the interval endpoints to equivalent endpoints for the standard
normal distribution:

Then

The probabilities for x and z are shown in Figure 7.29. If height were observed for
many children from this population, about 82% of them would fall between 94 and
112 cm.

What is the probability that a randomly chosen child will be taller than 110 cm? To
evaluate P(x � 110), we first compute

a* �
a � m

s
�

110 � 100

6
� 1.67

94

Shaded area
= .8185

Normal curve for
µ = 100, σ = 6 z curve

100 106 112 –1 0 1 2

F igure 7.29
P(94 � x � 112) and cor-
responding z curve area for
the height problem of Ex-
ample 7.25.

 �  .8185
 �  .9772 � .1587

  � 1z curve area to the left of �1.00 2 �  1z curve area to the left of 2.00 2 P194 � x � 112 2 �  P1�1.00 � z � 2.00 2

b* �
b � m

s
�

112 � 100

6
� 2.00

a* �
a � m

s
�

94 � 100

6
� �1.00
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where z is a variable whose distribution is standard normal and

a* �
a � m

s
  b* �

b � m

s
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Then (see Figure 7.30)

■ 

............................................. . . . . . . . . . . . . .................................................................................

Example 7.26 IQ Scores

Although there is some controversy regarding the appropriateness of IQ scores as a
measure of intelligence, IQ scores are commonly used for a variety of purposes. One
commonly used IQ scale has a mean of 100 and a standard deviation of 15, and IQ
scores are approximately normally distributed. (IQ score is actually a discrete variable
[because it is based on the number of correct responses on a test], but its population
distribution closely resembles a normal curve.) If we define the random variable

x � IQ score of a randomly selected individual

then x has approximately a normal distribution with m � 100 and s � 15.
One way to become eligible for membership in Mensa, an organization purport-

edly for those of high intelligence, is to have a Stanford–Binet IQ score above 130.
What proportion of the population would qualify for Mensa membership? An answer
to this question requires evaluating P(x � 130). This probability is shown in Fig-
ure 7.31. With a � 130,

So (see Figure 7.32)

Only 2.28% of the population would qualify for Mensa membership.
Suppose that we are interested in the proportion of the population with IQ scores

below 80—that is, P(x � 80). With b � 80,

b* �
b � m

s
�

80 � 100

15
� �1.33

 � .0228
 � 1 � .9772
 � 1 � 1z curve area to the left of 2.00 2 � z curve area to the right of 2.00

 P1x � 130 2 � P1z � 2.00 2

a* �
a � m

s
�

130 � 100

15
� 2.00

Shaded area
= .0475

Normal curve for
µ = 100, σ = 6

z curve

100 110 0 1.67

F igure 7.30 P(x � 110)
and corresponding z curve
area for the height problem
of Example 7.25.

 � .0475
 � 1 � .9525
 � 1 � 1z curve area to the left of 1.67 2 � z curve area to the right of 1.67

 P1x � 110 2 � P1z � 1.67 2
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07-W4959  10/7/08  3:06 PM  Page 408



So

as shown in Figure 7.33. This probability (.0918) tells us that just a little over 9% of
the population has an IQ score below 80.

Now consider the proportion of the population with IQs between 75 and 125.
Using a � 75 and b � 125, we obtain

so

This is illustrated in Figure 7.34. The calculation tells us that 90.5% of the popula-
tion has an IQ score between 75 and 125. Of the 9.5% whose IQ score is not be-
tween 75 and 125, half of them (4.75%) have scores over 125, and the other half
have scores below 75.

 �  .9050
 �  .9525 � .0475

   � 1z curve area to the left of �1.67 2 �  1z curve area to the left of 1.67 2 �  z curve area between �1.67 and 1.67
 P175 � x � 125 2 �  P1�1.67 � z � 1.67 2

a* �
75 � 100

15
� �1.67  b* �

125 � 100

15
� 1.67

Shaded area = .0918

10080 0−1.33

F igure 7.33 P(x � 80)
and corresponding z curve
area for the IQ problem of
Example 7.26.

 � .0918
 � z curve area to the left of �1.33

 P1x � 80 2 � P1z � �1.33 2
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P(x > 130) = proportion who are eligible for Mensa

100 130

F igure 7.31 Normal
distribution and desired pro-
portion for Example 7.26.

Shaded area
= .0228Normal curve for

µ = 100, σ = 15
z curve

100 130

.9772 .9772

0 2.00

F igure 7.32 P(x � 130)
and corresponding z curve
area for the IQ problem of
Example 7.26.
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■ 

When we translate from a problem involving a normal distribution with mean m
and standard deviation s to a problem involving the standard normal distribution, we
convert to z scores:

Because a z score can be interpreted as giving the distance of an x value from the mean
in units of the standard deviation, a z score of 1.4 corresponds to an x value that is 1.4
standard deviations above the mean, and a z score of �2.1 corresponds to an x value
that is 2.1 standard deviations below the mean.

Suppose that we are trying to evaluate P(x � 60) for a variable whose distribution
is normal with m � 50 and s � 5. Converting the endpoint 60 to a z score gives

which tells us that the value 60 is 2 standard deviations above the mean. We then have

P(x � 60) � P(z � 2)

where z is a standard normal variable. Notice that for the standard normal distribution,
the value 2 is 2 standard deviations above the mean, because the mean is 0 and the
standard deviation is 1. The value z � 2 is located the same distance (measured in
standard deviations) from the mean of the standard normal distribution as is the value
x � 60 from the mean in the normal distribution with m � 50 and s � 5. This is why
the translation using z scores results in an equivalent problem involving the standard
normal distribution.

■ Describing Extreme Values in a Normal Distribution ....................................

To describe the extreme values for a normal distribution with mean m and standard de-
viation s, we first solve the corresponding problem for the standard normal distribu-
tion and then translate our answer into one for the normal distribution of interest. This
process is illustrated in Example 7.27.

............................................. . . . . . . . . . . . . .................................................................................

Example 7.27 Registration Times

Data on the length of time required to complete registration for classes using a tele-
phone registration system suggest that the distribution of the variable

x � time to register

for students at a particular university can be well approximated by a normal dis-
tribution with mean m � 12 min and standard deviation s � 2 min. (The normal

z �
60 � 50

5
� 2

z �
x � m

s

410 C h a p t e r 7 ■ Random Variables and Probability Distributions

Shaded area = .9050

0–1.67 1.6710075 125

F igure 7.34
P(75 � x � 125) and cor-
responding z curve area 
for the IQ problem of Ex-
ample 7.26.
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distribution might not be an appropriate model for x � time to register at another
university. Many factors influence the shape, center, and spread of such a distribu-
tion.) Because some students do not sign off properly, the university would like to
disconnect students automatically after some amount of time has elapsed. It is de-
cided to choose this time such that only 1% of the students are disconnected while
they are still attempting to register. To determine the amount of time that should be
allowed before disconnecting a student, we need to describe the largest 1% of the
distribution of time to register. These are the individuals who will be mistakenly dis-
connected. This is illustrated in Figure 7.35(a). To determine the value of x*, we first
solve the analogous problem for the standard normal distribution, as shown in Fig-
ure 7.35(b).

By looking at Appendix Table 2 for a cumulative area of .99, we find the closest
entry (.9901) in the 2.3 row and the .03 column, from which z* � 2.33. For the stan-
dard normal distribution, the largest 1% of the distribution is made up of those val-
ues greater than 2.33. An equivalent statement is that the largest 1% are those with
z scores greater than 2.33. This implies that in the distribution of time to register x (or
any other normal distribution), the largest 1% are those values with z scores greater
than 2.33 or, equivalently, those x values more than 2.33 standard deviations above
the mean. Here, the standard deviation is 2, so 2.33 standard deviations is 2.33(2),
and it follows that

x* � 12 � 2.33(2) � 12 � 4.66 � 16.66

The largest 1% of the distribution for time to register is made up of values that are
greater than 16.66 min. If the university system was set to disconnect students after
16.66 min, only 1% of the students registering would be disconnected before com-
pleting their registration.

■ 

A general formula for converting a z score back to an x value results from solving

for x*, as shown in the accompanying box.z* �
x* � m

s

12

Largest 1%

x* {

.01

Largest 1%

z* {

.01

z curve

Normal curve
µ = 12, σ = 2

(a) (b)

F igure 7.35 Capturing
the largest 1% in a normal
distribution for the problem
in Example 7.27.
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To convert a z score z* back to an x value, use

x � m � z*s
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............................................. . . . . . . . . . . . . .................................................................................

Example 7.28 Motor Vehicle Emissions

Data from the article “Determining Statistical Characteristics of a Vehicle Emissions
Audit Procedure” (Technometrics [1980]: 483–493) suggest that the emissions of 
nitrogen oxides, which are major constituents of smog, can be plausibly modeled 
using a normal distribution. Let x denote the amount of this pollutant emitted by a
randomly selected vehicle. The distribution of x can be described by a normal distri-
bution with m � 1.6 and s � 0.4.

Suppose that the EPA wants to offer some sort of incentive to get the worst pol-
luters off the road. What emission levels constitute the worst 10% of the vehicles?
The worst 10% would be the 10% with the highest emissions level, as shown in the
illustration in the margin.

For the standard normal distribution, the largest 10% are those with z values
greater than z* � 1.28 (from Appendix Table 2, based on a cumulative area of .90).

Then

In the population of vehicles of the type considered, about 10% would
have oxide emission levels greater than 2.112.

■ 

 � 2.112
 � 1.6 � .512
 � 1.6 � 1.281.4 2 x* � m � z*s
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■ E x e r c i s e s 7.64–7.80

7.64 Determine the following standard normal (z) curve
areas:
a. The area under the z curve to the left of 1.75
b. The area under the z curve to the left of �0.68
c. The area under the z curve to the right of 1.20
d. The area under the z curve to the right of �2.82
e. The area under the z curve between �2.22 and 0.53
f. The area under the z curve between �1 and 1
g. The area under the z curve between �4 and 4

7.65 Determine each of the following areas under the
standard normal (z) curve:
a. To the left of �1.28
b. To the right of 1.28

c. Between �1 and 2
d. To the right of 0
e. To the right of �5
f. Between �1.6 and 2.5
g. To the left of 0.23

7.66 Let z denote a random variable that has a standard
normal distribution. Determine each of the following
probabilities:
a. P(z � 2.36)
b. P(z � 2.36)
c. P(z � �1.23)
d. P(1.14 � z �3.35)
e. P(�0.77 � z � �0.55)

...................................................................................................................

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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f. P(z � 2)
g. P(z 	 �3.38)
h. P(z � 4.98)

7.67 Let z denote a random variable having a normal dis-
tribution with m � 0 and s � 1. Determine each of the
following probabilities:
a. P(z � 0.10)
b. P(z � �0.10)
c. P(0.40 � z � 0.85)
d. P(�0.85 � z � �0.40)
e. P(�0.40 � z � 0.85)
f. P(z � �1.25)
g. P(z � �1.50 or z � 2.50)

7.68 Let z denote a variable that has a standard normal
distribution. Determine the value z* to satisfy the follow-
ing conditions:
a. P(z � z*) � .025
b. P(z � z*) � .01
c. P(z � z*) � .05
d. P(z � z*) � .02
e. P(z � z*) � .01
f. P(z � z* or z � �z*) � .20

7.69 Determine the value z* that
a. Separates the largest 3% of all z values from the others
b. Separates the largest 1% of all z values from the others
c. Separates the smallest 4% of all z values from the 
others
d. Separates the smallest 10% of all z values from the 
others

7.70 Determine the value of z* such that
a. �z* and z* separate the middle 95% of all z values
from the most extreme 5%
b. �z* and z* separate the middle 90% of all z values
from the most extreme 10%
c. �z* and z* separate the middle 98% of all z values
from the most extreme 2%
d. �z* and z* separate the middle 92% of all z values
from the most extreme 8%

7.71 Because P(z � .44) � .67, 67% of all z values are
less than .44, and .44 is the 67th percentile of the standard
normal distribution. Determine the value of each of the
following percentiles for the standard normal distribution
(Hint: If the cumulative area that you must look for does
not appear in the z table, use the closest entry):
a. The 91st percentile (Hint: Look for area .9100.)

b. The 77th percentile
c. The 50th percentile
d. The 9th percentile
e. What is the relationship between the 70th z percentile
and the 30th z percentile?

7.72 Consider the population of all 1-gal cans of dusty
rose paint manufactured by a particular paint company.
Suppose that a normal distribution with mean m � 5 ml
and standard deviation s � 0.2 ml is a reasonable model
for the distribution of the variable x � amount of red dye
in the paint mixture. Use the normal distribution model to
calculate the following probabilities:
a. P(x � 5.0) d. P(4.6 � x � 5.2)
b. P(x � 5.4) e. P(x � 4.5)
c. P(x � 5.4) f. P(x � 4.0)

7.73 Consider babies born in the “normal” range of 37–
43 weeks gestational age. Extensive data support the as-
sumption that for such babies born in the United States,
birth weight is normally distributed with mean 3432 g and
standard deviation 482 g (“Are Babies Normal?” The
American Statistician [1999]: 298–302).
a. What is the probability that the birth weight of a ran-
domly selected baby of this type exceeds 4000 g? is be-
tween 3000 and 4000 g?
b. What is the probability that the birth weight of a ran-
domly selected baby of this type is either less than 2000 g
or greater than 5000 g?
c. What is the probability that the birth weight of a ran-
domly selected baby of this type exceeds 7 lb? (Hint:
1 lb � 453.59 g.)
d. How would you characterize the most extreme 0.1% of
all birth weights?
e. If x is a random variable with a normal distribution and
a is a numerical constant (a � 0), then y � ax also has a
normal distribution. Use this formula to determine the
distribution of birth weight expressed in pounds (shape,
mean, and standard deviation), and then recalculate the
probability from Part (c). How does this compare to your
previous answer?

7.74 A machine that cuts corks for wine bottles operates
in such a way that the distribution of the diameter of the
corks produced is well approximated by a normal distribu-
tion with mean 3 cm and standard deviation 0.1 cm. The
specifications call for corks with diameters between 2.9
and 3.1 cm. A cork not meeting the specifications is
considered defective. (A cork that is too small leaks and
causes the wine to deteriorate; a cork that is too large

7.6 ■ Normal Distributions 413

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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........................................................................................................................................

7.7 Checking for Normality and 
Normalizing Transformations

Some of the most frequently used statistical methods are valid only when a sample 
x1, x2, . . . , xn has come from a population distribution that is at least approximately
normal. One way to see whether an assumption of population normality is plausible 
is to construct a normal probability plot of the data. One version of this plot uses

doesn’t fit in the bottle.) What proportion of corks
produced by this machine are defective?

7.75 Refer to Exercise 7.74. Suppose that there are two
machines available for cutting corks. The machine
described in the preceding problem produces corks with
diameters that are approximately normally distributed with
mean 3 cm and standard deviation 0.1 cm. The second
machine produces corks with diameters that are approxi-
mately normally distributed with mean 3.05 cm and
standard deviation 0.01 cm. Which machine would you
recommend? (Hint: Which machine would produce fewer
defective corks?)

7.76 A gasoline tank for a certain car is designed to hold
15 gal of gas. Suppose that the variable x � actual capac-
ity of a randomly selected tank has a distribution that is
well approximated by a normal curve with mean 15.0 gal
and standard deviation 0.1 gal.
a. What is the probability that a randomly selected tank
will hold at most 14.8 gal?
b. What is the probability that a randomly selected tank
will hold between 14.7 and 15.1 gal?
c. If two such tanks are independently selected, what is
the probability that both hold at most 15 gal?

7.77 ▼ The time that it takes a randomly selected job ap-
plicant to perform a certain task has a distribution that can
be approximated by a normal distribution with a mean
value of 120 sec and a standard deviation of 20 sec. The
fastest 10% are to be given advanced training. What task
times qualify individuals for such training?

7.78 A machine that produces ball bearings has initially
been set so that the true average diameter of the bearings
it produces is 0.500 in. A bearing is acceptable if its diam-
eter is within 0.004 in. of this target value. Suppose, how-
ever, that the setting has changed during the course of

production, so that the distribution of the diameters pro-
duced is well approximated by a normal distribution with
mean 0.499 in. and standard deviation 0.002 in. What per-
centage of the bearings produced will not be acceptable?

7.79 ▼ Suppose that the distribution of net typing rate in
words per minute (wpm) for experienced typists can be
approximated by a normal curve with mean 60 wpm and
standard deviation 15 wpm (“Effects of Age and Skill in
Typing”, Journal of Experimental Psychology [1984]:
345–371).
a. What is the probability that a randomly selected typist’s
net rate is at most 60 wpm? less than 60 wpm?
b. What is the probability that a randomly selected typ-
ist’s net rate is between 45 and 90 wpm?
c. Would you be surprised to find a typist in this popula-
tion whose net rate exceeded 105 wpm? (Note: The largest
net rate in a sample described in the paper is 104 wpm.)
d. Suppose that two typists are independently selected.
What is the probability that both their typing rates exceed
75 wpm?
e. Suppose that special training is to be made available to
the slowest 20% of the typists. What typing speeds would
qualify individuals for this training?

7.80 Consider the variable x � time required for a college
student to complete a standardized exam. Suppose that for
the population of students at a particular university, the
distribution of x is well approximated by a normal curve
with mean 45 min and standard deviation 5 min.
a. If 50 min is allowed for the exam, what proportion of
students at this university would be unable to finish in the
allotted time?
b. How much time should be allowed for the exam if we
wanted 90% of the students taking the test to be able to
finish in the allotted time?
c. How much time is required for the fastest 25% of all
students to complete the exam?

414 C h a p t e r 7 ■ Random Variables and Probability Distributions

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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7.7 ■ Checking for Normality and Normalizing Transformations 415

quantities called normal scores. The values of the normal scores depend on the
sample size n. For example, the normal scores when n � 10 are as follows:

�1.539 �1.001 �.656 �.376 �.123
.123 .376 .656 1.001 1.539

To interpret these numbers, think of selecting sample after sample from a standard nor-
mal distribution, each one consisting of n � 10 observations. Then �1.539 is the long-
run average of the smallest observation from each sample, �1.001 is the long-run aver-
age of the second smallest observation from each sample, and so on. In other words,
�1.539 is the mean value of the smallest observation in a sample of size 10 from the z
distribution, �1.001 is the mean value of the second smallest observation, and so on.

Extensive tabulations of normal scores for many different sample sizes are avail-
able. Alternatively, many software packages (such as MINITAB and SAS) and some
graphing calculators can compute these scores on request and then construct a normal
probability plot. Not all calculators and software packages use the same algorithm to
compute normal scores. However, this does not change the overall character of a nor-
mal probability plot, so either the tabulated values or those given by the computer or
calculator can be used.

After the sample observations are ordered from smallest to largest, the smallest
normal score is paired with the smallest observation, the second smallest normal score
with the second smallest observation, and so on. The first number in a pair is the nor-
mal score, and the second number in the pair is the observed data value. A normal
probability plot is just a scatterplot of the (normal score, observed value) pairs.

If the sample has been selected from a standard normal distribution, the second
number in each pair should be reasonably close to the first number (ordered observa-
tion � corresponding mean value). Then the n plotted points will fall near a line with
slope equal to 1 (a 45� line) passing through (0, 0). When the sample has been obtained
from some normal population distribution (but not necessarily the standard normal
distribution), the plotted points should be close to some straight line.

........................................... . . . . . . . . . . . ....................................................................................

Example 7.29 Window Widths

The following 10 observations are widths of contact windows in integrated circuit
chips:

3.21 2.49 2.94 4.38 4.02 3.62 3.30 2.85 3.34 3.81

The 10 pairs for the normal probability plot are then

(�1.539, 2.49) (0.123, 3.34)
(�1.001, 2.85) (0.376, 3.62)
(�0.656, 2.94) (0.656, 3.81)

D E F I N I T I O N

A normal probability plot is a scatter plot of the (normal score, observed
value) pairs. A substantial linear pattern in a normal probability plot sug-
gests that population normality is plausible.  On the other hand, a systematic
departure from a straight-line pattern (such as curvature in the plot) casts
doubt on the legitimacy of assuming a normal population distribution.

07-W4959  10/7/08  3:06 PM  Page 415



416 C h a p t e r 7 ■ Random Variables and Probability Distributions

(�0.376, 3.21) (1.001, 4.02)
(�0.123, 3.30) (1.539, 4.38)

The normal probability plot is shown in Figure 7.36. The linearity of the plot sup-
ports the assumption that the window width distribution from which these observa-
tions were drawn is normal.

■

The decision as to whether a plot shows a substantial linear pattern is somewhat
subjective. Particularly when n is small, normality should not be ruled out unless the
departure from linearity is clear-cut. Figure 7.37 displays several plots that suggest a
nonnormal population distribution.

■ Using the Correlation Coefficient to Check Normality ................................

The correlation coefficient r was introduced in Chapter 5 as a quantitative measure of
the extent to which the points in a scatterplot fall close to a straight line. Consider the
n (normal score, observed value) pairs:

(smallest normal score, smallest observation)

(largest normal score, largest observation)

Then the correlation coefficient can be computed as discussed in Chapter 5. The nor-
mal probability plot always slopes upward (because it is based on values ordered from

o

(a) (b) (c)

F igure 7.37 Plots sug-
gesting nonnormality: (a) in-
dication that the population
distribution is skewed; 
(b) indication that the popu-
lation distribution has heav-
ier tails than a normal curve;
(c) presence of an outlier.

0.50 1.0 1.5–1.5 –1.0 –0.5

2.5

3.0

3.5

4.0

4.5

Observation

Normal score

F igure 7.36 A nor-
mal probability plot for
Example 7.29.
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7.7 ■ Checking for Normality and Normalizing Transformations 417

smallest to largest), so r will be a positive number. A value of r quite close to 1 indicates
a very strong linear relationship in the normal probability plot. If r is too much smaller
than 1, normality of the underlying distribution is questionable.

How far below 1 does r have to be before we begin to seriously doubt the plausi-
bility of normality? The answer depends on the sample size n. If n is small, an r value
somewhat below 1 is not surprising, even when the distribution is normal, but if n is
large, only an r value very close to 1 supports the assumption of normality. For se-
lected values of n, Table 7.2 gives critical values to which r can be compared to check
for normality. If your sample size is in between two tabulated values of n, use the crit-
ical value for the larger sample size. (For example, if n � 46, use the value .966 for
sample size 50.)

Table 7.2 Values to Which r Can Be Compared to Check for Normality*

n 5 10 15 20 25 30 40 50 60 75
Critical r .832 .880 .911 .929 .941 .949 .960 .966 .971 .976

*Source: MINITAB User’s Manual.

How were the critical values in Table 7.2 obtained? Consider the critical value
.941 for n � 25. Suppose that the underlying distribution is actually normal. Consider
obtaining a large number of different samples, each one consisting of 25 observations,
and computing the value of r for each one. Then it can be shown that only 1% of the
samples result in an r value less than the critical value .941. That is, .941 was chosen
to guarantee a 1% error rate: In only 1% of all cases will we judge normality implau-
sible when the distribution is really normal. The other critical values are also chosen
to yield a 1% error rate for the corresponding sample sizes.

It might have occurred to you that another type of error is possible: obtaining a
large value of r and concluding that normality is a reasonable assumption when the
distribution is actually nonnormal. This type of error is more difficult to control than
the type mentioned previously, but the procedure we have described generally does a
good job in both respects.

........................................... . . . . . . . . . . . ....................................................................................

Example 7.30 Window Widths Continued

The sample size for the contact window width data of Example 7.29 is n � 10. The
critical r, from Table 7.2 is then .880. The correlation coefficient calculated using the
(normal score, observed value) pairs is r � .995. Because r is larger than the critical
r for a sample of size 10, it is plausible that the population distribution of window
widths from which this sample was drawn is approximately normal.

■

If

r � critical r for corresponding n

considerable doubt is cast on the assumption of population normality.
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418 C h a p t e r 7 ■ Random Variables and Probability Distributions

■ Transforming Data to Obtain a Distribution That Is 
Approximately Normal . . . . ........................................................... ......................

Many of the most frequently used statistical methods are valid only when the sample
is selected at random from a population whose distribution is at least approximately
normal. When a sample histogram shows a distinctly nonnormal shape, it is common
to use a transformation or reexpression of the data. By transforming data, we mean ap-
plying some specified mathematical function (such as the square root, logarithm, or re-
ciprocal) to each data value to produce a set of transformed data. We can then study
and summarize the distribution of these transformed values using methods that require
normality. We saw in Chapter 5 that, with bivariate data, one or both of the variables
can be transformed in an attempt to find two variables that are linearly related. With
univariate data, a transformation is usually chosen to yield a distribution of trans-
formed values that is more symmetric and more closely approximated by a normal
curve than was the original distribution.

............................................. . . . . . . . . . . . . .................................................................................

Example 7.31 Rainfall Data

● Data that have been used by several investigators to introduce the concept of trans-
formation (e.g., “Exploratory Methods for Choosing Power Transformations,” Journal
of the American Statistical Association [1982]: 103–108) consist of values of March
precipitation for Minneapolis–St. Paul over a period of 30 years. These values are
given in Table 7.3, along with the square root of each value. Histograms of both the
original and the transformed data appear in Figure 7.38. The distribution of the origi-
nal data is clearly skewed, with a long upper tail. The square-root transformation re-
sults in a substantially more symmetric distribution, with a typical (i.e., central) value
near the 1.25 boundary between the third and fourth class intervals.

Table 7.3 Original and Square-Root-Transformed Values of March Precipitation in Minneapolis–
St. Paul over a 30-year Period

Year Precipitation Year Precipitation

1 .77 .88 16 1.62 1.27
2 1.74 1.32 17 1.31 1.14
3 .81 .90 18 .32 .57
4 1.20 1.10 19 .59 .77
5 1.95 1.40 20 .81 .90
6 1.20 1.10 21 2.81 1.68
7 .47 .69 22 1.87 1.37
8 1.43 1.20 23 1.18 1.09
9 3.37 1.84 24 1.35 1.16

10 2.20 1.48 25 4.75 2.18
11 3.00 1.73 26 2.48 1.57
12 3.09 1.76 27 .96 .98
13 1.51 1.23 28 1.89 1.37
14 2.10 1.45 29 .90 .95
15 .52 .72 30 2.05 1.43

2Precipitation2Precipitation

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available

07-W4959  10/7/08  3:06 PM  Page 418



7.7 ■ Checking for Normality and Normalizing Transformations 419

■

Logarithmic transformations are also common and, as with bivariate data, either
the natural logarithm or the base 10 logarithm can be used. A logarithmic transforma-
tion is usually applied to data that are positively skewed (a long upper tail). This af-
fects values in the upper tail substantially more than values in the lower tail, yielding
a more symmetric—and often more nearly normal—distribution.

........................................... . . . . . . . . . . . ....................................................................................

Example 7.32 Beryllium Exposure

● Exposure to beryllium is known to produce adverse effects on lungs as well as on
other tissues and organs in both laboratory animals and humans. The article “Time
Lapse Cinematographic Analysis of Beryllium: Lung Fibroblast Interactions” (Envi-
ronmental Research [1983]: 34–43) reported the results of experiments designed to
study the behavior of certain individual cells that had been exposed to beryllium. 
An important characteristic of such an individual cell is its interdivision time (IDT).
IDTs were determined for a large number of cells under both exposed (treatment)
and unexposed (control) conditions. The authors of the article stated, “The IDT dis-
tributions are seen to be skewed, but the natural logs do have an approximate normal
distribution.” The same property holds for log10 transformed data. We give represen-
tative IDT data in Table 7.4 and the resulting histograms in Figure 7.39, which are in
agreement with the authors’ statement.

Table 7.4 Original and log10(IDT) Values

IDT log10(IDT) IDT log10(IDT) IDT log10(IDT)

28.1 1.45 31.2 1.49 13.7 1.14
46.0 1.66 25.8 1.41 16.8 1.23
34.8 1.54 62.3 1.79 28.0 1.45
17.9 1.25 19.5 1.29 21.1 1.32
31.9 1.50 28.9 1.46 60.1 1.78
23.7 1.37 18.6 1.27 21.4 1.33
26.6 1.42 26.2 1.42 32.0 1.51
43.5 1.64 17.4 1.24 38.8 1.59
30.6 1.49 55.6 1.75 25.5 1.41
52.1 1.72 21.0 1.32 22.3 1.35
15.5 1.19 36.3 1.56 19.1 1.28
38.4 1.58 72.8 1.86 48.9 1.69
21.4 1.33 20.7 1.32 57.3 1.76
40.9 1.61

0 1 2 3 4 5 0.5 1.0 1.5 2.0

(b)(a)

F igure 7.38 Histograms
of the precipitation data used
in Example 7.31: (a) un-
transformed data; (b) square-
root transformed data.

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available
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420 C h a p t e r 7 ■ Random Variables and Probability Distributions

The sample size for the IDT data is n � 40. The correlation coefficient for the
(normal score, original [untransformed] data) pairs is .950, which is less than the
critical r for n � 40 (critical r � .960). The correlation coefficient using the trans-
formed data is .998, which is much larger than the critical r, supporting the asser-
tion that log10(IDT) has approximately a normal distribution. Figure 7.40 displays
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F igure 7.39 Histograms
of the IDT data used in
Example 7.32: (a) untrans-
formed data; (b) log10

transformed data.
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(a)

1.1 1.3 1.5 1.7

(b)

1.9

F igure 7.40 MINITAB-
generated normal probabil-
ity plots for Example 7.32:
(a) original IDT data; 
(b) log-transformed IDT.
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7.7 ■ Checking for Normality and Normalizing Transformations 421

MINITAB normal probability plots for the original data and for the transformed
data. The plot for the transformed data is clearly more linear in appearance than the
plot for the original data.

■

■ Selecting a Transformation ..............................................................................

Occasionally, a particular transformation can be dictated by some theoretical argu-
ment, but often this is not the case and you may wish to try several different transfor-
mations to find one that is satisfactory. Figure 7.41, from the article “Distribution of
Sperm Counts in Suspected Infertile Men” (Journal of Reproduction and Fertility
[1983]: 91–96), shows what can result from such a search. Other investigators in this
field had previously used all three of the transformations illustrated.

(a) (b)

N
um

be
r 

of
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as
es

(c) (d)

Sperm concentrations (106/ml)

Sperm concentrations (106/ml)

N
um

be
r 

of
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es

F igure 7.41 Histograms of sperm concentrations for 1711 suspected infertile men:
(a) untransformed data (highly skewed); (b) log-transformed data (reasonably symmet-
ric); (c) square-root-transformed data; (d) cube-root-transformed data.
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422 C h a p t e r 7 ■ Random Variables and Probability Distributions

■ E x e r c i s e s 7.81–7.92

7.81 Ten measurements of the steam rate (in pounds per
hour) of a distillation tower were used to construct the 
following normal probability plot (“A Self-Descaling Dis-
tillation Tower,” Chemical Engineering Process [1968]:
79–84). Based on the plot, do you think it is reasonable to
assume that the normal distribution provides an adequate
description of the steam rate distribution? Explain.

7.82 The following normal probability plot was con-
structed using part of the data appearing in the paper
“Trace Metals in Sea Scallops” (Environmental Con-
centration and Toxicology 19: 1326–1334).

The variable under study was the amount of cadmium in
North Atlantic scallops. Do the sample data suggest that the
cadmium concentration distribution is not normal? Explain.

7.83 ● Consider the following 10 observations on the life-
time (in hours) for a certain type of component: 152.7,
172.0, 172.5, 173.3, 193.0, 204.7, 216.5, 234.9, 262.6,
422.6. Construct a normal probability plot, and comment
on the plausibility of a normal distribution as a model for
component lifetime.

7.84 The paper “The Load-Life Relationship for M50
Bearings with Silicon Nitride Ceramic Balls” (Lubrication
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Engineering [1984]: 153–159) reported the following data
on bearing load life (in millions of revolutions); the corre-
sponding normal scores are also given:

x Normal Score x Normal Score

47.1 �1.867 240.0 0.062
68.1 �1.408 240.0 0.187
68.1 �1.131 278.0 0.315
90.8 �0.921 278.0 0.448

103.6 �0.745 289.0 0.590
106.0 �0.590 289.0 0.745
115.0 �0.448 367.0 0.921
126.0 �0.315 385.9 1.131
146.6 �0.187 392.0 1.408
229.0 �0.062 395.0 1.867

Construct a normal probability plot. Is normality plausible?

7.85 ● The following observations are DDT concentra-
tions in the blood of 20 people:

24 26 30 35 35 38 39 40 40 41 42 52
56 58 61 75 79 88 102 42

Use the normal scores from Exercise 7.84 to construct a
normal probability plot, and comment on the appropriate-
ness of a normal probability model.

7.86 ● Consider the following sample of 25 observations
on the diameter x (in centimeters) of a disk used in a cer-
tain system:

16.01 16.08 16.13 15.94 16.05 16.27 15.89
15.84 15.95 16.10 15.92 16.04 15.82 16.15
16.06 15.66 15.78 15.99 16.29 16.15 16.19
16.22 16.07 16.13 16.11

The 13 largest normal scores for a sample of size 25 are
1.965, 1.524, 1.263, 1.067, 0.905, 0.764, 0.637, 0.519,
0.409, 0.303, 0.200, 0.100, and 0. The 12 smallest scores
result from placing a negative sign in front of each of the
given nonzero scores. Construct a normal probability plot.
Does it appear plausible that disk diameter is normally
distributed? Explain.

7.87 ● Example 7.31 examined rainfall data for Min-
neapolis–St. Paul. The square-root transformation was used
to obtain a distribution of values that was more symmetric

...................................................................... ............................................
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than the distribution of the original data. Another power
transformation that has been suggested by meteorologists
is the cube root: transformed value � (original value)1/3.
The original values and their cube roots (the transformed
values) are given in the following table:

Original Transformed Original Transformed

0.32 0.68 1.51 1.15
0.47 0.78 1.62 1.17
0.52 0.80 1.74 1.20
0.59 0.84 1.87 1.23
0.77 0.92 1.89 1.24
0.81 0.93 1.95 1.25
0.81 0.93 2.05 1.27
0.90 0.97 2.10 1.28
0.96 0.99 2.20 1.30
1.18 1.06 2.48 1.35
1.20 1.06 2.81 1.41
1.20 1.06 3.00 1.44
1.31 1.09 3.09 1.46
1.35 1.11 3.37 1.50
1.43 1.13 4.75 1.68

Construct a histogram of the transformed data. Compare
your histogram to those given in Figure 7.38. Which of
the cube-root and square-root transformations appear to
result in the more symmetric histogram(s)?

7.88 ● The following data are a sample of survival times
(days from diagnosis) for patients suffering from chronic
leukemia of a certain type (Statistical Methodology for
Survival Time Studies [Bethesda, MD: National Cancer 
Institute, 1986]):

7 47 58 74 177 232 273 285
317 429 440 445 455 468 495 497
532 571 579 581 650 702 715 779
881 900 930 968 1077 1109 1314 1334

1367 1534 1712 1784 1877 1886 2045 2056
2260 2429 2509

a. Construct a relative frequency distribution for this data
set, and draw the corresponding histogram.
b. Would you describe this histogram as having a positive
or a negative skew?
c. Would you recommend transforming the data? Explain.

7.89 ● In a study of warp breakage during the weaving
of fabric (Technometrics [1982]: 63), 100 pieces of yarn
were tested. The number of cycles of strain to breakage

was recorded for each yarn sample. The resulting data are
given in the following table:

86 146 251 653 98 249 400 292 131 176
76 264 15 364 195 262 88 264 42 321

180 198 38 20 61 121 282 180 325 250
196 90 229 166 38 337 341 40 40 135
597 246 211 180 93 571 124 279 81 186
497 182 423 185 338 290 398 71 246 185
188 568 55 244 20 284 93 396 203 829
239 236 277 143 198 264 105 203 124 137
135 169 157 224 65 315 229 55 286 350
193 175 220 149 151 353 400 61 194 188

a. Construct a frequency distribution using the class inter-
vals 0 to � 100, 100 to � 200, and so on.
b. Draw the histogram corresponding to the frequency
distribution in Part (a). How would you describe the shape
of this histogram?
c. Find a transformation for these data that results in a
more symmetric histogram than what you obtained in 
Part (b).

7.90 The article “The Distribution of Buying Frequency
Rates” (Journal of Marketing Research [1980]: 210–216)
reported the results of a -year study of dentifrice pur-
chases. The investigators conducted their research using 
a national sample of 2071 households and recorded the
number of toothpaste purchases for each household partic-
ipating in the study. The results are given in the following
frequency distribution:

Number of Number of House-
Purchases holds (Frequency)

10 to �20 904
20 to �30 500
30 to �40 258
40 to �50 167
50 to �60 94
60 to �70 56
70 to �80 26
80 to �90 20
90 to �100 13

100 to �110 9
110 to �120 7
120 to �130 6
130 to �140 6
140 to �150 3
150 to �160 0
160 to �170 2

31
2

7.7 ■ Checking for Normality and Normalizing Transformations 423

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available

07-W4959  10/7/08  3:06 PM  Page 423



a. Draw a histogram for this frequency distribution. Would
you describe the histogram as positively or negatively
skewed?
b. Does the square-root transformation result in a histo-
gram that is more symmetric than that of the original
data? (Be careful! This one is a bit tricky, because you
don’t have the raw data; transforming the endpoints of the
class intervals will result in class intervals that are not
necessarily of equal widths, so the histogram of the trans-
formed values will have to be drawn with this in mind.)

7.91 ● The paper “Temperature and the Northern Distrib-
utions of Wintering Birds” (Ecology [1991]: 2274–2285)
gave the following body masses (in grams) for 50 differ-
ent bird species:

7.7 10.1 21.6 8.6 12.0 11.4 16.6 9.4
11.5 9.0 8.2 20.2 48.5 21.6 26.1 6.2
19.1 21.0 28.1 10.6 31.6 6.7 5.0 68.8
23.9 19.8 20.1 6.0 99.6 19.8 16.5 9.0

448.0 21.3 17.4 36.9 34.0 41.0 15.9 12.5
10.2 31.0 21.5 11.9 32.5 9.8 93.9 10.9
19.6 14.5

a. Construct a stem-and-leaf display in which 448.0 is
listed separately beside the display as an outlier on the
high side, the stem of an observation is the tens digit, the

leaf is the ones digit, and the tenths digit is suppressed
(e.g., 21.5 has stem 2 and leaf 1). What do you perceive as
the most prominent feature of the display?
b. Draw a histogram based on class intervals 5 to �10, 10
to �15, 15 to �20, 20 to �25, 25 to �30, 30 to �40, 40
to �50, 50 to �100, and 100 to �500. Is a transformation
of the data desirable? Explain.
c. Use a calculator or statistical computer package to cal-
culate logarithms of these observations, and construct a
histogram. Is the log transformation successful in produc-
ing a more symmetric distribution?

d. Consider transformed value � and

construct a histogram of the transformed data. Does it 
appear to resemble a normal curve?

7.92 The following figure appeared in the paper “EDTA-
Extractable Copper, Zinc, and Manganese in Soils of the
Canterbury Plains” (New Zealand Journal of Agricultural
Research [1984]: 207–217). A large number of topsoil
samples were analyzed for manganese (Mn), zinc (Zn),
and copper (Cu), and the resulting data were summarized
using histograms. The investigators transformed each data
set using logarithms in an effort to obtain more symmetric
distributions of values. Do you think the transformations
were successful? Explain.

1

1original value
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........................................................................................................................................

7.8 Using the Normal Distribution to Approximate 
a Discrete Distribution

The distribution of many random variables can be approximated by a carefully chosen
normal distribution. In this section, we show how probabilities for some discrete ran-
dom variables can be approximated using a normal curve. The most important case of
this is the approximation of binomial probabilities.

■ The Normal Curve and Discrete Variables ....................................................

The probability distribution of a discrete random variable x is
represented pictorially by a probability histogram. The proba-
bility of a particular value is the area of the rectangle centered
at that value. Possible values of x are isolated points on the num-
ber line, usually whole numbers. For example, if x � the IQ of
a randomly selected 8-year-old child, then x is a discrete ran-
dom variable, because an IQ score must be a whole number.

Often a probability histogram can be well approximated by
a normal curve, as illustrated in Figure 7.42. In such cases, it is
customary to say that x has approximately a normal distribu-
tion. The normal distribution can then be used to calculate ap-
proximate probabilities of events involving x.

. . . . . . . . . . . ................................ . . . . . . . . . . . ....................................................................................

Example 7.33 Express Mail Packages

The number of express mail packages mailed at a certain post office on a randomly
selected day is approximately normally distributed with mean 18 and standard devia-
tion 6. Let’s first calculate the approximate probability that x � 20. Figure 7.43(a)
shows a portion of the probability histogram for x with the approximating normal
curve superimposed. The area of the shaded rectangle is P(x � 20). The left edge 
of this rectangle is at 19.5 on the horizontal scale, and the right edge is at 20.5.
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F igure 7.42 A normal curve approximation to
a probability histogram.

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available

07-W4959  10/7/08  3:06 PM  Page 425



Therefore, the desired probability is approximately the area under the normal curve
between 19.5 and 20.5. Standardizing these limits gives

from which we get

P(x � 20) � P(.25 � z � .42) � .6628 � .5987 � .0641

In a similar fashion, Figure 7.43(b) shows that P(x � 10) is
approximately the area under the normal curve to the left of
10.5. Then

■ 

The calculation of probabilities in Example 7.33 illustrates the use of what is
known as a continuity correction. Because the rectangle for x � 10 extends to 10.5
on the right, we use the normal curve area to the left of 10.5 rather than 10. In general,
if possible x values are consecutive whole numbers, then P(a � x � b) will be ap-
proximately the normal curve area between limits and 

■ Normal Approximation to a Binomial Distribution ................. ......................

Figure 7.44 shows the probability histograms for two binomial distributions, one with
n � 25, p� .4, and the other with n � 25, p� .1. For each distribution, we computed
m� np and and then we superimposed a normal curve with this m
and s on the corresponding probability histogram. A normal curve fits the probability
histogram well in the first case (Figure 7.44(a)). When this happens, binomial proba-
bilities can be accurately approximated by areas under the normal curve. Because of
this, statisticians say that both x (the number of successes) and x/n (the proportion of
successes) are approximately normally distributed. In the second case (Figure 7.44(b)),
the normal curve does not give a good approximation because the probability histogram
is skewed, whereas the normal curve is symmetric.
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F igure 7.44 Normal ap-
proximations to binomial
distributions.

s � 1np11 � p 2

b � 1
2.a � 1

2

 � .1056

 P1x � 10 2 � P a z �
10.5 � 18

6
b � P1z � �1.25 2

20.5 � 18

6
� .42  

19.5 � 18

6
� .25
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F igure 7.43 The normal approximation for 
Example 7.33.
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When either np � 10 or n(1 � p) � 10, the binomial distribution is too skewed
for the normal approximation to give accurate results.

........................................... . . . . . . . . . . . ....................................................................................

Example 7.34 Premature Babies

Premature babies are those born more than 3 weeks early. Newsweek (May 16, 1988)
reported that 10% of the live births in the United States are premature. Suppose that
250 live births are randomly selected and that the number x of “preemies” is deter-
mined. Because

x has approximately a normal distribution, with

The probability that x is between 15 and 30 (inclusive) is

 � .8634
 � .8770 � .0136
 � P1�2.21 � z � 1.16 2

 P115 � x � 30 2 � P a 14.5 � 25

4.743
� z �

30.5 � 25

4.743
b

 s � 12501.1 2 1.9 2 � 4.743
 m � 2501.1 2 � 25

n11 � p 2 � 2501.9 2 � 225 	 0
 np � 2501.1 2 � 25 	 10
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Let x be a binomial random variable based on n trials and success probability p, so that

If n and p are such that

np 	 10 and n(1 � p) 	 10 

then x has approximately a normal distribution. Combining this result with the continuity cor-
rection implies that

That is, the probability that x is between a and b inclusive is approximately the area under the
approximating normal curve between and 

Similarly,

P1a � x 2 � P a a � 1
2 � m

s
� z bP1x � b 2 � P a z �

b � 1
2 � m

s
b

b � 1
2.a � 1

2

P1a � x � b 2 � P a a � 1
2 � m

s
� z �

b � 1
2 � m

s
b

m � np and s � 2np11 � p 2
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■ E x e r c i s e s 7.93–7.101

7.93 Let x denote the IQ for an individual selected at ran-
dom from a certain population. The value of x must be a
whole number. Suppose that the distribution of x can be
approximated by a normal distribution with mean value
100 and standard deviation 15. Approximate the following
probabilities:
a. P(x � 100)
b. P(x � 110) 
c. P(x � 110) (Hint: x � 110 is the same as x � 109.)
d. P(75 � x � 125)

7.94 Suppose that the distribution of the number of items
x produced by an assembly line during an 8-hr shift can be
approximated by a normal distribution with mean value
150 and standard deviation 10.
a. What is the probability that the number of items pro-
duced is at most 120?
b. What is the probability that at least 125 items are 
produced?
c. What is the probability that between 135 and 160 (in-
clusive) items are produced?

7.95 The number of vehicles leaving a turnpike at a cer-
tain exit during a particular time period has approximately
a normal distribution with mean value 500 and standard
deviation 75. What is the probability that the number of
cars exiting during this period is
a. At least 650?
b. Strictly between 400 and 550? (Strictly means that the
values 400 and 550 are not included.)
c. Between 400 and 550 (inclusive)?

7.96 Let x have a binomial distribution with n � 50 and
p � .6, so that m � np � 30 and s � �
3.4641. Calculate the following probabilities using the
normal approximation with the continuity correction:
a. P(x � 30)
b. P(x � 25)
c. P(x � 25)
d. P(25 � x � 40)
e. P(25 � x � 40) (Hint: 25 � x � 40 is the same as 
26 � x � 39.)

7.97 Seventy percent of the bicycles sold by a certain
store are mountain bikes. Among 100 randomly selected
bike purchases, what is the approximate probability that
a. At most 75 are mountain bikes?
b. Between 60 and 75 (inclusive) are mountain bikes?
c. More than 80 are mountain bikes?
d. At most 30 are not mountain bikes?

7.98 Suppose that 25% of the fire alarms in a large city
are false alarms. Let x denote the number of false alarms
in a random sample of 100 alarms. Give approximations
to the following probabilities:
a. P(20 � x � 30)
b. P(20 � x � 30)
c. P(35 � x)
d. The probability that x is farther than 2 standard devia-
tions from its mean value

7.99 Suppose that 65% of all registered voters in a certain
area favor a 7-day waiting period before purchase of a

1np11 � p 2
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as shown in the following figure:

■ 
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Normal curve for µ = 25, σ = 4.743
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Background: The Salt Lake Tribune (October 11, 2002)
printed the following account of an exchange between a
restaurant manager and a health inspector:

The recipe calls for four fresh eggs for each quiche. 
A Salt Lake County Health Department inspector paid
a visit recently and pointed out that research by the
Food and Drug Administration indicates that one in
four eggs carries salmonella bacterium, so restaurants
should never use more than three eggs when prepar-
ing quiche. The manager on duty wondered aloud if
simply throwing out three eggs from each dozen and
using the remaining nine in four-egg quiches would
serve the same purpose.

1. Working in a group or as a class, discuss the folly of
the above statement!
2. Suppose the following argument is made for three-egg
quiches rather than four-egg quiches: Let x � number of
eggs that carry salmonella. Then

p(0) � p(x � 0) � (0.75)3 � .422

for three-egg quiches and

p(0) � p(x � 0) � (0.75)4 � .316

for four-egg quiches. What assumption must be made to
justify these probability calculations? Do you think this is
reasonable or not? Explain.

3. Suppose that a carton of one dozen eggs does happen
to have exactly three eggs that carry salmonella and that
the manager does as he proposes: selects three eggs at ran-
dom and throws them out, then uses the remaining nine
eggs in four-egg quiches. Let x � number of eggs that
carry salmonella among four eggs selected at random
from the remaining nine.

Working with a partner, conduct a simulation to ap-
proximate the distribution of x by carrying out the follow-
ing sequence of steps:
a. Take 12 identical slips of paper and write “Good” on
9 of them and “Bad” on the remaining 3. Place the slips of
paper in a paper bag or some other container.
b. Mix the slips and then select three at random and re-
move them from the bag.
c. Mix the remaining slips and select four “eggs” from
the bags.
d. Note the number of bad eggs among the four selected.
(This is an observed x value.)
e. Replace all slips, so that the bag now contains all 
12 “eggs.”
f. Repeat Steps (b)–(d) at least 10 times, each time
recording the observed x value.
4. Combine the observations from your group with those
from the other groups. Use the resulting data to approxi-
mate the distribution of x. Comment on the resulting dis-
tribution in the context of the risk of salmonella exposure
if the manager’s proposed procedure is used.

Activity 7.1 ■ Rotten Eggs? 429

handgun. Among 225 randomly selected voters, what is
the probability that
a. At least 150 favor such a waiting period?
b. More than 150 favor such a waiting period? 
c. Fewer than 125 favor such a waiting period?

7.100 Flash bulbs manufactured by a certain company are
sometimes defective.
a. If 5% of all such bulbs are defective, could the tech-
niques of this section be used to approximate the probabil-
ity that at least 5 of the bulbs in a random sample of size
50 are defective? If so, calculate this probability; if not,
explain why not.
b. Reconsider the question posed in Part (a) for the proba-
bility that at least 20 bulbs in a random sample of size 500
are defective.

7.101 A company that manufactures mufflers for cars of-
fers a lifetime warranty on its products, provided that own-
ership of the car does not change. Suppose that only 20%
of its mufflers are replaced under this warranty.
a. In a random sample of 400 purchases, what is the ap-
proximate probability that between 75 and 100 (inclusive)
mufflers are replaced under warranty?
b. Among 400 randomly selected purchases, what is the
probability that at most 70 mufflers are ultimately replaced
under warranty?
c. If you were told that fewer than 50 among 400 ran-
domly selected purchases were ever replaced under war-
ranty, would you question the 20% figure? Explain.

A c t i v i t y 7.1 Rotten Eggs?
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S u m m a r y  o f  K e y  Te r m s  a n d  C o n c e p t s
Term or Formula Comment

Random variable: discrete or continuous A numerical variable with a value determined by the
outcome of a chance experiment. It is discrete if its pos-
sible values are isolated points along the number line
and continuous if its possible values form an entire inter-
val on the number line.

Probability distribution p(x) of a discrete A formula, table, or graph that gives the probability 
random variable x associated with each x value. Conditions on p(x) are

(1) p(x) 	 0, and
(2) , where the sum is over all possible 

x values.

Probability distribution of a continuous random variable x Specified by a smooth (density) curve for which the total
area under the curve is 1. The probability P(a � x � b)
is the area under the curve and above the interval from a
to b; this is also P(a � x � b).

mx and sx The mean and standard deviation, respectively, of a ran-
dom variable x. These quantities describe the center and
extent of spread about the center of the variable’s proba-
bility distribution.

The mean value of a discrete random variable x; it lo-
cates the center of the variable’s probability distribution.

The variance and standard deviation, respectively, of a 
discrete random variable; these are measures of the 
extent to which the variable’s distribution spreads out
about the mean mx.

Binomial probability distribution This formula gives the probability of observing x suc-
cesses (x � 0, 1, . . . , n) among n trials of a binomial 
experiment.

The mean and standard deviation of a binomial random 
variable.

Normal distribution A continuous probability distribution that has a bell-
shaped density curve. A particular normal distribution is
determined by specifying values of m and s.

Standard normal distribution This is the normal distribution with m � 0 and s � 1.
The density curve is called the z curve, and z is the letter
commonly used to denote a variable having this distribu-
tion. Areas under the z curve to the left of various values
are given in Appendix Table 2.

z critical value A number on the z measurement scale that captures a
specified tail area or central area.

z is obtained by “standardizing”: subtracting the mean 
and then dividing by the standard deviation. When x has a
normal distribution, z has a standard normal distribution. 

z �
x � m

s

sx � 1np 11 � p 2
mx � np

p1x 2 �
n!

x!1n � x 2 ! px11 � p 2 n�x

sx � 2s2
x

s2
x � g 1x � mx 2 2p1x 2

mx � g  xp 1x 2

g  p 1x 2 � 1
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7.102 An article in the Los Angeles Times (December 8,
1991) reported that there are 40,000 travel agencies na-
tionwide, of which 11,000 are members of the American
Society of Travel Agents (booking a tour through an
ASTA member increases the likelihood of a refund in 
the event of cancellation).
a. If x is the number of ASTA members among 5000 ran-
domly selected agencies, could you use the methods of
Section 7.8 to approximate P(1200 � x � 1400)? Why 
or why not?
b. In a random sample of 100 agencies, what are the
mean value and standard deviation of the number of
ASTA members?
c. If the sample size in Part (b) is doubled, does the stan-
dard deviation double? Explain.

7.103 A soft-drink machine dispenses only regular Coke
and Diet Coke. Sixty percent of all purchases from this
machine are diet drinks. The machine currently has 10
cans of each type. If 15 customers want to purchase drinks
before the machine is restocked, what is the probability
that each of the 15 is able to purchase the type of drink
desired? (Hint: Let x denote the number among the 15
who want a diet drink. For which possible values of x is
everyone satisfied?)

7.104 A mail-order computer software business has six
telephone lines. Let x denote the number of lines in use 
at a specified time. The probability distribution of x is as
follows:

x 0 1 2 3 4 5 6
p(x) .10 .15 .20 .25 .20 .06 .04

Write each of the following events in terms of x, and then
calculate the probability of each one:
a. At most three lines are in use
b. Fewer than three lines are in use
c. At least three lines are in use
d. Between two and five lines (inclusive) are in use
e. Between two and four lines (inclusive) are not in use
f. At least four lines are not in use

7.105 Refer to the probability distribution of Exercise
7.104.
a. Calculate the mean value and standard deviation of x.
b. What is the probability that the number of lines in 
use is farther than 3 standard deviations from the mean
value?
7.106 A new battery’s voltage may be acceptable (A) or
unacceptable (U). A certain flashlight requires two batter-
ies, so batteries will be independently selected and tested
until two acceptable ones have been found. Suppose that
80% of all batteries have acceptable voltages, and let y de-
note the number of batteries that must be tested.
a. What is p(2), that is, P(y � 2)?
b. What is p(3)? (Hint: There are two different outcomes
that result in y � 3.)
c. In order to have y � 5, what must be true of the fifth
battery selected? List the four outcomes for which y � 5,
and then determine p(5). 

Term or Formula Comment

This fact implies that probabilities involving any normal
random variable (any m or s) can be obtained from
z curve areas.

Normal probability plot A picture used to judge the plausibility of the assump-
tion that a sample has been selected from a normal pop-
ulation distribution. If the plot is reasonably straight, this
assumption is reasonable.

Normal approximation to the binomial distribution When both np	 10 and n(1 � p) 	 10, binomial proba-
bilities are well approximated by corresponding areas un-
der a normal curve with m� np and .

C h a p t e r  R e v i e w  E x e r c i s e s 7 . 1 0 2 – 7 . 1 2 4

Know exactly what to study! Take a pre-test and receive your Personalized Learning Plan.

s � 1np 11 � p 2
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d. Use the pattern in your answers for Parts (a)–(c) to ob-
tain a general formula for p(y).

7.107 A pizza company advertises that it puts 0.5 lb of
real mozzarella cheese on its medium pizzas. In fact, the
amount of cheese on a randomly selected medium pizza 
is normally distributed with a mean value of 0.5 lb and a
standard deviation of 0.025 lb.
a. What is the probability that the amount of cheese on a
medium pizza is between 0.525 and 0.550 lb?
b. What is the probability that the amount of cheese on 
a medium pizza exceeds the mean value by more than 
2 standard deviations?
c. What is the probability that three randomly selected me-
dium pizzas all have at least 0.475 lb of cheese?

7.108 Suppose that fuel efficiency for a particular model
car under specified conditions is normally distributed with
a mean value of 30.0 mpg and a standard deviation of 
1.2 mpg.
a. What is the probability that the fuel efficiency for a
randomly selected car of this type is between 29 and 
31 mpg?
b. Would it surprise you to find that the efficiency of a
randomly selected car of this model is less than 25 mpg?
c. If three cars of this model are randomly selected, what
is the probability that all three have efficiencies exceeding
32 mpg?
d. Find a number c such that 95% of all cars of this model
have efficiencies exceeding c (i.e., P(x � c) � .95).

7.109 The amount of time spent by a statistical consultant 
with a client at their first meeting is a random variable
having a normal distribution with a mean value of 60 min
and a standard deviation of 10 min.
a. What is the probability that more than 45 min is spent
at the first meeting?
b. What amount of time is exceeded by only 10% of all
clients at a first meeting?
c. If the consultant assesses a fixed charge of $10 (for
overhead) and then charges $50 per hour, what is the
mean revenue from a client’s first meeting?

7.110 The lifetime of a certain brand of battery is nor-
mally distributed with a mean value of 6 hr and a standard
deviation of 0.8 hr when it is used in a particular cassette
player. Suppose that two new batteries are independently
selected and put into the player. The player ceases to func-
tion as soon as one of the batteries fails.
a. What is the probability that the player functions for at
least 4 hr?
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b. What is the probability that the cassette player works
for at most 7 hr?
c. Find a number z* such that only 5% of all cassette
players will function without battery replacement for more
than z* hr.

7.111 A machine producing vitamin E capsules operates
so that the actual amount of vitamin E in each capsule is
normally distributed with a mean of 5 mg and a standard
deviation of 0.05 mg. What is the probability that a ran-
domly selected capsule contains less than 4.9 mg of vita-
min E? at least 5.2 mg?

7.112 Accurate labeling of packaged meat is difficult
because of weight decrease resulting from moisture loss
(defined as a percentage of the package’s original net
weight). Suppose that moisture loss for a package of
chicken breasts is normally distributed with mean value
4.0% and standard deviation 1.0%. (This model is sug-
gested in the paper “Drained Weight Labeling for Meat
and Poultry: An Economic Analysis of a Regulatory Pro-
posal,” Journal of Consumer Affairs [1980]: 307–325.) 
Let x denote the moisture loss for a randomly selected
package.
a. What is the probability that x is between 3.0% 
and 5.0%?
b. What is the probability that x is at most 4.0%?
c. What is the probability that x is at least 7.0%?
d. Find a number z* such that 90% of all packages have
moisture losses below z*%.
e. What is the probability that moisture loss differs from
the mean value by at least 1%?

7.113 The Wall Street Journal (February 15, 1972) re-
ported that General Electric was sued in Texas for sex dis-
crimination over a minimum height requirement of 5 ft 
7 in. The suit claimed that this restriction eliminated more
than 94% of adult females from consideration. Let x rep-
resent the height of a randomly selected adult woman.
Suppose that x is approximately normally distributed with
mean 66 in. (5 ft 6 in.) and standard deviation 2 in.
a. Is the claim that 94% of all women are shorter than 5 ft
7 in. correct?
b. What proportion of adult women would be excluded
from employment as a result of the height restriction?

7.114 The longest “run” of S’s in the sequence 
SSFSSSSFFS has length 4, corresponding to the S’s on the
fourth, fifth, sixth, and seventh trials. Consider a binomial
experiment with n � 4, and let y be the length (number of
trials) in the longest run of S’s.
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a. When p � .5, the 16 possible outcomes are equally
likely. Determine the probability distribution of y in this
case (first list all outcomes and the y value for each one).
Then calculate my.
b. Repeat Part (a) for the case p � .6.
c. Let z denote the longest run of either S’s or F’s. Deter-
mine the probability distribution of z when p � .5.

7.115 Two sisters, Allison and Teri, have agreed to meet
between 1 and 6 P.M. on a particular day. In fact, Allison 
is equally likely to arrive at exactly 1 P.M., 2 P.M., 3 P.M.,
4 P.M., 5 P.M., or 6 P.M. Teri is also equally likely to arrive
at each of these six times, and Allison’s and Teri’s arrival
times are independent of one another. Thus there are 36
equally likely (Allison, Teri) arrival-time pairs, for ex-
ample, (2, 3) or (6, 1). Suppose that the first person to ar-
rive waits until the second person arrives; let w be the
amount of time the first person has to wait.
a. What is the probability distribution of w?
b. How much time do you expect to elapse between the
two arrivals?

7.116 Four people—a, b, c, and d—are waiting to give
blood. Of these four, a and b have type AB blood, whereas
c and d do not. An emergency call has just come in for
some type AB blood. If blood samples are taken one by
one from the four people in random order for blood typing
and x is the number of samples taken to obtain an AB in-
dividual (so possible x values are 1, 2, and 3), what is the
probability distribution of x?

7.117 Bob and Lygia are going to play a series of Trivial
Pursuit games. The first person to win four games will be
declared the winner. Suppose that outcomes of successive
games are independent and that the probability of Lygia
winning any particular game is .6. Define a random vari-
able x as the number of games played in the series.
a. What is p(4)? (Hint: Either Bob or Lygia could win
four straight games.)
b. What is p(5)? (Hint: For Lygia to win in exactly five
games, what has to happen in the first four games and in
Game 5?)
c. Determine the probability distribution of x.
d. How many games can you expect the series to last?

7.118 Refer to Exercise 7.117, and let y be the number of 
games won by the series loser. Determine the probability
distribution of y.

7.119 A sporting goods store has a special sale on three
brands of tennis balls—call them D, P, and W. Because

the sale price is so low, only one can of balls will be sold
to each customer. If 40% of all customers buy Brand W,
35% buy Brand P, and 25% buy Brand D and if x is the
number among three randomly selected customers who
buy Brand W, what is the probability distribution of x?

7.120 Suppose that your statistics professor tells you that
the scores on a midterm exam were approximately nor-
mally distributed with a mean of 78 and a standard devia-
tion of 7. The top 15% of all scores have been designated
A’s. Your score is 89. Did you receive an A? Explain.

7.121 Suppose that the pH of soil samples taken from a 
certain geographic region is normally distributed with a
mean pH of 6.00 and a standard deviation of 0.10. If the
pH of a randomly selected soil sample from this region is
determined, answer the following questions about it:
a. What is the probability that the resulting pH is between
5.90 and 6.15?
b. What is the probability that the resulting pH exceeds
6.10?
c. What is the probability that the resulting pH is at most
5.95?
d. What value will be exceeded by only 5% of all such
pH values?

7.122 The lightbulbs used to provide exterior lighting for
a large office building have an average lifetime of 700 hr.
If length of life is approximately normally distributed with
a standard deviation of 50 hr, how often should all the
bulbs be replaced so that no more than 20% of the bulbs
will have already burned out?

7.123 Suppose that 16% of all drivers in a certain city are
uninsured. Consider a random sample of 200 drivers.
a. What is the mean value of the number who are unin-
sured, and what is the standard deviation of the number
who are uninsured?
b. What is the (approximate) probability that between 25
and 40 (inclusive) drivers in the sample were uninsured?
c. If you learned that more than 50 among the 200 drivers
were uninsured, would you doubt the 16% figure? Explain.

7.124 Let x denote the duration of a randomly selected
pregnancy (the time elapsed between conception and birth).
Accepted values for the mean value and standard deviation
of x are 266 days and 16 days, respectively. Suppose that
the probability distribution of x is (approximately) normal.
a. What is the probability that the duration of pregnancy
is between 250 and 300 days?
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G r a p h i n g  C a l c u l a t o r  E x p l o r a t i o n s

E x p l o r a t i o n  7.1 Discrete Probability Distributions

The calculator is at its finest when used with random variables, transforming minutes
of mindless calculation into seconds of easy button-pushing. In our calculator presen-
tation of random variables we will capitalize extensively on the list capabilities of your
calculator. We will show you not only how to graph a discrete probability distribution,
but also how to find the mean and standard deviation of a discrete random variable.

First recall that we have encountered a similar problem before when we consid-
ered the problem of graphing a relative frequency histogram of a frequency distribu-
tion. At that time frequencies were converted into relative frequencies for plotting;
now, these relative frequencies have morphed into probabilities. You begin by entering
the possible values of the random variable in your calculator’s equivalent of List1 and
the corresponding probabilities of these values in List2. For our example we will use
a numerical rating of newborn children called an Apgar score. The Apgar score has
eleven possible values, 0, 1, . . . , 10 based on factors such as muscle tone, skin color,
etc. Suppose that the scores have the following probability distribution.

b. What is the probability that the duration of pregnancy
is at most 240 days?
c. What is the probability that the duration of pregnancy
is within 16 days of the mean duration?
d. A “Dear Abby” column dated January 20, 1973, con-
tained a letter from a woman who stated that the duration
of her pregnancy was exactly 310 days. (She wrote that
the last visit with her husband, who was in the navy, oc-
curred 310 days before birth.) What is the probability that
the duration of pregnancy is at least 310 days? Does this
probability make you a bit skeptical of the claim?
e. Some insurance companies will pay the medical ex-
penses associated with childbirth only if the insurance has

been in effect for more than 9 months (275 days). This re-
striction is designed to ensure that the insurance company
pays benefits for only those pregnancies for which con-
ception occurred during coverage. Suppose that concep-
tion occurred 2 weeks after coverage began. What is the
probability that the insurance company will refuse to pay
benefits because of the 275-day insurance requirement?

Are you ready? Take your
exam-prep post-test now.

Do you need a live tutor 
for homework problems?

x 0 1 2 3 4 5 6 7 8 9 10
p(x) .002 .001 .002 .005 .02 .04 .17 .38 .25 .12 .01

In Figure 7.45(a) a portion of the calculator screen after data entry is shown. Af-
ter you enter the data you can graph the probability distribution by supplying the
proper lists in the histogram command as was done for the relative frequency histo-
gram. The graph for the Apgar probability distribution is shown in Figure 7.45(b). The
window is set so that the horizontal and vertical axis would show in the screen to give
a more informative display. The horizontal axis runs from �.5 to 12, and the vertical
axis runs from �.01 to 0.5.

434 C h a p t e r 7 ■ Random Variables and Probability Distributions

(a)

(b)

F igure 7.45 (a) Apgar
score probability distribu-
tion; (b) probability histo-
gram for Apgar score.

Bold exercises answered in back ● Data set available online but not required ▼ Video solution available

07-W4959  10/7/08  3:06 PM  Page 434



Now we turn our attention to calculating the mean and standard deviation of the
random variable. The data are already entered and we begin by recalling the definition
of the mean of a discrete random variable,

Because we have stored exactly what is needed in Lists 1 and 2, we can virtually
duplicate this definition using the language of lists and list operations for our calculator:

The strategy for finding the mean of the Apgar random variable, translated from
math symbols to English is the following: calculate the products of numbers in our Lists
1 and 2, store the results in List3, and then find the sum of all the numbers in List3. Mul-
tiplying to obtain the product is fairly easy as we appeal again to the language of lists:

List1 * List2 List3

Now we need to find the sum of the numbers in List3. Exactly how this is done will
vary from calculator to calculator. The most likely scenario is for you to calculate the
“1-variable statistics” for List3. Calculators will usually report the sum—look for this
symbol: . Be careful as you scan for the right choice in your calculator window!
Don’t be misled by the symbol for the mean; we want the sum. You should get the
value 7.16 for the Apgar mean.

We use a similar strategy to compute the standard deviation. We will find the vari-
ance first, then take the square root. The formula for the variance,

also easily translates into the language of lists:

The list language is only slightly more complicated than for the mean:

After this production the sum of the numbers in List3 is the variance of the ran-
dom variable; the square root is the standard deviation. Performing these calculations,
you should get a variance of 1.5684 (from for List3; again, don’t be misled and
choose the sx or sx. The standard deviation is then found by taking the square root of
1.5684, resulting in 1.2524.

E x p l o r a t i o n  7.2 Binomial Probability Calculations

Most calculations having to do with random variables are of one of three types. They
are (1) the probability the variable will assume a value between two given numbers,
(2) the probability the variable will assume a value less than a given number, or (3) the
probability the random variable will assume a value greater than a given number. Be-
cause these calculations are so common in statistics your calculator may have a built-
in capability for finding these probabilities. In the case of a discrete random variable
such as the binomial distribution there is a special case of (1) above, the probability
that the random variable will actually assume a particular value.

1g  
x 2

1List1 � 7.16 2 2 * List2 S List3

s2
x � a

all possible x values
1List1 � 7.16 2 2  *  List2

s2
x � a

all possible x values
1x � mx 2 2p1x 2

1g  x 2

S

mx � a
all possible x values

List1 * List2

mx � a
all possible x values

xp1x 2
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For the binomial distribution, we will illustrate these calculations using an example.
Suppose that 60% of all computer monitors have a flat panel display and 40% have a
CRT display. Suppose further that the next 12 purchases monitored, and the random
variable is defined as the number of flat panel monitors in the next 12 purchases. As an
example, the probability exactly four monitors would be flat panel displays is

Even if your calculator does not have special binomial functions it is likely to have a
key for the combinations, (nCr), possibly cleverly hidden in the “math” or “probabil-
ity” menu. The calculator keystrokes might look like this (don’t forget that to perform
the nCr calculation above you will have to press n, then the nCr key, and then r):

12 nCr 4 * .6^4 * .4^8

If your calculator has built-in binomial capabilities you will have fewer keystrokes.
Let’s consider these problems one at a time, starting with the function names. If your
calculator has a built-in function for binomial calculations, it probably has two: a func-
tion for finding the probability that “x is equal to a given value,” and a function for
finding the probability that “x is less than or equal to a given value.” The first function
is known to statisticians as a “density” function, and is commonly abbreviated “pdf”
for “probability density function.” The second is known as a “cumulative distribution
function” and is commonly labeled “cdf.” These two functions on your calculator will
in all likelihood mirror these abbreviations.

The second problem you will face is that to find the binomial probabilities the cal-
culator will need more than just one number, and the order you enter the numbers does
make a difference! Look in your calculator manual for something that looks like 
“binomial,” especially with a “pdf” somewhere. The function could be obvious, like
“binompdf,” or it may be a little more cryptic, like “binpdf.” Your manual will be very
careful to specify both what the needed function parameters are, and the order you
should enter them. As an example, one type of calculator has the following:

binompdf(numtrials, p, [x])

The manual informs that “numtrials” is the number of trials, “p” is the probability of
success, and that “x” can be either an integer or a list of integers. This information col-
lectively explains what is known as the “syntax” of the function. It is your responsi-
bility to get the numbers right, and get them in the right order! The square brackets,
“[ ],” are a standard notation in the calculator world. They indicate the bracketed quan-
tity is either optional or defaults to a preselected option if you do not enter a number
in that space. For our example, the number of trials is 12, and the probability of suc-
cess is 0.6. Since the probability of exactly 4 flat panel monitors is desired, we enter

binompdf(12, .6, 4)

Our calculator gives us 0.042042, which is the correct answer. This is a good sign!
Now try this on your calculator. Remember, you must navigate to the function in the
manner presented in your manual, and you have to pay attention to the syntax. While
you are learning how to use this function (or any calculator function), it is a very good
idea to use examples with known answers and check the results.

Now suppose you wish to find the probability of getting 4 or fewer flat panel 
monitors out of 12. The appropriate function here is the cumulative density function,
or “cdf”:

binomcdf(numtrials, p, [x])

p1x 2 � nCxp
x11 � p 2 n�x � 12C41.6 2 411 � .6 2 12�4 � .042
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Does this look disturbingly familiar? Except for the “c” instead of the “p,” they look
exactly alike! The good news is that we already understand the syntax; the bad news
is that if we aren’t careful we might get the wrong function in haste. Be careful! The
function binomcdf(12, .6, 4) gives the answer, .0573099213. If we are not convinced
of our prowess with binomcdf we can use binompdf to check the result:

binompdf(12, .6, 0) � binompdf(12, .6, 1) � � binompdf(12, .6, 4)
� .000016777 � .0003019898 � � .042042
� .05731

Now let’s move on to another of the common calculations with random variables:
What is the probability that the random variable will assume a value between 4 and 7?
One common source of confusion here is that the word between is disturbingly am-
biguous. Do we mean to include 4 and 7, or do we mean only the probability of get-
ting a 5 or 6? In this case we wish to be inclusive. To evaluate the probability desired,
we will use the cumulative distribution function for the binomial, binomcdf. (Your
calculator function may have a different name!) The logic is elementary, as Sherlock
Holmes would say. The probability that the binomial random variable will assume a
value between 4 and 7 (inclusive) is equal to the probability of assuming a value less
than or equal to 7, minus the probability of assuming a value less than or equal to 3
(not 4!). In symbols,

p(4 � x � 7) � p(x � 7) � p(x � 3)

which is found as follows:

binomcdf(12, .6, 7) � binomcdf(12, .6, 3)

gives us 0.5465545.
Our last binomial random variable calculation problem is finding the probability of

a value greater than a given value. What, for instance, is the probability of more than
7 monitors having flat panel displays? Using a fundamental property of probability, we
know that:

p(7 � x) � p(x � 7) � 1

and thus

p(7 � x) � 1 � p(x � 7)

which we translate into:

1 � binomcdf(12, .6, 7)

giving us 0.438178222.
We have gone into some detail to explain how these binomial probability prob-

lems can be solved using the calculator. This detail is justified not only because of the
importance of the binomial distribution, but also because these same calculator proce-
dures will be used for finding probabilities involving the geometric and normal ran-
dom variables, yet to come. Because the discussions in this exploration have been de-
tailed, the discussions in those cases will be less so.

In Exploration 7.1 we discussed how to graph a discrete distribution. When we
graphed the probability density function for the Apgar scores we manually entered the
outcomes and their associated probabilities. Anticipating that you may wish to con-
sider binomial chance experiments with many potential successes, we will streamline
the data entry process using some commands and functions we have already discussed
in previous calculator explorations.

p
p
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Graphing a binomial distribution will involve three steps:

1. Construct the list of possible values in List1 using the seq command (or your cal-
culator’s equivalent).

2. Construct the probabilities in List2 using the binompdf function (or your calcula-
tor’s equivalent).

3. Draw the graph (in the form of a histogram) of the probability distribution.

Consider the binomial probability distribution for n � 20 and p � .20. Carrying
out the steps below puts the integers 0 to 20 in List1, and p(x) for x values from 0 to
20 in List2.

1. seq(x, x, 0, 20) List1 puts a sequence of 21 integers into List1. (Remember to
verify your calculator syntax and the order of the information to be entered for your
calculator!)

2. binompdf(20, .2) List2. (Remember to verify . . .)
3. Now graph the probability distribution, where List1 contains the possible data val-

ues and List2 contains the probabilities.

To check your work, partial calculator screen output for this problem is given in
Figure 7.46(a) , and the graph of the distribution is shown in Figure 7.46(b).

E x p l o r a t i o n  7.3 Geometric Probability Calculations

Our calculator exploration of geometric random variables will be an echo of the bino-
mial random variables we have already discussed in Exploration 7.2. We again con-
sider (1) the probability the variable will assume a value between two given numbers,
(2) the probability the variable will assume a value less than a given number, and (3)
the probability the random variable will assume a value greater than a given number.

Our example here will be about jumper cables. Suppose that 40% of students who
drive to campus carry jumper cables. If your car has a dead battery, and you aren’t one
of the forward thinking 40%, how many students will you have to ask before you find
one with jumper cables?

Consider the first problem, the probability of a particular number. The probability
the first student stopped has jumper cables is:

p(1) � (1 � p)1�1p � (1 � .4)1�1(.4) � .4

The corresponding keystrokes for finding this probability will be something like

(1 � 0.4)^0*0.4.

Now let’s consider problems (2) and (3). If your calculator has density and cu-
mulative density functions for the geometric distribution the functions are probably
named something like geompdf and geomcdf, similar to the names for the binomial

(b)(a)

F igure 7.46
(a) Binomial probabilities;
(b) histogram of binomial
distribution.

S

S
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functions. The calculator syntax for the probability density function will probably look
something like

geompdf(p, x)

where p is the probability of success and x is in this example the number of students
you would ask until success. We want the probability of jumper cables on the very first
stop. We enter geompdf(.4, 1), and the function returns .4.

Now suppose you wish to find the probability of jumper cables after 4 or fewer
stops. Using the cumulative density function, “geomcdf” (which has the same pa-
rameters as the geompdf function), we enter geomcdf(.4, 4), which returns 0.8704. As
with the binomial, we can check this by summing:

geompdf(.4, 1) � geompdf(.4, 2) � geompdf(.4, 4) � geompdf(.4, 4)
� 0.4 � 0.24 � 0.144 � 0.0864
� 0.87041

The probability that a geometric random variable will assume a value between 4
and 7 (inclusive) is equal to the probability of observing a value less than or equal 
to 7, minus the probability of observing a value less than or equal to 3 (not 4). In 
symbols,

P(4 � x � 7) � P(x � 7) � P(x � 3)

which is found using geomcdf(.4, 7) � geomcdf(.4, 3), giving 0.1880064.
What is the probability of more than 7 stops before we get jumper cables?

1 � geomcdf(.4, 7) gives us 0.0279936.

Graphing an entire geometric probability distribution is not possible, since there
is an infinite number of possible values—1, 2, 3, . . . . Nevertheless, we can graph parts
of the distribution. The method for graphing is similar to that for the binomial ran-
dom variable. Use the seq function to create a list of integers in List1; then use the
geompdf function to find the corresponding probabilities and store them in List2; and
finally plot the distribution as you would a histogram, and as we have previously done
with the binomial. These steps for the geometric distribution of Example 7.20 are sum-
marized below:

1. seq(x, x, 1, 20) List1
2. geompdf(.4, List1) List2
3. Graph a histogram with the domain List1, and probabilities in List2.

The data editing window is shown in Figure 7.47(a) and a graph of this geomet-
ric distribution appears in Figure 7.47(b).

We are really calculating probabilities for only part of the distribution, since the
number of possible values is infinite. The graph should tail to the right in a gradual
manner, not suddenly drop out of sight. You may notice a sudden plummeting in your
graph but it could be that there are more significant probabilities to the right. As an ex-
ample, suppose we consider the chance experiment of flipping a coin until a head ap-
pears. The distribution of x � number of tosses is geometric with success probability
.5. If the distribution is plotted using the previous steps but only using a sequence of
integers from 1 to 4, the results are shown in Figure 7.48 (a). Clearly, there are values
with probabilities different from zero that are not represented in the graph. The solu-
tion is to construct the sequence of integers over a larger range of values, say 1 to 16.

S
S
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At some point, of course, the geometric probabilities become very close to zero, as
Figure 7.48 (b). If your graph looks similar to the one on the right, tailing off gradu-
ally, you can be fairly certain you have captured the essential behavior of the particu-
lar geometric distribution.

E x p l o r a t i o n  7.4 Normal Curves and the Normal 
Probability Distribution

The normal distribution is arguably the most famous distribution in all of statistics. As
we have learned “the” normal distribution is really a family of distributions with the
same shape, but different means and standard deviations. The “standard” normal dis-
tribution is the normal probability distribution with m� 0, and s� 1.0. From the cal-
culator perspective working with the normal distribution is slightly different from the
binomial and geometric distributions because the normal distribution is continuous.
Consequently it will not be graphed as a histogram; normal curves are graphed just as
any other function is graphed. The normal curve, however, is not particularly simple.
Fortunately you calculator, if it has statistical functions, will have “normal” already in
it somewhere. It might be something like this:

normalpdf(x, [m, s]).

If you are a glutton for punishment or your calculator does not have a built-in 
normalpdf function, here is the formula for a normal curve with mean m and standard
deviation s :

Here are the keystrokes for the formula:

y1 � 1/(sqr(2*p)*s)*exp(�(x�m)^2/(2*s^2))

Assuming you are smiling because of your foresight in purchasing a calculator
with a built-in normalpdf function, let’s put it to good use. The syntax above for the
normalpdf function might seem complicated but actual use is simple once you get
used to it. You should check your calculator manual for two very important pieces of
information. First, make sure you know the required order for the information you
must provide. Second, look closely at the sigma, wherever it is in your calculator’s
syntax. Make sure you check whether you must enter (the standard deviation) or (the
variance). Now let’s tackle the notation. First of all, if your calculator’s syntax has
those square brackets—[m, s]—remember that they indicate numbers that are op-
tional. If you leave them out, the normalpdf function will simply default to the stan-
dard normal curve, with mean 0 and standard deviation (or variance) 1.

Let’s graph the three normal curves. The first has a mean and standard deviation
of 10 and 5, respectively. The second has a mean and standard deviation of 40 and 2.5,
and the third a mean and standard deviation of 70 and 10. Navigate your calculator’s
menu system to find the normal curve function, and paste this function into the func-
tion definition window where you usually define simpler functions. Using the syntax
above, you should see your calculator’s equivalent of the following:

y1 � normalpdf(x, 10, 5)
y2 � normalpdf(x, 40, 2.5)
y3 � normalpdf(x, 70, 10)

y �
1
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Graphing these functions using the window setting in Figure 7.49(a), we see the
graphs in Figure 7.49 (b).

Now let’s graph the standard normal distribution. If your calculator syntax indi-
cates that it defaults to a standard normal, you will only have to enter your calculator
equivalent of

y1 � normalpdf(x).

It is also possible that your calculator does not default to standard normal, in which
case you would have to specify the mean and standard deviation as 0 and 1, something
like

y1 � normalpdf(x, 0, 1).

Set your graphing window with x values running from about �3.5 to 3.5 and the y val-
ues from to 0.40. These values should be fine for the standard normal distribution. If
you don’t see a distribution filling the screen as in Figure 7.50, something is amiss and
you need to verify your keystrokes and check your calculator’s manual.

Since the normal probability distribution is a continuous distribution the proba-
bility that x would be equal to a specific value is, of course, 0. For continuous distri-
butions we are usually interested in finding (1) the area under the curve between two
specific values; and (2) the area in the extremes, or “tails,” of the distribution. The
function that we will use to find these values will be symbolized with the notation
“normalcdf,” which stands for the “normal cumulative distribution function.” This ac-
tually is a misnomer, because the functions calling themselves “cdf” functions on
many calculators actually calculate the probability that the standard normal variable is
between two values. Calculators seem to get it right for the discrete probability den-
sity functions, but for some reason have elected to use similar names for very differ-
ent kinds of calculation when they get to the continuous probability density functions
—don’t let this minor inconvenience confuse you!

Two strategies are used by calculator manufacturers for evaluating the probability
that z is between two values, a and b. It is possible your calculator has a table for you
to fill in the values as in Figure 7.51. For a calculator utilizing this strategy, you would
have to fill in the lower bound, upper bound, and standard deviation (s) and mean (m).

Other calculators ask for the mean and standard deviation as parameters of the
function. If your calculator uses this strategy, your built-in cumulative distribution
function will have syntax something like this:

normalcdf(lower bound, upper bound [ , m, s)

For a calculator using this syntax you would fill in the lower bound and upper bound
with the appropriate values for z, and ignore the optional parameters, since z will have
a standard normal distribution. You will specify other values for m and s when per-
forming calculations that are not already in terms of z scores. After navigating your
calculator’s menus, you will enter something like this:

normalcdf(z-lower, z-upper).

Let’s find the probability that z is between �1.76 and .58. We enter the function
as normalcdf(�1.76, 0.58) and the calculator will return a value of 0.6798388789.
We would not suggest writing all those digits; rounding off to .6798 is perfectly fine
(as you may have surmised from considering Appendix Table 2).

As you might guess from its name, the normalcdf function can also be used for
calculation of the cumulative distribution function—that is, finding the probability that
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7.50 The standard normal
distribution.

Normal C.D.

Lower :0
Upper :0
s :0
m :0
Execute

7.51 Setup for normal
calculations.

(a)

(b)

F igure 7.49 (a) Window
settings; (b) normal curves.
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z will be below a specific value. Suppose we want to find the probability that z is less
than �1.76. Remembering that the set of possible values for a standard normal ran-
dom variable is the entire real line, you might think to enter the following:

normalcdf(��, �1.76).

If so, your thinking is right on target, except for one thing: there is no “��” on your
calculator. Some calculators will have a special symbol for “��” which the calcula-
tor translates internally to its equivalent of a “very small number.” You should check
your manual for this number and how to find it. The representation will probably be
something like “�1E99” or “�1e999” which is calculator-speak for �1 times 10
raised to the highest power the calculator can handle. In the case of the standard nor-
mal curve, it may be just as easy to enter a different but still very small number in
place of the “��,” perhaps normalcdf(�10, �1.76). On our calculator .0392038577
is returned, which agrees with the tabled answer. (If you are squeamish about �10,
use �50; using �50 we get .0392038577 also!)

Finding the probability that a z is greater than a particular value is also easy. For
example, we find the area to the right of z � 1.42 as follows:

1 � normalcdf(“��”, 1.42)

Using �10 for the lower bound, we get 0.0778038883.
The last type of problem examined will be the identification of extreme values. The

easiest way to do this is with a built-in function, typically called “InvNormal,” which
stands for “inverse normal.” The “InvNormal” function—or whatever it is named on
your calculator—will be the reverse of finding the probability that z is less than a speci-
fied value. Earlier in our discussion, we found the probability that z is less than �1.76
to be 0.0392038577. The InvNormal function returns a z value when given the proba-
bility. Thus, InvNormal(.0392038577) equals �1.76. Except for the difference in func-
tion name, the syntax for this function should be the same as for normalcdf:

InvNormal(cumulative probability, [, m, s])

On our calculator, InvNormal(0.0392038577) returns �1.760000538.

E x p l o r a t i o n  7.5 The Normal Approximation to 
the Binomial Distribution

In an earlier Exploration we showed you how to use your calculator to find probabil-
ities associated with the binomial and normal distributions, using built-in calculator
functions. We generically used the terms binompdf, binomcdf, normalpdf, and nor-
malcdf to refer to these functions. In this Exploration we would like to focus on the
normal approximation to the binomial distribution. Whenever a continuous distribu-
tion is used to approximate a discrete distribution the question naturally occurs, “How
good is the approximation?” The answer usually given by statistics instructors is, “it
depends.” In the case of the normal approximation to the binomial, the goodness of fit
depends on the two quantities which define the binomial distribution: n and p. Most
statisticians have a simple “rule of thumb” they apply for approximating the binomial
with a normal distribution, such as:

When either np � 10 or n(1 � p) � 10, the binomial distribution is too skewed
for the normal approximation to give accurate results.

Different statisticians have different rules of thumb, some feeling comfortable
with the accuracy provided by using 5 instead of 10 in the rule of thumb above. In days
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of yore—that is, the precalculator days—students would have to accept the rule of
thumb as one of the mysteries of statistics. In more modern times a statistics student,
armed with her calculator, can not only understand what the rules of thumb are all
about, but evaluate the various rules of thumb for a particular n and p pair.

It might be argued that using the normal distribution to approximate a distribution
that we can evaluate exactly seems a little foolish. There is something to this argu-
ment, but remember: we will not always be able to find exact probabilities in other 
situations in statistics, and must rely on approximations. Using an approximation in-
volves a fundamental tradeoff between ease of calculation and exactness of answer.
An understanding of this with the normal approximation to the binomial will give us
a better understanding of the issues involved when we encounter similar tradeoffs in
statistics courses yet to come. (At least you’ll be more tolerant of those “rules of
thumb!”)

We shall reacquaint ourselves with some syntax and warm up with a distribution
of the number of express mail packages mailed at a certain post office in a day. The
number is approximately normally distributed with m � 18 and s� 6. Suppose we
wish to find the probability that 20 express mail packages are mailed in a given day.
We calculate the probability that in a normal distribution with m � 18 and s � 6, the
event x � 20 would happen. Remembering the syntax from our earlier discussion,

normalcdf(lower bound, upper bound [ , m, s])

we enter: normalcdf(19.5, 20.5, 18, 6), and our calculator returns 0.062832569.
We will now compare binomial calculations with the normal approximations. It is

reported that 10% of live births in the United States are premature. Suppose we ran-
domly select 250 live births and define the random variable x to be the number of these
that are premature. We wish to calculate the probability that x is between 15 and 30
(inclusive). To find the binomial probability we recall that we must use the built-in
function we called binomcdf. This function includes the rightmost interval indicated;
therefore we subtract the probability of getting x less than or equal to 14 from the
probability of getting x less than or equal to 30.

P(15 � x � 30) � binomcdf(250,.1,30) � binomcdf(250,.1,14)
� 0.8753286537 � 0.00931244487
� 0.8660162088.

To evaluate this probability using the normal curve approximation we will use the
machine accuracy of the calculator with the mean m � 25 and s � 4.74341649:

normalcdf (lower bound, upper bound [, m, s])
� normalcdf(14.5, 30.5 , 25, 4.74341649 )
� 0.8634457937

The difference between the two probabilities to machine accuracy is 0.0025704151.
This does not seem to be a large difference, but it is a difference. According to the rule
of thumb this approximation meets the test, but the investigator in the context of his
or her situation must evaluate the practical importance of the difference.

Now lets redo the calculations, not with a sample size of 250, but a sample size of
only 50. Keeping the results proportionally the same by dividing by 5, we will con-
sider approximating the probability of getting between 3 and 6 preemies (inclusive)
from a random sample of 50 babies. In this case,

np � 50(.10) � 5 � 10
n(1 � p) � 50(1 � .10) � 45 	 10
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Since np � 10 our rule of thumb would regard the binomial distribution too skewed
for the normal curve approximation to give accurate results. Let’s see what happens:

P(3 � x � 6) � binomcdf(50,.1,6) � binomcdf(50,.1,2)
� 0.7702268435 � 0.1117287563
� 0.6584980872

To evaluate this probability using the normal curve approximation we will use the 
machine accuracy of the calculator with m � 50(.1) � 5 and s � �
2.121320344

normalcdf(lower bound, upper bound [ , m, s])
� normalcdf(2.5, 6.5 , 5, 2.121320344)
� 0.6409535402

The difference between the binomial and the normal approximation in this case is
0.017544547. It is interesting to note that using a rule of thumb with 5 instead of 10
would call this difference “acceptable.” We do not argue with this rule of thumb in
principle, but once again point out that the individual judgment by the investigator on
site must be used in evaluating the goodness of the approximation.

Finally, we will superimpose the appropriate normal distribution over the bino-
mial distribution to get a visual sense of the approximation. It is entirely possible that
a given approximation will do a better job for different choices of values of the end
points of the interval, and the graphs may give us an overall sense of when a normal
approximation might be acceptable.

Graphing a binomial distribution and a normal distribution at the same time in-
volves skills we have seen in previous Explorations. (You may want to refer back to
the calculator explorations about the binomial and normal distributions to refresh your
memory.)

We will graph the binomial and normal distributions for four distributions, each
with sample size 20, but with probabilities of success of .05, .1, .25, and .5 We will
change the windows to make the graphs fill the windows, but this should not affect any
interpretations of the goodness of fit to the binomial by the normal distribution. As a
reminder, our binomial preparations for the first graph are

1. seq(x, x, 0, 20) List1
2. binompdf(20, .05) List2
3. Specify that we want a histogram with the values in List1, and the corresponding

binomial probabilities in List2.

For the normal curve plot, define the graphing function by supplying the mean and
standard deviation of the binomial as parameters for the normalpdf function:

Y1 � normalpdf(x, 1, 0.97468)

The four plots appear in Figure 7.52.
As can be seen from a comparison of the plots, the normal approximation gets

“closer and closer” to the binomial as gets closer and closer to 0.5. For p � .25 the
rule of thumb is satisfied for n � 20, and for p � .5, the rule of thumb is satisfied us-
ing n � 10. It is a bit difficult to judge whether or not the normal approximation to the
binomial is “adequate” for a particular situation by just looking at the plots.

Modern technology makes it possible to do binomial calculations quickly, so the
normal approximation to the binomial is not as widely used as it once was. However,
there are other distributions in statistics that are “approximately” normal as long as
certain conditions are satisfied. We hope that working with the approximation to the
binomial has given you an appreciation for the uses of the normal distribution to ap-
proximate these other distributions.
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(a)

n = 20; π = .05

(c)

n = 20; π = .25

(d)

n = 20; π = .50

(b)

n = 20; π = .10

F igure 7.52 Binomial
distributions: (a) n � 20,
p � .05; (b) n � 20, p �
.10; (c) n � 20, p � .25;
(d) n � 20, p � .50.
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