
LOQO User’s Manual – Version 4.05

Robert J. Vanderbei

Operations Research and Financial Engineering
Technical Report No. ORFE-99-??

September 13, 2006

Princeton University
School of Engineering and Applied Science

Department of Operations Research and Financial Engineering
Princeton, New Jersey 08544

LOQO USER’S MANUAL – VERSION 4.05

ROBERT J. VANDERBEI

ABSTRACT. LOQO is a system for solving smooth constrained optimization problems. The problems can be linear or non-
linear, convex or nonconvex, constrained or unconstrained. The only real restriction is that the functions defining the problem
be smooth (at the points evaluated by the algorithm). If the problem is convex,LOQO finds a globally optimal solution.
Otherwise, it finds a locally optimal solution near to a given starting point. This manual describes

(1) how to installLOQO on your hardware,
(2) how to useAMPL together withLOQO to solve general convex optimization problems,
(3) how to use the subroutine library to formulate and solve convex optimization problems, and
(4) how to formulate and solve linear and quadratic programs in MPS format.

1. INTRODUCTION

LOQO is a system for solving smooth constrained optimization problems in the following form:

minimize f(x)

subject to a ≤h(x)≤ b
l ≤ x ≤ u.

Here, the variablex takes values inRn, l andu are givenn-vectors,f is a real-valued function defined on{x : l ≤
x ≤ u}, h is a map from this set intoRm, anda andb are givenm-vectors. Some or all components ofa andl can
be−∞, whereas some or all components ofb andu can be∞. The functionsf andh must be twice differentiable
at the points at which they are evaluated byLOQO. The problem isconvexif f is convex, each component function
hi is convex, andai = −∞ wheneverhi is not linear. If the problem is convex, thenLOQO finds a globally optimal
solution. Otherwise, it finds a locally optimal solution near to a given starting point.

LOQO is based on an infeasible, primal-dual, interior-point method applied to a sequence of quadratic approxima-
tions to the given problem. See [6], [7], and [5] for a detailed discussion of the algorithm implemented inLOQO.

There are three ways to convey problems toLOQO.

(1) For general optimization problems, the prefered user interface is via theAMPL [2] modeling language.
(2) For those without access toAMPL, there is a subroutine library that one can link to their own programs. This

is a painful way to useLOQO, but for some it may be the only option.
(3) If the problem is a linear program, one can use industry standard MPS files as input. If the problem is a

linearly constrained quadratic program, one can use a simple extension of the MPS format. MPS files can be
created either with a specifically created generator program or via any of the popular optimization modeling
languages such asAMPL or GAMS [1].

This manual describes

(1) how to installLOQO on your hardware,
(2) how to useAMPL together withLOQO to solve general convex optimization problems,
(3) how to use the subroutine library to formulate and solve convex optimization problems, and
(4) how to formulate and solve linear and quadratic programs in MPS format.

Research supported by ONR through grant N00014-98-1-0036 and by NSF through grant CCR-9403789.

1

2 ROBERT J. VANDERBEI

2. INSTALLATION

The normal mechanism for distribution is by downloading from the author’s homepage:

http://www.princeton.edu/˜rvdb/

Under the headingLOQO Info one can click onDownload and follow the instructions on the download web page.
After downloading and unzipping, you will find several files:

loqo.exe An executable code, which can read problems formulated by theAMPL modeling lan-
guage. For linear programming problems, it can also read industry-standard MPS form
(seeafiro.mps for an example) and for quadratic programming problems it can read an
extension of MPS form.

loqo.lib An archive file containing theLOQO function library.
loqo.c A file containing the main program forloqo . It is included as an example on how to use

theLOQO function library.
hs046.c A modification ofloqo.c illustrating how to use the function library to solve problem 46

in the Hock and Schittkowski [3] test suite.
loqo.h A header file containing the function prototypes for each function in theLOQO function

library. This file must be#include ’d in any program file in which calls to theLOQO

function library are made (loqo.c andhs046.c are examples of this).
myalloc.h A header file containing macros to make dynamic memory allocation less of a chore.

3. USING LOQO WITH AMPL

It is easy to useLOQO with AMPL. In anAMPL model one simply puts

option solver loqo;

before the solve command. If one wishes to adjust some user-settable parameters, they can be set within theAMPL

model as well. For example, to increase the amount of output produced by the solver and to request a report of the
solution time, one puts the following statement in theAMPL model ahead of the call to the solver:

option loqo_options "verbose=2 timing=1";

Parameters, their meanings and their defaults, are described in a later section. Hundreds of sampleAMPL models can
be downloaded from the author’s homepagehttp://www.princeton.edu/˜rvdb/ . One example is discussed
in the following subsection.

Below we describe one specific real-world model and show how to solve it withAMPL/LOQO.

3.1. The Markowitz Model. Markowitz received the 1990 Nobel Prize in Economics for his portfolio optimization
model in which the tradeoff between risk and reward is explicitly treated. We shall briefly describe this model in its
simplest form. Given a collection of potential investments (indexed, say, from1 to n), let Rj denote the return in the
next time period on investmentj, j = 1, . . . , n. In general,Rj is a random variable, although some investments may
be essentially deterministic.

A portfolio is determined by specifying what fraction of one’s assets to put into each investment. That is, a portfolio
is a collection of nonnegative numbersxj , j = 1, . . . , n that sum to one. The return (on each dollar) one would obtain
using a given portfolio is given by

R =
∑

j

xjRj .

Therewardassociated with such a portfolio is defined as the expected return:

ER =
∑

j

xjERj .

LOQO USER’S MANUAL – VERSION 4.05 3

Similarly, therisk is defined as the variance of the return:

Var(R) = E(R−ER)2

= E(
∑

j

xj(Rj −ERj))2

= E(
∑

j

xjR̃j)2,

whereR̃j = Rj −ERj . One would like to maximize the reward while minimizing the risk. In the Markowitz model,
one forms a linear combination of the mean and the variance (parametrized here byµ) and minimizes that:

maximize
∑

j xjERj − µE(
∑

j xjR̃j)2

subject to
∑

j xj = 1
xj ≥ 0 j = 1, 2, . . . , n.

Here,µ is a positive parameter that represents the importance of risk relative to reward. That is, high values ofµ will
tend to minimize risk at the expense of reward whereas low values put more weight on reward.

Of course, the distribution of theRj ’s is not known theoretically but is arrived at empirically by looking at historical
data. Hence, ifRj(t) denotes the return on investmentj at timet (in the past) and these values are known for allj and
for t = 1, 2, . . . , T , then expectations can be replaced by sample means as follows:

ERj =
1
T

T∑
t=1

Rj(t).

The full model, expressed inAMPL is shown in Figure 1. If we suppose that this model is stored in a file called
markowitz.mod , then the model can be solved by typing:

ampl markowitz.mod

The output that is produced is shown in Figure 2.

4. THE FUNCTION L IBRARY

The easiest way to explain how to use the function library is to look at an example. For this discussion we have
chosen problem 46 from the Hock and Schittkowski [3] set of test problems. This problem is fairly small having only
two constraints and five variables. Nonetheless it illustrates most of what one faces when solving problems with the
function library. AnAMPL listing of the problem is shown in Figure 3.

4.1. Setting Up the Problem in the Calling Routine. To use theLOQO subroutine library, one needs to#include
theLOQO header fileloqo.h (andmath.h if sines, cosines, exponentials, etc. are to be used). Then, at the place in
the code where the subroutine library is to be accessed, one needs to declare a variable, saylp , that is a pointer to a
LOQOstructure:

LOQO* lp;

The variablelp is set to point to aLOQOstructure with a call toopenlp() :

lp = openlp();

After this call, theLOQOdata structure pointed to bylp has fields to contain all of the information needed to describe
an optimization problem. However, the fields are set to zero, except for some of the parameters whose defaults have
nonzero values. We must now load uplp with a description of the problem we wish to solve. We begin by specifying
the dimensions and number of nonzeros in the matrices:

4 ROBERT J. VANDERBEI

param n integer > 0 default 500; # number of investment opportunities
param T integer > 0 default 20; # number of historical samples

param mu default 1.0;

param R {1..T,1..n} := Uniform01(); # return for each asset at each time
(in lieu of actual data,
we use a random number generator).

param mean {j in 1..n} # mean return for each asset
:= (sum{i in 1..T} R[i,j]) / T;

param Rtilde {i in 1..T,j in 1..n} # returns adjusted for their means
:= R[i,j] - mean[j];

var x{1..n} >= 0;

minimize linear_combination:
mu * # weight
sum{i in 1..T} (sum{j in 1..n} Rtilde[i,j] * x[j])ˆ2 # variance
-
sum{j in 1..n} mean[j] * x[j] # mean
;

subject to total_mass:
sum{j in 1..n} x[j] = 1;

option solver loqo;

solve;

printf: "Optimal Portfolio: \n";
printf {j in 1..n: x[j]>0.001}: " %3d %10.7f \n", j, x[j];

printf: "Mean = %10.7f, Variance = %10.5f \n",
sum{j in 1..n} mean[j] * x[j],
sum{i in 1..T} (sum{j in 1..n} Rtilde[i,j] * x[j])ˆ2;

FIGURE 1. The Markowitz model inAMPL.

lp->n = 5; / * number of variables (indexed 0,1,...,n-1) * /
lp->m = 2; / * number of constraints (indexed 0,1,...,m-1) * /
lp->nz = 6; / * number of nonzeros in linearized constraint matrix * /
lp->qnz = 13; / * number of nonzeros in Hessian (details below) * /

The meaning ofnz andqnz , if not clear now, will become clear shortly.
As described in [7],LOQO solves nonlinear optimization problems by forming successive quadratic approximations

to the given problem. The data defining the quadratic approximation will be changed at each iteration. Later we will
define subroutines to do that. First, however, we must allocate storage for the data arrays and we must set up the
sparse representation of the matrices. We begin by allocating storage. The standard dynamic memory allocation
routines,malloc() , realloc() , etc., are fairly clumsy to use. So, we prefer to#include the macro package
myalloc.h to provide memory allocation macros making the code more readable.

LOQO USER’S MANUAL – VERSION 4.05 5

LOQO: optimal solution (27 iterations)
primal objective -0.6442429719

dual objective -0.6442429757
Optimal Portfolio:

55 0.0947940
110 0.0065178
117 0.0798030
133 0.0939987
139 0.0019013
149 0.0659393
151 0.1004998
204 0.0010385
222 0.0655395
240 0.0659596
302 0.0065309
311 0.0075337
392 0.1939488
414 0.0533825
423 0.0087270
428 0.0212861
444 0.0551152
465 0.0128579
496 0.0385579
497 0.0260684

Mean = 0.6489705, Variance = 0.00473

FIGURE 2. The output produced for the Markowitz model.

var x {1..5};

minimize obj:
(x[1]-x[2])ˆ2 + (x[3]-1)ˆ2 + (x[4]-1)ˆ4 + (x[5]-1)ˆ6
;

subject to constr1: x[1]ˆ2 * x[4] + sin(x[4] - x[5]) = 1;
subject to constr2: x[2] + x[3]ˆ4 * x[4]ˆ2 = 2;

let x[1] := sqrt(2)/2;
let x[2] := 1.75;
let x[3] := 0.5;
let x[4] := 2;
let x[5] := 2;

solve;

display x;

FIGURE 3. Hock and Schittkowski 46 inAMPL.

6 ROBERT J. VANDERBEI

(var 1 2 3 4 5)
col 0 1 2 3 4

row
0 * * *
1 * * *

FIGURE 4. The sparsity pattern forA

The matrix containing the linearized part of the constraints is calledA. It is stored sparsely in three arrays:A, iA ,
kA. Array A contains the values of the nonzeros listed one column after another. This array is a one-dimensional array
of lengthnz . Array iA contains the row index of each corresponding value inA. It too has lengthnz , but it contains
int s instead ofdouble s. The third array,kA, contains a list of indices in theA/iA array indicating where each new
column starts. Hence,kA[0] = 0 , kA[n] = nz , andkA[j+1]-kA[j] is the number of nonzero elements in
columnj (i.e., associated with variablej). To allocate storage for these arrays, we write:

MALLOC(lp->A, lp->nz, double);
MALLOC(lp->iA, lp->nz, int);
MALLOC(lp->kA, lp->n+1, int);

The data stored inA will be given later. For now we just store the sparsity structure by initializingiA and kA
appropriately. Since the first constraint involves variablesx1, x4, andx5 and the second constraint involves variables
x2, x3, andx4, we see that the sparsity pattern forA is as shown in Figure 4. Since the data elements are listed iniA
columnwise starting with the zeroeth column, we see thatiA needs to be initialized as follows:

lp->iA[0] = 0;
lp->iA[1] = 1;
lp->iA[2] = 1;
lp->iA[3] = 0;
lp->iA[4] = 1;
lp->iA[5] = 0;

Also, the arraykA now must be set as follows:

lp->kA[0] = 0;
lp->kA[1] = 1;
lp->kA[2] = 2;
lp->kA[3] = 3;
lp->kA[4] = 5;
lp->kA[5] = 6;

The arrayA will be given correct values later. For now, we just fill it with zeros:

for (k=0; k<lp->nz; k++) { lp->A[k] = 0; }

The matrixQ in the quadratic approximation must also be initialized. It is a sparse symmetric matrix. It too is
stored in the usual three-array sparse format. We begin by allocating storage for the three arrays:

MALLOC(lp->Q, lp->qnz, double);
MALLOC(lp->iQ, lp->qnz, int);
MALLOC(lp->kQ, lp->n+1, int);

The matrixQ will be defined later as a linear combination of the Hessian of the objective function and each of the
constraints. Hence, the sparse data structure must contain places for nonzeros from any of these functions. Figure
5 shows the sparsity patterns for each individual function and for the matrixQ. The arrayiQ must therefore be
initialized as follows:

lp->iQ[0] = 0;

LOQO USER’S MANUAL – VERSION 4.05 7

For the objective function, the pattern is as follows:
(var 1 2 3 4 5)

col 0 1 2 3 4
var row

1 0 * *
2 1 * *
3 2 *
4 3 *
5 4 *

For the first constraint, the pattern is as follows:
(var 1 2 3 4 5)

col 0 1 2 3 4
var row

1 0 * *
2 1
3 2
4 3 * * *
5 4 * *

For the second constraint, the pattern is as follows:
(var 1 2 3 4 5)

col 0 1 2 3 4
var row

1 0
2 1
3 2 * *
4 3 * *
5 4

The union of these three patterns is this:
(var 1 2 3 4 5)

col 0 1 2 3 4
var row

1 0 * * *
2 1 * *
3 2 * *
4 3 * * * *
5 4 * *

FIGURE 5. The sparsity pattern for Q

lp->iQ[1] = 1;
lp->iQ[2] = 3;
lp->iQ[3] = 0;
lp->iQ[4] = 1;
lp->iQ[5] = 2;
lp->iQ[6] = 3;

8 ROBERT J. VANDERBEI

lp->iQ[7] = 0;
lp->iQ[8] = 2;
lp->iQ[9] = 3;
lp->iQ[10] = 4;
lp->iQ[11] = 3;
lp->iQ[12] = 4;

And the arraykQ is initialized like this:

lp->kQ[0] = 0;
lp->kQ[1] = 3;
lp->kQ[2] = 5;
lp->kQ[3] = 7;
lp->kQ[4] = 11;
lp->kQ[5] = 13;

The arrayQwill be given correct values later. For now, we just fill it with zeros:

for (k=0; k<lp->qnz; k++) { lp->Q[k] = 0; }

Now that the matrices have been initialized much of the hard work is done. Still we need to initialize some other
things, the first and most obvious being the right-hand side. Since the so-called right-hand side is always assumed to
be a vector of constants (any functions, no matter what side they are written on are assumed to be absorbed into the
body of the constraint), it can be initialized here:

MALLOC(lp->b, lp->m, double);
lp->b[0] = 1;
lp->b[1] = 2;

Another vector that needs space allocated for it is the vectorc containing the linear part of the objective function.
The data it contains will be set later. For now we just allocate storage for it and fill it with zeros:

MALLOC(lp->c, lp->n, double);
for (j=0; j<lp->n; j++) { lp->c[j] = 0; }

The vector of lower bounds on the variables is calledl . If l==NULL , thensolvelp() will set it to a zero vector.
Since the variables in this problem are free, we reset this vector as follows:

MALLOC(lp->l, lp->n, double);
for (j=0; j<lp->n; j++) { lp->l[j] = -HUGE_VAL; }

The vector of upper bounds on the variables is calledu. If u==NULL, thensolvelp() will set it to a vector of
HUGEVAL’s. This default behavior is correct for the problem at hand and so nothing needs to be done. Nonetheless,
we set it here so one can see how it is done.

MALLOC(lp->u, lp->n, double);
for (j=0; j<lp->n; j++) { lp->u[j] = HUGE_VAL; }

Each constraint, such as thei-th, is assumed to be an inequality constraint with a range,ri, on the inequality:

bi ≤ ai(x) ≤ bi + ri.

An equality constraint is specified by settingr[i] to 0 (this is the default). An inequality constraint is specified by
setting it toHUGEVAL. Since the default behavior is easy to forget, it is a good idea to setr explicitly as we do here.

MALLOC(lp->r, lp->m, double);
for (i=0; i<lp->m; i++) { lp->r[i] = 0; }

The functions that are used to update the quadratic approximation to the nonlinear problem will be defined shortly.
To make sure that these functions get called, we must set some pointers and put a call tonlsetup() :

LOQO USER’S MANUAL – VERSION 4.05 9

lp->objval = objval;
lp->objgrad = objgrad;
lp->hessian = hessian;
lp->conval = conval;
lp->congrad = congrad;

nlsetup(lp);

The solver, which will be called shortly, is happy to compute its own default starting point and without further
action will do just that. However, for the problem at hand a specific starting point was given. To force the solver to
use that point, we include the following lines:

MALLOC(lp->x, lp->n, double);
lp->x[0] = sqrt(2.)/2;
lp->x[1] = 1.75;
lp->x[2] = 0.5;
lp->x[3] = 2;
lp->x[4] = 2;

Finally, before calling the solver we can set a number of parameters that control the algorithm. A complete list of
them can be found inloqo.h . One of them is calledverbose . It is an integer variable. The higher the value, the
more output produced during the solution process. The default value is zero (no output). Here we set it higher.

lp->verbose = 2;

We are now ready to put the call to the solver in the calling routine:

solvelp(lp);

The functionsolvelp() returns an integer that indicates whether or not the algorithm was successful (zero means
success, positive means failure). The return value can be ignored by simply not assigning it to anything as is done
above.

After the solver returns, one might wish to print out the solution vector and the solution time. Here is the code to
do that:

if (lp->verbose>1) {
printf("x: \n");
for (j=0; j<lp->n; j++) {

printf("%2d %12.6f \n", j+1, lp->x[j]);
}
printf("total time in seconds = %lf \n", cputimer());

}

4.2. Updating the Quadratic Approximation. Certain specific functions must be provided that tell how to compute
the quadratic approximation to the problem. We describe these functions here.

Objval. The functionobjval takesx as input and returns the objective function value. For the problem at hand,
this function is given as follows:

static double objval(double * x)
{

return pow(x[0]-x[1],2) + pow(x[2]-1,2) + pow(x[3]-1,4) + pow(x[4]-1,6);
}

Note that the functionpow() is part of the math library that is standard in ANSI C.
Objgrad.The functionobjgrad takesx as input and puts the gradient of the objective function atx into arrayc .

For the Hock and Schittkowski problem, this function is given as follows:

10 ROBERT J. VANDERBEI

c[0] = 2 * (x[0]-x[1]);
c[1] = -2 * (x[0]-x[1]);
c[2] = 2 * (x[2]-1);
c[3] = 4 * pow(x[3]-1,3);
c[4] = 6 * pow(x[4]-1,5);

Hessian.The functionhessian takes the primal-variables arrayx and the dual-variables arrayy and fills inQ
with the Hessian of the objective function minus the sum over the nonlinear constraints of the dual variable times the
Hessian of that constraint function. For the Hock and Schittkowski problem, this function is given as follows:

static void hessian(double * Q, double * x, double * y)
{

int k;

/ * Initialize Q[] to zero

* /
for (k=0; k<13; k++) { Q[k] = 0; }

/ * Now feed in the nonzeros associated with the Hessian of the
objective function.
Recall the sparsity pattern for Q:

(var 1 2 3 4 5)
col 0 1 2 3 4

var row
1 0 * * *
2 1 * *
3 2 * *
4 3 * * * *
5 4 * *

* /
Q[0] += 2;
Q[1] += -2;
Q[3] += -2;
Q[4] += 2;
Q[5] += 2;
Q[9] += 4 * 3* pow(x[3]-1,2);
Q[12] += 6 * 5* pow(x[4]-1,4);

/ * Now add in y[0] times the Hessian of the first constraint

* /
Q[0] -= y[0] * (2 * x[3]);
Q[2] -= y[0] * (2 * x[0]);
Q[7] -= y[0] * (2 * x[0]);
Q[9] -= y[0] * (-sin(x[3]-x[4]));
Q[10] -= y[0] * (sin(x[3]-x[4]));
Q[11] -= y[0] * (sin(x[3]-x[4]));
Q[12] -= y[0] * (-sin(x[3]-x[4]));

/ * Now add in y[1] times the Hessian of the second constraint

* /

LOQO USER’S MANUAL – VERSION 4.05 11

Q[5] -= y[1] * (4 * 3* pow(x[2],2) * pow(x[3],2));
Q[6] -= y[1] * (4 * pow(x[2],3) * 2* x[3]);
Q[8] -= y[1] * (4 * pow(x[2],3) * 2* x[3]);
Q[9] -= y[1] * (pow(x[2],4) * 2);

}

Conval.The functionconval takes the primal solutionx and fills in the vectorh with the values of the constraints.
For the problem at hand, this function is given as follows:

static void conval(double * h, double * x)
{

h[0] = pow(x[0],2) * x[3] + sin(x[3]-x[4]);
h[1] = x[1] + pow(x[2],4) * pow(x[3],2);

}

Congrad. The functioncongrad takes the current primal solution stored inx and updates the gradient of the
constraints by filling in the arrayA described earlier. The solver keeps a copy of both the matrixA and its transpose.
Therefore,congrad must also update the sparse representation ofAT . The array containing these data elements is
calledAt . One can think of it as the matrixA stored rowwise instead of columnwise. For the specific problem, the
functioncongrad is given as follows:

static void congrad(double * A, double * At, double * x)
{

/ * To fill in the values of A[], recall the sparsity pattern for A:
(var 1 2 3 4 5)

col 0 1 2 3 4
row

0 * * *
1 * * *
* /

A[0] = 2 * x[0] * x[3];
A[1] = 1;
A[2] = 4 * pow(x[2],3) * pow(x[3],2);
A[3] = pow(x[0],2) + cos(x[3]-x[4]);
A[4] = 2 * pow(x[2],4) * x[3];
A[5] = -cos(x[3]-x[4]);

/ * At this point, both A and its transpose, At, exist. At[] must be
updated too. To do it, read the elements of A[] rowwise.
For big problems, libloqo.a has a function atnum(...) that
will recompute the entries of At[]. It is probably more efficient
to do it directly as shown below.

* /
At[0] = A[0];
At[1] = A[3];
At[2] = A[5];
At[3] = A[1];
At[4] = A[2];
At[5] = A[4];

}

12 ROBERT J. VANDERBEI

4.3. Compiling and Running. We have now described all of the pieces necessary to solve the Hock and Schittkowski
problem using theLOQO subroutine library. The complete source is included with the software distribution as file
hs046.c .

All that remains is to show how to compile and execute. These last two tasks are particularly easy:

cc hs046.c libloqo.a -lm -o hs046
hs046

If all goes well, the solver should print out an iteration log showing that it solves the problem in 20 iterations. The
optimal solution is printed out at the end. It should be:

x:
1 1.003823
2 1.003823
3 1.000000
4 0.998087
5 1.003820

5. SOLVING L INEAR AND QUADRATIC PROGRAMS IN MPS FORMAT

Solving linear programs that are already encoded in MPS format is easy. For example, to solve the linear program
stored inmyfirstlp.mps , you simply type

loqo -m myfirstlp

Loqo displays a banner announcing itself and when done puts the optimal solution (primal, dual and reduced costs)
in a file myfirstlp.out (which is derived from themyfirstlp on theNAMEline of myfirstlp.mps). The
solution file can then be perused using any file editor (such asvi or emacs).

5.1. MPS File Format. Input files follow the standard MPS format (for a detailed description, see [4]) for linear
programs and are an extension of this format in the case of quadratic programs. The easiest way to describe the format
is to look at an example. Consider the following quadratic program:

minimize3x1 − 2x2 + x3 − 4x4 +
1
2
(x3 − 2x4)2

x1 +x2 −4x3 +2x4 ≥ 4
−3x1 +x2 −2x3 ≤ 6

+x2 −x4 = −1
x1 +x2 −x3 = 0

x1 free, − 100 ≤ x2 ≤ 100, x3, x4 ≥ 0.

The input file for this quadratic program looks like this:

LOQO USER’S MANUAL – VERSION 4.05 13

1234567890123456789 0123456789012345678 9012345678901234567 890

NAME myfirstlp
ROWS
 G r1
 L r2
 E r3
 E r4
 N obj
COLUMNS
 x1 r1 1. r2 − 3.
 x1 r4 1. obj 3.
 x2 r1 1. r2 1.
 x2 r3 1. r4 1.
 x2 obj −2.
 x3 r1 −4. r2 − 2.
 x3 r4 −1. obj 1.
 x4 r1 2. r3 − 1.
 x4 obj −4.
RHS
 rhs r1 4. r2 6.
 rhs r3 −1.
BOUNDS
 FR x1
 LO x2 −100.
 UP x2 100.
QUADS
 x3 x3 1.
 x3 x4 −2.
 x4 x4 4.
ENDATA

 1 2 3 4 5 6

Upper case labels must be upper case and represent MPS format keywords. Lower case labels could have been upper
or lower case. They represent information particular to this example. Column alignment is important and so a column
counter has been shown across the top (tabs are not allowed).

The ROWS section assigns a name to each row and indicates whether it is a greater than row (G), a less than row
(L), an equality row (E), or a nonconstrained row (N). Nonconstrained rows refer to the linear part of the objective
function.

The COLUMNS section contains column and row label pairs for each nonzero in the constraint matrix together
with the coefficient of the corresponding nonzero element. Note that either one or two nonzeros can be specified on
each line of the file. There is no requirement about whether one or two values are specified on a given line although
the trend is to specify just one nonzero per line (this uses slightly more disk space, but disk storage space is cheap and
the one-per-line format is easier to read). All the nonzeros for a given column must appear together, but the row labels
within that column can appear in any order.

The RHS section is where the values of nonzero right-hand side values are given. The label “rhs” is optional.

14 ROBERT J. VANDERBEI

By default all variables are assumed to be nonnegative. If some variables have other bounds, then a BOUNDS
section must be included. The label FR indicates that a variable is free. The labels LO and UP indicate lower and
upper bounds for the specified variable.

If the problem has quadratic terms in the objective, their coefficients can be specified by including a QUADS
section. The format of the QUADS section is the same as the COLUMNS section except that the labels are column-
column pairs instead of column-row pairs. Note that only diagonal and below diagonal elements are specified. The
above diagonal elements are filled in automatically.

5.2. Spec Files.LOQO has only a small number of user adjustable parameters. It is easiest to set these parameters
using the shell variableloqo options . But, to maintain compatibility with older versions ofLOQO, one can also
set parameter values at the top of the MPS file or in a separate specfile. If the MPS file ismyfirstlp.mps ,
the specfile must be calledmyfirstlp.spc . The parameters have default values which are usually appropriate,
but other values can be specified by including in the MPS file appropriate keywords and, if required, corresponding
values. These keywords (and values) must appear one per line and all must appear before theNAMEline in the MPS
file. A list of the parameter keywords can be found in Appendix A.

5.3. Termination Conditions. Onceloqo starts iterating toward an optimal solution, there are a number of ways
that the iterations can terminate. Here is a list of the termination conditions that can appear at the end of the iteration
log and how they should be interpreted:

OPTIMAL SOLUTION FOUND Indicates that an optimal solution to the optimization problem was
found. The default criteria for optimality are that the primal and dual agree to 8 significant
figures and that the primal and dual are feasible to the1.0e-6 relative error level.

SUBOPTIMAL SOLUTION FOUNDIf at some iteration, the primal and the dual problems are fea-
sible and at the next iteration the degree of infeasibility (in either the primal or the dual)
increases significantly, thenloqo will decide that numerical instabilities are beginning to
play heavily and will back up to the previous solution and terminate with this message. The
amount of increase in the infeasibility required to trigger this response is tied to the value
of INFTOL2 . Hence, if you want to forceloqo to go further, simply set this parameter to
a value larger than the default.

ITERATION LIMIT Loqo will only attempt 200 iterations. Experience has shown that if an optimal
solution has not been found within this number of iterations, more iterations will not help.
Typically, loqo solves problems in somewhere between 10 and 60 iterations.

PRIMAL INFEASIBLE If at some iteration, the primal is infeasible, the dual is feasible and at the
next iteration the degree of infeasibility of the primal increases significantly, thenloqo
will conclude that the problem is primal infeasible. If you are certain that this is not the
case, you can forceloqo to go further by rerunning withINFTOL2 set to a larger value
than the default.

DUAL INFEASIBLE If at some iteration, the primal is feasible, the dual is infeasible and at the next
iteration the degree of infeasibility of the dual increases significantly, thenloqo will con-
clude that the problem is dual infeasible. If you are certain that this is not the case, you can
forceloqo to go further by rerunning withINFTOL2 set to a larger value than the default.

PRIMAL and/or DUAL INFEASIBLE If at some iteration, the primal and the dual are infeasible
and at the next iteration the degree of infeasibility in either the primal or the dual increases
significantly, thenloqo will conclude that the problem is either primal or dual infeasible.
If you are certain that this is not the case, you can forceloqo to go further by rerunning
with INFTOL2 set to a larger value than the default.

PRIMAL INFEASIBLE (INCONSISTENT EQUATIONS) This type of infeasibility is only de-
tected at the first iteration. Ifloqo terminates here and you are sure that it should go
on, set the parameterEPSSOLto a larger value than its default.

LOQO USER’S MANUAL – VERSION 4.05 15

6. MODELING HINTS

Every attempt has been made to makeLOQO as robust as possible on a wide spectrum of problem instances.
However, there are certain suggestions that the modeler should take heed of to obtain maximum performance.

6.1. Convex Quadratic Programs. In LOQO version 3.10, some parameter values have different defaults depending
on whether a problem is linear or not (see Appendix A for a list of all parameters and their defaults). Consequently,
quadratic programming problems are treated as general nonlinear problems even though the appropriate default values
for linear programming work much better on these problems. Therefore, we recommend the following nondefault
parameter settings when solving convex quadratic programming problems:

• convex : ensures that none of the special code for nonconvex nonlinear programming is called.
• bndpush=100 : ensures that initial values are sufficiently far removed from their bounds.
• honor bnds=0 : allows variables to violate their bounds initially.
• pred corr=1 : enables the predictor-corrector method.
• mufactor=0 : sets the predictor direction to the primal-dual affine-scaling direction.

Future releases ofLOQO will ensure that these are the defaults for convex quadratic programming problems (as was
the case in earlier releases).

6.2. Artificial Variables. Splitting free variables.Some existing codes for solving linear programs are unable to
handle free variables. As a consequence, many problems have been formulated with free variables split into the
difference between two nonnegative variables. This trick does not present any difficulties for algorithms based on the
simplex method, but it does tend to cause problems for interior-point methods and, in particular, forLOQO. Since
LOQO is designed to be able to handle problems with free variables, we suggest that they be left as free variables and
indicated as such in the input file.

Artificial Big-M Variables.Some problems have artificial variables added to guarantee feasibility using the tradi-
tional Big-M method. Putting huge values anywhere in a problem invites numerical problems.LOQO has its own
feasibility phase and so we suggest that any Big-M type artificial variables be left out.

6.3. Separable Equivalents.Many nonlinear functions have the following form:

f(x) = φ(aT x),

wherea is a sparsen-vector of coefficients andφ is a convex function. Suppose, for the sake of discussion, thata
involvesk nonzeros. Then, the Hessian off contributes ak× k dense submatrix to then×n hopefully-sparse matrix
Q of quadratic terms in the quadratic approximation. This might not be bad, but ifk is close ton or if there are a lot
of such nonlinear functions,Q might turn out to be quite dense. An alternative is to introduce an artificial variable
y = aT x and replacef(x) by φ(y) together with the linear constraint to definey in terms ofx. Sincey is a single
real variable, the Hessian now contributes a single diagonal entry toQ. Thus, at the expense of adding a single linear
constraint to the problem,Q is greatly sparsified. This modeling trick can on some problems have a dramatic impact
on efficiency, for example in portfolio optimization problems. In other contexts it doesn’t help, in fact it can hurt.

We illustrate this concept with the Markowitz model presented in Section 3.1. By setting the verbosity level to 2,
one discovers the following statistics associated withmarkowitz.mod :

variables: non-neg 500, free 0, bdd 0, total 500
constraints: eq 1, ineq 0, ranged 0, total 1
nonzeros: A 500, Q 250000
nonzeros: L 125750, arith_ops 42168001

The second entry on the third line gives the number of nonzeros in the matrixQ defining the quadratic terms. Here it
is 250000 which is exactly500 squared. This indicates thatQ is a dense500× 500 matrix.

Now, let us consider a slight modification to the model, which we have stored in a new file calledmarkowitz2.mod :

16 ROBERT J. VANDERBEI

param n integer > 0 default 500; # number of investment opportunities
param T integer > 0 default 20; # number of historical samples

param mu default 1.0;

param R {1..T,1..n} := Uniform01(); # return for each asset at each time
(in lieu of actual data,
we use a random number generator).

param mean {j in 1..n} # mean return for each asset
:= (sum{i in 1..T} R[i,j]) / T;

param Rtilde {i in 1..T,j in 1..n} # returns adjusted for their means
:= R[i,j] - mean[j];

var x{1..n} >= 0;
var y{1..T};

minimize linear_combination:
mu * # weight
sum{i in 1..T} y[i]ˆ2 # variance
-
sum{j in 1..n} mean[j] * x[j] # mean
;

subject to total_mass:
sum{j in 1..n} x[j] = 1;

subject to definitional_constraints {i in 1..T}:
y[i] = sum{j in 1..n} Rtilde[i,j] * x[j];

option solver loqo;
option loqo_options "verbose=2";

solve;

printf: "Optimal Portfolio: \n";
printf {j in 1..n: x[j]>0.001}: " %3d %10.7f \n", j, x[j];

printf: "Mean = %10.7f, Variance = %10.5f \n",
sum{j in 1..n} mean[j] * x[j],
sum{i in 1..T} (sum{j in 1..n} Rtilde[i,j] * x[j])ˆ2;

If we make a timed run of this model (by typingtime ampl markowitz2.mod), the first few lines of output look
like this:

LOQO 3.03: verbose=2
variables: non-neg 500, free 20, bdd 0, total 520
constraints: eq 21, ineq 0, ranged 0, total 21
nonzeros: A 10520, Q 20
nonzeros: L 10730, arith_ops 256121

LOQO USER’S MANUAL – VERSION 4.05 17

Note that there are now20 more constraints but at the same time the number of nonzeros inQ is only20. Furthermore,
the number of arithmetic operations (which correlates closely with true run-times – at least for large problems) is
only 256121 as compared with42168001 in markowitz.mod . This suggest that the second formulation should run
perhaps a hundred times faster than the first. Indeed, running both models on the same hardware platform one finds
thatmarkowitz2.mod solves in 4.54 seconds whereasmarkowitz.mod takes 257 seconds, which translates to
a speedup by a factor of about60. On this problem, MINOS takes 1.25 seconds whereas LANCELOT takes 9.89
seconds.

6.4. Dense Columns.Some problems are naturally formulated with the constraint matrix having a small number of
columns that are significantly denser than the other columns. From an efficiency point of view, dense columns have
been a red herring for interior-point methods. However,LOQO incorporates certain specific techniques to avoid the
inefficiencies often encountered on models with dense columns.

Recently discovered “tricks” (which are incorporated intoLOQO) have largely overcome the problems associated
with dense columns, however, the user should be aware that the presense of dense columns could be the source of
numerical difficulties. Often it is easy to reformulate a problem having dense columns in such a way that the new
formulation avoids dense columns. For example, if variablex appears in a large number of constraints, we would
suggest introducing several different variables,x1, . . . , xk, all representing the same original variablex and usingx1

in some of the constraints,x2 in some others, etc. Of course,k − 1 new constraints must be added to equate each of
these new variables to each other. Hence, the new problem will havek− 1 more variables andk− 1 more constraints,
but it will have a constraint matrix that doesn’t have dense columns. Often it is better to solve a slightly larger problem
if the larger constraint matrix has an improved sparsity structure.

18 ROBERT J. VANDERBEI

REFERENCES

[1] A. Brooke, D. Kendrick, and A. Meeraus.GAMS: A User’s Guide. Scientific Press, 1988. 1
[2] R. Fourer, D.M. Gay, and B.W. Kernighan.AMPL: A Modeling Language for Mathematical Programming. Sci-

entific Press, 1993. 1
[3] W. Hock and K. Schittkowski.Test examples for nonlinear programming codes. Lecture Notes in Economics and

Mathematical Systems 187. Springer Verlag, Berlin-Heidelberg-New York, 1981. 2, 3
[4] J.L. Nazareth.Computer Solutions of Linear Programs. Oxford University Press, Oxford, 1987. 12
[5] D.F. Shanno and R.J. Vanderbei. Interior-Point Methods for Nonconvex Nonlinear Programming: Orderings and

Higher-Order Methods.Math. Prog., 87(2):303–316, 2000. 1
[6] R.J. Vanderbei. LOQO: An interior point code for quadratic programming.Optimization Methods and Software,

12:451–484, 1999. 1
[7] R.J. Vanderbei and D.F. Shanno. An Interior-Point Algorithm for Nonconvex Nonlinear Programming.Compu-

tational Optimization and Applications, 13:231–252, 1999. 1, 4

http://www.sor.princeton.edu/~rvdb/ps/predcor.pdf
http://www.sor.princeton.edu/~rvdb/ps/predcor.pdf
http://www.sor.princeton.edu/~rvdb/ps/nonlin.pdf

LOQO USER’S MANUAL – VERSION 4.05 19

APPENDIX A. A DJUSTABLE PARAMETERS

Here is a list of the parameter keywords with a description of each keyword’s meaning and how to use it:

bndpush value Specifies minimum initial value for slack variables. The default is100 if the problem
is a linear programming problem and1 otherwise.

bounds str Specifies the name of the bounds set.Strmust be a string that matches one of the bounds-
set labels in the bounds section of the MPS file. The default is to use the first encountered
bounds set.

convex Asserts that a problem is convex, thus disabling special treatment that’s appropriate only
for nonconvex problems. The default is to treat problems as if they are nonconvex.

dense n The ordering heuritics mentioned above are actually implemented as modifications of the
usual heuristics into two-tier versions of the basic heuristic. This is necessary since the re-
duced KKT system is not positive semi-definite. For each column of the constraint matrix,
there is an associated column in the reduced KKT system. Generally, speaking these are the
tier-one columns. These tier-one columns are intended to be eliminated before the tier-two
columns. However, it is sometimes possible to see tremendous improvements in solution
time if a small number of these columns are assigned to tier-two. The columns whose reas-
signment could make the biggest impact are those columns which have the most nonzeros
(i.e. dense columns).LOQO has a built in heuristic that tries to determine a reasonable
threshold above which a column will be declared dense and put into tier-two. However, the
heuristic can be overridden by settingdense to any value you want.

dual Requests that the ordering heuristic be set to favor the dual problem. This is typically
prefered if the number of constraints far exceeds the number of variables or if the problem
has a large number of dense columns. More generally, it is prefered if the matrixAAT has
more nonzeros than the matrixAT A. By defaultLOQO uses a heuristic to decide if it is
better to use the primal-favored or the dual-favored ordering.

epsdiag eps Specifies minimum value for diagonal elements in reduced KKT system. The default
is 1.0e-14 .

epsnum eps At the heart ofLOQO is a factorization routine that factors the so-called reduced KKT
system into the product of a lower triangular matrixL times a diagonal matrixD times the
transpose ofL. If the reduced KKT system is not of full rank, then a zero will appear on
each diagonal element ofD for which the corresponding equation can be written as a linear
combination of preceding equations.epsnum is a tolerance — ifDjj ≤ epsnum, then

thejth row of the reduced KKT system is declared a dependent row. The default value for
epsnum is 0.0.

epssol eps Having dependent rows in the reduced KKT system is not by itself an indication of
trouble. All that is required is that when solving the system using the forward and backward
substitution procedures, it is required that when encountering a row that has been declared
dependent, the right-hand side element must also be zero. If it is not, then the system of
equations is inconsistent and a message to this effect is printed.epssol is a zero tolerance
for deciding how small this right-hand side element must be to be considered equivalent to
a zero. The default is1.0e-6 .

honor bnds boolean In LOQO, only slack variables are constrained to be nonnegative. The vector
of primal variablesx is always a free variable. Ifhonor bnds is set to1, then any bounds
onx in the original formulation will be honored when calculating step lengths. The default
is 0 if the problem is a linear programming problem and1 otherwise.

ignore initsol If an initial primal and/or dual solution is given in anAMPL model, then this initial
solution is passed toLOQO unless this parameter is specified.

20 ROBERT J. VANDERBEI

inftol eps Specifies the infeasibility tolerance for the primal and for the dual problems. The default
is 1.0e-5 .

inftol2 eps Specifies the infeasibility tolerance used by the stopping rule to decide if matters are
deteriorating. That is, if the new infeasibility is greater than the old infeasibility by more
than INFTOL2 then stop and declare the problem infeasible. The default is1.0 .

iterlim Specifies a maximum number of iterations to perform. Generally speaking the an optimal
solution hasn’t been found after about 50 or 60 iterations, it is quite likely that something
is wrong with the model (or withLOQO itself) and it is best to quit. The default is200 .

lp only Requests that only a linear approximation be formed at each iteration.
max Requests that the problem be a maximization instead of a minimization. (If calling from

AMPL, the sense of the optimization is specified byAMPL.)
maximize Same asmax.
maxit n Specifies the maximum number of iterations. The default is200.
min Requests that the problem be a minimization (this is the default).
mindeg This keyword requests the minimum degree heuristic (this is the default).
minimize Same asmin .
minlocfil This keyword requests the minimum-local-fill heuristic. This heuristic is slower than

the minimum degree heuristic, but sometimes it generates significantly better orderings
yielding an overall win.

mufactor value Specifies a scale factor for the calculation of the centering parameterµ in the pre-
dictor step. The default is0.0 for linear programming problems and0.1 otherwise.

noreord The rows and columns of the reduced KKT system are symmetrically permuted using a
heuristic that aims to minimize the amount of fill-in inL. Two heuristics are available:
minimum degreeandminimum-local-fill(which is also called minimum-deficiency). If you
wish to use neither of these heuristics and simply solve the system in the original order,
include thenoreord keyword.

obj str Specifies the name of the objective function.Strmust be a string that matches one of theN
rows in the rows section of the MPS file. The default is to use the first encounteredN row.

outlev n Same asverbose .
pred corr boolean Controls whether or not a corrector direction is computed. Setting to0 gives a

pure predictor computation, whereas setting to1 gives a predictor-corrector direction. The
default is1 for linear programming and0 otherwise.

primal Requests that the ordering heuristic be set to favor the primal problem. This is typically
prefered if the number of variables far exceeds the number of constraints or if the problem
has a large number of dense rows. More generally, it is prefered if the matrixAAT has
fewer nonzeros than the matrixAT A. By defaultLOQO uses a heuristic to decide if it is
better to use the primal-favored or the dual-favored ordering.

ranges str Specifies the name of the range set.Strmust be a string that matches one of the range-set
labels in the ranges section of the MPS file. The default is to use the first encountered range
set.

rhs str Specifies the name of the right-hand side.Str must be a string that matches one of the
right-hand side labels in the right-hand side section of the MPS file. The default is to use
the first encountered right-hand side.

sigfig n Specifies the number of significant figures to which the primal and dual objective function
values must agree for a solution to be declared optimal. The default is8.

steplen value Step length reduction factor. The default is0.95.
timing boolean Set to1 to output timing information and to0 otherwise. The default is0.
timlim tmax Sets a maximum time in seconds to let the system run. The default is forever.

LOQO USER’S MANUAL – VERSION 4.05 21

verbose n Larger values ofn result in more statistical information printed on standard output. Zero
indicates no printing to standard output. The default value is1.

zero initsol Assert that the primal and dual vectors should be initialized to0 even if the calling
AMPL model specifies initial values.

22 ROBERT J. VANDERBEI

ROBERT J. VANDERBEI, OPERATIONSRESEARCH ANDFINANCIAL ENGINEERING, PRINCETON UNIVERSITY, PRINCETON, NJ 08544
E-mail address: rvdb@princeton.edu

	1. Introduction
	2. Installation
	3. Using loqo with ampl
	3.1. The Markowitz Model

	4. The Function Library
	4.1. Setting Up the Problem in the Calling Routine
	4.2. Updating the Quadratic Approximation.
	4.3. Compiling and Running

	5. Solving Linear and Quadratic Programs in MPS Format
	5.1. MPS File Format
	5.2. Spec Files
	5.3. Termination Conditions

	6. Modeling Hints
	6.1. Convex Quadratic Programs
	6.2. Artificial Variables
	6.3. Separable Equivalents
	6.4. Dense Columns

	References
	Appendix A. Adjustable Parameters

