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Abstract

PCI Express (PCIe) has evolved to deliver high throughput, low latency, low power con-

sumption. PCIe has also evolved to support communication across multiple machines. This

made PCIe-based interconnects attractive for datacenters and small HPC systems. How-

ever, the throughput optimization and compatibility with socket-based applications are the

main challenges that need to be addressed to realize the potential of PCIe Interconnect.

To address these challenges, we propose using the Socket Direct Protocol (SDP) on top of

PCIe as a socket-compatible solution. We designed and implemented SDP as a Linux kernel

module. We evaluated our implementation on a PCIe testbed using real-life applications.

The results show that SDP achieves up to 98% of the maximum possible bandwidth. We

compared the performance of our SDP implementation against SDP over Infiniband and the

results show over 10% improvement in file transfer performance and up to 44% reduction of

CPU utilization.
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Chapter 1

Introduction

PCI Express (PCIe) has evolved in recent years to offer high throughput, low latency, low

power consumption, and cost-effectiveness [30]. As PCIe evolution continued to include

host-to-host, over-cable capability, it made it possible to serve as a high performance inter-

connect for datacenters and High-Performance Computing (HPC) systems. According to

today’s specifications, a bandwidth of tens of GB/s is achievable using multiple-lane PCIe

expansion cards. Moreover, nanosecond-level latency has been achieved [30]. Power rating

is also an important requirement for the scalability of datacenter clusters. Researchers have

shown that PCIe-based network achieves much lower power consumption when compared

to other technologies commonly employed in datacenters. For example, per-node power

consumption for PCIe network is below 1 watt, while it is 10 watts for 10 GigE and 15.5

watts for QDR Infiniband [9]. Furthermore, researchers have demonstrated the ability of

PCIe to provide a power-aware interconnect [20]. PCIe can also be a cost-effective solu-

tion for applications running on small-scale clusters. Researchers have demonstrated the

cost/bandwidth advantage of PCIe over Ethernet [28]. The cost savings are due to its

ability to eliminate multiple layers of expensive switches and bridges that previously were

needed to blend various standards [30].

Nevertheless, the adoption of PCIe-based interconnects is limited because of several chal-

lenges [9]. The most important challenges, in our view, are ones dealing with applications

portability, throughput/latency, and scalability. In this thesis, we focus on the first two

challenges and briefly describe the challenges related to scalability and describe the avail-

able solutions. Notably, the portability of datacenter applications to PCIe-based network

1



CHAPTER 1. INTRODUCTION 2

is not straightforward. For an application to utilize PCIe interconnect, all the usual com-

munication and send and receive system calls need to be replaced with hardware-specific

direct memory access operations. Applications with inherent socket-based design provide

a strong example. Equally important, the design and implementation of the required in-

terface could lead to inefficient utilization of the low latency and high throughput offered

by the underlying interconnect. Especially when the hardware only provides a limited data

transfer options, such as the case for PCIe. Finally, because PCIe was originally designed

as an internal I/O interconnect, it is hard to scale PCIe-based networks up beyond tens of

nodes.

Many datacenter applications as well as some HPC applications rely heavily on socket

calls. Consider, for example, a cluster with web servers, SQL servers, and file storage servers.

Straightforward design and implementation of a socket interface on top of the PCIe layers

can lead to large losses in the overall performance due to multiple data copying through-

out the software stack. TCP, as an example, incurs a lot of overhead in its operation that

would not be required on a reliable PCIe link. We have to find a way to implement the

necessary interface while eliminating unnecessary inefficient components. The Socket Direct

Protocol (SDP) has been implemented as an efficient transport protocol to run over Infini-

band interconnect [5]. SDP for Infiniband is available for Linux and Windows as part of

the open-source Open Fabrics software stack for Infiniband [2]. SDP for Infiniband has re-

ceived researchers’ attention. Several papers discuss different implementation aspects, such

as data transfer modes [5, 16, 17, 3], flow-control [4] and quality of service [18]. Similar

protocols with different names have also been implemented for PCIe, such as SuperSocket

by Dolphin [25] and Direct Data Transfer by One Stop Systems [43]. However, these imple-

mentations are proprietary and expensive. For example, Direct Data Transfer is sold as part

of ExpressNet2 software stack for $5000 per network [43], which adds significant increase to

deployment cost. Further, explicit benchmarking and application-based comparisons with

leading, competitive technologies are either brief or non-existent.

In this thesis, we present our design and implementation of SDP over PCIe. Our de-

sign includes a unique data transfer mode and flow-control mechanism. We evaluate the

performance of our implementation of SDP over PCIe and compare it to that of SDP over

Infiniband. SDP over Infiniband has been chosen as a basis for evaluation as it is a leading

technology for HPC and datacenter interconnects. Based on the evaluation, we define the

characteristics of the niche application areas for SDP over PCIe. Experimental evaluation
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shows that, when large messages are sent concurrently, the throughput of SDP over PCIe

can achieve up to 98% of the full wire speed. Moreover, evaluating the normalized speed of

web file transfer, as a datacenter application, shows that using SDP over PCIe yields up to

11% improvement when compared to Infiniband. In addition, CPU utilization of SDP over

PCIe is much lower than that of SDP over Infiniband.

1.1 Problem Statement

PCIe has many advantages that makes it attractive as a high performance interconnect. It

also lacks some of the features that most of the other interconnects have, such as advanced

data transfer engines and RDMA operations support. In this thesis, we design a data

transfer protocol that achieves a performance comparable to the state of the art using only

direct memory access to transfer the data.

We propose to design and implement the Socket Direct Protocol over PCIe such that it:

(i) provides transparent support for TCP/Socket based applications, (ii) maintains the low

latency of the link, (iii) utilizes the full bandwidth of the link, and (iv) maintains low CPU

utilization.

The significance of our proposed solution is enabling PCIe be a cost-effective intercon-

nect for high performance computing and datacenter applications. Essential datacenter

applications such as web services and databases can communicate with other servers di-

rectly using PCIe cable or over PCIe expansion switch with no change to the applications.

However, for PCIe to be on par with other interconnects in the market, it needs a complete

software stack that includes other protocols like IP over PCIe and middlewares such as MPI

implementation. Our implementation and kernel API can serve as a reference and a basis

to speedup the development of other communication protocols for the PCIe fabric.

1.2 Thesis Contributions

The contributions of this thesis can be summarized as follows:

• We propose to develop the Socket Direct Protocol for PCIe-based fabrics. SDP makes

it possible to run TCP based socket applications without modification. It also main-

tains the performance of the link by avoiding the overhead of TCP.
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• We design and implement the Socket Direct Protocol as a Linux kernel module for

PLX variant of PCIe non-transparent bridges leveraging the built-in DMA engine.

Our implementation includes a data transfer and flow-control mechanisms that utilize

the limited transfer methods available in the hardware.

• We conduct an empirical evaluation study based on our implementation and deploy-

ment on two computers. We use benchmarks in our evaluation in addition to a real-life

application. We compare the performance of our implementation to that of Infiniband.

• Benchmarking results show that our implementation achieves low latency of 18.34 µs

when transferring small workload and high throughput of 1,220 MB/s when transfer-

ring big workloads, which is 98% of the achievable throughput of the link.

• The comparison with the SDP over Infiniband shows that our implementation through-

put is very close to Infiniband’s, the latency is not as good as Infiniband’s, and the

CPU utilization for our implementation is better for most cases.

• The application testing results show that our implementation transfers 1 gigabyte file

in 3.4 seconds. By comparing the application results with that of SDP over Infiniband,

we achieve up to 11% improvement in the normalized file transfer bandwidth.

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides a background about Inter-

connects in HPC Systems, PCI Express, PCIe Bridges and Interconnects and Socket Direct

Protocol. Chapter 3 Surveys the past efforts relevant to this thesis. Chapter 4 presents

the design and implementation details of our proposed system. Chapter 5 describes the

testbed and experimental setup, followed by results and commentary. Finally, we conclude

the thesis and describe our future work in Chapter 6.



Chapter 2

Background

This chapter provides the background information needed to understand the concepts dis-

cussed in this thesis. We present an overview of interconnect used in high performance

computing, background information about PCI Express and Socket Direct Protocol.

2.1 Interconnects in High Performance Computing Systems

A high performance computing (HPC) system consists of multiple computers (compute

nodes) connected with a network (interconnect) as shown in Figure 2.1. HPC systems are

used to execute parallel applications by distributing the work between the compute nodes.

Interconnects play critical role in high performance computing since they provide inter-

process communication among the different nodes. Gigabit Ethernet is currently one of the

popular interconnect choices. However, because of its limited throughput and high latency,

it is not suitable for many HPC cluster applications. Communication overhead can have

significant impact on application performance [19]. So, depending on the characteristics of

the applications running on the system, the choice for the interconnect is made [6]. There-

fore, there are many specialized interconnects, such as Infiniband, Myrinet, Quadrics, and

Dolphin SCI, that provide the needed high throughput and low latency. At the time of writ-

ing, Infiniband is the most employed interconnect for communication intensive applications,

especially in commodity clusters as shown in Figure 2.2. Different network technologies and

topologies are available in the market, some are proprietary and some are open. Examples

for such topologies are point-to-point connections, buses, switched, fat-tree networks, and

mesh networks [19].

5
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2.2 PCI Express

PCIe was developed to replace the original 33-MHz, 32-bit PCI parallel bus. The original

bus had a peak theoretical bandwidth of 132 MB/s. It used a shared bus topology to

enable communication among the different devices on the bus [38]. In 2003, the PCI Special

Interest Group (PCI-SIG) introduced PCIe Gen1. PCIe replaced the shared bus with a

shared switch, which provides each device its own direct access to the bus. Data is sent

serially in packets through pairs of transmit and receive signals called lanes. Each lane

provides a transmission data rate up to 2 Gbps. In 2007, the Gen 2 PCIe was released which

doubled the transmission rate of a lane to 4 Gbps. In November 2010, Gen3 specification

was published which increased the transmission rate per lane to 8 Gbps [30]. By aggregating

16 lanes, a transfer rate of 120 Gbps can be effectively achieved with a cut-through latency

of 120 ns [30].

PCIe is a layered protocol, which is divided into three main layers: transaction, data

link, and physical as shown in Figure 2.3. The transaction layer manages the transactions

for communication. The data link layer is responsible for link management, including packet

sequencing and data integrity, which includes error detection and correction [20]. It also in-

cludes a mechanism that guarantees delivery using acknowledgment protocol (ACK/NAK).

This reduces the need for higher-level protocol per packet acknowledgment mechanism. The

physical layer includes all circuitry, including a driver with impedance matching and input

buffering, parallel-to-serial and serial-to-parallel conversion [20]. PCIe Gen 1 and 2 links are

8b/10b encoded. This has the net effect of reducing usable PCIe lane bandwidth to 2 Gbps

[29]. However, in Gen 3 the 8b/10b encoding has been replaced with scrambling scheme

which increased the throughput [1].

PCIe uses credit-based flow control, where a transmitter is required to have credit for

a transaction layer packet before forwarding the packet. The mechanism guarantees that a

receiver has space to hold the packet before it is sent and allows the transmitter to adjust

its data flow to match the congestion characteristics of its link partner [29].

PCIe topology consists of multiple components including a root complex, bridges, switches,

and endpoint devices as shown in Figure 2.4. The Root Complex denotes the device that

connects the CPU and memory subsystem to the PCI Express fabric. Bridges permit mul-

tiple independent PCIe buses to be connected and to forward operations from one bus to

another when required. A Switch can be thought of as consisting of two or more logical
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Figure 2.3: The logical layers of PCI Express.

PCIe-to-PCIe bridges, each bridge associated with a switch port. One port of a switch has

to point in the direction of the root complex as an upstream port. All other ports point

away from the root complex as downstream ports. Endpoints are devices other than the

root complex and switches. They are peripheral devices such as Ethernet, USB or graphics

devices [8].

PCIe devices are equipped with standard Control and Status Registers (CSRs). These

registers are used by the host to discover the system topology when it is first powered up

or reset. Then the host maps discovered devices into the memory space. Endpoint PCIe

devices use a Type 0 CSR header which includes base address registers (BARs) used to

request memory or I/O apertures from the host. The standard bridge CSR header, called

a Type 1 header, includes primary, secondary and subordinate bus number registers that,

when written by the host, define the CSR addresses of devices on the other side of the

bridge. Bridges that employ a Type 1 CSR header are called transparent bridges [8].

2.3 PCIe Non-Transparent Bridges (NTB)

NTB is used to connect two computers using PCIe. Like PCIe transparent bridges, PCIe

non-transparent bridges are used to expand the number of possible PCIe slots in the system.

However, a PCIe non-transparent bridge has the ability to connect two independent PCIe

domains or root complexes. This kind of bridge makes it possible to connect endpoints

that have their own processor. Without a non-transparent bridge, upon power up or reset,

intelligent endpoints attempt to enumerate the entire system, causing system conflict and
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Figure 2.4: PCIe topology components.

ultimately a non-functional system. Intel was the first to use non-transparent bridges in

PCI systems in its DrawBridge products which established the idea and became a de facto

standard [39].

A non-transparent bridge exposes a Type 0 CSR header on both sides and forwards

transactions from one side to the other with address translation, through a memory window

created by the BARs of those CSR headers. Because it exposes a Type 0 CSR header,

the bridge appears to be an endpoint to discovery and configuration software, eliminating

potential discovery software conflicts [8].

Two processors may exchange status information through scratchpad and doorbell reg-

isters. The number of registers varies between implementations. Scratchpad registers are

fully accessible from both sides of the bridge and are used for generic inter-processor com-

munications. Doorbell registers are used to send interrupts from one side of the bridge to

the other. They are usually utilized to indicate both the health of the hardware and various

client driver states [37]. To transfer data between two systems, the device drivers on both

ends allocate some region of physical memory and use the scratchpad and doorbell registers

to inform each other of the amount and the location of the physical memory allocated.

Then, the pair of device drivers work together to initialize the non-transparent bridge to
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Figure 2.5: Non-transparent bridge (NTB) remote memory address translation.

enable address translation [31]. Once the address translation is in place, each side can read

and write to the mapped remote host memory as shown in Figure 2.5.

With the help of non-transparent bridge, Multiple nodes can be connected to form a

network using different topologies. Using a PCIe cluster switch, a small cluster can be built

as shown in Figure 2.6. Multiple switches can also be connected in various configurations

to support larger cluster size [25].

2.4 Socket Direct Protocol

Traditional implementation of TCP/IP is not suitable for high performance interconnects

such as Infiniband and PCI express. It depends on the kernel for processing the messages,

which causes multiple copies and kernel context switches in the critical message passing path

which increase the latency. TCP is also no longer needed to transfer data between two end-

points when the physical interconnect is reliable and provides transport-level functionality.

However, many applications have been developed based on socket interface, which makes

socket-support essential.

The Socket Direct Protocol (SDP) was originally an Infiniband Architecture-specific
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Figure 2.6: General PCIe network topology.

protocol defined by the Infiniband Trade Association [5]. SDP now has been redefined as a

transport agnostic protocol for Remote Direct Memory Access (RDMA) network fabrics by

the RDMA Consortium [11]. According to SDP specifications [33], SDP has been designed

with two goals in mind. First, existing socket-based applications should be able to use the

SDP protocol without any code modification or recompilation. Second, SDP has to support

byte-streaming over a message passing protocol, including kernel bypass data transfers and

zero-copy data transfers.

The current SDP over Infiniband implementation supports two data transfer modes,

buffer copying (bcopy) and zero-copying (zcopy) [16]. These two modes are able to utilize

the advanced technologies included in the Infiniband adapters, such as the sophisticated

DMA engine, the transport engine, and the management capabilities. Bcopy mode copies

the data from the application buffer to the NIC private buffer. Then it utilizes Infiniband

hardware-offloaded protocol stack to transfer the data to the other host [4]. Bcopy is able

to pipeline transactions on the wire [16]. On the sender side, send() returns as soon as

the data is copied to the private buffer. Therefore, multiple send() operations can be

submitted while some of the previous send() operations are being served. This increases

the link utilization and maximizes the bandwidth. However, bcopy incurs a local data

copy overhead. This overhead increases with the speed which substantially increases CPU

utilization and becomes a performance bottleneck. Bcopy flow is shown in Figure 2.7.

Zcopy transfers the data from the application buffer of the sender to the application

buffer of the receiver through RDMA operations using the DMA engine. This process
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requires the buffers to be pinned-down by marking the relevant memory pages as non-

pageable and registered with the Infiniband adapter. This mode results in high throughput

when large blocks are transferred and minimizes the CPU utilization since no data copying

is required. Nevertheless, zcopy incurs the overhead of locking the application buffers and

registering them with the Infiniband adapter, as well as buffer advertisement overhead.

Thus, zcopy is not suitable for transferring small data sizes. Therefore, a combination of

these modes is used and the selection of the mode is determined by a threshold. Zcopy flow

is shown in Figure 2.8.

Unlike Infiniband adapters, PCIe adapters are much simpler and lack most of the ad-

vanced features available in Infiniband. This simplicity is reflected on our SDP over PCIe

design as we will show in more details later.



Chapter 3

Related Work

Several related efforts confirm that high performance can be obtained by employing PCIe

[26, 24, 20, 37]. Most research considers latency and throughput as the major performance

metrics [21]. Some research touchs upon the scalability aspects of the PCIe interconnect

[20], while other works describe software stacks for applications to interface with PCIe as

the lower layer of the OSI model [25].

Hanawa et al. [20] proposed using PCIe as a communication link that provides power-

awareness, high reliability, and high performance. The link is based on PCIe Gen 2 with

4 lanes. Using the link, they obtained high performance and reduced power consumption

compared to Ethernet and Infiniband. They achieved this by limiting the length of the link to

distances of several meters and by shrinking the number of lanes or by reducing the transfer

rate by half. Results show a latency of 10 µs and peak transfer rate of 520 MB/s, 65% of the

theoretical peak performance. The authors did not use non-transparent bridges in their PCIe

fabric. They believe that non-transparent bridge provides undependable network. Their

justification is that the fabric requires one node to be the root complex. When this node fails,

switch reconfiguration is required and the all nodes need to be rebooted. So, instead they

utilized their own communicator chip that requires no switches reconfiguration. However,

non-transparent bridge chip makers [39] and [22] show that a high availability solution is

available by using a dual root complex topology where the second root complex can take over

when needed without systems reboot. The authors also have not implemented a software

stack for the fabric and planned it for future. In this thesis, we used non-transparent bridge

based PCIe fabric and implemented the socket direct protocol as a software stack for the

fabric.

14
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Kapoor et al. [21] explored the details of specific use cases that can be addressed with

PXI MultiComputing (PXImc). PXImc is a specification developed by the PXI System

Alliance (PXISA) to standardize the use of PCIe over cable and non-transparent bridges

to connect multiple test and control systems [31]. They benchmarked PXImc compliant

prototype hardware and preliminary software stack and reported achieving a latency of

6 µs and throughput of 670 MB/s when two PXImc-compliant devices were connected.

They concluded by recommending the use of PXImc based interconnect for building high

performance multi-computer test and control systems. The authors focused on utilizing

PCIe fabric for test and control systems, while our work is focused on utilizing PCIe fabric

for datacenter and HPC applications. The authors also did not include any details about

the software stack they used which we did in this thesis.

Krishnan [24] suggested integrating the I/O and cluster networks in an HPC environment

into a single PCIe-based fabric network. As PCIe continues to evolve, the author saw no

need for other non-PCIe fabric such as Infiniband. The author also presented an interconnect

solution by Dolphin that allows such integration based on PCIe fabric. Then he described

the implementation of IP over PCIe (IPoPCIe) and compared the performance with 10G

Ethernet. The results show that IP over PCIe was able to achieve performance on par or

better than that of a 10GigE NICs performance. In a later paper [25], Krishnan revealed

more details about the Dolphin interconnect implementation of PCIe hardware and software.

Instead of using IP over PCIe (IPoPCIe), the authors introduced a socket direct approach

for PCIe called SuperSockets that bypasses the TCP/IP stack. The evaluation showed that

SuperSockets-based connection was able to reduce latency to 2 µs of latency. SuperSockets

seems to have similar general idea as SDP we propose in this thesis. However, their software

is proprietary and the author mentioned no design or implementation details. Also the

evaluation part only benchmarked the latency and the throughput and did not evaluate the

CPU utilization and applications performance. While our work is open-source [7] and covers

all the design and implementation details. In addition, we evaluated the CPU utilization

and compared it to the state of the art.

Byrne et al. [9] examined the opportunities and challenges of using PCIe-based fabrics

in terms of performance and power consumption. They ran different workloads of both

Ethernet and PCIe fabrics and compared the result. The experiments identified Ethernet as

a performance and energy efficiency bottleneck, especially for data intensive systems with

power-optimized compute and storage systems. Performance measurements showed that the
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PCIe network enables 60% to 124% better energy efficiency. One of the challenges pointed

out in the paper is to choose the right API and protocol to expose the PCIe local networks.

In this case, they chose to port the applications to support PCIe network by replacing all

HTTP-based calls with PCIe native calls, whereas, in our work, we implemented socket

direct protocol to avoid any application code changes.

Another related area is the effort to implement and enhance SDP for other interconnects

such as Infiniband and iWARP over 10G Ethernet and for other platforms such as the

Windows operating system. Balaji et al. [5] introduced SDP over Infiniband and studied the

benefits and limitations of SDP. They also evaluated the performance using benchmarks and

real applications. The results were compared with that of IP over Infiniband and showed that

SDP provides up to 2.7 times better bandwidth than IP over Infiniband. Cohen [10] studied

the performance of an SDP implementation over 4X Infiniband that supports asynchronous

zero-copy transfers. Goldenberg et al. [17] introduced a version of SDP over Infiniband

that supports synchronous socket using zero-copy transfers. Goldenberg et al. then [15]

introduced their implementation of SDP over Infiniband for the Windows operating system

and presented preliminary performance results. Balaji et al. [4] proposed to improve the

flow-control on SDP over Infiniband by utilizing the flow-control capabilities provided by the

Infinibannd hardware. Then, Grant et al. [18] analyzed the performance benefits of quality

of service provisioning in Infiniband networks for SDP and IP over Infiniband. Panda

in his thesis [32] focused on designing and enhancing SDP over iWARP and Infiniband.

As can be noticed, SDP over Infiniband has been studied very well and its design was

influenced by different Infiniband Architecture-specific technologies. Our work is inspired

by the Infiniband implementation. However, we have performed a complete redesign for the

data transfer and flow-control mechanism to fit the PCIe architecture.

In summary, previous works support our direction in utilizing PCIe over cable as a high

performance interconnect. However, only few attempts were reported to build and evaluate

software stack for the fabric and these attempts are based on proprietary software and

briefly described with no application testing results. Infiniband on the other hand, has been

the focus for many researchers who contributed in improving its open-source software stack

including its SDP implementation.



Chapter 4

Proposed System

4.1 Overview

As we have shown in Chapter 2, PCIe over cable can be used to connect two machines

provided that one of them is equipped with a non-transparent bridge to be isolated from

the root-complex. Further, multiple machines can be connected using PCIe expansion switch

or multiple switches given that one machine is connected directly to the switch to be the

root-complex while the rest of the machines are connected using non-transparent bridges.

The resultant network provides high performance for low cost and power consumption.

However, this network is missing the software stack that interfaces the applications with the

fabric.

We propose to design and implement the Socket Direct Protocol as a Linux kernel

module for PCIe-based fabric. Our work involves building a kernel-level API exported by

the non-transparent bridge and DMA device drivers for the kernel module to interface with

the drivers. The SDP kernel module utilizes our API to translate socket calls to DMA

operations and PCI memory mapped I/O reads and writes to the remote system memory.

This solution provides the full performance of the fabric without the need for modifying the

applications.

To migrate an application from TCP to SDP without changing its code, a user-level

socket switch is used. The socket switch is a preloaded library that uses rules defined by

the users in a configuration file to choose between TCP and SDP sockets, then routes each

socket to the right kernel module.

Our design has the following components: SDP socket preloaded library, SDP kernel

17
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Figure 4.1: Overview of SDP over PCIe architecture.

module, Kernel-level API and Non-transparent bridges and DMA drivers. Figure 4.1 shows

an overview of SDP over PCIe architecture.

4.1.1 SDP Socket Preloaded Library

SDP kernel module registers SDP as a new address family (AF INET SDP). Normally for

any socket application to use a new address family, the source code needs to be modified to

replace AF INET with the new address family. However, Infiniband software stack developers

found a workaround to allow TCP based socket applications to run seamlessly with no

modification or recompilation to the code by developing a preloaded library that can be

used to switch between address families based on user defined rules. The user can choose

between TCP and SDP by defining a rule in a configuration file based on process name, port
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int!main(int!argc,!char!*argv[])
{
!!!int!sockfd;
!!!int!len;
!!!struct!sockaddr_in!address;
!!!int!result;
!!!//Create!socket!for!client.
!!!sockfd!=!socket(AF_INET,!SOCK_STREAM,!0);
!!!address.sin_family!=!AF_INET;
!!!address.sin_addr.s_addr!=!inet_addr("127.0.0.1");
!!!address.sin_port!=!htons(7734);
!!!len!=!sizeof(address);
!!!result!=!connect(sockfd,!(struct!sockaddr!*)&address,!len);
!!!...

int!main(int!argc,!char!*argv[])
{
!!!int!sockfd;
!!!int!len;
!!!struct!sockaddr_in!address;
!!!int!result;
!!!//Create!socket!for!client.
!!!sockfd!=!socket(AF_INET_SDP,!SOCK_STREAM,!0);
!!!address.sin_family!=!AF_INET_SDP;
!!!address.sin_addr.s_addr!=!inet_addr("127.0.0.1");
!!!address.sin_port!=!htons(7734);
!!!len!=!sizeof(address);
!!!result!=!connect(sockfd,!(struct!sockaddr!*)&address,!len);
!!!...

Figure 4.2: Code snippet in C shows the difference between TCP socket (left) and SDP
socket (right).

number, or IP address. We use a similar approach as SDP Infiniband implementation. We

register our implementation to the same address family used by Infiniband implementation

of SDP and use the same preloaded library. An applications developer also has the option

to natively support SDP and skip the use of this component by using AF INET SDP directly

as shown in Figure 4.2.

4.1.2 SDP Kernel Module

The SDP kernel module is the main component of our solution. It implements all functions

which the kernel expects from any transport layer protocol such as connect, disconnect,

accept, sendmsg and recvmsg. The kernel then maps all socket calls to functions defined

by this module. When the module is loaded, it registers the protocol in the kernel and

associates the protocol to an address family. Then, it allocates 1 MB physically contiguous

memory to be used as send buffer. After that, the kernel becomes ready to handle any

socket request to this protocol.

4.1.3 Non-Transparent Bridge, DMA Drivers and API

The drivers used in our implementation are part of PLX Technology Software Development

Kit [35]. The SDK has a non-transparent bridge device driver, a DMA engine device driver,

and a user-level API. However, we could not find a standard way to utilize the drivers

capabilities from the kernel side. So we have written a kernel-level API on top of the drivers

to allow the SDP module to interact with the hardware. The API includes functions to

open the device, close the device and a function to send control messages to the device.
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The drivers also do not provide functions needed to support asynchronous I/O. So, we have

modified the drivers to add the needed functionality.

4.2 Detailed Design and Implementation

The general structure of the kernel module is similar to SDP over Infiniband kernel module

and TCP component of Linux kernel. However, due to the many differences in hardware be-

tween Infiniband adapters and PCIe adapters, a straightforward port of SDP is not possible.

In particular, Infiniband adapters are equipped with two advanced data transfer methods,

Transport Off-load Hardware and Advanced DMA Engines. Transport Off-load Hardware

enables the adapter to transfer the data from the adapter memory to the memory of the

remote adapter, which offloads the CPU. The DMA engine supports the advanced RDMA

operations that eliminate the need to copy data from the application to the kernel. On the

other hand, PCIe adapters are only equipped with DMA engines that do not support appli-

cation buffer to remote application buffer data transfers. Therefore, bcopy and zcopy data

transfer modes described in Chapter 2 cannot be implemented for PCIe fabric. Nevertheless,

using the available hardware resources we designed a data transfer mode and a flow-control

mechanism that achieve performance comparable to that of SDP over Infiniband.

4.2.1 DMA Memory Requirements

As discussed earlier, the only means of communication provided by the hardware is remote

memory access either by mapping the remote memory or by DMA operations. The main

issue that arises when using DMA is the strict memory requirements. For the memory to

be DMA friendly, it has to be physically contiguous [14]. Contiguous memory is a scarce

system resource, as the memory gets fragmented by time [14]. In addition, the memory must

neither be cached by the CPU nor be swapped. Caching and swapping cause the local and

remote DMA engines to access the wrong version of the data, which leads to data corruption.

Therefore, the physical memory pages have to be pinned by the operating system to prevent

the virtual memory system from paging them out during the transfer. User space memory

is not contiguous, so it cannot be directly accessed by the DMA engine. However, many

devices, including the PCIe hardware, support transferring scattered memory by passing a

scatterlist of memory pointers and lengths, to be transferred in one DMA operation. One

additional memory requirement is needed when the destination of the DMA transfer is a



CHAPTER 4. PROPOSED SYSTEM 21

remote host, which is address translation. In our case, the non-transparent bridge provides

a remote memory address translation mechanism. All these requirements as well as the

overhead incurred when using DMA such as DMA starting overhead and memory pinning

and translating overhead influenced our design.

In our implementation, we choose to allocate two DMA buffers per socket, one for sending

and the other for receiving. These buffers are pinned and reused through out the connection

session to avoid the pinning and translating overhead. We use these buffers to temporarily

store the data copied from the user space application buffer, before it is transferred to the

other host. We could not perform zero-copy transfers between the two user space application

buffers because even with the scatterlist support, our hardware requires that the remote

buffer to be contiguous. One suggested solution to this problem is to use of huge pages

feature supported by linux [13]. Huge pages feature divides part of the system memory

into much larger contiguous memory pages than what was available before. This makes the

user space application buffer contiguous, as the whole buffer fits in a single page. However,

the use of memory allocated using huge pages is not transparent to the applications and

requires code changes. So, it is not suitable in our case, since we aim to provide a transparent

solution.

In the case of multiple concurrent connections, each connection needs to have its own

send and receive buffer. So, the allocated send buffer most be shared by all connections.

Currently, the buffer is divided in code into four buffers to support up to four connections.

However, this method leads to inefficient use of the scarce memory when the number of

connections is less than four. So, this issue needs to be addressed in future work by devel-

oping a memory management mechanism that divides the memory dynamically among the

connections.

4.2.2 Data Transfer Mechanism and Flow Control

Our data transfer mechanism is based on the use of bounce buffers. Similar to bcopy,

the sender copies the data to the bounce buffer every time send() is called and returns

immediately. This allows the sender to combine multiple send requests into one data transfer

operation. However, unlike bcopy, data transfer is performed using the DMA engine or PCI

memory mapped I/O depending on the data size. For latency critical small data transfers,

PCI memory mapped I/O is used, while DMA is used for data of large sizes. A diagram that

shows the data flow in the proposed transfer mechanism is shown in Figure 4.3. Another
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difference from bcopy is that the transfer in our mechanism does not start immediately, but

starts after one of the following four conditions is satisfied.

1. When the buffer is full and no more data can be copied.

2. When send() is followed by receive(). This condition is important to avoid dead-

locks that could happen when both sides call send() then call receive() at the same

time.

3. When the sender calls close().

4. If the data copied is smaller than a certain threshold. This condition is to avoid

unnecessary delay for small data to improve the latency.

This means our mechanism does not have the advantage of pipelining the data like what

bcopy does. This is because pipelining requires sending the data immediately, which is

expensive in our case due to the high overhead associated with starting the DMA engine.

To control the data flow, the DMA engine of the receiver side performs the actual

transfer. Thus, the sender must wait for the transfer to finish before it continues copying

more data to the buffer. This ensures that the sender does not send more than what the

receiver can receive.

The proposed transfer mechanism has some pros and cons. One advantage of our mech-

anism over zcopy is the elimination of memory pinning overhead, memory registration over-

head, and buffer advertising overhead that zcopy incurs since we use the same buffer through

out the life of the connection. Another advantage is amortizing the overhead of starting

the DMA engine over multiple send() requests by combining the data. This allows us to

effectively use the same transfer mode for all data sizes unlike SDP over Infiniband which

needs to switch between transfer modes.

The main disadvantage of our mechanism is the under utilization of the link. This

happens when the data that needs to be sent is larger than the bounce buffer. In this

case, the sender needs to fill the buffer multiple times and waits for the receiver to copy

data from the sender buffer. This disadvantage is especially clear for a single connection

and disappears when multiple concurrent connections take place. Another disadvantage is

memory copying on both sides, which increases the CPU utilization. Both of the above

disadvantages also contribute to increases in latency.
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Figure 4.3: Data flow of the proposed data transfer mechanism.

4.2.3 SDP Connection

Similar to TCP, SDP is connection-oriented; it requires a handshake between the two pro-

cesses before one application process can send data to the other. The handshake is needed

to exchange IP addresses, port numbers and memory addresses. As explained earlier, each

machine connected to PCIe fabric sees other machines as endpoint devices. So, for the server

to listen to a socket, it needs to open every NTB device in the network and writes a message

indicating that it is ready to connect. Since the listening machine does not know the remote

machines memory addresses, the only way to communicate is via the shared scratchpad

registers (mailboxes) accessible from both sides. The client side knows exactly which device

in the fabric it needs to open as it resolves the IP address of the server to its device number.

Using this method, both sides exchange send buffer memory address. Then, they translate

the remote memory address to a local memory address using translation register provided

by the non-transparent bridge. Once the memory addresses are translated, they can be

used for communication instead of the shared mailboxes. Following is a step-by-step walk

through the connection establishment process:

1. As shown in Figure 4.4, the server side calls listen() to change the state of the
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Figure 4.4: The connecting process.

socket to TCP LISTEN. Then, listen function opens the non-transparent bridge device

or devices as a preparation to accept incoming connection.

2. Server calls accept(), this results in writing the port to which the server is listening

and a message indicating that it is ready to connect to one of the mailboxes. It also

generates a random number and writes it to another mailbox. The random number

serves as an identifier for the current connecting trial.

3. Server calls schedule timeout() which sends the process to sleep and releases the

processor until an interrupt comes or timeout happens.

4. Client calls connect(), which resolves the IP address to the device number and opens

that device. Then it becomes able to check mailboxes to read the messages from the

server.

5. If server is listening, the client writes its IP address and port number to the send

buffer and posts the address of the buffer and the connection identifier to the server

via mailboxes.

6. Client sends an interrupt to the server to wake it up to handle its connection request
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and calls schedule timeout() to release the processor and wait for server’s signal.

7. Server reads the mailboxes, translates and maps the client’s send buffer, then reads

and saves the client IP and port from the buffer.

8. Server writes the address of its buffer to the client’s buffer, then signals the client and

goes to sleep to wait for final acknowledgment from the client.

9. Client checks its buffer for the memory address for the server send buffer, translates

and maps the address and finally sends a signal to wake up the server and establish

the connection.

For a host to disconnect, it writes FIN CLOSE, and the connection identifier to a mailbox,

and then sends an interrupt to the other side. In case the other side is waiting for some

data, it wakes up because of the interrupt, otherwise it will eventually check the mailbox

and see the disconnect message. Once that happens, the hosts change the connection state

to TCP CLOSE and closes the connection.

4.2.4 Send-and-Receive Process

Send and receive are the most important functions in any transport layer protocol. The

way they are designed has direct impact on the throughput of the connection. To maximize

the throughput, it is important to minimize the amount of work performed in these two

functions. Each instruction executed inside these functions adds up to the total transfer

time and contributes to slowing down the transfer speed. In our design, we consider any

instruction other than the actual transfer as an overhead and aim to minimize it.

As described earlier, the sender prepares the data by copying it from the application

buffer to the kernel send buffer. After the data is transferred, the receiver copies the data to

its kernel buffer, then to the application buffer. The sender buffer is divided into three fields:

sequence number field, data size field and data field. Sequence number field is used by the

sender to store the sequence number of the send attempt. The receiver verifies that the data

is new by checking that its sequence number matches the expected sequence number. Then

the receiver reads the data size field to prepare for data copying. The sequence number

field also is used by the sender to inform the receiver when it runs out of data by writing a

special sequence number.
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Figure 4.5: The interactions between the application and SDP during sending and receiving
data.

Since our implementation resides in the kernel, we have to be careful about the way

we use CPU time. Any unnecessary waiting freezes the whole kernel. Therefore, in many

occasions we chose to release the CPU and goes to sleep waiting for an event. This introduces

CPU context switching overhead, which increases latency and reduces throughput. However,

it is important for system stability and responsiveness. For example, when the sender

prepares the data for the receiver, it releases the CPU and goes to sleep waiting for the

receiver to finish copying the data. Another example is when the receiver requests a DMA

operation to copy the data, the receiver goes to sleep waiting for the DMA transfer to finish.

Figure 4.5 and the following walk through show how all above details come together.

Following is a step-by-step walk through the send and receive process:

1. Sender checks if its send buffer is busy by checking the sequence number field, if it

contains a valid sequence number then the buffer is busy and the sender must wait for

receiver signal, else the buffer is free.

2. Sender copies the data from the application buffer to the send buffer and updates the

total size of the data on the size field.

3. If the buffer is full, sends the data by incrementing the sequence number and sending

a signal to the receiver side.
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4. Else, exits the send function, and the data is sent when the buffer gets filled by the

next send call, or when receive is called or when close is called.

5. Receiver checks if there is data in its send buffer not sent yet and sends it.

6. Receiver checks if there is data from the last receive call that has not been copied to

the application buffer yet, then copies it and exits.

7. Receiver checks remote host’s send buffer sequence number field, if sequence number

is valid and if the data is large, then, starts a DMA transfer from the remote buffer

to the local receive buffer, else if it is small, then, copy it using read32 operation.

8. If the sequence number is not valid, waits for the sender signal and when the signal

received it does step 7.

9. After copying the data, receiver invalidates the sequence number by writing a message

to the remote host send buffer to indicate that the data in the buffer is no longer

needed, then sends a signal to the sender.

10. Receiver tries to copy the data from the receive buffer to the application buffer if it

fits, else copies part of the data and keeps the rest for the next receive calls.

4.2.5 Simultaneous Connections

Our current implementation supports up to four simultaneous connections per host, which is

the number of available DMA channels. When more than one connection is needed, the send

buffer is divided into smaller buffers dedicated for each connection. Then, each connection

exchanges data with the other side independently. To support more than four connections,

a scheduling mechanism needs to be implemented, which will be addressed in our future

work.

4.2.6 Asynchronous Sockets

Our SDP implementation supports applications using event-driven programming or select-

based multiplexing. Instead of calling accept and waiting for a new connection when select

is called, an event notification is registered with the non-transparent bridge driver. When a

connection request signal is sent from the other side of the connection, the driver captures
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the signal and calls a callback function that leads to calling accept. Similarly, receive is

not called until a data-ready signal is received from the other side. This type of socket is

commonly used in web servers and other network applications.

4.3 Scalability to Multiple Nodes

As discussed in 2.3, a network of multiple nodes can be built using PCIe expansion switch

with the help of non-transparent bridge. One node has to be connected directly to the switch

to act as the root complex. All the other nodes have to be connected via non-transparent

bridges. Because of the hierarchical nature of the PCIe enumeration, the root complex is

the only node in the network that can see all the other nodes. It detects all the nodes as

endpoints and uses one of their base address registers (BARs) to request memory apertures

for data exchanges. The endpoints, on the other hand, can only see the root complex since

the enumeration process stops at the non-transparent bridge and cannot discover what is

behind the bridge. This behavior is acceptable for a network of two nodes, however, for

more than two nodes network, a fabric discovery mechanism need to be implemented.

Different vendors proposed and implemented different solutions [34, 39, 23] depending

on the hardware used. The number of nodes supported ranges from six to one thousand

nodes [36]. Some of these solutions also support dual root complex for high availability and

nodes hot plugging. All the solutions share the same generic idea. The root complex detects

all the nodes, and then it broadcasts the information about each node to the other nodes

in the network. After that, the nodes become able to map the memory of each other node

and exchange data and send interrupts directly without involving the root complex.

Since direct memory access and sending interrupts become available after using the

discovery mechanism, our SDP implementation can support multi nodes after some mi-

nor implementation changes. Most of the changes are related to the connection process.

Particularly, the IP address resolution has to be changed to adapt with the new discovery

mechanism. When the root complex first discovers a node, it needs to ask it about its IP

address and stores it in an IP-to-memory-location table. Then, this table is shared with all

the nodes to be used for address resolution.



Chapter 5

Experimental Evaluation

5.1 Experimental Setup

All experiments are performed on a system of two nodes connected through a PCIe link.

To compare the performance of SDP over PCIe to that of SDP over Infiniband, the testbed

is also equipped with Infiniband adapters. (See Figure 5.1).

The first node is equipped with Intel Core2 Duo E8400, 3 GHz CPU, and the other

node with quad core Intel Xeon E5420 2.50GHz CPU. Both nodes have 4 GB of RAM.

Each node is equipped with One Stop System PCIe x4 Gen2 switch-based cable adapter

OSS-PCIe-HIB35-x4 with PLX PEX 8609 chip and connected by a 2-meter copper cable

[42]. The hardware shipped with disabled non-transparent bridge functionality, so we had

to reprogram the EEROM of the adapter to enable it. The software stack on the machines is

based on linux-2.6.274 and RedHat 5.7 Linux distribution. The driver for the PCIe adapters

is PLX 6.5 with some modifications. For Infiniband, we use Mellanox single-port, 4X QDR

MT26428. Figure 5.2 shows a picture of the testbed and the adapters.

We evaluate the proposed system based on several performance metrics. The metrics we

used fall under two main categories: benchmarking metrics and application-level metrics.

Benchmarking metrics include throughput and latency for end-to-end performance evalua-

tion, and CPU utilization for computational load assessment. The application-level metrics

include file transfer time and file transfer speed for a file transfer application as a real-life

datacenter application.

In addition, to compare our approach to the state of the art, we use additional normal-

ized metrics. The rationale behind normalized metrics is to be able to compare different

29
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Computer+I+
+

PCIe+Adapter+Infiniband+Adapter+

Computer+II+
+

PCIe+Adapter+ Infiniband+Adapter+

Figure 5.1: Our experimental testbed connected with two different interconnects: PCIe over
cable and Infiniband.

technologies with different underlying bandwidths. It is difficult to obtain adapters for

two different technologies that deliver the exact peak bandwidth. Therefore, we normalize

metrics to the peak bandwidth in each case. We measure throughput-to-peak-bandwidth

ratio as benchmark comparison metric, and file-transfer-speed-to-peak-bandwidth ratio as

an application-level comparison metric. We define the peak bandwidth as the maximum

achievable bandwidth using raw DMA transfers in PCIe case and using RDMA transfers in

the case of Infiniband.

We have conducted several sets of experiments to measure the metrics described above.

The first set of experiments to measured average throughput, which is the total data trans-

ferred over a period of time. We used Iperf 2.0.5 network testing utility [44] which creates

a connection between two nodes and sends messages of fixed size repeatedly. The through-

put is calculated as the aggregate number of bytes transferred per second. We repeated the

same experiment for one to four concurrent connections. We also measured the peak CPU

utilization for the sender and the receiver during these experiments using vmstat system

monitoring tool.

In the second set of experiments, we measured the latency, which is the round trip time

for a message of a certain size divided by two. We used NetPipe 3.7.1 utility to measure

the latency, which performs simple ping-pong test, bouncing messages of increasing size

between the two hosts. We repeated the test several times and the total time was averaged

over the number of iterations.

In the third set of experiments, we measured file transfer time and file transfer rate by

downloading files from a web server. File transfer time is the time needed to transfer a

file of a certain size, while file transfer rate is the time needed to transfer the file over the
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(a) PCIe adapters in the middle of the picture and Infiniband adapters in the edges.

(b) Our testbed with PCIe adapters in.

Figure 5.2: Our testbed.
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size of the file. The web server we used is Apache 2.2.3 installed on one node, while used

wget 1.11.4 as a web client on the other node. Files with different sizes were requested by

wget and served by Apache. For every file size, we repeated the experiment and logged the

average file transfer time.

In the fourth set of experiments, we compared the performance of our SDP implemen-

tation to that of the state of the art. We chose SDP over Infiniband because it is one of

the dominant interconnects used in many applications including HPC and datacenter appli-

cations. The Top500.org list released in November 2012 shows that Infiniband is the most

commonly used interconnect family in supercomputers with a share of 44.8% [40]. We re-

peated the throughput, latency, and file transfer experiments above for SDP over Infiniband.

To compute the normalized metrics, we measured peak bandwidth for both SDP implemen-

tations. To do so, we used the native performance measurement utility provided by the

manufacturers of Infiniband and PCIe adapters to measure the bandwidth for increasing

data sizes and choose the maximum. Therefore, we obtained one peak bandwidth figure

for each of the systems under comparison. Then we used peak bandwidth to normalize the

throughput and the file transfer rate.

5.2 Performance of the Proposed System

5.2.1 Throughput

The throughput results are shown in Figure 5.3. It is clear from the figure that the through-

put increases with the transferred data size. The link utilization increases as the link idle

time becomes insignificant compared to the actual data transfer time. Generally speaking,

using multiple concurrent connections increases the throughput for larger message sizes (>4

KB), while for smaller message sizes, it slightly affects the bandwidth by a small margin.

Focusing on the larger message sizes, it is evident that 3 concurrent connections exhibited

performance improvement over 2 connections, which, in turn, was an improvement over a

single connection. However, the 4 connections case did not maintain the pattern since it did

not outperform the 3-connections case.

The results can be explained as follows. First, for small message sizes, the overhead of

concurrency was large compared to the actual data transfer. Thus, a single connection per-

formed better. On the other hand, when message sizes are large, the concurrency overhead

eventually paid off, and multiple connections were able to outperform the single connection
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Figure 5.3: Throughput of SDP over PCIe. The numbers 1, 2, 3, 4 refers to the number of
concurrent connections.

due to better link utilization. This goes on until a point of diminishing return is reached.

In our case, this happened after the 3-connections experiment. Therefore, the 4-connections

case showed a drop in performance. The highest throughput achieved was 1220 MB/s when

3 concurrent connections were used to transfer a total data size of 1 MB. This result cor-

responds to 98% of the peak DMA bandwidth, which was measured at 1247 MB/s. This

concurrent transfer is an enhancement over a single connection, which yields a maximum

performance of 872 MB/s, i.e. 70% of the peak bandwidth. The performance is better for

the case of multiple concurrent connections because the overhead of one connection over-

laps with data transfer of the other connections, which leads to a better link utilization.

However, after three connections the throughput decreases and that could be a result of a

contention on the link or on the system memory controller.

5.2.2 Latency

As shown in Table 5.1, the latency starts as low as 18.34 µs when the message size is

between 1 byte to 4 bytes. It increases to reach 200.29 µs at 512 bytes. After that, the

latency increases dramatically. This is because in our implementation we avoid the use of
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Data Size 1 B 8 B 64 B 512 B 4 KB 32 KB 256 KB

Latency (µs) 18.34 19.84 39.88 200.29 570.79 787.03 1267.5

Table 5.1: Latency of SDP over PCIe.

the expensive DMA transfers for message sizes less than 512 bytes and transfer the data

instead by mapping the remote memory and read the data directly.

5.2.3 CPU Utilization

We measured CPU utilization on both the sender and receiver sides and plot it in Figure

5.4. Message sizes in the figures are the total size of the data sent by the application in

every iteration for all the connections. The message sizes are also equal to the total sender

application buffer size for all connections, while the application buffer size for the receiver is

fixed to 32 KB. The CPU utilization percentage in the figures is the total CPU utilization

percentage of all cores.

The sender and the receiver show different CPU utilization pattern. The CPU utilization

at the sender side drops as message size increases, while the CPU utilization of the receiver

generally increases with the increase of the message sizes. This interesting behavior can be

explained as follows. The use of small buffer sizes increases the user space to kernel space

copying overhead, which increases the CPU utilization on the sender side. It also results

in low throughput as shown in the previous experiment. On the other hand, the receiver

side manages to keep the CPU utilization low since it uses a fixed application buffer size at

all times which is larger than the sender buffer in this case. Hence, the number of copying

operations is smaller and the overhead is lower. When sender uses larger buffer sizes, the

copying overhead is reduced, which relieves the CPU. This also results in increase in data

transmitting rate. Whereas the receiver has to handle this increase in the transmitting

rate using the same fixed buffer, which increases its CPU utilization. Hence, to achieve

maximum throughput with lowest CPU utilization on both sides, the application has to be

configured to use the largest buffer size possible in both the sender and the receiver sides.

5.2.4 Application-based Evaluation

The transfer time for different file sizes requested from Apache web server by wget web

client is shown in Table 5.2. The transfer time starts at 0.006 s for a file of size 64 KB
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(a) Total sender CPU utilization (4 cores CPU).
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(b) Total receiver CPU utilization (2 cores CPU).

Figure 5.4: CPU utilization of SDP over PCIe for the sender and the receiver using 1, 2, 3
and 4 concurrent connections.
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Size 64 KB 256 KB 1 MB 4 MB 16 MB 64 MB 256 MB 1 GB

Time(s) 0.006 0.006 0.01 0.02 0.06 0.21 0.85 3.4

Table 5.2: Files transfer time of SDP over PCIe using Apache web server.

and increases gradually as file sizes increase. Our implementation achieves a very short file

transfer time of 3.4 s when a 1 GB file is transferred.

5.2.5 Summary

In summary, the experimental results in this section show that SDP over PCIe achieves

almost full DMA bandwidth using large message sizes and concurrent connections. The

latency results show that SDP over PCIe achieves low latency for small message sizes, and

then the latency increases as message size increases. In addition, CPU utilization results

show that low CPU utilization can be achieved in the sender side and moderate CPU

utilization in the receiver side when large application buffer sizes are used. The application-

based evaluation shows that SDP over PCIe works very well for this genre of datacenter

applications.

5.3 Comparison with the State of the Art

5.3.1 Throughput-to-Peak-Bandwidth Ratio

The same throughput results above are shown again in Figure 5.5 as a percentage of the

peak bandwidth. On the same plots, the corresponding performance of Infiniband is also

shown. The sudden drop in the throughput shown by SDP for Infiniband is because the

protocol is switching the transfer method from buffer copy (bcopy) to zero copy (zcopy) at

certain threshold [16]. The peak bandwidth was obtained for PCIe is 1247 MB/s (as stated

above), compared to 1731 MB/s for Infiniband. For one connection, Infiniband shows much

better performance than PCIe, especially for message sizes between 2 KB to 64 KB. This is

because in our implementation is under utilized when only one connection is used compared

to SDP over Infiniband which benefits from send pipelining techniques to improve the link

utilization. As we increase the number of connections, SDP over PCIe starts to catch

up with the throughput of SDP over Infiniband and even exceeds it for large message sizes

when 3 connections are used. As explained earlier, this is a result of connections overlapping
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which increases the link utilization. This suggests that communication-intensive applications

sending larger data sizes can be considered the niche area for SDP for PCIe. Examples

include datacenter applications.

5.3.2 Latency

Figure 5.6 shows the latency of our implementation of SDP in microseconds compared with

SDP over Infiniband. Our implementation achieves latency of around 18 µs for messages

between 1 to 8 bytes compared to about 5.6 µs achieved by SDP for Infiniband. SDP for

Infiniband continues to have low latency up to 128 byte of message size, and then the latency

increases gradually as the message size increases. On the other hand, our implementation

encounters more dramatic increase in the latency beyond message size of 16 bytes. The

high latency is a result of the delay incurred when the sender goes to sleep waiting for the

receiver to release the buffer.

5.3.3 File Transfer Time

Figure 5.7 shows the transfer time for different file sizes requested from Apache web server

by wget web client using SDP over PCIe and SDP over Infiniband. Between 16 bytes to

16 MB there is not much transfer time difference between SDP over PCIe and SDP over

Infiniband because both links are under utilized. For files larger than 16 MB, SDP over

Infiniband transfer time is 2.45 s which is slightly better than SDP over PCIe transfer time

at 3.4 s and that is due to the faster Infiniband link.

5.3.4 Transfer-Speed-to-Peak-Bandwidth Ratio

Figure 5.8 shows the Transfer-Speed-to-Peak-Bandwidth Ratio for both SDP implementa-

tions. The results show that SDP over PCIe outperforms SDP over Infiniband for Apache-

wget experiment as an example of file transfer applications used in datacenters. The exper-

iment shows that SDP over PCIe has better efficiency in utilizing the available bandwidth

through all file sizes. Our implementation archives up to 11% better efficiency than SDP

over Infiniband.
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(a) One connection.
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(b) Two concurrent connections.
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(c) Three concurrent connections.
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(d) Four concurrent connections.

Figure 5.5: Throughput-to-peak-pandwidth ratio of SDP over PCIe and Infiniband.



CHAPTER 5. EXPERIMENTAL EVALUATION 39

100

101

102

103

104

Total Message Size (byte)

1 2 4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

L
a
te

n
cy

in
m

ic
ro

-s
ec

o
n
d
s

 

 
SDP/PCIe
SDP/IB

Figure 5.6: Latency in micro-seconds of SDP over PCIe and SDP over Infiniband.
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Figure 5.7: File transfer time using SDP over PCIe and SDP over Infiniband.



CHAPTER 5. EXPERIMENTAL EVALUATION 40

0

5

10

15

20

25

30

File Size

1
6
K

6
4
K

2
5
6
K

1
M

4
M

1
6
M

6
4
M

2
5
6
M 1
GT
ra

n
sf

er
-S

p
ee

d
-t

o
-P

ea
k
-B

a
n
d
w

id
th

R
a
ti

o
(%

)

 

 
SDP/PCIe
SDP/IB

Figure 5.8: Ratio of file transfer speed to peak DMA bandwidth.

5.3.5 Comparison of CPU Utilization

Figure 5.9 shows the CPU utilization for both SDP implementations. Each connection is

handled by a different kernel process, and each process is scheduled to run in a different

CPU core if available. The plots in Figure 5.9 only show the CPU utilization for the active

cores. For that reason, the CPU utilization for one connection for example is reaching 100%

even though the machine is equipped with a quad core processor. As shown in the figure,

in most cases, the CPU utilization for SDP over PCIe is much lower than it is for SDP over

Infiniband. In all cases, Infiniband CPU utilization starts with about 100% and maintains

this high utilization from very small message sizes all the way to 32 KB, then, it drops

dramatically to much lower CPU utilization. Again, this is because the protocol switches

the transfer method form bcopy to zcopy. And even when the protocol switches to zcopy,

PCIe continues to have comparable CPU utilization in most of the cases if not better.

The CPU utilization is expected to be in the same level for both SDP implementations

when bcopy is used, because they both incur the same data-copying overhead. However,

SDP over Infiniband shows much higher CPU utilization. This is partially because the

Infiniband link is faster; so more data need to be copied per second, thus, higher CPU

utilization. Nevertheless, there are many areas where the difference in the throughput is
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not proportional to the difference in the CPU utilization, such as the area between 128 bytes

to 2 KB for all connections in the receiver side and the middle area for all connections in

the sender side. Lets take the data point at 32 KB for one connection in the sender side

as an example. The throughput of SDP over PCIe is 51% of the throughput of SDP over

Infiniband for the same message size, while its CPU utilization is only 28% of that for SDP

over Infiniband. Hence, SDP over PCIe uses 44% less CPU at that point.This suggests

that bcopy transfer mode in Infiniband incurs additional overhead that our implementation

avoids. We hypothesize this is the result of using buffer polling instead of waiting for

interrupts in bcopy.
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(a) Receiver, one connection
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(b) Sender, one connection
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(c) Receiver, two concurrent connections
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(d) Sender, two concurrent connections
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(e) Receiver, three concurrent connections
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(f) Sender, three concurrent connections
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(g) Receiver, four concurrent connections
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Figure 5.9: CPU Utilization of SDP for PCIe and Infiniband.
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5.3.6 Summary

To summarize, compared to the state of the art, SDP for PCIe shows very close throughput

especially for large messages with concurrent connections. The latency is not as good and

needs some improvement. Further, application-based evaluation shows that our implemen-

tation performance is close to that of Infinibands in a simple datacenter application, even

though the Infiniband link is faster. Transfer-Speed-to-Peak-Bandwidth Ratio results shows

up to 11% better performance. In terms of CPU Utilization, PCIe shows over all improve-

ment especially for small to medium workloads in which the improvement can be up to 44%.

Thus, SDP over PCIe is especially beneficial in cases where fast transfer for large file sizes

is needed. In addition, considering its low cost and power consumption, PCIe can serve as

a basis for datacenter interconnects.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

While PCI Express offers many advantages including speed, latency, low power consump-

tion and cost, several challenges slow down its adoption as a high-speed interconnect for

datacenter applications. Lack of an appropriate software stack is one of the main challenges.

The Socket Direct Protocol (SDP) and other protocols have been previously implemented

as proprietary products to serve as a software stack for PCI Express.

We presented the detailed design of SDP. The system has the following components: SDP

socket preloaded library, SDP kernel module, Kernel-level API and Non-transparent bridges

and DMA drivers. The preloaded library helps running the existing TCP socket-based

application without changing the code. The SDP kernel module is the main component,

which handles all related system calls. The kernel-level API and devices drivers are the

communication channel between the kernel module and the hardware.

We implemented the proposed system and evaluated its performance in terms of through-

put, latency and CPU utilization. We further tested our system using common real-life

application which is web-based file server. We also compared its performance with the

performance of SDP over Infiniband as a leading technology in the domain of HPC and

datacenter applications.

Our experimental results show that the proposed system achieves performance that is

very close to that of SDP over Infiniband for concurrent transfers of large message sizes. In

terms of latency, the system achieves low latency of 18 µs for messges of size 4 bytes which is

not as good as SDP over Infiniband. Moreover, evaluation of the proposed system on a web
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file transfer application shows up to 11% improvement in performance over Infiniband SDP

implementation. CPU utilization results show that our system requires in general less CPU

processing power than SDP over Infiniband. For example, the CPU utilization can be up

to 44% less than that of SDP over Infiniband for medium workloads. Such results suggest

that PCIe can serve as a basis for a high-speed interconnect for CPU and communication-

intensive applications such as datacenter and high performance applications.

6.2 Future Work

In general the performance of our system very close to the performance of the state of the art.

However, there are still few improvements that can be done to improve the performance even

more. As mentioned earlier, currently the system supports maximum of four simultaneous

connections. This limitation is due to the limited number of DMA channels available in

the hardware. To solve this, a scheduling algorithm needs to be implemented to regulate

the access to the limited resource. The system also can benefit from a dynamic memory

allocation scheme instead of the current memory allocation, which leads to poor memory

utilization. The latency also needs some improvement to better compete with the state of

the art. One method to improve it is by preventing the sender from releasing the CPU

when it sends small message sizes. This will eliminate the time needed for the CPU context

switching and potentially improves the latency.

We also believe that the interconnect will benefit from having a better support for

zcopy DMA capability that allows moving the data between user space application buffers

directly. This feature will reduce the CPU utilization for large workloads and improves link

utilization.

PCIe interconnect can also benefit from having a complete software stack. The software

stack should have other transport protocols such as IP over PCIe and user-level protocols

such as MPI implementation. It also needs to include a fabric management software that

monitors the fabric and broadcasts the updates about the topology to the nodes.
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