
Christopher Hodder CS Honors Project 2010

1 Introduction and Motivation1 Introduction and Motivation

1.1 Introduction to The Semantic Web
The Semantic Web or “Web 3.0” is the next stage in the evolution of the World Wide Web envisioned by
the World Wide Web Consortium (W3C) and Sir Tim Berners Lee to “to create a universal medium for the
exchange of data”1. Superficially, this seems to be what the current web offers, but in this context, “data”
refers to machine readable and understandable resources as opposed to “information” which refers to
human-friendly resources such as web pages. Therefore the goal of the Semantic Web is to make the Web
“machine understandable”, so that programs can easily obtain and use data from websites. This is made
possible by defining the semantics (meaning) of the information on web pages, which is to be done using a
“linked data” model, where pieces of data are linked together to create meaningful data structures called
“graphs” with the goal being to create a “Giant Global Graph” of all data.2,3

The implications of this are staggering; it would provide the framework for allowing web applications to
compile various sources of data to create a new and interesting service. For example data could be pulled
from your Social Networking page and your personal calendar and the MET office to plot the expected
weather on a calendar next to your upcoming events. Alternatively systems could easily bring together
various sources of scientific data to plot complicated graphs which would have previously taken a long time
to research and make by hand. Such applications that pool multiple Semantic resources to deliver a new
service are called “Semantic Mashups”.

In order to achieve this, the human-readable information must be tagged and structured according to a
protocol, one of the standards adopted to achieve this is RDF, the “Resource Description Framework”. RDF
is a family of standards based on XML, used to represent data in the Web as a machine readable graph of
data4. This is a mammoth task as, for the most part, RDF data must be encoded by hand by individual
webmasters, although community efforts like DBpedia5 have built software to convert structured
information from resources such as Wikipedia to RDF.

Once data has been encoded into RDF, software and users need to be able to form queries in some way so
that useful or interesting information can be extracted from the RDF data. In order to do this, the SPARQL
query language (recursive acronym: “SPARQL Protocol And RDF Query Language”) was developed and
became a W3C Recommendation in early 20086.

With the technology already in place, what remains is the slow transition of existent data on the Web to
the new format, and the development of applications capable of taking advantage of this graph of data can
begin.

1 W3C: Semantic Web Activity Overview http://www.w3.org/2001/sw/Activity.html Accessed 02/02/2010
2 W3C: Semantic Web http://www.w3.org/2001/sw/ Accessed 27/4/2010
3 Sir Tim Burners Lee's Blog at MIT: http://dig.csail.mit.edu/breadcrumbs/node/215 Accessed 27/4/2010
4 W3C: RDF Specification http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ Accessed 02/02/2010
5 DBpedia: About http://dbpedia.org/About Accessed 26/4/2010
6 W3C: Semantic Web Blog (Ivan Herman <ivan@w3.org>)

http://www.w3.org/blog/SW/2008/01/15/sparql_is_a_recommendation Accessed 02/02/2010

1

http://www.w3.org/2001/sw/Activity.html
http://www.w3.org/blog/SW/2008/01/15/sparql_is_a_recommendation
http://www.w3.org/People/Ivan
http://dbpedia.org/About
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://dig.csail.mit.edu/breadcrumbs/node/215
http://www.w3.org/2001/sw/

Christopher Hodder CS Honors Project 2010

1.2 Problems and Motivation
Data Accessibility

SPARQL is a declarative language with a syntax similar to that of SQL (Pronounced “Sequel”, often called
“Structured Query Language”7) and although simple in comparison to manually writing the queries in an
imperative language such as Java, it is imposing and difficult to write for the average user. Further, when
searching for information on the web, users are accustomed to natural language interfaces such as Google
or Ask.com and are unlikely to switch to a system that is more difficult to learn and use. Even worse, writing
SPARQL queries currently requires specialist knowledge of the target ontology, which is virtually
unintelligible to anyone but experts. These factors mean that data encoded as RDF is virtually inaccessible
to the end user and requires experts to learn a new Query Language to utilise.

Data.gov.uk http://data.gov.uk/

The UK government has disclosed a lot of data structured as RDF to Data.gov.uk. This data is useful but
hard to extract because the interfaces are simply too complex and require familiarity with both SPARQL and
RDF. A quick look at the public forums shows that even developers are having trouble accessing the data,
and the general public are completely lost. Here's an example complaint:

“Why has the site been designed with absolutely no thought for the end user?

Surely the whole point is to allow easier access to the Government-based data and statistics? As it stands
it's a poorly designed site, which appears to be deliberately hiding its information.”

http://data.gov.uk/forum/general-discussion/finding-data-hard#comment-702 (Accessed 26/4/2010)

DBpedia http://www.dbpedia.org/

As mentioned above, DBpedia is a community effort to encode Wikipedia's information as RDF data.
DBpedia is more accessible than Data.gov.uk, with both a text search8 and a simple query builder9, but the
text search doesn't unlock the power of the Semantic Web and the query builder requires knowledge of
RDF predicates.

Developer Apathy

Generally developers would prefer to not have to learn a new language and new technologies to do what
they want to do – anything that can generate code that they are unfamiliar with will be used extensively.

1.3 Project Goals
From the above examples we can see that developing a SPARQL query generator which can form
syntactically correct SPARQL from a user friendly interface requiring little or no specialist knowledge, would
be of tremendous value to the Semantic Web: If the average user, rather than just a few specialists and
experts, could access the wealth of structured information then we would be a step closer to the Semantic
Web being a universal medium for the exchange of data.

7 About.com “SQL Fundamentals” http://databases.about.com/od/sql/a/sqlfundamentals.htm Accessed 13/4/2010
8 DBpedia: Entity Search, Find, and Explore http://dbpedia.org/fct/ Accessed 26/4/2010
9 DBpedia: Query Builder http://querybuilder.dbpedia.org/ Accessed 26/4/2010

2

http://querybuilder.dbpedia.org/
http://dbpedia.org/fct/
http://www.dbpedia.org/
http://data.gov.uk/forum/general-discussion/finding-data-hard#comment-702
http://data.gov.uk/
http://databases.about.com/od/sql/a/sqlfundamentals.htm

Christopher Hodder CS Honors Project 2010

1.4 Reader's Guide
This report is split into 10 sections, each briefly described below:

● 1 Introduction and Motivation (p1)

○ This section. Brief introduction to the system and related technologies as well as the reasons
behind undertaking the project.

● 2 Background (p5)

○ More information on Web 3.0 including technologies and existing systems

● 3 Design (p10)

○ Information on how the project was conceived and planned.

○ High level technical information on the structure of the project, and the project requirements.

● 4 Implementation (p20)

○ Describes how project development actually went

○ Technical walkthroughs of the completed features

● 5 Test and Evaluation (p29)

○ Information on how the system was tested and how problems were resolved.

● 6 Conclusion (p41)

○ Final thoughts on what the project achieved

● 7 Outlook (p42)

○ How the system could be further developed

● 8 References (p44)

● 9 Maintenance Manual (p46)

○ Installation Guide

○ Low level information on system components

● 10 User manual (p57)

○ How to access program features

Numbering System

Each section is assigned a number, and each subsection another number separated from the section
number by a dot, so the third subsection of the Background section is numbered “2.3”. Subsection dividers
are given a further number in the sequence, for example “4.2.1” represents Section 4, Subsection 2,
Division 1. Subsection Headers are not given their own numbers.

Figures are given the number sequence of the passage they belong to and a letter to uniquely identify
them, for example “1.2.3.a”.

3

Christopher Hodder CS Honors Project 2010

1.5 Where to Find...

Information Sections Page

More information on Semantic
Web Technologies

Background

Existing Systems

5

8

Information on goals and planning Design

– Plans

– Method

10

10

13

Final system features Implementation 24

Technologies used Architecture

 Client

 Server

 Data

16

16

17

18

System Internals Architecture

How it All Fits Together

File Listing

16

25

51

Evaluation Testing and Evaluation

Conclusion

Outlook

Comparison With Existing Systems

29

41

42

39

User Guides User Manual 57

Installation Instructions Maintenance Manual 46

4

Christopher Hodder CS Honors Project 2010

2 Background2 Background

2.1 Understanding Web 3.0 Technologies

2.1.1 RDF and Linked Data
The “Resource Description Framework” is an abstract and simple graph based data model, designed to
store structured, linked data using an XML based syntax. It has been a W3C recommendation since 10 th

February 200410. RDF breaks data up into Subject-Predicate-Object triples (Fig. 2.1.1.a), where the Predicate
defines a relationship between the Subject and the Object. URI's (Uniform Resource Identifiers) are used to
refer to resources. Another way of representing this data is as a graph (Fig. 2.1.1.b), with the Subject as a
node, the object as a node, and the predicate being the link between the two notes.

Fig. 2.1.1.a

Fig 2.1.1.b

 The Subject is either a URI or a blank node.

 The Predicate must be a URI.

 The Object is either a URI, a literal value or a blank node.

RDF can be represented using XML, Notation 3 (N3) or one of several other notations. For example, the
total population of Berlin, according to DBpedia11 is 3431700, this can be represented in RDF as follows:

XML:
<rdf:RDF

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dbpprop="http://dbpedia.org/property/"

>

<rdf:Description rdf:about=”http://dbpedia.org/page/Berlin”>
<dbpprop:PopulationTotal> 3431700 </dbpprop:PopulationTotal>

</rdf:Description>

N3:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
@prefix dbpprop : <http://dbpedia.org/property/>

[http://dbpedia.org/page/Berlin dbpprop:PopulationTotal “3431700” .]

Both samples above define “Prefixes”, which allow the use of shortened tags instead of using full URIs for
each resource. In this case “rdf”, the RDF definitions from the W3C website and “dbpprop”, the set of
properties from DBpedia are defined Prefixes, allowing “http://dbpedia.org/property/PopulationTotal” to
become “dbpprop:PopulationTotal”.

10 W3C: RDF Specification http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ Accessed 02/02/2010
11 DBpedia: Berlin http://dbpedia.org/page/Berlin Accessed 14/4/2010

5

Subject
Eiffel Tower

Object
324m

Predicate
Height

Eiffel Tower Height 324m

http://dbpedia.org/property/PopulationTotal
http://dbpedia.org/page/Berlin
http://dbpedia.org/property/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://dbpedia.org/page/Berlin
http://dbpedia.org/property/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://dbpedia.org/page/Berlin
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

Christopher Hodder CS Honors Project 2010

As you can see, RDF is unambiguous but complex and so to efficiently extract data from it requires the use
of a query language called SPARQL.

Ontologies

An “Ontology” (in information science) is a formal representation of data structures and concepts inside a
specific domain. We need Ontologies to describe domains because knowledge is not consistent and what is
true inside one domain is not true inside another. For example, imagine the domain of knowledge about
cars and the domain of knowledge about planes, in cars it is true to say “The wheels are powered by the
engine” but this is not true about planes.

In order to take into account these differences RDF data usually implements an Ontology (usually defined in
OWL “Web Ontology Language”[sic]) that describes what data is permitted and how it is structured.

One of the major problems of searching the Semantic Web is that data sources each have their own domain
and their own Ontology; so the data in Data.gov.uk is structured differently from the data in DBpedia and
must be queried in a different way.

RDF Metadata Definitions

One of the advantages of RDF is that, since it is based on XML, it is extensible, and as a result several
standards have been created in order to define different kinds of data for several different domains. This
“data about data” is referred to as “metadata” and is used to make RDF more descriptive. Some widely
used metadata definitions are listed below:

 FOAF http://www.foaf-project.org/

“Friend Of a Friend” (FOAF) is a Semantic Web project based on social relationships between
people, aiming to “[create] a Web of machine-readable pages describing people, the links between
them and the things they create and do”12 .

 Dublin Core http://dublincore.org/

Often shortened to “DC”, Dublin Core Metadata Initiative defines some simple and generic
definitions for specifying resources.

● Wordnet http://wordnet.princeton.edu/

Lexical database for the English language. Wordnet's ontology is also used by resources such as
DBpedia.

To confuse the issue, many large RDF repositories define their own Metadata as their data does not
conform to any of the major standards, so DBpedia and Data.gov.uk both have their own definitions which
are not used outside of their domain specific ontologies.

For a system to query an RDF resource, it must be familiar with the metadata definitions used, as trying to
query for a foaf:name attribute in a system which does not use FOAF will return no results.

12 FOAF: About http://www.foaf-project.org/about Accessed 26/4/2010

6

http://wordnet.princeton.edu/
http://dublincore.org/
http://www.foaf-project.org/about
http://www.foaf-project.org/

Christopher Hodder CS Honors Project 2010

2.1.2 SPARQL
“SPARQL Protocol And RDF Query Language” (SPARQL) is a declarative query language and protocol for
extracting information from RDF data sources. It is a W3C recommendation13, and was designed by the
former RDF Data Access Working Group,now SPARQL Working Group14. SPARQL queries are series of
clauses which define what information is desired, they are run against a data source specified by a URI, and
return a result set, which is usually an XML document. SPARQL queries must contain the following
components:

 PREFIX : allows shortened names to be used instead of full URIs, similar to RDF prefixes. Here the
prefixes “rdf” and “foaf” are declared as well as their associated URIs.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

 SELECT: specifies which variables will be in the result set, “*” can be used to select all variables.
SELECT ?name

 FROM: the URI of the data source to be queried. In certain cases this can be omitted.
FROM <http://planetrdf.com/bloggers.rdf>

 WHERE: lists a series of constraints that narrow down the RDF data to the specific piece of
information or the type of information that is wanted. Notice that each line ends with a “.”, also
note that there are two variables used, but only one is selected by the SELECT statement.

WHERE{
?agent rdf:type foaf:Agent .
?agent rdf:type foaf:Person .
?agent foaf:name ?name .
}

The result set of the query above contains the object of the “name” predicate of all subjects which match
the type “Agent” and the type “Person” from the resource “http://planetrdf.com/bloggers.rdf”. The data
source contains the following (abridged) RDF:
<foaf:Agent rdf:nodeID="id2245050">

<foaf:name>John Breslin</foaf:name>
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
(...)

</foaf:Agent>

Here you can see that this data structure matches the FOAF predicates Agent and Person to match with the
variable ?agent, and that it also has the predicate name with the object “John Breslin”, which will match to
the variable ?name.

13 W3C SPARQL Definition Doc http://www.w3.org/TR/rdf-sparql-query/ Accessed 14/4/2010
14 W3C SPARQL Working Group http://www.w3.org/2001/sw/DataAccess/homepage-20080115#hist Accessed

14/4/2010

7

http://planetrdf.com/bloggers.rdf
http://planetrdf.com/bloggers.rdf
http://xmlns.com/foaf/0.1/
http://www.w3.org/2001/sw/DataAccess/homepage-20080115#hist
http://www.w3.org/TR/rdf-sparql-query/

Christopher Hodder CS Honors Project 2010

2.2 Existing Systems
Existing Systems for creating semantic queries broadly fall into two categories: SPARQL generators and
question answering search engines. The SPARQL generators, in general, use SPARQL and RDF to find results,
however they are in general incredibly hard to use. Question Answering Engines on the other hand tend to
be very easy to use but don't actually use semantic web technologies, instead using a web crawler and text
analysis on multiple web pages to extract answers.

2.2.1 SPARQL Generators

Semantic Web Search (http://www.semanticwebsearch.com/query/)

Semantic Web Search allows you to search SPARQL endpoints using a shorthand language which the query
engine translates into SPARQL for you. You can also use the “Search Agent” feature to build a query from a
natural language representation, starting with a very general sentence “Find any resource of any type with
any property that contains any value”, and slowly refining it to something which represents a more specific
query. Every time you click on one of the variable parts of the sentence (underlined), you are presented
with either an input where you can type or a drop down box which lists valid choices which narrow down
the query.

It is important to note that the system doesn't take in a natural language string as input, and the natural
language interface only serves to generate the shorthand language that it uses to generate a SPARQL
query. Typing natural language into the search box will result in errors.

 Simplified syntax

 Some natural language interaction

 Doesn't process natural language queries

 Restricted set of ontologies, can't specify others

DBpedia Query Builder (http://querybuilder.dbpedia.org/)

This query engine is for constructing SPARQL queries to run on DBpedia. It isn't quite as unfriendly as
SPARQL but it requires knowledge of the DBpedia ontology to use, making it very hard to use for the end
user.

 Restricts input to more quickly form queries

 Requires specialist knowledge

 Intimidating interface

OpenLink iSPARQL (http://demo.openlinksw.com/isparql/)

The iSPARQL system builds queries using a graphical user interface to construct a graph. The system is
graphical rather than code based, but isn't aimed at end users but rather experts who want to construct
complex SPARQL queries in terms of an RDF graph. The interface has a lot of options for building complex
and specific queries, and it requires a lot of technical input such as URIs, variables and types.

When I tested it I couldn't get it to work, as elements of the GUI kept sticking, adding massive amounts of
nodes to the graph. I found the system frustrating and rather too complicated for creating simple queries.

8

http://demo.openlinksw.com/isparql/
http://querybuilder.dbpedia.org/
http://www.semanticwebsearch.com/query/

Christopher Hodder CS Honors Project 2010

 Graphically constructs complex queries

 Requires expert level knowledge

 Option-overload for novice users

 Doesn't run on some browsers, including IE, runs poorly on Firefox

2.2.2 Question Answering Systems

Ask Jeeves/Ask.com (http://uk.ask.com/)

Ask Jeeves is perhaps the best known question answering service, and it even passes the “what is the
height of the Eiffel Tower?” test, going so far as to list it's height including and excluding antenna, and
giving an interesting fact related to it's height. However, Ask Jeeves is not a Semantic Web technology in
the sense that it does not appear to use RDF graphs or any Ontologies to generate it's results, rather relying
on a web crawler and text analysis of the web pages it indexes15.

 Handles Natural Language questions.

 Retrieves accurate answers and related interesting information.

 Can't query RDF graphs or similar structured data sources.

 No SPARQL generation.

Wolfram Alpha (http://www.wolframalpha.com/)

Released by Wolfram who created the computational language Mathematica16, Wolfram Alpha styles itself
as a “Computational Knowledge Engine”, it works by using Natural Language Processing to identify key
parts of a user's question and then uses Mathematica to run a computation on it's knowledge base17. Like
Ask.com it also knows the height of the Eiffel Tower, but it is restricted to what information is in it's internal
knowledge base, and although it's knowledge base is extensive, it can't match the volume of data on the
WWW.

 Handles Natural Language questions.

 Retrieves accurate answers.

 Can perform complex computations.

 Can't query any data not on it's internal knowledge base.

15 Some very limited details are available on the ask.com site:
http://about.ask.com/en/docs/about/ask_technology.shtml Accessed 12/4/2010

16 Wolfram Research: http://www.wolfram.com/ Accessed 12/4/2010
17 Read Write Web “Wolfram|Alpha: Our First Impressions”

http://www.readwriteweb.com/archives/wolframalpha_our_first_impressions.php Accessed 12/4/2010

9

http://www.readwriteweb.com/archives/wolframalpha_our_first_impressions.php
http://www.wolfram.com/
http://www.wolframalpha.com/
http://about.ask.com/en/docs/about/ask_technology.shtml
http://uk.ask.com/

Christopher Hodder CS Honors Project 2010

3 Design3 Design
3.1 Conception
Rather than present the user with a text field expecting SPARQL input, I would like to present them with a
simpler interface which would allow them to build SPARQL queries with little or know knowledge of the
underlying technologies. Ideally this would be a Google-like minimalist interface, with a one line text box
which accepts natural language questions such as “What is the height of the Eiffel Tower?”, generates a
SPARQL Query for a user selected RDF data source, such as DBpedia18, and returns a response, such as “The
height of the Eiffel Tower is 324 meters (1,064 feet)”.

However Natural Language Processing is a hard goal to accomplish on top of SPARQL generation, so it was
decided to concentrate on producing a system that focused on producing and running SPARQL queries from
user friendly web forms.

3.2 Development Plans
It was plausible that the project would miss deadlines and that some of the goals would be unattainable, so
it was decided to split the requirements and method into “Plan A”, “Plan B” and “Plan C”. Plan A would
deliver the maximum amount of features and the more powerful system, but would rely heavily on all
deadlines being reached. Plan B would still represent a powerful and useful tool, but would not include the
loftier goal of translating Natural Language to SPARQL and instead would focus on providing access to
government released data at Data.gov.uk, and community gathered data from DBpedia. Finally, Plan C
represents the bare minimum requirements for a useful system.

3.2.1 Basic Requirements (Plan C):
Feature Description Priority

Functional Requirements:

SPARQL Generation It would be easier for both novice and advanced users to query RDF if
SPARQL could be automatically generated from limited inputs.

1

Query User Defined
resources

It's important that the user can define their own SPARQL endpoints to
query against.

1

Display Generated
SPARQL

It'd be useful for people learning SPARQL to see what the system
generates.

2

Edit Generated SPARQL Allow the user to refine SPARQL queries generated by the system. 3

Direct SPARQL Entry It would be useful to allow direct SPARQL input, but accessibility is the
top priority as many systems off this feature already.

2

Syntax checking for
Direct Input

If the system allows direct SPARQL input, it would be nice if the system
could check the syntax of entered SPARQL and display error
information

3

Facilities to Store RDF
Metadata

If the system stores commonly used metadata definitions, users won't
need to know the exact RDF predicate/class information

1

18 http://dbpedia.org/About

10

http://dbpedia.org/About

Christopher Hodder CS Honors Project 2010

General Requirements:

User Friendly Interface In order to maximise data accessibility, the interface should be easy
and intuitive to most users.

1

Browser Compatibility Although Web sites are built with standard markup languages,
different browsers render things differently, so a standard requirement
for all web applications is that they run in the 3 most popular browsers,
which as of April 2010 are Internet Explorer (IE), Firefox, and Google
Chrome19

3

Speed Queries should be executed as quickly as possible, as users expect fast
results.

3

3.2.2 Plan B Requirements
In addition to the Plan C requirements:

● The system should be able to access and query DBpedia.org

● The system should be able to access and query Data.gov.uk

3.2.3 Plan A Requirements:
In addition to the Plan C requirements:

● The system should have an interface for pure natural language input, and be able to process well
formed sentences into a SPARQL query, or forward the user to the interactive form if their input is
garbled.

Implications

I decided to arrange my iterations around this idea of Plans A, B and C, Iterations 2-4 would focus on
delivering Plan C requirements, and, if finished with enough time, I would start Iteration 5 in order to
attempt Plan A or Plan B.

19 W3C Schools Browser Statistics http://www.w3schools.com/browsers/browsers_stats.asp Accessed 4/5/2010

11

http://www.w3schools.com/browsers/browsers_stats.asp

Christopher Hodder CS Honors Project 2010

3.3 Considered Requirements
Several features were considered before a decision was reached on what the system should and should not
do. Some considered requirements and reasoning behind their inclusion/exclusion are below:

Graph Based Query Building

RDF is a graph, and queries can be built up graphically using nodes and edges. This was considered but the
availability of iSPARQL which fulfils this exact role, and the fact that it does require specialist knowledge to
build queries graphically, meant that I felt it was best to approach the problem from a different angle.

Natural Language Processing (NLP)

This was considered and debated – natural language is familiar to all users and provides the most intuitive
way of creating a query. However, natural language is also very complex and English, especially, can be very
vague. So it was decided that, depending on time and availability of tools, NLP may be attempted as part of
the project.

The Interactive Form

Initially the idea was for a purely natural language interface, but the difficulties of processing natural
language inputs meant that building a restricted input was a wise back-up for users who weren't able to
phrase a question properly. The form went through many design changes, initially starting as a series of
fields which were in layout quite close to RDF, but eventually it was decided that it should have three levels
of input for three types of user: Basic, Advanced and Expert. The Basic level of input was inspired by
Semantic Search, which uses a sentence which has selectable inputs to build a query. This was appealing s
the goal of the project was for some natural language input, so using a restricted natural language interface
was a logical alternative.

Direct SPARQL Input

Considering the system was to be capable of running and obtaining results to SPARQL queries, it was not a
huge leap to allow users to input their own SPARQL if so desired. Also considering that the system would
need to check the validity of generated queries, it was natural that the system could be tailored to provide
error checking for directly entered SPARQL. The direct input was to be the “Expert” level input of the
interactive form.

12

Christopher Hodder CS Honors Project 2010

3.4 Method
The system was developed over a 3 month period, which was divided up into a series of planned iterations:

Iteration 1 (19h February):

 Deliverable: Project Plan (12th February)

 Activity: Research current systems for SPARQL query generation

 Activity: Research technologies for SPARQL generation, NLP, and dynamic page content

 Activity: Start Project Report

 Activity: set up IDE with tools required

Iteration 2 (5th March):

 Deliverable: SPARQL Query Handler back-end. This part of the program submits queries and return
results.

Iteration 3 (19th March):

 Deliverable: Query Builder back-end. This part of the program generates SPARQL from given inputs.

 Activity: pilot features of the rest of the system.

 Deliverable: final requirements of the system.

Iteration 4(2nd April):

 Deliverable: Form GUI. This user interface is a front-end to the Query Builder. It constrains user
input in such a way that it will almost certainly generate a valid query.

 Completion of Plan C

Iteration 5(23rd April):

 Deliverables:

 Plan A Features: Simple Natural language Processing capabilities

Or

 Plan B Features: Focus on Data.gov.uk and attempt to improve it's accessibility.

Software Deadline (7th May):

Preferably the software should be ready by this date. This is a suggested deadline.

 Activity: Finish testing and tidying up the final build of the software

Final Deadline (14th May):

 Deliverables: Completed Software; Final Report.

 Activities: Possibly finishing the software; Finishing the the report.

13

Christopher Hodder CS Honors Project 2010

3.5 Time Line

Fig. 3.5.a
The Gantt Chart above divides the project time into 7 day segments from the 1st of February to the 14th of
May, the final deadline. The Iterations are referred to by the features associated with them, and run from
the 1st of February to the 23rd of April, as described in the passage above (3.4).

3.6 Risk Analysis
Risk: Iteration 3 Slips

Iteration 3 entailed writing a QueryBuilder capable of building SPARQL queries from minimal inputs.
SPARQL is however, a highly general language in which the same queries can be expressed in several
different ways. I anticipated that this could turn out to be more difficult than initially thought.

Mitigation:

– 3 weeks of extra time were built into the original plan, some of this time could be used to finish this
feature.

– It was possible to re-evaluate the functionality of this component and perhaps build it differently.

Risk: Plan A Unachievable

Plan A was always considered the loftiest and most difficult to achieve goal – to deliver both a working
SPARQL generator with a simple user interface, and a natural language processor capable of translating
English into a SPARQL-friendly format was always going to be a difficult task.

Mitigation

– Plan B was conceived as an alternative, slightly more realistic set of goals to achieve in the time
allotted.

14

Project Plan

Research and Preparation

Query Handler

Query Builder

Form GUI

Plan A / Plan B Features

Testing

Project Report

01/02/10

08/02/10

15/02/10

22/02/10

01/03/10

08/03/10

15/03/10

22/03/10

29/03/10

05/04/10

12/04/10

19/04/10

26/04/10

03/05/10

10/05/10

Schedule

Christopher Hodder CS Honors Project 2010

Risk: Time Problems

It is a general rule in software engineering that projects will take longer than planned, so it is always wise to
overestimate the time required and to build in extra time to account for missed deadlines.

Mitigation

– After the projected final deadline was three weeks of “extra time before the software deadline. This
time was to either add additional features, perfect existing ones or simply to finish the system if and
when other features had slipped.

Risk: SPARQL Query Engines

As my project relied upon running SPARQL queries on external SPARQL engines, if these systems went
down my project would be rendered incapable of executing generated SPARQL.

Mitigation

– I found several systems capable of running SPARQL queries and if one proved unreliable I could try
another. One such system was SPARQLer on the department's own servers.

– If I encountered persistent trouble with using external systems it would be possible integrate 3rd party
SPARQL query engine libraries into the project and run the queries locally.

15

Christopher Hodder CS Honors Project 2010

3.7 Architecture
The design pattern I've used to create the system is a variation of the Client-Server architecture called the
“Three-Tier Architecture”, which splits the application into three layers20:

1. The Client Layer: contains the user interface and presentation information. Also has some basic
input validation.

2. The Application Layer: Contains the bulk of the business logic and data access functionality.

3. The Data Layer: Contains the database.

A simplified architecture is presented below (Fig. 3.7.a), showing the types of files associated with each Tier
and dividing them by both Tier and by physical location (I.e. Client-side or Server-side).

Fig. 3.7.a

20 Linux Journal “Three-Tier Architecture” http://www.linuxjournal.com/article/3508 Accessed 12/4/2010

16

HTML Web PagesStyle Sheets

AJAX Scripts

Java Servlets

 Server

Tier 1

Tier 2

Tier 3

Client

Supporting classes
and libraries

MySQL Database

http://www.linuxjournal.com/article/3508

Christopher Hodder CS Honors Project 2010

3.7.1 Client Layer Technologies
HTML

HyperText Markup Language (HTML) is the markup language most commonly used to structure the content
of a web page. When building a web application, using some HTML is essentially unavoidable, but I chose it
as the main method to structure the content of the user interface pages due to my familiarity with it.

CSS

Cascading Style Sheets (CSS) are a way of encoding HTML style information in a separate file from the HTML
itself, separating the style from the content and allowing a single style to be applied across an entire
website. As well as being generally good practice to separate style and content, CSS makes it easy to keep
the style of a website consistent and allows the author to easily change the style of the entire website
without changing each individual page.

AJAX

Asynchronous JavaScript And XML (AJAX), is a set of web development techniques based on existing
technologies, which allows web pages to access server side processing power without interfering with the
display of the current page. The difference between AJAX style web pages and traditional JavaScript is that
when a traditional JavaScript doGet or doPost HTTPRequest is issued, the page freezes while it waits for a
response and then a new page is loaded on completion, by contrast AJAX requests are issued and run in the
background and the web page can be interacted with by the user while the request takes place.

AJAX issues these asynchronous requests using a JavaScript class called XMLHttpRequest, which has a
function assigned to it's “.onreadystatechange” property. This function is then called every time the
request's state is changed, including the final state change (state 4) which represents the request has been
completed and a response received.

The script snippet above shows the basic structure of how AJAX handles requests and responses. An
XMLHttpRequest is created, it's ready state change function defined and finally the request is sent. In this
script, once the response is received the responseText is extracted and displayed in an alert box, but as the
name suggests, it's possible to return an XML document instead of plain text.

17

Christopher Hodder CS Honors Project 2010

3.7.2 Server Layer Technologies
Java Servlets

Servlets are Java classes which conform to the Java Servlet API and extend the HttpServlet interface, they
work by receiving requests and issuing responses. Requests handled by Servlets are instances of
HTTPServletRequest, which usually represents an HTTP doGet or doPost request and contains associated
parameters. DoGet and doPost are similar and the function of both is to pass parameters to a Servlet from
an HTML page (usually a form) for server-side processing. Servlets are run in Web Containers and have their
own URIs which allow HTTP Requests to be passed to specified Servlets. For example, the Servlet
“ExampleServ” from the project “Project”, being run on the localhost has the URI:

http://localhost:8080/Project/ExampleServ?
When this URI is invoked, a new instance of the Servlet ExampleServ is created by the Web Container and
it's init() method run. The request is then passed to it's doGet or doPost method depending on how the
request was issued. Now let's look at the code:

Above is the code for a very basic “Hello World” Servlet: when it's doGet method is invoked by the URI
above, it sends the response “Hello World!”. If the URI was invoked by copy and pasting it into the address
bar of a browser, the response would be displayed as an HTML page. This is not a particularly practical way
to build web applications because we generally want the response to be displayed as part of a web page,
and although we could write the entire web page to the response, it's far better to use a script to catch the
response and write it to part of the web page. For this job, I used AJAX.

3.7.3 Data Layer Technologies
MySQL (Pronounced “My Sequel” or “My S.Q.L.”)

 A database was required to hold cached RDF Class and Property definitions, and although my initial choice
was Derby, I switched to using MySQL after failing to get Derby to work with my web application. MySQL is
the self styled “World's Most Popular Open Source Database”21, and provides a relational database
platform which is easily integrated into Web Applications. Essentially it didn't matter what database was
used as long as it was fast and easy to query, MySQL proved to be the easiest system to set up and
communicate with, so I chose to use it.

21 MySQL homepage http://dev.mysql.com/tech-resources/articles/introduction-to-mysql-55.html Accessed 23/4/2010

18

http://dev.mysql.com/tech-resources/articles/introduction-to-mysql-55.html

Christopher Hodder CS Honors Project 2010

3.7.4 Alternative Technologies
MVC Architecture

An alternative architecture often used for web applications is Model-View-Controller (MVC), which
separates the state (model) from the presentation (view) and the logic (controller)22. However, since I was
using AJAX to script the pages, a certain amount of program logic and state information would be present
in the view, which defeats the purpose of MVC. Therefore the logical solution was to embrace the more
traditional Client Server model, and allow for the presence of some logic in the Client Layer.

JSP/JavaBeans

In order to implement the system as an MVC architecture it would have been possible to use Java Server
Pages (JSP) and JavaBeans instead of HTML and AJAX to talk to the Servlets. I did experiment with this, but I
found that AJAX was preferable in terms of speed and ease for manipulating the page content
asynchronously.

ASP.net

Microsoft's answer to JSP/Java Servlets is ASP.net (Active Server Pages) and C# (pronounced “See Sharp”),
are part of the .net (“dot net”) framework. I experimented with the .net developer tools which are
incredibly powerful and allow a proficient user to create powerful ASP web applications very quickly.
However, I am unfamiliar with ASP and C# and picking up and using them was impossible in the allotted
time.

Derby Database

Apache Derby is an open source Java database built to easily integrate with Java applications. Derby is very
easy to set up as an integrated database in a small one user application, but I had trouble getting it
operating in multi-user mode, and eventually had to switch to MySQL as it was taking too long to
implement.

22 Oracle Sun Developer Network http://java.sun.com/blueprints/patterns/MVC.html Accessed 12/4/2010

19

http://java.sun.com/blueprints/patterns/MVC.html

Christopher Hodder CS Honors Project 2010

4 Implementation4 Implementation
4.1 Overview
The resultant system had several features for generating and running SPARQL queries from minimal user
inputs as laid out in Plan C. However due to development problems and some poor design decisions on my
part as well as unforeseen technical problems, it did not attain the Plan A features, and instead I had to
enact Plan B.

4.2 Actual Iterations
Delays and complications meant that the iteration due dates had to be pushed back, this had been
anticipated and was compensated for by the 3 weeks of extra time I had built into the project plan for this
eventuality. Detailed below is how the project actually worked out, including missed deadlines and altered
goals as well as the causes behind the deadline misses and the reasons behind the altered goals.

Iteration 1 (19 h February) :
● Finished on time with no problems.

● Project Plan was delivered.

● Required research done.

● Report Started.

● A combination of Java Servlets and AJAX was decided upon as the platform.

Iteration 2 (5 th March):
● Finished on time though I had some trouble learning AJAX.

 Basic SPARQL handling was implemented, allowing direct SPARQL input, syntax checking and
displaying of results.

Iteration 3 (19 h March, Actual: 2 nd April):
● This iteration missed it's deadline by a week due to illness

○ Result: 1 week of slippage time was used to finish the iteration.

● A further week was lost due to problems with generating SPARQL:

○ It was determined that a Form GUI was needed first, so that the SPARQL generation could be
tailored to the Form.

■ Generating SPARQL of arbitrary complexity was simply too large a task, the generator had
to be scaled down to only fulfil the requirements of the form.

○ It was determined that a database was needed to cache the predicate information extracted
from endpoints.

■ The Database proved a hassle; I initially chose Derby as the Database for the project as I
was familiar with it. However getting it to work in a client-server environment turned out
to be a challenge and I was forced to switch to MySQL at the 11th hour.

As a result of these issues, the goals of Iteration 3 and iteration 4 were changed.

20

Christopher Hodder CS Honors Project 2010

New Goals:

1. Create a Database to cache predicate and domain information

2. Create a working prototype of the form input, including the Advanced and Expert Input

3. Have the capability to match predicates manually entered in the Advanced form to predicates
cached in the database.

4. Have a working SPARQL generator that handles input from the Advanced form

Results

● All of the new goals were met and the iteration was finished by the 2nd of April.

Iteration 4(2 nd April, Changed: 16 th April):
As discussed above, Iteration 4 had to be modified as it's original goal (to deliver the form interface) had to
be started in Iteration 3, in order to get SPARQL generation working.

New Goals:

● Achieve the minimum working spec for the “Plan C” requirements:

○ Deliver the “Basic” form interface, the half way house between Natural Language and the
Advanced input.

○ Improve the features for the Form Interface, including:

■ Allow the user to see the SPARQL generated rather than simply run the query without
asking. This is to allow users to learn SPARQL with the help of the tool.

Results

● The Plan C requirements were met, and the form interface was finished.

Iteration 5(23 rd April, Changed: 14 h May):
Due to delays with previous iterations, the deadline for Iteration 5 was pushed back to the final deadline of
the course, using all remaining time. In theory this gave nearly a month to investigate and implement Plan
B or Plan A features, but in practice this report needed to be compiled and finished and the system
properly and rigorously tested and evaluated, leaving very little time to implement high level features.

In practice, several features were investigated (See “4.3 Beyond Plan C: Features Investigated ”, next page),
and with the remaining time I implemented an interface to perform queries against DBpedia. Finally I
performed the last tests and bug fixes on the system before having it evaluated by a user group consisting
of my peers and other people of varying levels of technical ability (See “5 Testing and Evaluation”) .

21

Christopher Hodder CS Honors Project 2010

4.3 Beyond Plan C: Features Investigated
Due to delays, there had not been enough time by the end of Iteration 4 to investigate fully whether Plan A
or Plan B features should be undertaken, so it was decided to investigate several different options for high
level features (that is, beyond basic Plan C features) to add to the system. The features investigated are
outlined below:

4.3.1 Natural Language Processing
My initial goal had been to allow a Google like interface for querying Semantic data, but the way the
semantic web works is that Ontologies are domain specific, so queries that work on DBpedia won't work on
Data.gov.uk and vise versa, so the user will always have to specify what resource they wish to query and, if
the system isn't familiar with it, what ontology needs to be loaded.

Still I did investigate using a NLP to build queries with the DBpedia or other ontologies loaded into the
system and I found OpenEphyra23, an open source Natural Language Processing (NLP) package. This initially
looked promising to do the “part of speech” tagging necessary to extract the subject and predicate from a
Natural Language question. Unfortunately the documentation for OpenEphyra is quite poor and even
though I managed to extract the question analysis packages necessary, I didn't have enough time to trawl
through the packages, class by class and try to figure out what bits to use. I did send an email to it's
creators but didn't receive a response.

Conclusion:

I didn't have enough time to fully investigate OpenEphyra.

4.3.2 DBpedia
I had, on my initial research, seen that DBpedia was open source under the GNU license and freely linked
it's SPARQL endpoint and had assumed that I could load it's ontologies to my database and query it like any
other resource. Unfortunately their ontology, though open and well documented, is not provided in rdf
format, and the actual linked data is behind a gateway query system which is the only way to gain access to
their wealth of RDF data. Attempting to query their data from another SPARQL query processor returns
empty XML documents.

So, in order to add DBpedia functionalities to the system, a custom DBpedia interface would have to be
created, it's predicates added to the database and several systems changed so that only the DBpedia Query
Form would have access to DBpedia specific Information.

Conclusion:

I added a new interface to interact with DBpedia and modified existing systems to incorporate it.

4.3.3 Data.gov.uk
One of the initial goals of Plan B was to integrate Data.gov.uk's ontology and create an interface for
building queries. I did have enough time to create an interface for DBpedia, but creating a new interface for
a large domain which uses a custom Ontology is time consuming and after adding DBpedia I didn't have
enough time left to add Data.gov.uk and finish the report.

Conclusion:

Sadly I had to leave out Data.gov.uk, with another week I would be able to integrate it into the system.

23 Ephyra: http://www.ephyra.info Accessed 1/5/2010

22

http://www.ephyra.info/

Christopher Hodder CS Honors Project 2010

4.4 Libraries Used
In order to deliver some of the features, I had to use some external libraries. I full list of required .Jar files is
available in the Maintenance Manual.

Jena Semantic Web Development Framework (http://openjena.org/)

Jena is a Java framework which provides facilities for handling RDF, RDFS, OWL and SPARQL in Java
programs. Sparkle! uses the ARQ query processor part of Jena to provide Syntax checking on user entered
SPARQL queries, but there is potential for greater integration. Jena is also capable of parsing ontologies and
can be used to build an ontology from a target RDF file.

I had actually intended to integrate Jena more fully into the project, however because basic features such
as the Database and SPARQL generation dragged on, I was never able to get around to it. Future iterations
of Sparkle! could use Jena to build lists of predicates from any defines resource, extending the usefulness of
the system.

MySQL Connector

The MySQL Connector is a driver that allows the JDBC (Java DataBase Connector) to create a connection to
MySQL databases.

23

http://openjena.org/

Christopher Hodder CS Honors Project 2010

4.5 Final Feature List

Feature Description Plan

SPARQL Generation It would be easier for both novice and advanced users to query RDF if
SPARQL could be automatically generated from limited inputs.

C

Query User Defined
resources

It's important that the user can define their own SPARQL endpoints to
query against.

C

Display Generated
SPARQL

It'd be useful for people learning SPARQL to see what the system
generates.

C

Edit Generated SPARQL Allow the user to refine SPARQL queries generated by the system. C

Direct SPARQL Entry It would be useful to allow direct SPARQL input, but accessibility is the
top priority as many systems off this feature already.

C

Syntax checking for
Direct Input

If the system allows direct SPARQL input, it would be nice if the system
could check the syntax of entered SPARQL and display error
information

C

Facilities to Store RDF
Metadata

If the system stores commonly used metadata definitions, users won't
need to know the exact RDF predicate/class information

C

User Friendly Interface In order to maximise data accessibility, the interface should be easy
and intuitive to most users.

C

Browser Compatibility Although Web sites are built with standard markup languages,
different browsers render things differently, so a standard requirement
for all web applications is that they run in the 3 most popular browsers,
which as of April 2010 are Internet Explorer (IE), Firefox, and Google
Chrome24

C

Speed Queries should be executed as quickly as possible, as users expect fast
results.

C

DBpedia.org The system should be able to access and query DBpedia.org B

24 W3C Schools Browser Statistics http://www.w3schools.com/browsers/browsers_stats.asp Accessed 4/5/2010

24

http://www.w3schools.com/browsers/browsers_stats.asp

Christopher Hodder CS Honors Project 2010

4.6 How It All Fits Together
To explain how the system works, I shall describe how to use the Advanced Form which is part of the
general Inputs form which allows the user to build general, non website specific queries and run them
against a targeted resource or see the SPARQL. I'll use it to create a simple query against
http://planetrdf.com/bloggers.rdf to extract the names of all bloggers listed there.

Advanced Form Architecture (Partial):

Above is the architecture of the Advanced Form interface. As described in the Architecture Section (3.7) ,
the system uses a 3 Tier architecture with the form inputs and accompanying scripts representing the client
layer, the Java Servlets and utility classes in the server layer and finally the MySQL database as the data
layer.

When the user first opens the FormInput.html page, no inputs are visible (Fig. 4.6.a), as the different levels
of form (Basic, Advanced, Expert) are loaded on request. When the user clicks the Advanced tab, an AJAX
script, loadHTML, from FormControl.js is triggered. It loads the AdvancedForm.html into the appropriate
div.

25

FormInput.html

AdvancedForm.html

 general.css

 forms.css

 FormControl.js
FormUtil.js

AdvancedFormScript.js

ADVValServ.java
ADVQueryServ.java

 Server

Tier 1

Client

Tier 2

Tier 3

QueryBuilder.java
DBManager.java

MySQL
PredicateCache

http://planetrdf.com/bloggers.rdf

Christopher Hodder CS Honors Project 2010

Fig. 4.6.a

Fig. 4.6.b

Once the form has been loaded (Fig. 4.6.b), the user can then manipulate the form, adding triples and
filters to the query. The next stage is to Validate the input to ensure it is formatted correctly so that it can
be turned into a SPARQL query. This triggers an AJAX script which extracts the inputs from the form and
creates an asynchronous XMLHTTPRequest which passed the form input to the Java Servlet ADVValServ via
doGet. The validation servlet processes the form input and attempts to match any RDF predicates to
predicates held in the database. As the inputs are checked and formatted, a new form is created by the
servlet, and once the inputs have all been checked, the new form is returned to the AJAX script which
replaced the old form with the new one. The new form lets the user refine their query. If the user makes
large changes, the form requires the user to re-validate, if they only make certain small changes, it isn't
necessary.

26

Christopher Hodder CS Honors Project 2010

Fig. 4.6.c

Once the user has refined their query, they can opt to “Query” or to “Generate SPARQL”. Both buttons use
the same AJAX script and same Servlet, but they send slightly different commands. If the user selects
“Query” the ADV_Query script extracts the validated form inputs and forwards them to ADVQueryServ via a
doGet XMLHTTPRequest, the Query Servlet then uses QueryBuilder.java to create a SPARQL query and
sends it to sparql.org for processing, the results are then returned to the script as an XML document. An
XSLT transform is then run on the results and they are displayed as a table:

If however, the user clicks “Generate SPARQL”, the same script is triggered but with a different control
variable. This causes the script to use loadHTML to load the Expert Form tab and inserts “&getsparql=T”
parameter into the request. With this parameter, the servlet still generates the SPARQL via QueryBuilder,
but does not send it for processing, instead it returns the SPARQL as text, and the script loads the SPARQL
into the Expert form (Fig 4.6.d).

27

Christopher Hodder CS Honors Project 2010

Fig. 4.6.d

Summary

All system functionality uses a similar sequence:

1. The user loads an HTML page with form inputs;

2. The user manipulates the forms to input desired parameters, then pushes a button;

3. The button triggers an AJAX script which creates a XMLHTTPRequest to the server;

4. A Java Servlet handles the request, processes the inputs and returns some data;

5. The script updates the webpage, and the user either refines their inputs or has received their
desired results.

There are variations involving multiple scripts and multiple Servlets, but understanding this sequence will
allow you to understand how the system functions.

28

Christopher Hodder CS Honors Project 2010

5 Testing and Evaluation5 Testing and Evaluation
System testing focused around testing first the deliverance of features, second usability, and third
durability. The first round of testing involved myself testing the system against the functional requirements
set out in the Development Plans (Design Section) . The second and third rounds involved other computing
students attempting to use the system to perform a set series of tasks, and then being given free reign on
the system to attempt to cause the system to stop or freeze in any way they could.

5.1 First Round – Functionality Testing
5.1.1 SPARQL Generation & Querying
Test:

Three major features of the system are the generation of SPARQL queries, the displaying of the generated
SPARQL and the ability to query user defined resources. It was decided that to test these features, it was
best to try to use the system to create and display a non trivial query; in this case equivalent to the natural
language task “list the names and weblog titles of all people on the bloggers list at planetrdf.com whose
weblogs contain the word 'Web'”. A correct SPARQL equivalent for such a query is shown below:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *
FROM <http://planetrdf.com/bloggers.rdf>
WHERE{
?agent rdf:type foaf:Person .
?agent foaf:name ?name .
?agent foaf:weblog ?weblog .
?weblog dc:title ?title .
FILTER regex(?title, "Web") .
}

Results

I used the Advanced part of the input form, and entered the information as shown below:

The form validated, and, after selecting the appropriate predicates from the drop down boxes, I selected

29

Christopher Hodder CS Honors Project 2010

“Generate SPARQL”. The Expert tab was automatically expanded and the resultant SPARQL is shown below:
SELECT *
FROM <http://planetrdf.com/bloggers.rdf>
WHERE {
?agent <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .
?agent <http://xmlns.com/foaf/0.1/name> ?name .
?agent <http://xmlns.com/foaf/0.1/weblog> ?weblog .
?weblog <http://purl.org/dc/elements/1.1/title> ?title .
FILTER regex(?title, "Web") .
}

The generated SPARQL looks different, but only because instead of using PREFIX statements to shorten
resource identifiers, it uses the full URI, the results are the same.

Conclusion:

The system successfully generated an equivalent query and displayed the SPARQL generated.

5.1.2 Direct SPARQL Entry
One of the expert level features is the ability to enter your own SPARQL query and have the system run it.
There are two interfaces for this, the “Direct Input” screen and the “Expert” tab in the form input screen, so
I tested both of them with the same query. The query I used uses a custom definition that isn't in the
system database, and queries against RDF data for travel.org. The query (below) picks out tourist sites in St
Petersburg.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX NS0: <http://travel.org/russia#>

SELECT ?resource ?placename
FROM
<http://www.atl.external.lmco.com/projects/ontology/ontologies/russia/
russiaA.rdf>
WHERE {

?resource rdfs:label ?placename .
?resource NS0:lie_in NS0:St.Petersburg .

}

Results

Both the Direct Input and Expert tab retrieved the same set of results (Fig.5.1.3.a below) which I then
checked against the results when run through the “Vituoso OpenLink SPARQL Query” page25. The results
were consistent.

25 http://dbpedia.org/sparql Accessed 6/5/2010

30

http://dbpedia.org/sparql

Christopher Hodder CS Honors Project 2010

Fig 5.1.3.a
Conclusion

Both direct SPARQL entry methods yield accurate results, this feature works.

5.1.3 Syntax checking for Direct Input
The Syntax checking feature is designed to catch syntactic errors on SPARQL entered by the user using the
JENA framework. I decided that to test this, I would input a complex query with several different errors in
it. The query I used was the same query I used to test SPARQL generation, with the errors highlighted in
red, as shown below:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *
FRO <http://planetrdf.com/bloggers.rdf>
WHERE(
?agent rdf:type foaf:Person .
?agent foaf:name ?name _
?agent foaf:weblog ?weblog .
?weblog dctitle ?title .
FILTER regex(?title, "Web") .
)

Errors

1) foaf prefix link not properly closed

2) FROM clause misspelled

3) '(' instead of '{' on WHERE clause

4) missing '.' at the end of the 2nd constraint

5) missing ':' in 'dc:title'

6) WHERE clause closed with ')' rather than '}'

31

Christopher Hodder CS Honors Project 2010

Results

The results were the same for both SPARQL interfaces, they both flagged every error with the
corresponding error messages shown below:

1. Error: “Encountered " "<" "< "" at line 3, column 14. Was expecting: ... “

○ It didn't point out that a > was missing but did at least draw attention tot he right part of the
code.

2. Error: “Lexical error at line 7, column 4. Encountered: " " (32), after : "FRO" “

3. Error: “Encountered " "(" "("" at line 8, column 6. Was expecting: "{" ... “

4. Error: “Encountered " "?agent "" at line 11, column 1. Was expecting one of: "graph" ...
"optional" ... "filter" ... "{" ... "}" ... ";" ... "," ... "." ... “ \

5. Error: “Lexical error at line 12, column 16. Encountered: " " (32), after : "dctitle" “

○ This is perhaps the most cryptic one, it did draw attention to the right phrase but didn't
pinpoint exactly what was wrong with it.

6. Error: “Syntax Error: Encountered " ")" ") "" at line 14, column 1. Was expecting one
of: "graph" ... "optional" ... "filter" ... "true" ...
"false" "(" "{" ... "}" ... "[" “

Conclusion:

Some of the errors were a bit cryptic or not quite precise, but overall I feel they were satisfactory.

5.1.4 Ability to Query DBpedia
In order to test the DBpedia querying capability, it was decided to run three separate queries against it. The
first query would be to find the names of all British Naval ships listed on DBpedia (by looking for “HMS” in
the name), the second would be to find out the population of Aberdeen.

1st Query

For the first query I selected the general query interface on the DBpedia form, choosing to find “anything
with the property name that matches HMS” as shown below:

After validation I was presented with a large array of possible matches for the property “name”, which was
unsurprising as it's a very general term. The best match was the DBpedia property “shipName”, which I
selected, as shown below.

32

Christopher Hodder CS Honors Project 2010

With the property selected, I hit “submit” and after a moment or two received a huge list of ships which, as
expected, all contained the letters “HMS” in their names.

2nd Query

For the second query I chose the specific query interface, and asked for the “population of Aberdeen” as
shown below:

When validated I was shown several different results for population (below), and it was not immediately
clear which would give the best result.

I took a guess and tried “populationEst”, but this didn't return any results. I tried a few others before trying
“populationRef” and getting some fairly ambiguous results:

This isn't really the fault of my system, but rather a problem with DBpedia's dataset and ontology being so
inconsistent, and is unfortunately unavoidable.

33

Christopher Hodder CS Honors Project 2010

Conclusion:

The DBpedia form is functional, but the ambiguity and inconsistency of the DBpedia ontology and data
makes it sometimes frustrating to use. A possible improvement on the form would be to automatically run
the query against any inputs that are similar to the user input, and display all results and what properties
they are under, this would make it easy to see all information on the population of a city, but in the case of
looking for all ships with a certain name, could be very confusing as “name” is far more ambiguous than
“population”.

It's difficult to see how best to combat this problem from my end, it would be far preferable for DBpedia to
standardise their ontology and remove the conflicting and repeated properties.

5.1.5 Browser Compatibility
A major problem with all websites is that web browsers render pages differently, and AJAX in particular has
problems with browser compatibility. For this reason I decided to test how the application is rendered and
AJAX scripting functionality across the 3 most popular browsers according to the W3C26, Internet Explorer
(version 8), Firefox (3.6.3) and Google Chrome (4.1.249.1064).

The tests are as follows:

Number Description Feature Tested
1. Load FormInput.html and visually inspect

how the page is rendered.
Tests that the page loads properly, with no
artifacts that obscure the content.

2. Expand the “Advanced” tab. Tests basic AJAX functionality to fetch
another page and load it.

3. Add a row to the form. Tests AJAX copy and insert functions.
4. Remove a row from the form. Tests AJAX select and table row delete.
5. Enter a basic query and validate Tests AJAX server communication.

Results:

Number Internet Explorer Firefox Google Chrome
1. Pass Pass Pass
2. Pass Pass Pass
3. Pass Pass Pass
4. Pass Pass Pass
5. Pass Pass Pass

Conclusion

All browsers passed all tests, meaning the system is works on all three major browsers.

26 W3C Schools Browser Statistics http://www.w3schools.com/browsers/browsers_stats.asp Accessed 4/5/2010

34

http://www.w3schools.com/browsers/browsers_stats.asp

Christopher Hodder CS Honors Project 2010

5.2 Usability Testing
In this round of testing, I posed a short series of tasks to a group of technically minded people, some of
whom had experience with SPARQL but others who had never used it, and observed how quickly they
managed to finish the task, and noted what things they tried in order to achieve their goals. The sheet I
used to keep track of the test candidates is contained in Appendix A.

Tasks:

1. Use DBpedia to find out the population of Berlin.

2. Find the names of all British Naval ships (names contain “HMS”) listed in DBpedia.

3. Find the names of all bloggers listed on http://planetrdf.com/bloggers.rdf .

4. Display the SPARQL for the above query.

5. Display a help file.

6. Return to the Index page.

Results

Below is a selection of results, structured as a series of tables breaking down the tests by Task and then by
Candidate number. Bugs are highlighted in bold.

Task 1
C Time Notes
1 10min Hit enter rather than query. Was confused by number of possible selections for

“population”. Tried wrong interface. Gave up.
2 6min Confused by number of selections. Tried several of them before finding an

answer.
3 9min Also confused by number of matches for “population”. Tried a couple of them

before giving up.
4 6min Read the help file, then formed a correct query.
5 5min Used “pop” rather than population, spent some time checking different options

before finding correct one.

35

http://planetrdf.com/bloggers.rdf

Christopher Hodder CS Honors Project 2010

Task 2
C Time Notes
1 7min Used wrong interface. Tried synonyms like “find British battleships”. Tried to

use HMS as a property. I had to explain Subject-Predicate-Object triples and
how to enter them correctly. Didn't look for help files.

2 7min Used wrong interface. I had to explain how to break the question into subject-
predicate-object. Didn't check the help files.

3 4min Had a better grasp of the question and selected the right interface quickly,
broke up the question quickly and found the answer with relative ease.

4 5min Tried wrong interface, but realised it wasn't possible. Used correct interface
fairly quickly.

5 6min Changed interfaces to check the other. Used it and got the answer fairly
quickly. Used “name” instead of “shipName” however and got irrelevant
answers at first.

Task 3
C Time Notes
1 3 min Used Back button rather than logo. Wasn't sure which page to go to. Once

located, went straight to Basic interface and worked out what to do in a matter
of seconds. Had to be prompted to scroll down for results.

2 3min Used the logo to navigate to Index. Found the general input quickly, used
Advanced form.

3 4min Used back button to navigate to Index. Found the general form quickly. Used
Basic input to find the answer.

4 5min Used back button. Tried Direct Input, realised it was wrong, found General
input form. Used basic tab.

5 3min Used back button to navigate. Found the general form quickly, used basic tab.

Task 4
C Time Notes
1 5sec Worked out to hit “SPARQL” button very quickly.
2 3sec
3 30sec Almost clicked “sparkle!” logo, needed to be prompted.
4 5sec looked around for a moment before finding it.
5 2sec

36

Christopher Hodder CS Honors Project 2010

Task 5
C Time Notes
1 2sec Once prompted to find help, hit the “?” button almost instantly. Expected

clicking the logo again to hide help, didn't see the “hide” link.
2 2sec Also found the help section very easily. Found the “hide” link.
3 10sec Hadn't noticed Help button.
4 1sec Had already used help before.
5 2sec Found Help instantly.

Task 6
C Time Notes
1 5sec Spent some time scrolling the page, then clicked Sparkle! logo.
2 1sec Had used logo previously, new what to do.
3 1sec Used Back button.
4 4sec took a moment, then guessed and hit the Sparkle! logo.
5 5sec Scrolled the page, then guessed to click the logo.

Changes
● Candidate 1 had trouble locating the form prototype, so I relabelled the link “General Query

Form”.
● I added text to the interfaces, prompting users to click the “?” logos for help if they get

stuck.

Conclusion

Several issues were highlighted by the usability tests:

1. Users had trouble understanding how to break natural language into Subject-Predicate-Object
components, and would ask me for help. If I refused, they would give up rather than check the help
files. This may be because they knew I knew how it works, but also may point to a fundamental
flaw – people don't like to learn to use things.

2. Users generally identified the help logo correctly and instantly, but they rarely click it. Instead they
try several things and then give up if the system doesn't act as they expect it to.

3. Users found the number of choices presented to them confusing.

4. Users didn't read the dialogue boxes.

5. Users didn't usually read any of the text on the page – they focused in on what they thought would
get them closer to their goals.

Overall I was fairly happy with how quickly the users picked up how to use the system, but disappointed
that they didn't use the help files or read system messages.

37

Christopher Hodder CS Honors Project 2010

5.3 Durability Testing
To test the durability of the system, each candidate was asked to attempt to break the web interface in any
way they could (short of deleting the code or powering off my laptop). I watched them as they attempted
to do this, and filled out a form detailing what they tried and what happened (Appendix B). The results are
shown below with bugs highlighted in bold:

C Action Result
1 Entered Random input into Expert tab. System flagged syntax errors.

Put a non rdf resource into advanced tab and
then entered a nonsense query.

System flagged errors on predicates.

Put “anything” into property box of basic System asked user to refine the search.
Bad address with a valid query in basic. System flagged an XML parsing error.
Clicked reset button on DBpedia page. Reset script didn't work.
Tried to enter nonsense queries to DBpedia. System found matching predicates, formed

query but didn't receive any results.
2 Also went straight for the Expert tab and

entered nonsense.
System flagged Syntax Errors

Created lots of inputs in Advanced Tab. Got
bored at about 20 rows.

System added rows, no errors.

Tried a bad address with a valid query in
basic.

System flagged an XML parsing error.

Created valid query in Advanced, repeatedly
hit “Validate” then hit “generate SPARQL”.

System correctly revalidated input and
generated valid SPARQL.

3 Tried entering nonsense on DBpedia forms. System rejected inputs it couldn't match, but
did match some of them.

Tried using symbols like “@” “#” etc. on
Advanced Form.

System rejected symbol inputs.

Attempted basic SQL injection attack on
Advanced Form.

System rejected input.

4 Opened and closed all the forms and help
files.

System properly opened and closed tabs.

Tried copy and pasting a large amount of
text into Advanced tab.

System accepted it as it contained a URL.
Failed to get any results.

Entered nonsense into direct input form. System flagged syntax errors.
5 Tried opening and closing all the interfaces

and help tabs.
System opened and closed tabs correctly.

Pushed all the reset buttons. System reloaded form tabs correctly.
Entered nonsense into expert tab System flagged syntax errors.
Tried a bad address with a valid query in
basic.

XML parsing error.

38

Christopher Hodder CS Honors Project 2010

Bug Fixes:

● Candidate 1 found that the DBpedia reset button did not work, so I fixed the script.

Conclusion:

Apart from one Scripting Error which I subsequently fixed, the system appears to be highly durable.

5.4 Comparisons With Existing Systems
● SWS: Semantic Web Search (http://www.semanticwebsearch.com/query/)

● DBPQ: DBpedia Query Builder (http://querybuilder.dbpedia.org/)

● iSPARQL: OpenLink iSPARQL (http://demo.openlinksw.com/isparql/)

Feature Sparkle! SWS DBPQ iSPARQL
SPARQL Generation Yes, in 3 ways. No. Yes, but only

basic.
Yes, graph based.

Display Generated
SPARQL

Yes. No. Has button,
Doesn't work.

Yes.

Edit Generated
SPARQL.

Yes No. No. Yes.

Query user defined
resources

Yes. Yes. No. Yes.

Facilities to Store
RDF Metadata

Yes. Yes. No. Yes.

Direct SPARQL Entry Yes. Yes. No. Yes.

Syntax checking for
Direct Input

Yes. Yes. No. Yes.

Stability Stable. Stable. Stable. Crashes often.
Buggy.

Complexity Depends on
interface.

Complex. Simple. Very complicated.

Browser
Compatibility

IE, Firefox,
Chrome.

IE, Firefox,
Chrome

IE, Firefox,
Chrome

Firefox, Chrome.
Not IE.

Conclusion

From my testing, I think Sparkle! compares favorably with similar systems, especially in terms of
functionality and usability, but it is also farm more stable than the very complex though powerful iSPARQL.

39

http://demo.openlinksw.com/isparql/
http://querybuilder.dbpedia.org/
http://www.semanticwebsearch.com/query/

Christopher Hodder CS Honors Project 2010

5.5 Evaluation

Functional

Compared against the functional requirements (S 3.2.1), the system has met the Plan C requirements and
attempted plan B functionalities by allowing the user to query DBpedia. However it has not met the Plan A
requirements as discussed in section 4.3.

Usability

One thing that was brought up repeatedly during the usability testing was the number of options that
simply weren't helpful because those properties weren't present on the target resource. As a result I think
it would be beneficial in future versions to generate the list from what properties/predicates are actually
present, this can be accomplished by parsing the target RDF using Jena.

Another result of the Usability testing was that it is really very hard to make the Semantic web accessible to
users who aren't familiar with the concepts involved especially with regards to organising information into
triples. One of the hardest problems all test candidates had was taking the natural language tasks I posed to
them and identifying the components necessary to form queries. Once users were familiar with the process
they became more efficient, but they were prone to giving up at the first hurdle, which could be a sign that
the system is too hard to use or the concepts too demanding to learn quickly.

Durability

I was pleased that none of the testers managed to severely brake the system. Only one bug was discovered
and subsequently fixed, so I believe that the system is highly durable.

Conclusion

From the testing regime I imposed, I think it's clear that the system met it's functional requirements and is
also fairly durable. I was slightly unhappy with the usability testing and I feel there would be room for
future interface improvements, especially with regards to how options are presented to the user.

Overall I feel that the usability testing made it clear that the way forward in querying the Semantic Web is
Semantic Question answering of Natural Language questions rather than helping users to form SPARQL
queries through an interactive interface.

40

Christopher Hodder CS Honors Project 2010

6 Conclusion6 Conclusion
6.1 In Retrospect...
Looking back, some things are clear to me now that should have be clearer at the start of this project,
especially with regards to usability and making the Semantic Web more accessible: Generally users are not
willing to learn how Linked Data works just so they can perform clever queries on Semantic Resources; they
are more interested in using tools they are already familiar with, like Search Engines, to find the
information they want. If I were to start the project again tomorrow, with the same original goal to make
the Semantic Web accessible to the end-user, I would have focused exclusively on Natural Language
Processing and Part-of-Speech tagging to translate English language questions into SPARQL queries. The
mistake I made was getting sidetracked in allowing advanced and expert users to generate SPARQL for their
own purposes, and I spent the majority of my development time tackling that set of challenges with little
appreciation for the difficulty of the ultimate goal I had originally set myself.

I am also unhappy with my decision to use cached standard definitions as a basis for creating queries. I had
at first assumed that, like most web standards, they were at least fairly widely implemented; this turned
out to be a highly erroneous assumption, and my forays into finding RDF data have shown that these
“standards” are by and large completely ignored in favor of custom Ontologies. If I were to restart the
project tomorrow, I'd use Jena's document extraction and abstraction abilities to build a local copy of the
target Ontology being used so that any resource could be properly queried. This would also solve the
problem that currently, there are often many conflicting properties/predicates given as possible matches to
user input, and selecting the right one is essentially educated trial and error.

Hindsight is, of course, always perfect and these things were not at all clear to me at the start.

6.2 Achievements
I am not entirely disappointed with my work - I feel that it helps technically minded users to generate
SPARQL queries and access resources like DBpedia which are quite hard to use. I'm also pleased with it's
durability and presentation and that even for a SPARQL generation tool, my test candidates (most of whom
did not have experience with SPARQL or linked data) managed to use it to form queries.

I am also pleased with the quality of the presentation, and the visual and functional features I managed to
produce with AJAX scripting which I was previously entirely unfamiliar with.

The system did meet most of it's original functional requirements, and although there is room for
improvement this is unsurprising given the magnitude of the task and the time alloted. Still, with the
knowledge I have today, I think I would rebuild the system with a different focus and slightly different goals
in mind.

6.3 Overall
I feel that the system does represent an attempt to help move the Semantic Web forward, and although
not a perfect attempt, I am happy to have tried to contribute something to a wider movement. On a
personal note, I feel that my skills as a programmer have been tested and refine, and I have gained
technical knowledge and understanding of Semantic Web topics which I did not posses previously.

41

Christopher Hodder CS Honors Project 2010

7 Outlook7 Outlook
7.1 Possible System Improvements
My application does not represent a perfect system, and although it does what it is supposed to, there are
ways in which it could be improved, especially by adding further features. So in this section I shall propose
and briefly explore some possible ways of extending the system.

Local SPARQL Processing

Currently the application relies on 3rd party websites to process and dispatch SPARQL queries, this works,
but does depend on the availability of resources outside of my control. Therefore it'd be preferable for the
system to have it's own SPARQL query engine, and the JENA package which is already used by the system is
capable of doing this, and it shouldn't take long to modify the existing system to use these capabilities.

Ontology Cacheing

One of the limitations of the current form system is that it requires the use of locally saved ontologies to
generate SPARQL queries. There are ways of using JENA to capture an ontology from a remote data source
and create a local representation of it, this would allow generating queries for virtually any RDF resource
rather than limiting the available sources that conform to the metadata definitions in the database.

Different Types of Filters

Currently the application only generates one type of filter, the regex filter, which is used for filtering on text
values. There are other types of filters however, for example, integer filters which allow you to create
queries such as “Find me the name of all cities with a population over 2,000,000”. Using filters like this
would be especially helpful for querying DBpedia.

Interface Simplification

One of the things I noticed from the Usability testing was that users never read dialog boxes, instructions or
help files. They read links and options, but none of the other information on the page unless they
absolutely have to. Dialog boxes in particular tend to be clicked away instantly. Instead users click on what
looks likely to get them closer to their goal, ignoring help information or signs to the contrary. Then if
they've made an erroneous selection, they are more likely to keep trying the same interface and eventually
give up than to try a different interface that they've already written off as not getting them closer to their
goal.

So from this I've reached a few conclusions:

● Interfaces should be goal orientated.

● Interfaces should be clearly marked ideally using graphics or short, concise words.

● Interfaces should be as intuitive as possible, they should look like they do what they are supposed
to do.

● Don't put system messages in Dialog boxes.

Unfortunately usability testing came late in my project and I only had a short amount of time to implement
these improvements, but for the future the interface could be improved on the back of these results.

42

Christopher Hodder CS Honors Project 2010

Multiple Resource Queries

One of the strengths of SPARQL is that you can use it to query multiple resources at once by simply using
multiple FROM clauses. Unfortunately I didn't have enough time to implement this feature into my SPARQL
generation methods. It is a minor feature that would only take a short amount of time to add.

Natural Language Processing with OpenEphyra

As noted in section 4.3.1, I did find a natural language processing package that is capable of the part of
speech tagging required to turn natural language into a SPARQL query. Unfortunately, this system has very
poor documentation and the creator didn't respond to my emails, so I had to abandon my attempts to
integrate it into the project. Given more development time it should be possible to create a natural
language interface to generate SPARQL from, perhaps for querying DBpedia.

43

Christopher Hodder CS Honors Project 2010

8 References8 References
The Semantic Web

 W3C: Semantic Web Activity Overview http://www.w3.org/2001/sw/Activity.html Accessed
02/02/2010

 W3C: Semantic Web http://www.w3.org/2001/sw/ Accessed 27/4/2010

 Sir Tim Burners Lee's Blog at MIT: http://dig.csail.mit.edu/breadcrumbs/node/215 Accessed
27/4/2010

 W3C: RDF Specification http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ Accessed
02/02/2010

 DBpedia: About http://dbpedia.org/About Accessed 26/4/2010

 W3C: Semantic Web Blog (Ivan Herman <ivan@w3.org>)
http://www.w3.org/blog/SW/2008/01/15/sparql_is_a_recommendation Accessed 02/02/2010

Motivation
 About.com “SQL Fundamentals” http://databases.about.com/od/sql/a/sqlfundamentals.htm

Accessed 13/4/2010

 Data.gov.uk http://data.gov.uk/ Accessed 26/4/2010

 DBpedia: Entity Search, Find, and Explore http://dbpedia.org/fct/ Accessed 26/4/2010

 DBpedia: Query Builder http://querybuilder.dbpedia.org/ Accessed 26/4/2010

Web 3.0 Technologies
 W3C: RDF Specification

 DBpedia: Berlin http://dbpedia.org/page/Berlin Accessed 14/4/2010

 FOAF: About http://www.foaf-project.org/about Accessed 26/4/2010

 W3C:: SPARQL Working Group http://www.w3.org/2001/sw/DataAccess/homepage-20080115#hist
Accessed 14/4/2010

 W3C SPARQL Definition Doc http://www.w3.org/TR/rdf-sparql-query/ Accessed 14/4/2010

Existing Systems
 Semantic Web Search : http://www.semanticwebsearch.com/

 DBpedia Query Builder: http://querybuilder.dbpedia.org/

 OpenLink iSPARQL: http://demo.openlinksw.com/isparql/

 Ask Jeeves/Ask.com: http://uk.ask.com/

 Wolfram Alpha http://www.wolframalpha.com/

 Read Write Web “Wolfram|Alpha: Our First Impressions”
http://www.readwriteweb.com/archives/wolframalpha_our_first_impressions.php Accessed
12/4/2010

Development Plans
● W3C Schools Browser Statistics http://www.w3schools.com/browsers/browsers_stats.asp

Accessed 4/5/2010

Architecture

44

http://www.w3schools.com/browsers/browsers_stats.asp
http://www.readwriteweb.com/archives/wolframalpha_our_first_impressions.php
http://www.wolframalpha.com/
http://uk.ask.com/
http://demo.openlinksw.com/isparql/
http://querybuilder.dbpedia.org/
http://www.semanticwebsearch.com/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2001/sw/DataAccess/homepage-20080115#hist
http://www.foaf-project.org/about
http://dbpedia.org/page/Berlin
http://querybuilder.dbpedia.org/
http://dbpedia.org/fct/
http://data.gov.uk/forum/general-discussion/finding-data-hard#comment-702
http://databases.about.com/od/sql/a/sqlfundamentals.htm
http://www.w3.org/blog/SW/2008/01/15/sparql_is_a_recommendation
http://www.w3.org/People/Ivan
http://dbpedia.org/About
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://dig.csail.mit.edu/breadcrumbs/node/215
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/Activity.html

Christopher Hodder CS Honors Project 2010

 Linux Journal “Three-Tier Architecture” http://www.linuxjournal.com/article/3508 Accessed
12/4/2010

 MySQL homepage http://dev.mysql.com/tech-resources/articles/introduction-to-mysql-55.html
Accessed 23/4/2010

 Oracle Sun Developer Network http://java.sun.com/blueprints/patterns/MVC.html Accessed
12/4/2010

High Level Features Investigated
● Ephyra: http://www.ephyra.info Accessed 1/5/2010

Testing and Evaluation
● Virtuoso OpenLink SPARQL Query http://dbpedia.org/sparql Accessed 6/5/2010

● W3C Schools Browser Statistics http://www.w3schools.com/browsers/browsers_stats.asp
Accessed 4/5/2010

45

http://www.w3schools.com/browsers/browsers_stats.asp
http://dbpedia.org/sparql
http://www.ephyra.info/
http://java.sun.com/blueprints/patterns/MVC.html
http://dev.mysql.com/tech-resources/articles/introduction-to-mysql-55.html
http://www.linuxjournal.com/article/3508

Christopher Hodder CS Honors Project 2010

9 Maintenance Manual9 Maintenance Manual
9.1 Requirements
In order to run Sparkle! you will need the following programs installed and configured:

 Eclipse: http://www.eclipse.org/

 Apache Tomcat: http://tomcat.apache.org/

 MySQL Server: http://dev.mysql.com/

○ You may find it useful to download and install MySQL Workbench to provide a graphical User
Interface for MySQL server.

You may need Administrator privileges in order to install and properly configure the above applications.

9.2 Quick Start
Unfortunately there isn't a quick start because several components will need to be configured for Sparkle!
to run on your system/webserver. Specifically the MySQL needs to be set up so that the system can access
it and any proxy information must be set in the code. Please be patient and follow the instructions below,
do not skip the MySQL and proxy configuration steps, you may be able to skip Eclipse configuration if
Eclipse behaves itself.

9.3 MySQL Configuration
User: root

Password: web3.0

Database: predicatecache

Sparkle! interacts with MySQL though a class called “DBManager” in the search.cache package. By default,
DBManager will attempt to access the MySQL database using the user name “root” and the password
“web3.0”. You can either set up a MySQL administrator account using this username/password
combination, or, after installing the Eclipse project (below) edit the DBManager class to use a different
account. Sparkle expects a database called “predicatecache” to exist on the MySQL server, so you will need
to follow the MySQL tutorials and create the database using either the command line input or MySQL
Workbench, no tables need to be manually added to the database.

46

http://dev.mysql.com/
http://tomcat.apache.org/
http://www.eclipse.org/

Christopher Hodder CS Honors Project 2010

9.4 Sparkle! Installation As an Eclipse Project
The system can be distributed as an Eclipse project inside a .tar file which must first be extracted using a
program of your choice. Once the folders have been extracted, open Eclipse and choose “File → Import”, in
the dialog box, open the “General” tab, then choose “Existing Projects...” and click Next, as shown below:

On the following dialog, click “Browse” and navigate to where you extracted the project file and select the
folder called “ProjectSparkle”, which should then come up as an available project. Click to select it, and
optionally copy it to your workspace. Then click “Finish” and it should be imported into Eclipse
automatically.

47

Christopher Hodder CS Honors Project 2010

Properly installed, the project should have the following file tree:

Confusingly and annoyingly, Tomcat doesn't load libraries from your Eclipse project workspace (or atleast I
haven't found out how to make it) so you will need to copy the ProjectSparkle libraries into Tomcat's library
file. This will depend entirely on where you installed Tomcat, but the location of my Tomcat lib file was:

C:\apache-tomcat-6.0.26-windows-x86\apache-tomcat-6.0.26\lib

Once you've found your Tomcat/lib folder, copy and paste all the Jar files from ProjectSparkle/lib into it.
Make sure you copy and paste, don't move the files as Eclipse requires a copy of them in the project
folders so that it can build the project.

Now, before we run the system for the first time, it's worth checking the build path to make sure
everything is configured correctly in Eclipse.

48

Christopher Hodder CS Honors Project 2010

9.4.1 Configuring the Build Path
Before running the project it's worth checking the build path to ensure that Eclipse knows how to build and
deploy the system. This information should be automatically entered by Eclipse from the project folder, but
Eclipse is rather unreliable with it's build instructions. So, first, right click on the project folder and select
“Build Path → Configure Build Path...” as shown below:

You should then see a multi-tabbed dialog like the one below.

The only tabs we are interested in are Source and Libraries, the contents should be as follows:

● Source

○ ProjectSparkle/src

■ If this is missing, click “Add Folder” and add ProjectSparkle/src

● Libraries

○ Every .jar file present in the ProjectSparkle/lib folder

■ If these are missing, select “Add JARs...” and select every .jar file in the lib folder.

○ Apache Tomcat v6.0

■ If this is missing you need to install Apache Tomcat (http://tomcat.apache.org/), and check
you meet the rest of the Requirements listed in the section above.

○ EAR Libraries

○ JRE System Libraries (I used JRE6)

○ Web App Libraries

49

http://tomcat.apache.org/

Christopher Hodder CS Honors Project 2010

9.4.2 First Time Set Up
The first time you run Sparkle! You will need to set the class DBManager in src.search.cache to create the
database tables the system needs and you will also need to load the data into them.

Creating the Tables

Open the src folder in the Project Explorer window in Eclipse, there should be several packages, including
search.cache, open it and you should find a class called “DBManager” which manages access to the MySQL
database. Open the file, and look for the class variable createDB, as shown below:

Set the variable to true for the first time you run the project (leaving it set to true may have a minor
negative impact on performance), then build the project by right clicking on the project folder and selecting
“Build Project” or alternatively use the shortcut Ctrl+B.

Setting up a Proxy (or not)

If you are behind a proxy system, you will need to set up the proxy information in the utility class
search.util.ProxyInfo, shown below:

By default the proxy is switched off, but the system is set up for the University of Aberdeen's proxy. All you
need to do is set the value of proxy to true and replace the proxy info used with your local proxy's host
name and port number.

After editing ProxyInfo you will need to rebuild the project by right clicking on the project folder and
selecting “Build Project” or the shortcut Ctrl+B.

Loading Data

Now the system has been set up so that the first time DBManager is invoked, it will create the database
tables, but we still need to load data into them. For this task I created a web interface, which will become
accessible when you run the project. Right click the Project Folder and select “Run As → Run on Server” if
presented with a dialog box, choose “Tomcat v6.0 Server at localhost” and then Finish to run the project, if
you don't get this option, Tomcat may not be set up in Eclipse.

Once the project has been loaded onto Tomcat, Eclipse should open the index page automatically, but
instead navigate to “Dbload.html”. Dbload contains one button marked “Load”, click it and If you set
createDB to true, as explained above, it will create the tables and populate them with information.

If you want to check the data in the database, you can use MySQL Workbench to manually open the
database tables and check their contents.

50

Christopher Hodder CS Honors Project 2010

9.5 Sparkle! Direct Deployment to Tomcat
In order to do this you will need a copy of ProjectSparkle.war and write permission to your Tomcat Server.
This is the easiest way of running Sparkle, but you may need to set it up in Eclipse first, in order to configure
and set up the MySQL database and the Proxy Information. For that reason I recommend first setting it up
as an Eclipse project and following the configuration and first time set up steps listed as part of that set up.

Once you have got Sparkle working in Eclipse, you can then Right Click on the Project Folder → Export →
WAR file, to create the necessary file.

In order to run Sparkle! On Tomcat from the War file:

1. Stop Tomcat

2. Copy the WAR file to the Tomcat/webapps folder

3. Start Tomcat

And it should now be available at [webserver URL]/ProjectSparkle

51

Christopher Hodder CS Honors Project 2010

9.6 File Listing
Here I list information about all classes and most files in the project. This isn't a full in depth description of
the features of each class, but rather a high level description of what function they have within the project.

I haven't described files which are part of the project or server configuration, such as WEB-INF/web.xml,
and also ignores logos and icons, but otherwise, this listing is exhaustive and includes files which are
extremely similar to one another on the assumption that this will be used to look up a particular file at a
time rather than being sequentially read through.

Files are organised in the list first by their position in the folder hierarchy, and then alphabetically.

9.6.1 Tier 1: Client
Web Pages

File Name Folder Description
DBload.html /WebContent Admin class for loading data into the database

DBPForm.html /WebContent Form input for DBpedia

DirectInput.html /WebContent Basic form for entering raw SPARQL queries. Provides syntax
check and query functionality.

FormInput.html /WebContent Provides the multi-purpose interactive form input for building
SPARQL queries from basic user inputs.

Index.html /WebContent Homepage that provides links to the system features.

AdvancedForm.
html

/WebContent/forms Template for the advanced form inputs. Loaded into
FormInput.html by AJAX on user request.

BasicForm.html /WebContent/forms Template for basic form inputs. Loaded into FormInput.html by
AJAX on user request.

ExpertForm.htm
l

/WebContent/forms Template for expert form inputs. Loaded into FormInput.html by
AJAX on user request.

HiddenAdv.html /WebContent/forms File that is loaded into the advanced form div to hide the
advanced form again if the user closes it after opening it.

HiddenBasic.ht
ml

/WebContent/forms File that is loaded into the basic form div to hide the advanced
form again if the user closes it after opening it.

HiddenExpert.ht
ml

/WebContent/forms File that is loaded into the expert form div to hide the advanced
form again if the user closes it after opening it.

generalQ.html /
WebContent/forms/
basic

One of two possible types of query forms that can be loaded into
the basic interface. Handles general queries.

specificQ.html /
WebContent/forms/

One of two possible types of query forms that can be loaded into
the basic interface. Handles specific value queries.

52

Christopher Hodder CS Honors Project 2010

basic

File Name Folder Description
DBPgeneralQ.ht
ml

/
WebContent/forms/
DBpedia

One of two possible types of query forms that can be loaded into
the DBpedia interface. Handles general queries.

DBPspecificQ.ht
ml

/
WebContent/forms/
DBpedia

One of two possible types of query forms that can be loaded into
the DBpedia interface. Handles specific queries.

ADVFormHelp.h
tml

/WebContent/help Help file for the Advanced Form Inputs. Loaded to
FormInput.html on user request.

BASFormHelp.ht
ml

/WebContent/help Help file for the Basic Form Inputs. Loaded to FormInput.html on
user request.

empty.html /WebContent/help Used to hide help pages once they've been opened and then
dismissed by the user.

EXPFormHelp.ht
ml

/WebContent/help Help file for the Expert Form Inputs. Loaded to FormInput.html
on user request.

Stylesheets
File Name Folder Description
forms.css /WebContent/CSS Style information specific to the FormInput page and other

inputs that are loaded to it.

general.css /WebContent/CSS Style information used across the entire website to ensure
headers, backgrounds, text, etc styles are consistent.

53

Christopher Hodder CS Honors Project 2010

AJAX Scripts
File Name Folder Description
AdvancedFormS
cript.js

/WebContent/scripts Scripts for sending the user information entered to the server for
validation or processing as well as facilitating adding and
removing user inputs on the Advanced Form.

BasicFormScript /WebContent/scripts Scripts for sending the user information entered to the server for
validation or processing as well as facilitating adding and
removing user inputs on the generalQ form.

DBPFormScript.j
s

/WebContent/scripts Scripts for sending the user information entered to the server for
validation or processing as well as facilitating adding and
removing user inputs on the DBPgeneralQ form.

Dbtest.js /WebContent/scripts Scripts for initiating a load to the database. Prints back
information on how many predicates were loaded.

directquery.js /WebContent/scripts Scripts used to check the syntax of SPARQL entered into
DirectInput.html and either display errors or send the query
server side and display returned results.

ExpertFormScrip
t.js

/WebContent/scripts Scripts for sending the user information entered in the Expert
Form to the server for validation or processing.

FormControl.js /WebContent/scripts Contains loadHTML which is used to do some clever presentation
tricks with AJAX, to load and dismiss the content of a web page
to give the appearance of showing/hiding information on user
request.

FormUtil.js /WebContent/scripts Contains several utility functions for FormInputs.html related
scripts, most of which have multiple dependants.

54

Christopher Hodder CS Honors Project 2010

9.6.2 Tier 2: Server
Servlets

Class Name Package Description
DBServ search.cache Loads pre-defined RDF Metadata definitions into the database

DBPValServ search.SPARQL Validates user input from the DBpedia form, and generates a
new form with validated inputs, allowing the user to submit the
query.

ADVValServ search.SPARQL Validates user input from the Advanced input form, and
generates a new form with validated inputs, allowing the user to
submit the query.

BASValServ search.SPARQL Validates user input from the Basic input form, and generates a
new form with validated inputs, allowing the user to submit the
query.

QueryServ search.SPARQL Sends off queries for processing and returns the resultant xml
document.

SPARQLSearch search.SPARQL Handles SPARQL inputed by the user from DirectInput.html

SyntaxCheck search.SPARQL Checks the syntax of SPARQL queries entered by the user to
DirectInput.html returns an error if the query is not correctly
formatted.

Utils
Class Name Package Description
QueryBuilder search.SPARQL Builds SPARQL queries of various types from various

combinations of variables and inputs.

ProxyInfo.java search.util Sets up the proxy information if necessary.

SPARQLfilter search.util Data storage class, which represents the data needed to create a
FILTER clause in SPARQL

Triple search.util Data storage class, represents a triple to be put into the WHERE
clause of a SPARQL query. The triple elements are strings
representing either Properties, Classes or variables.

DBManager.java search.cache Provides the necessary Database access methods used by the
validation servers to match Natural language to Metadata.

Also includes data entry methods used by DBServ.

55

Christopher Hodder CS Honors Project 2010

9.6.3 Tier 3: Data
MySQL Database Tables

Table Name Attributes Description
definitions D_ID : primary key

Dname : short name

URI : link to resource

Contains information about the metadata
definitions stored in the database. Used to
differentiate predicates by domain.

pmappings D_ID : foreign key

P_ID : foreign key

Maps the links between the definitions and
predicates tables.

predicates P_ID : primary key

PredicateText: short name

URI: link to the predicate definition.

Contains information about all predicates stored
in the database. Used for comparing user input
to known predicates.

9.6.4 Libraries
Classes

File Name Package Description
arq-2.8.1.jar Jena-2.6.2 ARQ implementation of the SPARQL query language for Jena

icu4j-3.4.4.jar Jena-2.6.2 Part of the JENA framework

iri-0.7.jar Jena-2.6.2 Part of the JENA framework

jena-2.6.2.jar Jena-2.6.2 Part of the JENA framework

jena-2.6.2-tests.jar Jena-2.6.2 Part of the JENA framework

junit-4.5.jar Jena-2.6.2 Part of the JENA framework

log4j.1.2.13.jar Jena-2.6.2 Part of the JENA framework

lucene-core-2.3.1.jar Jena-2.6.2 Part of the JENA framework

mysql-connector-java-
3.0.17-ga-bin.jar

Driver for connecting to MySQL databases.

slf4j-api-1.5.6.jar Jena-2.6.2 Part of the JENA framework

slf4j-log4j12-1.5.6.jar Jena-2.6.2 Part of the JENA framework

stax-api-1.0.1.jar Jena-2.6.2 Part of the JENA framework

wstx-asl-3.2.9.jar Jena-2.6.2 Part of the JENA framework

xercesImpl-2.7.1.jar Jena-2.6.2 Part of the JENA framework

56

Christopher Hodder CS Honors Project 2010

10 User Manual10 User Manual
10.1 Introduction
Welcome to the Sparkle! user manual, Sparkle is a Semantic question answering and query generation
system developed at the University of Aberdeen. In this manual, I'll briefly describe some concepts behind
Sparkle! and then cover how to use it. If you are not familiar with RDF, I strongly recommend you read the
introduction to Subject-Predicate-Object section.

10.2 Introduction to Subject-Predicate-Object
When you make a statement about the world, such as “The height of the Eiffel Tower is 324m”, there are
three components – the subject (the Eiffel Tower), predicate (height of) and an object (324m). The
predicate maps an object to a subject, as shown below:

The Semantic Web structures information in this way, and so to query the Semantic Web, questions have to
be structured accordingly.

10.3 Querying DBpedia
To run a query on DBpedia, for technical reasons you must use the DBpedia interface which you can find via
a link on the index page. When you first open the DBpedia interface (shown below), you'll be presented
with the choice between two types of question that you want to ask; the first is a specific value question,
for example, “What is the population of Berlin?” the second is more general, for example “What cities start
with the letter B?”.

57

Subject
Eiffel Tower

Object
324m

Predicate
Height

Christopher Hodder CS Honors Project 2010

Specific Questions

When asking a specific question, select the correct interface and you will be presented with the structure of
a question with two fields you can type into (as shown below) . The first field is for the property you are
looking for (e.g. population) and the second field is for the subject (e.g. Berlin).

Once you have entered a property and a subject for your question, select “Check Inputs” and the system
will validate your entries and provide you with a list of possible properties so you can choose the one that
best matches your selection as shown below. If the system cannot find a matching property try being less
specific, for example, if you entered “Urban Population” and got no results, try “Urban” by itself.

Once you are satisfied with your selection, click “Answer” to run your query. Running a query can take
some time especially if DBpedia is busy, but the system will display a message once it has a result for you. If
you don't get a result on the first try, you may have to select another property – DBpedia is not a consistent
resource and often the answer to your question will be under a different heading than is immediately
obvious.

General Questions

The second type of DBpedia query form is the “General” form, and it is for finding a broader range of
results, like “Find me all British naval vessels listed on DBpedia”. Like the specific form, to ask a question
you must phrase it in a certain way and fill in the blanks in the question presented on the form. So, for
example, if you want to find all British naval vessels, the fastest way is to look for anything with a name that
contains “HMS”, as shown below:

58

Christopher Hodder CS Honors Project 2010

Unlike the specific form, the general form can look for several different things at once, all you have to do is
add an additional line and fill it out, for example we could add an additional line to the query to find out the
fate of each ship, as shown below:

Once more, the form has to be validated before a query can be run, so click “Check Inputs” and the system
will present you with a list of options similar to what you are looking for, as shown below:

Here there is a specific option for “shipName” and “shipFate” which is exactly what we're looking for.
Finally we hit submit, and the results are displayed below the form, as shown below.

59

Christopher Hodder CS Honors Project 2010

10.4 Querying Other Resources
There is a general interface available for querying your own RDF resources, it is available from the index
page link “General Query Form”. When you first open the general form, it will have three closed tabs
labeled “Basic”, “Advanced” and “Expert”. The Basic form allows you to form basic queries by filling in the
blanks in a question exactly like the DBpedia form, the Advanced form which allows you to generate more
complex SPARQL queries from a table of inputs structured like SPARQL, and finally the Expert tab which is
for writing your own SPARQL queries or editing system generated ones.

Basic Interfaces

Just like the DBpedia interface, the Basic form has two options, one for specific questions and one for
general questions. Unlike the DBpedia interface, you will need to specify which resource you are querying.
You can also specify your own RDF properties to use, as an example I'll build a query against a resource
which contains tourist information about Russia.
Resource:
http://www.atl.external.lmco.com/projects/ontology/ontologies/russia/russia
A.rdf

First we enter the resource into the form, as shown bellow:

As an example, I'll create a general query to find information on tourist destinations in Moscow. To do so,
I'll have to use the custom predicate “http://travel.org/russia#lie_in” and the custom resource
“http://travel.org/russia#Moscow”. The general form, like the DBpedia form does have facilities for
matching predicates like “name” to commonly used metadata definitions, but using those facilities are
covered in depth in the DBpedia tutorial above.

Above is the form filled in with the appropriate URIs.

60

http://travel.org/russia#Moscow
http://travel.org/russia#lie_in
http://www.atl.external.lmco.com/projects/ontology/ontologies/russia/russiaA.rdf
http://www.atl.external.lmco.com/projects/ontology/ontologies/russia/russiaA.rdf

Christopher Hodder CS Honors Project 2010

The Advanced Interface

in addition tot he basic interface, the Advanced interface provides users with some familiarity with
RDF/SPARQL the tools to build more advanced queries without using SPARQL itself. The advanced form
itself is a series of inputs starting with the target resource, followed by a table of constraints, shown below.

The Advanced form is more extendable than the basic one, and allows you to add or remove more
constraints and filters to create complex queries. An example is shown below:

Like the basic form, the Advanced form needs to be validated before you can use it to run a query.

10.5 Generating SPARQL
You can see the SPARQL code generated by any form input that has been validated, simply click “Generate
SPARQL” as shown below:

On the DBpedia form this will display the SPARQL in the result box, on the general input form this will open
the Expert tab and enter the SPARQL for you, you can then edit the query and run it.

61

Christopher Hodder CS Honors Project 2010

10.6 Writing And Running Your Own SPARQL
Sparkle! has facilities for running your own SPARQL queries, including syntax checking. To run your own
SPARQL queries against any resource, go to the “General Query Form” and expand the “Expert” tab as
shown below:

You can specify your own query processor to run the SPARQL on, or leave the box empty for the default.
You can then enter your own SPARQL into the form, and click “Get Results” to run the query. If the query
contains a syntax error, the system will display a dialog box with the error and then write it to the results,
as shown below:

62

Christopher Hodder CS Honors Project 2010

Appendix A : Usability Tester's SheetAppendix A : Usability Tester's Sheet

Candidate Name:
Candidate Number:

Task Time Notes
1

2

3

4

5

6

63

Christopher Hodder CS Honors Project 2010

Appendix B: Durability Testing, Tester's SheetAppendix B: Durability Testing, Tester's Sheet

Candidate Name:
Candidate Number:

Action Result

64

