

LarvaLight User Manual

LarvaLight is a simple tool enabling the user to succinctly specify monitors which trigger upon events

of an underlying Java system, namely method calls and returns. If the events and their parameters

lead the monitor to a bad state, then an assertion failure is triggered, alerting the user. The rest of

this document explains how monitors can be specified in LarvaLight and how they can be used to

assert a system’s behaviour. For a quick start see the last section.

1. Setting up LarvaLight

To use LarvaLight, include the accompanying JAR file in the class path. Subsequently, the asserted

Java system should be compiled and run using AspectJ. It is also crucial to include the JAR file in the

aspect path and enable assertions. If you are running your system outside of Eclipse:

1. First compile your code (assuming a main class in a package called “ordinary”) using AspectJ:

ajc -cp ".\aspectjrt.jar;.;.\larvalight.jar"

-aspectpath ".\larvalight.jar" src\ordinary\Main.java

2. Secondly, run your application using AspectJ with assertions enabled:

call aj5 –ea -cp ".\larvalight.jar;.\src" ordinary.Main

In Eclipse (assuming AJDT plugin is installed):

1. First ensure that the project to be monitors has been converted to an AspectJ project. This

can be done by: Right-click Java project >> Configure >> Convert to AspectJ Project

2. Next, setting the class path can be done by:

a. Paste larvalight.jar under the project folder and refresh the project in Eclipse

b. Right-click Java project >> Build path >> Configure build path...

c. Go to the Libraries tab >> Add JARs... | Choose larvalight.jar

3. The aspect path parameter can be set through the following steps: Right-click Java project

>> AspectJ Tools >> Configure AspectJ Build Path | Choose larvalight.jar

4. Finally, it important to ensure that Eclipse is using a JDK to run the monitored system and

that assertions are enabled:

a. Go to Window >> Preferences

b. From below Java choose Installed JREs

c. Select a JDK (if no JDK is available add one by choosing Add...) and click Edit...

d. In the “Default VM arguments” add -ea

2. Specifying events in LarvaLight

In order for LarvaLight to perform monitoring, it needs to hook on to system events. LarvaLight

support method call-based events, i.e. events which trigger upon a method call. Thus, specifying an

event involves specifying a method signature or part thereof which will be used to trigger monitoring

activities. In this section we describe in detail how events can be specified in LarvaLight in terms of

four components: the target class, the method name, and a parameter pattern. For exemplification

purposes we will define events with respect to a non-static method call deleteAccount within a

class Bank which takes a parameter of type Account and a non-static method call getBalance

within a class Account.

1. Position – The position specifies whether the event triggers before, after, or over an

exception throw of a method call. Thus, for example the event before deleteAccount

triggers before the execution of the deleteAccount method, after

deleteAccount triggers when deleteAccount successfully returns, while onthrow

deleteAccount triggers when deleteAccount terminates with an exception throw.

2. Target – The target of the method is optional but can be used to specify the class name of

the method call (to narrow pattern matching). Referring to the example,

Bank.deleteAccount, B*.deleteAccount, and *.deleteAccount, all refer to

exactly the same event.

3. Method – The method name can also be left unspecified or pattern-matched using the *

wildcard. Therefore Bank.*, Bank., Bank.delete*, *.delete*, and delete*, all

refer to the same event. Note that the method name new can be used to refer to the

constructor.

4. Parameters – Parameters can be used to pattern match the method signature if the method

is overloaded. For example deleteAccount(Account) ensures that only methods

which take a single parameter of type Account are matched.

Apart from specifying the method call to be matched, events can be used to provide values to

variables by binding variable names to different parts of the method call. There are three ways in

which this can be done:

1. Return value – The return value of a method (not of a constructor) can be bound to a

variable (e.g.: balance) as follows: balance = Account.getBalance. Note that

before balance = Account.getBalance is invalid since the return value of the

method would not be available before the method’s execution. Moreover, if the event

triggers over an exception throw, then the returned object must be of Throwable type.

2. Target – The target object of the method call can also be bound to a variable as follows:

acc.getBalance, signifying that the Account object on which getBalance is called

is bound to variable acc. Note that pattern matching the object returned by a constructor

call should be treated as a target binding e.g. acc.new().

3. Parameters – The parameter pattern can also be used to bind variables to values. For

example deleteAccount(acc) binds the parameter of the deleteAccount method

call to variable acc.

3. Specifying a simple monitor in LarvaLight

The most basic monitor is LarvaLight can be specified in terms of a number of rules composed of an

event, a condition, and an action. An example of a rule would be:

withdraw(amount)\\amount<=1000

-> System.out.println(\"Withdraw limit ok: \"+ amount);

This rule triggers if the event withdraw occurs and the condition amount<1000 is satisfied,

causing the executing of the action command. If the triggering of the rule signifies that the monitor

has detected unexpected behaviour then -X is used instead of -> :

withdraw(amount)\\amount>1000

-X System.out.println(\"Withdraw limit exceeded: \"+ amount);

Note that all the components of the rule can be omitted: if no event is specified then the rule will

trigger on any event; if no condition is specified the rule will always trigger upon the given event;

while if no action is specified, the rule will not execute any code. Finally, apart from rules, a monitor

requires a label to distinguish it from other monitors, and a list of the variables bound through the

events or used in the rule conditions and/or actions. In the example of checking the withdraw

amount limit, the label is withdrawLimit while the only used variable is amount. The

specification would thus be as follows:

Rule.create("withdrawLimit",

new String[] {"double amount"},

new String[] {"withdraw(amount)\\amount>1000 -X

System.out.println(\"Withdraw limit exceeded: \"+ amount);"});

4. Specifying more complex monitors in LarvaLight

In more complex monitors, one might need to import classes which are mentioned in the rules. For

example if the Account class is mentioned, then the class has to be imported by passing the

parameter import tutorial._6_rules.accounting.Account; Note that several

imports can be added either through the use of the * wildcard or by adding further import ...

to the parameter. Furthermore, to enable the monitoring of several accounts at a time, a special

variable parameter is specified to indicate that its value is to be used to distinguish between

different instances of the monitor. Finally, the transition which signals that the current monitoring

instance has completed successfully is signified by -|. To illustrate these features, the following

example maintains the expected balance of the account so that it is compared to the actual account

balance to detect any mismatch:

Rule.create("balanceCheck",

 "import tutorial._6_rules.accounting.Account;",

 "Account acc",

new String[] {"double amount", "double balance"},

new String[] {

"acc.new() -> balance=0;",

"before acc.withdraw(amount)\\acc.getBalance()!=balance -X

System.out.println(\"Balance mismatch found\");",

"before acc.deposit(amount)\\acc.getBalance()!=balance -X

System.out.println(\"Balance mismatch found\");",

"before acc.withdraw(amount)\\acc.getBalance()==balance ->

balance-=amount;",

"before acc.deposit(amount)\\acc.getBalance()==balance ->

balance+=amount;",

"deleteAccount(acc) -|"});

Note that the order of the rules is important as all the matching rules are triggered. Thus, for

example updating the balance before checking for a mismatch will always result in a mismatch. To

avoid such ordering issues, can use -/ instead of -> to signify that no further rules trigger.

Consequently, the rules above can be written as:

"acc.new() -/ balance=0;",

"before acc.withdraw(amount)\\acc.getBalance()==balance -/

balance-=amount;",

"before acc.deposit(amount)\\acc.getBalance()==balance -/

balance+=amount;",

"before acc.withdraw(amount)\\acc.getBalance()!=balance -X

System.out.println(\"Balance mismatch found\");",

"before acc.deposit(amount)\\acc.getBalance()!=balance -X

System.out.println(\"Balance mismatch found\");",

"deleteAccount(acc) -|"

Note that both -X and -| also block the triggering of any other rule.

5. Specifying a finite state machine

To facilitate the specification of properties with a particular pattern, LarvaLight provides a means of

directly specifying finite state machines. Similar to the basic monitor described above, a finite state

machine can be specified by calling the method create(String label, String

imports, String foreach, String[] transitions) where transitions take the form

of source [event\\condition>>action] destination. The starting state is always

the state start while to signify a bad state, the state bad should be used and end should be used

to signify the correct termination of a monitor.

Example

Consider for example a finite state machine which specifies the correct life cycle of an account

object. The transitions specify the following rules: the account can be created and deleted (the first

two transitions) in that order. However, no operations can be carried out on an account before it is

created (next three transitions). Finally, it must be ensured that if an account has been created it is

not created again (last transition).

FSM fsm = FSM.create("accountLifeCycle",

 "import tutorial._9_fsm.accounting.*;",

 "Account acc",

 "start [acc.new()] new",

 "new [deleteAccount(acc)] end",

 "start [deleteAccount(acc)] bad",

 "start [acc.deposit] bad",

 "start [acc.withdraw] bad",

 "new [acc.new()] bad");

6. Specifying a regular expression

To further facilitate the specification of monitors, the user can also use regular expressions. Each

character in the regular expression is defined in terms of an event and the regular expression is

defined in terms of the characters. Importantly, a regular expression can be used to either match

expected behaviour (if a deviation is observed, a bad state is reached), or it can match unexpected

behaviour (if the regular expression is matched, a bad state is reached). The rest of the parameters

are described above; an example is given below.

Example

Specifying the account life cycle described above in terms of a finite state machine can be more

succinctly specified as a regular expression as shown below:

RE.create("regular_expressions",

 "import tutorial._6_rules.accounting.*;",

 "Account acc",

 RE.Matching.EXPECTED_BEHAVIOUR,

 new String[] {

 "n = acc.new()",

 "x = deleteAccount(acc)",

 "d = acc.deposit",

 "w = acc.withdraw"},

 "n(d|w)*x");

7. Using a monitor

A created monitor can be started by invoking method start. The monitor can then be paused or

reset by called the methods pause and reset respectively. Note that pausing the monitor

temporarily stops event matching but keeps the monitoring state intact. On the other hand,

resetting the monitor discards all the monitoring state but does not stop the matching. If one wants

to both pause and reset the monitor, then one should call the stop method. Finally, a dispose

method is available to remove all information about the monitor from the monitoring runtime

environment. Any method invocation on a monitor after disposing of it would return false.

To avoid having to keep a global variable with reference to the monitor object, a static version of

these methods is available and can be used by passing the name of the monitor as a parameter.

Finally, the user can choose whether the monitor outputs log information regarding the activities

being carried out in the background. To this end the static method setVerbose should be used.

Example

FSM.setVerbose(true);

FSM fsm = FSM.create("accountLifeCycle",...);

fsm.start();

...

fsm.pause();

...

fsm.reset();

...

FSM.dispose("accountLifeCycle");

8. Combining Monitors with JUnit

LarvaLight provides specialised support for integration with JUnit. This can be achieved in the

following steps (NB: ensure JUnit is also running using a JDK rather than a JRE!):

1. Declare monitors – Using the standard JUnit @BeforeClass annotation, declare any

monitors that will be needed throughout the test class. For example:

@BeforeClass

public static void init(){

FSM.create("a monitor",new String[]{"start [event] bad"}); }

2. Declare rule – Using the @Rule annotation instantiate a MonitorRule instance. This will

enable the monitor to intercept tests and apply the appropriate monitors to them. Note that

the monitor rule will automatically take care of the starting, resetting, and stopping of the

monitors declared through the monitor annotation (see further below). Without the rule

declaration, the monitor annotations do not work.

@Rule

public MonitorRule mr = new MonitorRule();

3. Annotate tests with monitors – Any test which is to be monitored needs to be annotated

with @Monitor which takes as input an array of strings representing the names of the

monitors applied to that particular test.

@Test

@Monitor({"a monitor", "another monitor"})

public void test() throws Exception {

 //some code ... }

4. Dispose monitors – To ensure that monitoring resources are freed up, the @AfterClass

annotation should be used to dispose of the monitors.

@AfterClass

public static void dispose(){

 FSM.dispose("testexception"); }

9. Grouping Monitors

For convenience, monitors can be grouped so that they can be started, stopped, reset, and disposed

of through a single method call. This feature is provided through the Oracle class which in its

constructor accepts any number of monitor declarations. Subsequently, any method invoked on the

constructed oracle object is relayed to each monitor included in the constructor. The use of oracles

to group monitors is particularly useful when LarvaLight is used in conjunction with JUnit as shown in

the example below.

Example

@BeforeClass

public static void setup(){

 oracle = new Oracle(FSM.create(…),Rule.create(…));

 oracle.start();

}

@Before

public void before() {

 oracle.reset();

}

@AfterClass

public static void teardown() {

 oracle.dispose();

}

10. Timer API

To make it easy for the user to specify properties related to time, LarvaLight provides a Timer API

with the following functionality:

 [Constructor] Timer (String identifier, Long… firingTime) – The constructor allows the user to

give an identifier to the timer, and specify any number of firing times (in milliseconds), i.e.

points in time the timer would fire each time it is reset. Note that the identifier is optional and

the constructor does not reset the timer automatically. In other words no alarms are set upon

construction.

 reset () – Each time the timer is reset, any firing times from the previous reset are discarded

and a new alarm is set for each firing time declared in the constructor. Note that this function

automatically enables and unpauses the timer.

 pause () / resume () – The timer may be paused or resumed.

 enable () / disable () – The timer can be disabled so that any future alarms set during a reset

are ignored (however if re-enabled any remaining alarms will still trigger). Note that upon

construction and reset the timer is enabled and unpaused.

 time () – Returns the duration of time elapsed since the timer’s most recent reset in

milliseconds. If the timer is disabled, the function returns zero, while if paused, it returns the

time elapsed from reset till pause (excluding any duration the timer has been previously

paused).

 fire (Long millis) – This method cannot be invoked by can be declared as an event in a monitor

to detect timer alarms.

Note that methods except time() and fire() return the timer object itself to enable method chaining.

Example

In the example below, a timer is used to measure the time a user is inactive during a session (after

login): The timer is initialised to trigger after 5 seconds, upon each activity the timer is reset and

disabled if the user logs out. If at any point, the alarm goes off; it signifies that the user has spent 5

seconds without performing any activity after login.

Rule.create("inactive_for_5_seconds",

 new String[] { "Timer t=new Timer(5000l);" },

 new String[] {"login -/ t.reset();",

 "deposit -/ t.reset();",

 "withdraw -/ t.reset();",

 "logout -/ t.disable();",

 "t.fire -X System.out.println(\"Session has been

inactive for at least 5s\");"})

Quick Start 1 – Declaring Monitors

An example with basic rules

Rule.create("withdrawLimit",

new String[] {"double amount"},

new String[] {"withdraw(amount)\\amount>1000 -X

System.out.println(\"Withdraw limit exceeded: \"+ amount);"});

An example with finite state machines

 FSM.create("accountLifeCycle",

 "import tutorial._9_fsm.accounting.*;",

 "Account acc",

 "start [acc.new()] new",

 "new [deleteAccount(acc)] end",

 "start [deleteAccount(acc)] bad",

 "start [acc.deposit] bad",

 "start [acc.withdraw] bad",

 "new [acc.new()] bad");

An example with regular expression

RE.create("regular_expressions",

 "import tutorial._6_rules.accounting.*;",

 "Account acc",

 RE.Matching.EXPECTED_BEHAVIOUR,

 new String[] {

 "n = acc.new()",

 "x = deleteAccount(acc)",

 "d = acc.deposit",

 "w = acc.withdraw"},

 "n(d|w)*x");

An identifier for

the monitor Declaration of any

variables used
A rule: Event \\

Condition –X Action

Import any

relevant classes

start always signifies

the initial state

bad signifies the

assertion has failed A transition (similar to a rule):
Event \\ Condition >> Action
[this example shows only events]

For each unique

instance of this

variable, a copy of this

assertion is spawned

The regular

expression can

either be to match

correct or incorrect

behaviour

–X signifies that

if the rule fires,

the assertion has

failed

Symbol definition

in terms of events

The regular

expression itself

Quick Start 2 – Using Monitors in Code

An example main method

public static void main(String [] args)

{

 FSM.setVerbose(true);

 FSM.create("accountLifeCycle",

 "import tutorial._5$mon_trace.accounting.*;",

 "Account acc",

 new String[] {

 "start [acc.new()] new",

 "start [deleteAccount(acc)] bad",

 "start [acc.deposit] bad",

 "start [acc.withdraw(double)] bad",

 "new [deleteAccount(acc)] end",

 "new [acc.new()] bad"}

).start();

 Bank b = new Bank();

 b.useBank();

 FSM.dispose("accountLifeCycle");

}

This is optional but

would help a new

user understand

what is happening

Declare any

monitors you

wish to use

Don’t forget

to start your

monitor!

Dispose of

your monitor

when done

Normal

system code

