
Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Rok Črešnik

Razvoj neodvisnih video iger

Run&Roll

DIPLOMSKO DELO

NA UNIVERZITETNEM ŠTUDIJU RAČUNALNIŠTVA IN

INFORMATIKE, SMER INFORMATIKA

Ljubljana 2013

University of Ljubljana

Faculty of Computer and Information Science

Rok Črešnik

Indie Game Development

Run&Roll

THESIS

FACULTY OF COMPUTER AND INFORMATION SCIENCE,

DEPARTMENT OF INFORMATICS

Mentor: doc. dr. Rok Rupnik

Ljubljana 2013

Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Rok Črešnik

Razvoj neodvisnih video iger

Run&Roll

DIPLOMSKO DELO

NA UNIVERZITETNEM ŠTUDIJU RAČUNALNIŠTVA IN

INFORMATIKE, SMER INFORMATIKA

Mentor: doc. dr. Rok Rupnik

Ljubljana 2013

The results of the thesis are the intellectual property of the author, and the Faculty

of Computer and Information Science, University of Ljubljana. For publishing or

exploitation of the results of the thesis the written consent of the author, Faculty

of Computer and Information Science and the mentor is needed.

Namesto te strani vstavite original izdane teme diplomskega dela s pod-

pisom mentorja in dekana ter žigom fakultete, ki ga diplomant dvigne v

študentskem referatu, preden odda izdelek v vezavo!

Izjava o avtorstvu diplomskega dela

Spodaj podpisani Rok Cresnik, z vpisno številko 63050021, sem avtor di-

plomskega dela z naslovom:

Indi Game Development

S svojim podpisom zagotavljam, da:

• sem diplomsko delo izdelal samostojno pod mentorstvom doc. dr. Roka

Rupnika.

• so elektronska oblika diplomskega dela, naslov (slov., angl.), povzetek

(slov., angl.) ter ključne besede (slov., angl.) identični s tiskano obliko

diplomskega dela

• soglašam z javno objavo elektronske oblike diplomskega dela v zbirki

”Dela FRI”.

V Ljubljani, dne 15. oktober 2013 Podpis avtorja:

Thank you!

Contents

Povzetek 1

Abstract 5

Prologue: The Hero is Born: iOS & Objective-C 7

0.1 iOS . 7

0.2 Objective C . 9

1 Tutorial: Xcode & Frameworks 11

1.1 Xcode . 11

1.2 Cocos2d-iphone . 11

1.3 Box2d . 13

2 Where Does This Path Go: Movement 17

2.1 About Controls . 17

2.2 Run&Roll controls . 18

3 Ow No, There Is Something In My Path: Basic Obstacles 21

4 It’s Alive, It’s Alive: Animations 25

4.1 Animations in Run&Roll . 26

5 I Think I Hear Something: Sounds & Music 31

5.1 CocosDenshion . 31

5.2 Sounds in Run&Roll . 33

CONTENTS

6 The Aftermath Bragging: GameCenter 37

6.1 Game Center . 37

6.2 Implementation . 38

6.3 Run&Roll: Leaderboards & Achievements 39

7 The Spoils of Battle: Monetization 43

7.1 Mobile Gaming Revenue Models 43

7.2 Monetization in Run&Roll . 45

8 To Arms My Friends: Socialization 49

9 The Boss Fight: Competition 53

9.1 Tracking user behavior . 53

9.2 Forums, Webpages, Communities 55

Epilogue: The Story Continues: After App Submission 57

List of Figures 59

Bibliography 61

List of Acronyms and Symbols

API - Application Programming Interface

GDC - Game Developers Conference

Povzetek

Neodvisne video igre imajo naziv Indie igre, ki jih razvijajo posamezniki

ali manǰse skupine. Diplomska naloga analizira nastanek igre Run&Roll za

mobilne napreve z operacijskim sistemom iOS. Celotno delo je razdeljeno

na tematske sklope, ki predstavljajo ključne pristope potrebne pri procesu

izdelave mobilne igre. Delo se prične z predstavitvijo operacijskega sistema

iOS, ki poganja Applove mobilne naprave, ter kratko zgodovino njegovega

razvoja. Predstavljen je programski jezik Objective-C (v katerem je bila igra

Run&Roll razvita), njegove glavne karakteristike in podobnosti z drugimi

programskimi jeziki.

Naslednje poglavje bralca seznani z razvijalskim okoljem Xcode in pri razvoju

uporabljenimi ogrodji:

• Cocos2d: ogrodje za izdelavo 2D iger

• Box2D: ogrodje za simulacijo teles v 2D prostoru ter detekcijo in ra-

zreševanje kolizij med njimi

V nadaljevanju so prikazani različni pristopi upravljanja v mobilnih igrah ter

bolj podrobno analiziran način upravljanja z akselerometrom, ki je bil upora-

bljen pri Run&Rollu. V tem poglavju se bolj podrobno prikaže implementa-

cija tega načina upravljanja, pridobivanje informacij iz kontrol akselerometra

ter uporaba pridobljenih informacij za upravljanje akcij znotraj igre.

Poglavje “Ow No, There Is Something In My Path: Basic Obstacles” se

podrobneje dotakne fizike v igri Run&Roll, kreacije fizikalnih teles, nasta-

vljanja njihovih fizikalnih značilnosti ter akcij, ki ze zgodijo ob kolizijah.

1

2 Povzetek

Razkrije nam tipe fizikalnih teles uporabljenih v Run&Rollu ter posledic, ki

jih sprožijo ob kontaktu z igranim junakom.

Nadaljno se prikaže uporaba sekvenc slik za animiranje glavnega junaka.

Analizirani so trije tipi gibanja junaka ter logika za menjavanje med njimi.

Predstavi se problem zapolnitve pomnilnika in rešitev, ki je bila uporabljena

pri Run&Rollu ter sprejeti kompromis, ki je zmanǰsal število potrebnih sličic

brez opaznega padca kvalitete animacije.

V zaključku prvega sklopa diplomskega dela, se analizira še uporaba zvočnih

efektov ter glasbe v igrah. Predstavi se ogrodje CocosDenshion (del paketa

cocos2d), ki poenostavi predvajanje zvočnih učinkov ter glasbe. Poglavje po-

drobno analizira zvočne učinke v Run&Rollu, ki so razdeljeni v tri sklope,

poudari pa tudi pomembnost prednaložitve zvočnih datotek pred začetkom

igre, kar izbolǰsa igralno izkušnjo.

Druga polovica diplomskega dela se osredotoči na podporne elemente igre.

Prvo poglavje tega sklopa predstavi način točkovanja igralne seance, im-

plementacijo lestvic in dosežkov s pomočjo Applove storitve GameCenter

ter pošiljanjem rezultatov iz mobilne naprave na GameCentrove strežnike.

Kraǰsi odsek je namenjen tudi predstavitvi storitve GameCenter in vplivu,

ki ga ta storitev ima na igralce mobilnih iger. Cilj razvijalcev mobilnih iger

je pokriti stroške nastale z razvojem. Tega se ekipe lotevajo na različne

načine, ki so predstavljeni v poglavju “The Spoils of Battle: Monetization”.

Podrobneje je predstavljen tip brezplačnih iger z trgovino, v katerega spada

tudi analizirana igra. Opisan je postopek kreacije prodajnih artiklov na por-

talu iTunesConnect ter potrebni koraki za verifikacijo in potrjevanje nakupov

za denar. Predstavljena je trgovina Run&Rolla, njena segmentacija in načina

delovanja. Del trgovine je tudi sekcija, kjer si igralci lahko sledijo igri na plat-

formah Facebook, YouTube in Twitter. V zameno pridobijo vnaprej določen

znesek kovancev, ki jih lahko porabijo za nadgradjo igralnih elementov. Po-

leg tega je opisan še en način pridobivanja igralne valute - z prikazovanjem

doseženega rezultata na socialnih omrežnjih. Igralec preko različnih mrež

3

prikaže svoj dosežek in s tem izzove prijatelje, da ga premagajo. Nadalje

je izpostavimo pojem uporabnǐskih metrik ter predstavitev ogrodja Flurry,

ki omogoča pridobivanje le-teh. Opisan je postopek implementacije ter za-

jemanja različnih dogodkov. Ti dogodki se preko spletnega vmesnika lahko

nadaljno povezujejo v lijake, uporabnǐske poti. Z analizo pridobljenih po-

datkov lahko pripomoremo k večjemu uspehu produkta. Pomemben aspekt

uspeha igre je tudi podpora neodvisnih razvijalskih skupnosti. V delu je

predstavljena struktura in pomembnost teh skupin ljudi, ki lahko z nasveti

in kritikami pomagajo h bolǰsemu produktu in večjemu številu igralcev.

Ker je postopek izdelave igre zelo dolg in kompleksen proces, se v diplomskem

delu nisem spuščal v pretirane podrobnosti, vendar sem se poizkusil dota-

kniti vseh pomembnih aspektov in problemov s katerimi smo se pri razvoju

srečali.

Ključne besede:

neodvisen razvoj iger, mobilne igre, iOS, Objective-C, cocos2d, Box2D, mo-

bilne naprave, monetizacija, viralnost, animacije, zvok, detekcija kolizij, ra-

zrešitev kolizij, socialna omrežja

Abstract

Indie games are independent video games created by individuals or small

teams. This thesis analyses the process behind the creation of the iOS game

Run&Roll. Through the following chapters, the readers will familiarize them-

selves with various tools and concepts used in the realization of the final

product. The thesis begins with an outline of the basics of the iOS operat-

ing system and Objective-C language, which was used in the development of

Run&Roll. Various frameworks and their use in the game are explained and

displayed. Various concepts of game creation and their implementation are

introduced. The first chapters focus on concepts of movement in mobile gam-

ing, interaction with different objects (physics) and the basics of animation

and sound. Each chapter is equipped with short code snippets, depicting the

realization of the concepts in question. In the second part of the thesis, focus

is given to concepts of monetization (inApp purchases, advertisements) and

virality (social network integration and multiplayer). In the conclusion, con-

cepts of competition and marketing in the mobile gaming field are discussed.

Since the development of a game is a very long and complex process, the

subject is not explained in high detail. Instead, the most important aspects

and problems we encountered in the production of the game are explained.

Key words:

indi game development, mobile games, iOS, Objective-C, cocos2d, Box2D,

mobile devices, monetization, virality, animation, sound, collision detection,

5

6 Abstract

collision resolution, social networks

Prologue: The Hero is Born:

iOS & Objective-C

2012 was an interesting year, and not because we lost a number of industry

giants, but because the number of smartphones has exceeded the combined

number of PCs and notebook PCs. This has created a trend - a lot of

developers changing their focus to the booming sector of mobile devices. A

mobile device is a small, hand-held computing device, typically equipped

with a display screen with touch input and/or a miniature keyboard, and

weighing less than 0.91 kg. In our case, the term “mobile device” describes

either a smart phone or a tablet PC. Figure 1 depicts the market shares

of various companies in the smart phone of mobile devices. As depicted,

Android devices hold the largest market share, followed by Apple’s iOS. This

thesis focuses on Apple’s segment of the mobile device market. This segment

includes iPhone, iPad and iPod Touch devices.

0.1 iOS

Apple’s i-devices are all running the iOS (previously iPhone) operating sys-

tem, which was introduced by Apple in 2007 on the first iPhone and iPod

Touch devices. Since the launch date in 2007, iOS has gone through major

changes, some of the more notable ones being:

• App Store: introuduced with iOS 2.x on 11th of July, 2008.

7

8 Prologue: The Hero is Born: iOS & Objective-C

Figure 1: Smartphones Manufacgturers Share by Operating System

(Source:Silicon Valley Insider)

• Copy-Paste functionality, MMS: introudced with iOS 3.x on 17th of

June, 2009.

• Apple’s operating system renamed to iOS, dropped support for some

devices, added iPad compatibility: introudced with iOS 4.x on 21th of

June, 2009.

• iMessage, Retina display, Siri: introudced with iOS 5.x on 12th of

October, 2011.

• Larger screen, new maps, Facebook integration (introduced with iOS

6.x on September 19th, 2012).

0.2. OBJECTIVE C 9

0.2 Objective C

Objective-C is the primary language, used to develop software for iOS and

OSX. It inherits syntax, primitive types and flow control statements from

the C programming language, while adding object-oriented capabilities. In

Objective-C, the most work is done with objects, instances of Objective-C

classes, which can be provided by Cocoa/Cocoa Touch or can be written on

one’s own. The main designing concepts, commonly used in iOS development

are:

• Categories: Instead of creating a new class to add additional capabil-

ities, Objective-C allows the defining of categories which add custom

behaviour to any pre-existing class (even to classes for which one does

not have the original source code).

• Protocols: Objective-C uses protocols to define a set of required or

optional methods that are not tied to a specific class, but are imple-

mented on its delegate. Any class can adopt a protocol, but must first

provide implementation for all of the required methods of the protocol.

• Blocks: A block represents a unit of work. It encapsulates a block

of code with a captured state, which makes it similar to closures in

other programming languages. Blocks are often used to simplify com-

mon tasks, such as collection enumeration, sorting, and testing. They

also make it easier to schedule tasks for concurrent or asynchronous

execution.

10 Prologue: The Hero is Born: iOS & Objective-C

Level 1

Tutorial: Xcode & Frameworks

1.1 Xcode

Xcode is the Integrated Development Environment (IDE) containing devel-

opmental tools, developed by Apple. It was released in 2003 and is mainly

used for developing software for iOS and OSX. Xcode is free to use and can

be obtained from the Mac App Store. Figure 1.1 is a snapshot of the Xcode

application. The left section or window is called the Navigator and lists a

project’s file structure. The bottom section is the Debug area, further di-

vided into two areas - the Variable view and the Console. To the right are

the Utilities. The top section is used for building or analysing an application

and different interface views.

Xcode comes with a simulator for trying out builds (for developers that

do not own their own devices or do not have Apple’s developer license). Have

I mentioned one cannot deploy builds on a real device without owning a valid

developer license?

1.2 Cocos2d-iphone

Cocos2d is an open source framework for building 2D games. The orig-

inal framework was written in Python, but has since been ported to other

11

12 LEVEL 1. TUTORIAL: XCODE & FRAMEWORKS

Figure 1.1: Apples IDE - Xcode

platforms, one of them being Objective-C. The Application Programming In-

terface (API) is integrated with Chipmunk and Box2d physics engines (more

on Box2d in the following section). Cocos2d is widely used by developers all

over the world; many prefer it over Objective-C. Here are some of the reasons

for that:

• It is free: Without paying, one is allowed to create free applications for

iPod, iPad, iPhone and even the Mac OS X platforms.

• It is open source: The whole framework is open to the community, al-

lowing developers to read, edit and change whatever they want, making

the Cocos2d framework both extensible and flexible.

• It is Objective: The framework was rewritten in Objective-C, Apple’s

native programming language.

• It has Physics: As mentioned previously, there are two physics engines

integrated into Cocos2d - Chipmunk and Box2d. The main difference

1.3. BOX2D 13

between them is the language they are written in. Box2d is written in

C++, while Chipmunk is written in C. Most developers choose Box2d,

because it is better documented and is object oriented.

• It is less complex: One of the major benefits of Cocos2d is the way

it hides complicated OpenGL code. Most of the graphics are drawn

using simple sprite classes, created from image files. To put it frankly:

A sprite is a texture that can have scaling, rotation, and colour applied

by changing the corresponding Objective-C properties of a CCSprite

class. At the same time, Cocos2d enables advanced developers to write

their own OpenGL code, making the framework appreciated by both

new and advanced users.

• It has a great community: The Cocos2d community is large and ex-

tremely active. The developers are quick to answer questions and will-

ing to share their knowledge and information (one of the main sources of

information is the Cocos2d forum: http://www.cocos2d iphone.org/forum).

After a game has been finished and released on the App Store, it is even

possible to promote it on the Cocos2d web page for free! Besides being

the mostly commonly used game developing platform for iOS, Cocos2d ports

exist on other developing platforms as well. For example: Android, Windows,

JavaScript. Even though all of the mentioned ports share the same name

and design philosophy, they are actually written in different languages by

different authors, and are very different from the iOS version of Cocos2d.

This means porting to other platforms also demands more work. Table 1.1

lists the Cocos2d game engines, frequently updated and stable enough for

production use.

1.3 Box2d

Let us take a closer look at the Box2d physics engine. The engine is written

in C++ and was developed by Erin Catto. It was presented for the first time

14 LEVEL 1. TUTORIAL: XCODE & FRAMEWORKS

Name Language Platform Web Site

cocos2d-iphone Objective-

C

iOS, Mac OS X www.cocos2d-iphone.org/

cocos2d-x C++ iOS, Android,

Windows

www.cocos2d-x.org/

cocos2d-javascript JavaScript Web browsers www.cocos2d-javascript.org/

cocos2d-android-1 Java Android http://code.google.com/p/

cocos2d-android-1/

cocos2d Python Mac OS, Win-

dows, Linux

http://cocos2d.org

Table 1.1: Most popular Cocos2d engine ports

at the Game Developers Conference (GDC) in 2006 (at that time, it was

named Box2D Lite) and has been in active development ever since. Box2D

is distributed with Cocos2d in light of its recent popularity. Box2D performs

constrained rigid body simulation. It can simulate bodies composed of convex

polygons, circles, and edge shapes. Bodies are joined together with joints

and affected by various forces. The engine also applies gravity, friction, and

restitution. Box2D’s collision detection and resolution system is conducted in

three phases: Incremental sweep and prune broad-phase, continuous collision

detection unit, and stable linear-time contact solver. These algorithms allow

efficient simulations of fast bodies and large stacks, without missing collisions

or causing instabilities. Box2D consists of:

• Bodies: Bodies are the fundamental objects in Box2D. They have prop-

erties that define their behaviour (mass, velocity, rotational and angular

velocity, inertia, location, and angle). However, even with the previ-

ously defined properties, we still do not know how the object looks like

or how it will react upon a collision. For that, we need fixtures.

• Fixtures: Fixture defines the size, shape and the material properties

www.cocos2d-iphone.org/
www.cocos2d-x.org/
www.cocos2d-javascript.org/
http://code.google.com/p/cocos2d- android-1/
http://code.google.com/p/cocos2d- android-1/
http://cocos2d.org

1.3. BOX2D 15

of an object. One body can have multiple fixtures that will affect the

body’s centre of mass. When two (or more) bodies collide, their fixtures

are used to determine the outcome of the collision.

• Worlds: A world is the main entity in which all the Box2D bodies

reside. When creating or destroying a body, a function of the world

object is called to perform the required task. This means that the world

entity manages all the allocations of the objects within. The world

entity is important and is used for defining gravity, tuning the physics

simulation, finding fixtures in a given region, and finding intersected

fixtures.

• Joints: Box2D has a number of different joint types (revolute, distance,

prismatic, line, weld, pulley, gear, mouse), used to connect bodies to-

gether. These joints are used to simulate the interaction between ob-

jects, to form hinges, ropes, pistons, chains, etc. Although each joint

has different functionalities, they have some common features. Every

joint connects two bodies, and has a setting that determines if those

bodies are able to collide with each other.

• Collisions: The core of Box2D are collisions. As mentioned earlier,

when two bodies collide, we use their fixtures to determine the outcome.

Collisions can occur in different situations and have a lot of information

that can be used in the game logic. Important collision information

includes: The beginning and ending of collision, points in which the

fixtures are colliding, the normal vector between the colliding fixtures,

and energies involved in collision and resolution.

The frameworks described above were used in creating Run&Roll, and

will be analysed in the following chapters.

16 LEVEL 1. TUTORIAL: XCODE & FRAMEWORKS

Level 2

Where Does This Path Go:

Movement

2.1 About Controls

The way our hero moves depends primarily on the type of the game. The

most commonly used movement types on mobile devices are:

• Accelerometer control: This control type uses the amount of X, Y, Z

axis acceleration to perform an action. We can define which axis will

be used for a certain action.

• Virtual gamepad: This is a virtual representation of a gamepad on the

screen of our device. Virtual gamepads come in many shapes and sizes,

customized to meet our needs.

• Touch/drag control: Movement is achieved by touching an object and

dragging it to a new position (this type is used mainly in board games

like Chess, Backgammon, etc.).

These are the main control types, using which the player can interact with a

game. Besides these, there are also many others, more exotic ways of control.

17

18 LEVEL 2. WHERE DOES THIS PATH GO: MOVEMENT

2.2 Run&Roll controls

Run&Roll is an endless runner game in which we control Joe the Hedgehog

(henceforth referred to as the “Hero”), avoiding obstacles and collecting as

many coins and boosts as possible. The games becomes faster the longer

it lasts, forcing shorter reaction times and thus making it harder for the

player to cope with the game. Because the Y axis speed is controlled by the

game system, a player’s only task is to move the Hero left and right, which is

achieved with the help of the accelerometer. We decided on an accelerometer

controlled game due to factors as:

• Ease of use: Movement is achieved by tilting the phone left and right.

• Screen space: No additional movement buttons are needed.

• Advanced use of available hardware.

• Easy implementation.

Enabling the accelerometer is a straight forward process. All we need

to do is to initialize it and then bind the accelerometer values to our Hero.

The initialization and movement of our Hero are shown in the code snippet

below.

− (id)initAcc

{
if ((self = [super init])) {

self .accelerometer = [UIAccelerometer sharedAccelerometer];

self .accelerometer.updateInterval = .1;

self .accelerometer.delegate = self ;

}

return self ;

}

− (void)accelerometer:(UIAccelerometer ∗)accelerometer

didAccelerate:(UIAcceleration ∗)acceleration

2.2. RUN&ROLL CONTROLS 19

{
float absAccelerationX = fabs(acceleration.x);

float xDirection = 1;

if (acceleration .x < 0) {
xDirection = −1;

}
float calibratedAccX = MIN(absAccelerationX∗1.9, 1) ∗ xDirection;

float angle = M PI+M PI 2 + M PI 2 ∗ calibratedAccX;

hero.accelerometerAngle = angle;

}

The initAcc function initializes the accelerometer, sets its update interval

to 0.1 seconds and declares the accelerometer’s delegate. The function ac-

celerometer:didAccelerate detects changes in the accelerometer. The ac-

celerometer measures acceleration in all three directions, but because our

hero can only move left or right, we use the data for the X axis only. The

code in the snippet above takes into account the adjustments we have made

to enhance the movement of our Hero, making him more agile.

20 LEVEL 2. WHERE DOES THIS PATH GO: MOVEMENT

Level 3

Ow No, There Is Something In

My Path: Basic Obstacles

In this chapter we will discuss obstacles, their creation and how they respond

to collisions. Run&Roll features three main obstacle types. These are:

• Static obstacles: These are obstacles that do not move. In Run&Roll

we further divide them into:

– Obstacles the Hero can collide with (rocks, trees, crystals, hills,

etc.).

– Obstacles the Hero can fall into (rivers, holes, etc.).

– Obstacles the Hero must jump over.

• Dynamic (moving) obstacles (monsters).

• Collectable objects: This group includes items our Hero can collect:

– Coins: Coins are the game’s currency. The more we collect, the

more we can spend in the Run&Roll shop, where we can improve

our Hero’s performance.

– Boosts: These are special bonus items, spread around the game’s

environment that enhance our Hero’s capabilities, whether making

21

22
LEVEL 3. OW NO, THERE IS SOMETHING IN MY PATH: BASIC

OBSTACLES

him fly, destroy objects or collect coins faster. Every boost is

triggered instantly and lasts for a fixed amount of time. The

duration of a boost can be increased by purchasing boost upgrades

in the Run&Roll shop. The Run&Roll game features five different

boosts (health, speed, magnet, meteor, and tank boost).

– Utilities: Unlike boosts, utilities can be used on demand, but

only when their trigger conditions are met. Utilities can either be

bought or collected. There are three different utilities in Run&Roll:

Resurrection, head-start, and extra health.

Now that we know more about obstacles in Run&Roll, let us talk code!

As explained before, obstacles behave differently. Different types of obstacles

have differing properties, set to make them behave in a way we desire. In

Box2D, these properties are defined in the body’s fixture and are called mask

and category bits. They define the way a body reacts upon collision, either

stopping the colliding objects, or letting it pass uninterruptedly. To see how

a Box2D body is created, look at the code snippet below. It contains the

code needed to create a simple static obstacle – a rock.

− (void)createBox2dBodyWithUserData: (id) userData

{
CGPoint startPosition = self.position ;

b2BodyDef bd;

bd.type = b2 staticBody;

bd.linearDamping = 0.f; // between 0 and 0.1

bd.fixedRotation = true;

bd.position.Set(startPosition .x/PTM RATIO, startPosition.y/PTM RATIO);

bd.allowSleep = false ;

bd.userData = userData;

body = world−>CreateBody(&bd);

b2CircleShape shape;

shape.m radius = 10;

23

b2FixtureDef fd;

fd.shape = &shape;

fd.density = 5;

fd. friction = 0; // friction

fd. restitution = 0.0; // bounce effect

fd. filter .categoryBits = self .box2dCategoryBits;

fd. filter .maskBits = self.box2dMaskBits;

fd. isSensor = false ;

body−>CreateFixture(&fd);

}

A reasonable amount of code is needed to create a simple obstacle. There is

a lot of discernable information, hidden in the code above. The first chunk

defines the body, its position, its rotational abilities, etc. After the body

has been created, we need to create its fixture. As stated before, a fixture

determines how the body reacts upon collision. First, we define the body’s

shape and size; our rock is of circular shape with a radius of 10 units. Then

we set the density, friction and restitution, which determine the colliding

behaviour.

• Density is used to compute properties of a body’s mass. It can either

be zero (0) or positive (1).

• Friction is used to make objects slide along each other. It is usually set

between zero (0) and one (1). The value of 0 turns the friction off, and

the value of 1 makes the friction strong.

• Restitution is used to make objects bounce. Restitution is usually set

between zero (0) and one (1). Given the value of 0, the object will not

bounce, and given the value of 1, the object’s velocity will be inverted

without losses (perfect elastic collision).

Lastly, we set the mask and category bits and the isSensor property. This is

called collision filtering and allows us to prevent collisions between fixtures.

24
LEVEL 3. OW NO, THERE IS SOMETHING IN MY PATH: BASIC

OBSTACLES

Box2D supports 16 collision categories. For each fixture we can specify which

category it will belong to. We can also specify other categories a fixture can

collide with. For example, we can set up a multiplayer game in which players

cannot collide with each other, monsters cannot collide among themselves,

but players and monsters can. The isSensor property defines whether a

body’s collision is calculated. If isSensor is set to true, a body will not

collide with any other objects (it behaves as if its mask bits are set to zero).

Level 4

It’s Alive, It’s Alive:

Animations

Making objects appear alive can be achieved with the use of animations. An

animation is a rapid display of a sequence of images that creates the illusion

of movement. Cocos2D comes with classes that enable developers to create

simple animations without having to do too much work. The simplest method

of making animations in Cocos2d is importing a sequence of images into an

Xcode project, applying them to an object and then exchanging them on

the desired object. However, there is a better way of creating animations in

Cocos2d - by using sprite sheets. A sprite sheet is a gigantic image, containing

sprite images. Sprite sheets always come in pairs. A pair is composed the

following files:

• Sprite sheet file: This is a large image, containing all animation frames.

• Plist file: The plist file contains information on individual sprite bound-

aries. With the information provided by the plist file, we can retrieve

individual images from the sprite sheet file and create animations.

25

26 LEVEL 4. IT’S ALIVE, IT’S ALIVE: ANIMATIONS

4.1 Animations in Run&Roll

In Run&Roll animations were used to make our Hero run, jump and roll.

For that purpose, we created a sprite sheet file Hero.png, shown in figure 4.1,

with its pair Hero.plist. Because our Hero’s movement types differ and he

can move in different directions, a systematic naming convention that can

utilize the different types and angles of movement was needed. Run&Roll

Hero animation naming convention:

Hero_[movementType]_[directionalAngle]_[frameCount].png

Where:

movementType is either “walk” or “roll”.

directionalAngle describes the angle of our Hero’s movement. Due to memory limita-

tions, a limited number of angles had to be selected. For that reason,

we only use certain angles (135, 180, 225, 240, 255, 270, 285, 300, 315,

360, and 45 degrees). If you look at the angle selection closely, you will

notice that the angular difference is not always the same. This is the

result of our Hero normally moving somewhere between the angles of

255 and 315 degrees, where we made the animation look more detailed.

If the Hero’s movement angle is lower than 225 or higher than 315 de-

grees, his movement can be utilized, which does not happen that often,

we use less frame sequences to animate the Hero’s movement.

frameCount indicates the frame number of the movement animation. Each move-

ment angle has 16 frames for each movement type.

This brings us to the total frame count of (2 *11*16) 352 images that create

the illusion of movement. To make the animation appear smoother, we used

sprite rotation to cover up blind spots, these being the animation angles not

included in the sprite sheet file. For example, if the Hero is moving at an

angle of 265 degrees, the animation for the 270 degrees angle is applied, and

the sprite is rotated for additional 5 degrees, creating the illusion of the Hero

4.1. ANIMATIONS IN RUN&ROLL 27

moving in the desired direction. The code snippet below shows how our

Hero’s animation was created, and the logic for angle and movement type

changes.

// Part 1: FrameAnimation.m

− (id)initWithAnimationName: (NSString ∗) animationName animationType:

(NSString ∗) type angle:(int)angle withNumberOfFrames: (int) frameCount

{
if ((self = [super init])) {

self .isRepeating = YES;

self .animationName = animationName;

CCSpriteFrameCache ∗spriteCache = [CCSpriteFrameCache

sharedSpriteFrameCache];

NSString ∗plistFileName = [NSString stringWithFormat:@”%@.plist”,

animationName];

[spriteCache addSpriteFramesWithFile:plistFileName];

NSString ∗imageName = [NSString stringWithFormat:@”%@.png”, self.

animationName];

CCSpriteBatchNode ∗spriteSheet = [CCSpriteBatchNode batchNodeWithFile:

imageName];

self .animationType = type;

self .angle = angle;

NSString ∗currentFrameName = [NSString stringWithFormat: @”%@%@%i 0.

png”, self.animationName, self.animationType, self.angle];

self .frame = [CCSprite spriteWithSpriteFrameName: currentFrameName] ;

[self addChild:self .frame];

self .currentFrame = 0;

self .frameCount = frameCount;

self . isPlaying = NO;

}
return self ;

}

28 LEVEL 4. IT’S ALIVE, IT’S ALIVE: ANIMATIONS

// Part 2: Heros implementation file we create the animation:

self .moveAnimation = [[FrameAnimation alloc] initWithAnimationName:@”Hero”

animationType: @”walk” angle:270 withNumberOfFrames:16];

// Part 3: we need to update the displayed image each frame.

// The bellow function does that

− (void)updateDisplayedFrame {
float hero3dRotation = self.prevAccelerometerAngle;

self .prev3dRotation += (hero3dRotation−self.prev3dRotation)/10;

float speedAngle = CC RADIANS TO DEGREES(newAngle);

FrameAxis result = [self getFrameAxisFromAngle:speedAngle detailedAxis:YES];

totalDistance += ccpDistance(self.position, self .prevPosition)) ;

[currentAnimation setAngle:result.axisAngle];

int frameNum = totalDistance/8)% currentAnimation.countFrames;

[currentAnimation gotoAndStop:frameNum];

float angleCorrection = (speedAngle − result.axisAngle);

if (angleCorrection > result. coeficient) {
angleCorrection = result. coeficient ;

} else if (angleCorrection < − result. coeficient) {
angleCorrection = − result. coeficient ;

}
currentAnimation.rotation = −angleCorrection;

}

// Part4: animation type changes

− (void)changeAnimation:(AnimationType) type

{
self .animationType = type;

[currentAnimation pause];

switch (self .animationType) {
case walkingAnimation:

[currentAnimation changeAnimationTypeTo:@” walk” withCountFrames

:16];

4.1. ANIMATIONS IN RUN&ROLL 29

break;

case runningAnimation:

break;

case tankAnimation: {
if (self . state == tankState) {

[self .graphicsContainer removeChild:self.moveAnimation cleanup:NO];

[self .graphicsContainer addChild:self.tankAnimation];

currentAnimation = self.tankAnimation;

} else {
[self .graphicsContainer removeChild:self.tankAnimation cleanup:NO];

[self .graphicsContainer addChild:self.moveAnimation];

currentAnimation = self.moveAnimation;

}
break;

}
case airRollingAnimation:

[currentAnimation changeAnimationTypeTo:@” roll” withCountFrames

:15];

//[currentAnimation play];

break;

case rollingAnimation:

[currentAnimation changeAnimationTypeTo:@” roll” withCountFrames

:15];

break;

default :

break;

}
}

Explanation of the above code:

• Part 1 is from our FrameAnimation class. It creates a CCSpriteFrame

and handles the frame changing logic.

• Part 2 shows how FrameAnimation is created in our Hero class.

• Part 3 handles the angle changing and occurs every update (each frame)

30 LEVEL 4. IT’S ALIVE, IT’S ALIVE: ANIMATIONS

• Part 4 handles animation type changes and occurs each time our Hero

jumps or collects a boost that influences his movement type (Speed-

Boost, Tank-Boost, Meteor-Boost).

Figure 4.1: Hero - Sprite Sheet and a part of the coresponding plist file

Level 5

I Think I Hear Something:

Sounds & Music

So far, we have covered:

• Movement: We can move our Hero with the use of accelerometer sen-

sors.

• Physics: Our Hero can collect objects or collide with them.

• Animation: Our Hero appears 3D, depending on his movement type,

speed and direction.

And what else do we need in a game? Background music and sound effects,

of course! In the following chapter, focus is given on these.

5.1 CocosDenshion

Audio support is not an integral part of Cocos2D, it instead falls under the

domain of CocosDenshion, which is a third-party addition for Cocos2D and

is fortunately distributed with it. Because this is a Cocos2d addition, we

need to import the right header files wherever we want to use audio playback

functionalities. This is achieved with the use of the following line of code:

31

32 LEVEL 5. I THINK I HEAR SOMETHING: SOUNDS & MUSIC

#import ”SimpleAudioEngine.h”

CocosDenshion is a wrapper class that hides the complex low level coding

and provides us with all the basic sound playing functionalities. These are:

• Play effect:

[[SimpleAudioEngine sharedEngine] playEffect:@”effect.mp3”];

• Play background music:

[[SimpleAudioEngine sharedEngine] playBackgroundMusic:@”music.mp3”];

• Pause background music:

[[SimpleAudioEngine sharedEngine] pauseBackgroundMusic];

• Play background music from the start again:

[[SimpleAudioEngine sharedEngine] playBackgroundMusic:@”music.mp3”];

• Preload background music/effect:

[[SimpleAudioEngine sharedEngine] preloadBackgroundMusic:@”music.mp3”];

[[SimpleAudioEngine sharedEngine] preloadEffect:@”effect.mp3”];

CocosDenshion does not only provide us with means of simple audio play-

back, it also provides us with means of controlling sound pitch, pan and gain

levels.

5.2. SOUNDS IN RUN&ROLL 33

• Pitch [0.5 to 2.0]: Pitch is the ”note” of the sound. A higher pitch

value produces sound at a higher note. A lower value makes the sound

”deeper”. 1.0 is the pitch of the original file.

• Pan [-1.0 to 1.0]: Pan is the stereo effect. Levels below zero raise the

loudness of the left speaker and reduce the loudness of the right, while

levels above zero raise the loudness of the right, and reduce the loudness

of the left speaker (if possible due to hardware restrictions).

• Gain [0.0 and up]: Gain is the volume. 1.0 is the volume of the original

file.

Bearing this in mind, let us take a look at the implementation of sounds and

music in Run&Roll.

5.2 Sounds in Run&Roll

The sounds in Run&Roll were composed by Peter Penko, a world renowned

composer, who has worked with groups such as: Laibach, Siddharta, Terra

Folk, Witt*, Coptic Rain, and others. Sounds in Run&Roll can be differen-

tiated into three groups:

• Background music: The game features two background soundtracks,

one intended for gameplay and the other for the menus (main screen,

score scene, shop, etc.). Soundtracks can be easily switched, using the

following code:

− (void)playBackgroundMusic:(BOOL)forMenu

{
NSString ∗fileName;

if (forMenu) {
fileName = @”backgroundMusicMenu.mp3”;

if (isMenuMusicPlaying) {
return;

}

34 LEVEL 5. I THINK I HEAR SOMETHING: SOUNDS & MUSIC

[[SimpleAudioEngine sharedEngine] stopBackgroundMusic];

isMenuMusicPlaying = YES;

} else {
fileName = @”backgroundMusic.mp3”;

[[SimpleAudioEngine sharedEngine] stopBackgroundMusic];

isMenuMusicPlaying = NO;

}

[[SimpleAudioEngine sharedEngine] playBackgroundMusic:fileName];

}

• Effects, played once (collision effects, different pickup sounds): These

sound effects last a short period of time and are played only once.

Their playback requires no altering. Because there are different effects

for different situations, we have created a function with two parameters

(effect base name, number of effects).

+ (CDSoundSource ∗)playEffect: (NSString ∗)effectName numberOfEffects:(int)

number

{
NSString ∗effectName = [self getEffectName:effectName

andNumberOfEffects:number];

NSString ∗fullName = [effectName stringByAppendingString:@”.mp3”];

return [self playSound:fullName];

}
+ (NSString ∗)getEffectName:(NSString ∗)name andNumberOfEffects:(int)

number

{
if (number > 1) {

int randomNumber = arc4random() % number;

return [NSString stringWithFormat:@”%@%i”, name, randomNumber];

} else {
return name;

}
}

5.2. SOUNDS IN RUN&ROLL 35

The first function receives the arguments and calls getEffectName:andNumberOfEffects:

which generates the name of the effect out of the received arguments.

The effect is then played and returned to the caller.

• Longer lasting effects (monster follower effect, wall collision effect):

These are effects, played for a longer period of time and require extra

logic. One of them is the monster follower effect. This sound is trig-

gered by a monster, chasing our Hero; this happens, when the monster

gets in range of our Hero. The loudness of the sound either increases,

when the monster approaches the Hero, or decreases, when distance

between them is increased.

// volume of followerSound according to the distance

self .followerSound.gain = 1 − (distance − 10) / 190;

In order for the above to be possible, we must save a reference to the

effect currently being played in one of our object’s properties. With

the above example, this is achieved by using the following lines of code:

// here we create the property for our CDSoundSource

@property (nonatomic, retain) CDSoundSource ∗followerSound;

// here we asign the CDSoundSource to our previously created property

self .followerSound = [AppDelegate playEffect:@”monster” numberOfEffects:2];

Before moving on, there is one more subject I would like to cover. It is

considered as good practice to preload all the needed sound effects, before

they are played. If we fail to do so, the players might experience a slight

gameplay lag the first time a certain sound effect it played. For that reason,

we have created a Sound preloading class, which preloads all of our sound

files before the gameplay actually begins. The following code snippet does

just that:

36 LEVEL 5. I THINK I HEAR SOMETHING: SOUNDS & MUSIC

NSArray ∗extensions = [NSArray arrayWithObjects:@”mp3”, nil];

for (NSString ∗extension in extensions) {
NSArray ∗paths = [[NSBundle mainBundle] pathsForResourcesOfType:

extension inDirectory:nil];

for (NSString ∗filename in paths) {
[loader addResources:filename, nil];

}
}

The extensions array can contain multiple entries for different types of files

we want to preload. In our case, it was used to preload sound files.

Level 6

The Aftermath Bragging:

GameCenter

In order to encourage competitiveness in Run&Roll, we have ensured the

possibility of measuring a player’s performance. Playing competitive games,

everyone wants to know how good he or she did, not only in comparison to

his or her own performances, but against other players as well. And this is

only one of the functionalities Game Centre offers.

6.1 Game Center

Game Centre is an online multiplayer social gaming network released by Ap-

ple on September 8th, 2010. Prior to Game Centre’s release, the market

was dominated by various service providers (OpenFeint, Plus+, AGON On-

line, Scoor- loop, and others), which led to a inconsistent user experience.

Game Centre was announced during the iOS 4 preview and has since been

implemented into the majority of iOS games. Using Game Centre, users can

connect with friends by sending out friend requests, organizing online game

sessions, and much more. Today, many iOS games use Game Centre, but

not all of them use every one of its features. Applications can include any or

all of the following features, supported by Game Centre:

37

38 LEVEL 6. THE AFTERMATH BRAGGING: GAMECENTER

• Leader boards: Here, one can compare scores with his or her friends

and other players from around the world. A game can have multiple

leader boards, each covering a certain aspect of the game.

• Achievements: Here, the achievements and goals a player can unlock or

accomplish are shown and their progress indicated. For each unlocked

achievement, players are awarded points, showcasing their progress in

the game.

• Multiplayer: It is possible for players to host games themselves and

play with their friends, and to play against random opponents.

6.2 Implementation

After a game’s mechanics is developed, the Game Centre implementation

comes into play. The implementation is conducted through the following

steps:

• Create an new application on iTunes Connect, using the game’s bundle

ID. Then enable Game Centre for the created application; enabling

this setting in the iTunes Connect record authorizes the Game Centre

service to connect to your game.

• Create an explicit application ID, using your game’s bundle ID. Enable

Game Centre with this application ID; this authorizes the application

on the device to contact Game Centre’s servers.

• Create a new provisioning profile, using this new, explicit application

ID.

• Test to ensure you can build and sign your game using this profile.

• Add the Game Kit framework to your game.

• Import the GameKit/GameKit.h header into your class.

6.3. RUN&ROLL: LEADERBOARDS & ACHIEVEMENTS 39

All the desired leader boards and achievements need to be created on the

iTunes Connect webpage, before they can be used in game. Game Cen-

tre allows for a total of 100 points to be distributed between all existing

achievements. The points do not need to be distributed equally among the

achievements, and the total sum of points distributed must not pass 100.

Each achievement requires a selected goal to be reached for the achievement

to become unlocked. There are two distinguishable types of achievements:

• Single session achievements: In order to unlock these, the player must

accomplish the given goals in a single playing session.

• Cumulative achievements: The progress of accomplishing these achieve-

ments is measured over multiple playing sessions.

6.3 Run&Roll: Leaderboards & Achievements

Two aspects of Game Centre were implemented into and are used in Run&Roll

– leader boards and achievements. Leader boards inspire competitiveness;

there, players can share their scores and compare them to others’ (more on

this topic in chapter 8). In Run&Roll, a single leader board, named: How

far did you go? was implemented. The leader board ranks players according

to their score, calculated from the run’s length, number of collected coins,

destruction factors, and the number of jumps. After each game session, the

score is calculated and sent to Apple’s Game Centre server. The following

code snippet demonstrates the use of the “call” function:

// score − play session score

// category − Game Center’s Leaderboard ID

− (void)reportScore: (int64 t) score forCategory: (NSString∗) category

{
GKScore ∗scoreReporter = [[[GKScore alloc] initWithCategory:category] autorelease];

scoreReporter.value = score;

[scoreReporter reportScoreWithCompletionHandler: ˆ(NSError ∗error) {
[self callDelegateOnMainThread: @selector(scoreReported:) withArg: NULL error:

error];

40 LEVEL 6. THE AFTERMATH BRAGGING: GAMECENTER

}];
}

Achievements in Run&Roll can be divided into the following groups:

• Distance achievements: Unlocked when the player reaches a certain

distance in a single playing session (3.000 meters, 6.000 meters and

10.000 meters).

• Coin achievements: Unlocked when the player collects a certain amount

of coins over multiple playing sessions (5.000, 10.000, and 40.000 coins

collected).

• Miscellaneous achievements:

– “The Unlucky One”: The player dies 1000 times.

– “Speeeed”: Travel 100 meters in speed mode.

Now let us look closer into the Coin achievement function call. Every

time our hero collects a coin, the following takes place:

• The total sum of collected coins is increased by one.

• The sum is compared to the achievement goal.

• If the goal is reached, the user is notified of his newly unlocked achieve-

ment (as seen in figure 6.1)

We have created sliding notifications for a non-obstructive display of newly

unlocked achievements, which appear on the top of the screen and disappear

after a short period of time.

6.3. RUN&ROLL: LEADERBOARDS & ACHIEVEMENTS 41

Figure 6.1: Achievement triggered

42 LEVEL 6. THE AFTERMATH BRAGGING: GAMECENTER

Level 7

The Spoils of Battle:

Monetization

”There are now over 1 billion active smartphones and tablets using apps

around the world every month. And of all the apps consumers use, games

command more than 40% of all time spent. Looking at revenue, games also

dominate. Today, for example, 22 of the top 25 grossing apps in the U.S.

iTunes App Store apps are games. Gamers spend money, and game makers

are in love”, Dan Laugins, Flurry.

Games, as most other products, need to cover the costs of work that was

invested into their creation. According to Dan, they are really good at it!

As sure as Dan seems of this, the reality is that making a profitable game is

far from being a simple and easy task, especially for indie game developers.

How they cope with problems that arise in developing a profitable game, is

the topic of the following subchapter.

7.1 Mobile Gaming Revenue Models

First, let us take a look at the most common revenue models in mobile

gaming:

• Pay-to-play: This is the most common revenue model in the field of

43

44 LEVEL 7. THE SPOILS OF BATTLE: MONETIZATION

mobile gaming. First, players pay a certain fee, download the game

and can start playing.

– Pros: This is the simplest model and players are already familiar

with it.

– Cons: The model only provides one-time revenue and brings in

less users than other models.

– Example: Angry Birds, Cut the Rope, Tiny Wings.

• Advertisement: Displaying advertisements in a game is another pop-

ular revenue model. Popular advertisement networks include: iAd and

Google AdMob.

– Pros: Users do not have to pay for a game.

– Cons: The model requires a large user base to become profitable

and it amount to less money spent per user.

– Example: Subway Surfer, Angry Birds Free.

• Subscription: Users must pay a monthly subscription to be able to

play.

– Pros: Recurring payments.

– Cons: The game needs to be updated frequently to retain users

and keep them engaged.

– Example: Order & Chaos.

• In-app purchase:This is one of the most successful models for mobile

games. Games are usually free to play and players have the possibil-

ity of purchasing virtual goods that can accelerate their progress and

improve their experience.

– Pros: Users themselves decide how much they want to spend.

– Cons: Here, a good strategy is required to encourage users to

spend money.

7.2. MONETIZATION IN RUN&ROLL 45

– Example: Clash of Clans, Smurfs Village, Hay Day.

• Advergames: This model is used for games, made to advertise a

specific brand or event.

– Pros: These are simple games, and the failure of the game does

not have a financial impact on the developer.

– Cons: The success of the game does not have a financial impact

on the developer.

– Example: Pepsi Twist Shot, Sprite City.

Developers can decide to combine multiple models in their games (e.g. Death

Really is a pay-to-play game with in-app purchases), or even release different

versions of the same game, using different revenue models (Angry Birds is

available either free with advertisements or pay-to-play).

7.2 Monetization in Run&Roll

Run&Roll falls into the category of endless runner games, which are consid-

ered to be easy-to-learn and easy-to-return-to, even after a longer period of

abstinence. Users tend to play runner games while in states of waiting, like

waiting in a line, taking a bus, etc. This type of game is highly suited for

banners or interstitial advertisements, without being overly disruptive to the

game experience.

We combined the advertisement and the in-app purchase models which en-

able users to play the game for free, but at the same time giving them the

option of buying extra amounts of in-game currency.

7.2.1 Interstitial Ads

An interstitial advertisement is a full page advertisement that appears before

a certain content page. One of the providers of interstitial advertisements is

46 LEVEL 7. THE SPOILS OF BATTLE: MONETIZATION

Google’s AdMobs – the one we chose for our game. Its implementation is

not time consuming and can be seen in the following lines of code:

− (void)initTheInter

{
interstitial = [[GADInterstitial alloc] init];

interstitial .delegate = self ;

interstitial .adUnitID = ADMOBS UNIT ID;

[interstitial loadRequest:[GADRequest request]];

}

− (void)runTheInter

{
self .adsHaveBeenShown = YES;

[interstitial presentFromRootViewController:self];

}

The initTheInter method initializes the interstitial advertisements with a

unique ID, acquired when registering on the AdMob web page, and issues a

request for an advertisement. When we want to show the advertisement, we

call the runTheInter method which shows a previously requested advertise-

ment. In Run&Roll, we display the advertisements before the start of each

game session.

7.2.2 Run&Roll Shop

The Run&Roll shop is where users can spend their coins for goods that

enhance their gaming experience and enable them to achieve higher scores.

The shop is divided into two separate sections:

• “Boost/Utility” section: This is where users can upgrade their boost

levels and buy extra utilities. We have also added a premium pur-

chasable utility which doubles the amount of collected coins.

• “Get more coins” section: Here, users can acquire more coins, either by

7.2. MONETIZATION IN RUN&ROLL 47

purchasing one of our coin packages, or by performing certain actions

that are rewarded (more on this topic in chapter 8).

Apple provides developers with the classes needed for implementing inApp

purchases. All the products need to be created on the iTunes webpage, where

the developer must select the appropriate product category. There are two

categories of inApp purchases available:

• Consumables: Consumables can be bought and used more than once.

They include items such as extra lives, in-game currency, temporary

power-ups, etc.

• Non-Consumables: These are items and perks purchased only once and

provide a permament effect. They include extra levels, unlockable con-

tent, etc. For non-consumable purchases, the restore purchases function

is needed.

− (void)requestProductsFromAppleStore

{
NSMutableSet ∗ productIdentifiers = [[[NSMutableSet alloc] init] autorelease];

NSArray ∗ inAppProducts = [GameRepository getCoinPackages];

for (int i = 0; i < [inAppProducts count]; i++) {
[productIdentifiers addObject:[[inAppProducts objectAtIndex:i] objectForKey:

@”productId”]];

}

SKProductsRequest ∗ productsRequest = [[SKProductsRequest alloc]

initWithProductIdentifiers:productIdentifiers];

productsRequest.delegate = self;

[productsRequest start];

}
− (void)purchaseProduct:(NSString ∗)productId onCompleteBlock: (id) block

{
[self showProgressIndicator];

//get the purchased product from the array of purchased products

48 LEVEL 7. THE SPOILS OF BATTLE: MONETIZATION

for(int i = 0; i < [self .products count]; i++){
SKProduct ∗ product = ((SKProduct∗)[self.products objectAtIndex:i]);

if ([productId isEqualToString:product.productIdentifier]) {
self .purchasedProduct = [self.products objectAtIndex:i];

}
}

if (self .purchasedProduct != nil){
SKPayment ∗payment = [SKPayment paymentWithProduct:self.

purchasedProduct];

[[SKPaymentQueue defaultQueue] addPayment:payment];

self .onPurchaseCompleteBlock = block;

}
}

The requestProductsFromAppleStore function retrieves a list of products and

displays it in the game store. The second function, purchaseProduct:onCompletionBlock

checks if the product being purchased exists and makes the necessary security

verifications, before finally starting the monetary transaction.

Level 8

To Arms My Friends:

Socialization

In this chapter, we will discuss how to make a game social through social

media integration. This aspect of Run&Roll includes integration of social

networks (Facebook, Twitter, and YouTube), sharing, and rewarding players

for following the game on aforementioned platforms.

Apple has been integrating social networks into their operating systems

since the release of iOS 5.0, which makes application integration simpler.

Since iOS 6.0, integration of Twitter, Facebook and Sina Weibo (the most

popular social network in China) is provided. Instead of writing complex

code, integration can be accomplished by importing the right frameworks

into a project and calling the appropriate functions. Two social features

were implemented into Run&Roll:

• Score sharing.

• Run&Roll subscription on social media sites (YouTube, Facebook, and

Twitter): The subscription system rewards players for subscribing by

awarding them coins for their support (Figure 8.1).

Score sharing was implemented by using the following code:

UIImage ∗img = [UIImage imageNamed:@”shareImage.png”];

49

50 LEVEL 8. TO ARMS MY FRIENDS: SOCIALIZATION

Figure 8.1: Shop Scene - Get More Coins

NSArray ∗shareArray = @[img, [NSString stringWithFormat:@”I just achieved %i

points in Run&Roll! Try to beat me if u can! http://runandroll.net”, score]];

UIActivityViewController ∗shareViewController = [[UIActivityViewController alloc]

initWithActivityItems:shareArray applicationActivities:nil];

[self presentViewController:shareViewController animated:YES completion:nil];

Run&Roll enables sharing results over social networks, such as Twitter

and Facebook, as well as over SMS or e-mail (this can be seen in figure 8.2).

Here, our goal was to implement a mechanism that will improve our game’s

viral effect, increase our player base and encourage users to play more, beat

their friends, and finally bring in more users, without increasing the customer

acquisition costs.

51

Figure 8.2: Game Over Scene - Share

52 LEVEL 8. TO ARMS MY FRIENDS: SOCIALIZATION

Level 9

The Boss Fight: Competition

Every game developer tries to entertain and challenge players in his or her

own (unique) way. Some design a detailed story line or breath taking graph-

ics, others use realistic mechanics to make their game more appealing. De-

spite their differences, one thing they all have in common is the struggle

to survive the market. And what a struggle this is! In the last couple of

years, the number of newly released games on the iOS platform has risen to

a staggering 300 games a day. In this stream of games, indie game developers

have to find their own strengths and advantages, and hope that the game

will appeal to the community.

What can a small indie company with a limited budget do to become

noticed? I have already shared some of my thoughts on this subject in the

previous chapter, where we discussed socialization. Further information on

this topic will be given in the following subchapter.

9.1 Tracking user behavior

For tracking purposes, we use Flurry SDK, which is a build-measure-advertise-

monetize framework that provides strong statistics mechanisms for customer

tracking. Flurry SDK can track simple one-time events and complex multi

53

54 LEVEL 9. THE BOSS FIGHT: COMPETITION

parameter time events. Using the administrator’s console, events can be con-

nected into funnels that provide detailed information on user paths, as seen

in figure 9.1.

Figure 9.1: Flurry - user paths

In the following code snippet, two event registration calls can be seen.

The first is a simple call which occurs when users enter the Run&Roll shop,

and the second marks a more complex timed event which provides us with

the duration of a game session, distance achieved, number of collected coins

and the reason for the game ending.

// simple event log

[Flurry logEvent:@”SHOP ENTERED”];

// complex timed event log

// send Flurry the length of game & the reason of death

NSMutableDictionary ∗dictionary = [[[NSMutableDictionary alloc] init] autorelease

];

[dictionary setValue: self .deathReason forKey:@”DEATH REASON”];

[dictionary setValue :[NSNumber numberWithFloat:[self.overLayer

returnGameMeters]] forKey:@”DISTANCE REACHED”];

[dictionary setValue :[NSNumber numberWithFloat:[self.gameCoinsInstance

returnGameCoins]] forKey:@”COINS COLLECTED”];

[Flurry endTimedEvent:@”GAME SESSION” withParameters:dictionary];

9.2. FORUMS, WEBPAGES, COMMUNITIES 55

9.2 Forums, Webpages, Communities

Another possible push comes from within the indie game communities which

have grown strong and numerous and consist of early adopters, gamers, de-

velopers, reviewers, artists, and other gaming enthusiasts. They can provide

us with (free) reviews, give related feedback, and help promote newly released

game.

56 LEVEL 9. THE BOSS FIGHT: COMPETITION

Epilogue: The Story Continues:

After App Submission

After months of developing, improving, redesigning and fixing the game;

when the game is finally in a state, where most people involved are happy

with the product, the AppStore submission can finally occur. There, the

Apple gurus will analyse the game, check for security breaches and if all goes

to plan, give their blessings and allow the release of the game. However,

questions still remain. Will the game be accepted? Will the user base grow

large enough to cover the development costs or even bring in a profit?

Only time will tell.

57

58 Epilogue: The Story Continues: After App Submission

List of Figures

1 Smartphones Manufacgturers Share by Operating System (Source:Silicon

Valley Insider) . 8

1.1 Apples IDE - Xcode . 12

4.1 Hero - Sprite Sheet and a part of the coresponding plist file . . 30

6.1 Achievement triggered . 41

8.1 Shop Scene - Get More Coins 50

8.2 Game Over Scene - Share . 51

9.1 Flurry - user paths . 54

59

60 LIST OF FIGURES

Bibliography

[1] S. G. Kochan. Programming in Objective-C (Developer’s Library).

Addison-Wesley Educational Publishers Inc, 2012.

[2] E. Sadun. The Core iOS 6 Developer’s Cookbook (4th Edition). Addison-

Wesley Professional, 2012.

[3] R. Wenderlich, K. Hafizji. iOS 6 By Tutorials: Volume 1. CreateSpace

Independent Publishing Platform, 2013.

[4] R. Wenderlich, A. Burkepile. iOS 6 By Tutorials: Volume 2. CreateS-

pace Independent Publishing Platform, 2013.

[5] R. Struogo, R. Wenderlich. Learning Cocos2D. Addison-Wesley Profes-

sional, 2011.

[6] S. Itterheim. Learn iPhone and iPad Cocos2D Game Development: The

Leading Framework for Building 2D Graphical and Interactive Applica-

tions. aPress, 2011.

[7] I. Panberry. Introduction to Game Physics with Box2D. CRC Press,

2013.

[8] R. Hartson. The UX Book: Process and Guidelines for Ensuring a Qual-

ity User Experience. Morgan Kaufmann, 2012.

[9] R. Ford. The App and Mobile Case Study Book. Taschen GmbH, 2011.

[10] E. Ries. The Lean Startup. Penguin Books Limited, 2011.

61

62 BIBLIOGRAPHY

[11] K. Werbach, D. Hunter. For the Win: How Game Thinking Can Revo-

lutionize Your Business. Wharton Digital Press, 2012.

[12] S. Blank, B. Dorf. The Startup Owner’s Manual. K & S Ranch, 2012.

[13] M. Geoffrey. App Monarch: Secrets to building your own multi-million

dollar apps. AppNetworx, 2013.

[14] E. Catto Box2D v2.2.0 User Manual

Retrieved from:

http://box2d.org/manual.pdf

[15] D. Laughlin (2013) Love, Courtship and the Promiscuous Male Mobile

Gamer

Retrieved from:

http://blog.flurry.com/?Tag=Monetization

[16] T. Paiva (2012) Mobile Games Revenue Models

Retrieved from:

http://www.slideshare.net/ThiagoPaiva/games-revenue-models

[17] Vergo Staff (2013) iOS: A visual history

Retrieved from:

http://www.theverge.com/2011/12/13/2612736/ios-history-iphone-

ipad

	Čresnik_R
	Povzetek
	Abstract
	Prologue: The Hero is Born: iOS & Objective-C
	iOS
	Objective C

	Tutorial: Xcode & Frameworks
	Xcode
	Cocos2d-iphone
	Box2d

	Where Does This Path Go: Movement
	About Controls
	Run&Roll controls

	Ow No, There Is Something In My Path: Basic Obstacles
	It's Alive, It's Alive: Animations
	Animations in Run&Roll

	I Think I Hear Something: Sounds & Music
	CocosDenshion
	Sounds in Run&Roll

	The Aftermath Bragging: GameCenter
	Game Center
	Implementation
	Run&Roll: Leaderboards & Achievements

	The Spoils of Battle: Monetization
	Mobile Gaming Revenue Models
	Monetization in Run&Roll

	To Arms My Friends: Socialization
	The Boss Fight: Competition
	Tracking user behavior
	Forums, Webpages, Communities

	Epilogue: The Story Continues: After App Submission
	List of Figures
	Bibliography

	Črešnik_R

