
MathSoft

S-PLUS 5 FOR UNIX

User�s Guide

September 1998

Data Analysis Products Division

MathSoft, Inc.

Seattle, Washington

Proprietary

Notice

MathSoft, Inc. owns both this software program and its documentation.
Both the program and documentation are copyrighted with all rights
reserved by MathSoft.

The correct bibliographical reference for this document is as follows:

S-PLUS 5 for UNIX User�s Guide, Data Analysis Products Division,
MathSoft, Seattle, WA.

Printed in the United States.

Copyright

Notice

Copyright © 1988-1998 MathSoft, Inc. All Rights Reserved.

The license management portion of this product is based on Élan License
Manager. Copyright © 1989�1998 Rainbow Technologies, Inc. All Rights
Reserved.

Other portions of the software are copyright Rogue Wave Software and
Circle Systems, Inc.

The following notice applies only to X Window System software included in
S-PLUS:

X Window System is a trademark of MIT.

Copyright © 1989 by the Massachusetts Institute of Technology.

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no
representations about the suitability of this software for any purpose. It is provided �as is� without express or implied
warranty.

This software is not subject to any license of the American Telephone and Telegraph Company or of the Regents of the
University of California.

S-PLUS is a registered trademark of MathSoft, Inc. S and New S are
trademarks of Lucent Technologies, Inc. Élan License Manager is a
trademark of Rainbow Technologies. All other trademarks are acknowledged

Acknowledgements

S-PLUS would not exist without the pioneering research of the Bell Labs S
team at AT&T (now Lucent Technologies): John M. Chambers, Richard A.
Becker, Allan R. Wilks, Duncan Temple Lang, David James, Mark Hansen,
William S. Cleveland, and colleagues.
ii

License Agreement and Limited Warranty

Warning: MATHSOFT IS WILLING TO LICENSE THE ENCLOSED
SOFTWARE TO YOU ONLY UPON THE CONDITION THAT YOU
ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE
AGREEMENT. PLEASE READ THE TERMS CAREFULLY BEFORE
OPENING THE PACKAGE WITH THE CD-ROM OR OTHER
MEDIA, AS OPENING THE PACKAGE WILL INDICATE YOUR
ASSENT TO THEM. IF YOU DO NOT AGREE TO THESE TERMS,
THEN MATHSOFT IS UNWILLING TO LICENSE THE SOFTWARE
TO YOU, IN WHICH EVENT YOU SHOULD RETURN THIS
COMPLETE PACKAGE WITH ALL ORIGINAL MATERIALS AND
THE UNOPENED PACKAGE WITH THE CD-ROM OR OTHER
MEDIA AND YOUR MONEY WILL BE REFUNDED.

MathSoft, Inc.

License

Agreement

Both the Software and the documentation are protected under applicable
copyright laws, international treaty provisions, and trade secret statutes of the
various states. This Agreement grants you a personal, limited, non-exclusive,
non-transferable license to use the Software and the documentation. This is
not an agreement for the sale of the Software or the documentation or any
copies or part thereof. Your right to use the Software and the documentation
is limited to the terms and conditions described therein.

You may use the Software and the documentation solely for your own
personal or internal purposes, for non-remunerated demonstrations (but not
for delivery or sale) in connection with your personal or internal purposes:

(a) if you have a single license, on only one computer at a time and by only
one user at a time, however, the user of the computer on which the Software
is installed may make a copy for his or her exclusive use on a portable
computer so long as the Software is not used on both computers at the same
time;

(b) if you have acquired multiple licenses, the Software may be used on
either stand-alone computers or on computer networks by a number of
simultaneous users equal to or less than the number of licenses that you have
acquired; and

(c) if you maintain the confidentiality of the Software and documentation at
all times.

Persons for whom license fees have not been paid may not access or use the
Software, or any part thereof, through �programmatic access� or otherwise.
Anyone wishing programmatic access will need to be established as a user
under the terms of this Agreement.
iii

You may make copies of the Software solely for archival purposes. Any copy
that you make of the Software, in whole or in part, is the property of
MathSoft. You agree to reproduce and include MathSoft�s copyright,
trademark, and other proprietary rights notices on any copy you make of the
Software.

You must have a reasonable mechanism or process that ensures that the
number of users at any one time does not exceed the number of licenses you
have paid for and that prevents access to the Software to any person not
authorized under the above license to use the Software.

You may receive the Software in more than one medium. Regardless of the
type or size of media you receive, you may use only one medium that is
appropriate for your single computer. You may not use or install the other
medium on another computer. You may not loan, rent, lease, or otherwise
transfer the other medium to another user.

You may not translate, reverse engineer, decompile, or disassemble the
Software, except and only to the extent that such activity is expressly
permitted by applicable law notwithstanding this limitation.

If the Software is labeled as an upgrade, you must be properly licensed to use
a product identified by MathSoft as being eligible for the upgrade in order to
use the Software. Software labeled as an upgrade replaces and/or supplements
the product that formed the basis of your eligibility for the upgrade. You may
use the resulting upgraded product only in accordance with the terms of this
license, which supersedes all prior agreements.

MathSoft reserves all rights not expressly granted to you by this License
Agreement.

The license granted herein is limited solely to the uses specified above, and
without limiting the generality of the foregoing, you are NOT licensed to use
or to copy all or any part of the Software or the documentation in connection
with the sale, resale, license, or other for-profit personal or commercial
reproduction or commercial distribution of computer programs or other
materials without the prior written consent of MathSoft.

You will not export or re-export the Software without the appropriate United
States and/or foreign government licenses.

Limited Warranty MathSoft warrants that the media on which the Software is recorded will be
free from defects in materials and workmanship under normal use for a
period of ninety (90) days from the date of purchase, as evidenced by a copy
of your receipt. The liability of MathSoft pursuant to this limited warranty
shall be limited to the replacement of the defective media. If failure of the
iv

media has resulted from accident, abuse, or misapplication of the product,
then MathSoft shall have no responsibility to replace the media under this
limited warranty.

THIS LIMITED WARRANTY AND RIGHT OF REPLACEMENT IS IN
LIEU OF, AND YOU HEREBY WAIVE, ANY AND ALL OTHER
WARRANTIES, BOTH EXPRESS AND IMPLIED, RELATING TO
THE SOFTWARE, DOCUMENTATION, MEDIA, OR THIS LICENSE,
INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE, AND NONINFRINGEMENT. IN NO EVENT SHALL
MATHSOFT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES, INCLUDING BUT NOT LIMITED TO LOSS OF USE,
LOSS OF REVENUES OR PROFIT, LOSS OF DATA OR DATA BEING
RENDERED INACCURATE, OR LOSSES SUSTAINED BY THIRD
PARTIES EVEN IF MATHSOFT HAS BEEN ADVISED OF THE
POSSIBILITIES OF SUCH DAMAGES. NO ORAL OR WRITTEN
INFORMATION OR ADVICE GIVEN BY MATHSOFT, ITS
EMPLOYEES, DISTRIBUTORS, DEALERS, OR AGENTS SHALL
INCREASE THE SCOPE OF THE ABOVE WARRANTIES OR
CREATE ANY NEW WARRANTIES. WE DISCLAIM AND EXCLUDE
ALL OTHER IMPLIED OR EXPRESS WARRANTIES. This warranty
gives you specific legal rights, which may vary from state to state. Some states
do not allow the limitation or exclusion of liability for consequential
damages, so the above limitation may not apply to you.

MathSoft hereby warns you that due to the complexity of the Software it is
possible that use of the Software could lead unintentionally to the loss or
corruption of data. You assume all risk for such data loss or corruption; the
warranties provided hereunder do not cover any damage or losses resulting
therefrom.

MathSoft�s licensors do not warrant the Software, do not assume any liability
regarding the Software, and do not undertake to furnish any support or
information regarding the Software.

IN NO CASE WILL MATHSOFT�S LIABILITY EXCEED THE
AMOUNT OF THE LICENSE FEE ACTUALLY PAID BY YOU TO
MATHSOFT.

The Software and documentation are provided with restricted rights. Use,
duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1)
and (2) of the Commercial Computer Software--Restricted Rights at 48 CFR
52.227-19, as applicable. Manufacturer is MathSoft, Inc., 101 Main Street,
Cambridge, MA 02142.
v

Without prejudice to any other rights, MathSoft may terminate this license if
you fail to comply with the terms and conditions of this Agreement. If this
license is terminated, you agree to destroy all copies of the Software and
documentation in your possession.

This License agreement shall be governed by the laws of the Commonwealth
of Massachusetts and shall inure to the benefit of MathSoft, its successors,
representatives, and assigns. The license granted hereunder may not be
assigned, sublicensed or otherwise transferred by you without the prior
written consent of MathSoft. If any provisions of this Agreement shall be
held to be invalid, illegal, or unenforceable, the validity, legality, and
enforceability of the remaining provisions shall in no way be affected or
impaired thereby.
vi

CONTENTS OVERVIEW

Introduction

Chapter 1 Welcome to S-PLUS 1

Chapter 2 Getting Started 7

Chapter 3 Importing and Exporting Data 53

Data Structures

Chapter 4 Data Objects 75

Chapter 5 Data Frames 97

Graphics

Chapter 6 Traditional Graphics 119

Chapter 7 Traditional Trellis Graphics 201

Chapter 8 Working With Graphics Devices 271

Advanced Topics

Chapter 9 Customizing Your S-PLUS Session 311

Index 329
vii

CONTENTS OVERIVEW
viii

CONTENTS

Chapter 1 Welcome to S-PLUS 1
Introduction 1

Help, Support, and Learning Resources 2
Getting Help 2

Chapter 2 Getting Started 7
Running S-PLUS 8

Starting S-PLUS and Entering Expressions 8
Quitting S-PLUS 9
Basic Syntax and Conventions 9

Command Line Editing 12
Getting Help in S-PLUS 15

Reading S-PLUS Help Files 16
S-PLUS Language Basics 18

Data Objects 18
Managing Data Objects 23
Functions 25
Operators 26
Optional Arguments to Functions 31
Access to UNIX 32

Importing and Editing Data 33
Reading a Data File 33
Editing Data 34
Built-in Data Sets 35
Quick Hard Copy 35
Adding Row And Column Names 36
Extracting Subsets of Data 37

Graphics in S-PLUS 41
Making Plots 41
Quick Hard Copy 44
Using the Graphics Window 44
Multiple Plot Layout 45
ix

CONTENTS
Statistics 47
Summary Statistics 47
Hypothesis Testing 48
Statistical Models 50

Chapter 3 Importing and Exporting Data 53
Importing Data Files 54
Setting the Import Filter 59
Notes on Importing Files 62

Notes on Importing ASCII (Delimited ASCII) Files 62
Notes on Importing FASCII (Formatted ASCII) Files 63
Notes on Importing Excel Files 64
Notes on Importing Lotus Files 64
Notes on Importing dBase Files 64
Notes on Importing Data From Enterprise Databases 64

Other Data Import Functions 67
Reading Vector and Matrix Data with scan 67
Reading Data Frames 69

Exporting Data Sets 71
Exporting Data to S-PLUS 72
Other Export Functions 72

Chapter 4 Data Objects 75
Basic Data Objects 76

Coercion of Values 77
Vectors 79

Creating Vectors 79
Naming Vectors 81

Matrices 82
Creating Matrices 82
Naming Rows and Columns 84

Arrays 85
Creating Arrays 86

Lists 87
Creating Lists 87
List Component Names 89
x

CONTENTS
Factors and Ordered Factors 90
Creating Factors 91
Creating Ordered Factors 93
Creating Factors from Continuous Data 94

Chapter 5 Data Frames 97
The Benefits of Data Frames 98
Creating Data Frames 99
Combining Data Frames 104

Combining Data Frames by Column 104
Combining Data Frames by Row 106
Merging Data Frames 107

Applying Functions to Subsets of a Data Frame 110
Adding New Classes of Variables to Data Frames 116

Chapter 6 Traditional Graphics 119
Introduction 121

Getting Started with Simple Plots 122
Plotting a Vector Data Object 122
Plotting Mathematical Functions 123
Creating Scatter Plots 125

Frequently Used Plotting Options 126
Plot Shape 126
Multiple Plot Layout 126
Titles 128
Axis Labels 129
Axis Limits 129
Logarithmic Axes 130
Plot Types 130
Line Types 133
Plotting Characters 134
Controlling Plotting Colors 135

Interactively Adding Information to Your Plot 137
Identifying Plotted Points 137
Adding Straight Line Fits to a Current Scatter Plot 138
Adding New Data to a Current Plot 138
Adding Text to Your Plot 140
xi

CONTENTS
Making Bar Plots, Dot Charts, and Pie Charts 142
Bar Plots 142
Dot Charts 144
Pie Charts 146

Visualizing the Distribution of Your Data 147
Boxplots 147
Histograms 148
Density Plots 149
Quantile-Quantile Plots 150

Visualizing Higher Dimensional Data 154
Multivariate Data Plots 154
Scatterplot Matrices 154
Plotting Matrix Data 155
Star Plots 156
Faces 157

3-D Plots: Contour, Perspective, and Image Plots 158
Contour Plots 158
Perspective Plots 160
Image Plots 161

Customizing Your Graphics 163
Low-level Graphics Functions and Graphics Parameters 164
Setting and Viewing Graphics Parameters 166
Controlling Graphics Regions 170

Controlling the Outer Margin 171
Controlling Figure Margins 172
Controlling the Plot Area 173

Controlling Text in Graphics 174
Controlling Text and Symbol Size 174
Controlling Text Placement 175
Controlling Text Orientation 176
Controlling Line Width 177
Plotting Symbols in Margin 177

Text in Figure Margins 178
Controlling Axes 180

Enabling and Disabling Axes 180
Controlling Tick Marks and Axis Labels 180
Controlling Axis Style 183
Controlling Axis Boxes 184
xii

CONTENTS
Controlling Multiple Plots 185
Overlaying Figures 188

High-Level Functions That Can Act as Low-Level Functions 188
Overlaying Figures by Setting new=TRUE 188
Overlay Figures by Using subplot 189

Adding Special Symbols to Plots 192
Arrows and Line Segments 192
Adding Stars and Other Symbols 193
Custom Symbols 195

Traditional Graphics Summary 197
References 200

Chapter 7 Traditional Trellis Graphics 201
A Roadmap of Trellis Graphics 202

Giving Data to General Display Functions 204
A Data Set: gas 204
formula Argument 204
subset Argument 206
Data Frames 207

Aspect Ratio 208
General Display Functions 210

A Data Set: fuel.frame 210
A Data Set: gauss 223

Arranging Several Graphs On One Page 228
Multipanel Conditioning 230

A Data Set: barley 230
About Multipanel Display 230
Columns, Rows, and Pages 230
Packet Order and Panel Order 231
layout Argument 233
Main-Effects Ordering 235
Summary: The Layout of a Multipanel Display 237
A Data Set: ethanol 237
Conditioning on Discrete Values of a Numeric Variable 237
Conditioning on Intervals of a Numeric Variable 239
xiii

CONTENTS
Scales and Labels 242
3-D Display: aspect Argument 244
Changing the Text in Strip Labels 244

Panel Functions 246
How to Change the Rendering in the Data Region 246
Passing Arguments to a Default Panel Function 246
A Panel Function for a Multipanel Display 247
Special Panel Functions 247
Commonly-Used S-PLUS Graphics Functions and Parameters 248

Panel Functions and the Trellis Settings 249
Superposing Two or More Groups of Values on a Panel 252
Data Structures 259
More on Aspect Ratio and Scales: Prepanel Functions 262

More on Multipanel Conditioning 263
Summary of Trellis Functions and Arguments 266

Chapter 8 Working With Graphics Devices 271
Printing Your Graphics 272

Printing with PostScript Printers 272
Printing with HP-GL Pen Plotters 283
Creating PDF Graphics Files 285
Managing Files from Hard Copy Graphics Devices 285
Using Graphics from a Function or Script 286

Graphics Window Details 289
Basic Terminology 289
Available Colors Under X11 306

Chapter 9 Customizing Your S-PLUS Session 311
Setting S-PLUS Options 312
Setting Environment Variables 314
Customizing Your Session at Start-up and Closing 316

Setting S_FIRST 316
Customizing Your Session at Closing 317

Using Personal Function Libraries 318
Creating an S Chapter 318
Placing the Chapter in Your Search Path 319

Specifying Your Working Directory 320
Specifying a Pager 321
Environment Variables and printgraph 322
xiv

CONTENTS
Setting Up Your Window System 324
Setting X11 Resources 324
S-PLUS X11 Resources 325
Common Resources for the Motif Graphics Device 325

Index 329
xv

CONTENTS
xvi

Introduction 1
Help, Support, and Learning Resources 2

Getting Help 2

Introduction Welcome to S-PLUS 5.0 for UNIX, the first release of S-PLUS based on the
newest version of Lucent Technologies� S language, S Version 4.
As the exclusive licensee of the S language, MathSoft has molded the S
technology into the most powerful data analysis product available today. The
S-PLUS object-oriented environment delivers benefits that traditional
language analysis programs simply can�t match. With S-PLUS every data set,
function, or analysis model is treated as an object, which makes it easy to
examine and visually explore data, run functions one step at a time, and
visually compare models for fit.
S-PLUS gives you immediate feedback because it runs functions one at a time.
With S-PLUS, you�ve got control over every step of your analysis. Visually
compare different models for fit, re-explore your data for outliers or other
factors that might influence a result, and document every analysis function.
Because S-PLUS puts you in control, you�ll have complete confidence in the
quality of your results.
When your analysis requires a new method or approach, you can modify
existing methods or develop new ones with the programming language. By
tapping into the power, flexibility and extensibility of S-PLUS, you can take
your analysis to a new level.

WELCOME TO S-PLUS 1
1

CHAPTER 1 WELCOME TO S-PLUS
HELP, SUPPORT, AND LEARNING RESOURCES

Getting Help There are a variety of ways to accelerate your progress with S-PLUS, and to
build upon the work of others. This section describes the learning and
support resources available to S-PLUS users.

Online Help S-PLUS offers an online help system to make learning and using S-PLUS
easier. To get help, type help() or ? at the S-PLUS prompt.

Printed and

Online Manuals

Your S-PLUS license comes with four manuals: this user�s guide, the S-PLUS
Guide to Statistics, and the S-PLUS Installation and Maintenance Guide, all of
which are also available online as PDF files, and the book Programming with
Data, by John M. Chambers. Programming with Data is the definitive guide
to programming with S Version 4. You can keep up to date with the latest in
S programming by visiting the Programming with Data website at

http://cm.bell-labs.com/stat/Sbook

The web site also includes errata for the book.

Add-On Modules Add-on modules that offer analytical functionality beyond that of the base
S-PLUS product include:
S+DOX: helps in designing and analyzing industrial experiments, especially
fractional factorial experiments, response surface experiments, and robust
design experiments.
S+GARCH: provides an essential suite of tools designed for univariate and
multivariate GARCH modeling of financial time series data.
S+SPATIALSTATS: provides a comprehensive set of tools for statistical
analysis of spatial data, including tools for hexagonal binning, variogram
estimation and kriging, autoregressive and moving average modeling, and
testing for spatial randomness.
S+WAVELETS: offers a visual data analysis approach to a whole range of
signal-processing techniques, such as wavelet packets, local cosine analysis,
and matching pursuits.

Notes on Online versions of the Guides

The Online manuals are viewed using Acrobat Reader, which is available for free over the Internet at
 http://www.adobe.com
2

GETTING HELP
StatLib StatLib is a system for distributing statistical software, data sets, and
information by electronic mail, FTP and the World Wide Web. It contains a
wealth of user-contributed S-PLUS functions.

� To access StatLib by FTP, open a connection to: lib.stat.cmu.edu.
Login as anonymous and send your e-mail address as your password.
The FAQ (frequently asked questions) is in /S/FAQ, or in HTML
format at http://www.stat.math.ethz.ch/S-FAQ.

� To access StatLib with a web browser, visit http://lib.stat.cmu.edu/.

� To access StatLib by e-mail, send the message: send index from S to
statlib@lib.stat.cmu.edu. You can then request any item in StatLib
with the request send item from S where item is the name of the
item.

S-News S-news is an electronic mailing list by which S-PLUS users can ask questions
and share information with other users. To get on this list, send a message
with message body subscribe to s-news-request@wubios.wustl.edu. To get
off this list, send a message with body unsubscribe to the same address.

Once enrolled on the list, you will begin to receive e-mail. To send a message
to the S-news mailing list, send it to: s-news@wubios.wustl.edu. Do not send
subscription requests to the full list; use the s-news-request address shown
above.

Training Courses MathSoft Educational Services offers a variety of courses designed to quickly
make you efficient and effective at analyzing data with S-PLUS. The courses
are taught by professional statisticians and leaders in statistical fields. Courses
feature a hands-on approach to learning, dividing class time between lecture
and online exercises. All participants receive the educational materials used in
the course, including lecture notes, supplementary materials, and exercise
data on diskette.

S-Press S-Press is a free quarterly newsletter about S-PLUS mailed to primary users of
S-PLUS. S-Press features stories by S-PLUS users in industry and academia, a
technical support column and provides new product announcements and
other information from MathSoft.
3

CHAPTER 1 WELCOME TO S-PLUS
Technical

Support

In North America, to contact technical support, call
(206) 283-8802 ext. 235

or fax to

(206) 283-6310

or send e-mail to

support@statsci.com.

In Europe, Asia, Australia, Africa and South America, call

+44 1276 475350

or fax to

+44 1276 451224

or email to

shelp@mathsoft.co.uk

Books on Data

Analysis Using

S-PLUS

General

Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988). The New S
Language. Wadsworth & Brooks/Cole, Pacific Grove, CA.
Krause, A. and Olson, M. (1997). The Basics of S and S-PLUS. Springer-
Verlag, New York.
Spector, P. (1994). An Introduction to S and S-PLUS. Duxbury Press, Belmont,
CA.

Data Analysis

Bruce, A. and Gao, H.-Y. (1996). Applied Wavelet Analysis with S-PLUS.
Springer-Verlag, New York.

Chambers, J. M., and Hastie, T. J. (1992). Statistical Models in S. Wadsworth
& Brooks/Cole, Pacific Grove, CA.

Everitt, B. (1994). A Handbook of Statistical Analyses Using S-PLUS.
Chapman & Hall, London.

Härdle, W. (1991). Smoothing Techniques with Implementation in S. Springer-
Verlag, New York.

Kaluzny, S. P., Vega, S. C., Cardoso, T. P., and Shelly, A. A. (1997).
S+SPATIALSTATS User�s Manual. Springer-Verlag, New York.

Marazzi, A. (1992). Algorithms, Routines and S Functions for Robust Statistics.
Wadsworth & Brooks/Cole, Pacific Grove, CA.
4

HELP, SUPPORT, AND LEARNING RESOURCES
Venables, W. N., and Ripley, B. D. (1994). Modern Applied Statistics with
S-PLUS. Springer-Verlag, New York.

Graphical Techniques

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983).
Graphical Techniques for Data Analysis. Duxbury Press, Belmont, CA.

Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ.

Cleveland, W. S. (1985). The Elements of Graphing Data. Hobart Press,
Summit, NJ.
5

CHAPTER 1 WELCOME TO S-PLUS
6

Running S-PLUS 8
Command Line Editing 12
Getting Help in S-PLUS 15
S-PLUS Language Basics 18
Importing and Editing Data 33
Graphics in S-PLUS 41
Statistics 47

This chapter provides basic information that everyone needs to use S-PLUS
effectively. It describes the following basic tasks:

� Starting and quitting S-PLUS

� Getting help

� Using fundamental elements of the S-PLUS language such as basic
operators, assignments, function calls, etc.

� Creating and manipulating basic data objects

� Opening graphics windows and creating basic graphics

GETTING STARTED 2
7

CHAPTER 2 GETTING STARTED
RUNNING S-PLUS

This section covers the basics of starting S-PLUS, opening windows for
graphics and help, and the basics of constructing S-PLUS expressions.

Starting S-PLUS

and Entering

Expressions

To start S-PLUS, type the following at the UNIX shell prompt,and press the
RETURN key.

Splus

Note that only the ��S�� is capitalized.

When you press RETURN, a copyright message appears in your S-PLUS
window, followed, the first time you start S-PLUS, with a message about
initializing a new S-PLUS user.

These messages are followed by the S-PLUS prompt:

Splus

S-PLUS : Copyright (c) 1988, 1998 MathSoft, Inc.

S : Copyright Lucent Technologies, Inc.

Version 5.0 for Sun SPARC, SunOS 5.3 : 1998

Working data will be in .
>

You use S-PLUS by typing expressions after the prompt and pressing the
return key. You type in an expression at the S-PLUS > prompt, and S-PLUS
responds.

Among the simplest S-PLUS expressions are arithmetic expressions such as the
following:

> 3+7

[1] 10

> 3*21

[1] 63

The symbols ��+�� and ��*�� represent S-PLUS operators for addition and
multiplication, respectively. In addition to the usual arithmetic and logical
operators, S-PLUS has special operators for special purposes. For example,
the colon operator ��:�� is used to obtain sequences:

> 1:7

[1] 1 2 3 4 5 6 7
8

RUNNING S-PLUS
The [1] in each of the output lines is the index of the first S-PLUS response
on the line of S-PLUS output. If S-PLUS is responding with a long vector of
results, each line is preceded by the index of the first response of that line.

The most common S-PLUS expression is the function call. An example of a
function in S-PLUS is the c function, used for ��combining�� comma-separated
lists of items into a single item. Functions calls are always followed by a pair
of parentheses, with or without any arguments in the parentheses.

> c(3,4,1,6)

[1] 3 4 1 6

In all of our examples to this point, S-PLUS has simply returned a value. To
reuse the value of an S-PLUS expression, you must assign it with the <-
operator. For example, to assign the above expression to an S-PLUS object
named newvec, you�d type the following:

> newvec <- c(3, 4, 1, 6)

S-PLUS creates the object newvec and returns an S-PLUS prompt. To view the
contents of the newly created object, just type its name:

> newvec

[1] 3 4 1 6

Quitting S-PLUS To quit S-PLUS and get back to UNIX, use the q function:

 > q()

The () are required with the q command to quit S-PLUS because q is an
S-PLUS function, and parentheses are required with all S-PLUS functions.

Basic Syntax

and

Conventions

This section introduces basic typing syntax and conventions in S-PLUS.

Spaces S-PLUS ignores most spaces.

For example:

> 3+ 7

[1] 10
9

CHAPTER 2 GETTING STARTED
However, do not put spaces in the middle of numbers or names. For example,
if you wish to add 321 and 1, the expression 32 1+1 causes an error. Also,
you should always put spaces around the two-character assignment operator
<-; otherwise, you may perform a comparison instead of an assignment.

Upper And Lower

Case

S-PLUS is case sensitive, just like UNIX. All S-PLUS objects, arguments,
names, etc. are case sensitive. Hence, ��QWERT�� is different from ��qwert��.
In the following example, the object SeX is defined as ��M��. You get an error
message if you do not type ��SeX�� exactly as stated, including matching all
upper case and lower case letters.

> SeX

[1] "M"

> sex

Problem: Object "sex" not found

Continuation When you type a RETURN and it is clear to S-PLUS that an expression is
incomplete (for example, the last character is an operator, or there is a
missing parenthesis), S-PLUS provides a continuation prompt to remind you
to complete the expression. The default continuation prompt is ��+��.

Here are two examples of incomplete expressions which cause S-PLUS to
respond with a continuation prompt:

> 3*

+ 21

[1] 63

> c(3,4,1,6

+)

[1] 3 4 1 6

In the first example, S-PLUS determined that the expression was not complete
because the multiplication operator * must be followed by a data object. In
the second example, S-PLUS determined that c(3,4,1,6 was not complete
because a right parenthesis is needed.

In each of the above cases, the user completed the expression after the
continuation prompt (+), and then S-PLUS responded with the result of the
evaluation of the complete expression.

Interrupting

Evaluation Of An

Expression

Sometimes you may want to stop the evaluation of an S-PLUS expression. For
example, you may suddenly realize you want to use a different command, or
the output display of data on the screen is extremely long and you don�t want
to look at all of it.
10

RUNNING S-PLUS
To interrupt S-PLUS, use the UNIX interrupt command, which on most
systems consists of either CTRL-C (pressing the C key while holding down the
CONTROL key) or the DELETE key.

If neither CTRL-C nor DELETE stop the scrolling, consult your UNIX
manual for use of the stty command to see what key performs the interrupt
function, or consult your local system administrator.

Error Messages Do not be afraid of making mistakes when using S-PLUS! You will not break
anything by making a mistake. Usually you get some sort of error message,
after which you can try again.

Here are two examples of mistakes made by typing ��improper�� expressions:

> 32 1+1

Problem: Syntax error: illegal literal ("1") on input line
1

> .5(2,4)

Problem: Invalid object supplied as function

Here we typed something that S-PLUS tried to interpret as a function because
of the parentheses. However, there is no function named ".5".
11

CHAPTER 2 GETTING STARTED
COMMAND LINE EDITING

Included with S-PLUS is a command line editor that can help improve your
productivity by enabling you to recall and edit previously issued S-PLUS
commands.

The editor can do either emacs- or vi-style editing. The command line editor
uses the first valid value in the following list of environment variables:

S_CLEDITOR

VISUAL
EDITOR

To be valid, the value for the environment variable must end in ��vi�� or
��emacs.�� If none of the listed variables has a valid value, the command line
editor defaults to vi style.

For example, from the C shell, you issue the following command to set your
S_CLEDITOR to emacs:

setenv S_CLEDITOR emacs

To use the command line editor within S-PLUS, start S-PLUS with the
following command:

Splus -e

Table 2.1 summarizes the most useful editing commands for both modes of
the command line editor.

Table 2.1: Command line editing in S-PLUS.

Action emacs keystrokes vi keystrokes*

backward character CTRL-B H

forward character CTRL-F L

previous line CTRL-P K

next line CTRL-N J

beginning of line CTRL-A SHIFT-6
12

COMMAND LINE EDITING
In vi mode, the editor puts you in insert mode automatically. Thus, any
editing commands must be preceded by an ESC. As an example of using the
command line editor, suppose you�ve started S-PLUS with the emacs option
for the EDITOR environment variable. Suppose you attempt to create a plot
by typing the following:

> plto(x,y)

Problem: Couldn't find a function definition for "plto"

Type CTRL-P to recall the previous line, then use CTRL-B to return to the ��t��
in ��plto.�� Finally, type CTRL-T to transpose the ��t�� and the ��o.�� Press
RETURN to issue the edited command.

To recall earlier commands, use the backward search command (CTRL-R in
emacs mode, / in vi mode) followed by the command (or first portion of
command). For example, suppose you�ve recently issued the following
command:

> plot(xdata,ydata,xlab="Predictor",ylab="Response")

end of line CTRL-E SHIFT-4

forward word ESC,F W

backward word ESC,B B

kill char CTRL-D X

kill line CTRL-K SHIFT-D

delete word ESC,D D,W

search backward CTRL-R /

yank CTRL-Y SHIFT-Y

transpose chars CTRL-T X,P

*In command mode. Must press ESC to enter command mode.

Table 2.1: Command line editing in S-PLUS.

Action emacs keystrokes vi keystrokes*
13

CHAPTER 2 GETTING STARTED
To recall this command, type CTRL-R plot. The complete command is
restored to your command line. You can then use other editing commands to
edit it, if desired, or press RETURN to issue the command.
14

GETTING HELP IN S-PLUS
GETTING HELP IN S-PLUS

If you need help at any time during an S-PLUS session, you can obtain it
easily with the ? and help functions. The ? function has simpler syntax�it
requires no parentheses in most instances:

?lm

Fit Linear Regression Model

DESCRIPTION:

 Returns an object of class "lm" or "mlm" that
 represents a fit of a linear model.

USAGE:

 lm(formula, data=<<see below>>, weights=<<see
 below>>, subset=<<see below>>, na.action=na.fail,
 method="qr", model=F, x=F, y=F, contrasts=NULL, ...)

REQUIRED ARGUMENTS:

formula: a formula object, with the response on the left
 of a ~ operator, and the terms, separated by +
 operators, on the right.

OPTIONAL ARGUMENTS:

data: a data.frame in which to interpret the variables
 named in the formula, or in the subset and the
 weights argument.

Paging with 'less' - hit 'q' to quit, <space> to continue or
use 'vi' commands

Both ? and help use the less pager (provided with S-PLUS) to display the
requested help. You can use the "d" and "u" keys to page down and up,
respectively; use the "q" key to exit help and return to the S-PLUS prompt.

The ? command is particularly useful for obtaining information on classes
and methods. If you use ? with a function call, S-PLUS offers documentation
on the function name itself and on all methods that might be used with the
function if evaluated. In particular, if the function call is methods(name),
where name is a function name, S-PLUS offers documentation on all methods
for name available in the current search list. For example,

> ?methods(summary)

The following are possible methods for summary

 Select any for which you want to see documentation:
15

CHAPTER 2 GETTING STARTED
1: summary.aov

2: summary.aovlist

3: summary.data.frame

4: summary.default

5: summary.factor

6: summary.gam

7: summary.glm

8: summary.lm

9: summary.loess

10: summary.mlm

11: summary.ms

12: summary.nls

13: summary.ordered

14: summary.terms

15: summary.tree

Selection:

You enter the number of the desired method and S-PLUS prints the associated
help file, if it exists---the ? command does not check for the existence of the
help files before constructing the menu. After each menu selection, S-PLUS
presents an updated menu showing the remaining choices.

To get back to the S-PLUS prompt from within a ? menu, enter 0.

You call help with the name of an S-PLUS function, operator, or data set as
argument. For instance, the following command displays the help file for the
c function:

> help("c")

(The quote marks are optional for most functions, but are required for
functions and operators containing special characters, such as <-.)

Reading S-PLUS

Help Files

To get the most information from the S-PLUS help system, you should
become familiar with the general arrangement of help files. Help files are
organized as follows (not all files contain all sections):

� DESCRIPTION. A brief description of the function�s main use.

� USAGE. Provides the correct syntax for a call to the function.
Arguments for which just the argument name is given are required,
while arguments stated in the form name = value are optional
arguments, where the given value is the default value.
16

GETTING HELP IN S-PLUS
� REQUIRED ARGUMENTS. Lists arguments required in every
call to the function. If not supplied, an error results.

� OPTIONAL ARGUMENTS. Lists arguments that may be supplied
in a call to the function. If not supplied, default values are used.

� SIDE EFFECTS. Lists any effects of the function other than
returning a value.

� DETAILS. Documents some of the computational details
describing the implementation of the function.

� REFERENCES. References to scientific literature or books which
describe in further detail the methodology or interpretation of the
results of this function.

� SEE ALSO. Lists related S-PLUS functions.

� EXAMPLES. Gives examples of use of the function.
17

CHAPTER 2 GETTING STARTED
S-PLUS LANGUAGE BASICS

This section introduces the most basic concepts you need in using the S-PLUS
language: expressions, operators, assignments, data objects, and function
calls.

Data Objects When using S-PLUS, you should think of your data sets as data objects
belonging to a certain class. Each class has a particular representation, often
defined as a named list of slots. Each slot, in turn, contains an object of some
other class. Among the most common classes are "numeric", "String",
"list", and "data.frame". This chapter introduces the most basic data
objects; see the chapter Data Objects for a more detailed treatment.

The simplest type of data object is a one-way array of values, all of which are
numbers, logical values, or character strings, but not a combination of those.
For example, you can have an array of numbers: -2.0 3.1 5.7 7.3. Or
you can have an array of logical values: T T F T F T F F, where T stands for
TRUE and F stands for FALSE. Or you can have an ordered set of character
strings: "sharp claws", "COLD PAWS". These simple one-way arrays, when
stored in S-PLUS, are called vectors. The class vector is a virtual class
encompassing all basic classes whose objects can be characterized as one-way
arrays in which any individual value can be extracted and replaced by
referring to its index, or position in the array. The length of a vector is the
number of values in the array; valid indices for a vector object x are in the
range 1:length(x). Most vectors belong to one of the following classes:
numeric, integer, logical, or character.

For example, the vectors described above have length 4, 8, and 2 and class
numeric, logical, and character, respectively.

S-PLUS assigns the class of a vector containing different kinds of values so as
to preserve the maximum amount of information---character strings contain
the most information, numbers somewhat less, logical values still less. S-PLUS
coerces less informative values to equivalent values of the more informative
type:

> c(17, TRUE, FALSE)

[1] 17 1 0

> c(17, TRUE, "hello")

[1] "17" "TRUE" "hello"
18

S-PLUS LANGUAGE BASICS
Data Object

Names

Object names must begin with a letter and may include any combinations of
upper and lower case letters, numbers, and periods (.). For example, the
following are all valid object names:

mydata

data.ozone

RandomNumbers

lottery.ohio.1.28.90

The use of periods (.) often enhances the readability of similar data set
names, as in the following:

data.1

data.2

data.3

Warning

If you create S-PLUS data objects on a file system with more restrictive naming conventions than those your
version of S-PLUS was compiled for, you may lose data if you violate the restrictive naming conventions in
naming your S-PLUS objects. For example, if you are running S-PLUS on a machine allowing 255 character
names and create S-PLUS objects on a machine restricting file names to 14 characters, object names greater
than 14 characters will be truncated to the 14 character limit. If two objects share the initial 14 characters,
the latest object will overwrite the earlier object. S-PLUS warns you whenever you attach a directory with
more restrictive naming conventions than it is expecting.

Hint

You will not lose data if, when creating data objects on a file system with more restrictive naming
conventions than your version of S-PLUS was compiled for, you restrict yourself to names that are unique
under the more restrictive conventions. However, your file system may truncate or otherwise modify the
object name. To recall the object, you must refer to it by its modified name. For example, if you create the
object aov.devel.small on a file system with a 14 character limit, you should look for it in subsequent
S-PLUS sessions with the 14 character name aov.devel.smal.
19

CHAPTER 2 GETTING STARTED
Vector Data

Objects

By now you are familiar with the most basic object in S-PLUS, the vector,
which is a set of numbers, character values, logical values, etc. Vectors must be
of a single mode, i.e., you cannot have a vector consisting of the values T, -
2.3. If you try to create such a vector, S-PLUS coerces the elements to a
common mode. For example:

> c(T,-2.3)

[1] 1.0 -2.3

Vectors are characterized by their length and mode. Length can be displayed
with the length function, and mode can be displayed with the mode
function.

Matrix Data

Objects

An important data object type in S-PLUS is the two-way array, or matrix
object. For example:

-3.0 2.1 7.6

 2.5 -.5 -2.6

 7.0 10.0 16.1

 5.3 -21.0 -6.5

Matrices and their higher-dimensional analogues, arrays, are related to
vectors, but have an extra structure imposed on them. S-PLUS treats these
objects similarly by having the matrix and array classes inherit from another
virtual class, the structure class.

To create a matrix, use the matrix function. The matrix function takes as
arguments a vector and two numbers which specify the number of rows and
columns.

Warning

You should not choose names that coincide with the names of S-PLUS functions. If you store a function

with the same name as a built-in S-PLUS function, access to the S-PLUS function is temporarily prevented
until you remove or rename the object you created. S-PLUS warns you when you have masked access to a
function with a newly created function. To obtain a list of objects that mask other objects, use the masked
function.

At least seven S-PLUS functions have single-character names: C, D, c, I, q, s, and t. You should be
especially careful not to name one of your own functions c or t, as these are functions used frequently in
S-PLUS.
20

S-PLUS LANGUAGE BASICS
For example:

> matrix(1:12,nrow=3,ncol=4)

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

The first argument to matrix is a vector of integers from 1 through 12. The
second and third arguments are the number of rows and number of columns.
Each row and column is labeled. The row labels are [1,], [2,], [3,] and
the column labels are [,1], [,2], [,3], [,4]. This notation for row and
column numbers is derived from mathematical matrix notation.

In the above expression, the vector 1:12 fills the first column first, then the
second column, and so on. This is called filling the matrix ��by columns.�� If
you want to fill the matrix ��by rows��, use the optional argument byrow = T
to matrix.

For a vector of given length used to fill the matrix, the number of rows
determines the number of columns and vice versa. Thus, you need not
provide both the number of rows and the number of columns as arguments
to matrix. It is sufficient that you provide only the number of rows or the
number of columns. The following command produces the same matrix as
above:

> matrix(1:12,3)

You can also create the same matrix by specifying the number of columns
only. To do this, type:

> matrix(1:12,ncol=4)

You have to provide the optional argument ncol=4 in name=value form
because by default the second argument is taken to be the number of rows.
When you use the ��by name�� form (i.e., ncol=4) as the second argument,
you override the default. See the section Optional Arguments to Functions
(page 31) for further information on using optional arguments in function
calls.

The structure classes have three slots: a .Data slot to hold the actual
values, a .Dim slot to hold the dimensions vector, and an optional
.Dimnames slot to hold the row and column (and so on) names. The most
important slot for a matrix data object is the dimension, or .Dim slot. Use
the dim function to display the dimension. For example:

> my.mat <- matrix(1:8,4,2)
21

CHAPTER 2 GETTING STARTED
> dim(my.mat)

[1] 4 2

shows that the dimension of the matrix my.mat that you created is 4 rows by
2 columns. Matrix objects also have length and mode, which correspond to
the length and mode of the vector in the .Data slot. A matrix object has a
single mode. This means that you cannot create, for example, a two column
matrix with one column of numeric data and one column of logical or
character data. For that, you must use a data frame.

Data Frame

Objects

S-PLUS also contains an object which is very similar to a matrix object, called
a data frame object. A data frame object consists of rows and columns of
data, just like a matrix object, except that the columns can be of different
modes. The following object, baseball.df, is a data frame object
consisting of some baseball data from the 1988 season. The first two
columns are factor objects (codes for names of players), the next two columns
are numeric, and the last column is logical.

> baseball.df

 bat.ID pitch.ID event.typ outs.play err.play

 r1 pettg001 clemr001 2 1 F

 r2 whitl001 clemr001 14 0 F

 r3 evand001 clemr001 3 1 F

 r4 trama001 clemr001 2 1 F

 r5 andeb001 morrj001 3 1 F

 r6 barrm001 morrj001 2 1 F

 r7 boggw001 morrj001 21 0 F

 r8 ricej001 morrj001 3 1 F

See the chapter Data Objects for further information on data frame objects.
The chapter Importing and Exporting Data discusses how to read in data
frame objects from ASCII files.

List Objects The list object is the most general and most flexible object for holding data in
S-PLUS. A list is an ordered collection of components. Each list component
can be any data object. Different list components can be of different modes,
as well. For example, a list might have three components consisting of a
vector of character strings, a matrix of numbers, and another list. Hence, lists
are more general than vectors or matrices because they can have components
of different types or modes, and they are more general than data frames
because they are not restricted to having a rectangular (row by column)
nature.

You create lists with the list function. For example, to create a list with two
components, one a vector of mode numeric, and one a vector of character
strings, one of length 19 and the other of length 2, type the following:
22

S-PLUS LANGUAGE BASICS
> list(101:119,c("char string 1","char string 2"))

S-PLUS responds with

[[1]]:

 [1] 101 102 103 104 105 106 107 108 109 110 111 112 113

[14] 114 115 116 117 118 119

[[2]]:

[1] "char string 1" "char string 2"

The components of the list are labeled by double square bracketed numbers,
here [[1]] and [[2]], followed by colons. This notation distinguishes
numbering of list components from vector and matrix numbering. After each
component label, S-PLUS displays the contents of that component.

For greater ease in referring to list components, it is often useful to name the
components. You do this by giving each argument in the list function its
own name. For instance, you can create the same list as above, but name the
components ��a�� and ��b��, and save the list data object under the name xyz:

> xyz <- list(a=101:119,b=c("char string 1",
+ "char string 2"))

To take advantage of the component names that were given in the above
list command, use the name of the list, followed by a $ sign, followed by
the name of the component. For example, the following two commands
display component a and component b of the list xyz:

> xyz$a

 [1] 101 102 103 104 105 106 107 108 109 110 111 112 113

[14] 114 115 116 117 118 119

> xyz$b

[1] "char string 1" "char string 2"

Managing Data

Objects

In S-PLUS, any object you create at the command line is permanently stored
on disk until you remove it. This section describes how to name, store, list,
and remove your data objects.

Assigning Data

Objects

To name and store data in S-PLUS, use one of the assignment operators <- or
=. For example, to create a vector consisting of the numbers 4 3 2 1 and store
it with the name x, use the c function and type:

> x <- c(4,3,2,1)
23

CHAPTER 2 GETTING STARTED
You type <- by typing two keys on your keyboard: the ��less than�� key (<)
followed by the minus (-) character, with no intervening space.

To store the vector containing the integers 1 through 10 in y, type:

> y <- 1:10

The following assignment expressions, using the operator =, are identical to
the two previous assignments above:

> x = c(4,3,2,1)

> y=1:10

The <- form of the assignment operator is highly suggestive and readable, so
the examples in this manual use the arrow. The = is easier to type, and
matches the assignment operator in C, so many users prefer it. However, the
S language also uses the = operator inside function calls for argument
matching; if you want assign the value of an argument inside a function call,
you must use the <- operator.

Storing Data

Objects

Data objects in your working directory are permanent. They remain even if
you quit S-PLUS, and start S-PLUS again later. If you do not start S-PLUS in a
valid chapter directory, S-PLUS creates a temporary working directory for
you.

You can also change the UNIX directory location where S-PLUS objects are
stored by using the attach function. See the attach help file for further
information.

You can specify the working directory explicitly through the environment
variable S_WORK, which can specify one directory or a colon-separated list
of directories. The first valid directory in the list is used as the working
directory.

Listing Data

Objects

To display a list of the names of the data objects in your working directory,
use the objects function as follows:

> objects()

If you created the vectors x and y in the section Assigning Data Objects (page
23), you see these listed in your working directory.

The S-PLUS objects function also searches for objects whose names match a
character string given to it as an argument. The pattern may include wildcard
characters. For instance, the following expression displays all of your objects
which start with the letter d:

> objects("d*")

See the help file for grep for information on wildcards and how they work.
24

S-PLUS LANGUAGE BASICS
Removing Data

Objects

Because S-PLUS objects are permanent, from time to time you should remove
objects you no longer need. Use the rm function to remove objects. The rm
function takes any number of objects as its arguments, and removes each one.
For instance, to remove two objects named a and b, use the following
expression:

> rm(a,b)

Displaying Data

Objects

To look at the contents of a stored data object, just type its name:

> x

[1] 4 3 2 1

> y

[1] 1 2 3 4 5 6 7 8 9 10

Functions A function is an S-PLUS expression that returns a value, usually after
performing some operation on one or more arguments. For example, the c
function returns a vector formed by combining the arguments to c. You call a
function by typing an expression consisting of the name of the function
followed by a pair of parentheses, which may enclose some arguments
separated by commas. For example, runif is a function which produces
random numbers uniformly distributed between 0 and 1. To get S-PLUS to
compute 10 such numbers, type runif(10):

> runif(10)

 [1] 0.6033770 0.4216952 0.7445955 0.9896273 0.6072029

 [6] 0.1293078 0.2624331 0.3428861 0.2866012 0.6368730

S-PLUS displays the results computed by the function, followed by a new
prompt. In this case, the result is a vector object consisting of 10 random
numbers generated by a uniform random number generator. The square-
bracketed numbers, here [1] and [6], help you keep track of how many
numbers are displayed on your screen and help you locate particular
numbers.

One of the functions in S-PLUS that you will use frequently is the function c
which allows you to combine data values into a vector. For example:

> c(3,7,100,103)

[1] 3 7 100 103

> c(T,F,F,T,T)

[1] T F F F T T
25

CHAPTER 2 GETTING STARTED
> c("sharp teeth","COLD PAWS")

[1] "sharp teeth" "COLD PAWS"

> c("sharp teeth",�COLD PAWS�)

[1] "sharp teeth" "COLD PAWS"

The last example illustrates that either the double-quote character (") or the
single-quote character (�) can be used to delimit character strings.

Usually, you want to assign the result of the c function to an object with
another name which is permanently saved (until you remove it). For
example:

> weather <- c("hot day","COLD NIGHT")

> weather

[1] "hot day" "COLD NIGHT"

Some functions in S-PLUS are commonly used with no arguments. For
example, recall that you quit S-PLUS by typing q(). The parentheses are still
required so that S-PLUS can recognize that the expression is a function.

When you accidentally leave the () off when you type a function, the
function text is displayed on the screen. (Typing any object�s name causes
S-PLUS to print that object; a function object is simply the definition of the
function.) To call the function, you simply need to retype the function name,
with parentheses, after the function has finished displaying.

For instance, if you accidentally type q, instead of q() when you wish to quit
S-PLUS, the body of the function q is displayed. In this case the body of the
function is only two lines long.

> q

function(...)

.Internal(q(...), "S_dummy", T, 33)

>

No harm has been done. All you need to do now is correctly type q(), and
you will return to your UNIX system prompt.

> q()

%

Operators An operator is a function which has at most two arguments, and can be
represented by one or more special symbols which appear between the two
arguments.
26

S-PLUS LANGUAGE BASICS
For example, the usual arithmetic operations of addition, subtraction,
multiplication and division are represented by the operators +, -, *, and /,
respectively. Here are some simple calculations using the arithmetic
operators:

> 3+71

[1] 74

> 3*121

[1] 363

> (6.5 - 4)/5

[1] .5

The exponentiation operator is ^, which can be used as follows:

> 2 ^ 3

[1] 8

Some operators work with only one argument, and hence are called unary
operators. For example, the subtraction operator - can act as a unary
operator:

> -3

[1] -3

The colon (:) is an important operator for generating sequences of integers:

> 1:10

 [1] 1 2 3 4 5 6 7 8 9 10

Table 2.2 lists the S-PLUS operators for comparison and logic. Comparisons
are among the most common sources for logical data:

> (1:10) > 5

 [1] F F F F F T T T T T

Comparisons and logical operations are frequently convenient for extracting
subsets of data, and conditionals using logical comparisons play an important
role in flow of control in functions.
27

CHAPTER 2 GETTING STARTED
Expressions An expression is any combination of functions, operators, and data objects.
Thus x <- c(4,3,2,1) is an expression that involves an operator (the
assignment operator) and a function (the combine function).

Here are a few more examples to give you an indication of the variety of
expressions you will be using in S-PLUS:

> 3 * runif(10)

 [1] 1.6006757 2.2312820 0.8554818 2.4478138 2.3561580

 [6] 1.1359854 2.4615688 1.0220507 2.8043721 2.5683608

> 3*c(2,11)-1

[1] 5 32

> c(2*runif(5),10,20)

[1] 0.6010921 0.3322045 1.0886723 0.3510106

[5] 0.9838003 10.0000000 20.0000000

> 3*c(2*x,5)-1

[1] 41 14

The last two examples above illustrate a general feature of S-PLUS functions:
arguments to functions can themselves be S-PLUS expressions.

Here are three examples of expressions which are important because they
show how arithmetic works in S-PLUS when you use expressions involving

Table 2.2: Logical and comparison operators.

Operator Explanation Operator Explanation

== equal to != not equal to

> greater than < less than

>= greater than or equal to <= less than or equal to

& vectorized And | vectorized Or

&& control And || control Or

! not
28

S-PLUS LANGUAGE BASICS
both vectors and numbers. If x consists of the numbers 4, 3, 2, 1, then the
following operations work on each element of x:

> x-1

[1] 3 2 1 0

> 2*(x-1)

[1] 6 4 2 0

> x ^ 2

[1] 16 9 4 1

Any time you use an operator with a vector as one argument and a number as
the other argument, the operation is performed on each component of the
vector.

Precedence

Hierarchy

The evaluation of S-PLUS expressions has a precedence hierarchy, shown below
in Table 2.3. Operators appearing higher in the table have higher precedence
than those appearing lower; operators on the same line have equal
precedence.

Hint

If you are familiar with the APL programming language, this treatment of vectors will be familiar to you.

Table 2.3: Precedence of operators.

Operator Use

$ component selection

[[[subscripts, elements

^ exponentiation

- unary minus

: sequence operator

%% %/% %*% modulus, integer divide, matrix multiply

* / multiply, divide
29

CHAPTER 2 GETTING STARTED
Among operators of equal precedence, evaluation proceeds from left to right
within an expression. Whenever you are uncertain about the precedence
hierarchy for evaluation of an expression, you should use parentheses to make
the hierarchy explicit. S-PLUS shares a common feature of many computer
languages that the innermost parentheses are evaluated first, and so on until
the outermost parentheses are evaluated. In the following example, we assign
the value 5 to a vector (of length 1) called x. We then use the sequence
operator : and show the difference between how the expression is evaluated
with and without parentheses.

In the expression 1:(x-1), (x-1) is evaluated first, and 4 is the result.
S-PLUS displays the integers from 1 to 4:

> x <- 5

> 1:(x-1)

[1] 1 2 3 4

However, when the parentheses are left off, the : operator has greater
precedence than the - operator, and so the expression 1:x-1 is interpreted by
S-PLUS as meaning ��take the integers from 1 to 5, and then subtract one from
each integer��. Hence, the output is of length 5 instead of length 4, and
starts at 0 instead of 1, as follows:

+ - add, subtract

<> <= >= == != comparison

! not

& | && || and, or

~ formulas

<<- -> <- _ assignments

Table 2.3: Precedence of operators. (Continued)

Operator Use

Note

When using the ^ operator, if the base is a negative number, the exponent must be an integer.
30

S-PLUS LANGUAGE BASICS
> 1:x-1

[1] 0 1 2 3 4

When using S-PLUS, keep in mind the effect of parentheses and of the default
operator hierarchy.

Optional

Arguments to

Functions

One powerful feature of S-PLUS functions is considerable flexibility through
the use of optional arguments. At the same time, simplicity is maintained
because sensible defaults for optional arguments have been built in, and the
number of required arguments is kept to a minimum.

You can determine which arguments are required and which are optional by
looking in the help file in the REQUIRED ARGUMENTS and the
OPTIONAL ARGUMENTS sections.

For example, to produce 50 random normal numbers with mean 0 and
standard deviation~1, use the following:

> rnorm(50)

If you want to produce 50 normal random numbers, with mean 3 and
standard deviation 5, you can use any of the following:

> rnorm(50, 3, 5)

> rnorm(50, sd=5, mean=3)

> rnorm(50, m=3, s=5)

> rnorm(m=3, s=5, 50)

In the first expression, you are supplying the optional arguments by value.
When supplying optional arguments by value, you must supply all the
arguments in the order they are given in the help file USAGE statement.

In the second through fourth expressions, above, you are supplying the
optional arguments by name. When supplying arguments by name, order is
not important. However, we recommend that for consistency of style, you
supply optional arguments after required arguments.

The third and fourth expressions illustrate that you may abbreviate the
formal argument names of optional arguments for convenience so long as the
names are uniquely identified. You will find that supplying arguments by
name is convenient because you can then supply them in any order.
31

CHAPTER 2 GETTING STARTED
Of course, you do not need to specify all of the optional arguments. For
instance, the following are two equivalent ways to produce 50 random
normal numbers with mean 0 (the default), and standard deviation of 5:

> rnorm(50, m=0, s=5)

> rnorm(50, s=5)

Access to UNIX One important general feature of S-PLUS is easy access to and use of UNIX
tools. For example, S-PLUS provides a simple shell escape character for issuing
a single UNIX command from within S-PLUS:

> !date

Mon Apr 15 17:46:25 PDT 1991

Here date is a UNIX command which passes its result to S-PLUS for display
as shown. You can use any UNIX command in place of date.

Of course, if you have separate UNIX windows open on your workstation
screen, as will often be the case, you can just move into another window to
issue a UNIX command, read your mail, etc.

The escape function ! is not the only way to execute UNIX commands.
There is a unix function which is a more powerful way to execute UNIX
commands, because it allows you to capture and manipulate output
produced by UNIX within an S-PLUS session.
32

IMPORTING AND EDITING DATA
IMPORTING AND EDITING DATA

There are many kinds and sizes of data sets that you may want to work on in
S-PLUS. The first step is to get your data into S-PLUS in appropriate data
object form. In this section, we show you how to import data sets that exist as
files and how to enter small data sets from your keyboard.

Reading a Data

File

The data you are interested in may have been created in S-PLUS, but more
likely it came to you in some other form, perhaps as an ASCII file or perhaps
from someone else�s work in another software package, such as SAS. You can
read data from a variety of sources using the S-PLUS function importData.

For example, suppose you have a SAS file named Exenvirn.ssd01. To import
that file using the importData function, you must supply the file�s name as
that function�s file argument:

> Exenvirn <- import.data(file="Exenvirn.ssd01")

After S-PLUS reads the data file, it assigns the data to the Exenvirn
data frame.

Entering Data

From Your

Keyboard

To get a small data set into S-PLUS, create an S-PLUS data object using the
function scan() with no argument:

mydata <- scan()

where mydata is any legal data object name. S-PLUS prompts you for input,
as described in the following example. We enter 14 data values and assign
them to the object diff.hs. At the S-PLUS prompt, type in the name
diff.hs and assign to it the results of the scan command. S-PLUS responds
with the prompt 1:, which means that you should enter the first value.

You can enter as many values per line as you like, separated by spaces. When
you press RETURN, S-PLUS prompts with the index of the next value it is
waiting for. In the following example, S-PLUS responds with 6: because you
entered 5 values on the first line. When you finish entering data, press return
in response to the : prompt, and S-PLUS returns to the S-PLUS command
prompt, >.
33

CHAPTER 2 GETTING STARTED
The complete example appears on your screen as follows:

> diff.hs <- scan()

1: .06 .13 .14 -.07 -.05

6: -.31 .12 .23 -.05 -.03

11: .62 .29 -.32 -.71

15:

>

Reading An ASCII

File

Entering data from the keyboard is a relatively uncommon task in S-PLUS.
More typically, you have a vector data set stored as an ASCII file, which you
want to read into S-PLUS. An ASCII file usually consists of numbers
separated by spaces, tabs, newlines, or other delimiters.

Let�s say you have a UNIX file called vec.data in the same UNIX directory
from which you started S-PLUS, containing the following data:

62 60 63 59

63 67 71 64 65 66

88 66 71 67 68 68

56 62 60 61 63 64 63 59

You read the file vec.data into S-PLUS by using the scan command with
"vec.data" as an argument:

> x <- scan("vec.data")

The quotation marks around the vec.data argument to scan are required.
You can now type x to display the data object named x that you have read
into S-PLUS from the UNIX file vec.data.

If the UNIX file you want to read is not in the same directory from which
you started S-PLUS, you must use the entire path name. So if the UNIX file
vec.data is in a subdirectory with path name /usr/mabel/test/vec.data, then
type:

> vec.data <- scan ("/usr/mabel/test/vec.data")

Editing Data After you have created an S-PLUS data object, you may want to change some
of the data you have entered. For editing simple vectors and S-PLUS
functions, the easiest way to modify the data is to use the fix function,
which uses the editor specified in your S-PLUS session options, by default vi.

With fix, you create a copy of the original data object, edit it, then reassign
the result under its original name. If you already have a favorite editor, you
34

IMPORTING AND EDITING DATA
can use it by specifying it with the options function. For example, if you
prefer to use the emacs editor, you can set this up easily as follows:

> options(editor="emacs")

To create a new data object by modifying an existing object, use the vi
function, assigning the result a new name. For example, if you want to create
your own version of a system function such as lm, you can use vi as follows:

> my.lm <- vi(lm)

Built-in Data

Sets

S-PLUS comes with a large number of built-in data sets. These data sets
provide examples for illustrating the use of S-PLUS without forcing you to
take the time to enter your own data. When S-PLUS is used as a teaching aid,
the built-in data sets provide a useful basis for problem assignments in data
analysis.

To get S-PLUS to display any of the built-in data sets, just type its name at the
> prompt. The built-in data sets in S-PLUS include data objects of various
types.

Quick Hard

Copy

To get quick hard copy of your S-PLUS objects, including data objects and
functions, use the lpr function. For example, to print the object diff.hs,
use the following command:

 lpr(diff.hs)

A copy of your data will be sent to your standard printer.

Warning

If you do not assign the output from the vi function, either back to the original function or to a new
function, the changes you make are simply scrolled across the screen---they are not incorporated into any
function definition. The value is also stored, until a new value is returned by S-PLUS, in the object
.Last.value. You can, therefore, recover the changes by immediately typing the following:

> myfunction <- .Last.value
35

CHAPTER 2 GETTING STARTED
Adding Row

And Column

Names

Names can be added to a number of different types of S-PLUS objects. In this
section we discuss adding labels to vectors and matrices.

Adding Names To

Vectors

To add names to a vector of data, use the names function. You assign a
character vector of length equal to the length of the data vector as the names
attribute for the vector. For example, the following commands take the
integers 1 to 5, assign them to a vector x, assign the spelled out words for
those integers to the names attribute of the vector, then display the result:

> x <- 1:5

> names(x) <- c("one","two","three","four","five")

> x

 one two three four five

 1 2 3 4 5

You also use names to display the names associated with a vector:

> names(x)

 one two three four five

Adding Names To

Matrices

In a matrix, both the rows and columns can be named. Often the columns
have meaningful alphabetic word names because the columns represent
different variables, while the row names are either integer values indicating
the observation number or character strings identifying ��case�� labels. Lists are
useful for adding row names and column names to a matrix, as we now
illustrate.

The dimnames argument to the matrix function is used to name the rows
and columns of the matrix. The dimnames argument must be a list with
exactly 2 components. The first component gives the labels for the matrix
rows, and the second component gives the names for the matrix columns.
The length of the first component in the dimnames list is equal to the
number of rows, and the length of the second component is equal to the
number of columns.

For example, if we add an additional argument to the matrix command
when we create a matrix, the matrix will have the row and column labels
specified by the dimnames argument.
36

IMPORTING AND EDITING DATA
> matrix(1:12, nrow=3, dimnames=list(c(�I�,�II�,�III�),

+ c(�x1�,�x2�,�x3�,�x4�)))

 x1 x2 x3 x4

 I 1 4 7 10

 II 2 5 8 11

III 3 6 9 12

You can assign row and column names to existing matrices using the
dimnames function, which works much like the names function for vectors:

> y <- matrix(1:12, nrow=3)

> dimnames(y) <- list(c(�I�,�II�,�III�),

+ c(�x1�,�x2�,�x3�,�x4�))

> y

 x1 x2 x3 x4

 I 1 4 7 10

 II 2 5 8 11

III 3 6 9 12

Extracting

Subsets of

Data

Another powerful feature of the S-PLUS language is the capability to extract
subsets of data for viewing or for further manipulation. The examples in this
introductory chapter illustrate subset extraction for vectors and matrices.
However, similar techniques can be used to extract subsets of data from other
S-PLUS data objects.

Subsetting From

Vectors

Suppose you create a vector of length 5, consisting of the integers 5, 14, 8, 9,
5, as follows:

> x <- c(5,14,8,9,5)

> x

[1] 5 14 8 9 5

To display a single element of this vector, just type the vector�s name followed
by the element�s index within [] characters. For example, type x[1] to
display the first element, and x[4] to display the fourth element:

> x[1]

[1] 5

> x[4]

[1] 9
37

CHAPTER 2 GETTING STARTED
To display more than one element at a time, use the c function within the [
] characters. The following displays the second and fifth elements of x.

> x[c(2,5)]

[1] 14 5

Use negation to display all elements except a a specified element or list of
elements. For instance, x[-4] displays all elements except the fourth:

> x[-4]

[1] 5 14 8 5

Similarly, x[-c(1,3)] displays all elements except the first and third:

> x[-c(1,3)]

[1] 14 9 5

A more advanced use of subsetting uses a logical expression within the
[]characters. Logical expressions divide a vector into two subsets - one for
which a given condition is true, and one for which the condition is false.
When used as a subscript, the expression returns the subset for which the
condition is true.

For instance, the following expression selects all elements with values greater
than 8:

> x[x>8]

[1] 14 9

In this case, the second and fourth elements of x, with values 14 and 9, meet
the requirements of the logical expression x > 8, and so are displayed.

As usual in S-PLUS, you can assign the result of the operation to another
object. For example, you could assign the above selected subset to an object
named y, and then display y or use y in subsequent calculations:

> y <- x[x>8]

> y

[1] 14 9

In the next section you will see that the same principles also apply to matrix
data objects, although the syntax is a little more complicated because there
are two dimensions from which selection may be made.

Subsetting From

Matrix Data

Objects

A single element of a matrix can be selected by typing its coordinates inside
the square brackets as an ordered pair, separated by commas. We use the
built-in dataset state.x77 to illustrate. The first index inside the []
operator is the row index, and the second index is the column index. The
38

IMPORTING AND EDITING DATA
following command displays the value in the third row, eighth column of
state.x77:

> state.x77[3,8]

[1] 113417

You can also display an element, using row and column dimnames, if such
labels have been defined. So, to display the above value, which happens to be
in the row named ��Arizona�� and the column named ��Area��, use the following
command:

> state.x77["Arizona","Area"]

[1] 113417

To select sequential rows and/or columns from a matrix object, use the :
operator for both the row and/or the column index. The following expression
selects the first 4 rows and columns 3 through 5 for assignment to object x,
and then displays x:

> x <- state.x77[1:4,3:5]

> x

 Illiteracy Life Exp Murder

 Alabama 2.1 69.05 15.1

 Alaska 1.5 69.31 11.3

 Arizona 1.8 70.55 7.8

Arkansas 1.9 70.66 10.1

The c function can be used to select rows and/or columns of matrices, just as
it was used for vectors, above. For instance, the following expression chooses
rows 5,22, and 44, and columns 1, 4, and 7 of state.x77:

> state.x77[c(5,22,44),c(1,4,7)]

 Population Life Exp Frost

California 21198 71.71 20

 Michigan 9111 70.63 125

 Utah 1203 72.90 137

As before, if row or column names have been defined, they can be used in
place of the index numbers:

> state.x77[c("California","Michigan","Utah"),

+ c("Population","Life Exp","Frost")]

 Population Life Exp Frost

California 21198 71.71 20

 Michigan 9111 70.63 125

 Utah 1203 72.90 137
39

CHAPTER 2 GETTING STARTED
Selecting All

Rows or All

Columns From a

Matrix Object

To select all of the rows leave the expression before the comma blank. To
select all columns, leave the expression after the comma blank. The following
expression chooses all columns for the states California, Michigan, and Utah.
In the following expression, the closing bracket appears immediately after the
comma; this means that all columns are selected:

> state.x77[c("California","Michigan","Utah"),]

 Population Income Illiteracy Life Exp Murder

California 21198 5114 1.1 71.71 10.3

 Michigan 9111 4751 0.9 70.63 11.1

 Utah 1203 4022 0.6 72.90 4.5

 HS Grad Frost Area

California 62.6 20 156361

 Michigan 52.8 125 56817

 Utah 67.3 137 82096
40

GRAPHICS IN S-PLUS
GRAPHICS IN S-PLUS

Graphics are central to the S-PLUS philosophy of looking at your data visually
as a first and last step in any data analysis. With its broad range of built-in
graphics functions and its programmability, S-PLUS lets you look at your data
from many angles. This section describes how to use S-PLUS to create simple
plots. To put S-PLUS to work creating the many other types of plots, see the
chapters Traditional Graphics and Trellis Graphics.

Making Plots Plotting engineering, scientific, financial or marketing data, including the
preparation of camera-ready copy on a laser printer, is one of the most
powerful and frequently used features of S-PLUS. S-PLUS has a wide variety
of plotting and graphics functions for you to use.

The most frequently used S-PLUS plotting function is plot. When you call a
plotting function, an S-PLUS graphics window displays the requested plot:

> plot(car.miles)

The argument car.miles is an S-PLUS built-in vector data object. Since
there is no other argument to plot, the data are plotted against their natural
index or observation numbers, 1 through 120.

Since you may be interested in your gas mileage, you may want to plot
car.miles against car.gals. This is also easy to do with plot:

> plot(car.gals, car.miles)

The result is shown in Figure 2.1.
41

CHAPTER 2 GETTING STARTED
You can use many S-PLUS functions besides plot to display graphical results
in the S-PLUS graphics window. Many of these functions are listed in
Table 2.4 and Table 2.5, which display, respectively, high-level and low-level
plotting functions. High-level plotting functions create a new plot, complete
with axes, while low-level plotting functions typically add to an existing plot.

Figure 2.1: An S-PLUS plot.

•
•

•

•
•

•

•
•

•

•

•
••

•
•
• •• •

••
•

•

•

•
••
•

•
•

•
••
•

•
•
•
•

•

•
•

•

•

•

•

•••

•
•
•

• ••
• • •

•

••

•

••
••

•• •• ••
•

•

•

•••

•

•
•

••
•

• • •
•••

•
•

•
•

•

•

••
•

•

••
•• •

•

•

•
•

•• •

•

••• •
• •

car.miles

ca
r.

ga
ls

100 150 200 250 300 350

10
15

20
25

Table 2.4: Common high-level plotting functions.

barplot, hist Bar graph, histogram

boxplot Boxplot
42

GRAPHICS IN S-PLUS
brush Brush pair-wise scatter plots; spin 3D axes

contour, image,
persp, symbols

3D plots

coplot Conditioning plot

dotchart Dotchart

faces, stars Display multivariate data

map Plot all or part of the U.S. (part of the maps library)

pairs Plot all pair-wise scatter plots

pie Pie chart

plot Generic plotting

qqnorm, qqplot Normal and general QQ-plots

scatter.smooth Scatter plot with a smooth curve

tsplot Plot a time series

usa Plot the boundary of the U.S.

Table 2.5: Common low-level plotting functions.

abline Add line in intercept-slope form

axis Add axis

box Add a box around plot

Table 2.4: Common high-level plotting functions. (Continued)
43

CHAPTER 2 GETTING STARTED
Quick Hard

Copy

Each graphics window also offers a simple, straightforward way to get a hard
copy of the picture you have composed on the screen: the Print option on
the Graph pull-down menu.

You can exercise even more control over your instant hard copy, such as
specifying whether the copy is in landscape or portrait orientation, which
printer the hard copy is sent to, and for HP-Laserjet systems, the dpi (dots
per inch) resolution of the printout.

Using the

Graphics

Window

You can use a mouse to perform basic functions in a graphics window, such as
redrawing or copying a graph. The standard graphics window, also known as
the motif device (Figure 2.2) has a set of pull-down menus providing a
mouse-based point and click capability for copying, redrawing and printing
hard copy on a printer.

In general, you select actions by pulling down the appropriate menu, and
clicking the left mouse button.

contour, image,
persp, symbols

Add 3D information to plot

identify Use mouse to identify points on a graph

legend Add a legend to the plot

lines, points Add lines or points to a plot

mtext, text Add text in the margin or in the plot

stamp Add date and time information to the plot

title Add title, x-axis labels, y-axis labels, and/or subtitle to
plot

Table 2.5: Common low-level plotting functions. (Continued)
44

GRAPHICS IN S-PLUS
Copying A Graph Each graphics window provides a mechanism to copy a graph on the screen.
This option allows you to ��freeze�� a picture in one state, but continue to
modify the original. The motif device has a Copy choice under the Graph
pull-down menu on the menu bar.

Redrawing A

Graph

Each graphics window provides a mechanism to ��redraw�� a graph. This
option can be used to refresh the picture if your screen has become cluttered.
The motif device offers the Redraw option as a selection from the Graph
pull-down menu.

Multiple Plot

Layout

It is often desirable to display more than one plot in a window or on a single
page of hard copy. To do so, you use the S-PLUS function par to control the
layout of the plots. The following example shows you how to use par for this
purpose. The par command is used to control and customize many aspects
of S-PLUS plots. See the chapter Traditional Graphics for further information
on use of the par command.

In this example, you use par to set up a a window or a page to have four
plots in two rows of two each. Following the par command, we issue four
plot commands. Each creates a simple plot with a main title.

> par(mfrow=c(2,2))

> plot(1:10,1:10,main="Straight Line")

> hist(rnorm(50),main="Histogram of Normal")

> qqnorm(rt(100,5),main="Samples from t(5)")

> plot(density(rnorm(50)),main="Normal Density")

Figure 2.2: The motif window.
45

CHAPTER 2 GETTING STARTED
The result is shown in figure 2.3.

Figure 2.3: A multiple plot layout.

•
•

•
•

•
•

•
•

•
•

Straight Line

1:10

1:
10

2 4 6 8 10

2
4

6
8

-3 -1 1 2 3

0
5

10

Histogram of Normal

rnorm(50)

•
••

••
•

•
•

••
•

• ••• •• ••
• ••

• •
• •• • •

•
•• •

•

•

•

•

•• •••

•
•

•
• ••

••• ••

•

•
•

• • ••

•

•• •• •
•

• ••
•

•
•

•

•
••

• • •••••

•

•

• •
•

•
•• •

••• •
•

•

•

samples from t(5)

Quantiles of Standard Normal

rt
(1

00
, 5

)

-2 0 1 2

-4
0

4

••
••••

•••
••••

•
•
•

••
•
•
•
•

•
•

•
•
•

•

•

••••

••••••
••
•
••••

••••

Normal Density

density(rnorm(50))$x

de
ns

ity
(r

no
rm

(5
0)

)$
y

-2 -1 0 1 2

0.
0

0.
3

46

STATISTICS
STATISTICS

S-PLUS includes functions for doing all kinds of statistical analysis, including
hypothesis testing, linear regression, analysis of variance, contingency tables,
factor analysis, survival analysis, and time series analysis. Estimation
techniques for all these branches of statistics are described in detail in the
manual Guide to Statistics.

This section gives overviews of the functions that produce summary statistics,
perform hypothesis tests, and fit statistical models.

Summary

Statistics

S-PLUS includes functions for calculating all the standard summary statistics
for a data set, together with a variety of robust and/or resistant estimators of
location and scale. Table 2.6 gives a list of the most common functions for
summary statistics.

Table 2.6: Common functions for summary statistics.

cor Correlation coefficient

cummax, cummin,
cumprod, cumsum

Cumulative maximum, minimum, product, and
sum

diff Create sequential differences

max, min Maximum and minimum

pmax, pmin Maxima and minima of several vectors

mean Arithmetic mean

median 50th percentile

prod Product of elements of a vector

quantile Compute empirical quantiles

range Returns minimum and maximum of a vector
47

CHAPTER 2 GETTING STARTED
The summary function is a generic function, providing appropriate
summaries for different types of data. For example, for an object of class lm
created by fitting a linear model, the returned summary includes the table of
estimated coefficients, their standard errors, and t-values, along with other
information. The summary for a standard vector is a six-number summary of
the minimum, maximum, mean, median, and first and third quartiles:

> summary(stack.loss)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 7 11 15 17.52 19 42

Hypothesis

Testing

S-PLUS contains a number of functions for doing classical hypothesis testing,
as shown in Table 2.7.

sample Random sample or permutation of a vector

sum Sum elements of a vector

summary Summarize an object

var Variance and covariance

Table 2.6: Common functions for summary statistics. (Continued)

Table 2.7: S-PLUS functions for hypothesis testing.

Test Description

t.test Student’s one- or two-sample t-test

wilcox.test Wilcoxon rank sum and signed-rank sum tests

chisq.test Pearson’s chi square test for 2D contingency table

var.test F test to compare two variances

kruskal.test Kruskal-Wallis rank sum test
48

STATISTICS
The following example illustrates how to use t.test to perform a two-
sample t-test to detect a difference in means. This example uses two random
samples generated from N(0,1) and N(1,1) distributions. We set the random
number seed with the function set.seed, so this example is reproducible:

> set.seed(19)

> x <- rnorm(10)

> y <- rnorm(5, mean=1)

> t.test(x,y)

 Standard Two-Sample t-Test

data: x and y

t = -1.4312, df = 13, p-value = 0.176

alternative hypothesis: true difference in means is not

equal to 0

95 percent confidence interval:

 -1.7254080 0.3502894

sample estimates:

 mean of x mean of y

 -0.4269014 0.2606579

fisher.test Fisher�s exact test for 2D contingency table

binom.test Exact binomial test

friedman.test Friedman rank sum test

mcnemar.test McNemar�s chi square test

prop.test Proportions test

cor.test Test for zero correlation

mantelhaen.test Mantel-Haenszel chi square test

Table 2.7: S-PLUS functions for hypothesis testing. (Continued)

Test Description
49

CHAPTER 2 GETTING STARTED
Statistical

Models

Most of the statistical modeling functions in S-PLUS follow a unified
modeling paradigm in which the input data are represented as a data frame
and the model to be fit is represented as a formula. Formulas can be saved as
separate S-PLUS objects and supplied as arguments to the modeling
functions.

A partial listing of S-PLUS modeling functions is given in Table 2.8.

In a formula, you specify the response variable first, followed by a tilde (~)
and the terms to be included in the model. Variables in formulas can be any

Table 2.8: S-PLUS modeling functions.

Function Description

aov, manova Analysis of variance models

lm Linear model (regression)

glm Generalized linear model (including logistic and Poisson
regression)

gam Generalized additive model

loess Local regression model

tree Classification and regression tree models

nls, ms Nonlinear models

lme, nlme Mixed-effects models

factanal Factor analysis

princomp Principal components analysis

pam, fanny,
diana, agnes,
daisy, clara

Cluster analysis
50

STATISTICS
expression that evaluates to a numeric vector, a factor or ordered factor, or a
matrix. Table 2.9 gives a summary of the formula syntax.

The following sample S-PLUS session illustrates some steps to fit a regression
model to the fuel.frame data containing five variables for 60 cars. We do
not show the output; type these commands at your S-PLUS prompt and you�ll
get a good feel for doing data analysis with the S-PLUS language:

> names(fuel.frame)

> par(mfrow=c(3,2))

> plot(fuel.frame)

> pairs(fuel.frame)

> attach(fuel.frame)

> par(mfrow=c(2,1))

> scatter.smooth(Mileage ~ Weight)

> scatter.smooth(Fuel ~ Weight)

> lm.fit1 <- lm(Fuel ~ Weight)

> lm.fit1

> names(lm.fit1)

> summary(lm.fit1)

> qqnorm(residuals(lm.fit1))

> plot(lm.influence(lm.fit1)$hat, type="h",

+ xlab = "Case Number", ylab = "Hat Matrix Diagonal")

Table 2.9: Summary of the S-PLUS formula syntax.

Expression Meaning

A ~ B A is modeled as B

B + C Include both B and C in the model

B - C Include all of B except what is in C in the model

B:C The interaction between B and C

B*C Include B, C, and their interaction in the model

C %in% B C is nested within B

B/C Include B and C %in% B in the model
51

CHAPTER 2 GETTING STARTED
> o.type <- ordered(Type, c("Small", "Sporty", "Compact",

+ "Medium", "Large", "Van"))

> par(mfrow=c(1,1))

> coplot(Fuel ~ Weight | o.type,

+ given.values=sort(unique(o.type)))

> lm.fit2 <- update(lm.fit1, . ~ . + Type)

> lm.fit3 <- update(lm.fit2, . ~ . + Weight:Type)

> anova(lm.fit1, lm.fit2, lm.fit3)

> summary(lm.fit3)
52

4

Importing Data Files 54
Setting the Import Filter 59
Notes on Importing Files 62

Notes on Importing ASCII (Delimited ASCII) Files 62
Notes on Importing FASCII (Formatted ASCII) Files 63
Notes on Importing Excel Files 64
Notes on Importing Lotus Files 64
Notes on Importing dBase Files 64
Notes on Importing Data From Enterprise Databases 6

Other Data Import Functions 67
Reading Vector and Matrix Data with scan 67
Reading Data Frames 69

Exporting Data Sets 71
Exporting Data to S-PLUS 72
Other Export Functions 72

IMPORTING AND

EXPORTING DATA 3
53

CHAPTER 3 IMPORTING AND EXPORTING DATA
IMPORTING DATA FILES

One easy method of getting data into S-PLUS for plotting and analysis is to
import the data file. The principal tool for importing data is the importData
function.

Data Import

Filters

Using importData, you can select from the following file types to import
into S-PLUS:

Format Type
Default
Extensions

Notes

ASCII "ASCII" .txt, .csv

Formatted ASCII "FASCII" .fix

dBase "DBASE" .dbf II, II+, III, IV files

Microsoft Excel "EXCEL" .xls Versions 2.1 through 4 only; note that
Excel �95 and Excel �97 are not
supported.

FoxPro use same import filter as dBase files
above

Gauss "GAUSS" or
"GAUSS96"

.dat automatically reads the related DHT
file.

Informix "INFORMIX" Informix database connection. No file
argument should be specified.

Lotus "LOTUS" .wk*, .wrk

Matlab "MATLAB" .mat must contain a single matrix in file

Oracle "ORACLE" Oracle database connection. No file
argument should be specified.

Quattro Pro "QUATTRO" .wq*, .wb*

SPSS "SPSS" .sav
54

IMPORTING DATA FILES
To import a data file

In most cases, all you need to do to import a data file is to call importData
with the name of the file as a character string argument. As long as the
specified file has one of the default extensions shown in the above table, you
need not specify a type, nor in most cases, any other information. For
example, suppose you have a SAS data set rain.sd2 in your startup directory.
You can read this into S-PLUS using importData as follows:

sas.rain.data <- importData("rain.sd2")

If you have trouble reading the data, most likely you just need to supply
additional arguments to importData to specify extra information required
by the data importer to read the data correctly.

SPSS Export "SPSSP" .por

SAS files "SAS1" .ssd01 Files from HP, IBM, or Sun

"SAS4" .ssd04 Files from Digital Unix

"SAS" .sd2 Files from Windows

SAS Transport "SAS_TPT" .tpt, .xpt version 6.x. Some special export options
may need to be specified in your SAS
program. We suggest using the SAS
Xport engine (not PROC CPORT) to
read and write these files.

STATA "STATA" .dta Versions 2.0 and higher

Sybase "SYBASE" Sybase database connection. No file
argument should be specified.

Systat "SYSTAT" .sys double or single precision .sys files

Format Type
Default
Extensions

Notes

Note

If a file extension is inappropriate, an error may appear indicating an unrecognized format or the data file
may be converted incorrectly.
55

CHAPTER 3 IMPORTING AND EXPORTING DATA
Arguments to

importData

The importData function has the arguments shown in table 3.1:

Table 3.1: Arguments to importData.

Argument Required Description

file Required
(except for
database reads)

A character string giving the name of the file and
directory path.

type Optional See the Type column in the previous table.

keep Optional A character vector of variable names in data file to be
imported.

drop Optional A character vector of variable names in data file that are
not to be imported.

colNames Optional A character vector of column names for the data
columns to import, (separated by any of the
delimiters specified in the Delimiters field). Specify
one column name for each imported column (for
example, Apples, Oranges, Pears). You can use an
asterisk (*) to denote a missing name (for example,
Apples, *, Pears).

rowNamesCol Optional An integer denoting which column is to be used as the
row names for the resulting data frame. If specified, the
column of row names is dropped from the resulting data
frame.

format Optional A single character string specifying the format for
formatted ASCII text files (type "FASCII"). See notes on
Importing ASCII Files.

filter Optional See the section Setting the Import Filter.

startCol Optional Starting column in source (from 1 to n). For example, if
you specify 5, S-PLUS reads the columns beginning with
column 5 and places them in the new data frame
beginning at the Target Start Column. Spreadsheet-style
letters (for example, A, AB) can be used to specify the
start and end columns to import.

endCol Optional End column in source. The default (-1) means to read to
the last column.
56

IMPORTING DATA FILES
startRow Optional Starting row from range in source. (Spreadsheets only.)
For example, if you specify row 10, S-PLUS reads the
rows beginning with row 10 and places them in the
new data frame beginning at row 1.

endRow Optional End row from range in source. (Spreadsheets only). The
default (-1) is to read to the last row in the spreadsheet.

pageNumber Optional The page number of the spreadsheet. (Spreadsheets only.)
The default is to read all pages.

colNameRow Optional The row containing the column names. If the file you are
importing contains names for the columns of data,
S-PLUS can use these names as column names. In the
colNameRow argument, specify which row number (in
the file being imported) contains the column names. If
you do not specify a named row, S-PLUS attempts to
locate column names in the first row of the file. Specify
Row 0 to have S-PLUS not search for a name row. In a
delimited ASCII file, the name row must come before the
first data rows to be read in (the start row).

server Optional a character string specifying the database server if
importing from a relational database.

user Optional a character string specifying the user name when
importing from a relational database.

password Optional a character string specifying the password for the database
user.

database Optional a character string specifying the name of the database to
use when importing from a relational database. This
should be set to "" if type="ORACLE"

table Optional a character string specifying the name of the table in
database to import.

stringsAsFactors Optional logical flag: if TRUE, strings are converted to factors when
imported.

sortFactorLevels Optional logical flag: if TRUE, levels for any factors created from
strings will be sorted.

Table 3.1: Arguments to importData.

Argument Required Description
57

CHAPTER 3 IMPORTING AND EXPORTING DATA
valueLabelAsNumber Optional logical flag: if TRUE, SPSS variables with labels will be
imported as numbers.

centuryCutoff Optional a numeric value. Dates with two digit years are assigned
to the 100 year span beginning with this value. The
default of 1930 means that "6/15/30" is read as "June 15,
1930" and "12/29/29" will be read as "December 29,
2029". This argument is used only when importing two
digit years from an ASCII file.

Table 3.1: Arguments to importData.

Argument Required Description
58

SETTING THE IMPORT FILTER
SETTING THE IMPORT FILTER

The filter argument to importData allows you to subset the data you
import. By specifying a query, or filter, you gain additional functionality, such
as taking a random sampling of the data. Use the following examples and
explanation of the filter syntax to create your statement. A blank filter is the
default and results in all data being imported.

Case Selection

You select cases by using a case-selection statement in the filter argument.
The case-selection or where statement has the following form:

"variable expression relational operator condition "

Variable Expressions

You can specify a single variable or an expression involving several variables.
All of the usual arithmetic operators (+ - / * ()) are available for use in
variable expressions.

Relational Operators

The following relational operators are available:

Note

The filter argument is ignored if the type argument (or, equivalently, file extension specified in the
file argument) is set to "ASCII" or "FASCII".

Warning

The syntax used in the filter argument to importData and exportData is not standard S-PLUS

syntax; and the expressions described are not standard S-PLUS expressions. Do not use the syntax described
in this section for any purpose other than passing a filter argument to importData or exportData.

Operator

= equals

!= not equal
59

CHAPTER 3 IMPORTING AND EXPORTING DATA
Examples

Examples of selection conditions given by filter expressions are:

"sex = 1 & age < 50"

"(income + benefits) / famsize < 4500"

"income1 >=20000 | income2 >= 20000"

"income1 >=20000 & income2 >= 20000"

"dept = �auto loan�"

Note that strings used in case-selection expressions must be enclosed in single
quotes if they contain embedded blanks.

Wildcards * or ? are available to select subgroups of string variables. For
example:

"account = ????22"

"id = 3*"

The first statement will select any accounts that have 2�s as the 5th and 6th
characters in the string, while the second statement will select strings of any
length that begin with 3.

The comma operator is used to list different values of the same variable name
that will be used as selection criteria. It allows you to bypass lengthy OR
expressions when giving lists of conditional values, for example:

"state = CA,WA,OR,AZ,NV"

"caseid != 22*,30??,4?00"

< less than

> greater than

<= less than or equal

>= greater than or equal

& and

| or

! not

Operator
60

SETTING THE IMPORT FILTER
Missing Variables

You can test to see that any variable is missing by comparing it to the special
internal variable, NA. For example:

"income != NA & age != NA"
61

CHAPTER 3 IMPORTING AND EXPORTING DATA
NOTES ON IMPORTING FILES

Notes on

Importing

ASCII

(Delimited

ASCII) Files

When importing ASCII files you have the option of specifying column
names and data types for imported columns. This can be useful if you want
to name columns or if you wish to skip over one or more columns when
importing.

Format String

Use the format argument to importData to specify the data types of the
imported columns. For each column you need to specify a % sign and then
the data type. Dates may automatically be imported as numbers. After
importing, you can change the column format type to a dates format. Here is
an example ASCII format string:

%s, %f, %*, %f

The "s" denotes a string data type, "f" denotes a float data type, and the
asterisk (*) denotes a "skipped" column.

If you do not specify the data type of each column, S-PLUS looks at the first
row of data to be read and uses the contents of this row to determine the data
type of each column. A row of data must always end with a new line.

Note that field width specifications are irrelevant for ASCII files and are
ignored.

S-PLUS auto-detects the file delimiter from a preset list that includes commas,
spaces, and tabs. All cells must be separated by the same delimiter (that is,
each file must be comma-separated, space-separated, or tab-separated.)
Multiple delimiter characters are not grouped and treated the same as a single
delimiter. For example, if the comma is a delimiter, two commas are
interpreted as a missing field.

Double quotes (") are treated specially. They are always treated as an
"enclosure" marker, and must always come in pairs. Any data contained
between double quotes are read as a single unit of character data. Thus,
spaces and commas can be used as delimiters, and spaces and commas can
still be used within a character field as long as that field is enclosed within
double quotes. Double quotes cannot be used as standard delimiters.

If a variable is specified to be numeric, and if the value of any cell cannot be
interpreted as a number, that cell is filled in with a missing value. Incomplete
rows are also filled in with missing values.
62

NOTES ON IMPORTING FILES
Notes on

Importing

FASCII

(Formatted

ASCII) Files

You can use FASCII import to specify how each character in your imported
file should be treated. For example, you must use FASCII for fixed width
columns not separated by delimiters, if the rows in your file are not separated
by line feeds or if your file splits each row of data into two or more lines.

For FASCII import, you need to specify the file name and the file type. In
addition, because FASCII files are assumed to be non-delimited (for example,
there are no commas or spaces separating fields), you also need to specify
each column's field width and data type in the Format String. This tells
S-PLUS where to separate the columns. Each column must be listed along
with its data type: character or numeric and its field width. If you want to
name the columns, specify a list of names in the colNames argument.
(Column names cannot be read from the FASCII data file).

When importing FASCII files you need to specify the following arguments to
importData.

colNames

Enter a character vector of column names for the imported data columns
(separated by spaces or commas). Specify one column name for each
imported column (for example, Apple, Oranges, Pears). You can use an
asterisk (*) to denote a missing name (for example, Apples, *, Pears).

format

Specify the data types and field widths of the imported columns. For each
column you need to specify a % sign, then the field width, and then the data
type. Commas or spaces must separate each specification in the string. The
format string is necessary because formatted ASCII files do not have
delimiters (such as commas or spaces) separating each column of data. Here
is an example format string:

%10s, %12f, %5*, %10f

The numbers denote the column widths, "s" denotes a string data type, "f"
denotes a float data type, and the asterisk (*) denotes a "skip". You may need
to skip characters when you want to avoid importing some characters in the
file. For example, you may want to skip blank characters or even certain parts
of the data.

If you wish to import only some of the rows, specify a starting and ending
row.

If each row ends with a new line, S-PLUS will treat the newline character as a
single character-wide variable that is to be skipped.
63

CHAPTER 3 IMPORTING AND EXPORTING DATA
Notes on

Importing

Excel Files

S-PLUS can read only older format Excel files (Version 4.x and earlier). To
read Excel files from later versions of Excel (including Excel 95 and Excel
97), you must save them in the Version 4 format. Formatting that requires
newer features will be lost.

If your Excel worksheet contains only numeric data in a rectangular block,
starting in the first row and column of the worksheet, then all you need to
specify is the file name and file type. If a row contains names, specify the
number of that row at the Name Row prompt (it does not have to be the first
row). You can select a rectangular subset of your worksheet by specifying
starting and ending columns and rows. Excel-style column names (for
example, A, AB) can be used to specify the starting and ending columns.

Notes on

Importing

Lotus Files

If your Lotus-type worksheet contains numeric data only in a rectangular
block, starting in the first row and column of the worksheet, then all you
need to specify is the file name and file type. If a row contains names, specify
the number of that row in the colNameRow argument (it does not have to be
the first row). You can select a rectangular subset of your worksheet by
specifying starting and ending columns and rows. Lotus-style column names
(for example, A, AB) can be used to specify the starting and ending columns.

The row specified as the starting row is always read first to find out the data
types of the columns. Therefore, there cannot be any blank cells in this row.
In other rows, blank cells are filled in with missing values.

Notes on

Importing

dBase Files

S-PLUS imports dBase and dBase-compatible files. The file name and file
type are often the only things you need specify for dBase-type files. Column
names and data types are obtained from the dBase file. However, you can
select a rectangular subset of your data by specifying starting and ending
columns and rows.

Notes on

Importing

Data From

Enterprise

Databases

The importData function supports importing data from Informix, Oracle,
and Sybase databases. The importData function makes S-PLUS a client that
connects to the databases.
The database must be properly configured for network client access and
appropriate environment variables must be set for the import to work.
64

NOTES ON IMPORTING FILES
For Informix you need to have the Informix ESQL/C installed. The
environment variables needed are:

The environment variables needed for Oracle are:

For Sybase you need to have the CT-library installed. The environment
variables needed for Sybase are:

The arguments to importData that are required when importing from these
databases are:

Variable Value Example

INFORMIXDIR The location where
ESQL/C was installed

/homes/informix7.3

LD_LIBRARY_PATH Need to include
$INFORMIXDIR/lib
and $INFORMIXDIR/
lib/esql

$INFORMIXDIR/
lib:$INFORMIXDIR/lib/
esql

INFORMIXSERVER The name of the
Informix server

inf_dyn_tcp

Variable Value Example

ORACLE_HOME The location where
ORACLE was installed

/opt1/oracle7

LD_LIBRARY_PATH Need to include
$ORACLE_HOME/lib

/opt1/oracle7/lib

Variable Value Example

LD_LIBRARY_PATH Need to include the lib
directory where CT-
library was installed

/homes/sybase/lib

type A character string specifying the database type, either
"informix", "oracle" or "sybase".

server The name of the database server. This is site specific.

user The name of the user that is allowed to connect to the
database.

password The password for user to connect to the database.
65

CHAPTER 3 IMPORTING AND EXPORTING DATA
database The name of the database to import from. For Oracle this
should be the empty string, "".

table The table in database to import.
66

OTHER DATA IMPORT FUNCTIONS
OTHER DATA IMPORT FUNCTIONS

While importData is the recommended method for reading data files into
S-PLUS, there are several other functions that you can use to read ASCII data
into S-PLUS. These functions are commonly used by other functions in
S-PLUS, so it is a good idea to familiarize yourself with them. The two
functions discussed in this section are scan and read.table.

Reading Vector

and Matrix

Data with scan

The scan function, which can read from either standard input or from a file,
is commonly used to read data from keyboard input. By default, scan
expects numeric data separated by white space, although there are options
that let you specify the type of data being read and the separator. When using
scan to read data files, it is helpful to think of each line of the data file as a
record, or case, with individual observations as fields. For example, the
following expression creates a matrix named x from a data file specified by
the user:

x <- matrix(scan("filename"), ncol = 10, byrow = T)

Here the data file is assumed to have 10 columns of numeric data; the matrix
contains a number of observations for each of these ten variables. To read in a
file of character data, use scan with the what argument:

x <- matrix(scan("filename", what = ""), ncol=10, byrow=T)

Any character vector can be used in place of "". For most efficient memory
allocation, what should be the same size as the object to be read in. For
example, to read in a character vector of length 1000, use

> scan(what=character(1000))

The what argument to scan can also be used to read in data files of mixed
type, for example, a file containing both numeric and character data, as in the
following sample file, table.dat:

Tom 93 37

Joe 47 42

Dave 18 43

In this case, you provide a list as the value for what, with each list component
corresponding to a particular field:

> z <- scan("table.dat",what=list("",0,0))
67

CHAPTER 3 IMPORTING AND EXPORTING DATA
> z

[[1]]:

[1] "Tom" "Joe" "Dave"

[[2]]:

[1] 93 47 18

[[3]]:

[1] 37 42 43

S-PLUS creates a list with separate components for each field specified in the
what list. You can turn this into a matrix, with the subject names as column
names, as follows:

> matz <- rbind(z[[2]],z[[3]])

> dimnames(matz) <- list(NULL, z[[1]])

> matz

 Tom Joe Dave

[1,] 93 47 18

[2,] 37 42 43

You can scan files containing multiple line records by using the argument
multi.line=T. For example, suppose you have a file heart.all containing
information in the following form:

johns 1

450 54.6

marks 1 760 73.5

. . .

You can read it in with scan as follows:

> scan(�heart.all�,what=list("",0,0,0),multi.line=T)

[[1]]:

[1] "johns" "marks" "avery" "able" "simpson"

. . .

[[4]]:

 [1] 54.6 73.5 50.3 44.6 58.1 61.3 75.3 41.1 51.5 41.7 59.7

[12] 40.8 67.4 53.3 62.2 65.5 47.5 51.2 74.9 59.0 40.5
68

OTHER DATA IMPORT FUNCTIONS
If your data is in fixed format, with fixed-width fields, you can use scan to
read it in using the widths argument. For example, suppose you have a data
file dfile with the following contents:

01giraffe.9346H01-04

88donkey .1220M00-15

77ant L04-04

20gerbil .1220L01-12

22swallow.2333L01-03

12lemming L01-23

You identify the fields as numeric data of width 2, character data of width 7,
numeric data of width 5, character data of width 1, numeric data of width 2,
a hyphen or minus sign that you don�t want to read into S-PLUS, and
numeric data of width 2. You specify these types using the what argument to
scan. To simplify the call to scan, you define the list of what arguments
separately:

> dfile.what <- list(code=0, name="", x=0, s="", n1=0,

+ NULL, n2=0)

(NULL indicates suppress scanning of the specified field.) You specify the
widths as the widths argument to scan. Again, it simplifies the call to scan
to define the widths vector separately:

> dfile.widths <- c(2, 7, 5, 1, 2, 1, 2)

You can now read the data in dfile into S-PLUS calling scan as follows:

> dfile <- scan("dfile", what=dfile.what,
+ widths=dfile.widths)

If some of your fixed-format character fields contain leading or trailing white
space, you can use the strip.white argument to strip it away. (The scan
function always strips white space from numeric fields.) See the scan help
file for more details.

Reading Data

Frames

Data frames in S-PLUS were designed to resemble tables. They must have a
rectangular arrangement of values and typically have row and column labels.
Data frames arise frequently in designed experiments and other situations. If
you have a text file with data arranged in the form of a table, you can read it
into S-PLUS using the read.table function. For example, consider the data
file auto.dat:
69

CHAPTER 3 IMPORTING AND EXPORTING DATA
 Model Price Country Reliab Mileage Type

AcuraIntegra4 11950 Japan 5 NA Small

Audi1005 26900 Germany NA NA Medium

BMW325i6 24650 Germany 94 NA Compact

ChevLumina4 12140 USA NA NA Medium

FordFestiva4 6319 Korea 4 37 Small

Mazda929V6 23300 Japan 5 21 Medium

MazdaMX-5Miata 13800 Japan NA NA Sporty

Nissan300ZXV6 27900 Japan NA NA Sporty

OldsCalais4 9995 USA 2 23 Compact

ToyotaCressida6 21498 Japan 3 23 Medium

All fields are separated by spaces and the first line is a header line. To create a
data frame from this data file, use read.table as follows:

> auto <- read.table(�auto.dat�,header=T)

> auto

 Price Country Reliab Mileage Type

 AcuraIntegra4 11950 Japan 5 NA Small

 Audi1005 26900 Germany NA NA Medium

 BMW325i6 24650 Germany 94 NA Compact

 ChevLumina4 12140 USA NA NA Medium

 FordFestiva4 6319 Korea 4 37 Small

 Mazda929V6 23300 Japan 5 21 Medium

 MazdaMX-5Miata 13800 Japan NA NA Sporty

 Nissan300ZXV6 27900 Japan NA NA Sporty

 OldsCalais4 9995 USA 2 23 Compact

ToyotaCressida6 21498 Japan 3 23 Medium

As with scan, you can use read.table within functions to hide the
mechanics of S-PLUS from the users of your functions.
70

EXPORTING DATA SETS
EXPORTING DATA SETS

You use the exportData function to export S-PLUS data objects to formats
for applications other than S-PLUS. To export data for use by S-PLUS, use the
data.dump function. When you are exporting to most file types with
exportData, you typically need to specify only the data set, file name, and
(depending on the file name you specified) the file type, and the data will be
exported into a new data file using default settings. You can specify your own
settings using additional arguments to exportData. All formats that can be
imported from can be exported to.

The arguments to exportData are shown in Table 3.2:

Table 3.2: Arguments to exportData.

Argument Required Description

data Required Data frame to be exported.

file Required A character string containing the name of the file to be
created/updated.

type Optional One of:
"ASCII", "DBASE", "EXCEL", "FASCII", "GAUSS",
"GAUSS96", "HTML", "LOTUS", "MATLAB",
"QUATTRO", "SAS", "SAS1", "SAS4", "SAS_TPT",
"SPSS", "SPSSP", "STATA", "SYSTAT".

keep Optional Character vector of variable names specifying which
variables in data to export. Only one of keep or drop
may be specified.

drop Optional Character vector of variable names specifying which
variables in data are not to be exported. Only one of keep
or drop may be specified.

delimiter Optional Character to be used as delimiter. (Used only with type
"ASCII".) The default is
" ".

format Optional A character string specifying the width and precision for
each field.

colNames Optional Logical flag: if TRUE, column names are also exported.

rowNames Optional Logical flag: if TRUE, row names are exported.
71

CHAPTER 3 IMPORTING AND EXPORTING DATA
Exporting Data

to S-PLUS

When you want to export data to share with another S-PLUS user, use the
data.dump function:

> data.dump("matz")

By default, the data object matz is exported to the file dumpdata in your
S-PLUS startup directory. You can specify a different output file with the
connection argument to data.dump:

> data.dump("matz", connection="matz.dmp")

(The connection argument needn�t specify a file; it can specify any valid
S-PLUS connection object. See Programming with Data for more details on
connections.)

If the data object you want to share is not on the working data, you must
specify the object�s location in the search path with the where argument:

> data.dump("halibut", where="data")

Other Export

Functions

The inverse operation to the scan function is provided by the cat and write
functions. Similarly, the inverse operation to read.table is provided by
write.table.The result of either write or cat is just an ASCII file with
data in it. There is no S-PLUS structure written in.

Of the two commands, write has an argument for specifying the number of
columns and thus is more useful for retaining the format of a matrix.

By default, write writes matrices column by column, five values per line. If
you want the matrix represented in the ASCII file in the same form it is
represented in S-PLUS, transform the matrix first with the t function and
specify the number of columns in your original matrix:

quote Optional Logical flag specifying whether to put quotes around
character strings: TRUE or FALSE. Default is TRUE.

filter Optional Character string specifying the output filter. See the section
Setting the Import Filter for details.

Table 3.2: Arguments to exportData.

Argument Required Description
72

EXPORTING DATA SETS
> mat

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> write(t(mat),"mat",ncol=4)

You can view the resulting file with a text editor or pager; it contains the
following three lines:

1 4 7 10

2 5 8 11

3 6 9 12

The cat function is a general-purpose writing tool in S-PLUS, used for
writing to the screen as well as writing to files. It can be useful in creating
free-format data files for use with other software, particularly when used with
the format function:

> cat(format(runif(100)),fill=T)

0.261401257 0.556708986 0.184055283 0.760029093

The argument fill=T limits line length in the output file to the width
specified in your options object. To use cat to write to a file, simply specify a
file name with the file argument:

> x <- 1:1000

> cat(x,file="mydata",fill=T)

The files written by cat and write do not contain S-PLUS structure
information; to read them back into S-PLUS you must reconstruct this
information.

The write.table function can be used to export a data frame into an ASCII
text file:

> write.table(fuel.frame, "fuel.txt")

> !vi fuel.txt

row.names,Weight,Disp.,Mileage,Fuel,Type

Eagle Summit 4,2560, 97,33,3.030303,Small

Ford Escort 4,2345,114,33,3.030303,Small

Ford Festiva 4,1845, 81,37,2.702703,Small

Honda Civic 4,2260, 91,32,3.125000,Small

Mazda Protege 4,2440,113,32,3.125000,Small
73

CHAPTER 3 IMPORTING AND EXPORTING DATA
Mercury Tracer 4,2285, 97,26,3.846154,Small

Nissan Sentra 4,2275, 97,33,3.030303,Small

Pontiac LeMans 4,2350, 98,28,3.571429,Small

. . .
74

Basic Data Objects 76
Coercion of Values 77

Vectors 79
Creating Vectors 79
Naming Vectors 81

Matrices 82
Creating Matrices 82
Naming Rows and Columns 84

Arrays 85
Creating Arrays 86

Lists 87
Creating Lists 87
List Component Names 89

Factors and Ordered Factors 90
Creating Factors 91
Creating Ordered Factors 93
Creating Factors from Continuous Data 94

DATA OBJECTS 4
75

CHAPTER 4 DATA OBJECTS
BASIC DATA OBJECTS

Everything in S-PLUS is an object. Every object has an associated class. The
class of an object defines how the object is represented, and determines what
actions may be performed on the object and how those actions are
performed.

The simplest objects are atomic vectors, objects containing 0 or more elements
that can be indexed numerically. Atomic vectors are so called to indicate that
in S-PLUS they are indeed fundamental objects. All of S-PLUS�s basic
mathematical operations and data manipulation functions are designed to
work on the vector as a whole. Individual elements of the vector, however,
can be extracted using their numerical indices with the subscript operator [:

> car.gals[c(1,3,5)]

[1] 13.3 11.5 14.3

All elements within an atomic vector must be from only one of seven atomic
modes��logical�, �numeric�, �single�, �integer�, �complex�,
�raw�, or �character�. (An eighth atomic mode, �NULL�, applies only to
the NULL vector.) The number of elements, and their mode, completely
define the data object as a vector. The class of any vector is the mode of its
elements:

> class(c(T,T,F,T))

[1] "logical"

> class(c(1,2,3,4))

[1] "integer"

> class(c(1.24,3.45, pi))

[1] "numeric"

The number of elements in a vector is called the length of the vector, and
can be obtained for any vector using the length function:

> length(1:10)

[1] 10

More complicated objects can be created from atomic vectors in two basic
ways: by allowing complete S objects as elements, or by building new data
classes from old using slots.

Objects that contain other S objects as elements are called recursive objects,
and include such common S-PLUS objects as lists and data frames. A list is a
vector for which each element is a distinct S object, of any type. A data frame
is essentially a list in which each of the elements is an atomic vector, and all of
the elements have the same length.
76

BASIC DATA OBJECTS
A list is a completely flexible means for representing data; in earlier versions
of S it was the standard means of combining arbitrary objects into a single
data object. Much the same effect can be created, however, using the notion
of slots.

With slots, you can store any information you need to uniquely define your
data object (that is, the object�s attributes) in one or more slots.

The virtual class �vector� extends all of the atomic vector classes. New
vector classes can be created by defining class-specific methods for length,
�[�, and a few other functions.

Next in complexity after the atomic vectors are the structures, which extend
vectors by imposing a structure, typically a multi-dimensional array, upon the
data. The simplest structure is the two-dimensional matrix. A matrix starts
with a vector, then adds the information about how many rows and columns
the matrix contains. This information, the dimension, or dim, of the matrix,
is stored in a slot in the representation of the matrix class. All structure classes
have at least one slot, .Data, which must contain a vector. The classes
�matrix� and �array� have one additional required slot, .Dim, to hold the
dimension, and one optional slot, .Dimnames, to hold the names for the
rows and columns of a matrix, and their analogues for higher dimensional
arrays. Like simple vectors, structure objects are atomic; all of their values
must be of a single mode.

Data objects can contain not only logical, numeric, complex, and character
values, but also functions, operators, function calls, and evaluations. All the
different types (classes) of S-PLUS objects can be manipulated in the same
way: saved, assigned, edited, combined, or passed as arguments to functions.
This general definition of data objects, coupled with class-specific methods,
forms the backbone of object-oriented programming, and provides exceptional
flexibility in extending the capabilities of S-PLUS.

Coercion of

Values

When values of different modes are combined into a single atomic object,
S-PLUS converts or coerces all values to a single mode in a way that preserves
as much information as possible. The basic modes can be arranged in order
of increasing information�"logical", "integer", "numeric", "complex",
and "character". Thus, mixed values are all converted to the mode of the
value with the most informative mode. For example, suppose we combine a
logical value, a numeric value, and a character value, as follows:

> c(T, 2, "seven")

[1] "TRUE" "2" "seven"

S-PLUS coerces all three values to mode "character", because this is the
77

CHAPTER 4 DATA OBJECTS
most informative mode represented. Similarly, in the following example all
the values are coerced to mode "numeric":

> c(T, F, pi, 7)

[1] 1.000000 0.000000 3.141593 7.000000

When logical values are coerced to integers, TRUE values become the integer 1
and FALSE values become the integer 0.

The same kind of coercion occurs when values of different modes are
combined in computations. For example, "logical" values are coerced to
zeros and ones in "integer" or �numeric� computations.
78

VECTORS
VECTORS

The simplest type of data object in S-PLUS is a vector. A vector is simply an
ordered set of values. The order of the values is emphasized because ordering
provides a convenient way of extracting parts of a vector.

Creating

Vectors

If you want to create a vector, you can do so in a number of ways. You have
seen that you can combine arbitrary values to create a vector with the c
function, and type in data from the keyboard or a data file with the scan
function.

Other functions are useful for repeating values or generating sequences of
numeric values. The rep function repeats a value by specifying either a
times argument or a length argument. If times is specified, the value is
repeated the number of times specified (the value may be a vector):

> rep(NA,5)

[1] NA NA NA NA NA

> rep(c(T,T,F),2)

[1] T T F T T F

If times is a vector with the same length as the vector of values being
repeated, each value is repeated the corresponding number of times.

> rep(c("yes","no"),c(4,2))

[1] "yes" "yes" "yes" "yes" "no" "no"

The sequence operator generates sequences of integer values spaced one unit
apart.

> 1:5

[1] 1 2 3 4 5

> 1.2:4

[1] 1.2 2.2 3.2

> 1:-1

[1] 1 0 -1

More generally, the seq function generates sequences of numeric values with
an arbitrary increment. For example:

> seq(-pi,pi,.5)

[1] -3.1415927 -2.6415927 -2.1415927 -1.6415927 -1.1415927

[6] -0.6415927 -0.1415927 0.3584073 0.8584073 1.3584073
79

CHAPTER 4 DATA OBJECTS
[11] 1.8584073 2.3584073 2.8584073

You can specify the length of the vector and seq computes the increment:

> seq(-pi,pi,length=10)

[1] -3.1415927 -2.4434610 -1.7453293 -1.0471976 -0.3490659

[6] 0.3490659 1.0471976 1.7453293 2.4434610 3.1415927

Or you can specify the beginning, the increment, and the length with either
the length argument or the along argument:

> seq(1,by=.05,length=10)

[1] 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

> seq(1,by=.05,along=1:5)

[1] 1.00 1.05 1.10 1.15 1.20

See the help file for seq for more information on the length and along
arguments.

To �initialize� a vector of a certain mode and length before you know the
actual values, use the vector function. This function takes two arguments:
the first specifies the mode and the second specifies the length:

> vector("logical",3)

[1] F F F

The functions logical, integer, numeric, complex and character
generate vectors of the named mode. Each of these functions takes a single
argument which specifies the length of the vector. Thus, logical(3)
generates the same initialized vector as above.

Table 4.1: Useful functions for creating vectors.

Function Description Examples

scan read values any mode scan(), scan(�data�)

c combines values any mode c(1,3,2,6), c(�yes�,�no�)

rep repeat values any mode rep(NA,5), rep(c(1,2),3)

: numeric sequences 1:5, 1:-1

seq numeric sequences seq(-pi,pi,.5)

vector initialize vectors vector(�complex�,5)

logical initialize logical vectors logical(3)
80

VECTORS
Naming

Vectors

You can assign names to vector elements to associate specific information,
such as case labels or value identifiers, with each value of the vector. To create
a vector with named values, you assign the names with the names function:

> numbered.letters <- letters

> names(numbered.letters) <- paste(�obs�,1:26,sep=��)

> numbered.letters

obs1 obs2 obs3 obs4 obs5 obs6 obs7 obs8 obs9 obs10 obs11

 "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"

 obs12 obs13 obs14 obs15 obs16 obs17 obs18 obs19 obs20 obs21

 "l" "m" "n" "o" "p" "q" "r" "s" "t" "u"

 obs22 obs23 obs24 obs25 obs26

 "v" "w" "x" "y" "z"

In the above example, the first 26 integers are converted to character strings
by the paste function and then attached to each value. The quotes around
the numbers are suppressed in the printing. The actual values of the vector
numbered.letters are character strings, each containing one letter.

If you specify too many or too few names for the values, S-PLUS gives an
error message.

numeric initialize numeric vectors numeric(4)

complex initialize complex vectors complex(5)

character initialize character vectors character(6)

Table 4.1: Useful functions for creating vectors.

Function Description Examples
81

CHAPTER 4 DATA OBJECTS
MATRICES

Matrices are used to arrange values by rows and columns in a rectangular
table. For data analysis, different variables are usually represented by different
columns, and different cases or subjects are represented by different rows.
Thus matrices are convenient for grouping together observations that have
been measured on the same set of subjects and variables.

Matrices differ from vectors by having a .Dim slot, which specifies the
dimension of the matrix, that is, the number of rows and columns. Any vector
can be turned into a matrix simply by specifying its .Dim slot, as we see in the
examples below.

Creating

Matrices

To create a matrix from an existing vector, use the dim function to set the
.Dim slot. To use dim, you assign a vector of two integers specifying the
number of rows and columns. For example:

> mat <- rep(1:4,rep(3,4))

> mat

[1] 1 1 1 2 2 2 3 3 3 4 4 4

> dim(mat) <- c(3,4)

> mat

 [,1][,2][,3][,4]

[1,] 1 2 3 4

[2,] 1 2 3 4

[3,] 1 2 3 4

More often, you need to combine several vectors or matrices into a single
matrix. To combine vectors (and matrices) into matrices, use the functions
cbind and rbind. The cbind function combines vectors column by column,
and rbind combines vectors row by row. You can easily combine counts for a
2×3 contingency table using rbind:

> rbind(c(200688,24,33),c(201083,27,115))

 [,1][,2][,3]

[1,] 200688 24 33

[2,] 201083 27 115

Use the cbind function similarly for columns. When vectors of different
lengths are combined using cbind or rbind, the shorter ones are replicated
cyclically so that the matrix is �filled in.� If matrices are combined, they must
have matching numbers of rows when using cbind and matching numbers of
82

MATRICES
columns when using rbind. Otherwise, S-PLUS prints an error message and
the objects are not combined.

Use the function matrix to convert objects to matrices. Combine the values
into a single vector using c and then group them by specifying the number of
columns or rows. To create a matrix from two vectors, grp and thw, use
matrix as follows:

> heart <- matrix(c(grp,thw),ncol=2)

If you provide fewer values as arguments to matrix than are required to
complete the matrix, the values are replicated cyclically until the matrix is
filled in. If you provide more data than necessary to complete the matrix,
excess values are discarded.

If either ncol or nrow is provided, but not both, the missing argument is
computed using the following relations:

� nrow = the smallest integer equal to or greater than the number of
values divided by the number of columns.

� ncol = the smallest integer equal to or greater than the number of
values divided by the number of rows.

Thus, nrow and ncol are computed to create the smallest matrix from all the
values when ncol or nrow is given individually.

By default the values are placed in the matrix column by column. That is, all
the rows of the first column are filled, then the rows of the second column are
filled, etc. To fill the matrix row by row, set the byrow argument to T. For
example:

> matrix(1:12,ncol=3,byrow=T)

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

The byrow argument is especially useful when reading in data from a text file
that is arranged in a table. The data are read in (with scan) row by row in this
case, so the byrow argument is used to place the values in a matrix correctly.
83

CHAPTER 4 DATA OBJECTS
Naming Rows

and Columns

For a vector you saw that you could assign names to each value with the
names function. For matrices, you can assign names to the rows and columns
with the dimnames function. To create a matrix with row and column names
of your own, create a list with two components, one for rows and one for
columns, and assign them using the dimnames function.

> dimnames(mat) <- list(paste("row",letters[1:3]),

+ paste("col",LETTERS[1:4]))

> mat

 col A col B col C col D

row a 1 2 3 4

row b 1 2 3 4

row c 1 2 3 4

In the example above, letters and LETTERS are character vectors with
values the letters of the alphabet in lower and upper case, respectively. The
character strings "row" and "col" are replicated to match the length of
vectors containing the letters for labeling. The paste function binds values
into a single character string.

To suppress either row or column labels, use the NULL value for the
corresponding component of the list. For example, to suppress the row labels
and number the columns:

> dimnames(mat) <- list(NULL, paste("col",1:4))

> mat

 col 1 col 2 col 3 col 4

[1,] 1 2 3 4

[2,] 1 2 3 4

[3,] 1 2 3 4

To specify the row and column labels when defining a matrix with matrix,
use the optional argument dimnames as follows:

> mat2 <- matrix(1:12, ncol=4,

+ dimnames=list(NULL,paste("col",1:4)))

A second set of functions for working with matrices is described in the
chapter The Object-Oriented Matrix Library of the Guide to Statistics. The
library includes contstructor functions for a Matrix class and numerous
subclasses, and methods for many matrix computations based on the
LAPACK library of numerical Fortran routines.
84

ARRAYS
ARRAYS

Arrays generalize matrices by extending the .Dim slot to more than two
dimensions. If the rows and columns of a matrix are the length and width of
a rectangular arrangement of equal-sized cubes, then length, width, and
height represent the dimensions of a three-way array. You can visualize a
series of equal-sized rectangles or cubes stacked one on top of the other to
form a three-dimensional box. The box is composed of cells (the individual
cubes) and each cell is specified by its position along the length, width, and
height of the box. An example of a three-dimensional array is the iris data
set in S-PLUS. The first two cases are presented here:

> iris[1:2,,]

, , Setosa

 Sepal L. Sepal W. Petal L. Petal W.

[1,] 5.1 3.5 1.4 0.2

[2,] 4.9 3.0 1.4 0.2

, , Versicolor

 Sepal L. Sepal W. Petal L. Petal W.

[1,] 7.0 3.2 4.7 1.4

[2,] 6.4 3.2 4.5 1.5

, , Virginica

 Sepal L. Sepal W. Petal L. Petal W.

[1,] 6.3 3.3 6.0 2.5

[2,] 5.8 2.7 5.1 1.9

The data present 50 observations of sepal length and width and petal length
and width for each of three species of iris (Setosa, Versicolor, and Virginica).
The .Dim slot of iris represents the length, width, and height in the box
analogy:

> dim(iris)

[1] 50 4 3

There is no limit to the number of dimensions of an array. Additional
dimensions are represented in the .Dim slot as additional values in the vector;
the number of values is the number of dimensions. From this, we can think
of a matrix as a two-dimensional array and a vector as a one-dimensional
array.
85

CHAPTER 4 DATA OBJECTS
Creating

Arrays

To create an array in S-PLUS, use the array function. The array function is
analogous to matrix. It takes data and the appropriate dimensions as
arguments, then produces the array. If no data is supplied, the array is filled
with NAs.

When passing values to array, combine them in a vector so that the first
dimension varies fastest, the second dimension the next fastest, and so on.
The following example shows how this works:

> array(c(1:8,11:18,111:118),dim=c(2,4,3))

, , 1

 [,1][,2][,3][,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

, , 2

 [,1][,2][,3][,4]

[1,] 11 13 15 17

[2,] 12 14 16 18

, , 3

 [,1][,2][,3][,4]

[1,] 111 113 115 117

[2,] 112 114 116 118

The first dimension (the rows) is incremented first. This is equivalent to
placing the values column by column. The second dimension (the columns)
is incremented second. The third dimension is incremented by filling a
matrix for each level of the third dimension.

For creating arrays from existing vectors, the dim function works for arrays in
the same way it works for matrices. The dim function lets you set the .Dim
slot as you can for a matrix. For example, if the data above were stored in the
vector vec, you could create the above array by defining the .Dim slot with
the vector c(2,4,3):

> vec

[1] 1 2 3 4 5 6 7 8 11 12 13

[12] 14 15 16 17 18 111 112 113 114 115 116

[23] 117 118

> dim(vec) <- c(2,4,3)

To name each level of each dimension, use the dimnames argument to array.
This passes a list of names in the same way as is done for matrices. For more
information on dimnames, see section Naming Rows and Columns (page 84).
86

LISTS
LISTS

Up to this point, all the data objects described have been atomic, meaning
they contain data of only one mode. Often, however, you need to create
objects that not only contain data of mixed modes but also preserve the mode
of each value. For example, the slots of an array may contain both the
dimension (a numeric vector), and the .Dimnames slot (a character vector),
and it is important to preserve those modes:

> attributes(iris)

$dim:

[1] 50 4 3

$dimnames:

$dimnames[[1]]:

character(0)

$dimnames[[2]]:

[1] "Sepal L." "Sepal W." "Petal L." "Petal W."

$dimnames[[3]]:

[1] "Setosa" "Versicolor" "Virginica"

The value returned by attributes is a simple example of an S-PLUS list.
Lists are a very general data type. Lists are made up of components, where each
component consists of one data object, of any type. That is, from component
to component, the mode and type of the object can change.

For example, the attributes list for the iris data set consists of two
components, a dim component and a dimnames component. The dim
component, the value of the .Dim slot, is a numeric vector of length three.
The dimnames component, the value of the .Dimnames slot, is another list
with three components. The first component is an empty character vector
(character(0)), the second component is a vector of four character strings
indicating whether the measurement is sepal length or width or petal length
or width, and the third component is a vector of three character strings
specifying the species of iris.

Creating Lists To create a list, use the list function. Each argument to list defines a
component of the list. Naming an argument, using the form
name=component, creates a name for the corresponding component. For
example, you can create a list from the two vectors grp and thw as follows:
87

CHAPTER 4 DATA OBJECTS
> grp <- c(rep(1,11),rep(2,10))

> thw <- c(450,760,325,495,285,450,460,375,310,615,425,245,

+ 350,340,300,310,270,300,360,405,290)

> heart.list <- list(group=grp, thw=thw,

+ descrip="heart data")

> heart.list

$group:

[1] 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

$thw:

[1] 450 760 325 495 285 450 460 375 310 615 425 245 350

[14] 340 300 310 270 300 360 405 290

$descrip:

[1] "heart data"

The first component of the list contains a numeric vector with grouping
information for the data, so it is named group. The second component is the
total heart weight (thw) in grams. The name of the component is the same as
the name of the object stored in that component. The thw on the left of the
equal sign is the component name and the thw on the right of the equal sign
is the object stored there. The third component contains a character vector
which briefly describes the data.

To access a list component, specify the name of the list and the name of the
component, separated by a $. For example, to display the grouping data:

> heart.list$group

[1] 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

More generally, you can access list components by an index number enclosed
in double brackets ([[]]). For example, the grouping information can also
be accessed by:

> heart.list[[1]]

[1] 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

Once you�ve accessed a component, you can specify particular values of the
component in the usual way, using the single bracket [] notation. For
example, since the group component is a vector, you can obtain the 11th and
12th elements with:

> heart.list[[1]][11:12]

[1] 1 2

or
88

LISTS
> heart.list$group[11:12]

[1] 1 2

If you define a list without naming the components, components can be
accessed only using the double bracket notation. When the components are
named you can use either the double bracket notation or the names
convention with a $ separating the list name and the component name.

List

Component

Names

The names of a list�s components can be changed by assigning them with the
names function:

> names(heart.list) <- c("group","total heart weight",

+ "descrip")

> names(heart.list)

[1] "group" "total heart weight" "descrip"
89

CHAPTER 4 DATA OBJECTS
FACTORS AND ORDERED FACTORS

In data analysis, many kinds of data are qualitative rather than quantitative or
numeric. If observations can be assigned only to a category, rather than given
a specific numeric value, they are termed qualitative or categorical. The
values assigned to these variables are typically short character descriptions of
the category to which the observation belongs. The following lists some
examples of categorical variables:

� gender, where the values are "male" and "female".

� marital status, where the values might be "single", "married",
"separated", "divorced".

� experimental status, where the values might be "treatment" and
"control".

Categorical data in S-PLUS is represented with a data type called a factors.
The data frame fuel.frame has a variable named Type which classifies each
automobile as either Small, Sporty, Compact, Medium, Large, or Van.

> fuel.frame$Type

[1] Small Small Small Small Small Small Small

[8] Small Small Small Small Small Small Sporty

[15] Sporty Sporty Sporty Sporty Sporty Sporty Sporty

[22] Sporty Compact Compact Compact Compact Compact Compact

[29] Compact Compact Compact Compact Compact Compact Compact

[36] Compact Compact Medium Medium Medium Medium Medium

[43] Medium Medium Medium Medium Medium Medium Medium

[50] Medium Large Large Large Van Van Van

[57] Van Van Van Van

When you print a factor, the values correspond to the level of the factor for
each data point or observation. Internally, a factor keeps track of the levels or
different categorical values contained in the data and indices which point to
the appropriate level for each data point. The different levels of a factor are
stored in an attribute called "levels".

Factor objects are a natural form for categorical data in an object-oriented
programming environment, because they have a "class" attribute that
allows specific method functions to be developed for them. For example, the
generic print function uses the print.factor method to print factors. If
90

FACTORS AND ORDERED FACTORS
you override print.factor by calling print.default, you can see how a
factor is stored internally.

> print.default(fuel.frame$Type)

 [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 1 1 1

[26] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3

[51] 2 2 2 6 6 6 6 6 6 6

attr(, "levels"):

 [1] "Compact" "Large" "Medium" "Small" "Sporty" "Van"
attr(, "class"):

 [1] "factor"

The integers serve as indices to the values in the "levels" attribute. You can
return the integer indices directly with the codes function.

> codes(fuel.frame$Type)

 [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 1 1 1

[26] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3

[51] 2 2 2 6 6 6 6 6 6 6

Or, you can examine the "levels" of a factor with the levels function.

> levels(fuel.frame$Type)

[1] "Compact" "Large" "Medium" "Small" "Sporty" "Van"

 The print.factor function is roughly equivalent to

> levels(fuel.frame$Type)[codes(fuel.frame$Type)]

except the quotes are dropped. To get the number of cases of each level in a
factor, call summary:

> summary(fuel.frame$Type)

Compact Large Medium Small Sporty Van

 15 3 13 13 9 7

Creating

Factors

To create a factor, use the factor function. The factor function takes data
with categorical values and creates a data object of class "factor". For
example, you can categorize a group of 10 students by gender as follows:
> classlist <- c("male", "female", "male", "male", "male",

+ "female", "female", "male", "female", "male")
91

CHAPTER 4 DATA OBJECTS
> factor(classlist)

[1] male female male male male female female male

[9] female male

S-PLUS creates two levels with labels "female", and "male", respectively.

The levels argument allows you to specify the levels you want to use or to
order them the way you want. For example, if you want to include certain
categories in an analysis, you can specify them with the levels argument.
Any values omitted from the levels argument are considered missing.

> intensity <- factor(c("Hi","Med","Lo","Hi","Hi","Lo"),

+ levels = c("Lo","Hi"))

> intensity

[1] Hi NA Lo Hi Hi Lo

> levels(intensity)

[1] "Lo" "Hi"

If you had left the levels argument off, the "levels" would have been
ordered alphabetically as "Hi", "Low", "Medium". You use the labels
argument if you want the levels to be something other than the original data.

Table 4.2: Arguments to factor.

Argument Description

x data, to be thought of as taking values on the finite set of
levels.

levels optional vector of levels for the factor. The default value of
levels is the sorted list of distinct values of x.

labels optional vector of values to use as labels for the levels of the
factor. The default is as.character(levels).

exclude a vector of values to be excluded from forming levels.
92

FACTORS AND ORDERED FACTORS
> factor(c("Hi","Lo","Med","Hi","Hi","Lo"),

+ levels=c("Lo","Hi"), labels = c("LowDose","HighDose"))

[1] HighDose LowDose NA HighDose HighDose LowDose

Use the exclude argument to indicate which values to exclude from the
levels of the resulting factor. Any value that appears in both x and exclude
will be NA in the result and will not appear in the "levels" attribute. The
intensity factor could alternatively have been produced with:

> factor(c("Hi","Med","Lo","Hi","Hi","Lo"),

+ exclude =c("Med"))

[1] Hi NA Lo Hi Hi Lo

Creating

Ordered

Factors

If the order of the levels of a factor is important, you can represent the data as
a special type of factor called an ordered factor. Use the ordered function to
create ordered factors. The arguments to ordered are the same as those to
factor. To create an ordered version of the intensity factor do:

> ordered(c("Hi","Med","Lo","Hi","Hi","Lo"),

+ levels=c("Lo","Med","Hi"))

[1] Hi Med Lo Hi Hi Lo

Lo < Med < Hi

The order relationship between the different levels is printed for an ordered
factor along with the values. The order of the values used in the levels
argument determines the order placed on the levels.

Warning

If you provide the levels and labels arguments, then you must order them in the same way. If you
don�t provide the levels argument but do provide the labels argument, then you must order the labels
the same way S-PLUS orders the levels of the factor, which is alphabetically for character strings and
numerically for a numeric vector which is converted to a factor.

Warning

If you don�t provide a levels argument, an ordering will be placed on the levels corresponding to the
default ordering of the levels by S-PLUS.
93

CHAPTER 4 DATA OBJECTS
Creating

Factors from

Continuous

Data

To create categorical data out of numerical or continuous data, use the cut
function. You provide either a vector of specific break points or an integer
specifying how many groups to divide the numerical data into, then cut
creates levels corresponding to the specified ranges. All the values falling in
any particular range are assigned the same level. For example, the murder
rates in the 50 states can be grouped into "High" and "Low" values using cut:

> cut(state.x77[,"Murder"],breaks=c(0,8,16))

 [1] 2 2 1 2 2 1 1 1 2 2 1 1 2 1 1 1 2 2 1 2 1 2 1 2 2

[26] 1 1 2 1 1 2 2 2 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1

attr(, "levels"):

 [1] " 0+ thru 8" "8+ thru 16"

The breakpoints must completely enclose the values you want included in
the factors. Data less than or equal to the first breakpoint or greater than the last
breakpoint are returned as NA.

To create a specific number of groups, by partitioning the range of the data
into equal-sized intervals, use an integer value for the breaks argument:

> cut(state.x77[,"Murder"], breaks=2)

 [1] 2 2 1 2 2 1 1 1 2 2 1 1 2 1 1 1 2 2 1 2 1 2 1 2 2

[26] 1 1 2 1 1 2 2 2 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1

attr(, "levels"):

 [1] "1.263+ thru 8.250" "8.250+ thru 15.237"

By default, cut creates labels of the form first breakpoint thru second
breakpoint, etc., using either the breakpoints you provide or the ones it
creates. However, you can assign different labels to the levels with the labels
argument.

> cut(state.x77[,"Murder"],c(0,8,16),

+ labels=c("Low","High"))

 [1] 2 2 1 2 2 1 1 1 2 2 1 1 2 1 1 1 2 2 1 2 1 2 1 2 2

[26] 1 1 2 1 1 2 2 2 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1

attr(, "levels"):

 [1] "Low" "High"

Note

 As you may notice from the style of printing in the above examples, cut does not produce factors
directly. Rather, the value returned by cut is a category object.
94

FACTORS AND ORDERED FACTORS
To create a factor from the output of cut, just call factor with the call to
cut as its only argument:

> factor(cut(state.x77[,"Murder"], c(0,8,16),

+ labels=c("Low","High")))

 [1] High High Low High High Low Low Low High High

[11] Low Low High Low Low Low High High Low High

[21] Low High Low High High Low Low High Low Low

[31] High High High Low Low Low Low Low Low High

[41] Low High High Low Low High Low Low Low Low
95

CHAPTER 4 DATA OBJECTS
96

The Benefits of Data Frames 98
Creating Data Frames 99
Combining Data Frames 104

Combining Data Frames by Column 104
Combining Data Frames by Row 106
Merging Data Frames 107

Applying Functions to Subsets of a Data Frame 110
Adding New Classes of Variables to Data Frames 116

Data frames are data objects designed primarily for data analysis and
modeling. You can think of them as generalized matrices�generalized in a
way different from the way arrays generalize matrices. Arrays generalize the
dimensional aspect of a matrix; data frames generalize the mode aspect of a
matrix. Matrices can be of only one mode (for example, "logical",
"numeric", "complex", "character"). Data frames, however, allow you to
mix modes from column to column. For example, you could have a column
of "character" values, a column of "numeric" values, a column of
categorical values, and a column of "logical" values. Each column of a data
frame corresponds to a particular variable; each row corresponds to a single
�case� or set of observations.

DATA FRAMES 5
97

CHAPTER 5 DATA FRAMES
THE BENEFITS OF DATA FRAMES

The main benefit of a data frame is that it allows you to mix data of different
types into a single object in preparation for analysis and modeling. The idea
of a data frame is to group data by variables (columns) regardless of their
type. Then all the observations on a particular set of variables can be grouped
into a single data frame. This is particularly useful in data analysis where it is
typical to have a "character" variable labeling each observation, one or
more "numeric" variables of observations, and one or more categorical
variables for grouping observations. An example is a built-in data set,
solder, with information on a welding experiment conducted by AT&T at
their Dallas factory.

> sampleruns <- sample(row.names(solder),10)

> solder[sampleruns,]

 Opening Solder Mask PadType Panel skips

380 L Thick A3 L7 2 0

545 L Thick B3 D4 2 0

462 L Thin A3 D6 3 3

809 S Thick B6 L9 2 7

609 S Thick B3 L4 3 19

492 M Thin A6 D6 3 8

525 S Thin A6 L6 3 18

313 M Thin A3 L6 1 1

408 M Thick A6 D7 3 11

540 S Thin A6 L9 3 22

A sample of 10 of the 900 observations is presented for all six variables. The
variable skips is the outcome which measures the number of visible
soldering skips on a particular run of the experiment. The other variables are
categorical and describe the levels of various factors which define the run.
The row names on the left are the run numbers for the experiment.
Combined in solder are character data (the row names), categorical data
(the factors), and numeric data (the outcome).
98

CREATING DATA FRAMES
CREATING DATA FRAMES

You can create data frames in several ways:

� importData reads data from a variety of application files, as well as
from relational databases and ASCII files.

� read.table reads in data from an external file.

� data.frame binds together S-PLUS objects of various kinds.

� as.data.frame coerces objects of a particular type to objects of
class data.frame.

You can also combine existing data frames in several ways, using the cbind,
rbind, and merge functions.

The importData function is described in detail in Chapter 3, Importing and
Exporting Data.

The read.table function reads data stored in a text file in table format
directly into S-PLUS. The as.data.frame function is primarily a support
function for the top-level data.frame function�it provides a mechanism
for defining how new variable classes should be included in newly-
constructed data frames. This mechanism is discussed further in section
Adding New Classes of Variables to Data Frames (page 116).

For most purposes, when you want to create or modify data frames within
S-PLUS, you use the data.frame function or one of the combining functions
cbind, rbind or merge. This section focuses specifically on the data.frame
function for combining S-PLUS objects into data frames. The following
section discusses the functions for combining existing data frames.

The data.frame function is used for creating data frames from existing
S-PLUS data objects rather than from data in an external text file. The only
required argument to data.frame is one or more data objects. All of the
objects must produce columns of the same length. Vectors must have the
same number of observations as the number of rows of the data frame,
matrices must have the same number of rows as the data frame, and lists must
have components that match in lengths for vectors or rows for matrices. If
the objects don�t match appropriately, you get an error message saying the
�arguments imply differing number of rows�. For example, suppose
we have vectors of various modes, each having length 20, along with a matrix
99

CHAPTER 5 DATA FRAMES
with two columns and 20 rows, and a data frame with 20 observations for
each of three variables. We can combine these into a data frame as follows.

> my.logical <- sample(c(T,F), size=20, replace=T)

> my.complex <- rnorm(20) + runif(20)*1i

> my.numeric <- rnorm(20)

> my.matrix <- matrix(rnorm(40), ncol=2)

> my.df <- kyphosis[1:20, 1:3]

> my.df2 <- data.frame(my.logical, my.complex, my.numeric,

+ my.matrix, my.df)

> my.df2

 my.logical my.complex my.numeric

 1 FALSE -1.8831606111+0.501943978i 1.09345678

 2 FALSE 0.3368386818+0.858758209i 0.09873739

 3 TRUE -0.0003541437+0.381377962i -0.91776485

 4 FALSE 1.2066770747+0.006793533i -1.76152800

 5 FALSE -0.0204049459+0.158040394i 0.30370197

 6 FALSE -1.0119328923+0.860326129i -0.52486689

 7 FALSE 0.9163081264+0.474985190i 1.46745534

 8 FALSE -1.3829848791+0.932033515i 0.45363152

 9 FALSE -0.4695526978+0.795743512i 0.40777969

10 TRUE -0.8035892599+0.256793795i 0.53622210

11 TRUE 0.9026407992+0.637563583i 0.07595690

12 TRUE -1.1558698525+0.655271475i 0.32395563

13 FALSE 0.1049802819+0.706128572i -1.35316648

14 TRUE 0.2302154933+0.373451429i -2.42261503

16 FALSE 2.3956811151+0.086245694i 0.34412995

17 TRUE 0.0824999817+0.258623377i 2.46456956

18 FALSE -0.0248816697+0.417373099i 2.99062594

19 TRUE 0.7525617816+0.636045368i -1.55640891

20 TRUE -1.1078423455+0.011345901i 1.27173450

21 TRUE -2.2280610717+0.517812594i 1.54472022

 X1 X2 Kyphosis Age Number

 1 0.80316229 2.28681400 absent 71 3

 2 -0.58580658 -0.06509133 absent 158 3

 3 0.88756407 -0.89849793 present 128 4

 4 -2.35672715 0.68797076 absent 2 5

 5 1.26986158 -0.76204606 absent 1 4

 6 -1.10805175 -1.02164143 absent 1 2

 7 0.56273335 1.34946448 absent 61 2

 8 0.24542337 1.35936982 absent 37 3
100

CREATING DATA FRAMES
 9 0.29190516 2.24852247 absent 113 2

10 0.98675866 -1.27076525 present 59 6

11 0.10125951 0.19835740 present 82 5

12 0.30351481 2.48467422 absent 148 3

13 0.04480753 -1.60470965 absent 18 5

14 1.43504492 1.35172992 absent 1 4

16 -2.45929501 -0.58286780 absent 168 3

17 0.90746053 -0.48598155 absent 1 3

18 0.50886476 0.96350421 absent 78 6

19 -1.11844146 -0.56341008 absent 175 5

20 0.51371598 1.32382209 absent 80 5

21 0.58229738 -0.87364793 absent 27 4

The names of the objects are used for the variable names in the data frame.
Row names for the data frame are obtained from the first object with a
names, dimnames, or row.names attribute having unique values. In the
above example, the object was my.df:

> my.df

 Kyphosis Age Number

 1 absent 71 3

 2 absent 158 3

 3 present 128 4

 4 absent 2 5

 5 absent 1 4

 6 absent 1 2

 7 absent 61 2

 8 absent 37 3

 9 absent 113 2

10 present 59 6

11 present 82 5

12 absent 148 3

13 absent 18 5

14 absent 1 4

16 absent 168 3

17 absent 1 3

18 absent 78 6

19 absent 175 5

20 absent 80 5

21 absent 27 4
101

CHAPTER 5 DATA FRAMES
The row names are not just the row numbers�in our subset, the number 15
is missing. The fifteenth row of kyphosis, and hence my.df, has the row
name "16".

The attributes of special types of vectors (such as factors) are not lost when
they are combined in a data frame. They can be retrieved by asking for the
attributes of the particular variable of interest. More detail is given in the
section This method takes account of user-supplied row names, but ignores
the argument optional, a flag that is TRUE when the method is not expected
to generate non-trivial row names or variable names for a calling function.
(page 117).

Each vector adds one variable to the data frame. Matrices and data frames
provide as many variables to the new data frame as they have columns or
variables, respectively. Lists, because they can be built from virtually any data
object, are more complicated�they provide as many variables as all of their
components taken together.

When combining objects of different types into a data frame, some objects
may be altered somewhat to be more suitable for further analysis. For
example, numeric vectors and factors remain unchanged in the data frame.
Character and logical vectors, however, are converted to factors before being
included in the data frame. The conversion is done because S-PLUS assumes
that character and logical data will most commonly be taken to be a
categorical variable in any modeling that is to follow. If you want to keep a
character or logical vector �as is� in the data frame, pass the vector to
data.frame wrapped in a call to the I function, which returns the vector
unchanged but with the added class "AsIs".

For example, consider the following logical vector, my.logical:

> my.logical

[1] T T T T T F T T F T T F T F T T T T T T

We can combine it as is with a numeric vector rnorm(20) in a data frame as
follows:

> my.df <- data.frame(a=rnorm(20), b=I(my.logical))

> my.df

 a b

 1 -0.6960192 T

 2 0.4342069 T

 3 0.4512564 T

 4 -0.8785964 T

 5 0.8857739 T
102

CREATING DATA FRAMES
 6 -0.2865727 F

 7 -1.0415919 T

 8 -2.2958470 T

 9 0.7277701 F

10 -0.6382045 T

11 -0.9127547 T

12 0.1771526 F

13 0.5361920 T

14 0.3633339 F

15 0.5164660 T

16 0.4362987 T

17 -1.2920592 T

18 0.8314435 T

19 -0.6188006 T

20 1.4910625 T

> mode(my.df$b)

[1] "logical"

You can provide a character vector as the row.names argument to
data.frame. Just make sure it is the same length as the data objects you are
combining into the data frame.

> data.frame(price,country,reliab,mileage,type,

+ row.names=c("Acura","Audi","BMW","Chev","Ford",

+ "Mazda","MazdaMX","Nissan","Olds","Toyota"))

 price country reliab mileage type

 Acura 11950 Japan 5 NA Small

 Audi 26900 Germany NA NA Medium

. . .
103

CHAPTER 5 DATA FRAMES
COMBINING DATA FRAMES

We have already seen one way to combine data frames�since data frames are
legal inputs to the data.frame function, you can use data.frame directly
to combine one or more data frames. For certain specific combinations, other
functions may be more appropriate. This section discusses three general
cases:

 1. Combining data frames by column. This case arises when you have
new variables to add to an existing data frame, or have two or more
data frames having observations of different variables for identical
subjects. The principal tool in this case is the cbind function.

 2. Combining data frames by row. This case arises when you have
multiple studies providing observations of the same variables for
different sets of subjects. For this task, use the rbind function.

 3. Merging (or joining) data frames. This case arises when you have two
data frames containing some information in common, and you want
to get as much information as possible from both data frames about
the overlapping cases. For this case, use the merge function.

All three of the functions mentioned above (cbind, rbind, and merge) have
methods for data frames, but in the usual cases, you can simply call the
generic function and obtain the correct result.

Combining

Data Frames

by Column

Suppose you have a data frame consisting of factor variables defining an
experimental design. When the experiment is complete, you can add the
vector of observed responses as another variable in the data frame. In this
case, you are simply adding another column to the existing data frame, and
the natural tool for this in S-PLUS is the cbind function. For example,
consider the simple built-in design matrix oa.4.2p3, representing a half-
fraction of a 2^4 design.

> oa.4.2p3

 A B C

1 A1 B1 C1

2 A1 B2 C2

3 A2 B1 C2

4 A2 B2 C1
104

COMBINING DATA FRAMES
If we run an experiment with this design, we obtain a vector of length four,
one observation for each row of the design data frame. We can combine the
observations with the design using cbind as follows.

> run1 <- cbind(oa.4.2p3, resp=c(46, 34, 44, 30))

> run1

 A B C resp

1 A1 B1 C1 46

2 A1 B2 C2 34

3 A2 B1 C2 44

4 A2 B2 C1 30

Another use of cbind is to bind a constant vector to a data frame, as in the
following example.

> fuel1 <- cbind(1, fuel.frame)

> fuel1

 1 Weight Disp. Mileage Fuel Type

 Eagle Summit 4 1 2560 97 33 3.030303 Small

 Ford Escort 4 1 2345 114 33 3.030303 Small

 Ford Festiva 4 1 1845 81 37 2.702703 Small

 Honda Civic 4 1 2260 91 32 3.125000 Small

 Mazda Protege 4 1 2440 113 32 3.125000 Small

 . . .

As a more substantial example, consider the built-in data sets cu.summary,
cu.specs, and cu.dimensions. Each of these data sets contains
observations about a number of car models, but the list of car models is
slightly different in each. All, however, contain data for the cars listed in the
data set common.names.

> common.names

[1] "Acura Integra" "Acura Legend"

[3] "Audi 100" "Audi 80"

[5] "BMW 325i" "BMW 535i"

[7] "Buick Century" "Buick Electra"

 . . .

The data sets match.summary, match.specs, and match.dims contain the
row subscripts to obtain observations about the models listed in
common.names from, respectively, cu.summary, cu.specs, and
cu.dimensions. We can use these data sets and the cbind function to
compile a general car information data set.
105

CHAPTER 5 DATA FRAMES
> car.mine <- cbind(cu.dimensions[match.dims,],

+ cu.specs[match.specs,], cu.summary[match.summary,],

+ row.names=common.names)

Compare car.mine to the built-in data set car.all, constructed in a similar
fashion.

Combining

Data Frames

by Row

Suppose you are pooling the data from several research studies. You have data
frames with observations of equivalent, or roughly equivalent, variables for
several sets of subjects. Renaming variables as necessary, you can subscript the
data sets to obtain new data sets having a common set of variables. You can
then use rbind to obtain a new data frame containing all the observations
from the studies.

 For example, consider the following data frames.

> rand.df1

 norm unif binom

1 1.64542042 0.45375156 41

2 1.64542042 0.83783769 44

3 -0.13593118 0.31408490 53

4 0.26271524 0.57312325 34

5 -0.01900051 0.25753044 47

6 0.14986005 0.35389326 41

7 0.07429523 0.53649764 43

8 -0.80310861 0.06334192 38

9 0.47110022 0.24843933 44

10 -1.70465453 0.78770638 45

> rand.df2

 norm binom chisq

1 0.3485193 50 19.359238

2 1.6454204 41 13.547288

3 1.4330907 53 4.968438

4 -0.8531461 55 4.458559

5 0.8741626 47 2.589351

These data frames have the common variables norm and binom; we subscript
and combine the resulting data frames as follows.

> rbind(rand.df1[,c("norm","binom")],

+ rand.df2[,c("norm", "binom")])
106

COMBINING DATA FRAMES
 norm binom

1 1.64542042 41

2 1.64542042 44

3 -0.13593118 53

4 0.26271524 34

5 -0.01900051 47

6 0.14986005 41

7 0.07429523 43

8 -0.80310861 38

9 0.47110022 44

10 -1.70465453 45

11 0.34851926 50

12 1.64542042 41

13 1.43309068 53

14 -0.85314606 55

15 0.87416262 47

Merging Data

Frames

In many situations, you may have data from multiple sources with some
duplicated data. To get the cleanest possible data set for analysis, you want to
merge or join the data before proceeding with the analysis. For example,
player statistics extracted from Total Baseball overlap somewhat with player
statistics extracted from The Baseball Encyclopedia. You can use the merge
function to join two data frames by their common data. For example,
consider the following made-up data sets.

> baseball.off

 player years.ML BA HR

1 Whitehead 4 0.308 10

2 Jones 3 0.235 11

3 Smith 5 0.207 4

4 Russell NA 0.270 19

5 Ayer 7 0.283 5

Warning

Use rbind (and, in particular, rbind.data.frame) only when you have complete data frames, as in the
above example. Do not use it in a loop to add one row at a time to an existing data frame�this is very
inefficient. To build a data frame, write all the observations to a data file and use read.table to read it in.
107

CHAPTER 5 DATA FRAMES
> baseball.def

 player years.ML A FA

1 Smith 5 300 0.974

2 Jones 3 7 0.990

3 Whitehead 4 9 0.980

4 Russell NA 55 0.963

5 Ayer 7 532 0.955

These can be merged by the two columns they have in common using merge:

> merge(baseball.off, baseball.def)

 player years.ML BA HR A FA

1 Ayer 7 0.283 5 532 0.955

2 Jones 3 0.235 11 7 0.990

3 Russell NA 0.270 19 55 0.963

4 Smith 5 0.207 4 300 0.974

5 Whitehead 4 0.308 10 9 0.980

By default, merge joins by the columns having common names in the two
data frames. You can specify different combinations using the by, by.x, and
by.y arguments. For example, consider the data sets authors and books.

> authors

 FirstName LastName Age Income Home

1 Lorne Green 82 1200000 California

2 Loren Blye 40 40000 Washington

3 Robin Green 45 25000 Washington

4 Robin Howe 2 0 Alberta

5 Billy Jaye 40 27500 Washington

> books

 AuthorFirstName AuthorLastName Book

1 Lorne Green Bonanza

2 Loren Blye Midwifery

3 Loren Blye Gardening

4 Loren Blye Perennials

5 Robin Green Who_dun_it?

6 Rich Calaway Splus

The data sets have different variable names, but overlapping information.
Using the by.x and by.y arguments to merge, we can join the data sets by
the first and last names:
108

COMBINING DATA FRAMES
> merge(authors, books, by.x=c("FirstName", "LastName"),

+ by.y=c("AuthorFirstName", "AuthorLastName"))

 FirstName LastName Age Income Home Book

1 Loren Blye 40 40000 Washington Midwifery

2 Loren Blye 40 40000 Washington Gardening

3 Loren Blye 40 40000 Washington Perennials

4 Lorne Green 82 1200000 California Bonanza

5 Robin Green 45 25000 Washington Who_dun_it?

Because the desired �by� columns are in the same position in both books and
authors, we can accomplish the same result more simply as follows.

> merge(authors, books, by=1:2)

More examples can be found in the merge help file.
109

CHAPTER 5 DATA FRAMES
APPLYING FUNCTIONS TO SUBSETS OF A DATA FRAME

A common operation on data with factor variables is to repeat an analysis for
each level of a single factor, or for all combinations of levels of several factors.
SAS users are familiar with this operation as the BY statement. In S-PLUS, you
can perform these operations using the by or aggregate function. Use
aggregate when you want numeric summaries of each variable computed
for each level; use by when you want to use all the data to construct a model
for each level.

The aggregate function allows you to partition a data frame or a matrix by
one or more grouping vectors, and then apply a function to the resulting
columns. The function must be one that returns a single value, such as mean
or sum. You can also use aggregate to partition a time series (univariate or
multivariate) by frequency and apply a summary function to the resulting
time series.

For data frames, aggregate returns a data frame with a factor variable
column for each group or level in the index vector, and a column of numeric
values resulting from applying the specified function to the subgroups for
each variable in the original data frame.

> aggregate(state.x77[,c("Population", "Area")],

+ by=state.division, FUN = sum)

 Group Population Area

1 New England 12187 62951

2 Middle Atlantic 37269 100318

3 South Atlantic 32946 266909

4 East South Central 13516 178982

5 West South Central 20868 427791

6 East North Central 40945 244101

7 West North Central 16691 507723

8 Mountain 9625 856047

9 Pacific 28274 891972
110

APPLYING FUNCTIONS TO SUBSETS OF A DATA FRAME
For time series, aggregate returns a new, shorter time series that summarizes
the values in the time interval given by a new frequency. For instance you can
quickly extract the yearly maximum, minimum, and average from the
monthly housing start data in the time series hstart:

> aggregate(hstart, nf = 1, fun=max)

1966: 143.0 137.0 164.9 159.9 143.8 205.9 231.0 234.2 160.9

start deltat frequency

 1966 1 1

> aggregate(hstart, nf = 1, fun=min)

1966: 62.3 61.7 82.7 85.3 69.2 104.6 150.9 90.6 54.9

start deltat frequency

 1966 1 1

> aggregate(hstart, nf = 1, fun=mean)

1966: 99.6 110.2 128.8 125.0 122.4 173.7 198.2 171.5 112.6

start deltat frequency

 1966 1 1

The by function allows you to partition a data frame according to one or
more categorical indices (conditioning variables) and then apply a function
to the resulting subsets of the data frame. Each subset is considered a separate
data frame, hence, unlike the FUN argument to aggregate, the function
passed to by does not need to have a numeric result. Thus, by is useful for
functions that work on data frames by fitting models, for example.

> by(kyphosis, INDICES=kyphosis$Kyphosis, FUN=summary)

kyphosis$Kyphosis:absent

Warning

For most numeric summaries, all variables in the data frame must be numeric. Thus, if we attempt to repeat
the above example with the kyphosis data, using kyphosis as the by variable, we get an error:

> aggregate(kyphosis, by=kyphosis$Kyphosis, FUN=sum)

Error in Summary.factor(structure(.Data = c(1, 1, ..:

 A factor is not a numeric object

Dumped
111

CHAPTER 5 DATA FRAMES
 Kyphosis Age Number Start

absent :64 Min. : 1.00 Min. :2.00 Min. : 1.00

present: 0 1st Qu.: 18.00 1st Qu.:3.00 1st Qu.:11.00

 Median : 79.00 Median :4.00 Median :14.00

 Mean : 79.89 Mean :3.75 Mean :12.61

 3rd Qu.:131.00 3rd Qu.:5.00 3rd Qu.:16.00

 Max. :206.00 Max. :9.00 Max. :18.00

 . . .

kyphosis$Kyphosis:present

 Kyphosis Age Number Start

absent : 0 Min. : 15.00 Min. : 3.000 Min. : 1.000

present:17 1st Qu.: 73.00 1st Qu.: 4.000 1st Qu.: 5.000

 Median :105.00 Median : 5.000 Median : 6.000

 Mean : 97.82 Mean : 5.176 Mean : 7.294

 3rd Qu.:128.00 3rd Qu.: 6.000 3rd Qu.:12.000

 Max. :157.00 Max. :10.000 Max. :14.000

The applied function supplied as the FUN argument must accept a data frame
as its first argument; if you want to apply a function that does not naturally
accept a data frame as its first argument, you must define a function that does
so on the fly. For example, one common application of the by function is to
repeat model fitting for each level or combination of levels; the modeling
functions, however, generally have a formula as their first argument. The
following call to by shows how to define the FUN argument to fit a linear
model to each level:

> by(kyphosis, list(Kyphosis=kyphosis$Kyphosis,

+ Older=kyphosis$Age>105),

+ function(data)lm(Number~Start,data=data))

Kyphosis:absent

Older:FALSE

Call:

lm(formula = Number~Start, data = data)

Coefficients:

 (Intercept) Start

 4.885736 -0.08764492

Degrees of freedom: 39 total; 37 residual

Residual standard error: 1.261852

Kyphosis:present

Older:FALSE
112

APPLYING FUNCTIONS TO SUBSETS OF A DATA FRAME
Call:

lm(formula = Number~Start, data = data)

Coefficients:

 (Intercept) Start

 6.371257 -0.1191617

Degrees of freedom: 9 total; 7 residual

Residual standard error: 1.170313

Kyphosis:absent

Older:TRUE

. . .

As in the above example, you should define your FUN argument simply. If you
need additional parameters for the modeling function, specify them fully in
the call to the modeling function, rather than attempting to pass them in
through a �...� argument.

> by(kyphosis, kyphosis$Kyphosis, function(data)

+ apply(data,2,mean))

kyphosis$Kyphosis:absent

 Kyphosis Age Number Start

 NA NA 3.75 12.60938

kyphosis$Kyphosis:present

 Kyphosis Age Number Start

 NA 97.82353 5.176471 7.294118

Warning messages:

1: 64 missing values generated coercing from character to
numeric in: as.double(x)

2: 17 missing values generated coercing from character to
numeric in: as.double(x)

> by(kyphosis, kyphosis$Kyphosis, function(data)

+ apply(data,2,max))

Warning

Again, as with aggregate, you need to be careful that the function you are applying by to works with
data frames, and often you need to be careful that it works with factors as well. For example, consider the
following two examples.
113

CHAPTER 5 DATA FRAMES
Error in FUN(x): Numeric summary undefined for mode
"character"

Dumped

The functions mean and max are not very different, conceptually. Both return
a single number summary of their input, both are only meaningful for
numeric data. Because of implementation differences, however, the first
example returns appropriate values and the second example dumps.
However, when all the variables in your data frame are numeric, or when you
want to use by with a matrix, you should encounter few difficulties.

> dimnames(state.x77)[[2]][4] <- "Life.Exp"

> by(state.x77[,c("Murder", "Population", "Life.Exp")],

+ state.region, summary)

INDICES:Northeast

 Murder Population Life.Exp

Min. : 2.400 Min. : 472 Min. :70.39

1st Qu.: 3.100 1st Qu.: 931 1st Qu.:70.55

Median : 3.300 Median : 3100 Median :71.23

Mean : 4.722 Mean : 5495 Mean :71.26

3rd Qu.: 5.500 3rd Qu.: 7333 3rd Qu.:71.83

Max. :10.900 Max. :18080 Max. :72.48

INDICES:South

 Murder Population Life.Exp

Min. : 6.20 Min. : 579 Min. :67.96

1st Qu.: 9.25 1st Qu.: 2622 1st Qu.:68.98

Median :10.85 Median : 3710 Median :70.07

Mean :10.58 Mean : 4208 Mean :69.71

3rd Qu.:12.27 3rd Qu.: 4944 3rd Qu.:70.33

Max. :15.10 Max. :12240 Max. :71.42

. . .

Closely related to the by and aggregate functions is the tapply function,
which allows you to partition a vector according to one or more categorical
indices. Each index is a vector of logical or factor values the same length as
the data vector; to use more than one index create a list of index vectors.

For example, suppose you want to compute a mean murder rate by region.
You can use tapply as follows.

> tapply(state.x77[,"Murder"], state.region, mean)

Northeast South North Central West

 4.722222 10.58125 5.275 7.215385
114

APPLYING FUNCTIONS TO SUBSETS OF A DATA FRAME
To compute the mean murder rate by region and income, use tapply as
follows.

> income.lev <- cut(state.x77[,"Income"],

+ summary(state.x77[,"Income"])[-4])

> income.lev

 [1] 1 4 3 1 4 4 4 3 4 2 4 2 4 2 3 3 1

[18] 1 1 4 3 3 3 NA 2 2 2 4 2 4 1 4 1 4

[35] 3 1 3 2 3 1 2 1 2 2 1 3 4 1 2 3

attr(, "levels"):

[1] "3098+ thru 3993" "3993+ thru 4519"

[3] "4519+ thru 4814" "4814+ thru 6315"

> tapply(state.x77[,"Murder"],list(state.region,
income.lev),mean)

 3098+ thru 3993 3993+ thru 4519

 Northeast 4.10000 4.700000

 South 10.64444 13.050000

North Central NA 4.800000

 West 9.70000 4.933333

 4519+ thru 4814 4814+ thru 6315

 Northeast 2.85 6.40

 South 7.85 9.60

North Central 5.52 5.85

 West 6.30 8.40
115

CHAPTER 5 DATA FRAMES
ADDING NEW CLASSES OF VARIABLES TO DATA FRAMES

The manner in which objects of a particular data type are included in a data
frame is determined by that type�s method for the generic function
as.data.frame. The default method for this generic function uses the
data.class function to determine an object�s type. Thus, even data types
without formal class attributes, such as vectors, or character vectors, can
have specific methods. The behavior for most built-in types is derived from
one of the six basic cases shown in the table below.

As you add new classes, you can ensure that they are properly behaved in data
frames by defining your own as.data.frame method for each new class. In
most cases, you can use one of the six paradigm cases, either as is or with
slight modifications. For example, the character method is a straightforward
modification of the vector method:

> as.data.frame.character

function(x, row.names = NULL, optional = F,

 na.strings = "NA", ...)

Table 5.1: Rules for combining objects into data frames.

Data Types Sub-types Rules

vector numeric

complex

factor

ordered

1. contribute a single variable as is

character character

logical

category

1. converted to a factor data type
2. contribute a single variable

matrix matrix 1. each column creates a separate variable.
2. column names used for variable names

list list 1. each component creates one or more separate variables
2. variable names assigned as appropriate for individual
components (column names for matrices, etc.)

model.matrix model.matrix 1. object becomes a single variable in result

data.frame data.frame

design

1. each variable becomes a variable in result design.
2. variable names used for variable names
116

ADDING NEW CLASSES OF VARIABLES TO DATA FRAMES
 as.data.frame.vector(factor(x,exclude =na.strings),

 row.names,optional)

This method converts its input to a factor, then calls the function
as.data.frame.vector.

You can create new methods from scratch, provided they have the same
arguments as as.data.frame.

> as.data.frame

function(x, row.names = NULL, optional = F, ...)

UseMethod("as.data.frame")

The argument �...� allows the generic function to pass any method-specific
arguments to the appropriate method.

If you�ve already built a function to construct data frames from a certain class
of data, you can use it in defining your as.data.frame method. Your
method just needs to account for all the formal arguments of
as.data.frame. For example, suppose you have a class loops and a
function make.df.loops for creating data frames from objects of that class.
You can define a method as.data.frame.loops as follows.

> as.data.frame.loops

function(x, row.names = NULL, optional = F, ...)

{

 x <- make.df.loops(x, ...)

 if(!is.null(row.names))

 { row.names <- as.character(row.names)

 if(length(row.names) != nrow(x))

 stop(paste("Provided", length(row.names),

 "names for", nrow(x), "rows"))

 attr(x, "row.names") <- row.names

 }

 x

}

This method takes account of user-supplied row names, but ignores the
argument optional, a flag that is TRUE when the method is not expected to
generate non-trivial row names or variable names for a calling function.
117

CHAPTER 5 DATA FRAMES
118

Introduction 121
Getting Started with Simple Plots 122

Plotting a Vector Data Object 122
Plotting Mathematical Functions 123
Creating Scatter Plots 125

Frequently Used Plotting Options 126
Plot Shape 126
Multiple Plot Layout 126
Titles 128
Axis Labels 129
Axis Limits 129
Logarithmic Axes 130
Plot Types 130
Line Types 133
Plotting Characters 134
Controlling Plotting Colors 135

Interactively Adding Information to Your Plot 137
Identifying Plotted Points 137
Adding Straight Line Fits to a Current Scatter Plot 138
Adding New Data to a Current Plot 138
Adding Text to Your Plot 140

Making Bar Plots, Dot Charts, and Pie Charts 142
Bar Plots 142
Dot Charts 144
Pie Charts 146

Visualizing the Distribution of Your Data 147
Boxplots 147
Histograms 148
Density Plots 149
Quantile-Quantile Plots 150

Visualizing Higher Dimensional Data 154
Multivariate Data Plots 154

TRADITIONAL GRAPHICS 6
119

CHAPTER 6 TRADITIONAL GRAPHICS
Scatterplot Matrices 154
Plotting Matrix Data 155
Star Plots 156
Faces 157

3-D Plots: Contour, Perspective, and Image Plots 158
Contour Plots 158
Perspective Plots 160
Image Plots 161

Customizing Your Graphics 163
Low-level Graphics Functions and Graphics Parameters 164
Setting and Viewing Graphics Parameters 166
Controlling Graphics Regions 170

Controlling the Outer Margin 171
Controlling Figure Margins 172
Controlling the Plot Area 173

Controlling Text in Graphics 174
Controlling Text and Symbol Size 174
Controlling Text Placement 175
Controlling Text Orientation 176
Controlling Line Width 177
Plotting Symbols in Margin 177

Text in Figure Margins 178
Controlling Axes 180

Enabling and Disabling Axes 180
Controlling Tick Marks and Axis Labels 180
Controlling Axis Style 183
Controlling Axis Boxes 184

Controlling Multiple Plots 185
Overlaying Figures 188

High-Level Functions That Can Act as Low-Level Functions 188
Overlaying Figures by Setting new=TRUE 188
Overlay Figures by Using subplot 189

Adding Special Symbols to Plots 192
Arrows and Line Segments 192
Adding Stars and Other Symbols 193
Custom Symbols 195

Traditional Graphics Summary 197
References 200
120

INTRODUCTION
Introduction Visualizing data is a powerful data analysis tool because it allows you to easily
detect interesting features or structure in the data. This may lead you to
immediate conclusions or guide you in building a statistical model for your
data. This chapter shows you how to use S-PLUS to visualize your data.

The first section, Getting Started with Simple Plots (page 122), shows you
how to plot vector and time series objects. Once you have read this first
section, you will be ready to use any of the plotting options described in the
section Frequently Used Plotting Options (page 126). These options, which
can be used with many S-PLUS graphics functions, control most features in a
plot, such as plot shape, multiple plot layout, titles, axes, etc.

The remaining sections of this chapter cover a range of plotting tasks:

� Interactively adding information to your plot.

� Bar plot, pie chart, and dot chart type presentation graphics.

� Visualizing the distribution of your data.

� Visualizing correlation in your time series data.

� Using multiple active graphics devices.

We recommend that you read the first two sections carefully before
proceeding to any of the other sections.

In addition to the graphics features described in this chapter, S-PLUS includes
the Trellis Graphics library. Trellis Graphics features additional functionality,
such as multipanel layouts and improved 3-D rendering. See the chapter
Traditional Trellis Graphics for more information.
121

CHAPTER 6 TRADITIONAL GRAPHICS
GETTING STARTED WITH SIMPLE PLOTS

This section helps you get started with S-PLUS graphics by using the function
plot to make simple plots of your data. You use the function plot to make
plots of vector data objects, plots of mathematical functions, and scatter plots
of two vector data objects, i.e., plots of the values of one variable against the
values of another variable.

Plotting a

Vector Data

Object

You can graphically display the values of a batch of numbers, or
�observations,� using the function plot. For example, you obtain a graph of
the built-in vector data object car.gals using plot as follows:

> plot(car.gals)

The data are plotted as a set of isolated points. For each plotted point, the
vertical axis location gives the data value and the horizontal axis location gives
the observation number, or index.

Figure 6.1: Scatter plot of a single vector.

0 20 40 60 80 100 120

10
15

20
25

Index

ca
r.

ga
ls
122

GETTING STARTED WITH SIMPLE PLOTS
If you have a vector x which is complex, plot plots the real part of x on the
horizontal axis and the imaginary part on the vertical axis. For example, a set
of points on the unit circle in the complex plane can be plotted as follows:

> unit.circle <- complex(arg=seq(-pi,pi,length=20))

> plot(unit.circle)

Plotting

Mathematical

Functions

You can obtain smooth solid line plots of mathematical functions with plot
by using the optional argument type="l" to produce a plot with connected
solid line segments rather than isolated points, provided you choose a
sufficiently dense set of plotting points.

Figure 6.2: Scatter plot of a single complex vector.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Re(unit.circle)

Im
(u

ni
t.c

irc
le

)

123

CHAPTER 6 TRADITIONAL GRAPHICS
For example, to plot the mathematical function in the equation:

for x in the range (0,20), create a vector x with values ranging from 0 to 20 at
intervals of 0.1, compute the vector y by evaluating the function at each
value in x, then plot y against x:

> x <- seq(0,20,.1)

> y <- exp(-x/10)*cos(2*x)

> plot(x,y,type="l")

For a rougher plot, use fewer points; for a smoother plot, use more.

(6.1)y f x() e
x–() 10⁄

2x()cos= =

Figure 6.3: Plot of exp(-x/10) * cos(2x).

0 5 10 15 20

-0
.5

0.
0

0.
5

1.
0

x

y

124

GETTING STARTED WITH SIMPLE PLOTS
Creating

Scatter Plots

Scatter plots reveal relationships between pairs of variables. You create scatter
plots in S-PLUS with the plot function applied to a pair of equal-length
vectors, a matrix with two columns, or a list with components x and y. For
example, to plot the built-in vectors car.miles versus car.gals, use the
following S-PLUS expression:

> plot(car.miles,car.gals)

When using plot with two vector arguments, the first argument is plotted
along the horizontal axis and the second argument is plotted along the
vertical axis.

If x is a matrix with two columns, you use plot(x) to plot the second
column versus the first. For example, you could combine the two vectors
car.miles and car.gals into a matrix called miles.gals by using the
function cbind:

> miles.gals <- cbind(car.miles,car.gals)

Then use

> plot(miles.gals)
125

CHAPTER 6 TRADITIONAL GRAPHICS
FREQUENTLY USED PLOTTING OPTIONS

This section tells you how to make plots in S-PLUS with one or more of a
collection of frequently used options. These options include:

� Controlling plot shape and multiple plot layout

� Adding titles and axis labels

� Setting axis limits and specifying logarithmic axes

� Choosing plotting characters and line types

� Choosing plotting colors

Plot Shape When you use an S-PLUS plotting function, the default shape of the box
enclosing the plot is rectangular. Sometimes you prefer to have a square box
around your plot. For example, a scatter plot is usually displayed as a square
plot. You get a square box by using the global graphics parameter function
par as follows:

> par(pty="s")

All subsequent plots are made with a square box around the plot. If you want
to return to making rectangular plots, use

> par(pty="")

The pty stands for �plot type� and the "s" stands for square. However, you
should think of pty as standing for �plot shape� to avoid confusion with a
different meaning for �plot type� (see the section Plot Types (page 130)).

Multiple Plot

Layout

You may want to display more than one plot on your screen or on a single
page of paper. To do so, you use the S-PLUS function par with the layout
parameter mfrow to control the layout of the plots, as illustrated by the
following example. In this example, you use par to set up a four-plot layout,
with two rows of two plots each. Following the use of par, we create four
simple plots with titles:

> par(mfrow=c(2,2))
126

FREQUENTLY USED PLOTTING OPTIONS
> plot(1:10,1:10,main="Straight Line")

> hist(rnorm(50),main="Histogram of Normal")

> qqnorm(rt(100,5),main="Samples from t(5)")

> plot(density(rnorm(50)),main="Normal Density")

When you are ready to return to one plot per figure, use

> par(mfrow=c(1,1))

The function par is used to set many general parameters related to graphics.
See the section Setting and Viewing Graphics Parameters (page 166) and the
par help file for more information on using par. The section Controlling
Multiple Plots (page 185) contains more information on using the mfrow
parameter and describes another method for creating multiple plots.

Figure 6.4: A four plot layout.

Straight Line

1:10

1:
10

2 4 6 8 10

2
4

6
8

10

-3 -2 -1 0 1 2 3

0
5

10
15

20

Histogram of Normal

rnorm(50)

Samples from t(5)

Quantiles of Standard Normal

rt
(1

00
, 5

)

-2 -1 0 1 2

-2
0

2
4

Normal Density

density(rnorm(50))$x

de
ns

ity
(r

no
rm

(5
0)

)$
y

-2 -1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

127

CHAPTER 6 TRADITIONAL GRAPHICS
Titles You can easily add titles to any S-PLUS plot. You can add a main title, which
goes at the top of the plot, or a subtitle, which goes at the bottom of the plot.
To get a main title on a plot of the car.miles versus car.gals data, use the
argument main to plot. For example,

> plot(car.gals,car.miles,main="MILEAGE DATA")

To get a subtitle, use the sub argument:

> plot(car.gals,car.miles,sub="Miles versus Gallons")

To get both a main title and a subtitle, use both arguments:

> plot(car.gals,car.miles,main="MILEAGE DATA",

+ sub="Miles versus Gallons")

Alternatively, you can add the titles after creating the plot using the function
title, as follows:

> plot(car.gals,car.miles)

> title(main="Mileage Data",sub="Miles versus Gallons")

Figure 6.5: Putting main titles and subtitles on plots.

10 15 20 25

10
0

15
0

20
0

25
0

30
0

35
0

MILEAGE DATA

Miles versus Gallons
car.gals

ca
r.

m
ile

s

128

FREQUENTLY USED PLOTTING OPTIONS
Axis Labels When you use plot, S-PLUS provides axis labels which by default are the
names of the data objects passed as arguments to plot. However, data object
names, such as car.gals and car.miles, are chosen with brevity in mind.
You may want to use more descriptive axis labels. For example, you may
prefer �Gallons per Trip� and �Miles per Trip,� respectively, to �car.gals� and
�car.miles.� To obtain your preferred labels, use the xlab and ylab
arguments. For example,

> plot(car.gals,car.miles,xlab="Gallons per Trip",

+ ylab="Miles per Trip")

If you don�t want the default labels, you can suppress them by using the
arguments xlab and ylab with the value "", as follows:

> plot(car.gals,car.miles,xlab="",ylab="")

This gives you a plot with no axis labels. If desired, you can then add axis
labels using title:

> title(xlab="Gallons per Trip",ylab="Miles per Trip")

Axis Limits The limits of the x-axis and the y-axis are set automatically by the S-PLUS
plotting functions. However, you may wish to choose your own axis limits to
make room for adding text in the body of a plot (as described in the section
Interactively Adding Information to Your Plot (page 137). For example,

> plot(co2)

automatically determines y-axis limits of roughly 310 and 360, giving just
enough vertical room for the plot to fit inside the box.

You can make more vertical or horizontal room in the plot by using the
optional arguments ylim and xlim. To get y-axis limits of 300 and 370, use

> plot(co2,ylim=c(300,370))

You can change the x-axis limits as well; for example:

> plot(co2,xlim=c(1955,1995))

You can use both xlim and ylim at the same time. S-PLUS rounds your
specified axis limits to sensible values. You may also want to set axis limits
when you are making multiple plots, as described in the section Multiple Plot
Layout (page 126). For example, after creating one plot, you may wish to
make the x-axis and y-axis limits the same for all of the plots in the set. You
can do so by using the function par as follows:
129

CHAPTER 6 TRADITIONAL GRAPHICS
> par(xaxs="d",yaxs="d")

If you want to control the limits of only one of the axes, you drop one of the
two arguments, as appropriate. Using the xaxs="d" and yaxs="d"
arguments sets all axis limits to the values for the most recent plot in a
sequence of plots. If those limits are not the widest required in the sequence,
points outside the limits are not plotted and you receive the message Points
out of bounds. To avoid this error, you can first make all plots in the usual
way, without specifying axis limits, to find out which plot has the largest
range of axis limits. Then, create your first plot using xlim and ylim with
values determined by the largest range. Now set the axes with xaxs="d" and
yaxs="d" as described above. To return to the usual default state, in which
each plot determines its own limits in a multiple plot layout, use

> par(xaxs="",yaxs="")

The change goes into effect on the next �page� of figures.

Logarithmic

Axes

Often, a data set you are interested in does not reveal much detail when
graphed on ordinary axes. This is particularly true when many of the data
points bunch up at small values, making it difficult to see any potentially
interesting structure in the data. Such data sets yield more informative plots if
you graph them using a logarithmic scale for one or both of the axes.

To put the horizontal axis on a logarithmic scale, use log="x"; similarly, for
the vertical axis, use log="y". To put both the horizontal and vertical axes on
logarithmic scales, use log="xy".

Plot Types You can plot data in S-PLUS in any of the following ways:

� As points

� As lines (i.e., as connected straight line segments)

� As both points and lines (with points isolated)

� As �overstruck" points and lines (points not isolated)

� As a vertical line for each data point (this is known as a �high-
density� plot)
130

FREQUENTLY USED PLOTTING OPTIONS
� As a stairstep plot

� As an empty plot, with axes and labels but no data plotted

The method used for plotting data on a graph is called the graph�s plot type.
Scatter plots typically use the first plot type, while time series plots typically
use the second. In this section, we give examples of the other plot types. You
choose your plot type by using the optional argument type. The possible
values for this argument correspond to the choices listed above:

Different graphics functions have different default choices. For example,
plot and matplot use the default type="p", while ts.plot uses the default
type="l". Although you can use any of the plot types with any plotting
function, some combinations of plot function and plot type may result in an
ineffective display of your data. The option type="n" is useful for obtaining
precise control over axis limits and box line types. For example, you might
want to have the axes and labels in one color, and the data plotted in another.
You could do this easily as follows:

> plot(x,y,type="n")

> points(x,y,col=3)

Table 6.1: Possible values of the plot type argument.

Setting Plot type

type="p" points

type="l" lines

type="b" both points and lines

type="o" lines with points overstruck

type="h" high-density plot

type="s" stairstep plot

type="n" no data plotted
131

CHAPTER 6 TRADITIONAL GRAPHICS
Figure 6.6 shows the different plot types for the built-in data set car.miles,
plotted with the plot function:

> plot(car.miles)

> plot(car.miles,type="l")

> plot(car.miles,type="b")

> plot(car.miles,type="o")

> plot(car.miles,type="h")

> plot(car.miles,type="s")

Figure 6.6: Plot types for the function plot. Top row (page 132): points and lines; second row:
both points and lines, and lines with points overstruck; third row (page 133): high density plot
and stairstep plot.

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

Index

ca
r.

m
ile

s

0 20 40 60 80 100 120
10

0
15

0
20

0
25

0
30

0
35

0

Index

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

Index

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

Index

ca
r.

m
ile

s

132

FREQUENTLY USED PLOTTING OPTIONS
Line Types When your plot type involves lines, you can choose the line type for the lines.
By default, the line type for the first line on a graph is a solid line. If you
prefer a different line type, you can use the argument lty=n, where n is an
integer, to specify a different one. On most devices, there are eight distinct
line types; figure 6.7 illustrates the various types.

Figure 6.6: Plot types for the function plot. Top row (page 132): points and lines; second row:
both points and lines, and lines with points overstruck; third row (page 133): high density plot
and stairstep plot.

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

Index

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

Index

ca
r.

m
ile

s

Figure 6.7: Line types.

lty= 1
lty= 2
lty= 3
lty= 4
lty= 5
lty= 6
lty= 7
lty= 8
133

CHAPTER 6 TRADITIONAL GRAPHICS
If you specify a higher value, S-PLUS produces the line type corresponding to
the remainder on division by the number of line types. For example, if you
specify lty=26 on the graphsheet graphics device, S-PLUS produces the line
type shown as lty=2.

Plotting

Characters

When your plot type involves points, you can choose the plotting character for
the points. By default, the plotting character is usually a circle (o), depending
on your graphics device and the plot function you use. For matplot, the
default plotting character is the number 1, because matplot is often used to
plot more than one time series or more than one vector. In such cases, more
than one plotting character is needed to distinguish the separate graphs (one
plotting character for each time series or vector to be plotted). The default
plotting characters in such cases are the numbers 1, 2,.... However, you
can choose alternative plotting characters when making a points-type plot
with any of the above plotting functions by using the optional argument pch.
Any printing character can be used as a plotting character. The plotting
character is specified as a character string, so it must be enclosed in quotes.
For example:

> plot(halibut$biomass,pch="B")

Warning

The value of lty must be an integer. This contrasts with the value of type, which is of character mode
and is therefore enclosed in quotes. For example, to plot the time series halibut$cpue using plot with
lty=2:

> plot(halibut$cpue,type="l",lty=2)
134

FREQUENTLY USED PLOTTING OPTIONS
You can also choose any one of a range of plotting symbols by using pch=n.
Here you must use numeric mode for the value of pch. The symbol
corresponding to each of these integers is shown in figure 6.8.

Controlling

Plotting Colors

To specify the color in which your graphics are plotted, use the col
parameter. You can use color to distinguish between sets of overlaid data:

> plot(co2)

> lines(smooth(co2),col=2)

The colors available are determined by the device�s color map. The default
color map for graphsheet has sixteen colors: fifteen foreground and one
background color. To see all the colors in the default color map, use the
following expression:

> pie(rep(1,15),col=1:15)

This expression plots a pie chart with 15 colors on the background color,
color 0, for a total of 16 colors. You specify the color map for the
graphsheet device using the Color Schemes dialog box, which lists the
default color map, or scheme, together with several other predefined schemes
and any color schemes you define. From the Color Schemes dialog box, you
can select an alternate color scheme, modify existing color schemes, or define
new color schemes. See the chapter Customizing Your S-PLUS Session for
details on working with color schemes. You may want to experiment with

Figure 6.8: Plotting symbols from the pch parameter.

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18
135

CHAPTER 6 TRADITIONAL GRAPHICS
many values to find the most pleasing color map. For other graphics devices,
see the device�s help file for a description of the color map. S-PLUS uses the
color map cyclically; that is, if you specify col=9 and your color map has
only 8 colors, S-PLUS prints color 1. Color 0 is the background color; over-
plotting items using color 0 erases them on most graphics devices.
136

INTERACTIVELY ADDING INFORMATION TO YOUR PLOT
INTERACTIVELY ADDING INFORMATION TO YOUR PLOT

The functions described so far in this chapter create complete plots. Often,
however, you want to build on an existing plot in an interactive way. For
example, you may want to identify individual points in a plot and label them
for future reference. Or you may want to add some text or a legend, or
overlay some new data. In this section, we describe some simple techniques
for interactively adding information to your plots. More involved techniques
for producing customized plots are described in the section Customizing
Your Graphics (page 163).

Identifying

Plotted Points

While examining a plot, you may notice that some of the plotted points are
unusual in some way. To identify the observation numbers of such points, use
the identify function, which lets you �point and click� with a mouse on the
unusual points. For example, consider the plot of y versus x, plotted as
follows:

> set.seed(12)

> x <- runif(20)

> y <- 4*x+rnorm(20)

> x <- c(x,2)

> y <- c(y,2)

> plot(x,y)

You immediately notice one point separated from the bulk of the data. (Such
a data point is called an outlier.) To identify this point by observation
number, use identify as follows:

> identify(x, y, n=1)

After pressing RETURN, you do not get a prompt. Instead, S-PLUS waits for
you to identify points with the mouse. Now move the mouse cursor into the
graphics window so that it is adjacent to the data point to be identified and
click the left mouse button. The observation number appears next to the
point. If you click when the cursor is more than 0.5 inch from the nearest
point in the plot, a message appears on your screen to tell you there are no
points near the cursor. After identifying all the points that you requested (in
our example, n=1), S-PLUS prints out the observation numbers of the
identified points and returns your prompt:
137

CHAPTER 6 TRADITIONAL GRAPHICS
> identify(x, y, n=1)

[1] 21

If you omit the optional argument n=n, you can identify as many points as
you wish. In this case, you must signal S-PLUS that you�ve finished
identifying points by taking an appropriate action (for example, pressing the
right mouse button or pressing both the left and right mouse buttons
together, depending on your configuration).

Adding

Straight Line

Fits to a

Current

Scatter Plot

When you make a scatter plot, you may notice an approximately linear
association between the vertical-axis variable and the horizontal-axis variable.
In such cases you may find it helpful to display a straight line which has been
fit to the data. You can use the function abline(a,b) to add a straight line
with intercept a and slope b, on the current plot.

Adding a Least-

Squares Straight

Line

The best-known method of fitting a straight line to a scatter plot is the
method of least squares. The S-PLUS function lm fits a linear model using the
method of least-squares. The lm function requires a formula argument,
expressing the dependence of the response variable y on the predictor variable
x. See the Guide to Statistics for a complete description of formulas and
statistical modeling. To get a least-squares line, simply use abline on the
results of lm. For example, use the following S-PLUS expressions to obtain a
scatter plot and dotted line least-squares fit:

> plot(x, y)

> abline(lm(y ~x),lty=2)

Adding a Robust

Straight Line Fit

While the fitting of a least-squares line to data in the plane is probably the
most common data fitting procedure in the world, the least-squares approach
has a fundamental weakness: it lacks robustness, in the sense that the least-
squares method is very sensitive to outliers. A robust method is one which is
not affected very much by outliers, and which gives a good fit to the bulk of
the data.

Adding New

Data to a

Current Plot

Once you have created a plot, you may want to add additional data to it. For
example, you might plot an additional data set with a different line type or
plotting character. Or you might add a statistical function such as a smooth
curve fit to the data already in the plot. To add data to a plot created by plot,
138

INTERACTIVELY ADDING INFORMATION TO YOUR PLOT
you use one of the two functions points or lines. These functions are
virtually identical to plot except that they plot without creating a new set of
axes. The points function is used to add data points, while lines is used to
add lines. All the arguments to plot that we�ve discussed so far (including
type, pch, and lty) work with points and lines exactly as before. This
means that you can choose line types and plotting characters as you wish.
(You can even make line-type plots with points and points-type plots with
lines!) For example, suppose you plot the built-in data set co2, which gives
monthly levels of carbon dioxide at the Mauna Loa volcano from January
1959 to December 1990:

> plot(co2)

By default, plot uses �points" to plot the data. The plot function
recognizes that co2 is a time series data set consisting of monthly
measurements and provides appropriate yearly labels on the horizontal axis.
The series co2 has an obvious seasonal cycle and an increasing trend. It is
often useful to smooth such data and display the smoothed version in the
same plot. The function smooth produces a smoothed version of an S-PLUS
data object. You can use smooth as an argument to lines to add a plot of the
smoothed version of co2 to the existing plot:

> lines(smooth(co2))

If your original plot was created with matplot, you can add new data with
functions analogous to points and lines. To add data to a plot created with
matplot, use matpoints or matlines. See the corresponding help files for
further details.

Figure 6.9: The co2 data.

Time

1960 1965 1970 1975 1980 1985 1990

32
0

33
0

34
0

35
0

•••
••••••••
•••
••
•••
••••
•••
••
•••••••
•••
•••••
••••
•••
••
•••
••••
•••
••••••
•••
•••
•••••
••••
••
••
••••
••••
•••
••
•••••••
•••
•••••••••

•••
•••••
••••
••
••
••••••••
•••
••••••
•••
••••
••••••••
••
••
•••••••••

••
••••••
•••
•••
••
•••••••
•••
•••••
••••
•••
••
•••
••••
•••
••••••
•••
•••
••••••
•••
•••
•••••
••••
••
••
••••
••••
••
••
••••
••••
••
••
•••••
•••
•••
••
•••
•
••
••
••
•••••••••

•••
••
•••
••••
•••
••
•••••••
••
•••
•••
••••
•••
••
•••
•
•••
••
•••
•••
•
•••
•

139

CHAPTER 6 TRADITIONAL GRAPHICS
Adding Text to

Your Plot

Suppose you want to add some text to an existing plot. For example, consider
the automobile mileage data plot in figure 6.5. To add the text �Outliers"
near the three outlying data points in the upper right hand corner of the plot,
use the text function. To use text, you specify the x and y coordinates (the
same coordinate system used by the plot itself) at which you want the text to
appear, and the text itself. More generally, you can specify vectors of x and y
coordinates and a vector of text labels. Thus, in our example you type:

> plot(car.miles,car.gals)

> text(275,22,"Outliers")

The text �Outliers" is centered on the xy-coordinates (275,22). You can guess
the coordinate values by �eyeballing� the spot on the plot where you want the
text to go. However, this approach to locating text is not very accurate, and
you can do better using the locator function within text. The locator
function allows you to use the mouse cursor to accurately identify the
location of any number of points on your plot. When you use locator,
S-PLUS waits for you to position the mouse cursor and click the left mouse
button, and then it calculates the coordinates of the selected point. The
argument to locator specifies the number of times the text is to be
positioned. For example, we could have applied text and locator together
as follows to obtain much the same result as before:

> text(locator(1),"Outliers")

Connecting Text

and Data Points

with Straight

Lines

Suppose that you want to improve the graphical presentation by drawing a
straight line from the text �Outliers" to each of the three data points which
you regard as outliers. You can add each such line, one at a time, with the
following expression:

> locator(n=2,type="l")

S-PLUS now awaits your response. Locate the mouse cursor at the desired
starting point for the line and click the left button. Move the mouse cursor to
the desired ending point for the line and click the left button again. S-PLUS
then draws a straight line between the two points.

Adding Legends Often you make plots which contain one or more sets of data displayed with
different plotting characters or line types. In such cases, you probably want to
provide a legend which identifies each of the plotting characters or line types.
For example, if you use

> plot(smooth(co2),type="l")

> points(co2,pch="+")
140

INTERACTIVELY ADDING INFORMATION TO YOUR PLOT
to plot the data shown in figure 6.10, you probably want to add the legend
shown in the figure. To do this, first make a vector leg.names, which
contains the character strings "co2" and "smooth of co2" and then use
legend as follows:

> leg.names <- c("co2","smooth of co2")

> legend(locator(1),leg.names,pch="+ ",lty=c(0,1))

S-PLUS now waits for you to respond. Move the mouse cursor to the location
on the plot where you want to place the upper left corner of the legend box,
then click the left mouse button.

Figure 6.10: Plot with added legend.

Time

1960 1965 1970 1975 1980 1985 1990

32
0

33
0

34
0

35
0

+++
++++++++
+++
++
+++
++++
+++
++
+++++++
+++
+++++
++++
+++
++
+++
++++
+++
++++++
+++
+++
+++++
++++
++
++
++++
++++
+++
++
+++++++
+++
+++++++++

+++
+++++
++++
++
++
++++++++
+++
++++++
+++
++++
++++++++
++
++
+++++++++

++
++++++
+++
+++
++
+++++++
+++
+++++
++++
+++
++
+++
++++
+++
++++++
+++
+++
++++++
+++
+++
+++++
++++
++
++
++++
++++
++
++
++++
++++
++
++
+++++
+++
+++
++
+++
+
++
++
++
+++++++++

+++
++
+++
++++
+++
++
+++++++
++
+++
+++
++++
+++
++
+++
+
+++
++
+++
+++
+
+++
++ co2

smooth of co2
141

CHAPTER 6 TRADITIONAL GRAPHICS
MAKING BAR PLOTS, DOT CHARTS, AND PIE CHARTS

Bar plots and pie charts are familiar methods of graphically displaying data
for oral presentations, reports, and publications. In this section, we show you
how to use S-PLUS to make these plots. We also show you how to make
another type of chart, called a dot chart, that is less widely known but often
more useful than the more familiar bar plots and pie charts. We illustrate
each of the above types of plots with the following 5 x 3 matrix digits:

> digits

 sample 1 sample 2 sample 3

digit 1 20 15 30

digit 2 16 17 30

digit 3 24 16 17

digit 4 21 24 20

digit 5 19 13 28

For convenience in what follows, create this matrix and take the row labels
and the column labels from the matrix as follows:

> digits <- matrix(c(20,15,30,16,17,30,24,16,17,21,24,20,

+ 19,13,28),nrow=5,byrow=T)

> dimnames(digits) <- list(paste("digit",1:5,

+ sep=" "),paste("sample",1:3,sep=" "))

> digit.names <- dimnames(digits)[[1]]

> sample.names <- dimnames(digits)[[2]]

Bar Plots The function barplot is a flexible function for making bar plots. The
simplest use of barplot is with a vector or a single column of a matrix. For
example, using the first column of digits gives the result in figure 6.11:

> barplot(digits[,1],names=digit.names)
142

MAKING BAR PLOTS, DOT CHARTS, AND PIE CHARTS
In this case, the height of each bar is the value (usually a count) occurring in
the corresponding component of the vector (or matrix column). To make a
bar plot of the entire digits data matrix, use barplot in a more powerful
way in which each bar represents a sample (i.e., a column of the matrix), and
each bar is divided into a number of blocks representing the digits, with
different shadings in each of the blocks. You do this as follows:

> barplot(digits,angle=seq(45,135,len=5),density=16,

+ names=sample.names)

Using the optional argument angle=seq(45,135,len=5) establishes five
angles for the shading fill for each of the five blocks in each bar, with the
angles equally spaced between 45 degrees and 135 degrees. Setting the
density optional argument at the value 16 causes the shading fill lines to
have a density of 16 lines per inch. If you want the density of the shading fill
lines to vary cyclically, you need to set density at a vector value, with the
vector of length five in the case of the digits data. For example:

Figure 6.11: A bar plot of the digits data.

0
5

10
15

20

digit 1 digit 2 digit 3 digit 4 digit 5
143

CHAPTER 6 TRADITIONAL GRAPHICS
> barplot(digits,angle=seq(45,135,len=5),

+ density=(1:5)*5,names=sample.names)

To produce a legend that associates a name to each block of bars, use the
legend argument, with an appropriate character vector as its value. For the
digits data example, you use legend=digit.names to associate a digit
name with each of the blocks in the bars:

> barplot(digits,angle=c(45,135),density=(1:5)*5,

+ names=sample.names,legend=digit.names,ylim=c(0,270))

To make room for the legend, you usually need to increase the range of the
vertical axis, so we use ylim=c(0,270). You can obtain greater flexibility for
the positioning of the legend by using the function legend after you have
made your bar plot (rather than relying on the automatic positioning that
results from using the optional argument legend). See the section Adding
Legends (page 140) for more information. Many other options are available
to you as arguments to barplot; see the help file for complete details.

Dot Charts The dot chart was first described by Cleveland (1985) as an alternative to bar
plots and pie charts. The dot chart displays the same information as the bar
plot or pie chart, but in a form that is often easier to grasp. In particular, the
dot chart reduces most data comparisons to straightforward length
comparisons on a common scale. The simplest use of dotchart is analogous
to the simplest use of barplot, as you can see by applying dotchart to the
first column of the digits matrix:

> dotchart(digits[,1],digit.names)
144

MAKING BAR PLOTS, DOT CHARTS, AND PIE CHARTS
To get a display of all the data in the matrix digits, you could use the
following command:

> dotchart(digits,digit.names)

or you could use the following command:

> dotchart(t(digits),sample.names)

The argument t(digits) uses the function t to transpose the matrix
digits, i.e., to interchange the rows and columns of digits. To get a
display with both the sample labels and the digit labels, you need to create a
factor object, a grouping variable, to use as an additional argument. For
example, if you wish to use the sample number as the grouping variable, then
create the factor object sample.fac as follows:

> sample.fac <- factor(col(digits),lab=sample.names)

and use this factor object as the third argument to dotchart:

> dotchart(digits,digit.names,sample.fac)

Figure 6.12: Making dot charts with the digits data.

16 18 20 22 24

o

o

o

o

o

digit 1

digit 2

digit 3

digit 4

digit 5
145

CHAPTER 6 TRADITIONAL GRAPHICS
For more information on factor objects, see the chapter Data Objects. Several
other options are available with the dotchart function; see the help file for
complete details.

Pie Charts You can make pie charts with the function pie. For example, you can display
the first sample of the digits data as a pie chart and add the subtitle �sample
1� by using pie as follows:

> pie(digits[,1],names=digit.names,angle=seq(45,135,len=5),

+ density=10,sub="sample 1")

As an alternative, try replacing digits[,1] by digits[,2] and
digits[,3] and replacing "sample 1" by "sample 2" and "sample 3",
respectively. Several other options are available with the pie function; see the
help file for complete details.

Figure 6.13: A pie chart of the digits data.

digit 1

digit 2

digit 3

di
gi

t 4

digit 5

sample 1

Recommendation

Although pie charts display all the information about the three samples of random digits, they are not as
easy to interpret as dot charts and bar plots. Bar plots, too, introduce perceptual ambiguities, particularly in
the �divided bar chart.� For these reasons, we recommend the dot chart.
146

VISUALIZING THE DISTRIBUTION OF YOUR DATA
VISUALIZING THE DISTRIBUTION OF YOUR DATA

For any data set you need to analyze, you should try to get a visual picture of
the shape of its distribution. The distribution shape is readily visualized from
such familiar plots as boxplots, histograms, and density plots. Less familiar,
but equally useful, are quantile-quantile plots (qqplots). In this section, we
show you how to use S-PLUS functions to make these kinds of plots.

Boxplots A boxplot is a simple graphical representation showing the center and spread
of a distribution, along with a display of unusually deviant data points, called
outliers. To create a boxplot in S-PLUS , you use the boxplot function:

> boxplot(corn.rain)

The horizontal line in the interior of the box is located at the median of the
data. This estimates the center of the distribution for the data. The height of
the box is equal to the interquartile distance, or IQD, which is the difference

Figure 6.14: Boxplot from corn.rain data.

8
10

12
14

16
147

CHAPTER 6 TRADITIONAL GRAPHICS
between the third quartile of the data and the first quartile. The IQD
indicates the spread or width of the distribution for the data. The whiskers
(the dotted lines extending from the top and bottom of the box) extend to
the extreme values of the data or a distance 1.5 x IQD from the center,
whichever is less. For data having a Gaussian distribution, approximately
99.3% of the data falls inside the whiskers. Data points that fall outside the
whiskers may be outliers and so they are indicated by horizontal lines. In our
example, the two horizontal lines at the top of the graph represent outliers.
Boxplots provide a very powerful method for visualizing the rough
distributional shape of two or more samples of data.

For example, to compare the distributions of the New Jersey lottery payoffs
lottery.payoff, lottery2.payoff, and lottery3.payoff in each of
three different years, use

> boxplot(lottery.payoff,lottery2.payoff,lottery3.payoff)

You can modify the style of your boxplots, and many other features as well,
using arguments to boxplot; see the help file for complete details.

Histograms A histogram shows the number of data points that fall in each of a number of
intervals. You create histograms in S-PLUS with the hist function:

> hist(corn.rain)

Notice that a histogram gives you an indication of the relative density of the
data points along the horizontal axis. For example, there are 10 data points in
the interval 8 to 10 and only one data point in the interval 14 to 16. The
histogram produced by the above simple use of hist always spans the range
of the data, i.e., the smallest data value falls in the leftmost interval and the
largest data point falls in the rightmost interval.

The number of intervals produced by hist, e.g., six intervals in the above
example, is determined automatically by hist to balance the tradeoff
between obtaining smoothness and preserving detail. However, no automatic
rule is completely satisfactory. Thus, hist allows you to choose the number
of intervals yourself, by using the optional argument nclass. Choosing a
larger number of intervals produces a �rougher� histogram with more detail
and choosing a smaller number produces a �smoother� histogram with less
detail. For example:

> hist(corn.rain,nclass=10)

gives the rougher but more detailed histogram.
148

VISUALIZING THE DISTRIBUTION OF YOUR DATA
You can also use hist to make a histogram in which you specify the number
of intervals and their locations. You do this by using the optional argument
breaks, with value a vector whose values give the interval boundary points.
The length of this vector is one plus the number of intervals you want. For
example, to specify 12 intervals for the corn.rain histogram, with interval
boundaries at the integers 6 through 18, use

> hist(corn.rain,breaks=6:18)

Many other options are available with hist, including many of the
arguments to barplot. See the help files for hist and barplot for complete
details.

Density Plots A histogram for continuous numeric data is a rough estimate of a smooth
underlying (population) density curve, which gives the relative frequency
with which the data fall in different intervals. This underlying density curve,
formally called a probability density function, allows you to compute the
probability that your data fall in any interval. Thus, you may prefer a smooth

Figure 6.15: Histogram of corn.rain with specified break points.

6 8 10 12 14 16 18

0
2

4
6

8

corn.rain
149

CHAPTER 6 TRADITIONAL GRAPHICS
estimate of this density to a rough histogram estimate. To get such a smooth
density estimate in S-PLUS, use plot with the function density. The
optional argument width controls the smoothness of the plot. For example:

> plot(density(car.gals),type="l")

> plot(density(car.gals,width=2.4),type="l")

The default value for width results in a somewhat rough density estimate in
the tail, whereas the choice width=2.4 produces a smoother density
estimate. The value 2.4 in the second plot is obtained by applying the choice
width=2*iqd to the car.gals data, where iqd is the interquartile distance.
You can obtain the IQD from summary by subtracting the value 1st Qu.
from the value 3rd Qu.:

> summary(car.gals)

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.80 12.30 13.00 12.72 13.50 25.70

Here, IQD=13.50 - 12.30 = 1.20.

A width of twice the interquartile distance generally gives a smooth plot but
may obscure local details of the density. On the other hand, rougher density
estimates may highlight random effects. See Silverman (1986) for a
discussion of the issues involved in choosing a width parameter.

Quantile-

Quantile Plots

A quantile-quantile plot, or qqplot, is a plot of one set of quantiles against
another set of quantiles. There are two main forms of qqplots. The most
frequently used form checks whether a data set comes from a particular
hypothesized distribution shape. In this case, one set of quantiles consists of
the ordered set of data values (which are in fact quantiles for the empirical

Figure 6.16: Probability density plots.

density(car.gals)$x

de
ns

ity
(c

ar
.g

al
s)

$y

5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

density(car.gals, width = 2.4)$x

de
ns

ity
(c

ar
.g

al
s,

 w
id

th
 =

 2
.4

)$
y

5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

150

VISUALIZING THE DISTRIBUTION OF YOUR DATA
distribution for the data) and the other set of quantiles consists of quantiles
for your hypothesized distribution. If the points in this plot cluster along a
straight line, the data set probably has the hypothesized distribution. The
second form of qqplot is used when you want to find out whether two data
sets have the same distribution shape. If the points in this plot cluster along a
straight line, the two data sets probably have the same distibution shape.

QQplots for

Checking

Distribution

Shape

To produce the first type of qqplot when your hypothesized distribution is
normal, use the function qqnorm:

> qqnorm(car.gals)

> qqline(car.gals)

The qqline function gives the highly robust straight line fit, which is not
much influenced by outliers. You can also make qqplots to check whether or
not your data come from any of a number of other distributions. To do so,
you need to create a simple S-PLUS function for each distribution, which we
illustrate for the case of a hypothesized uniform distribution. Create the
function qqunif as follows:

Figure 6.17: A qqnorm plot.

-2 -1 0 1 2

10
15

20
25

Quantiles of Standard Normal

ca
r.

ga
ls
151

CHAPTER 6 TRADITIONAL GRAPHICS
> qqunif <- function(x){ plot(qunif(ppoints(x)),sort(x)) }

The function qunif computes quantiles for the uniform distribution at
probabilitiy values pi=(i-.5)n computed by ppoints and sort orders the
data x.

> qqunif(car.gals)

Now you can create a qqplot for other hypothesized distributions by
replacing qunif by one of the functions from Table 6.2.

Table 6.2: Distributions for qqplots.

Function Distribution Required Arguments Optional Arguments Defaults

qbeta beta shape1,shape2 none

qcauchy Cauchy none location,scale 0,1

qchisq chi-square df none

qexp exponential none rate 1

qf F df1,df2 none

qgamma Gamma shape none

qlnorm log-normal none mean,sd 0,1

qnorm normal none mean,sd 0,1

qt Student�s t df none

qunif uniform none min,max 0,1
152

VISUALIZING THE DISTRIBUTION OF YOUR DATA
QQplots for

Comparing Two

Sets of Data

When you want to check whether two sets of data have the same distribution,
use the function qqplot. If the two data sets have the same number of
observations, qqplot plots the ordered data values of one data set versus the
ordered data values of the other data set. If the two data sets have different
numbers of observations, then the ordered data values for one data set are
plotted against interpolates of the ordered data values of the other data set.

For example, to compare the distributions of the two New Jersey lottery data
sets lottery.payoff and lottery3.payoff, use the following expression:

> qqplot(lottery.payoff,lottery3.payoff)

Note

For functions requiring a parameter argument, you must allow your qqplot function to pass the required
argument. For example, you create qqchisq as follows:

> qqchisq <- function(x,df) { plot(qchisq(ppoints(x),df),sort(x)) }
153

CHAPTER 6 TRADITIONAL GRAPHICS
VISUALIZING HIGHER DIMENSIONAL DATA

For data with three or more variables, many methods of graphical
visualization have been developed. Some of these are highly interactive and
take full advantage of the power of personal computers. The following
sections describe how to use S-PLUS functions in analyzing multi-
dimensional data.

Multivariate

Data Plots

This section describes several methods for static data visualization that are
widely considered useful: scatterplot matrices, matplots, star plots, and
Chernoff�s faces.

Scatterplot

Matrices

A scatterplot matrix is an array of pairwise scatter plots showing the
relationship between any pair of variables in a multivariate data set. To
produce a static scatterplot matrix in S-PLUS, you use the pairs function
with an appropriate data object as its argument.

For example, the following S-PLUS expression generates a scatterplot matrix:

> pairs(longley.x)

Figure 6.18: A scatterplot matrix.

GNP deflator

250 350 450 550

•
•• •

• • •• • •
••

• •• •

•
• ••

••• •••
• ••• ••

150 250 350

•
• ••

• •••••
••••

• •

•
• • •

• • • • • •
• • • • • •

1950 1955 1960

90
11

0

•
• • •

• • • • • •
• • • • • •

25
0

40
0

55
0

• •••
• •••

• • • •
•••

•

GNP

•• ••
••• •••

• •
••

•
•

•• ••
• •••••••

••
•

•

•• • •
• • • • • • • •

• • •
•

• • • •
• • • • • • • •

• • •
•

• •

•
•

• ••

•
• • •

•

••

•

•

• •

•
•

• • •

•
• • •

•

• •

•

•
Unemployed

••

•
•

• ••

•
•••

•

••

•

•

••

•
•

• • •

•
• • •

•

• •

•

•

20
0

35
0

• •

•
•

• • •

•
• • •

•

• •

•

•

15
0

25
0

35
0

• •••

•
•••

• • • • •••
•

• •• •

•
• ••

• • •• • ••
•

•• ••

•
•• •

••• ••• •
•

Armed Forces
••• •

•
• • •

• • • • • • •
•

• • • •

•
• • •

• • • • • • •
•

• •••
• ••

••
• • • ••

••

• •• • • • •• • • ••
• •

• •

•• •••••
•••

• •••
••

•• •• • ••
••••

••
•
• •

Population

11
0

12
0

13
0

• • • • • • • • • • • • • •
• •

90 100 110

19
50

19
60

• ••
• • ••

••
• • • •••

•

• ••
• • • ••

• • ••
• •• •

200 300 400

••
•••••

•••
• •••

••

•• ••
• ••

••••
••

••
•

110 120 130

••
• • • • • • • • • • • • • •

Year
154

VISUALIZING HIGHER DIMENSIONAL DATA
Plotting Matrix

Data

For visualizing several vector data objects at once or for visualizing some
kinds of multivariate data, you can use the function matplot to plot columns
of one matrix against columns of another.

For example, S-PLUS has a built-in multivariate data set, iris. The iris
data set is in the form of a data array, which is a generalized matrix. Let�s
extract two particular 50 x 3 matrices from the iris array:

> pet.length <- iris[,3,]

> pet.width <- iris[,4,]

The matrix pet.length contains 50 observations (the rows) of petal lengths
for each of three species of iris (the columns): Setosa, Versicolor, and
Virginica. The matrix pet.width contains 50 observations of petal widths
for each of the same three species.

To graphically explore the relationship between petal lengths and petal
widths, use matplot to display widths versus lengths simultaneously on a
single plot:

> matplot(pet.length,pet.width)

Figure 6.19: Simultaneous plots of petal heights versus widths for three species of iris.

1 2 3 4 5 6 7

0.
5

1
1.

5
2

2.
5

111 11

1

1

11

1

1 1

11

1

11

1 11

1

1

1

1

11

1

11 11

1

1

1 11 1

1

1 1

11

1

1

1

1

11 11

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

222

2

2

2

2

2

2

2 2

2

2

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

33 3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

155

CHAPTER 6 TRADITIONAL GRAPHICS
If the matrices x and y you are plotting with matplot do not have the same
number of columns, then the columns of the smaller matrix are cycled so that
every colulmn in the larger matrix is plotted. Thus, if x is a vector, i.e., a
matrix with a single column, then matplot(x,y) plots every column of the
matrix y against the vector x.

Star Plots A star plot represents multivariate data as a set of stars, with each star
representing one case, or row, and each point (or radial) of a star representing
a particular variable, or column. The length of each radial is proportional to
the data value of the corresponding variable. Thus, both the size and the
shape of the stars have meaning: size reflects the overall magnitude of the
data, and shape reveals the relationships between variables. Comparing two
stars gives a quick graphical picture of similarities and differences between
two cases�similarly shaped stars indicate similar cases.

For example, to create a star plot from the data used to create our scatterplot
matrix:

> stars(longley.x)

Figure 6.20: A star plot.

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962
156

VISUALIZING HIGHER DIMENSIONAL DATA
Faces Chernoff introduced the idea of using faces to represent multivariate
observations. Each variable in a given observation is associated to one feature
of the face. Two cases can be compared using a feature-by-feature
comparison. You can create Chernoff�s faces with the S-PLUS faces
function:

> faces(t(cereal.attitude),labels=

+ dimnames(cereal.attitude)[[2]],ncol=3)

See the faces help file and Chernoff (1973) for complete details on
interpreting Chernoff faces.

Figure 6.21: A faces plot.

corn flakes

weet abix

rice krispies

shreaded wheat

sugar puffs

special k

frosties

all bran
157

CHAPTER 6 TRADITIONAL GRAPHICS
3-D PLOTS: CONTOUR, PERSPECTIVE, AND IMAGE PLOTS

Many types of data are usefully viewed as surfaces generated by functions of
two variables. Familiar examples are meteorological data, topographic data,
and other data gathered by geographical location.

S-PLUS provides three functions for viewing such data. The simplest,
contour, represents the surface as a set of contour plot lines on a grid
representing the other two variables. The perspective plot, persp, creates a
perspective plot with hidden line removal. The image function plots the
surface as a color or grayscale variation on the base grid.

All three functions require similar input�a vector of x coordinates, a vector
of y coordinates, and a length x by length y matrix of z values. In many cases,
these arguments are all supplied by a single list, such as the output of the
interp function. The interp function interpolates the value of the third
variable onto an evenly spaced grid of the first two variables. For example, the
built-in data set ozone contains the objects ozone.xy, a list of latitudes and
longitudes for each observation site, and ozone.median, a vector of the
medians of daily maxima ozone concentrations at all sites. To create a
contour or perspective plot, we can use interp to interpolate the data as
follows:

ozone.fit <- interp(ozone.xy$x,ozone.xy$y,ozone.median)

For contour and persp, but not image, you can also provide a single matrix
argument, which contour and persp interpret as the z matrix. The two
functions then automatically generate an x vector 1:nrow(z) and a y vector
1:ncol(z). See the persp and contour help files for more information.

Contour Plots To generate a contour plot, use the contour function. For example, the
built-in data set switzerland contains elevation data for Switzerland.

> contour(switzerland)
158

3-D PLOTS: CONTOUR, PERSPECTIVE, AND IMAGE PLOTS
By default, contour draws contour lines for each of five levels and labels each
one. You can change the number of levels with either the nlevels or the
levels argument. The nlevels argument specifies the approximate number
of contour intervals desired, while levels specifies a vector of heights for the
contour lines.

You control the size of the labels for the contour lines with the labex
argument. You specify the size as a relative value to the current axis-label font,
so that labex=1 (the default) yields labels which are the same size as the axis
labels. Setting labex=0 gives you unlabeled contour lines.

For example, to view a voice spectrogram for the word �five,� use contour on
the built-in data object voice.five. Because voice.five generates many
contour lines, we suppress the labels with labex=0:

> contour(voice.five,labex=0)

If you have an equal number of observations for each of three variables, you
can use interp to generate interpolated values for z on an equally-spaced xy
grid. For example, to create a contour plot of the ozone data, you can use
interp and contour as follows:

> ozone.fit <- interp(ozone.xy$x,ozone.xy$y,ozone.median)

> contour(ozone.fit)

Figure 6.22: Contour plot of Switzerland.

1:ncol(switzerland)

1:
nr

ow
(s

w
itz

er
la

nd
)

2 4 6 8 10 12

2
4

6
8

10
12

20004000

6000

6000

6000

6000

6000

6000

8000

8000

8000

8000

8000

8000

8000

8000

8000

8000
159

CHAPTER 6 TRADITIONAL GRAPHICS
Perspective

Plots

Perspective plots give a three-dimensional view of data in the form of a
matrix of heights on an evenly spaced grid. The heights are connected by line
segments to produce the familiar mesh appearance of such plots.

As a simple example, consider again the voice spectrogram for the word
�five.� The contour plot of the voice data was difficult to interpret because
the number of contour lines forced us to omit the height labels. Had we
included the labels, the clutter of labels would have made the graph
unreadable.

The perspective plot in figure 6.23 gives a much clearer view of how the
spectrogram varies. To create the plot function, use the following S-PLUS
expression:

> persp(voice.five)

You can modify the perspective by choosing a different �eye� location. You do
this with the eye argument. By default, the eye is located c(-6,-8,5) times the
range of the x, y, and z values. For example, to look at the voice data from
�the other side,� we could use the following command:

> persp(voice.five,eye=c(72000,350,30))

If you have an equal number of observations for each of three variables, you
can use interp to generate interpolated values for z on an equally-spaced xy
grid. For example, to create a perspective plot of the ozone data, you can use
interp and persp as follows:

> ozone.fit <- interp(ozone.xy$x,ozone.xy$y,ozone.median)

Figure 6.23: Perspective plot of a voice spectrogram.

2000
4000

6000
8000

10000

X
10

20

30

40

50

60

Y

 0
1

2
3

4
5

Z

160

3-D PLOTS: CONTOUR, PERSPECTIVE, AND IMAGE PLOTS
> persp(ozone.fit)

Image Plots An image plot is a two-dimensional plot that represents three-dimensional
data as shades of color or gray-scale. You produce image plots with the image
function:

> image(voice.five)

A more conventional use of image is to produce images of topological data,
as in the following example:

> image(pugetN)

The data set pugetN contains elevations in and around Puget Sound. It is not
part of the standard S-PLUS distribution.

Warning

It is not a good idea to convert a persp plot to objects; so many objects can result that the conversion takes
a considerable time.

Figure 6.24: Image of the voice spectrogram.
0 2000 4000 6000 8000 10000 12000

0
1
0

2
0

3
0

4
0

5
0

6
0

161

CHAPTER 6 TRADITIONAL GRAPHICS
If you have an equal number of observations for each of three variables, you
can use interp to generate interpolated values for z on an equally-spaced xy
grid. For example, to create an image plot of the ozone data, you can use
interp and image as follows:

> ozone.fit <- interp(ozone.xy$x,ozone.xy$y,ozone.median)

> image(ozone.fit)

Figure 6.25: Image plot of Puget Sound.

-123.0 -122.8 -122.6 -122.4 -122.2 -122.0

48
.0

48
.4

48
.8
162

CUSTOMIZING YOUR GRAPHICS
CUSTOMIZING YOUR GRAPHICS

For most exploratory data analysis, the complete graphics created by S-PLUS,
with their automatically generated axes, tick marks, and axis labels, serve your
needs well. Most of the graphics described in the previous sections were
created with one-step functions such as plot and hist. These one-step
functions are called high-level graphics functions. If you are preparing graphics
for publication or a presentation, you need more control over the graphics
that S-PLUS produces.

The following sections describe how to customize and fine-tune your S-PLUS
graphics with low-level graphics functions and graphics parameters. Low-level
graphics functions do not generate a complete graphic, but rather one
specific part of a graphic. Graphics parameters control the details of the
graphics that are produced by the graphics functions, including where the
graphics appear on the graphics device.

Many of the examples in this chapter use the following data:

> set.seed(12)

> x <- runif(12)

> y <- rnorm(12)

If you use these statements, you will be able to reproduce exactly the plots
that use x and y. We also use the following data from the built-in data set
auto.stats:

> price <- auto.stats[,"Price"]

> mileage <- auto.stats[,2]
163

CHAPTER 6 TRADITIONAL GRAPHICS
LOW-LEVEL GRAPHICS FUNCTIONS AND GRAPHICS

PARAMETERS

The section Frequently Used Plotting Options (page 126) introduced several
low-level graphics functions, including points, which adds a scatter of
points to an existing plot, and abline, which adds a specified line to an
existing plot. Low-level graphics functions, unlike high-level graphics
functions, do not automatically generate a new coordinate system. Thus, you
can use several low-level graphics functions in succession to create a single
finished graphic.

Some functions, such as image and contour, which are described in the
section 3-D Plots: Contour, Perspective, and Image Plots (page 158), can be
used as either high- or low-level graphics functions.

Graphics parameters add to the flexibility of graphics by controlling virtually
every detail of a page of graphics. There are about 60 parameters, which fall
into four classes:

� High-level graphics parameters can be used only as arguments to
high-level graphics functions. An example is xlim, which gives the
approximate limits for the x-axis.

� Layout graphics parameters can be set only with the par function.
These parameters typically affect quantities that concern the page as
a whole. The mfrow parameter is an example; this states how many
rows and how many columns of plots are placed on a single page.

� General graphics parameters may be set either in a call to a graphics
function or with the par function. When used in a graphics
function, the change is valid only for that function call. If you set a
parameter with par, the change lasts until you change it again.
Graphics parameters are initialized whenever a graphics device is
started; a change via par applies only to the current device. (You can
write your own Device.Default function to have one or more
parameters set automatically when you start a graphics device�see
the Device.Default help file.)

� Information parameters give information about the state of the
device but may not be changed directly by the user. An example is
din, the size of the current device in inches. See the par help file for
descriptions of the information parameters.
164

LOW-LEVEL GRAPHICS FUNCTIONS AND GRAPHICS PARAMETERS
The arguments to title (main, sub, xlab, and ylab), while not graphics
parameters, are quite similar to them. They are accepted as arguments by
several graphics functions as well as the title function.

Table 6.10 (on page 197) summarizes the S-PLUS graphics parameters.

Warning

Some graphics functions do not recognize certain high-level or general graphics parameters. The help files
for these functions describe which graphics parameters the functions will accept.
165

CHAPTER 6 TRADITIONAL GRAPHICS
SETTING AND VIEWING GRAPHICS PARAMETERS

There are two ways to set graphics parameters:

 1. Use the name=value form either within a graphics function call or
with the par function. For example:

> par(mfrow=c(2,1),cex=.5)

> plot(x,y,pch=17)

> plot(price,mileage,log="y")

Note that you can set several graphics parameters simultaneously in a
single call to par.

 2. Supply a list to the par function. The names of the list components
are the names of the graphics parameters you want to set. For
example,

> my.list <- list(mfrow=c(2,1),cex=.5)

> par(my.list)

When you change graphics parameters with par, it returns a list containing
the original values of the graphics parameters that you changed. This list will
not print out on your screen; you must assign the result of calling par to a
variable name if you want to see it:

> par.orig <- par(mfrow=c(2,1),cex=.5)

> par.orig

$mfrow:

[1] 1 1

$cex:

[1] 1

You can use this list returned by par to restore parameters after you have
changed them:

> par.orig <- par(mfrow=c(2,1),cex=.5)

> # Now make some plots

> par(par.orig)
166

SETTING AND VIEWING GRAPHICS PARAMETERS
When setting multiple parameters with par, check for possible interactions
between parameters. Such interactions are indicated in Table 6.3 and in the
par help file. In a single call to par, general graphics parameters are set first,
then layout graphics parameters. If a layout graphics parameter affects the
value of a general graphics parameter, what you specify for the general
graphics parameter may get overridden. For example, changing mfrow
automatically resets cex (see the section Controlling Multiple Plots (page
185)). If you type

> par(mfrow=c(2,1),cex=.75)

S-PLUS will first set cex=.75 (because cex is a general graphics parameter),
then set mfrow=c(2,1) (because mfrow is a layout graphics parameter), but
setting mfrow=c(2,1) automatically sets cex back to 1. To set both mfrow
and cex, you need to call par twice:

> par(mfrow=c(2,1))

> par(cex=.75)

You can also use the par function to view the current setting of any or all
graphics parameters. To view the current values of parameters, give par a
vector of character strings of the names of the parameters:

> par("usr")

or

> par(c("mfrow","cex"))

To get a list of all of the parameters, call par with no arguments:

> par()

During an extended S-PLUS session, you may make repeated calls to par to
change graphics parameters. Sometimes, you may forget what you have
changed and may just want to restore the device to its original defaults. It is

Table 6.3: Interaction between graphics parameters.

Parameters Interaction

cex, mex, mfrow,
mfcol

If mfrow or mfcol specify a layout with more than two rows or columns, cex
and mex are set to 0.5; otherwise, cex and mex are both set to 1.

crt, srt When srt is set, crt is set to the same value unless crt appears later in the
command than srt.
167

CHAPTER 6 TRADITIONAL GRAPHICS
often a good idea to save the original values of the graphics parameters as
soon as you start a device. You can then call par to restore the device to its
original state:

> par.orig.wg <- par()

> par(mfrow=c(3,1),col=4,lty=2)

> # create some plots

> # several more calls to par

> par(par.orig.wg)

Separate sets of graphics parameters are maintained for each active graphics
device. When you change graphics parameters with the par function, you are
changing their value only for the current graphics device. For example, if you
have both a graphsheet and a postscript graphics device active, and the
postscript device is the current device, than calling par to change graphics
parameters will affect only the graphics parameters for the postscript device:

> motif()

> postscript()

> dev.list()

 motif postscript

 2 3

> dev.cur()

postscript

 3

> par(mfrow=c(2,2))

Warning

When a device is first started, before any plots are produced, the graphics parameter new is set equal to T. In
this case, a call to a high-level graphics function will not clear the device before putting up a new plot (see
the section Overlaying Figures (page 188)). Thus, if you follow the above commands to restore all graphics
parameters to their original state, you need to call frame before issuing the next plotting command.
168

SETTING AND VIEWING GRAPHICS PARAMETERS
> par("mfrow")

[1] 2 2

> dev.set()

 motif

 2

> par("mfrow")

[1] 1 1
169

CHAPTER 6 TRADITIONAL GRAPHICS
CONTROLLING GRAPHICS REGIONS

The location and size of a figure are determined by parameters that control
graphics regions. The surface of any graphics device can be divided into two
regions: the outer margin and the figure region. The figure region contains one
or more figures, each of which is composed of a plot area (or region)
surrounded by a margin. By default, a device is initialized with one figure and
the outer margin has zero area; that is, typically there is just a plot area
surrounded by a margin.

The plot area is where the data is shown. In the typical plot, the axis line is
drawn on the boundary between the plot area and the margin. Each margin,
whether the outer margin or a figure margin, is divided into four parts, as
shown in figure 6.26: bottom (side 1), left (side 2), top (side 3), and right
(side 4).

You can change the size of any of the regions. Changing one area causes
S-PLUS to automatically resize the regions within and surrounding the one
that you have changed. For example, when you specify the size of a figure, the
margin size is subtracted from the figure size to obtain the size of the plot
area�S-PLUS does not allow a figure with a margin that takes more room
than the figure.

Most often, you change the size of regions with the mfrow or mfcol layout
parameters�when you specify the number of rows and columns, S-PLUS
automatically determines the appropriate figure size. To control region size
explicitly, work your way inward by specifying first the outer margins and
then the figure margins.

Figure 6.26: The four sides of a margin.

Margin 1

M
ar

gi
n

2

Margin 3

M
ar

gi
n

4

170

CONTROLLING GRAPHICS REGIONS
Controlling the

Outer Margin

You usually specify an outer margin only when creating multiple figures per
page. You can use the outer margin to hold a title for an entire page of plots
or to label different pages consistently when some pages have multiple plots
and others have a single plot.

You must specify a size for the outer margin if you want one�the default size
is 0. To specify the size of the outer margin, use any one of three equivalent
layout parameters: oma, omi, or omd.

The most useful of these is oma, specified as a numeric vector of length four
(one element for each side), where the values are expressed in mex (the size of
the font for one line of text in the margins). If you specify the outer margin
with oma, the specified values correspond to the number of lines of text that
will fit in each margin. For example, to leave room for a title at the top of a
page of plots, we could set the outer margin as follows:

> par(oma=c(0,0,5,0))

You can then use mtext as follows to add a title, to obtain figure 6.27:

> mtext("A Title in the Outer Margin",side=3,outer=T,

+ cex=1.5)

> box()

Setting the parameter oma automatically changes both omi (the outer margin
in inches) and omd (the outer margin as a fraction of the device surface). See
the par help file for more information on omi and omd.

Figure 6.27: A plot with an outer margin.

A Title in the Outer Margin
171

CHAPTER 6 TRADITIONAL GRAPHICS
Controlling

Figure Margins

To specify the size of the figure margins, use one of two equivalent graphics
layout parameters: mar or mai. The mar parameter, specified as a numeric
vector of length four with values expressed in mex, is generally the more
useful of the two because it can be used to specify relative margin sizes. The
mai parameter measures the size of each side of the margin in inches and is
thus useful for specifying absolute margin sizes. If, for example, mex is 1 (the
default) and mar equals c(5,5,5,5), there is room for five lines of default-
font text (cex=1) in each margin. If mex is 2 and mar is c(5,5,5,5), there is
room for 10 lines of default-font text in each margin.

The mex parameter specifies the size of font that is to be used to measure the
margins. When you change mex, S-PLUS automatically resets some margin
parameters to decrease the size of the figure margins to correspond to smaller
text without changing the size of the outer margin. Table 6.4 shows the
effects on the various margin parameters of a change in mex from 1 to 2.

Warning

If you set oma to something other than the default value c(0,0,0,0) and then later reset all of the
graphics parameters in a call to par (e.g., par(orig.par)), you will see the warning message:

Warning messages:

 Graphics error: Figure specified in inches too large (in zzfigz) in:...

This message can be safely ignored.

Table 6.4: Effect of changing mex.

Parameter mex=1 mex=2

mar 5.1 4.1 4.1 2.1 5.1 4.1 4.1 2.1

mai 0.714 0.574 0.574 0.294 1.428 1.148 1.148 0.588

oma 0 0 5 0 0.0 0.0 2.5 0.0

omi 0.000 0.000 0.699 0.000 0.000 0.000 0.699 0.000
172

CONTROLLING GRAPHICS REGIONS
From the table, we see that an increase in mex leaves mar and omi unchanged,
while mai is increased and oma is decreased. When you shrink margins with
mar, be sure to check the mgp parameter, which determines where axis and
tick labels are placed; if the margins don�t provide room for those labels, the
labels are not printed and you receive a warning from S-PLUS.

Controlling the

Plot Area

To determine the shape of the plot, use the pty layout graphics parameter
(�plot type"). The pty parameter has two possible values: "m" for maximal
and "s" for square. By default, plots fill the entire space allowed for the plot
(pty="m"). Another way to control the shape of a plot is with pin, which
gives the width and height of the plot in inches.
173

CHAPTER 6 TRADITIONAL GRAPHICS
CONTROLLING TEXT IN GRAPHICS

The section Interactively Adding Information to Your Plot (page 137)
described how to add text and legends to existing plots. This section describes
how to control the size of text and plotting symbols, the placement of text
within the plot area, and the width of lines in the plot area.

Controlling

Text and

Symbol Size

The size of text and most plotting symbols is controlled by the general
graphics parameter cex (character expansion). The expansion refers to
expansion with respect to the graphics device�s default font. By default, cex is
set to 1, so graphics text and symbols appear in the default font size. When
cex=2, text appears at twice the default font size. Some devices, however,
have only a few fonts available, so that all values of cex in a certain range
produce the same font. See the chapter Customizing Your S-PLUS Session
for information on how to control available fonts on your display device.

Many graphics functions and parameters use or modify cex. For example,
main titles are written with a cex of 1.5 times the current cex. The mfrow
parameter sets cex to 1 for a small number of plots (fewer than three per row
or column) but sets it to 0.5 for a larger number of plots.

The cex parameter controls the size of plotting symbols. Plotting symbols of
various sizes can be shown on a single figure, as shown in figure 6.28, which
shows how symbols of different sizes can be used to highlight groups of data.
Figure 6.28 is produced with the following expressions:

> plot(x,y)

> points(x[x-y>2*median(x-y)],y[x-y>2*median(x-y)],cex=2)

> points(x[x-y<median(x-y)],y[x-y<median(x-y)],

+ pch=18,cex=2)
174

CONTROLLING TEXT IN GRAPHICS
A parameter equivalent to cex is csi, which gives the height (interline space)
of text with the current cex measured in inches. Changing either cex or csi
changes the other. The csi parameter is useful when creating the same
graphics on different devices since the absolute size of graphics is device
dependent.

Controlling

Text

Placement

When you add text to the plot area, you specify its coordinates in terms of the
plotted data�in essence, S-PLUS treats the added text as a data point. If axes
have been drawn and labeled, you can read the coordinates off the plot. If
not, you can obtain the desired coordinates by interpolating from the values
in the layout parameter usr. For example, figure 6.28 has an x-axis with
values from 0 to 1 and a y-axis with values running from approximately -2.5
to 1. To add the text �Different size symbols", we could specify any point
within the grid determined by these x and y limits, as follows:

> text(.4,.7,"Different size symbols")

By default, the text is centered at the specified point. However, you can left-
or right-justify the text at the specified point by using the general parameter
adj. The adj parameter determines the fraction of the text string that
appears to the left of the specified xy-coordinate. The default is 0.5. Set
adj=0 to left-justify, adj=1 to right-justify.

Figure 6.28: Symbols of different sizes.

•
•

•

•

•

•

•

•

•

•

•

•

x

y

0.2 0.4 0.6 0.8
-2

-1
0

1

•

•

175

CHAPTER 6 TRADITIONAL GRAPHICS
If no axes have been drawn and you can�t determine the coordinates by
looking at your graphic, you can obtain the desired coordinates by
interpolating from the values in the layout parameter usr. The usr
parameter gives the minimum and maximum of the x and y coordinates.

Controlling

Text

Orientation

Two graphics parameters, crt (character rotation) and srt (string rotation),
control the orientation of text in the plot region and the figure and outer
margins. Figure 6.29 shows the result of typing the following commands after
starting a postscript device:

> plot(1:10,type="n")

> text(2,2,"srt=0,crt=0",srt=0,crt=0)

> text(4,4,"srt=0,crt=90",srt=0,crt=90)

> text(6,6,"srt=90,crt=0",srt=90,crt=0)

> text(8,8,"srt=90,crt=90",srt=90,crt=90)

The postscript device is the only graphics device that uses both the crt and
srt graphics parameters. All other graphics devices ignore crt, so you can
rotate only the whole string with srt.

Figure 6.29: Character and string rotation.

Index

1:
10

2 4 6 8 10

2
4

6
8

10

srt=0, crt=0

s r t = 0 , c r t = 9 0

s
r
t
=
9
0
,

c
r
t
=
0

sr
t=

90
, c

rt
=

90
176

CONTROLLING TEXT IN GRAPHICS
Controlling

Line Width

The width of lines, both within a plot and in the axes, is controlled by the
general graphics parameter lwd. The default value of lwd is 1�larger
numbers produce wider lines, while smaller numbers produce narrower lines.
Some graphics devices can produce only one width.

Plotting

Symbols in

Margin

Generally, plotting symbols are �clipped" so that the symbols don�t appear in
the margin. You can allow plotting in the margin by setting xpd to TRUE (the
allowable plotting area is expanded).

Warning

If you use both crt and srt in a plotting command while running the postscript device, you must supply
crt after srt; otherwise, it will be ignored.
177

CHAPTER 6 TRADITIONAL GRAPHICS
TEXT IN FIGURE MARGINS

To add text in margins, use the mtext marginal text function. You specify
which of the four margins with the side argument, which is a number from
1 to 4 (the default is 3). The line argument to mtext gives the distance in
mex between the text and the plot. You may specify non-integer values for
line in mtext. For example, figure 6.30 shows the placement of the
following marginal text:

> par(mar=c(5,5,5,5)+.1)

> plot(x,y,type="n",axes=F,xlab="",ylab="")

> box()

> mtext("Some text",line=0)

> mtext("Some more text",side=2,cex=1,line=2)

> mtext("Still more text",side=4,cex=.5,line=3)

Text is not placed in the margin if there is not room for it; this usually
happens only when the margin sizes or cex have been reset, or with long axis
labels. For example, suppose mex=1 (the default), and you reset the figure
margins with mar=c(1,1,1,1) to allow precisely one line of text in each
margin. If you try to write text with cex=2, it will not fit, because the text is
twice as high as the specified margin line.

Figure 6.30: Placing text in margins.

Some text

S
om

e
m

or
e

te
xt

S
til

lm
or

e
te

xt
178

TEXT IN FIGURE MARGINS
To specify the position of the text along the margin, you can use the at
argument with the mtext command argument. The value of the at
argument is in units of the x or y coordinates, depending on whether you are
placing text on the top or bottom margin (sides 1 and 3), or the left or right
margin (sides 2 and 4). As described in section Controlling Text Placement
(page 175), if you can�t determine the appropriate value of the at argument,
you can look at the usr coordinates graphics parameter. For example, the
following command puts text in the lower left-hand corner of the figure
margin of figure 6.30:

> par("usr")

[1] 0.1758803 0.9420847 -2.2629721 1.5655365

> mtext("A comment",line=3,side=1,at=.3)

By default, mtext centers text along the margin or, if the at argument is
supplied, at the at coordinate. You can also use the adj parameter to place
text along the margin. The default setting is adj=0.5 (centered text). Set
adj=0 to set the text flush with the left side of the margin or at coordinate,
adj=1 to set the text flush right. Values between 0 and 1 set the text with the
specified fraction of white space placed before the text, the remaining white
space placed after the text.

By default, mtext rotates text to be parallel to the axis. To control the
orientation of text in the margins, use the srt argument along with the at
argument. For example, the following command displays upside-down text
in the top figure margin:

> mtext("Title with srt=180",line=2,at=.5,srt=180)

Note

The adj parameter is generally more useful than usr coordinates when writing in the outer margin of
multiple figures because the usr coordinates are the coordinates from the most recent plot created in the
figure region.

Warning

If you supply mtext with the srt argument, you must supply the at argument; otherwise, srt will be
ignored.
179

CHAPTER 6 TRADITIONAL GRAPHICS
CONTROLLING AXES

The high-level graphics commands, described in the section Getting Started
with Simple Plots (page 122), create complete graphics, including labeled
axes. Often, however, you need to create graphics with axes different from
those provided by S-PLUS. You may need to specify a different choice of axes,
or different tick marks, or different plotting characteristics. This section
describes how to control these characteristics.

Enabling and

Disabling Axes

Whether axes appear on a plot is determined by the high-level graphics
parameter axes, which takes a logical value. If axes=FALSE, no axes are
drawn on the plot. If axes are not drawn on the original plot, they can be
added afterward with one or more calls to the axis function.

You can use plot with axes=F together with the axis function to create
plots of mathematical functions on a standard Cartesian coordinate system.
For example, you can define the following simple function to plot a set of
points from the domain of a function against the set�s image on a Cartesian
grid:

> mathplot <- function(domain,image) {

+ plot(domain,image,type="l",axes=F)

+ axis(1,pos=0)

+ axis(2,pos=0) }

Controlling

Tick Marks and

Axis Labels

To control the length of tick marks, use the tck general parameter. This
parameter is a single number which is interpreted as a fraction of a plot
dimension. If tck is less than one-half, the tick marks on each axis have the
same length; this length is the fraction tck of the smaller of the width and
height of the plot area. Otherwise, the length of the tick marks on each axis
are a fraction of the corresponding plot dimension. Use tck=1 to draw grid
lines. The default is tck=-.02, meaning tick marks of equal length on each
axis are drawn pointing out from the plot. Try the following expressions:

> par(mfrow=c(2,2))

> plot(x,y,main="tck = -.02")

> plot(x,y,main="tck = .05",tck=.05)

> plot(x,y,main="tck = 1",tck=1)
180

CONTROLLING AXES
You can have tick marks of different lengths on each axis. The following code
draws a plot with no axes, then adds each axis individually with different
values of tck (and lty, the line type):

> plot(x,y,axes=F,main="Different tick marks")

> axis(1)

> axis(2,tck=1,lty=2)

> box()

To control the number of tick marks on an axis, you can set the lab
parameter. The lab parameter is an integer vector of length three that gives
the approximate number of tick marks on the x-axis, the approximate
number of tick marks on the y-axis, and the number of characters for tick
labels. (The number is only approximate because S-PLUS tries to use round
numbers for tick labels.) It may take some experimentation with lab to get
just the axis that you want.

To control the format of tick labels in exponential notation, use the exp
graphics parameter, as follows:

Uses of the lab and exp parameters are illustrated with the following code:

> par(mfrow=c(2,2))

> plot(price,mileage,main="lab = c(5,5,7)")

> plot(price,mileage,lab=c(10,3,7),

+ main="lab = c(10,3,7)")

> plot(price,mileage,lab=c(5,5,4),

+ main="lab = c(5,5,4), exp = 0")

Table 6.5: Controlling the format of tick labels.

Setting Effect

exp=0 Exponential tick labels are printed on two lines, so that 1e6 is printed with the
�1� on one line and the �e6� on the next.

exp=1 Exponential tick labels are printed on a single line, in the form 1e6.

exp=2 (Default value.) Exponential tick labels are printed on a single line, in the form
10^6.
181

CHAPTER 6 TRADITIONAL GRAPHICS
> plot(price,mileage,lab=c(5,5,4),exp=1,

+ main="lab = c(5,5,4), exp = 1")

To control the orientation of the axis labels, use the las graphics parameter.
You can choose between labels that are written parallel to the axes (the
default, las=0), horizontally (las=1), or perpendicular to the axes (las=2).

Try the following commands:

> par(mfrow=c(2,2))

> plot(x,y,las=0,main="Parallel, las = 0")

> plot(x,y,las=1,main="Horizontal, las = 1")

> plot(x,y,las=2,main="Perpendicular, las=2")

> plot(x,y,axes=F,main="Customized")

> axis(2)

> axis(1,at=c(.2,.4,.6,.8),labels=c("2/10","4/10","6/10",

+ "8/10"))

> box()

The command box ensures that a complete rectangle is drawn around the
plotted points (see the section Controlling Axis Boxes (page 184)). The xaxt
and yaxt parameters also control axis plotting. If one of these parameters is
equal to "n", the tick marks for the corresponding axis are not drawn. For
example, you could also create the last panel produced by the code above
with the following commands:

> plot(x,y,xaxt="n")

> axis(1,at=c(.2,.4,.6,.8),labels=c("2/10","4/10","6/10",

+ "8/10"))

To set the distance from the plot to the axis title, use the mgp general
parameter. The parameter mgp is a numeric vector with three elements in
units of mex: the first element gives the location of the axis title, the second
the location of the tick labels, and the third the location of the axis line. The
default value is c(3, 1, 0). You can use mgp to control how much space the
axes consume.

For example, if you have small margins, you might create a plot with:

> plot(x,y,tck=.02,mgp=c(2,.1, 0))
182

CONTROLLING AXES
which draws the tick marks inside the plot and brings the labels closer to the
axis line.

Controlling

Axis Style

The xaxs and yaxs parameters determine the style of the axes. The available
styles are as follows:

Axis styles can be illustrated with the following expressions:

> par(mfrow=c(2,2))

> plot(x,y,main="Rational axes")

> plot(x,y,xaxs="i",yaxs="i",main="Internal axes")

Table 6.6: Axis styles.

Setting Style

"r" The default axis style; this extends the range of the data by 4% and then labels
internally. An internally labeled axis has labels that are inside the range of the
data.

"i" Labels internally without expanding the range. Thus, there will be at least one
datapoint on each boundary of an "i" style axis (if xlim and ylim are not
used).

"e" Extended axes label externally (that is, a �pretty" value beyond the range of the
data is included) and expand the range by half a character, if necessary, so that
no point is precisely on a boundary.

"s" Standard axes are similar to extended axes but do not expand the range. A plot
with standard axes will be exactly the same as a plot with extended axes for
some data sets, but for other data sets the extended axes will contain a slightly
wider range.

"d" Direct axis retains the axis from the previous plot. For example, you can make
several plots that have precisely the same x-axis or y-axis by giving xaxs="d"
or yaxs="d" as an argument to the second and subsequent plot commands.
(You can also set it with par, but then you need to remember to release the axis
afterwards.)
183

CHAPTER 6 TRADITIONAL GRAPHICS
> plot(x,y,xaxs="e",yaxs="e",main="Extended axes")

> plot(x,y,xaxs="s",yaxs="s",main="Standard axes")

Controlling

Axis Boxes

You control boxes around the plot area using the bty (�box type�) parameter,
which specifies the type of box to be drawn around a plot. The available types
are as follows:

The box function draws a box of given thickness around the plot area. The
shape of the box is determined by the bty parameter. You use box to draw
full boxes on plots with customized axes, for example:

> par(mfrow=c(2,2))

> plot(x,y,main=�bty = "o"�)

> plot(x,y,bty="l",main=�bty = "l"�)

> plot(x,y,bty="n",main=�bty = "n"�)

> plot(x,y,main="heavy box")

> box(20)

Table 6.7: Specifying the type of box around a plot, using the bty paramter.

Setting Effect

"n" No box is drawn around the plot, although the x and y axes are
still drawn.

"o" The default box type; draws a four-sided box around the plot.
(The box resembles an uppercase �O,� hence the option
name.)

"c" Draws a three-sided box around the plot in the shape of an
uppercase �C.�

"l" Draws a two-sided box around the plot in the shape of an
uppercase �L.�

"7" Draws a two-sided box around the plot in the shape of a square
numeral �7.�
184

CONTROLLING MULTIPLE PLOTS
CONTROLLING MULTIPLE PLOTS

Multiple figures can be created using par and mfrow. For example, to set a
three row by two column layout:

> par(mfrow=c(3,2))

In this section, we describe controlling multiple plots in more detail.

When you specify mfrow or mfcol, S-PLUS automatically changes several
other parameters, as follows:

To override mfrow�s choice of mex and cex, you must issue separate calls to
par:

> par(mfrow=c(2,2))

> par(mex=.6,cex=.6)

The mfrow and mfcol layout parameters automatically create multiple figure
layouts in which all figures are the same size. You can create multiple figure
plots in which the figures are different sizes by using the fig layout graphics
parameter. The fig parameter gives the coordinates of the corners of the
current figure as fractions of the device surface. An example is given in figure
6.31, in which the first plot uses the top third of the device, the second plot
uses the left half of the bottom two thirds of the device, and the last plot uses
the right half of the bottom two thirds. The example begins with the frame
function, which tells the graphics device to begin a new figure. You use
frame frequently when creating graphics from low-level graphics functions:

> frame()

Table 6.8: Changes induced by specifying mfrow or mfcol.

Paramter Effects

fty Set to "c" by mfcol and to "r" by mfrow. (This is how
S-PLUS knows to go along rows or columns.)

mfg Contains the row and column of the current figure and the
number of rows and columns in the current array of figures.

cex and
mex

If either the number of rows or the number of columns is
greater than 2, then both cex and mex are set to 0.5.
185

CHAPTER 6 TRADITIONAL GRAPHICS
> par(fig=c(0,1,.66,1),mar=c(5,4,2,2)+.1)

> plot(x)

> par(fig=c(0,.5,0,.66))

> plot(x,y)

> par(fig=c(.5,1,0,.66))

> plot(y,yaxs="d")

> par(fig=c(0,1,0,1))

Once you create one figure with fig, you must use it to specify the layout of
the entire page of plots. When you complete your custom plot, reset fig to
c(0,1,0,1).

An easy way to use fig with a display device is through the functions
split.screen and prompt.screen. These functions used together let you
specify the figure regions interactively with your mouse. When you type:

Figure 6.31: Controlling the layout of multiple plots on one page.

Index

x

0 50 100 150 200

0
5

10
15

20

x

y

0 5 10 15 20

-0
.5

0.
0

0.
5

1.
0

Index

y

0 50 100 150 200

-0
.5

0.
0

0.
5

1.
0

186

CONTROLLING MULTIPLE PLOTS
> split.screen(prompt.screen())

S-PLUS responds with:

Click at 2 opposite corners

Now move your mouse cursor into your graphics window and click at two
opposite corners. After you do this, the region you indicated will be colored
in and labeled with the number 1. This is the first screen. In the command
window, S-PLUS responds again with:

Click at 2 opposite corners

Repeat this action until you have created all the screens you want, then click
on the right mouse button. Once you have divided up the graphics device
into separate screens, use the screen function to move between screens. See
the help file for split.screen for more information on using these
functions.

Warning

If you want to issue a high-level plotting command in a screen that already has a plot in it, but you don�t
want the plots in the other screens to disappear, use the erase.screen function before calling the high-
level plotting command.
187

CHAPTER 6 TRADITIONAL GRAPHICS
OVERLAYING FIGURES

It is often desirable to include more than one data set in the same plot.
Simple additions can be made with the lines and points functions. The
matplot function plots a number of columns of data at once. These all
assume, however, that the data are all on the same scale.

There are three general ways to overlay figures in S-PLUS:

 1. Call a high-level plotting function, then call one of the high-level
plotting functions that can be used as a low-level plotting function
by specifying the argument add=T.

 2. Call a high-level plotting function, set the graphics parameter new=T,
then call another high-level plotting function.

 3. Use the subplot function.

We discuss each of these methods below.

High-Level

Functions That

Can Act as

Low-Level

Functions

There are currently four plotting functions that can act as either high-level or
low-level plotting functions: usa, symbols, image, and contour. By default,
these functions act like high-level plotting functions; to make them act like
low-level plotting functions, set the argument add=T. For example, you can
put up a map of the northeastern U.S. with a call to usa, then overlay a
contour plot of ozone concentrations with a call to contour by setting
add=T:

> usa(xlim=range(ozone.xy$x),ylim=range(ozone.xy$y),lty=2,

+ col=2)

> contour(interp(ozone.xy$x,ozone.xy$y,ozone.median),

+ add=T)

> title("Median Ozone Concentrations in the North East")

Overlaying

Figures by

Setting

new=TRUE

Another way to overlay figures is to reset the new graphics parameter.
Whenever a graphics device is initialized, the graphics parameter new is set to
TRUE, meaning that this is a new graphics device, so it is assumed there are
currently no plots on it. In this case, a call to a high-level plotting function
will not erase the canvas before putting up a plot. As soon as a high-level
188

OVERLAYING FIGURES
graphics function is called, new is set to FALSE. In this case, high-level
graphics functions such as plot move to the next figure (or erase the current
figure if there is only one) in order to avoid overwriting a plot.

You can take advantage of the new graphics parameter to call two high-level
plotting functions in succession without having the first plot disappear. The
code below produces an example of a plot with the same x-axis but different
y-axes. We first set mar so that there is room for a labeled axis on both the left
and the right, then produce the first plot and the legend:

> par(mar=c(5,4,4,5)+.1)

> plot(hstart,ylab="Housing Starts",type="l")

> legend(1966.3, 220,c("Housing Starts","Manufacturing

+ Shipments"),lty=1:2)

Now, we set new to TRUE so that the first plot won�t be erased and specify
direct axes for the x-axis in the second plot:

> par(new=T,xaxs="d")

> plot(ship,axes=F,lty=2,type="l")

> axis(side=4)

> mtext(side=4,line=3.8,"Manufacturing (millions of

+ dollars)")

> par(xaxs="r") # release the direct axis

Overlay Figures

by Using

subplot

The subplot function is another way to overlay plots with different scales.
The subplot function allows you to put any S-PLUS graphic (except brush
and spin) into another graphic. You specify the graphics function and the
coordinates of the subplot. The following code will produce a plot showing
selected cities in New England and New England�s position relative to the rest
of the United States. To do this, subplot is called several times.

To create the main plot, use the usa function with the arguments xlim and
ylim to restrict attention to New England.

> usa(xlim=c(-72.5,-65),ylim=c(40.4,47.6))
189

CHAPTER 6 TRADITIONAL GRAPHICS
The coordinates shown in the example were obtained by trial-and-error,
using as a starting point the coordinates of New York. These were obtained
from the three built-in data sets city.x, city.y, and city.name. Before
city.x or city.y can be used as an argument to a replacement function, it
must first be assigned locally:

> city.x <- city.x; city.y <- city.y

> names(city.x) <- city.name

> names(city.y) <- city.name

> nyc.coord <- c(city.x["New York"],city.y["New York"])

> nyc.coord

New York New York

-73.9667 40.7833

To plot the city names, we first use city.x and city.y to determine which
cities are contained in the plotted area:

> ne.cities <- city.x>-72.5 & city.y>40.4

We then use this criterion to select cities to label:

> text(city.x[ne.cities],city.y[ne.cities],

+ city.name[ne.cities])

For convenience in placing the subplot, retrieve the usr coordinates:

> usr <- par("usr")

Now, create a subplot of the entire U.S. in a blank spot and save the value of
this call to subplot so that information can be added to it:

> subpars <- subplot(x=c(-69,usr[2]),y=c(usr[3],43),

+ usa(xlim=c(-130,-50)))

The rest of the commands add to the small map of the entire U.S. First, draw
the map with a box around it:

> subplot(box(),pars=subpars)

Next, draw a box around New England:

> subplot(polygon(c(usr[1],-65,-65,usr[1]),

+ c(usr[3],usr[3],usr[4],usr[4]),density=0),

+ pars=subpars)
190

OVERLAYING FIGURES
Finally, add text to indicate that the boxed region just created corresponds to
the enlarged region:

> subplot(text((usr[1]+usr[2])/2,usr[4]+4,

+ "Enlarged Region"),pars=subpars)

The subplot function can also be used to create composite figures. For
example, to plot density estimates of the marginal distributions in the
margins of a plot of Mileage against Price, enter the following code. First, we
set up the coordinate system with par and usr and create and store the main
plot with subplot:

> frame()

> par(usr=c(0,1,0,1))

> o.par <- subplot(x=c(0,.85),y=c(0,.85),

+ fun=plot(price,mileage,log="x"))

We next find the usr coordinates from the main plot and calculate the
density estimate for both variables:

> o.usr <-o.par$usr

> den.p <- density(price,width=3000)

> den.m <- density(mileage,width=10)

Finally, we plot the two marginal densities with two calls to subplot. The
first plots the density estimate for price along the top of the main plot:

> subplot(x=c(0,.85),y=c(.85,1),

+ fun={par(usr=c(o.usr[1:2],0,1.04*max(den.p$y)),

+ xaxt="l");lines(den.p);box()})

The xaxt="l" parameter is necessary in the first marginal density plot since
price is plotted with a logarithmic axis. To plot the density estimate for
mileage along the right of the main plot, use subplot as follows:

> subplot(x=c(.85,1),y=c(0,.85),

+ fun={par(usr=c(0,1.04*max(den.m$y),o.usr[3:4]));

+ lines(den.m$y,den.m$x);box()})
191

CHAPTER 6 TRADITIONAL GRAPHICS
ADDING SPECIAL SYMBOLS TO PLOTS

In the section Interactively Adding Information to Your Plot (page 137), we
saw how to add lines and new data to existing plots. In this section, we
describe how to add arrows, stars, and other special symbols to existing plots.

Arrows and

Line Segments

To add one or more arrows to an existing plot, use the arrows function. To
add a line segment, which is essentially an unpointed arrow, use the
segments function. Both segments and arrows take beginning and ending
coordinates so that one or more line segments are drawn on the plot. For
example, the following commands plot the corn.rain data and draw arrows
from the ith to i+1th observation:

> plot(corn.rain)

> for (i in seq(along=corn.rain))

+ arrows(1889+i,corn.rain[i],1890+i,corn.rain[i+ 1])

Use the segments function similarly:

> plot(x,y)

Figure 6.32: Adding arrows to plots.

•

•

•

•

•

•

•

• • •

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

Time

co
rn

.r
ai

n

1890 1900 1910 1920

8
10

12
14

16
192

ADDING SPECIAL SYMBOLS TO PLOTS
> for (i in seq(along=x))

+ segments(x[i],y[i],x[i+1],y[i+1])

Adding Stars

and Other

Symbols

You can add a third dimension of data to your plots by using the symbols
function to encode it as stars, circles, or other special symbols. To plot cities
with circles whose areas represent the population, the steps involved are
described below.

First, create the data. We select twelve cities, reasonably well distributed
across the country, from among those listed in the built-in data set
city.name:

> select <- c("Atlanta","Atlantic City","Bismarck",

+ "Boise","Dallas","Denver","Lincoln","Los Angeles",

+ "Miami","Milwaukee","New York","Seattle")

As described in the section Overlaying Figures (page 188), use names to
assign the city names as vector names for the data sets city.x, city.y, and
city.name. Before city.x, city.y, or city.name can be used as an
argument to a replacement function, it must first be assigned locally:

Figure 6.33: Adding segments to plots.

•

•

•

•

•

•

•

•

•

•

•

•

x

y

0.2 0.4 0.6 0.8

-2
-1

0
1

193

CHAPTER 6 TRADITIONAL GRAPHICS
> city.x<-city.x; city.y<-city.y; city.name<-city.name

> names(city.x) <- city.name

> names(city.y) <- city.name

> names(city.name) <- city.name

By assigning names in this way, we can access the information necessary to
plot the cities without learning their vector indices. From an almanac or
similar reference, look up the populations of the selected cities and create a
vector to hold the information (in thousands):

> pop <- c(425,60,28,34,904,494,129,2967,347,741,7072,

+ 557)

Use the usa function to plot the map:

> usa()

Next, add the circles representing the cities:

> symbols(city.x[select],city.y[select],

+ circles=sqrt(pop),add=T)

The next two lines use the ifelse command to create a size vector for
controlling the text size:

> size <- ifelse(pop>1000,2,1)

> size <- ifelse(pop<100,.5,size)

Taken together, these two lines specify a size of 2 for cities with population
greater than one million, a size of 1 for cities with population between one
hundred thousand and one million, and a size of 0.5 for cities with
population less than one hundred thousand. Finally, we add the text, using
the size just determined to specify the text size:

> text(city.x[select],city.y[select],city.name[select],

+ cex=size)
194

ADDING SPECIAL SYMBOLS TO PLOTS
You can use any one of the following shapes as an argument to symbol, with
values as indicated:

Custom

Symbols

The following functions provide a simple way to add your own symbols to a
plot. The make.symbol function facilitates creating a symbol:

> make.symbol <- function() {

+ on.exit(par(p))

+ p <- par(pty="s")

+ plot(0,0,type="n",xlim=c(-0.5,0.5),

+ ylim=c(-0.5,0.5))

Table 6.9: Using shapes as an argument to the function symbol.

Shape Values

circles Vector or matrix with one column containing the radii of the circles.

squares Vector or matrix with one column containing the lengths of the sides of the
squares.

rectangles Matrix with two columns giving widths and heights of rectangles. Missing
values are allowed; points containing missing values are not plotted.

stars Matrix with n columns, where n is the number of points to a star. The matrix
must be scaled from 0 to 1.

thermometers Matrix with 3 or 4 columns. The first two columns give the widths and heights
of the rectangular thermometer symbols. If the matrix has 3 columns, the third
column gives the fraction of the symbol that is filled (from the bottom up). If
the matrix has 4 columns, the third and fourth columns give the fractions of
the rectangle between which it is filled.

boxplots Matrix with 5 columns of positive numbers, giving the width and height of the
box, the amount to extend on the top and bottom, and the fraction of the way
up the box to draw the median line.

Note: Missing values are allowed; points containing missing values are not plotted, except in stars, where
they are treated as zeros.
195

CHAPTER 6 TRADITIONAL GRAPHICS
+ cat("Now draw your symbol using the mouse,

+ Continue string: clicking at corners\n ")

+ locator(type="l") }

This returns a list with components named x and y. The Continue string:
prompt is given because there was a new line while in the middle of a
character string. The most important feature of this function is that it uses
pty="s" so that the figure will be drawn to proper scale when used with
draw.symbol. The draw.symbol function takes some locations and a
symbol given in the form of a list with x and y components:

> draw.symbol <-

+ function(x,y,sym,size=1,fill=F,...) {

+ uin <- par()$uin # inches per user unit

+ sym$x <- sym$x/uin[1]*size

+ sym$y <- sym$y/uin[2]*size

+ if (!fill)

+ for(i in 1:length(x))

+ lines(x[i]+sym$x,y[i]+sym$y,...)

+ else

+ for(i in 1:length(x))

+ polygon(x[i]+sym$x,y[i]+sym$y,...) }

The uin graphics parameter is used to scale the symbol into user units. The
make.symbol and draw.symbol functions are examples of how to create
your own graphics functions using the built-in graphics functions and
graphics parameters.
196

TRADITIONAL GRAPHICS SUMMARY
TRADITIONAL GRAPHICS SUMMARY

Table 6.10: Summary of the most useful graphics parameters.

Name Type Mode Description Example

MULTIPLE FIGURES

fig layout numeric figure location c(0,.5,.3,1)

fin layout numeric figure size c(3.5,4)

fty layout character figure type "r"

mfg layout integer location in figure array c(1,1,2,3)

mfcol layout integer figure array size c(2,3)

mfrow layout integer figure array size c(2,3)

TEXT

adj general numeric text justification .5

cex general numeric height of font 1.5

crt general numeric character rotation 90

csi general numeric height of font .11

main title character main title "Y versus X"

srt general numeric string rotation 90

sub title character subtitle "Y versus X"

xlab title character axis titles "X (in dollars)"

ylab title character axis title "Y (in size)"
197

CHAPTER 6 TRADITIONAL GRAPHICS
SYMBOLS

lty general integer line type 2

lwd general numeric line width 3

pch general character,
integer

plot symbol "*", 4

smo general integer curve smoothness 1

type general character plot type "h"

xpd general logical symbols in margins TRUE

AXES

axes high-level logical plot axes FALSE

bty general integer box type 4

exp general numeric format for exponential
numbers

1

lab general integer tick marks and labels c(3,7,4)

las general integer label orientation 1

log high-level character logarithmic axes "xy"

mgp general numeric axis locations c(3,1,0)

tck general numeric tick mark length 1

xaxs general character style of limits "i"

Table 6.10: Summary of the most useful graphics parameters.

Name Type Mode Description Example
198

TRADITIONAL GRAPHICS SUMMARY
yaxs general character style of limits "i"

xart general character axis type "n"

yart general character axis type "n"

MARGINS

mai layout numeric margin size c(.4,.5,.6,.2)

mar layout numeric margin size c(3,4,5,1)

mex layout numeric margin units .5

oma layout numeric outer margin size c(0,0,5,0)

omd layout numeric outer margin size c(0,.95,0,1)

omi layout numeric outer margin size c(0,0,.5,0)

PLOT AREA

pin layout numeric plot area c(3.5,4)

plt layout numeric plot area c(.05,.95,.1,.9)

pty layout character plot type "s"

uin information numeric inches per usr unit c(.73,.05)

usr layout numeric limits in plot area c(76,87,3,8)

xlim high-level numeric limits in plot area c(3,8)

ylim high-level numeric limits in plot area c(3,8)

Table 6.10: Summary of the most useful graphics parameters.

Name Type Mode Description Example
199

CHAPTER 6 TRADITIONAL GRAPHICS
References Chernoff, H. (1973). The Use of Faces to Represent Points in k-Dimensional
Space Graphically. Journal of American Statistical Association 68, 361-368.

Cleveland, W. S. (1985). The Elements of Graphing Data. Monterey,
California: Wadsworth.

Martin, R. D., Yohai, V. J., and Zamar, R. H. (1989). Min-max bias robust
regression. Annals of Statistics 17, 1608-30.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis.
London: Chapman and Hall.

MISCELLANEOUS

col general integer color 2

err general integer print warnings? -1

new layout logical is figure blank? TRUE

Table 6.10: Summary of the most useful graphics parameters.

Name Type Mode Description Example
200

6
6

A Roadmap of Trellis Graphics 202
Giving Data to General Display Functions 204

A Data Set: gas 204
formula Argument 204
subset Argument 206
Data Frames 207

Aspect Ratio 208
General Display Functions 210

A Data Set: fuel.frame 210
A Data Set: gauss 223

Arranging Several Graphs On One Page 228
Multipanel Conditioning 230

A Data Set: barley 230
About Multipanel Display 230
Columns, Rows, and Pages 230
Packet Order and Panel Order 231
layout Argument 233
Main-Effects Ordering 235
Summary: The Layout of a Multipanel Display 237
A Data Set: ethanol 237
Conditioning on Discrete Values of a Numeric Variable 237
Conditioning on Intervals of a Numeric Variable 239

Scales and Labels 242
3-D Display: aspect Argument 244
Changing the Text in Strip Labels 244

Panel Functions 246
How to Change the Rendering in the Data Region 24
Passing Arguments to a Default Panel Function 24
A Panel Function for a Multipanel Display 247
Special Panel Functions 247
Commonly-Used S-PLUS Graphics Functions and Parameters 248

Panel Functions and the Trellis Settings 249

TRADITIONAL TRELLIS

GRAPHICS 7
201

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
Superposing Two or More Groups of Values on a Panel 252
Data Structures 259
More on Aspect Ratio and Scales: Prepanel Functions 262

More on Multipanel Conditioning 263
Summary of Trellis Functions and Arguments 266

A Roadmap of

Trellis Graphics

Trellis Graphics provide a comprehensive set of display functions that are a
popular alternative to using the traditional S-PLUS graphics functions
described in the previous chapter. The Trellis functions are particularly
geared towards multipanel and multipage plots. This chapter describes the
Trellis system based on traditional S-PLUS graphics.

Getting Started

with Trellis

Open a Trellis Graphics device with the command trellis.device. If no
device is open, Trellis commands will open one by default, but by using this
command you ensure the open graphics device is compatible with Trellis
Graphics.

> trellis.device()

General Display

Functions

The Trellis library has a collection of general display functions that draw
different types of graphs. For example, xyplot makes x-y plots, dotplot
makes dot plots, and wireframe makes 3-D wireframe displays. The
functions are general because they have the full capability of Trellis Graphics,
including multipanel conditioning.

These functions are introduced in the the section General Display Functions
(page 210).

Common

Arguments

There is a set of common arguments that all general display functions
employ. The usage of some of these arguments varies, but each has a common
purpose across all functions. Many of the general display functions also have
arguments that are specific to the types of graphs that they draw.

The common arguments, which are listed in the section Summary of Trellis
Functions and Arguments (page 266), are discussed in many sections.

Panel Functions Panel functions are a critical aspect of Trellis Graphics. They make it easy to
tailor displays to your data even when the displays are quite complicated ones
with many panels.

The data region of a panel on a graph resulting from a general display
function is a rectangle that just encloses the data. The sole responsibility for
drawing in a data region is given to a panel function that is an argument of
the general display function. The other arguments of the general display
202

A ROADMAP OF TRELLIS GRAPHICS
function manage the superstructure of the graph�scales, labels, boxes
around the data region, and keys. The panel function manages the symbols,
lines, and so forth that encode the data in the data regions.

Panel functions are discussed in the section Panel Functions (page 246).

Core S-PLUS

Graphics

Trellis Graphics is implemented in the core traditional S-PLUS graphics. Also,
when you write a panel function, you use functions and graphics parameters
from the traditional graphics system.

Some core S-PLUS graphics features are discussed in the section Commonly-
Used S-Plus Graphics Functions and Parameters (page 248).

Printing, Devices

and Settings

To send a graph to the printer, first open a hardcopy device, for example,
with trellis.device(postscript) or trellis.device(pdf.graph).
To actually send the graphics to the printer, enter the command dev.off().
For color graphics printing, set the color=T flag (the default is black and
white) when opening the device; for example:

> trellis.device(postscript,color=T)

Trellis Graphics has many settings for graph rendering details�plotting
symbols, colors, line types, and so forth�that are automatically chosen
depending on the device you select.

The section Panel Functions and the Trellis Settings (page 249) discusses the
Trellis settings.

Data Structures The general display functions take in data just like many of the S-PLUS
modeling functions such as lm, aov, glm, and loess. This means that there
is a heavy reliance on data frames. The Trellis library contains several
functions that change data structures of certain types to a data frame, which
makes it easier to pass the data on to the general display functions (or, in fact,
on to the modeling functions).

The section Data Structures (page 259) discusses these functions that create
data frames.
203

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
GIVING DATA TO GENERAL DISPLAY FUNCTIONS

For a graphics function to draw a graph, it needs to know the data on which
the drawing is based. This section is about arguments to the Trellis drawing
functions that allow you to specify the data.

A Data Set: gas The data frame gas contains two variables from an industrial experiment
with twenty-two runs in which the concentrations of oxides of nitrogen
(NOx) in the exhaust of an engine were measured for different settings of
equivalence ratio (E).

> names(gas)

[1] "NOx" "E"

> dim(gas)

[1] 22 2

formula

Argument

The function xyplot makes an x-y plot, a graph of two numerical variables;
the result might be scattered points, curves, or both. A full discussion of
xyplot is in the section General Display Functions (page 210), but for now
we will use it to illustrate how to specify data.

The plot in figure 7.1 is a scatterplot of gas$NOx against gas$E:

> xyplot(formula=gas$NOx~gas$E)

The argument formula specifies the variables that are to be graphed. In this
case they are gas$NOx and gas$E. For xyplot, the variable to the left of the
~ goes on the vertical axis, and the variable to the right of the ~ goes on the
horizontal axis. The formula gas$NOx~gas$E is read as gas$NOx �is graphed
against� gas$E.

The use of formula here is the same as that in the S-PLUS statistical
modeling functions such as lm and aov. To the left or right of the ~ you can
use any S-PLUS expression. For example, if you want to graph the log base 2
of gas$NOx, you can use the formula

log(gas$NOx,base=2)~gas$E
204

GIVING DATA TO GENERAL DISPLAY FUNCTIONS
The argument formula is a special one in Trellis Graphics. It is always the
first argument of a general display function such as xyplot. We can omit
typing formula provided the formula is the first argument. Thus the
expression xyplot(gas$NOx ~ gas$E) also produces figure 7.1.

The arument formula is the only one that should be given by position; all
others must be given by name.

Certain single-symbol operators that perform functions in S-PLUS have a
special meaning in the formula language (for example, +, *, /, |, and :),
although Trellis, as we will see, uses only * and |. If you want to use any of
these operators for their conventional meaning in any formula expression�

Figure 7.1: Scatterplot of gas$NOx against gas$E.

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

gas$E

ga
s$

N
O

x

205

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
for example, if you want to use * as multiplication�you must put the
expression inside the identity function I() unless it is already given as an
argument to a function. Here is an example:

log(2*gas$NOx,base=2)~I(2*gas$E)

We use I on the right of the formula to protect against the * in 2*gas$E but
not on the left because 2*gas$NOx sits inside a function data argument.

One annoyance in the use of the above formulas is that we had to continually
refer to the data frame gas. This is not necessary if we attach gas to the
search list of databases. We can draw figure 7.1 by

> attach(gas)

> xyplot(NOx~E)

 Another possibility is to use the argument data:

> xyplot(NOx~E,data=gas)

In this case, the variables of gas are available for use in the formula
argument just during the execution of xyplot. The effect is the same as

> attach(gas)

> xyplot(NOx~E)

> detach(gas)

The use of the data argument has another benefit. In the call to xyplot, we
see explicitly that the data frame gas is being used; this can be helpful for
understanding, at some future point, how the graph was produced.

subset

Argument

Suppose you want to redo figure 7.1 and omit the observations for which E is
1.1 or greater. You could do this by

> xyplot(NOx[E<1.1]~E[E<1.1],data=gas)

But it is a nuisance to repeat the logical subsetting, E<1.1, and the nuisance
would be much greater if there were many variables in the formula instead of
just two. It is typically easier to use the argument subset instead:

> xyplot(NOx~E,data=gas,subset=E<1.1)

The result is shown in figure 7.2. The argument subset can be a logical or
numerical vector.
206

GIVING DATA TO GENERAL DISPLAY FUNCTIONS
Data Frames You can keep variables as vectors and draw Trellis displays without using data
frames. Still, data frames are very convenient. But data sets are often stored,
at least initially, in data structures other than data frames, so we need ways to
go from data structures of various types to data frames. Functions to do this
are discussed in the section Data Structures (page 259).

Figure 7.2: Using the subset argument on the gas data.

2

3

4

5

0.7 0.8 0.9 1.0 1.1

E

N
O

x

207

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
ASPECT RATIO

The aspect ratio of a graph, the height of a panel data region divided by its
width, is a critical factor in determining how well a data display shows the
structure of the data. There are situations where choosing the aspect ratio to
carry out banking to 45 degrees shows information in the data that cannot be
seen if the graph is square, that is, has an aspect ratio of 1. More generally,
any time we graph a curve, or a scatter of points with an underlying pattern
that we want to assess, controlling the aspect ratio is vital. One advance of
Trellis Graphics is the direct control of the aspect ratio through the argument
aspect.

aspect Argument You can use the aspect argument to set the ratio to a specific value. In figure
7.3, the aspect ratio has been set to 3/4:

> xyplot(NOx~E,data=gas,aspect=3/4)

Setting the aspect argument to "xy" banks line segments to 45 degrees.
Here is how it works. Suppose x and y are data points to be plotted. Consider
the line segments that connect successive points. The aspect ratio is chosen so
that the absolute values of the slopes of these segments are centered on 45
degrees. This is done in figure 7.4 by the expression

> xyplot(NOx~E,data=gas,aspect="xy")

We have used the data themselves in this example to carry out banking, just
to illustrate how it works. The resulting aspect ratio is about 0.4. Ordinarily,
though, we should bank based on a smooth underlying pattern in the data;
that is, we should bank based on the line segments of a fitted curve. You can
do that with Trellis Graphics as well; an example is in the section More on
Aspect Ratio and Scales: Prepanel Functions (page 262).
208

ASPECT RATIO
Figure 7.3: The scatterplot of the gas data with an aspect ratio of 3/4.

Figure 7.4: The scatter plot of the gas data with line segments banked
to 45 degrees.

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

E

N
O

x

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

E

N
O

x

209

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
GENERAL DISPLAY FUNCTIONS

Each general display function draws a particular type of graph. For example,
dotplot makes dot plots, wireframe makes 3-D wireframe displays,
histogram makes histograms, and xyplot makes x-y plots. This section
describes a collection of general display functions.

A Data Set:

fuel.frame

The data frame fuel.frame contains five variables that measure
characteristics of 60 automobile models:

> names(fuel.frame)

[1] "Weight" "Disp." "Mileage" "Fuel" "Type"

> dim(fuel.frame)

[1] 60 5

The variables are weight, displacement of the engine, fuel consumption in
miles per gallon, fuel consumption in gallons per mile, and a classification
into type of vehicle. The first four variables are numeric. The fifth variable is
a factor:

> table(fuel.frame$Type)

Compact Large Medium Small Sporty Van

 15 3 13 13 9 7
210

GENERAL DISPLAY FUNCTIONS
xyplot We have already seen xyplot in action in our previous examples. This
function is a basic graphical method�graphing one set of numerical values
on a vertical scale against another set of numerical values on a horizontal
scale.

Figure 7.5 is a scatterplot of mileage against weight:

> xyplot(Mileage~Weight,data=fuel.frame,aspect=1)

The variable on the left of the ~ goes on the vertical, or y, axis and the
variable on the right goes on the horizontal, or x, axis.

Figure 7.5: Scatterplot.

20

25

30

35

2000 2500 3000 3500

Weight

M
ile

ag
e

211

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
bwplot The box and whisker plot, or boxplot, is a very clever invention of John
Tukey that is widely used for comparing the distributions of several data sets.

Figure 7.6 is a boxplot of mileage classified by vehicle type:

> bwplot(Type~Mileage,data=fuel.frame,aspect=1)

The factor Type is on the left in the formula because it goes on the vertical
axis, and the numeric vector Mileage is on the right because it goes on the
horizontal axis.

Figure 7.6: Boxplot.

Compact

Large

Medium

Small

Sporty

Van

20 25 30 35

Mileage
212

GENERAL DISPLAY FUNCTIONS
stripplot A strip plot, sometimes called a one-dimensional scatterplot, is similar to a
boxplot in general layout but the individual data points are shown instead of
the boxplot summary.

Figure 7.7 is a strip plot:

> stripplot(Type~Mileage,data=fuel.frame,jitter=TRUE,

+ aspect=1)

Setting jitter=TRUE causes some random noise to be added vertically to the
points to alleviate the overlap of the plotting symbols. When jitter=FALSE,
the default, the points for each level lie on a horizontal line.

Figure 7.7: Strip plot.

Compact

Large

Medium

Small

Sporty

Van

20 25 30 35

Mileage
213

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
qq The quantile-quantile plot, or qqplot, is an extremely powerful tool for
comparing the distributions of two sets of data. The idea is quite simple:
quantiles of one data set are graphed against corresponding quantiles of the
other data set.

The variable fuel.frame$Type has five levels:

> table(fuel.frame$Type)

Compact Large Medium Small Sporty Van

 15 3 13 13 9 7

Figure 7.8 is a qqplot comparing the quantiles of mileage for compact cars
with the corresponding quantiles for small cars:

> qq(Type~Mileage,data=fuel.frame,aspect=1,

+ subset=(Type=="Compact")|(Type=="Small"))

The factor on the left side of the formula must have at least two levels. The
default labels for the two scales are the names of the levels.

Figure 7.8: qqplot.

25

30

35

25 30 35

Compact

S
m

al
l

214

GENERAL DISPLAY FUNCTIONS
qqmath Normal probability plots, or normal qqplots, are the single most powerful
tool for determining if the distribution of a set of measurements is well
approximated by the normal distribution.

Figure 7.9 is a normal probability plot of the mileages for small cars:

> qqmath(~Mileage,data=fuel.frame,

+ subset=(Type=="Small"))

That is, the ordered data are graphed against quantiles of the standard normal
distribution. The formula for qqmath is used in a way unlike any of the
previous examples. Only one data object appears in the formula, to the right
of the ~, because this graphical method utilizes only one data object.

If we used

> qqmath(~Mileage,data=fuel.frame,subset=(Type=="Small"),

+ aspect=1,distribution=qexp)

the result would be an exponential probability plot. Note that the name of
the function appears as the default label on the horizontal scale of the plot.

Figure 7.9: Normal probability plot.

26

28

30

32

34

36

-1 0 1

qnorm

M
ile

ag
e

215

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
dotplot The dot plot, which displays data with labels, provides highly accurate visual
decodings, typically far more accurate than other methods for displaying
labeled data. Let us compute the mean mileage for each vehicle type:

> mileage.means <- tapply(fuel.frame$Mileage,

+ fuel.frame$Type, mean)

Figure 7.10 is a dot plot of the log base 2 means:

> dotplot(names(mileage.means)~logb(mileage.means,

+ base=2),aspect=1,cex=1.25)

The argument cex is passed to the panel function to change the size of the
dot of the dot plot; more on this in the section Panel Functions (page 246).

Notice that the vehicle types in figure 7.10 are ordered, from bottom to top,
by the order of the elements of the vector mileage.means. If you wanted the
graph to show the values from smallest to largest going from bottom to top,
you could first redefine mileage.means:

> mileage.means <- sort(mileage.means)

Figure 7.10: Dot plot.

Compact

Large

Medium

Small

Sporty

Van

4.4 4.6 4.8

log(mileage.means, base = 2)
216

GENERAL DISPLAY FUNCTIONS
barchart Overall, dot plots are a more effective display method than bar charts,
avoiding some of the perceptual problems of bar charts. Still, there are
circumstances where bar charts are harmless.

 Figure 7.11 is a bar chart of the mileage means (without logs):

> barchart(names(mileage.means)~mileage.means,aspect=1)

Figure 7.11: Bar chart.

Compact

Large

Medium

Small

Sporty

Van

20 22 24 26 28 30

mileage.means
217

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
piechart Pie charts have severe perceptual problems. Experiments in graphical
perception have shown that compared with dot plots, they convey
information far less reliably. But if you want to display some data and
perceiving the information is not so important, then a pie chart is fine.

Figure 7.12 is a pie chart of the mileage means:

> piechart(names(mileage.means)~mileage.means)

Figure 7.12: Pie chart.

Compact

La
rg

e

Medium

Small

S
porty

Van
218

GENERAL DISPLAY FUNCTIONS
histogram A histogram can be useful for showing the distribution of a single set of data,
but two or more histograms are typically not nearly as powerful as a boxplot
or qqplot for comparing data distributions.

Figure 7.13 is a histogram of mileage:

> histogram(~Mileage,data=fuel.frame,aspect=1,nint=10)

The argument nint determines the number of intervals. The histogram
algorithm chooses the intervals to make the bar widths be simple numbers
while trying to make the number of intervals as close to nint as possible.

Figure 7.13: Histogram.

0

5

10

15

20

20 25 30 35

Mileage

P
er

ce
nt

 o
f T

ot
al
219

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
densityplot Like histograms, density plots can be of help in understanding the
distribution of a single set of data, but boxplots and qqplots typically give
more incisive comparisons of distributions.

Figure 7.14 is a density plot of mileage:

> densityplot(~Mileage,data=fuel.frame,aspect=1/2,width=5)

The argument width controls the width of the smoothing window in the
same units as the data, mpg here; as the width increases, the smoothness
increases.

Figure 7.14: Density plot.

0.0

0.02

0.04

0.06

0.08

0.10

15 20 25 30 35 40

Mileage

D
en

si
ty
220

GENERAL DISPLAY FUNCTIONS
splom The scatterplot matrix is an exceedingly powerful tool for displaying
measurements of three or more variables.

Figure 7.15 is a scatterplot matrix of the variables in fuel.frame:

> splom(~fuel.frame)

Note that the factor Type has been converted to a numeric variable and
plotted just like the other variables, which are numeric. The six levels of Type
simply take the values 1 to 6 in this conversion.

Figure 7.15: Scatterplot matrix.

2000 2500

3000 3500

3000

3500

2000

2500

Weight

100 150 200

200 250 300

200

250

300

100

150

200Disp.

20 25

30 35

30

35

20

25

Mileage

3.0 3.5 4.0

4.5 5.0 5.5

4.5

5.0

5.5

3.0

3.5

4.0Fuel

C
om

pa
ct

La
rg

e

M
ed

iu
m

S
m

al
l

S
po

rt
y

V
an

Small

Sporty

Van

Compact

Large

Medium
Type
221

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
parallel Parallel coordinates are an interesting method, but it is unclear at the time of
this writing whether they have the power to uncover structure that is not
more readily apparent using other graphical methods.

Figure 7.16 is a parallel coordinates display of the variables in fuel.frame:

> parallel(~fuel.frame)

Figure 7.16: Parallel coordinates display.

Weight

Disp.

Mileage

Fuel

Type

Min Max
222

GENERAL DISPLAY FUNCTIONS
A Data Set:

gauss

To further illustrate the general display routines, we will compute a function
of two variables over a grid.

> datax <- rep(seq(-1.5,1.5,length=50),50)

> datay <- rep(seq(-1.5,1.5,length=50),rep(50,50))

> dataz <- exp(-(datax^2+datay^2+datax*datay))

> gauss <- data.frame(datax,datay,dataz)

Thus, dataz is the exponential of a quadratic function defined over a 50x50
grid; in other words, the surface is proportional to a bivariate normal density.

contourplot Contour plots are helpful displays for studying a function, f(x,y), when we
have no need to study the conditional dependence of f on x given y or of f on
y given x. Conditional dependence is revealed far better by multipanel
conditioning. Figure 7.17 is a contour plot of the gaussian surface:

> contourplot(dataz~datax*datay,data=gauss,aspect=1,

+ at=seq(.1,.9,by=.2))

The argument at specifies the values at which the contours are to be
computed and drawn. If no argument is specified, default values are chosen.

Figure 7.17: Contour plot.

0.1

0.1

0.3

0.5

0.7
0.9

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

datax

da
ta

y

223

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
levelplot Level plots are also helpful displays for studying a function, f(x,y). They are
no better than contour plots when the function is simple, but often are better
when there is much fine detail, for example, many peaks and valleys.

Figure 7.18 is a level plot of the gauss surface:

> levelplot(dataz~datax*datay,data=gauss,aspect=1,cuts=6)

The values of the surface are encoded by color, a gray scale in this case. For
devices with full color, the scale goes from pure magenta to white and then to
pure cyan. If the device does not have full color, a gray scale is used.

For a level plot, the range of the function values is divided into intervals and
each interval is assigned a color. A rectangle centered on each grid point is
given the color of the interval containing the value of the function at the grid
point. In figure 7.18, there are six intervals. The argument cuts specifies the
number of breakpoints between intervals.

Figure 7.18: Level plot.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

datax

da
ta

y

0.2

0.4

0.6

0.8
224

GENERAL DISPLAY FUNCTIONS
wireframe Wireframe displays can be quite useful for displaying f(x,y) when we have no
need to study conditional dependence. Figure 7.19 is a 3-D wireframe plot of
the gauss surface:

> wireframe(dataz~datax*datay,data=gauss,drape=F,

+ screen=list(z=45,x=-60,y=0))

The argument screen is a list. The three components of the list� x, y, and
z�refer to screen axes. The first component is horizontal and the second is
vertical, both in the plane of the screen. The third component is
perpendicular to the screen. The surface is rotated about these axes in the
order given in the list. Here is how it worked for figure 7.19. The surface
began with datax as the horizontal screen axis, datay as the vertical, and
dataz as the perpendicular. The origin was at the lower left in the back. First,
the surface was rotated 45 degrees about the perpendicular screen axis, where
a positive rotation is counterclockwise. Then, there was a -60 degrees rotation
about the horizontal screen axis, where a negative rotation brings the picture
at the top of the screen away from the viewer and the bottom toward the
viewer. Finally, there was no rotation about the vertical screen axis; had there
been one with a positive number of degrees, then the left side of the picture
would have moved toward the viewer and the right away.

If drape=T, a color encoding is added to the surface using the same encoding
method of the level plot.

Figure 7.19: 3D wireframe plot.

dataxdatay

dataz
225

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
cloud A static 3-D plot of a scatter of points is typically not effective because the
depth cues are insufficient to give a strong 3-D effect. Still, on rare occasions,
such a plot can be useful, sometimes as a presentation or teaching tool.

Figure 7.20 is a 3-D scatterplot of the first three variables in the data frame
fuel.frame:

> cloud(Mileage~Weight*Disp.,data=fuel.frame,

+ screen=list(z=-30,x=-60,y=0),xlab="W",ylab="D",

+ zlab="M")

The behavior of the argument screen is the same as that for wireframe. We
have used three additional arguments to specify scale labels; such labeling will
be discussed in the section Scales and Labels (page 242).

Figure 7.20: 3D scatterplot, or cloud.

W

D

M

226

GENERAL DISPLAY FUNCTIONS
The Display

Functions and

Their Formulas

The following listing of the general display functions and their formulas is
instructive because it shows certain conventions and consistencies in the
formula mechanism:

Graph One Numerical Variable Against Another

xyplot(numeric1~numeric2)

Compare the Sample Distributions of Two or More Sets of Data

bwplot(factor~numeric)

stripplot(factor~numeric)

qq(factor~numeric)

Graph Measurements with Labels

dotplot(character~numeric)

barchart(character~numeric)

piechart(character~numeric)

Graph the Sample Distribution of One Set of Data

qqmath(~numeric)

histogram(~numeric)

densityplot(~numeric)

Graph Multivariate Data

splom(~data.frame)

parallel(~data.frame)

Graph a Function of Two Variables Evaluated on a Grid

contourplot(numeric1~numeric2*numeric3)

levelplot(numeric1~numeric2*numeric3)

wireframe(numeric1~numeric2*numeric3)

Graph Three Numerical Variables

cloud(numeric1~numeric2*numeric3)
227

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
ARRANGING SEVERAL GRAPHS ON ONE PAGE

Several graphs, made separately by Trellis display functions, can be displayed
on a single page. There is one restriction. None of the individual graphs may
be a multipanel conditioning display with more than one page.

print Figure 7.21 shows two graphs arranged on one page:

> attach(fuel.frame)

> box.plot <- bwplot(Type~Mileage)

> scatter.plot <- xyplot(Mileage~Weight)

> detach()

> print(box.plot,position=c(0,0,1,.4),more=T)

> print(scatter.plot,position=c(0,.35,1,1))

The argument position specifies the position of each graph on the page
using a page coordinate system in which the lower left corner of the page is
(0, 0) and the upper right corner is (1, 1). The graph rectangle is the portion
of the page allocated to a graph. position takes a vector of four numbers;
the first two numbers are the coordinates of the lower left corner of the graph
rectangle, and the second two numbers are the coordinates of the upper right
corner. The argument more has been give a value of T, which says that more
drawing is coming.

Notice that in the above example the graph rectangles overlap somewhat.
Here is the reason. The graph contains margins (empty space) around the
edges of the graph. But in arranging graphs on a page, we might well want to
overlap margin space to use the page space as efficiently as possible.

The following code illustrates another argument, split, that provides a
different method for arranging the plots on the page:

> attach(fuel.frame)

> scatter.plot <- xyplot(Mileage~Weight)

> other.plot <- xyplot(Mileage~Disp.)

> detach()

> print(scatter.plot,split=c(1,1,1,2),more=T)

> print(other.plot,split=c(1,2,1,2))
228

ARRANGING SEVERAL GRAPHS ON ONE PAGE
split takes a vector of four values. The last two define an array of subregions
in the graphics region. In our example, the array has one column and two
rows for both plots. The first two values of split prescribe the subregion in
which the current plot is to be drawn.

Figure 7.21: Multiple graphs on a page.

Compact

Large

Medium

Small

Sporty

Van

20 25 30 35

Mileage

20

25

30

35

2000 2500 3000 3500

Weight

M
ile

ag
e

229

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
MULTIPANEL CONDITIONING

A Data Set:

barley

The data frame barley contains data from an experiment carried out in
Minnesota in the 1930s. At six sites, ten varieties of barley were grown in
each of two years. The data collected for the experiment are the yields in
bushels/acre for all combinations of site, variety, and year, so there are 6 × 10
× 2 = 120 observations (yield is numeric, the others are factors).

> names(barley)

[1] "yield" "variety" "year" "site�

About

Multipanel

Display

Figure 7.22 uses multipanel conditioning to display the barley data. Each
panel displays the yields of the ten varieties for one year at one site; variety is
graphed along the vertical scale and yield is graphed along the horizontal
scale. For example, the lower left panel displays values of variety and yield for
Grand Rapids in 1932. The panel variables are yield and variety and the
conditioning variables are year and site.

formula

Argument

Figure 7.22 was made by the following command:

> dotplot(variety~yield|year*site,data=barley)

The | is read as �given�. Thus, the formula is read as variety �is graphed
against� yield �given� year and site. This simple use of formula creates a
complex multipanel display.

Columns,

Rows, and

Pages

A multipanel conditioning display is a three-way rectangular array laid out
into columns, rows, and pages. In figure 7.22, there are two columns, six
rows, and one page. The numbers of columns, rows, and pages are selected by
an algorithm that attempts to fill up as much of the graphics region as
possible subject to certain constraints. As we will see in the section Summary:
The Layout of a Multipanel Display (page 237), there is an argument layout
that allows you to choose the numbers.
230

MULTIPANEL CONDITIONING
Packet Order

and Panel

Order

In the above formula, the conditioning variable year appeared first and site
appeared second. This gives an explicit ordering to the conditioning
variables. Each of these variables is a factor with levels:

> levels(barley$year)

[1] "1932" "1931"

Figure 7.22: Multipanel conditioning on the barley data.

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Grand Rapids

20 30 40 50 60

1931
Grand Rapids

Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38

Trebi

1932
Duluth

1931
Duluth

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

1932
University Farm

1931
University Farm

Svansota
No. 462

Manchuria

No. 475
Velvet

Peatland
Glabron

No. 457
Wisconsin No. 38

Trebi

1932
Morris

1931
Morris

Svansota
No. 462

Manchuria

No. 475
Velvet

Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Crookston

1931
Crookston

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Waseca

1931
Waseca

20 30 40 50 60

yield
231

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
> levels(barley$site)

[1] "Grand Rapids" "Duluth" "University Farm"

[4] "Morris" "Crookston" "Waseca"

The levels of each factor are ordered by their order of appearance in the
levels attribute. As we will discuss shortly, we can control the order by
making the factor an ordered factor. A packet is information sent to a panel for
display. For figure 7.22, each packet includes the values of variety and
yield for a particular combination of year and site. Packets are ordered by
the orderings of the conditioning variables and their levels; the levels of the
first conditioning variable vary the fastest, the levels of the second
conditioning variable vary the next fastest, and so forth. For figure 7.22, the
order of the packets is

1932 Grand Rapids

1931 Grand Rapids

1932 Duluth

1931 Duluth

1932 University Farm

1931 University Farm

1932 Morris

1931 Morris

1932 Crookston

1931 Crookston

1932 Waseca

1931 Waseca

The panels of a multipanel display are also ordered. The bottom left panel is
panel one. From there we move fastest through the columns, next fastest
through the rows, and the slowest through the pages. The panel ordering rule
is like a graph, not like a table; the origin is at the lower left and as we move
either from left to right or from bottom to top, the panel order increases. The
following shows the panel order for figure 7.22, which has two columns, six
rows, and one page:

11 12

9 10

7 8

5 6

3 4

1 2
232

MULTIPANEL CONDITIONING
In Trellis Graphics, packets are assigned to panels according to the packet
order and the panel order. Packet 1 goes into panel 1, packet 2 goes into
panel 2, and so forth. In figure 7.22, the two orderings result in the year
variable changing along the columns and the site variable changing along
the rows. Note that as the levels for one of these factors increase, the
darkened bars in the strip label for the factor move from left to right.

layout

Argument

Multipanel conditioning is a powerful tool for understanding how a response
depends on two or more explanatory variables. In such an analysis, it is
typically important to make as many displays as necessary to have each
explanatory variable appear at least once as a panel variable. In figure 7.22,
variety, an explanatory variable, appears as a panel variable.

We will make a new display with site as a panel variable. The argument
layout specifies the numbers of columns, rows, and pages:

> dotplot(site~yield|year*variety,data=barley,

+ layout=c(2,5,2))

The result is shown in figure 7.23, the first page, and in figure 7.24, the
second page.

If we do not specify layout, Trellis Graphics chooses the numbers of
columns, rows, and pages by a layout algorithm. The algorithm takes into
account the aspect ratio, the number of packets, the number of conditioning
variables, and the number of levels of each conditioning variable. It chooses
the numbers to maximize the size of the graph within the graphics region.
233

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
Figure 7.23: The first page of the multipage plot of the barley data.

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Svansota

20 30 40 50 60

1931
Svansota

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
No. 462

1931
No. 462

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Manchuria

1931
Manchuria

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
No. 475

1931
No. 475

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Velvet

1931
Velvet

20 30 40 50 60

yield
234

MULTIPANEL CONDITIONING
Main-Effects

Ordering

For the barley data, the explanatory variables are categorical. The data set for
each is a factor. (Since there are only two years, the year variable is treated as
a factor rather than a numeric vector.) For each factor, consider the median
yield for each level. For example, for variety, the level medians are

> variety.medians <- tapply(barley$yield,barley$variety,

+ median)

Figure 7.24: The second page of the multipage plot of the barley data.

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Peatland

20 30 40 50 60

1931
Peatland

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Glabron

1931
Glabron

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
No. 457

1931
No. 457

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Wisconsin No. 38

1931
Wisconsin No. 38

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Trebi

1931
Trebi

20 30 40 50 60

yield
235

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
> variety.medians

Svansota No. 462 Manchuria No. 475 Velvet Peatland

 28.55 30.45 30.96667 31.06667 32.15 32.38334

 Glabron No. 457 Wisconsin No. 38 Trebi

 32.4 33.96666 36.95 39.2

The barley displays in figure 7.22 to figure 7.24 use an important display
method: main-effects ordering of levels. This greatly enhances our ability to
perceive effects. Consider figure 7.22. On each panel, the varieties are
ordered from bottom to top by the variety medians; Svansota has the
smallest median and Trebi has the largest. The site panels have been ordered
from bottom to top by the site medians; Grand Rapids has the smallest
median and Waseca has the largest. Finally, the year panels are ordered from
left to right by the year medians; 1932 has the smaller median and 1931 has
the larger.

This median ordering is achieved by making the data set for each explanatory
variable an ordered factor, where the levels are ordered by the medians. For
example, suppose variety started out as a factor without the median
ordering. We get the ordered factor through the following:

> barley$variety <- ordered(barley$variety,

+ levels=names(sort(variety.medians)))

reorder.factor Main-effects ordering is so important and is carried out so often that Trellis
Graphics includes a function reorder.factor to carry it out. Here, it is
used to reorder variety:

> barley$variety <- reorder.factor(barley$variety,

+ barley$yield,median)

The first argument is the factor to be reordered, the second is the data on
whose main effects the reordering is based, and the third argument is the
function to be applied to the second argument to compute main effects.

Controlling the

Pages of a

Multipage Display

If a multipage display is sent to a screen device, the default behavior is that
each page will be drawn in order, with no pause between pages. You can force
the screen device to pause and prompt you before drawing each page by first
using

par(ask=T)
236

MULTIPANEL CONDITIONING
Summary: The

Layout of a

Multipanel

Display

To lay out a multipanel display in a certain way, you specify the following:

� An ordering of the conditioning variables by the order you enter
them in the argument formula.

� An ordering of the levels of each factor, possibly by creating an
ordered factor.

� The number of columns, rows, and pages through the argument
layout.

A Data Set:

ethanol

The data frame ethanol contains three variables from an industrial
experiment with 88 runs:

> names(ethanol)

 [1] "NOx" "C" "E"

> dim(ethanol)

 [1] 88 3

The concentrations of oxides of nitrogen (NOx) in the exhaust of an engine
were measured for different settings of compression ratio (C) and equivalence
ratio (E). These measurements were part of the same experiment that
produced the measurements in the data frame gas introduced in the section
A Data Set: gas (page 204).

Conditioning

on Discrete

Values of a

Numeric

Variable

For the barley data, the explanatory variables are factors, so it is natural to
condition on the levels of each factor. This is not the case for the ethanol
data; both explanatory variables, C and E, are numeric. Suppose that for the
ethanol data we want to graph NOx against E given C. The variable C has
five unique values; in other words, the variable, while numeric, is discrete:

> table(ethanol$C)

 7.5 9 12 15 18

 22 17 14 19 16

It makes sense then to condition on the unique values of C. Figure 7.25 does
this:
237

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
> xyplot(NOx ~ E | C, data = ethanol, aspect = 1/2)

When a numeric variable is used as a conditioning variable in the argument
formula, then conditioning is automatically carried out on the sorted
unique values. In other words, the levels of the variable in such a case are the
unique values. The order of the levels is from smallest to largest. For C, the
first level is 7.5, the second 9, and so forth. Thus, the first packet includes
values of NOx and E for C = 7.5, the second packet includes the values for C
= 9, and so on. The packets fill the panels according to the packet order and
the panel order. In figure 7.25, the values of C, which are indicated by the
darkened bars in the strip labels, increase from bottom to top.

Figure 7.25: Multipanel conditioning.

1

2

3

4
C

0.6 0.8 1.0 1.2

1

2

3

4
C

1

2

3

4
C

1

2

3

4
C

1

2

3

4
C

E

N
O

x

238

MULTIPANEL CONDITIONING
Conditioning

on Intervals of

a Numeric

Variable

For the ethanol data, we graphed NOx against E given C in figure 7.25. We
would like to see NOx against C given E as well, but E varies in a nearly
continuous way; there are 83 unique values out of a total of 88 values. Clearly
we cannot condition on single values. Instead, we condition on intervals.
This is done in figure 7.26. On each panel, NOx is graphed against C for E
in an interval. The intervals, which are portrayed by the darkened bars in the
strip, are ordered from low to high, so as we go left to right and bottom to
top through the panels, the intervals go from low to high. The intervals
overlap. The next section describes how they were created and the expression
that produced the graph.

equal.count The nine intervals in figure 7.26 were produced by the equal count algorithm:

> GIVEN.E <- equal.count(ethanol$E,number=9,overlap=1/4)

There are two inputs to the algorithm, the number of intervals and a target
fraction of points to be shared by each pair of successive intervals. In figure
7.26, the inputs are 9 and 1/4. The algorithm picks interval endpoints that
are values of the data; the left endpoint of the lowest interval is the minimum

Figure 7.26: Conditioning intervals.

1

2

3

4

GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E

1

2

3

4

GIVEN.E

8 10 12 14 16 18

C

N
O

x

239

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
of the data, and the right endpoint of the highest interval is the maximum of
the data. The endpoints are chosen to make the counts of points in the
intervals as nearly equal as possible and the fractions of points shared by
successive intervals as close to the target fraction as possible.

The command that produced figure 7.26 is

> xyplot(NOx~C|GIVEN.E,data=ethanol,aspect=2.5)

The aspect ratio was chosen to be 2.5 to approximately bank the underlying
pattern of the points to 45 degrees. Notice that the automatic layout
algorithm chose five columns and two rows.

shingle The result of equal.count is an object of class shingle. The class is named
�shingle� because of the overlap, like shingles on a roof. First, a shingle
contains the numerical values of the variable and can be treated as an
ordinary numeric variable:

> range(GIVEN.E)

[1] 0.535 1.232

Second, a shingle has the intervals attached as an attribute. There is a plot
method, a special Trellis function, that displays the intervals. Figure 7.27
shows the intervals of GIVEN.E:

> plot(GIVEN.E)

You can use the function levels to extract the intervals from the shingle:

> levels(GIVEN.E)

 min max

 0.535 0.686

 0.655 0.761

 0.733 0.811

 0.808 0.899

 0.892 1.002

 0.990 1.045

 1.042 1.125

 1.115 1.189

 1.175 1.232

A shingle can be specified directly by the function shingle. For example, the
following creates five intervals of equal width and no overlap for the variable
ethanol$E:

> endpoints <- seq(min(ethanol$E),max(ethanol$E),length=6)
240

MULTIPANEL CONDITIONING
> GIVEN.E <- shingle(ethanol$E,

+ intervals=cbind(endpoints[-6],endpoints[-1]))

> levels(GIVEN.E)

 min max

0.5350 0.6744

0.6744 0.8138

0.8138 0.9532

0.9532 1.0926

1.0926 1.2320

The argument intervals is a two-column matrix holding the left endpoints
and the right endpoints of the intervals, respectively.

Figure 7.27: Plotting intervals using shingles.

1

2

3

4

5

6

7

8

9

0.6 0.8 1.0 1.2

GIVEN.E

P
an

el
241

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
SCALES AND LABELS

The functions presented in the section General Display Functions (page 210)
have arguments that specify the scales and labels of graphs. These arguments
are discussed in this section.

xlab, ylab, main,

and sub

Arguments

To produce a scatterplot of NOx against E for the gas data, which were
introduced in the section A Data Set: gas (page 204):

> xyplot(NOx~E,data=gas,aspect=1/2)

The labels appearing on the plot for the horizontal, or x, scale and the
vertical, or y, scale are taken from the names used in the argument formula.
We can specify these scale labels, as well as a main title at the top and a
subtitle at the bottom, using the following code:

> xyplot(NOx~E,data=gas,aspect=1/2,

+ xlab="Equivalence Ratio",ylab="Oxides of Nitrogen",

+ main="Air Pollution",sub="Single-Cylinder Engine")

Each of these four label arguments can also be a list. The first component of
the list is a new character string for the text of the label. The other
components specify the size, font, and color of the text. The component cex
specifies the size; font, a positive integer, specifies the font; and col, a
positive integer, specifies the color. The following code changes the sizes of
the title and subtitle:

> xyplot(NOx~E,data=gas,aspect=1/2,

+ xlab="Equivalence Ratio",ylab="Oxides of Nitrogen",

+ main=list("Air Pollution",cex=2),

+ sub=list("Single-Cylinder Engine",cex=1.25))

xlim and ylim

Arguments

In Trellis, the upper value of the scale line for a numeric variable is the
maximum of the data to be plotted plus 4% of the range of the data.
Similarly, the lower value of the scale line for a numeric variable is the
minimum of the data to be plotted minus 4% of the range of the data. The
4% helps prevent the data values from running into the edge of the plot.

We can alter the extremes of the horizontal scale line by the argument xlim, a
vector of two values. The first value replaces the minimum of the data in the
above procedure, and the second value replaces the maximum. Similarly, we
can alter the vertical scale by the ylim argument.

In plots created with the code listed above, NOx is graphed along the vertical
scale. The limits of this variable are:
242

SCALES AND LABELS
> range(gas$NOx)

[1] 0.537 5.344

To include the values 0 and 6 in the vertical scale:

> xyplot(NOx~E,data=gas,aspect=1/2,ylim=c(0,6))

scales and

pscales

Arguments

The argument scales affects tick marks and tick mark labels. In the plot
produced by the code above, there would be seven tick marks and tick mark
labels along the vertical scale and six along the horizontal. The function
scales is used to reduce the number of ticks and increase the size of the tick
labels:

> xyplot(NOx~E,data=gas,aspect=1/2,ylim=c(0,6),

+ scales=list(cex=2,tick.number=4))

The argument scales is a list. The list component cex affects the size. The
list component tick.number affects the number, but it is just a suggestion;
an algorithm tries to find tick values that are pretty, while trying to come as
close as possible to the specified number.

We can also specify the tick marks and labels separately for each scale. The
specification

scales=list(cex=2,x=list(tick.number=4),

y=list(tick.number=10))

changes cex on both scales, but tick.number has been set to 4 for the
horizontal, or x, scale and to 10 for the vertical, or y, scale. Thus, the rule is
this: specifications for the horizontal scale appear in the argument scales as
a component x that is itself a list, specifications for the vertical scale appear in
scales as a component y that is a list, and specifications for both scales
appear as remaining components of the argument scales.

There is an exception to the behavior of the scales argument. The two 3-D
general display functions wireframe and cloud currently do not accept
changes to each scale separately; in other words, components x, y, and z
cannot be used. The general display function piechart has no tick marks
and labels, so the argument scales does not apply at all. The general display
function splom has many scales, so the same delicate control is not available,
but more limited control is available through the argument pscales. See the
on-line help for pscales for more details.
243

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
3-D Display:

aspect

Argument

The aspect ratio, the height of a panel data region divided by the width, is
controlled by the aspect argument. This argument was introduced in the
section Aspect Ratio (page 208) for 2-D displays. The behavior of the
aspect argument for the two 3-D general display functions, wireframe and
cloud, is somewhat different. Since there are three axes, we must specify two
aspect ratios to specify the shape of the 3-D box around the data. Suppose the
formula and the aspect arguments are

formula=z~x*y,aspect=c(1,2)

Then the ratio of the length of the y-axis to the length of the x-axis is 1, and
the ratio of the length of the z-axis to the length of the x-axis is 2.

Changing the

Text in Strip

Labels

The default text in the strip label for a numeric conditioning variable is the
name of the variable. This can be illustrated with the code below, which
displays the ethanol data introduced in the section A Data Set: ethanol (page
237):

> xyplot(NOx~E|C,data=ethanol)

The default text in the strip label for a factor conditioning variable is the
name of the factor level for the panel. The barley data introduced in the
section A Data Set: barley (page 230) illustrate this:

> dotplot(variety~yield|year*site,data=barley)

The name of the factor, for example, site, does not appear because seeing
the names of the levels is typically enough to convey the name of the factor.

Thus, the text comes from the names given to variables and factor levels in
the data sets that are plotted. If we want to change the text, we can change
the names. For example, if we want to change the long label �University
Farm� to �U. Farm�, then we can change the names of the levels of the factor
site, as follows:

> levels(barley$site)

[1] "Grand Rapids" "Duluth" "University Farm"

[4] "Morris" "Crookston" "Waseca"

Before barley can be used as an argument to a replacement function, it must
first be assigned locally:

> barley <- barley

> levels(barley$site)[3] <- "U. Farm"
244

SCALES AND LABELS
> levels(barley$site)

[1] "Grand Rapids" "Duluth" "U. Farm"

[4] "Morris" "Crookston" "Waseca"

par.strip.text

Argument

The size, font, and color of the text in the strip labels can be changed by the
argument par.strip.text, a list whose components are the parameters cex
for size, font for the font, and col for the color. For example, we can make
huge strip labels by

par.strip.text=list(cex=2)

strip Argument The argument strip allows very delicate control of what is put in the strip
labels. One usage is to remove the strip labels altogether:

strip=F

Another is to control the inclusion of names of conditioning variables in strip
labels.

> dotplot(variety~yield|year*site,data=barley,

+ strip=function(...)

+ strip.default(...,strip.names=c(T,T)))

The argument strip.names takes a logical vector of length two. The first
element tells whether or not the names of factors should be included along
with the names of the levels of the factor, and the second element tells
whether or not the names of shingles should be included. The default is
c(F,T).
245

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
PANEL FUNCTIONS

The data region of a panel on a Trellis display is the rectangular region where
the data are plotted. A panel function has the sole responsibility for drawing in
the data regions produced by a general display function. The panel function
is given as an argument of the general display function. The other arguments
of the general display function manage the superstructure of the graph�
scales, labels, boxes around the data region, and keys. The panel function
manages the symbols, lines, and so forth that encode the data in the data
region.

Every general display function has a default panel function. In all the
examples given so far in this chapter, the default panel function has been
doing the drawing.

How to Change

the Rendering

in the Data

Region

You can change what is drawn in the data region by one of two mechanisms.
First, a default panel function has arguments. You can change the rendering
by using these arguments; in fact, you can give them to the general display
function, which will pass them along to the panel function. Second, you can
write your own panel function.

Passing

Arguments to

a Default Panel

Function

The name of the default panel function for a general display function is
�panel.� followed by the name of the general function. For example, the
default panel function for xyplot is panel.xyplot. You can use S-PLUS
online help to see the arguments of a default panel function. For example,
?panel.xyplot tells you about the panel function for xyplot.

You can give an argument to a panel function by giving it to the general
display function; the general display function passes it on to the panel
function. For example, xyplot can pass pch to panel.xyplot to specify a
�+� as the plotting symbol:

> xyplot(NOx~E,data=gas,aspect=1/2,pch="+")

Writing a Panel

Function: panel

Argument

If you write your own panel function, you give it to the general display
function as the argument panel. For example, if you have your own panel
function mypanel, you specify

panel=mypanel
246

PANEL FUNCTIONS
A panel function is always a function of at least two arguments; the first two
are named x and y. Suppose, for the gas data, that you want to use xyplot to
graph NOx against E and use a �+� as the plotting symbol for all observations
except that for which NOx is a maximum, in which case you want to use
�M�. There is no provision for xyplot to do this, so you must write your
own. First, let us write the panel function:

> panel.special <- function(x,y) {

+ biggest <- y==max(y)

+ points(x[!biggest],y[!biggest],pch="+")

+ points(x[biggest],y[biggest],pch="M") }

The function points is a core graphics function. It graphs individual points
on a graph. Its first argument x contains the coordinates of the points along
the horizontal scale, and its second argument y contains the coordinates of
the points along the vertical scale. The third argument pch gives the symbol
used to display the points. To show the result of giving panel.special to
xyplot, try:

> xyplot(NOx~E,data=gas,aspect=1/2,panel=panel.special)

The panel function for this could also have been defined as part of the
xyplot command:

> xyplot(NOx~E,data=gas,aspect=1/2,panel=function(x,y) {

+ biggest <- y==max(y)

+ points(x[!biggest],y[!biggest],pch="+")

+ points(x[biggest],y[biggest],pch="M") })

A Panel

Function for a

Multipanel

Display

In most cases, a panel function that is used for a single panel display can be
used for a multipanel display as well. The panel function panel.special,
could be used to show the maximum value of NOx on each panel of a
multipanel display of the ethanol data:

> xyplot(NOx~E|C,data=ethanol,aspect=1/2,

+ panel=panel.special)

Special Panel

Functions

Even if you write your own panel function, you might want to use the default
panel function as part of it. This is often true when you want to augment a
standard Trellis panel. Also, Trellis Graphics provides some special purpose
panel functions. One of them is panel.loess. It adds smooth curves to
scatterplots.
247

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
To add smooth curves to a multipanel display of the ethanol data:

> GIVEN.E <- equal.count(ethanol$E,number=9,

+ overlap=1/4)

> xyplot(NOx~C|GIVEN.E,data=ethanol,aspect=2.5,

+ panel=function(x,y) { panel.xyplot(x,y)

+ panel.loess(x,y,span=1) })

The default panel function panel.xyplot draws the points of the scatterplot
on each panel. The special panel function panel.loess computes and draws
the smooth curves; the argument span, the smoothing parameter, has been
specified.

subscripts

Argument

If you request it, another component of the packet sent to each panel is the
subscripts that tell which original observations make up the packet. Knowing
these subscripts is helpful for getting the values of other variables that might
be needed for rendering on the panel. In such a case, the panel function
argument subscripts contains the subscripts. To see the observation
numbers added to the graph of NOx against E given C:

> xyplot(NOx~E|C,data=ethanol,aspect=1/2,

+ panel=function(x,y,subscripts)

+ text(x,y,subscripts,cex=.75))

Commonly-

Used S-PLUS

Graphics

Functions and

Parameters

The core graphics functions commonly used in writing panel functions are:

points, lines, text, segments, and polygon.

You can use the S-PLUS online help to see what they do. The core parameters
commonly used in writing panel functions are:

col, lty, pch, lwd, and cex.

Use ?par for their definitions.
248

PANEL FUNCTIONS AND THE TRELLIS SETTINGS
PANEL FUNCTIONS AND THE TRELLIS SETTINGS

Trellis Graphics, as we have discussed, is implemented using traditional
S-PLUS core graphics, which has controllable graphical parameters that
determine the characteristics of plotted objects. For example, if we want to
use a symbol to show points on a scatterplot, graphical parameters determine
the type, size, font, and color of the symbol.

In Trellis Graphics, the default panel functions for the general display
functions select graphical parameters to render plotted elements as effectively
as possible. But because the most desirable choices for one graphics device
can be different from those for another device, the default graphical
parameters are device dependent. These parameters are contained in lists that
we will refer to as the Trellis settings. When trellis.device sets up a
graphics device, the Trellis settings are established for that device and are
saved on a special data structure.

When you write your own panel functions, you may want to make use of the
Trellis settings to provide good performance across different devices. Three
functions enable you to access, display, and change the settings for the
current device. trellis.par.get lets you get settings for use in a panel
function. show.settings shows graphically the values of the settings.
trellis.par.set lets you change the settings for the current device.

trellis.par.get Here is the panel function panel.xyplot:

function(x,y,type="p",cex=plot.symbol$cex,

pch=plot.symbol$pch,font=plot.symbol$font,

lwd=plot.line$lwd,lty=plot.line$lty,

col=if(type =="l") plot.line$col

else plot.symbol$col,...) {

if(type=="l") {

plot.line <- trellis.par.get("plot.line")

lines(x,y,lwd=lwd,lty=lty,col=col,

type=type,...) }
249

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
else {

plot.symbol <- trellis.par.get("plot.symbol")

points(x,y,pch=pch,font=font,cex=cex,

col=col,type=type,...) } }

If the argument type is "p", which means that point symbols are used to plot
the data, then the plotting symbol is defined by the settings list
plot.symbol; the components of this list are given to the function points
that draws the symbols. The list is accessed by trellis.par.get. Here is
the list plot.symbol for the motif device:

> trellis.device(motif)

> plot.symbol <- trellis.par.get("plot.symbol")

> plot.symbol

$cex:

[1] 0.8

$col:

[1] 2

$font:

[1] 1

$pch:

[1] 1

The pch of 1 and col of 2 produces a cyan circle.

If type is "l", which means that lines is used to plot the data, then the
graphical parameters for the lines are in the settings list plot.line:

> trellis.device(motif)

> plot.line <- trellis.par.get("plot.line")

> plot.line

$col:

[1] 2

$lty:

[1] 1

$lwd:

[1] 1

This is a cyan-colored solid line.
250

PANEL FUNCTIONS AND THE TRELLIS SETTINGS
show.settings show.settings displays the graphical parameters in the Trellis settings for
the current device. To see the result for black and white postscript:

> trellis.device(motif)

> show.settings()

Each panel displays one or more settings lists. The names of the settings
appear below the panels. For example, the panel in the third row (from the
top) and first column shows plotting symbols with graphical parameters
plot.symbol and lines with graphical parameters plot.line, and the panel
in the third row and third column shows that the panel function of the
general display function histogram uses the graphical parameters in
bar.fill for the color that shades the bars of a histogram.

trellis.par.set The Trellis settings for the current device can be changed:

> trellis.device(motif)

> plot.symbol <- trellis.par.get("plot.symbol")

> plot.symbol$col

[1] 2

> plot.symbol$col <- 3

> trellis.par.set("plot.symbol", plot.symbol)

> plot.symbol <- trellis.par.get("plot.symbol")

> plot.symbol$col

 [1] 3

trellis.par.set sets an entire Trellis setting list, not just some of the
components. Thus, the simplest way to make a change is to get the current
list, alter it, and then save the altered list. The change lasts only as long as the
device continues. If the S-PLUS session is ended, the altered settings are
removed.
251

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
SUPERPOSING TWO OR MORE GROUPS OF VALUES ON A

PANEL

One common visualization task is superposing two or more groups of values
in the same data region, encoding the different groups in different ways to
show the grouping. For example, we might graph leaf width against leaf
length for two samples of leaves, one from maple trees and one from oaks,
and use a circle as the plotting symbol for the maples and a plus for the oaks.

Superposition is achieved by the panel function panel.superpose. In
addition, the key argument of the general display functions can be used to
show the group encoding.

panel.superpose Superposition is illustrated by using the data frame fuel.frame. For 60
automobiles, Mileage is graphed against Weight for six types of vehicles
described by the factor Type:

> table(fuel.frame$Type)

Compact Large Medium Small Sporty Van

 15 3 13 13 9 7

The vehicle types are encoded by using different plotting symbols. (Nothing
on the graph indicates which symbol is for which type, but the next section
contains information about drawing a legend, or key.)

The panel function panel.superpose carries out such a superposition:

> xyplot(Mileage~Weight,data=fuel.frame,aspect=1,

+ groups=Type,panel=panel.superpose)

The factor Type is given to the argument groups of xyplot. But groups is
also an argument of panel.superpose, so Type is passed along to the panel
function to be used to determine the plotting symbols.

The plotting symbols are the defaults that are set up by the trellis device
function trellis.device; such trellis settings were discussed in the section
Panel Functions and the Trellis Settings (page 249). The specific settings used
by panel.superpose are discussed later in this section. The default symbols
have been chosen to enhance the visual assembly of each group of points; that
is, we want to effortlessly assemble the plotting symbols of a given type to
form a visual gestalt or whole. If assembly can be performed efficiently, then
we can compare the characteristics of the data for different automobile types.
252

SUPERPOSING TWO OR MORE GROUPS OF VALUES ON A PANEL
You can choose your own plotting symbols. For example, suppose that we
want to use the first letters of the vehicle types, but with �S� (for �Small�)
replaced by �P� (for �Peewee�) to avoid duplication with �Sporty�:

> mysymbols <- c("C","L","M","P","S","V")

panel.superpose has an argument pch that can be used to specify the
symbols:

> xyplot(Mileage~Weight,data=fuel.frame,aspect=1,

+ groups=Type,pch=mysymbols,panel=panel.superpose)

Notice that, again, we specify an argument of the panel function�in this
case, pch�by giving it as an argument to xyplot, which passes it along to
the panel function.

panel.superpose will also superpose curves. To superpose a line and a
quadratic :

x <- seq(0,1,length=50)

linquad <- c(x,x^2)

x <- rep(x,2)

which <- rep(c("linear","quadratic"),c(50,50))

xyplot(linquad~x,xlab="Argument",ylab="Functions",

aspect=1,groups=which,type="l",

panel=panel.superpose)

The argument type controls the method of plotting. For the argument
type="p", the default, the data are rendered by plotting symbols. For
type="l", the data are rendered by lines.

The function panel.superpose uses the graphical parameters in the Trellis
setting superpose.symbol for the default plotting symbols. For black and
white postscript, the setting results in different symbol types:

> trellis.device(postscript)

> trellis.par.get("superpose.symbol")

$cex:

[1] 0.85 0.85 0.85 0.85 0.85 0.85 0.85

$col:

[1] 1 1 1 1 1 1 1

$font:

[1] 1 1 1 1 1 1 1

$pch:

[1] "\001" "+" ">" "s" "w" "#" "{"
253

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
There are seven symbols, providing for up to seven groups. If there are two
groups, the first two symbols are used; if there are three groups, the first three
symbols are used; and so forth. The setting for the default line types is
superpose.line:

> trellis.par.get("superpose.line")

$col:

[1] 1 1 1 1 1 1 1

$lty:

[1] 1 2 3 4 5 6 7

$lwd:

[1] 1 1 1 1 1 1 1

There are seven line types.

A call to trellis.settings will show the seven symbols in the first panel
and the seven line types in the second panel of the top row.

The function panel.superpose can be used with any general display
function where superposing different groups of values makes sense. For
example, we can superpose data sets with xyplot or with dotplot or with
many of the other general display functions. By achieving superposition
through the panel function, we do not need a special superposition general
display function for each type of graphical method, which makes things
much simpler.

To illustrate this, the following code produces a dot plot of the barley data
discussed earlier:

> barley.plot <- dotplot(variety~yield|site,data=barley,

+ groups=year,layout=c(1,6),aspect=.5,

+ xlab="Barley Yield (bushels/acre)",

+ panel=function(x,y,...) {

+ dot.line <- trellis.par.get("dot.line")

+ abline(h=unique(y),lwd=dot.line$lwd,

+ lty=dot.line$lty,col=dot.line$col)

+ panel.superpose(x,y,...) })

> print(barley.plot)

On each panel, data for two years are displayed, and the years 1931 and 1932
are distinguished by different plotting symbols. The plot has been saved in
the Trellis object barley.plot for use later on.
254

SUPERPOSING TWO OR MORE GROUPS OF VALUES ON A PANEL
The general display function dotplot has not sent the factor variety to the
panel function to be the y vector for the function; rather, it has sent a
numeric vector of values from 1 to 10, with 1 corresponding to the first of
the 10 levels of the factor, 2 corresponding to the second level, and so forth.
The display function has sent the values of yield as the vector x, and the
conditioning vector is site. Thus, on each panel, there are 20 values of x
and 20 values of y; for each level of variety, there are two values of x (one for
1931 and one for 1932) and two values of y; and there are 10 levels of variety.
The plotting symbols are drawn by panel.superpose at the 20 values of x
and y on each panel.

The panel function for this dotplot example is more complicated than that
for the xyplot examples because, along with superposing the plotting
symbols by panel.superpose, the horizontal lines of the dot plot must be
drawn. abline draws the lines at the unique values of y. The characteristics
of the line are specified by the Trellis setting dot.line.

key Argument A key can be added to a Trellis display through the argument key of the
general display functions. The argument is a list. With one exception, the
component names are the names of the arguments of the function key, which
actually does the drawing of the key, so the values of these components are
given to the corresponding arguments of key. The exception is the
component argument space, which can leave extra space for a key in the
margins of the display.

The key argument is easy to use yet is quite powerful; it has the capability to
draw most keys used in practice and many yet to be invented:

update(barley.plot,

key=list(

points=Rows(trellis.par.get("superpose.symbol"),1:2),

text=list(levels(barley$year)))

The plot would be drawn using update to alter barley.plot. The
component text of the key argument is a list with the year names. The
component points is a list with the graphical parameters of the two symbols
used by panel.superpose to plot the data. These parameters are from the
Trellis setting superpose.symbol, which panel.superpose uses to draw
the plotting symbols.

We want to give the component points only the parameters of the symbols
used, so the function Rows extracts the first two elements of each component
of superpose.symbol:

> trellis.device(postscript)
255

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
> Rows(trellis.par.get("superpose.symbol"),1:2)

$cex:

[1] 1 1

$col:

[1] 1 1

$font:

[1] 1 1

$pch:

[1] "o" "+"

The key has two entries, one for each year. If there had been four years, there
would have been four entries. Each entry has two items; as we shall see, we
can specify more items if we choose. The order of the items is the order of
specification in the argument key; in the above expression, points is first
and text is second, so in the key, the symbol is the first item and the text is
the second. Had we specified text first, the symbol would have followed the
text in each entry.

The two entries, by default, are drawn as an array with one column and two
rows. We can change this by the argument columns. Also, we can switch the
order of the symbols and the text:

update(barley.plot,

key=list(

text=list(levels(barley$year)),

points=Rows(trellis.par.get("superpose.symbol"),1:2),

columns=2))

The argument space allocates space for the key in the margins. It takes one
of four values�"top", "bottom", "right", "left"� allocating the space
on the side of the graph described by the value. So far, it has been allocating
space at the top, which is the default, and placing the key in the allocated
space. More will be said about the space argument later.

If the default location of the key seems a bit too far from the rest of the graph,
the key can be repositioned and a border can be drawn around it:

update(barley.plot,

key=list(

points=Rows(trellis.par.get("superpose.symbol"),1:2),

text=list(levels(barley$year)),

columns=2,

border=1,

space="top",

x=.5,
256

SUPERPOSING TWO OR MORE GROUPS OF VALUES ON A PANEL
y=1.02,

corner=c(.5,0)))

The argument border draws a border; it takes a number that specifies the
color in which the border should be drawn.

The repositioning uses two coordinate systems. The first describes locations
in the rectangle that just encloses the panels of the display, but not including
the tick marks; the lower left corner of this panel rectangle has coordinates
(0,0), and the upper right corner has coordinates (1,1). A location in the
panel rectangle is specified by the components x and y. The second
coordinate system describes locations in the border rectangle of the key,
which is shown when the border is drawn; the lower left corner of the key
rectangle has coordinates (0,0), and the upper right corner has coordinates
(1,1). A location in the border rectangle is specified by the component
corner, a vector with two elements, the horizontal and vertical coordinates.
The key is positioned so that the locations specified by the two coordinate
systems are at the same place on the graph.

Having two coordinate systems makes it far easier to get the key to a desired
location quickly, often on the first try.

Notice that we specified the space argument to be "top". The reason is that
as soon as we specify a value for any of the coordinate arguments x, y, or
corner, no default space is allocated in any margin location unless we
explicitly use the argument space. If we do not use the coordinate
arguments, the space argument defaults to "top". To allocate space to the
right:

update(barley.plot,

key=list(

points=Rows(trellis.par.get("superpose.symbol"),1:2),

text=list(levels(barley$year)),

space="right"))

To draw a border and to position the key by putting the upper left corner of
the border rectangle at the same vertical position as the top of the panel
rectangle and at a horizontal position slightly to the right of the right side of
the panel rectangle:

update(barley.plot,

key=list(

points=Rows(trellis.par.get("superpose.symbol"),1:2),

text=list(levels(barley$year)),

space="right",

border=1

corner=c(0,1),
257

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
x=1.05,

y=1))

So far, we have seen that the components points and text can be used to
create items in key entries. A third component, lines, draws line items. To
illustrate this, let us return to graphing Mileage against Weight for six types
of vehicles. The following code makes the plot and adds two loess smooths
with two different values of the smoothing parameter span:

superpose.line <- trellis.par.get("superpose.line")

superpose.line$col[3:6] <- 0

superpose.symbol <- trellis.par.get("superpose.symbol")

xyplot(Mileage~Weight,

data=fuel.frame,

groups=Type,

aspect=1,

panel=function(x,y,...) {

panel.superpose(x,y,...)

panel.loess(x,y,

span=1/2,

lwd=superpose.line$lwd[1],

lty=superpose.line$lty[1],

col=superpose.line$col[1])

panel.loess(x,y,

span=1,

lwd=superpose.line$lwd[2],

lty=superpose.line$lty[2],

col=superpose.line$col[2]) },

key = list(

transparent=T,

x=.95,

y=.95,

corner=c(1,1),

lines=list(Rows(superpose.line,1:6),

size=c(3,3,0,0,0,0)),

text=list(c("Span = 0.5","Span = 1.0",

rep("",4))),

points=Rows(superpose.symbol,1:6),

text=list(levels(fuel.frame$Type))))
258

DATA STRUCTURES
DATA STRUCTURES

Trellis Graphics uses the S-PLUS formula language to specify the data for
plotting. This requires the data to be stored in data sets that work with
formulas. Roughly speaking, this means that the data variables must either be
from a data frame or be vectors of the same length (this is also true of the
S-PLUS modeling functions such as lm.). But in S-PLUS there are many other
data structures. So that Trellis functions will be easy to use, three functions
convert data structures of different kinds into data frames�make.groups,
as.data.frame.array, and as.data.frame.ts.

make.groups The function make.groups takes several vectors and constructs a data frame
with two components, data and which. For example, consider payoffs of the
New Jersey Pick-It lottery from three time periods. The data are stored as
three vectors of values. Suppose we want to make boxplots to compare the
three distributions: We first convert the three vectors to a data frame:

> lottery <- make.groups(lottery.payoff,lottery2.payoff,

+ lottery3.payoff)

> names(lottery)

 [1] "data" "which"

> levels(lottery$which)

[1] "lottery.payoff" "lottery2.payoff" "lottery3.payoff"

The data component is simply the combined numbers from all the
make.groups arguments. The which component is a factor with three levels,
giving the names of the original data vectors. Now we can make the boxplots:

> bwplot(which~data,data=lottery)

as.data.frame.array

The function as.data.frame.array converts arrays into data frames.
Consider the object iris, a three-way array of 50 measurements of four
variables for each of three varieties of irises:

> dim(iris)

[1] 50 4 3
259

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
To turn iris into a data frame in preparation for Trellis plotting, use:

iris.df <- as.data.frame.array(iris,col.dims=2)

 names(iris.df)[5:6] <- c("flower","variety")

The resulting data frame has what used to be its second dimension turned
into four columns:

> iris.df[1:5,]

 Sepal L. Sepal W. Petal L. Petal W. flower variety

1 5.1 3.5 1.4 0.2 1 Setosa

2 4.9 3.0 1.4 0.2 2 Setosa

3 4.7 3.2 1.3 0.2 3 Setosa

4 4.6 3.1 1.5 0.2 4 Setosa

5 5.0 3.6 1.4 0.2 5 Setosa

To produce a scatterplot matrix of the data:

superpose.symbol <- trellis.par.get("superpose.symbol")

for (i in 1:4)

iris.df[,i] <- jitter(iris.df[,i])

splom(~iris.df[,1:4],

key=list(

space="top",columns=3,

text=list(levels(iris.df$variety)),

points=Rows(superpose.symbol,1:3)),

varnames=c("Sepal Length\n (cm)",

"Sepal Width\n (cm)",

"Petal Length\n (cm)", "Petal Width\n (cm)"),

groups=iris.df$variety,

panel=panel.superpose)

To prevent exact overlap of many of the plotting symbols, the data have been
jittered before plotting.

as.data.frame.ts The function as.data.frame.ts takes one or more time series as arguments
and produces a data frame with components named series, which, time,
and cycle. The series component is the data from all of the time series
combined into one long vector. The time component gives the time
associated with each of the points (measured in the same units as the original
series, for example, years), and cycle gives the periodic component of the
time (for example, 1=Jan, 2=Feb, ...). Finally, the which component is a
260

DATA STRUCTURES
factor that tells which of the time series the measurement came from. In the
following example, there is only one series, hstart, but in general
as.data.frame.ts can take many arguments:

> as.data.frame.ts(hstart)[1:5,]

 series which time cycle

1 81.9 hstart 1966.000 Jan

2 79.0 hstart 1966.083 Feb

3 122.4 hstart 1966.167 Mar

4 143.0 hstart 1966.250 Apr

5 133.9 hstart 1966.333 May

To graph housing starts for each month separately from 1966 to 1974:

> xyplot(series~time|cycle,

+ data=as.data.frame.ts(hstart),type="b",

+ xlab="Year",ylab="Housing Starts by Month")
261

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
MORE ON ASPECT RATIO AND SCALES: PREPANEL

FUNCTIONS

Banking to 45 degrees is an important display method built into Trellis
Graphics through the argument aspect. The ranges of scales on the panels
can be controlled by the arguments xlim and ylim, or by the argument
scales. Another argument, prepanel, is a function that supplies
information for the banking and range calculations.

prepanel

Argument

The code below will plot the ethanol data; NOx is graphed against E given C
and loess curves have been superposed.

> xyplot(NOx~E|C,data=ethanol,aspect=1/2,

+ panel=function(x,y) {

+ panel.xyplot(x,y)

+ panel.loess(x,y,span=1/2,degree=2) })

There are now two things we would like to do with this plot, one involving
the aspect ratio and the other involving the ranges of the scales.

First, we have set the aspect ratio to 1/2 using the aspect argument. We
could have set the aspect argument to "xy" to carry out 45 degrees banking
of the line segments that connect the points of the plot, that is, the graphed
values of E and NOx. But normally we do not want to carry out banking of the
raw data if they are noisy; rather, we want to bank an underlying smooth
pattern. In this example, we want to bank using the line segments of the loess
curves.

Second, in the top panel, the loess curve exceeds the maximum value along
the vertical scale and so is chopped off. It is important to understand why this
happened. The scales where chosen based on the values of E and NOx. The
loess curves were computed by the panel function after all of the scaling had
been carried out. We would like a way for the scaling to take account of the
values of the loess curve.

The argument prepanel allows us to bank to 45 degrees based on the loess
curves and to take the curves into account in computing the ranges of the
scales:

> xyplot(NOx~E|C,data=ethanol,

+ prepanel=function(x,y)

+ prepanel.loess(x,y,span=1/2,degree=2),layout=c(1,6),

+ panel=function(x,y) {
262

MORE ON ASPECT RATIO AND SCALES: PREPANEL FUNCTIONS
+ panel.xyplot(x,y)

+ panel.loess(x,y,span=1/2,degree=2)})

The prepanel argument takes a function and does panel-by-panel
computations, just like the argument panel, but these computations are
carried out before the scales and aspect ratio are determined and so can be
used in their determination. The returned value of a prepanel function is a
list with prescribed component names. These names are shown in the
prepanel function prepanel.loess:

> prepanel.loess

function(x,y, ...) {

xlim <- range(x)

ylim <- range(y)

out <- loess.smooth(x,y,...)

x <- out$x

y <- out$y

list(xlim=range(x,xlim),ylim=range(y,ylim),

dx=diff(x),dy=diff(y)) }

The component values xlim and ylim determine ranges for the scales just as
they do when they are given as arguments of a general display function. The
values of dx and dy are the horizontal and vertical changes of the line
segments that are to be banked to 45 degrees.

The function prepanel.loess computes the smooths for all panels,
computes values of xlim and ylim that ensure the curve will be included in
the ranges of the scales, and then passes along the changes of the line
segments that will make up the plotted curve. Any of the component names
can be missing from the list; if either dx or dy is missing, the other must be as
well. When dx and dy are present, they give the information needed for
banking to 45 degrees, as well as the instruction to do so; thus, the aspect
argument should not be used as an argument when dx and dy are present.

More on

Multipanel

Conditioning

The multipanel conditioning of Trellis Graphics has three more arguments
that assist in the control of the layout, visual design, and labeling. The
argument between puts space between adjacent columns or adjacent rows.
The argument skip allows a panel position to be skipped when packets are
sent to the panels for drawing. The page argument can add page numbers,
text, or even graphics to each page of a multipage Trellis display.
263

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
between

Argument

To graph the barley data:

> barley.plot <- dotplot(site~yield|variety*year,

+ data=barley,aspect="xy",layout=c(2,5,2))

> barley.plot

In the resulting two-page Trellis display, yield is plotted against site given
variety and year.

The layout�2 columns, 5 rows, and 2 pages�has put the measurements for
1931 on the first page and for 1932 on the second page. The display will be
saved in barley.plot for future editing. The panels can be squeezed into
one page by changing layout from (2,5,2) to (2,10,1):

> barley.plot <- update(barley.plot,layout=c(2,10,1))

> barley.plot

Rows 1 to 5 (starting from the bottom) have the 1932 data and rows 6 to 10
have the 1931 data. The change in the value of the year variable from rows 5
to 6 is indicated by the text of the strip label, but a stronger indication of a
change would occur if there was a break in the display between rows 5 and 6.

The argument between can be used to insert space between adjacent rows or
adjacent columns of a Trellis display. To illustrate this, try the following,
which puts space between rows 5 and 6 of the barley display:

> barley.plot <- update(barley.plot,

+ between=list(y=c(0,0,0,0,1,0,0,0,0)))

> barley.plot

The argument between is a list with components x and y, either of which can
be missing. x is a vector whose length is equal to the number of columns
minus one; the values are the amount of space, measured in character height,
to be inserted between columns. Similarly, y specifies the amount of space
between rows.

skip Argument The argument skip, which takes a logical vector, controls skipping. Each
element says whether or not to skip a panel. For example:

> market.plot <- bwplot(age~log(1+usage)|income*pick,

+ strip=function(...)

+ strip.default(...,strip.names=T),

+ skip=c(F,F,F,F,F,F,F,T),

+ layout=c(2,4,2),

+ data=market.survey)
264

MORE ON ASPECT RATIO AND SCALES: PREPANEL FUNCTIONS
> market.plot

The layout will have eight panels per page but there are seven plots. On both
pages, the last panel is skipped. The skipping has been done because the
conditioning variable income has seven levels.

page Argument The argument page can add page numbers, text, or graphics to each page of
a multipage Trellis display. page should be a function of a single argument n,
the page number; the function tells what to draw on page n. For example:

> update(market.plot,page=function(n)

> text(x=.75,y=.95,paste(" page",n),adj=.5))

text, an S-PLUS core graphics function, uses a coordinate system that is the
same as the panel rectangle coordinate system for the argument key; (0,0) is
the lower left corner and (1,1) is the upper left corner.
265

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
SUMMARY OF TRELLIS FUNCTIONS AND ARGUMENTS

Table 7.1: An alphabetical guide to Trellis Graphics.

Statement Purpose Example

as.data.frame.array function iris.df <-as.data.frame.array(iris,

col.dims=2)

as.data.frame.ts function data.frame.ts(hstart)[1:5,]

aspect argument xyplot(NOx~E,data=gas,aspect=1/2,xlab=

�Equivalence Ratio�,ylab=�Oxides of

Nitrogen�,main=�Air Pollution�,sub=

�Single-Cylinder Engine�)

barchart function barchart(names(mileage.means)~

mileage.means,aspect=1)

between argument barley.plot <- update(barley plot,between=

list(y=c(0,0,0,0,1,0,0,0)))

bwplot function bwplot(Type~Mileage,data=fuel.frame,

aspect=1)

cloud function cloud(Mileage~Weight*Disp.,data=fuel.frame,

screen=list(z=-30,x=-60,y=0),xlab=�W�,ylab=

�D�,zlab=�M�)

contourplot function contourplot(dataz~datax*datay,data=gauss,

aspect=1,at=seq(.1,.9.by=.2))

data argument see aspect example

densityplot function densityplot(~Mileage,data=fuel.frame,

aspect=1/2,width=5)

dev.cur function dev.cur()

dev.list function dev.list()

dev.off function dev.off()

dev.set function dev.set(which=2)

dotplot function dotplot(names(mileage.means)~

log(mileage.means,base=2),aspect=1,cex=1.25)
266

SUMMARY OF TRELLIS FUNCTIONS AND ARGUMENTS
equal.count function GIVEN.E <- equal.count(ethanol$E,number=9,

overlap=1/4)

formula argument xyplot(formula=gas$NOx~gas$E)

histogram function histogram(Mileage,data=fuel.frame,aspect=1,

nint=10)

intervals argument GIVEN.E <- shingle(ethanol$E,intervals=

cbind(endpoints[-6],endpoints[-1]))

jitter argument stripplot(Type~Mileage,data=fuel.frame,

jitter=TRUE,aspect=1)

key argument update(barley.plot,key=list(points=

Rows(trellis.par.get(�superpose.symbol�),

1:2),text=list(levels(barley$year)))

layout argument dotplot(site~yield|year*variety,data=barley,

layout=c(2,5,2))

levelplot function levelplot(dataz~datax*datay,data=gauss,

aspect=1,cuts=6)

levels function levels(barley$year)

main argument see aspect example

make.groups function lottery <- makegroups(lottery.payoff,

lottery2.payoff,lottery3.payoff)

market.plot function update(market.plot,page=function(n)

text(x=.75,y=.95,paste(� page�,n),adj=.5))

page argument see market.plot example

panel argument panel.special <- function(x, y){

biggest <- y==max(y)

points(x[!biggest],y[!biggest],pch=�+�)

points(x[biggest],y[biggest],pch=�M�)}

panel.superpose function xyplot(Mileage~Weight,data=fuel.frame,

aspect=1,groups=Type,panel=panel.superpose)

Table 7.1: An alphabetical guide to Trellis Graphics.

Statement Purpose Example
267

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
panel.loess function xyplot(NOx~C|GIVEN.E,data=ethanol,

aspect=2.5,panel=function(x,y)

{panel.xyplot(x,y) panel.loess(x,y,span=1)})

panel.xyplot function see panel.loess example

parallel function parallel(~fuel.frame)

par function par(ask=TRUE)

par.strip.test argument par.strip.test=list(cex=2)

piechart function piechart(names(mileage.means)~mileage.means)

prepanel argument xyplot(NOx~E|C,data=ethanol,prepanel=

function(x,y) prepanel.loess(x,y,span=1/2,

degree=2),layout=c(1,6),panel=function(x,y)

{panel.xyplot(x,y) panel.loess(x,y,span=

1/2,degree=2)})

prepanel.loess function see prepanel example

print function print(box.plot,position=c(0,0,1,.4),more=T)

print.trellis function print.trellis()

pscales argument pscales=1

qq function qq(Type~Mileage,data=fuel.frame,aspect=1,

subset=(Type==�Compact�)|(Type==�Small�))

qqmath function qqmath(~Mileage,data=fuel.frame,subset=

(Type==�Small�))

reorder.factor function barley$variety <- reorder.factor

(barley$varietry,barley$yield,median)

Rows function Rows(trellis.par.get(�superpose.symbol�),

1:2)

scales argument xyplot(NOx~E,data=gas,aspect=1/2,ylim=

c(0,6),scales=list(cex=2,tick number=4))

Table 7.1: An alphabetical guide to Trellis Graphics.

Statement Purpose Example
268

SUMMARY OF TRELLIS FUNCTIONS AND ARGUMENTS
screen argument wireframe(dataz~datax*datay,data=gauss,

drape=F,screen=list(z=45,x=-60,y=0))

shingles function GIVEN.E <- shingle(ethanol$E,intervals=

cbind(endpoints[-6],endpoints[-1]))

show.settings function show.settings()

skip argument bwplot(age~log(1+usage)|income*pick,

strip=function(...) strip.default(...,

strip.names=T),skip=c(F,F,F,F,F,F,F,T),

layout=c(2,4,2),data=market.survey)

span argument see prepanel.loess example

space argument update(barley.plot,key=list(points=

Rows(trellis.par.get(�superpose.symbol�),

1:2),text=list(levels(barley$year)),

space=�right�))

splom function splom(~fuel.frame)

strip argument see skip example

stripplot function see jitter example

sub argument see aspect example

subscripts argument xyplot(NOx~E|C,data=ethanol,aspect=1/2,

panel=function(x,y,subscripts) text(x,y,

subscripts,cex=.75))

subset argument xyplot(NOx~E,data=gas,subset=E<1.1)

superpose.symbol argument trellis.par.get(�superpose.symbol�)

trellis.args function ?trellis.args

trellis.device function trellis.device(postscript,onefile=FALSE)

trellis.par.get function plot.line <- trellis.par.get(�plot.line�)

Table 7.1: An alphabetical guide to Trellis Graphics.

Statement Purpose Example
269

CHAPTER 7 TRADITIONAL TRELLIS GRAPHICS
trellis.par.set function trellis.par.set(�plot.symbol�,

plot.symbol)

update function foo <- update(foo,main=�Dependence of NOx

on E�)

width argument see densityplot example

wireframe function see screen example

xlab argument see aspect example

xlim argument xlim <- range(x)

xyplot function xyplot(Mileage~Weight,data=fuel.frame,

aspect=1)

ylab argument see aspect example

ylim argument see scales example

Table 7.1: An alphabetical guide to Trellis Graphics.

Statement Purpose Example
270

Printing Your Graphics 272
Printing with PostScript Printers 272
Printing with HP-GL Pen Plotters 283
Creating PDF Graphics Files 285
Managing Files from Hard Copy Graphics Devices 285
Using Graphics from a Function or Script 286

Graphics Window Details 289
Basic Terminology 289
Available Colors Under X11 306

WORKING WITH GRAPHICS

DEVICES 8
271

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
PRINTING YOUR GRAPHICS

One important and widespread use of S-PLUS is to produce camera-ready
graphics plots for technical reports and papers. S-PLUS supports two kinds of
hard copy graphics devices: PostScript laser printers and Hewlett-Packard
HP-GL plotters. S-PLUS also supports publication on the World Wide Web
by means of a graphics device for creating files in Portable Document Format
(PDF). These devices are discussed in the following sections. General rules
for making plot files are discussed in the section Managing Files from Hard
Copy Graphics Devices (page 285).

Printing with

PostScript

Printers

One important and widespread use of S-PLUS is to produce camera-ready
graphics plots for technical reports and papers. For many S-PLUS users, that
means producing graphics suitable for printing on PostScript-compatible
printers.

In S-PLUS, you can create PostScript graphics using any of the following
methods:

� Choose Print from the Graph menu on the motif windowing
graphics device.

� Use the printgraph function with any graphics device that
supports it. (The motif device supports printgraph, as do many
others. See the Devices help file for a complete list.)

� Use the postscript function directly.

We discuss each of these methods in the following subsections.

If you are using postscript directly, the aspect ratio of the finished graphic
is determined by the width and height, if any, that you specify, the
orientation, and the paper size. If you use the other methods, by default the
aspect ratio is the original aspect ratio of the device on which the graphic is
originally created. For the windowing graphic devices motif, this ratio is
8:6.32 by default. Resizing the graphics window has no effect on PostScript
output created from the resized window; it retains the aspect ratio of the
original, unresized window.
272

PRINTING YOUR GRAPHICS
Using the Print

Option from

Graphics Window

Menus

The motif windowing graphics device is a convenient tool for exploratory
data analysis and interactive graphics. You can easily create PostScript
versions of graphics created on these devices by using the Print option from
the Graph menu. The behavior of this option is determined by options
specified in the Printing Options dialog box selected from the Options
menu. The following choices are available:

� Method Should show PostScript selected. If not, move
the pointer to the PostScript method and click.

� Orientation Determines the orientation of the graphic on
the paper. Landscape orientation puts the
x-axis along the long side of the paper; Portrait
orientation puts the x-axis along the short side
of the paper. To choose the orientation, move
the pointer to the desired choice and click.

� Command A UNIX command executed when you select
the Print option from the Graph menu. The
default value, when Method is set to
PostScript, is the command stored in the value
of ps.options()$command. To change this
command, move the pointer to this line and
click to ensure the line has input focus, then
edit the command.

As the default command is normally to send a file to a printer, the most
common use of the Print option is to create immediately a hard copy of the
displayed graphic. You can, however, specify a command such as the
following to store the PostScript output in a named file:

cat > myfile <

Here myfile is any desired file name. However, the printgraph function,
described in the next section, provides a more convenient method for
creating files of PostScript output.

To choose the Print option from the graphics device:

 1. Move the pointer to the button labeled Graph.

 2. Click and a menu appears.
273

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
 3. Drag the pointer to the Print option, then release the mouse button.
A message appears in the footer of the graphics window telling you
that the specified command has been executed.

Using the

printgraph

Function

In its simplest use, the printgraph function is just another way to produce
immediate hard copies of graphics created on windowing or other graphics
devices. Many graphics devices for use with graphics terminals and
emulators, including tek14, support the printgraph function.

The default behavior of the printgraph function is determined by a number
of environment variables. These are discussed in the section Environment
Variables and printgraph (page 322). To make printgraph produce
PostScript output, you should make sure that the environment variable
S_PRINTGRAPH_METHOD is set to postscript, or call printgraph
directly with the argument method=�postscript�.

S_PRINTGRAPH_METHOD determines the default value for the
method argument to printgraph and specifies the type of printer for which
printgraph produces output. Environment variables cannot be set from
within S-PLUS; if you want to change an environment variable, quit S-PLUS,
reset the environment variable, then restart S-PLUS.

Within your S-PLUS session, you can control the default printing behavior by
using ps.options. We recommend that you use ps.options instead of
environment variables whenever possible. The options that can be controlled
through ps.options are described in the section Setting PostScript Options
(page 279).

To call printgraph to print an immediate hard copy of the current graphic,
use the following call:

> printgraph()

You can override the default method, command, and orientation with
arguments to printgraph:

> printgraph(horizontal=F, method=�postscript�,
+ command=�lpr -h�)

Using the

postscript

Function

You can start the postscript device directly very simply as follows:

> postscript()

By default, this writes PostScript output to a temporary file using the
template specified in ps.options. When the device is shut down, the output
is printed with the command specified in ps.options.
274

PRINTING YOUR GRAPHICS
You can specify many options as arguments to postscript; most of these are
global PostScript printing options that are also used by the Print option of
the windowing graphics device and by the printgraph function---these
options are discussed in the section Setting PostScript Options (page 279).
The append, onefile, and print.it arguments, however, are specific to
calls to postscript.

The onefile argument is specified as a logical value, which defaults to TRUE.
By default, when you start the postscript device explicitly, plots are
accumulated into a single file as given by the file argument. If no file
argument is specified, the file is named using the template specified in
ps.options()tempfile. When onefile is FALSE, a separate file is created
for each plot and the PostScript file created is structured as an Encapsulated
PostScript document. See the section Creating Encapsulated PostScript Files
(page 277), for further details.

The append option is a logical value that specifies whether PostScript output
is appended to file if it already exists. In addition to appending the new
graphics, S-PLUS edits the file to comply with the PostScript Document
Structuring Conventions. If append=FALSE, new graphics output writes over
the existing file, destroying its previous contents.

You can use the print.it argument to specify that the graphic created on
the postscript device be both sent to the printer and written to a file, as
follows:

> postscript(file=�mystuff2.ps�, print.it=T)
> plot(corn.rain)
> title(�A plot created with postscript()�)
> dev.off()
Starting to make postscript file.
 null device
 1
> !vi mystuff2.ps
%!PS-Adobe-3.0
%%Title: (S-PLUS Graphics)
%%Creator: S-PLUS
%%For: (Rich Calaway,x240)
%%CreationDate: Thu Jul 30 21:45:21 1992
%%BoundingBox: 20 11 592 781
%%Pages: (atend)
. . .
275

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
Using postscript directly can be cumbersome, since you don�t get
immediate feedback on graphics produced incrementally. You can, however,
build a graphics function incrementally, using a windowing graphics device or
graphics terminal. Then, when the graphics function works well on screen,
start a postscript device and call your graphics function. Such an approach
will result in fewer hard copies for the recycling bin. For example, consider
the complicated graphic constructed in section Adding Special Symbols to
Plots (page 206). We can combine the commands of that section into a single
function as follows:

> usasymb.plot
function()
{

select <- c(�Atlanta�, �Atlantic City�, �Bismarck�,
�Boise�, �Dallas�, �Denver�, �Lincoln�,
�Los Angeles�, �Miami�, �Milwaukee�,
�New York�, �Seattle�)

city.name <- city.name
city.x <- city.x
city.y <- city.y
names(city.x) <- names(city.y) <-

names(city.name) <- city.name
pop <- c(425, 60, 28, 34, 904, 494, 129, 2967, 347,

741, 7072, 557)
usa()
symbols(city.x[select], city.y[select], circles =

sqrt(pop), add = T)
size <- ifelse(pop > 1000, 2, 1)
size <- ifelse(pop < 100, 0.5, size)
text(city.x[select], city.y[select], city.name[

select], cex = size)
}

Warning

If you want to both print the graphic and keep the named PostScript file, be sure that the UNIX print
command does not delete the printed file. For example, on some computers, the default value of
ps.options()$command (which is determined by the environment variable
S_POSTSCRIPT_PRINT_COMMAND) is lpr -r -h, where the -r flag causes the printed file
to be deleted. The following call to postscript replaces this default with a command that does not delete the
file:

> postscript(file=�mystuff2.ps�, print.it=T, command=�lpr -h�)
276

PRINTING YOUR GRAPHICS
Modifying a function containing a string of graphics commands is much
easier than retyping all the commands to re-create the graphic.

Another useful technique for preparing PostScript graphics is to use
PostScript screen viewers such as ghostview.

Creating

Encapsulated

PostScript Files

If you are creating graphics for inclusion in other documents, you typically
want to create a single file for each graphic in a file format known as
Encapsulated PostScript, or EPS. EPS files can be included in documents
produced by many word-processing and text-formatting programs.

Documents conforming to the Adobe Document Structuring Convention
Specifications, Version 3 for Encapsulated PostScript have the following first
line:

%!PS-Adobe-3.0 EPSF-3.0

They must also include a BoundingBox comment. Non-EPS files have the
following first line:

%!PS-Adobe-3.0

You can use printgraph to produce separate files for each graphic you
produce, as soon as you�ve finished composing it on a windowing graphics
device or terminal/emulator that supports printgraph. You can specify the
file name and orientation of the graphics file. For example, you can create the
PostScript file mystuff.ps containing a plot of the dataset corn.rain as
follows:

> motif()
> plot(corn.rain)
> title(�My Plot of Corn Rain Data�)
> printgraph(file=�mystuff.eps�)

You can produce EPS files with direct calls to postscript by setting
onefile=FALSE. To create a single file, with a name you specify, call
postscript with the file argument and onefile=F:

Warning

S-PLUS supports the Encapsulated PostScript file format, EPSF. It does not support the
Encapsulated PostScript Interchange format, EPSI. EPS files created by S-PLUS do not include a
preview image, so if you import an S-PLUS graphic into WYSIWYG software such as
FrameMaker or Word, you will see only a gray rectangle or a box where the graphic is included.
277

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
> postscript(file=�mystuff.eps�, onefile = F, print = F)
> plot(corn.rain)
> dev.off()

To create a series of Encapsulated PostScript files in a single call to
postscript, omit the file argument:

> postscript(onefile=F, print=F)
> plot(corn.rain)
> plot(corn.yield)
Starting to make postscript file.
Generated postscript file �ps.out.0001.ps�.

Because onefile is FALSE, postscript generates a postscript file as soon as
the new call to plot tells it that nothing more will be added to the first plot.
The file �ps.out.0001.ps� contains the plot of corn.rain. A file
containing the plot of corn.yield is generated as soon as a new call to plot
or a call to dev.off closes the old plot.

> plot(corn.rain, corn.yield)
Starting to make postscript file.
Generated postscript file �ps.out.0002.ps�.

You can give a series-specific naming convention for the series of files using
the tempfile argument to postscript:

> postscript(onefile=F, print=F, tempfile=�corn.####.ps�)
> plot(corn.rain)
> plot(corn.yield)
Starting to make postscript file.
Generated postscript file �corn.0001.ps�.
> plot(corn.rain, corn.yield)
Starting to make postscript file.
Generated postscript file �corn.0002.ps�.
> dev.off()
Starting to make postscript file.
Generated postscript file �corn.0003.ps�.

Warning

If you supply the file argument and set onefile=F in the same call to postscript, you must turn off
the device with dev.off after completing the first plot. Otherwise, the next plot will overwrite the
previous plot, and the previous plot will be irretrievably lost.
278

PRINTING YOUR GRAPHICS
Setting

PostScript

Options

The behavior of the postscript graphics device, whether activated by the
Print option from a motif graphics device, by a call to printgraph, or by a
direct call to postscript, is controlled by options you can set with the
ps.options function. These options allow you to control many aspects of
the PostScript output, including the following:

� The name of the PostScript output file.

� The UNIX command to print your PostScript output.

� The orientation and size of the finished plot.

� Printer-specific characteristics, including paper size, number of
rasters per inch, and the size of the imageable region.

� Plotting characteristics of the graphics, including the base point size
for text and available fonts and colors.

Specifying the PostScript File Name

All PostScript output is initially written to a file. Unless you explicitly call the
postscript device with the onefile=T argument, S-PLUS writes a separate
PostScript file for each plot, in compliance with the Encapsulated PostScript
Document Structuring Conventions. You can specify the file name for the
output file using the file argument to postscript or printgraph, or
provide a template for multiple file names using the PostScript option
tempfile, which defaults to �ps.out.####.ps�. You can specify this
option as an argument to the printgraph, postscript, and ps.options
functions. The template you specify must include some # symbols, as in the
default. S-PLUS replaces the first series of these symbols that it encounters
with a sequential number of the same number of digits in the generated file
names. For example, if you have a project involving the halibut data, and
you know your project will use fewer than 1000 graphics files, you can set the
tempfile option as follows to use the name of your data set:

> ps.options(tempfile=�halibut.###.ps�)

Specifying a Printer Command

What happens to the file after it is created is determined by the command
option. The command option is a character string specifying the UNIX
command used to print a graphic. If file is specified (and is neither a
template nor an empty string), the command option must be activated by
279

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
some user action, either choosing the Print option from a windowing
graphics device, specifying print=TRUE in the printgraph function, or
specifying print.it=TRUE in the postscript function.

The default for command is the value of the environment variable
S_POSTSCRIPT_PRINT_COMMAND .

Specifying Plot Orientation and Size

You specify the plot orientation with the horizontal option: TRUE for
landscape mode (x-axis along long edge of paper), FALSE for portrait. Most
figures embedded in documents should be created in portrait mode, because
that is the usual orientation of documents. The default is the orientation
specified by the S_PRINT_ORIENTATION , which by default is set to
TRUE, that is, landscape mode. If you specify an orientation with your
graphics window�s Options Printing menu, that specified orientation is taken
to be the default.

You specify the plotting region, in inches, with the width (the x-axis
dimension) and height (y-axis dimension) options. Thus, to create graphics
for inclusion in a manual, you might specify the following options:

> ps.options(horizontal=F, width=5, height=4)

The default value for width and height are determined by the printer�s
imageable region, as described in the next subsection.

Specifying Printer Characteristics

PostScript can describe pages of virtually any size, but it does little good to
create enormous page descriptions if you don�t have an output device capable
of printing them. Most PostScript printers have remarkably similar
characteristics, so you may not have to change the options that specify them.
For example, in the United States, most printers default to �letter� (8 1/2
x 11) paper. Among the options that you can specify for your printer, the
paper option is the most important. The paper argument is a character
string; most standard ANSI and ISO paper sizes are accepted. Each paper size
has a specific imageable region, which is the portion of the page on which the
printer can actually print. This region can vary slightly depending on the
printer hardware, even for paper of the same size. The imageable region
determines the default values for the width and height options.
280

PRINTING YOUR GRAPHICS
Specifying Plotting Characteristics

The PostScript options that have the greatest immediate impact on what you
see are those affecting the PostScript graphic�s plotting characteristics. These
options include the following:

� fonts A vector of character strings specifying all
available fonts.

� colors A numeric vector or matrix assigning actual
colors to the color numbers used as arguments
to graphics functions. This option is discussed
in more detail in the next section.

� image.colors Same as colors, but for use with the image
function.

� background A numeric vector giving the color of the
background, as in colors.background, can
also be a single number that is used as an index
to the colors argument if it is positive or, if it
is negative, specifies no background at all.

Creating Color

PostScript

Graphics

Creating PostScript graphics in color is no more difficult than creating color
graphics on your windowing graphics device. With the xgetrgb function,
you can copy the color map from the current motif device and use it for
PostScript output. The following steps show how to print graphics from a
motif window to a PostScript printer using the same color map.

 1. Start the graphics window:

> motif()

 2. Set the color scheme using the Color Scheme dialog box, accessible
from the Options menu. See the section The Options Menu (page
295) for complete details.

 3. Plot the graphic in the graphics window:

> image(voice.five)

 4. Capture the colors from the device using xgetrgb:

> my.colors <- xgetrgb(type=�images�)
281

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
The type argument to xgetrgb should be appropriate for the type
of graph being reproduced. Here, we use type=�images� because
we want the colors used to produce an image plot. The default type
is �polygons�, which is appropriate for barplots, histograms, and
pie charts, and is usually also suitable for scatter plots and line plots
such as time series plots. Other valid types are �lines�, �text�,
and �background�.

 5. Send the color specification to update the graphics window�s printer
options:

> ps.options.send(image.colors=my.colors)

The image.colors argument assigns colors for image plots. Use the
colors argument to assign colors for all other plots. Use the
background argument to specify the background color.

You can, of course, use the results of xgetrgb as arguments without
first assigning them to an S-PLUS object, as is shown below:

> ps.options.send(image.colors=xgetrgb(�images�),
+ colors=xgetrgb(�lines�),
+ background = xgetrgb(�background�))

 6. Select the Print button to print the colored graphic.

To create color graphics with the postscript function, you follow
essentially the same steps, as in the following example:

 1. Start the graphics window:

> motif()

 2. Set the desired color scheme using Options, Color Scheme... from
the motif menu.

 3. Capture the colors from the device using xgetrgb and specify the
captured colors as the PostScript color scheme using ps.options:

> ps.options(colors = xgetrgb(�colors�),
+ background = xgetrgb(�background�))

 4. Start the postscript device using the postscript function:

> postscript(file = �colcorn.ps�)
282

PRINTING YOUR GRAPHICS
 5. Plot the graphic; the following commands produce a plot with three
different colors:

> plot(corn.rain, corn.yield, type=�n�)
> points(corn.rain, corn.yield, col=2)
> title(main=�A plot with several colors�, col=3)

 6. Turn off the postscript device:

> dev.off()

Printing with

HP-GL Pen

Plotters

The hpgl graphics device translates your S-PLUS plotting commands into
commands that can be read by pen plotters that accept the Hewlett-Packard
HP-GL instruction set. To start the hpgl graphics device, type:

> hpgl(file = �file�)

where file is a file name specifying where to write the plotting commands.
When the hpgl device is the current graphics device, no graphics appear on
your screen.

The following arguments may be supplied to the hpgl function:

� width Determines the width of the x-axis dimension
(in inches). The default value is 10.

� height Determines the height of the y-axis dimension
(in inches). The default value is 7.25.

� ask Determines whether you are prompted by
�GO?� prior to advancing to a new frame.
Possible values are TRUE and FALSE. The
default value is the opposite of the value of
auto.

� auto Determines whether the device can
automatically advance the paper. Possible
values are TRUE and FALSE. The default value is
FALSE.
283

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
� color Determines the degree of color-plotting
support provided by the device. See the help
file for details.

� speed Determines maximum allowed axis-pen
velocity. See the help file for details.

� rotated Determines whether the x-axis lies along the
long side of the paper (landscape mode) or the
short side of the paper (portrait mode).
Possible values are TRUE (portrait mode) and
FALSE (landscape mode). The default value is
FALSE.

� file Determines the name of the file that the
HP-GL commands are stored in. By default,
the commands are sent to your terminal.

� hw.control Determines whether hardware control escape
sequences are to be included. These escape
sequences may be unnecessary depending on
how the output is to be used. For example, if
the output will be imported into another
software package, it may help to set
hw.control to FALSE. The default is TRUE.

To use the hpgl graphics device, follow these steps:

 1. Type the hpgl command along with any arguments you want to
specify. For example, use the file argument to send your graphics
output to a file.

 2. Type your S-PLUS graphics commands.

For example, the following commands start the hpgl graphics device with
the file argument to name the output file, then make a scatter plot and time
series plot, using dev.off to append the second plot to the file and turn off
the hpgl device. After sending the files to the plotter, we remove them:

> hpgl(file=�hpgl.com�)
> plot(corn.rain, corn.yield)
> ts.plot(lynx)
> dev.off() # Append the last plot to hpgl.com
284

PRINTING YOUR GRAPHICS
> ! lpr -P hpgl hpgl.com
> ! rm hpgl.com

In this example, two plots are written to the file hpgl.com. We then escape
to the UNIX shell and issue the lpr command to send the file to the plotter.
(The command for sending your file to the plotter may be different for your
system.) Finally, we escape to the UNIX shell and issue the rm command to
remove the file.

Creating PDF

Graphics Files

The Portable Document Format (PDF) is a popular electronic publishing
format closely related to PostScript. You can create PDF graphics files in
S-PLUS using the pdf.graph graphics device. You can create a PDF graphics
file simply by calling pdf.graph with the desired output file name:

> pdf.graph(�mygraph.pdf�)
> plot(corn.rain, corn.yield, main=�Another corny plot�)
> dev.off()

Once you�ve created your PDF graphics, you can view them using Adobe�s
Acrobat Reader (available on most personal computers and some UNIX
platforms). See the pdf.graph help file for more details.

Managing Files

from Hard

Copy Graphics

Devices

With all hard copy graphics devices, a plot is sent to a plot file not when
initially requested, but only after a subsequent high-level graphics command
is issued, a new frame is started, the graphics device is turned off, or you quit
S-PLUS. To write the current plot to a plot file (assuming you have started the
graphics device with the appropriate file option), you must do one of the
following:

� Make another plot (assuming a single figure layout).

� Call the function frame() (again, assuming a single figure layout).

� Call the function dev.off() to turn off the current graphics device.

� Call the function graphics.off() to turn off all of the active
graphics devices.

� Quit S-PLUS.
285

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
Once you have created a graphics file, you can send it to the printer or plotter
without exiting S-PLUS by using the following procedure:

 1. Type ! to escape to UNIX.

 2. Type the appropriate printing command, and then the name of the
file.

 3. Type a carriage return.

To remove graphics files after sending them to the plotter without exiting
S-PLUS:

 1. Type ! to escape to UNIX.

 2. Type rm file, where file is the name of the graphics file you want
removed.

 3. Type a carriage return.

Using Graphics

from a

Function or

Script

Most experienced users of S-PLUS use a function or script to construct
complicated plots for presentation or publication. This method lets you use
the motif display device to preview the plots on your screen, and then, once
you are satisfied with your plots, send them to a hard copy device without
having to re-type the same plotting commands.

To use this method using an S-PLUS function, follow these steps:

 1. Put all the S-PLUS commands necessary to create the graphs into a
function in S-PLUS (say plotfcn) using fix. Do not include
commands that start a graphics device.

 2. In S-PLUS, start a graphics device, then call your function:

> motif()
> plotfcn()

Note

Direct use of a hard copy device ensures the best hard copy output.
286

PRINTING YOUR GRAPHICS
 3. View your graphs. If you want to change something, use fix to
modify your plotting function.

 4. Once you are satisfied with your plots, start a hard copy graphics
device, call your function, and then turn the hard copy graphics
device off:

> postscript()
> plotfcn()
> dev.off()

 5. Save your function containing graphics commands if you will need
to reproduce the plots in the future.

To use this method using a script, follow these steps:

 1. Put all the S-PLUS commands necessary to create the graphs into a
file outside of S-PLUS (say plotcmds.asc) using an editor (e.g., vi).
Do not include commands that start a graphics device.

 2. In S-PLUS, start a graphics device, then use source to execute the
S-PLUS commands in your file:

> motif()
> source(�plotcmds.asc�)

 3. View your graphs. If you want to change something, edit your file
with an editor.

Note

If you are creating several plots on separate pages, you may want to set the graphics parameter ask to TRUE
before calling your plotting function. In this case, the sequence of steps is:

> motif()
> par(ask = T)
> plotfcn()
287

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
 4. Once you are satisfied with your plots, start a hard copy graphics
device, source your plotting commands, and then turn the hard copy
graphics device off:

> postscript()
> source(�plotcmds.asc�)
> dev.off()

 5. Save your file of graphics commands if you will need to reproduce
the plots in the future.
288

GRAPHICS WINDOW DETAILS
GRAPHICS WINDOW DETAILS

This section describes, in detail, how to use the motif graphics device. This
device is available only on machines that run either the X Window System,
Version 11 (X11). The motif device is available on all UNIX platforms.

The motif device lets you interactively change the color specifications of
your plots and immediately see the results, and also interactively change the
specifications that are used to send the plot to a printer.

In this section, we assume you are familiar with your particular window
system. In particular, we assume you know how to start your window system
and set your display so that X11 applications can display windows on your
screen. For further information on a particular window system, consult your
system administrator or the following references:

� Quercia, V. and O�Reilly, T. (1989). X Window System User�s Guide.
Sebastopol, California: O�Reilly and Associates.

� Quercia, V. and O�Reilly, T. (1990). X Window System User�s Guide,
Motif Edition. Sebastopol, California: O�Reilly and Associates.

Basic

Terminology

In this section, we refer to the window in which you start S-PLUS as the
S-PLUS window. The window that is created when you start a windowing
graphics device from the S-PLUS window is called the graphics window.

Opening and

Removing

Graphics Devices

To open a graphics device, type:

> motif()

at the S-PLUS prompt. (The motif device is also started automatically if no
other graphics device is open when you ask S-PLUS to evaluate a high-level
plotting function.)
289

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
To remove a graphics window without quitting S-PLUS, use the function
dev.off or graphics.off.

An Example As you try out the various features of the motif device, you can use the
following S-PLUS commands to generate an easily-reproducible graphic:

> plot(corn.rain, corn.yield, type="n",
+ main="Plot Example")

> points(corn.rain, corn.yield, pch="*", col=2)

> lines(lowess(corn.rain, corn.yield), lty=2, col=3)

> legend(12, 23, c("Color 1", "Color 2", "Color 3"),
+ pch=" * ", lty=c(1, 0, 2), col=c(1, 2, 3))

Note that in the call to legend there is a space before and after the * in the
argument pch=� * �. The plot generated by these commands is shown in
figure 8.1.

Warning

Do not destroy the S-PLUS graphics window by using a window manager menu! If you remove a graphics
window in this way, S-PLUS will not know that the graphics device has been removed. Thus, this graphics
device will still appear on the vector returned by dev.list, but if you try to send plot commands to it you
will get an error message. If you do accidentally remove the graphics window with a window manager
menu, use the dev.off function to tell S-PLUS that this device is no longer active.
290

GRAPHICS WINDOW DETAILS
By default, the color of the title, legend box, axis lines, axis labels, and axis
titles are color 1. We have specified the points to have color 2, and the dashed
line representing the smooth from the lowess command to have color 3.
Although we can�t show you the difference in the colors in Figure 8.1, you
will see the differences in your graphics window.

Figure 8.1: Plot example.

Plot Example

corn.rain

co
rn

.y
ie

ld

8 10 12 14 16

20
25

30
35

•

•

••

•

•

•

••

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•
•

Color 1
• Color 2

Color 3
291

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
The Motif

Graphics Window

in S-PLUS

Figure 8.2 shows what the Motif graphics window looks like when you first
start the S-PLUS motif windowing graphics device. The features of this
window are listed below.

� Title bar Contains the window menu button, the title
S-PLUS, the minimize button, and the
maximize button.

� Menu Bar Contains three menu titles: Graph, Options,
and Help. The Help menu title produces a
pop-up window, rather than a menu, when you
select it.

� Pane Area where S-PLUS displays any graphs that
you create while the motif graphics device is
active.

� Footer Area where S-PLUS puts status or error
messages concerning the graph you have
created.

� Resize Borders Used to change the size of the window.
292

GRAPHICS WINDOW DETAILS
Now type the rain vs. yield example shown in the section An Example (page
290).

The Help Menu The Help menu title appears at the far right side of the menu bar. Move the
pointer to this menu title and click to call up a help pop-up window. This
help window contains a condensed version of the motif help file. Click on
the Close button in this pop-up window to make this window disappear once
you have finished with it.

Figure 8.2: The motif window.
293

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
The Graph Menu The first menu title in the menu bar of the graphics window is the Graph
menu title. Move the pointer to this title and click to call up a menu with the
following items:

� Redraw Redraws the graph that appears in the pane of
the graphics window.

� Copy Creates a copy of the current graphics window,
as shown in figure 8.3. The copy has a title bar,
a menu bar, a pane, and a footer, just like the
original. The title in the title area is S-PLUS:
Copy. The menu bar in a copy of the graphics
window does not contain an Options menu
title, only the Graph and Help menu titles.

� Print Converts the current plot in the graphics
window to either a PostScript or LaserJet file
and then sends this file to your printer.
Choosing Print is not equivalent to typing the
printgraph() command in the S-PLUS

window. The printgraph command uses
S-PLUS environment variables to determine
printing defaults, whereas Print uses the
specifications shown in the Printing... dialog
box.

When you select Print, a message is displayed in the footer of the graphics
window telling you what kind of file was created and the command that was
used to route this file to the printer. See the section The Options Menu (page
295) for a description of how to set the defaults for printing.
294

GRAPHICS WINDOW DETAILS
The Options

Menu

The Options menu title is the second menu title in the menu bar of the
graphics window. Move the pointer to this title and click to see two menu
items displayed: Color Scheme... and Printing.... The ellipses (three trailing
periods) indicate that dialog boxes will appear if you choose these items.

The Color Scheme Dialog Box

The Color Scheme dialog box is a powerful feature of the motif windowing
graphics device: it lets you change the colors in your plot interactively and
immediately see the results. Figure 8.4 shows an example of the Color
Scheme dialog box. This window has a title bar with a window menu button
and the title S-PLUS Color Scheme Editor.

Figure 8.3: A copy of the motif graphics window.
295

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
When you first call up the Color Scheme dialog box, the pane contains:

� The Available Color Schemes menu.

� The Color Scheme Specifications editor showing the specifications
for the default color scheme.

� A button marked Create New Color Scheme.

� A button marked Apply.

� A button marked Reset.

� A button marked Save.

Figure 8.4: The Motif Color Scheme dialog box.
296

GRAPHICS WINDOW DETAILS
� A button marked Close.

� A button marked Help.

The Help Button

The Help button is located in the lower right-hand corner of the Color
Scheme dialog box. Click on this button to view a pop-up help window for
this dialog box. Click on the Close button in the Help pop-up window to
make it disappear once you are done with it.

The Color Scheme Specifications Editor

The Color Scheme Specifications editor includes specifications for the
following characteristics:

� Name The name of the color scheme.

� Background The color of the background. This
specification can have only one color name or
value.

� Lines The color names or values used for lines.

� Text The color names or values used for text.

� Polygons The color names or values used with the
polygon, pie, barplot, and hist plotting
functions.

� Images The color names or values used with the image
plotting function.

All color schemes must have values for the specifications Name, Background,
and Lines. The specifications for Text, Polygons, and Images default to the
specifications for Lines if left blank.

See the section Available Colors Under X11 (page 306) for information and
rules on how to specify colors with the motif windowing graphics device.
297

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
Selecting a Different Color Scheme

To select a different color scheme, move the pointer to one of the color
scheme names under the Available Color Schemes option menu and click.
The name of the newly chosen color scheme is boxed in dashed lines, and its
specifications are displayed in the Color Scheme Specifications editor. The
plot in the graphics window, however, is still based on the original color
scheme. To apply the newly chosen color scheme, you must click on the
Apply button. (Once you apply the new color scheme, the box around the
name of the new color scheme disappears.)

Figure 8.4 illustrates a setup in which there are 3 available color schemes
called color scheme 1, color scheme 2, and color scheme 3. The
default color scheme is color scheme 1. The specifications for this color
scheme are shown in figure 8.4 under the Color Scheme Specifications
option menu. It uses a black background and white lines. The specifications
for Text, Polygons, and Images are blank.

Your available color schemes will not necessarily have the names or
specifications shown in figure 8.4. (Initially, the available color schemes are
defined using X resources.) How to define new color schemes and save them
is explained below.

Figure 8.5 shows what happens when the color scheme color scheme 2 is
selected. Under the Available Color Schemes option menu, the color scheme
color scheme 2 is now boxed in dashed lines, and the specifications under
the Color Scheme Specifications option menu have changed to the ones that
correspond to color scheme 2.

When color scheme 2 is applied, the example plot that you created earlier
of rain vs. yield has the following characteristics:

� The title, legend box, axis lines, axis labels, and axis titles are yellow
(color 1).

� The points are red (color 2).

� The dashed line representing the smooth from the lowess command
is cyan (color 3).
298

GRAPHICS WINDOW DETAILS
The Available Color Schemes option menu has enough space to show the
first five available color schemes. If there are more than five available color
schemes, a scrollbar appears to the right of the menu. You can view the names
of the additional color schemes by using this scrollbar.

Creating New Color Schemes

To create a new color scheme, follow these steps:

 1. Click on the button marked Create New Color Scheme. Figure 8.6
shows what happens in the dialog box when you do this. The name
�unnamed� appears as the last available color scheme in the Available
Color Schemes option menu. The default values under the Color
Scheme Specifications option menu are the name �unnamed�, a black
background, and white lines.

Figure 8.5: Changing color schemes.
299

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
 2. Move the pointer to the Name box and click. The borders of the
Name box darken, and the cursor shape changes into an ��I�. Now
type in text from the keyboard. To delete letters to the right of the
cursor, use the DELETE key; to delete letters to the left of the cursor,
use the BACKSPACE key.

 3. Once you have decided on a name for the new color scheme, move
the pointer to the Background box and follow the same procedure as
in step 2. The background can only have one color value. Refer to
the section Available Colors Under X11 (page 306) for information
on available color names.

 4. Now move the pointer to the Lines box and type in the desired color
name(s).

 5. Repeat the previous step for the Text, Polygons, and Images boxes.

 6. To make this color scheme permanent, move the pointer to the Save
button and click. If you do not save your newly-created color
scheme, it remains only for the duration of the graphics window.
Once the graphics window is destroyed, you lose any color schemes
that have not been saved.

 7. Move the pointer to the Apply button and click. The plot in the
graphics window is now based on your newly-created color scheme.

 8. To see the new plot, move the dialog box out of the way or click on
the Close button to make the dialog box disappear.
300

GRAPHICS WINDOW DETAILS
The Reset Button

Any time you are in the Color Scheme dialog box, you may move the pointer
to the Reset button and click. If you have not yet clicked on the Apply
button, then the Available Color Schemes menu and Color Scheme
Specifications editor are set to how they were when you first entered the
dialog box. If you have at some time clicked on the Apply button, then the
color schemes are reset to how they were immediately after the last time you
clicked on the Apply button.

The Printing Dialog Box

The second menu item under the Options menu is labeled Printing.... When
you select Printing..., the Printing dialog box appears. This window lets you
interactively change the specifications of the printing method used when you
choose the Print menu item under the Graph menu. (See the section The
Graph Menu (page 294).)

Figure 8.6: Creating a new color scheme.
301

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
Figure 8.7 shows an example of the Printing dialog box. This window has a
header with a window menu button and the title S-PLUS Graph Printing
Options. The pane of the Printing dialog box contains option menus entitled
Method, Orientation, and (if Method is LaserJet) Resolution, as well as a text
entry box labeled Command. There are also six buttons labeled Apply, Reset,
Print, Save, Close, and Help. These features are explained below.

Figure 8.7: The Motif Printing dialog box.
302

GRAPHICS WINDOW DETAILS
Method, Orientation, Resolution, and Command

The Method, Orientation, and Resolution option menus all contain options
marked with diamond-shaped buttons called radio buttons. Radio buttons are
used to distinguish mutually exclusive options. The option that is currently
active is denoted by a darker radio button. To change the currently active
option, move the pointer to the desired option and click. These option
menus and the Command text entry box are described below.

� Method Determines the kind of file that is created
when the Print option under the Graph menu
is applied. The PostScript method produces a
file of PostScript graphics commands; the
LaserJet method produces a file of LaserJet
graphics commands.

� Orientation Determines the orientation of the graph on the
paper. Landscape orientation puts the x-axis
along the long side of the paper; Portrait
orientation puts the x-axis along the short side
of the paper.

� Command Shows the command that is used to send the
file of graphics commands to the printer. To
change this command, move the pointer to this
line and click. The cursor changes into an ��I�.
You can now type in text from the keyboard.

� Resolution Appears only if Method is set to LaserJet.
Controls the resolution of the HP LaserJet
plots.

The default settings for Method, Orientation, Command, and Resolution are
initially set using X resources. The way to change these settings is explained
below.

Printing Options Buttons

� Apply Click on this button to apply any changes you
have made to the printing specifications. Only
the specifications are changed; no printing is
done. Any changes you make last only as long
303

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
as the graphics window remains, or until you
make more changes and select Apply again.
Once you destroy the graphics window, any
changes to the original default settings are lost
unless you use the Save button (see below).

� Reset Click on this button to reset the printing
specifications. If you have not yet clicked on
the Apply button, then the specifications are
set to how they were when you first entered the
dialog box. If you have at some time clicked on
the Apply button, then the specifications are
reset to how they were immediately after the
last time you clicked on the Apply button.

� Print Click on this button to apply any changes you
have made to the printing specifications and
send the graph to the printer.

� Save Click on this button to save the current
printing specifications configuration as the
default. Now every time you start S-PLUS, this
configuration of default specifications appears.

� Close Click on this button to make the dialog box
disappear.

� Help Click on this button to pop-up a Help window
for this dialog box.

Figure 8.8 shows how the Printing dialog box in figure 8.7 changes when the
Method specification changes from PostScript to LaserJet. The Resolution
option menu appears, and the Command specification for sending the graph
to the printer changes.
304

GRAPHICS WINDOW DETAILS
Figure 8.8: Changing printing methods.
305

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
Available

Colors Under

X11

To specify color schemes for the motif device, use the Color Scheme
Specifications window.

To specify a color scheme, you must create a list of colors. There are two ways
to list colors in a color scheme:

� Use color names listed in the system file rgb.txt.

� Use hexadecimal values that represent colors in the RGB Color
Model.

The first method is a ��front end� to the second method; it is easier to use, but
you are limited to the colors listed in the rgb.txt file. The second method is
more complex, but it allows you to specify any color your display is capable
of producing. Both methods are described below.

The initial set of colors is set system-wide at installation. Any changes you
make using the Color Scheme Specifications window override the system
values. This remains true even if system-wide changes are installed.

Viewing Color

Names Listed in
rgb.txt

The rgb.txt file contains a list of predefined colors that have been translated
from a hexadecimal code into English text. To see what the available color
names are, you can either look at the rgb.txt file with a text editor, or you can
use the showrgb command coupled with a paging program like more by
typing the following command:

showrgb | more

The rgb.txt file is usually located in the directory /usr/lib/X11. To move
into this directory, type the command

cd /usr/lib/X11
306

GRAPHICS WINDOW DETAILS
Table 8.1 gives some examples of available colors in the rgt.txt file.

Hexadecimal

Color Values

You can also specify a color by using a hexadecimal value from the Red,
Green, and Blue (RGB) Color Model. (A hexadecimal value is made up of
hexadecimal digits. A hexadecimal digit can take on any of the values 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, listed from smallest to largest.) Most color
displays are based on the RGB Color Model. Each pixel on the screen is made
up of three phosphors: one red, one green, and one blue. Varying the
intensities of each of these phosphors varies the color that you see on your
display.

You can specify the intensities of each of the three phosphors with a
hexadecimal triad. The first part of the triad corresponds to the intensity of
the red phosphor, the second to the intensity of the green phosphor, and the
third to the intensity of the blue phosphor. A hexadecimal triad must begin
with the symbol #. For example, the hexadecimal triad #000 corresponds to
no intensity in any of the phosphors and yields the color black, while the
triad #FFF corresponds to maximum intensity in all of the phosphors and
yields white.

A hexadecimal triad with only one digit per phosphor allows for 4,096 (163)
colors. Most displays are capable of many more colors than this, so you can
use more than one digit per phosphor. Table 8.2 shows the allowed forms for
an RGB triad; Table 8.3 illustrates hexadecimal values for some common
colors. You can use up to four digits to specify the intensity of one phosphor

Table 8.1: Some available colors in rgb.txt.

violet blue green yellow

orange red black white

ghost white peach puff lavender blush lemon chiffon

lawn green chartreuse olive drab lime green

magenta medium orchid blue violet purple
307

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
(this allows for about 3 x $1014 colors). You do not need to know how many
colors your machine can display; your window system automatically scales
the color specifications to your hardware.

Table 8.2: Legal forms of RGB triads.

Triad Form Approximate Number of Possible Colors

#RGB 4,000

#RRGGBB 17 million

#RRRGGGBBB 70 billion

#RRRRGGGGBBBB 3 x 1014

Table 8.3: Hexadecimal values of some common colors.

Hex Value Color Name

#000000 black

#FFFFFF white

#FF0000 red

#00FF00 green

#0000FF blue

#FFFF00 yellow

#00FFFF cyan

#FF00FF magenta

#ADD8E6 light blue
308

GRAPHICS WINDOW DETAILS
Specifying Color

Schemes

The following conventions are used when listing colors to specify a color
scheme:

� Color names or values are separated by spaces.

� When a color name is more than one word, it should be enclosed in
quotes. For example, ��lawn green�.

The order in which you list the color names or values corresponds to the
numerical order in which they are referred to in S-PLUS with the graphics
parameter col. For example, if you use the argument col=3 in an S-PLUS
plotting function, you are referring to the third color listed in the current
color scheme.

� Colors are repeated cyclically, starting with color 1 (which
corresponds to col=1). For example, if the current color scheme
includes three colors (not including the background color), and you
use the argument col=5 in an S-PLUS plotting function, then the
second color is used.

� You may abbreviate a list of colors with the specification color1 n
color2. This list is composed of (n+2) colors: color1, color2, and n
colors that range smoothly between color1 and color2. For example,
the color scheme blue red 10 �lawn green� specifies a list of 13
colors: blue, then red, then 10 colors ranging in between red and
lawn green, and then lawn green.

� You may specify a list of colors as halftones with the specification
color1 hn color2. This list is composed of (n+2) ��colors,�� which are
actually tile patterns with progressively more color2 on a background

Note

When specifying a color scheme in your X resources, the first color listed is the background color
and corresponds to col=0.

Note

This method of specification is especially useful with the image plotting function.
309

CHAPTER 8 WORKING WITH GRAPHICS DEVICES
of color1. Halftone specifications are useful on devices with a limited
number of simultaneous colors. For example, the color scheme blue
red h10 �lawn green� specifies a list of 13 colors, just as our
previous example did. In this example, however, only 3 entries in the
X server�s color table are allocated, rather than the 13 allocated by
the previous example.
310

Setting S-PLUS Options 312
Setting Environment Variables 314
Customizing Your Session at Start-up and Closing 316

Setting S_FIRST 316
Customizing Your Session at Closing 317

Using Personal Function Libraries 318
Creating an S Chapter 318
Placing the Chapter in Your Search Path 319

Specifying Your Working Directory 320
Specifying a Pager 321
Environment Variables and printgraph 322
Setting Up Your Window System 324

Setting X11 Resources 324
S-PLUS X11 Resources 325
Common Resources for the Motif Graphics Device 325

S-PLUS offers a number of ways to customize your session. You can set
options specifying how S-PLUS displays data and other information, create
your own library of functions, or load C or Fortran code. You can even
define a function to set these options each time you start S-PLUS, and
another function to ��clean up�� each time you end a session.

This chapter describes changes that apply only to your S-PLUS session. To
install them for every user on your system, talk with your system
administrator or see the procedures in the Installation and Maintenance
Guide.

CUSTOMIZING YOUR S-PLUS

SESSION 9
311

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
SETTING S-PLUS OPTIONS

Options in S-PLUS serve much the same purpose as environment variables in
UNIX�they determine the behavior of many aspects of the S-PLUS

environment. You can set or modify these options with the options
command. For example, to tell S-PLUS to echo back to the screen the
commands you type in, use this expression:

options(echo=T)

Among the most useful options you can set are the following:

echo tells S-PLUS whether to repeat commands it receives back to the
screen. The default value is echo=F.

prompt tells S-PLUS what character string to print when it is ready for
input. The default value is prompt="> ".

continue tells S-PLUS which character string to print when you press the
return key before completing an S-PLUS expression. The default
value is continue="+ ".

width tells S-PLUS how wide the screen is. You can change this value to
get the print command to create very wide or very narrow
lines. The default value is width=80.

length tells S-PLUS how tall the screen is. This controls how frequently
the print command prints out the summary of column names
when printing a matrix. The default value is length=48.

check tells S-PLUS to perform automatic validity checking at various
points in the evaluation. The default is false, or check=F.

editor tells S-PLUS what text editor will be used in history and fix.
The default is vi.

digits tells many of the printing functions how many digits to use
when printing numbers. The default value is digits=7.
312

SETTING S-PLUS OPTIONS
See the options help file for a complete description of the available options.
If you want to set an option each time you start a session, see the section
Customizing Your Session at Start-up and Closing (page 316).

You can also determine the value of any option with options. For example,
to find the current value of the echo option, type the following expression at
the > prompt:

> options("echo")

S-PLUS answers with the following:

options("echo")

$echo:
[1] T

Because echo is true (we set it in the first paragraph of this section), S-PLUS
prints the command you type in before returning the requested value.

pager tells S-PLUS what pager program to use in such places as the
help and page functions. The default for pager is the value
of environment variable S_PAGER, which in turn defaults to the
value of environment variable PAGER, or "less" if that is not
set.
313

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
SETTING ENVIRONMENT VARIABLES

The following is a list of the environment variables recognized by S-PLUS.
You are not required to set them.

Table 9.1: Variables.

Variable Description

ALWAYS_PROMPT Chiefly affects the actions of the parse function.
Normally, parse prompts for input only when the input
appears to be coming from a terminal. When
ALWAYS_PROMPT is set (to anything at all), parse
prompts even if the standard input and standard error
streams are pipes or files. See the parse help file for more
details.

EDITOR Sets the command line editor to either emacs or vi.
Overridden by S_CLEDITOR or VISUAL if either
contains a valid value.

PATH Specifies the directories which are searched when a
command is issued to the UNIX shell. In particular, the
Splus5 command should be installed in one of the listed
directories.

S_CLEDITOR Sets the command line editor to either emacs or vi.

S_CLHISTFILE Sets the name of the command line editor�s history file.
The default is $HOME/.Splus_history.

S_CLHISTSIZE Specifies the maximum number of lines to put in the
command line editor�s history file.

S_CLNOHIST Suppresses writing of the command line editor�s history
file.

S_EDITOR Sets the value of options()$editor. The specified
editor is used by the fix function.

S_FIRST S-PLUS function evaluated at start-up. See section Setting
S_FIRST (page 316).

SHELL Specifies the UNIX command shell, which S-PLUS uses to
determine the shell to use in shell escapes (!) if S_SHELL
is not set.

SHOME Specifies the directory where S-PLUS is installed. By
default, this is set to the parent directory of the program
executable.
314

SETTING ENVIRONMENT VARIABLES
Many of the variables in this section take effect if you set them to any value,
and do not take effect if you do not set them, so you may leave them unset
without harm. For example, to set S_SILENT_STARTUP you can enter:

setenv S_SILENT_STARTUP X

on the command line and S-PLUS will not print its copyright information on
startup, because the variable S_SILENT_STARTUP has a value (any value).

User code can check the current values for these variables by using getenv
from C or S code.

S_PAGER Specifies which pager to use. Sets the value of
options()$pager; the specified pager is used by the
page, help, and ? functions.

S_POSTSCRIPT_PRINT_COMMAND Specifies the UNIX command (lp, lpr, etc.) used to send
files to a PostScript printer.

S_PRINTGRAPH_ONEFILE Determines whether plots generated by the postscript
function are accumulated in a single file (TRUE) or
whether each plot is put in a separate EPS file. This
environment variable sets the default for the onefile
arguments to ps.options and postscript.

S_PRINT_ORIENTATION Specifies the orientation of the graphic as landscape or
portrait. Determines the default value of the
horizontal argument to ps.options and
printgraph.

S_SHELL Specifies the shell used during shell escapes, that is,
commands issued from the escape character (!). The
default value is the value of SHELL.

S_SILENT_STARTUP Disable printing of copyright/version messages.

S_WORK Specifies the location of the working data directory, that
is, the directory in which S-PLUS creates and reads data
objects. Equivalent to SWORK.

VISUAL Sets the command line editor to either emacs or vi.
Overridden by S_CLEDITOR if it contains a valid value.

Table 9.1: Variables.
315

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
CUSTOMIZING YOUR SESSION AT START-UP AND CLOSING

If you routinely set one or more options each time you start S-PLUS, you can
store these options and have S-PLUS set them automatically whenever it
starts. You can store the options by doing one of the following:

� Create an S-PLUS function named .First containing the desired
options.

� Create a text file of S-PLUS tasks named .S.init in your home
directory.

� Set the S-PLUS command line variable S_FIRST as described below.

When S-PLUS starts up, it checks whether the S_FIRST variable exists. If
not, S-PLUS runs the .First function, if the function exists, from your data
directory. If S_FIRST is set, S-PLUS ignores the .First function. If S-PLUS
encounters any errors in your .First function, it starts without executing it.
After running the command specified in S_FIRST or executing the .First
function, S-PLUS looks for the .S.init file and executes any commands it
finds there.

Creating the
.First Function

Here is a sample .First file that starts the default graphics device:

> .First <- function() motif()

After creating a .First function, you should always test it immediately to
make sure it works. Otherwise S-PLUS will not execute it in subsequent
sessions.

Setting

S_FIRST

To store a sequence of commands in the S_FIRST variable, use the following
syntax:

setenv S_FIRST �S-PLUS expression� # C shell

set S_FIRST= �S-PLUS expression�;export S_FIRST # Bourne or
 # Korn shell

For example, the following C shell command tells S-PLUS to start the default
graphics device:

setenv S_FIRST �motif()�

To avoid misinterpretation by the command line parser, it is safest to
316

CUSTOMIZING YOUR SESSION AT START-UP AND CLOSING
surround complex S-PLUS expressions with a single or double quote
(whichever you do not use in your S-PLUS expression).

You can also combine several commands into a single S-PLUS function, then
set S_FIRST to this function. For example:

> startup <- function() { options(digits=4)

 + options(expressions=128)}

You can call this function each time you start S-PLUS by setting S_FIRST as
follows:

setenv S_FIRST �startup()�

Variables cannot be set while S-PLUS is running, just at initialization. Any
changes to S_FIRST will take effect only upon restarting S-PLUS.

Customizing

Your Session at

Closing

When S-PLUS quits, it looks in your data directory for a function called
.Last. If .Last exists, S-PLUS runs it. A .Last function can be useful for
cleaning up your directory by removing temporary objects or files.
317

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
USING PERSONAL FUNCTION LIBRARIES

If you write functions that you want to use many times, you should not store
them in your working directory, because objects in this directory are easily
overwritten. Instead, to prevent yourself from inadvertently removing your
functions, you should create a personal function library to hold them. A
personal function library is simply an S chapter that you add to your S-PLUS
search path, allowing you to access your functions from wherever you start
S-PLUS.

If you are working on a number of different projects, you can create personal
function libraries for each project to store the functions developed for that
project.

To set up your own library, there are two main steps:

 1. Create an S chapter to hold your library of functions and helpfiles.

 2. Place the new directory in your S-PLUS search path.

We describe these steps in detail in the following subsections.

Creating an S

Chapter

To create a chapter, you use the UNIX mkdir command from the UNIX
prompt, followed by the S-PLUS utility CHAPTER. For example, to create
an S-PLUS chapter called mysplus in your home directory, use the following
commands:
% cd

% mkdir mysplus
% cd mysplus
% Splus CHAPTER

The Splus CHAPTER utility creates a .Data directory in the directory you
created with mkdir; you will store your functions in this .Data subdirectory.
The .Data subdirectory is created with two subdirectories, __Help and
__Meta, which are used to store help files and object metadata, respectively.

Note

If your function library would be useful to many people on your system, you can ask your system
administrator to create a system-wide version of your function library that everyone can access with the
S-PLUS library function.
318

USING PERSONAL FUNCTION LIBRARIES

Placing the

Chapter in

Your Search

Path

To add an S chapter to your search path, use the S-PLUS attach function,
which provides temporary access to a directory during an S-PLUS session. You
name the directory to be added as a character-string argument to attach.
For example, to add the chapter /usr/rich/mysplus to your search path with
attach, use the following expression:

> attach("/usr/rich/mysplus")

When specifying directories to attach, you must specify the complete path
name. S-PLUS does not expand such UNIX conventions as ~bob or
$HOME.

Any directories you attach are detached when you quit S-PLUS. In order to
have your functions available at all times, create a .First function or modify
it if it already exists, and add a command to attach mysplus to your S-PLUS
search list, as in the following example:

> .First <- function(){

+ attach("/spud/users/mysplus")
+ }

Whenever you start S-PLUS, mysplus is automatically attached, and your
functions and help files are made available.

Note

You can create your S chapter directory anywhere you have write permission, and you can name it anything
you like.
319

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
SPECIFYING YOUR WORKING DIRECTORY

Whenever you assign the results of an S-PLUS expression to an object, using
the <- or = operator within an S-PLUS session, S-PLUS creates the named
object in your working directory. The working directory occupies position 1
in your S-PLUS search list, so it is also the first place S-PLUS looks for an
S-PLUS object.

You specify the working directory with the environment variable S_WORK,
which can specify one directory or a colon-separated list of directories. The
first valid directory in the list is used as the working directory, and the others
are placed behind it in the search list. To be valid, a directory must be a valid
S-PLUS chapter and be one for which you have write permission.

For example, to specify the chapter /usr/rich/mysplus as your working
directory, set S_WORK as follows:

setenv S_WORK /usr/rich/mysplus

If S_WORK is not set, S-PLUS sets the working directory according to the
rules given on page 123 of Programming with Data.
320

SPECIFYING A PAGER
SPECIFYING A PAGER

A pager is a tool for viewing objects and files that are larger than can fit on
your screen. They function much like pagers for moving around files, but
typically do not have actual editing functions. The most common uses for
pagers in S-PLUS are to look at lengthy functions and data sets with the page
function and to look at help files with the help function. Both functions use
the pager specified in options()$pager.

The value of options()$pager is initially specified by the S_PAGER
environment variable, if set, or to "less", if not. You can use the options
function to specify a new default pager at any time during your S-PLUS
session. Modifications to S_PAGER, however, take effect only when you
next start S-PLUS.

Using options, usually in your .First function, is the preferred method for
setting your pager. Simply use the following function call:

> options(pager=pager)

where pager is a character string containing the command, with any
necessary flags, used to start the pager.
321

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
ENVIRONMENT VARIABLES AND PRINTGRAPH

S-PLUS uses environment variables to set defaults for the printgraph
function. Your system administrator already set these variables system-wide,
but if you would like to change the default values for your S-PLUS session,
use your UNIX shell command to set a new value for the environment
variable before you start S-PLUS.

For example, to make printgraph produce plots with the x-axis on the short
side of the paper, type the following from the C shell:

setenv S_PRINT_ORIENTATION portrait

Start S-PLUS. Any plots made with printgraph are now produced in
portrait mode.

S-PLUS uses the following environment variables with printgraph:

� S_PRINT_ORIENTATION controls the orientation of plots. It
has two possible values: ��portrait", which puts the x-axis along the
short side of the paper, and ��landscape", which puts the y-axis along
the short side of the paper.

� S_PRINTGRAPH_ONEFILE controls whether S-PLUS writes
printgraph output to one file or many. It has two possible values:
��yes" and ��no". If ��yes", printgraph sends its output to
PostScript.out. If ��no", printgraph creates a separate file each time
and tries to send it to the printer by executing the command
specified in the variable S_POSTSCRIPT_PRINT_COMMAND.

� S_POSTSCRIPT_PRINT_COMMAND sets the UNIX PostScript
printing command.

Note

The printgraph function sets its defaults differently from the defaults for the Print button on graphics
devices such as motif.
322

ENVIRONMENT VARIABLES AND PRINTGRAPH
You can also modify printgraph�s behavior using options passed to
ps.options.send. See the section Printing with PostScript Printers for
details on how to control PostScript options.

Note

You cannot change the values of any environment variable once you start S-PLUS. If you want to change a
variable, you must stop S-PLUS, change the variable, then start S-PLUS again. To change printgraph�s
behavior temporarily, see the printgraph help file for optional arguments.
323

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
SETTING UP YOUR WINDOW SYSTEM

The motif graphics device has a control panel to help you pick the colors,
fonts, and printing commands you want for your S-PLUS graphics. When
you save these settings, they are used each time you start one of these devices.
You can also specify settings for these graphics devices by setting X11
resources.

The motif graphics device uses resources of the X Window System, Version
11, or X11. This section describes how to customize your graphics windows
by setting X11 resources.

Setting X11

Resources

There are a number of ways you can set resources for X11 applications. You
should talk with your system administrator about the way that is preferred on
your system. This section describes one of the most flexible methods of
setting X11 resources�using the xrdb command.

As with other X11 programs, before you can run the xrdb command, you
must give it permission to access your display To do this, you need to first
specify your display server, which controls the access to your display, and then
explicitly give access to that server to the host on which you run xrdb. If you
are running the C-shell, the network name of the computer or terminal you
are sitting at is displayserver, and the network name of the machine on
which you run xrdb is remotehost, you can give the appropriate permission
with the following commands:

setenv DISPLAY displayserver:0

xhost + remotehost

The setenv command sets the DISPLAY environment variable to your
window server so that every X11 program knows where to create windows.
The xhost command gives the specified computer permission to create a
window on your display.

The xrdb command takes a file of X11 resources as its argument and creates
an X11 Resource Database. Whenever any X11 program tries to create a
window on your display, the program first looks at your X11 resource data
base to get default values. The xrdb command uses the C-preprocessor to set
the defaults that are appropriate for your machine. See the xrdb manual page
for more information.
324

SETTING UP YOUR WINDOW SYSTEM
S-PLUS X11

Resources

The file SPlusMotif in the directory $SHOME/splus/lib/X11/app-defaults
holds the system-wide default values for the motif graphics device. Many of
the resources declared in the defaults file are discussed below.

When you specify a resource use the form:

resource : value

where resource is the name of the resource you want to use and value is the
value you want to give it. For example, set the resource which tells xterm
windows to have a scrollbar with this command:

 xterm*scrollBar : True

When you add this resource to your X11 resource data base, then create
another window with the UNIX xterm command, the window has a scroll
bar. In this example the name of the application for which you set defaults is
xterm. When you want to set resources for your motif devices, you must
use the proper application name, sgraphMotif.

For example, if you put the following resource into your resource data base:

sgraphMotif*copyScale : 0.75

you would specify the ratio of the size of your original graph to the size of any
copies you created from it . When you create a copy of your motif graphics
device, the copy is three-fourths the size of your current S-PLUS graphics
window.

Common

Resources for

the Motif

Graphics

Device

The following resources are commonly used with the motif graphics device:

� sgraphMotif*copyScale sets the size ratio of the copy you produce
when you click on the ��Copy Graph�� button. S-PLUS multiplies the
height and the width of the canvas by the value in the copyScale
resource to create the dimensions for the new window. The default
resource declaration produces a copy with dimensions one half those
of the current window:

 sgraphMotif*copyScale : 0.5

� sgraphMotif*fonts sets the fonts that the motif graphics device use
for creating axis labels and plotting characters. The fonts must be
named in order from smallest to largest. Use the UNIX command
325

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
xlsfonts to see a complete list of the fonts available on your screen.
As an example, the following resources tells the motif graphics
device to use the vg family of fonts ranging in point size from 13 to
40:

sgraphMotif*fonts : vg-13 vg-20 vg-25 vg-31 vg-40

� sgraphMotif*defaultFont tells the motif graphics device which
font in the *font resource list to use as the default font, when cex=1.

� sgraphMotif*canvas.width and sgraphMotif*canvas.height
control the starting size of the drawing area of the graphics windows.
The following resources set the size of the plotting area for the motif
graphics device to 800 by 632 pixels.

sgraphMotif*canvas.width : 800

sgraphMotif*canvas.height : 632

To set color resources for motif devices interactively, we recommend that
you use the menus provided in the graphics windows. You can also use the

Note

If you select names that are too long to fit on one line, use multiple lines, and make sure that each line but
the last ends with a backslash (\). Since these fonts are intended to list available sizes of the same
font, the actual font used is controlled by the current value of par()$cex and the size of the fonts
relative to the defaultFont described below.

Note

The fonts are numbered from 0, so that the following resource tells the motif graphics devices to use the
third font in the list given by sgraphMotif*fonts: sgraphMotif*defaultFont : 2

Note

When S-PLUS creates graphics to display in the graphics windows, it uses the initial values of
*canvas.width and *canvas.height resources as the size of the drawing area. If you create a graphics device
with a small drawing area and later resize the graphics window to a larger size, the resolution of the
graphics image is reduced, so that your plots may look ��blocky.��
326

SETTING UP YOUR WINDOW SYSTEM
sgraphMotif*colorSchemes resource to define new color schemes. However,
if you use sgraphMotif*colorSchemes to define new color schemes, you
must copy the existing resource completely before defining your new
schemes, or the old color schemes will be unavailable.
327

CHAPTER 9 CUSTOMIZING YOUR S-PLUS SESSION
328

INDEX
INDEX

: operator 27

Symbols

... argument 117

.First function 316

.First function 319

.Last function 317

A

abline function 138, 164
About Multipanel Display 230
add argument 188
adding a legend 140
adding new data to a plot 138
adding straight lines to a scatter plot 138
adding text to existing plot 140
add-on modules 2
adj parameter 175
aggregate function 110
along argument 80
angle argument 143
aov function 203
argument ... 117
arguments

abbreviating 31
Arithmetic, operators 26
array function 86
arrays 85
arrows function 192
as.data.frame function 99
as.data.frame.array function 259
as.data.frame.ts function 260
ASCII files 62
ASCII:specifying a format string 62
aspect argument 208, 244
aspect function 262

at argument 179, 223
attach function 24, 206, 319
auto.dat data set 69
auto.stats data set 163
axes parameter 180
axis function 180

B

bar.fill parameter 251
barchart function 217
barley data set 230
barplot function 142
between argument 263
border argument 257
breaks argument 94
bwplot function 212
by function 110, 113
byrow argument 83

C

c function 25
calling functions 25
car.miles data set 132
cat function 72, 73
categorical variables 90
cbind function 82, 99, 104, 125
cex argument 216
cex parameter 174, 245, 248
Changing the Text in Strip Labels 244
character data type 116
character function 80
character strings

delimiting 26
character values 77
city.name data set 193
city.x data set 193
city.y data set 193
329

INDEX
class 18
class attribute 90, 116
cloud function 226
codes function 91
col parameter 135, 245
columns argument 256
combining data frames 104

by column 104
by row 106
merging 107
rules 116

command line editing 12
command line editor 12

command recall 14
example 13
startup 12
table of keystrokes 12

Commonly-Used S-PLUS Graphics Functions and
Parameters 248
complex function 80
complex values 77
composite figures 191
Conditioning On Discrete Values of a Numeric
Variable 237
Conditioning On Intervals of a Numeric Variable
239
conditioning variables 230
continuation 10
contour function 158
contourplot function 223
Controlling the Pages of a Multipage Display 236
corn.rain data set 192
csi parameter 175
cuts argument 224

D

data
editing 33
importing 33

with import.data function 33
reading from a file 33

data argument 206
data array 155

data frames 97
adding new classes of variables 116
applying functions to subsets 110
attributes 117
combining objects 102
dimnames attribute 101
row names 101
rules for combining objects 116

data objects 97
combining 25
editing 34

data.class function 116
data.frame data type 116
data.frame function 99
datax horizontal screen axis 225
datay vertical screen axis 225
dataz function 223
dataz perpendicular screen axis 225
dBase files 64
delimiters

for character strings 26
density argument 143
density plot function 220
dev.off function 203
Device.Default function 164
digits 142
digits argument 145
dim attribute 77
dim function 86
dimnames argument 86
dimnames function 84
Direct axis 183
dot plot function 216
dotplot function 202, 210

E

editing
command line 12
data objects 34

editing data 33
Editor 312
EDITOR environment variable 12
emacs 12
330

INDEX
emacs editor
table of keystrokes 12

emacs_unixcom editor, table of keystrokes 12
Environment variables

PAGER 313
environment variables 314

EDITOR 12
S_CLEDITOR 12
S_CMDFILE 316
S_WORK 320
VISUAL 12

equal count algorithm 239
erase.screen function 187
error messages 9
ethanol data set 237, 244
Excel files 64
exclude argument 93
Exiting S-PLUS 9
exp parameter 181
export.data function 71
exporting data 71
expressions

multiple line 10
Extended axes label 183
eye argument 160

F

faces function 157
factor class 91
factor function 91
factors 90
FASCII files 63
FASCII importing:specifying a format string 63
fig parameter 185
figure region 170
files:importing 54
fill argument 73
font parameter 245
format function 73
formula argument 204, 230, 242
frame function 185
fuel.frame data set 210, 222
FUN argument 112

functions
calling 9, 25
for hypothesis testing 48
for statistical modeling 50
for summary statistics 47
high-level plotting 42
import.data 33
low-level plotting 43
operators

comparison 27
logical 27
precedence hierarchy of 29

G

gas data set 204
gauss data set 223
general 177
general display function 202, 210
glm function 203
Graph Measurements with Labels 227
Graph Multivariate Data 227
graphics 176
graphics parameters 163
group component 88

H

Help system
on-line help 2
training courses 3

high-level graphics functions 163
hist function 148
histogram function 210, 219
How to Change the Rendering in the Data Region
246
hstart time series 111
hypothesis testing 48

I

I function 206
identify function 137
331

INDEX
image function 158
importData function 33, 56, 99
importing data 33, 54

dBase files 64
Lotus files 64

initialization, options function 312
internally labeled axis 183
interp function 158
interpolates 158
interrupting evaluation 10
intervals argument 241
iris data set 85, 87, 155

J

jitter argument 213

K

key argument 252, 255
kyphosis data frame 111

L

lab parameter 181
labels argument 93, 94
labex argument 159
layout algorithm 233
layout argument 230
length argument 79, 80
length attribute 76
levelplot function 224
levels argument 92, 93
levels attribute 90
levels function 240
line types 133
lines function 139, 248
list data type 116
list function 22
list function 87
lists 87

components 22
lm function 138, 203

locator function 140
loess function 203
log function 130
logical function 80
logical values 77
Lotus files 64
low-level graphics functions 163
low-level plotting functions 188
lty argument 133
lty parameter 248
lwd parameter 248

M

mai parameter 172
main argument 128, 242
main title of a plot 128
main-effects ordering of levels 236
make.groups function 259
make.symbol function 195
mar parameter 172
margin 170
matrices 67, 82
matrix data type 116
matrix function 20
matrix function 83
max function 114
mean function 114
merge function 99, 107

by.x argument 108
by.y argument 108

methods
obtaining help 15

mex parameter 172
mfcol parameter 170
mfrow parameter 126
mgp parameter 182
mileage.means vector 216
model.matrix data type 116
modeling, statistical 50
modules

add-on 2
more argument 228
most useful graphics parameters 197
332

INDEX
mtext function 178
multi.line argument 68
multiple plots 129
mypanel function 246

N

n argument 138
names function 81, 84
nclass argument 148
ncol argument 83
nint argument 219
nrow argument 83
numeric function 80
numeric summaries 111
numeric values 77, 79

O

object-oriented programming 77
oma parameter 171
omd parameter 171
omi parameter 171
on-line help 2
operators

comparison 27
logical 27
precedence hierarchy of 29

Operators, arithmetic 26
ordered function 93
orientation of axis labels 182
outer margin 170
outlier data point 137
overlay figures 188
ozone data set 158

P

p argument 250
page argument 263
pairs function 154

panel argument 246, 263
Panel functions 202
panel functions 246
panel function 246
panel variables 230
panel.loess function 247
panel.special function 247
panel.superpose function 252, 254
panel.xyplot function 246, 248, 249
par function 126
par.strip.text argument 245
parallel function 222
paste function 84
pch argument 134, 246
pch parameter 248
pdf.graph function 203
pie function 146
piechart function 218
plot 126
plot area 170
plot function 122
plot types 131
plot.line function 251
plot.symbol function 251
plots

high-level functions for 42
low-level functions for 43

plotting characters 134
points function 139, 247, 248
polygon function 248
position argument 228
postscript argument 203
precedence of operators 29
prepanel argument 262
prepanel.loess function 263
print function 90
prompt.screen function 186
Prompts, continuation 312
Prompts, S-Plus 312
pscales argument 243
pty argument 126
pugetN data set 161
333

INDEX
Q

qq function 214
qqline function 151
qqmath function 215
qqnorm function 151
qqplots 150
qqunif function 151
Quitting S-PLUS 9

R

rbind function 82, 99, 106, 107
read.table function 69, 70, 99
recalling previous commands 14
rectangular plot shape 126
reorder.factor function 236
rep function 79
rm function 25
Rows function 255

S

S_CLEDITOR environment variable 12
S_CMDFILE variable 316
scales and labels of graphs 242
scales argument 243
scan function 67, 69
scatterplot 154
screen argument 225
screen axes 225
segments function 192, 248
seq function 79
Session options, continuation prompt 312
session options, echo 312
Session options, editor 312
Session options, printing digits 312
Session options, prompt 312
Session options, screen dimensions 312
shingle function 240
show.settings function 249, 251
single-symbol operators 205
skip argument 263
smooth function 139

S-news mailing list 3
solder data set 98
space argument 255
span argument 248
span parameter 258
split argument 228
split.screen function 186
splom function 221
S-PLUS syntax

formulae in 51
S-Press newsletter 3
square plot shape 126
Standard axes 183
star plot 156
Starting S-PLUS 8, 12
static data visualization 154
statistical modeling 50
statistics

summary 47
common functions for 47

StatLib 3
strip argument 245
strip.names argument 245
strip.white argument 69
stripplot function 213
sub argument 128, 242
subscripts argument 248
subset argument 206
subtitle of a plot 128
summary function 91
summary statistics 47

common functions for 47
superpose.symbol function 253
switzerland data set 158
symbols function 193
syntax 9

case sensitivity 10
continuation lines 10
spaces 9

T

t function 72, 145
tapply function 114
334

INDEX
tck parameter 180
technical support 4
testing, hypothesis 48
text function 140, 248
times argument 79
title function 128, 165
training courses 3
Trellis settings 249
trellis.device function 202, 249
trellis.par.get function 249
trellis.par.set function 249, 251
type argument 123, 253
Type factor 221

U

unix function 32
usa function 194
using logarithmic scale 130
usr parameter 175

V

vector arithmetic 29
vector data type 116
vector function 80
vectors 67, 79

creating 25

vi editor 12
table of keystrokes 12

vi function 35
VISUAL environment variable 12

W

what argument 67, 69
width argument 150, 220
widths argument 69
wireframe function 202, 210, 225
working directory

how set 320
write function 72
Writing A Panel Function 246

X

xaxs argument 130
xlab argument 129, 242
xlim argument 129, 242
xyplot function 202, 204, 211

Y

yaxs argument 130
ylab argument 129, 242
ylim argument 129, 242
335

INDEX
336

	Proprietary Notice
	Copyright Notice
	Contents Overview
	Introduction
	Data Structures
	Graphics
	Advanced Topics

	Welcome to S�Plus
	Introduction
	Help, Support, and Learning Resources
	Getting Help

	Getting Started
	Running S�Plus
	Starting S�Plus and Entering Expressions
	Quitting S�Plus
	Basic Syntax and Conventions

	Command Line Editing
	Getting Help in S�Plus
	Reading S�Plus Help Files

	S�Plus Language Basics
	Data Objects
	Managing Data Objects
	Functions
	Operators
	Optional Arguments to Functions
	Access to UNIX

	Importing and Editing Data
	Reading a Data File
	Editing Data
	Built-in Data Sets
	Quick Hard Copy
	Adding Row And Column Names
	Extracting Subsets of Data

	Graphics in S�Plus
	Making Plots
	Quick Hard Copy
	Using the Graphics Window
	Multiple Plot Layout

	The result is shown in figure�2.3.
	Statistics
	Summary Statistics
	Hypothesis Testing
	Statistical Models

	Importing and Exporting Data
	Importing Data Files
	Setting the Import Filter
	Notes on Importing Files
	Notes on Importing ASCII (Delimited ASCII) Files
	Notes on Importing FASCII (Formatted ASCII) Files
	Notes on Importing Excel Files
	Notes on Importing Lotus Files
	Notes on Importing dBase Files
	Notes on Importing Data From Enterprise Databases

	Other Data Import Functions
	Reading Vector and Matrix Data with scan
	Reading Data Frames

	Exporting Data Sets
	Exporting Data to S�Plus
	Other Export Functions

	Data Objects
	Basic Data Objects
	Coercion of Values

	Vectors
	Creating Vectors
	Naming Vectors

	Matrices
	Creating Matrices
	Naming Rows and Columns

	Arrays
	Creating Arrays

	Lists
	Creating Lists
	List Component Names

	Factors and Ordered Factors
	Creating Factors
	Creating Ordered Factors
	Creating Factors from Continuous Data

	Data Frames
	The Benefits of Data Frames
	Creating Data Frames
	Combining Data Frames
	Combining Data Frames by Column
	Combining Data Frames by Row
	Merging Data Frames

	Applying Functions to Subsets of a Data Frame
	Adding New Classes of Variables to Data Frames

	Traditional Graphics
	Introduction
	Getting Started with Simple Plots
	Plotting a Vector Data Object
	Plotting Mathematical Functions
	Creating Scatter Plots

	Frequently Used Plotting Options
	Plot Shape
	Multiple Plot Layout
	Titles
	Axis Labels
	Axis Limits
	Logarithmic Axes
	Plot Types
	Line Types
	Plotting Characters
	Controlling Plotting Colors

	Interactively Adding Information to Your Plot
	Identifying Plotted Points
	Adding Straight Line Fits to a Current Scatter Plot
	Adding New Data to a Current Plot
	Adding Text to Your Plot

	Making Bar Plots, Dot Charts, and Pie Charts
	Bar Plots
	Dot Charts
	Pie Charts

	Visualizing the Distribution of Your Data
	Boxplots
	Histograms
	Density Plots
	Quantile- Quantile Plots

	Visualizing Higher Dimensional Data
	Multivariate Data Plots
	Scatterplot Matrices
	Plotting Matrix Data
	Star Plots
	Faces

	3-D Plots: Contour, Perspective, and Image Plots
	Contour Plots
	Perspective Plots
	Image Plots

	Customizing Your Graphics
	Low-level Graphics Functions and Graphics Parameters
	Setting and Viewing Graphics Parameters
	Controlling Graphics Regions
	Controlling the Outer Margin
	Controlling Figure Margins
	Controlling the Plot Area

	Controlling Text in Graphics
	Controlling Text and Symbol Size
	Controlling Text Placement
	Controlling Text Orientation
	Controlling Line Width
	Plotting Symbols in Margin

	Text in Figure Margins
	Controlling Axes
	Enabling and Disabling Axes
	Controlling Tick Marks and Axis Labels
	Controlling Axis Style
	Controlling Axis Boxes

	Controlling Multiple Plots
	Overlaying Figures
	High-Level Functions That Can Act as Low-Level Functions
	Overlaying Figures by Setting new=TRUE
	Overlay Figures by Using subplot

	Adding Special Symbols to Plots
	Arrows and Line Segments
	Adding Stars and Other Symbols
	Custom Symbols

	Traditional Graphics Summary
	References

	Traditional Trellis Graphics
	A Roadmap of Trellis Graphics
	Giving Data to General Display Functions
	A Data Set: gas
	formula Argument
	subset Argument
	Data Frames

	Aspect Ratio
	General Display Functions
	A Data Set: fuel.frame
	A Data Set: gauss

	Arranging Several Graphs On One Page
	Multipanel Conditioning
	A Data Set: barley
	About Multipanel Display
	Columns, Rows, and Pages
	Packet Order and Panel Order
	layout Argument
	Main-Effects Ordering
	Summary: The Layout of a Multipanel Display
	A Data Set: ethanol
	Conditioning on Discrete Values of a Numeric Variable
	Conditioning on Intervals of a Numeric Variable

	Scales and Labels
	3-D Display: aspect Argument
	Changing the Text in Strip Labels

	Panel Functions
	How to Change the Rendering in the Data Region
	Passing Arguments to a Default Panel Function
	A Panel Function for a Multipanel Display
	Special Panel Functions
	Commonly- Used S�Plus Graphics Functions and Parameters

	Panel Functions and the Trellis Settings
	Superposing Two or More Groups of Values on a Panel
	Data Structures
	More on Aspect Ratio and Scales: Prepanel Functions
	More on Multipanel Conditioning

	Summary of Trellis Functions and Arguments

	Working With Graphics Devices
	Printing Your Graphics
	Printing with PostScript Printers
	Printing with HP-GL Pen Plotters
	Creating PDF Graphics Files
	Managing Files from Hard Copy Graphics Devices
	Using Graphics from a Function or Script

	Graphics Window Details
	Basic Terminology
	Available Colors Under X11

	Customizing Your S-PLUS Session
	Setting S�Plus Options
	Setting Environment Variables
	Customizing Your Session at Start-up and Closing
	Setting S_FIRST
	Customizing Your Session at Closing

	Using Personal Function Libraries
	Creating an S Chapter
	Placing the Chapter in Your Search Path

	Specifying Your Working Directory
	Specifying a Pager
	Environment Variables and printgraph
	Setting Up Your Window System
	Setting X11 Resources
	S�Plus X11 Resources
	Common Resources for the Motif Graphics Device

	Index

