# **TF50 GPS & GLONASS**



#### **Embedded Solutions**

Laipac Technology, Inc. 105 West Beaver Creek Rd. Unit 207 Richmond Hill Ontario L4B 1C6 Canada Tel: (905) 762-1228 Fax: (905) 770-6143 / 763-1737 http://www.laipac.com

## Contents

| 1. General Description              |
|-------------------------------------|
| 1.1 Introduction 4                  |
| 1.2 General view                    |
| 1.3 Antenna requirements            |
| 1.4 Specification                   |
| 2. Mechanical Charateristics        |
| 2.1 Outline drawing                 |
| 2.2 Output connector                |
| 3. Interfaces                       |
| 3.1 Electrical specification11      |
| 3.2 Data formats                    |
| 4. TF50 Options                     |
| 5. Binary Protocol Specification    |
| 5.1 General                         |
| 5.2 Input messages                  |
| 5.2.1 Set main serial port14        |
| 5.2.2 Poll firmware version         |
| 5.2.3 Initialize data               |
| 5.2.4 Set GMT16                     |
| 5.2.5 Set clock frequency offset 17 |
| 5.2.6 Set approximate user position |
| 5.2.7 Set GPS almanac               |
| 5.2.8 Set GLONASS almanac           |
| 5.2.9 Mode control                  |
| 5.2.10 Poll clock status            |
| 5.2.11 Poll GPS almanac             |
| 5.2.12 Poll GLONASS almanac21       |
| 5.2.13 Poll GPS ephemeris           |
| 5.2.14 Poll GLONASS ephemeris       |
| 5.2.15 Poll navigation parameters   |

| 5.2.16 Store almanacs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 5.2.17 Store last user position and frequency offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                     |
| 5.2.18 DGPS control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                                                                                     |
| 5.2.19 Exclude SV from navigation solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |
| 5.2.20 Debug data output ON/OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                                                     |
| 5.2.21 Switch to NMEA protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                     |
| 5.3 Output messages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                     |
| 5.3.1 Firmware version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                     |
| 5.3.2 Raw measurement data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |
| 5.3.3 Measured position data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |
| 5.3.4 Clock status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                                                                                     |
| 5.3.5 GPS almanac data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29                                                                                     |
| 5.3.6 GLONASS almanac data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |
| 5.3.7 GPS ephemeris data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                     |
| 5.3.8 GLONASS ephemeris data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31                                                                                     |
| 5.3.9 Navigation parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |
| 5.3.10 Command acknowledgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |
| 5.3.11 Command Nacknowledgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                                                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |
| 6. NMEA Protocol Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |
| 6. NMEA Protocol Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •••••35                                                                                |
| 6. NMEA Protocol Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li> <li>6.1 General</li> <li>6.2 Output messages</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li> <li>6.1 General</li> <li>6.2 Output messages</li> <li>6.2.1 GGA – Position data</li> <li>6.2.2 GLL – Geographic position – Lat/Lon</li> </ul>                                                                                                                                                                                                                                                                                                                                      |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li> <li>6.1 General</li> <li>6.2 Output messages</li> <li>6.2.1 GGA – Position data</li> <li>6.2.2 GLL – Geographic position – Lat/Lon</li> <li>6.2.3 GSA – DOP and active satellites</li> <li>6.2.4 GSV – Satellites in view</li> <li>6.2.5 RMC – Recommended minimum specific GNSS data</li> <li>6.2.6 VTG – Track made good and ground speed</li> </ul>                                                                                                                             | 35<br>35<br>35<br>36<br>37<br>37<br>38<br>39<br>40<br>41                               |
| <ul> <li>6. NMEA Protocol Specification</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35<br>35<br>35<br>36<br>37<br>37<br>37<br>38<br>39<br>40<br>41<br>42                   |
| <ul> <li>6. NMEA Protocol Specification</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li> <li>6.1 General</li> <li>6.2 Output messages</li> <li>6.2.1 GGA – Position data</li> <li>6.2.2 GLL – Geographic position – Lat/Lon</li> <li>6.2.3 GSA – DOP and active satellites</li> <li>6.2.4 GSV – Satellites in view</li> <li>6.2.5 RMC – Recommended minimum specific GNSS data</li> <li>6.2.6 VTG – Track made good and ground speed</li> <li>6.3 Input messages</li> <li>6.3.1 XYZ initialization</li> <li>6.3.2 LLA initialization</li> </ul>                             |                                                                                        |
| <ul> <li>6. NMEA Protocol Specification</li> <li>6.1 General</li> <li>6.2 Output messages</li> <li>6.2.1 GGA – Position data</li> <li>6.2.2 GLL – Geographic position – Lat/Lon</li> <li>6.2.3 GSA – DOP and active satellites</li> <li>6.2.4 GSV – Satellites in view</li> <li>6.2.5 RMC – Recommended minimum specific GNSS data</li> <li>6.2.6 VTG – Track made good and ground speed</li> <li>6.3 Input messages</li> <li>6.3.1 XYZ initialization</li> <li>6.3.2 LLA initialization</li> <li>6.3.3 DGPS control</li> </ul> | 35<br>35<br>35<br>36<br>37<br>37<br>38<br>39<br>40<br>41<br>42<br>42<br>43<br>43       |
| <ul> <li>6. NMEA Protocol Specification</li> <li>6.1 General</li> <li>6.2 Output messages</li> <li>6.2.1 GGA – Position data</li> <li>6.2.2 GLL – Geographic position – Lat/Lon</li> <li>6.2.3 GSA – DOP and active satellites</li> <li>6.2.4 GSV – Satellites in view</li> <li>6.2.5 RMC – Recommended minimum specific GNSS data</li> <li>6.2.6 VTG – Track made good and ground speed</li> <li>6.3 Input messages</li> <li>6.3.1 XYZ initialization</li> <li>6.3.2 LLA initialization</li> <li>6.3.4 Rate control</li> </ul> | 35<br>35<br>35<br>36<br>37<br>37<br>38<br>39<br>40<br>41<br>42<br>42<br>43<br>43<br>44 |

#### 1. GENERAL DESCRIPTION

#### 1.1. INTRODUCTION

TF50 is a OEM engine board designed for calculation of coordinates, velocity vector, heading and time using signals of the satellite navigation systems GLONASS (Russia) and GPS (USA). Receiver uses two asynchronous serial ports RS-232 to communicate with external equipment. The receiver can operate in autonomous and differential modes. TF50 generates one second time mark (1PPS signal) which is synchronous to the selected time scale.

Signal structures of GLONASS and GPS navigation systems are similar that allows to design combined receivers with lower extra components in comparison with one-system receivers (for example, GPS only). It is known, that GPS consists of 24 satellites, placed on six orbits in six planes. GPS uses CDMA (Code Division Multiple Access) for different space vehicles (SV). SV numbers comply with Gold codes numbers. The nominal carrier frequency value in L1 frequency range for all GPS SV is equal to 1575,42 MHz.

GLONASS provides 24 SV, placed on three orbits in three planes. GLONASS uses FDMA (Frequency Division Multiple Access) with uniform code sequence for all SV. The nominal values of carrier frequency at L1 frequency range are defined by following expression:

 $F_n = 1602,000 \text{ MHz} + k \times UF$ , where k – frequency position number (frequency channel), k

= -7...+12;

UF = 0,5625 MHz – frequency step between neighbor

frequency positions.

At present time SV transmitting signals with numbers k = 0...12 only are available. 0 (zero) frequency channel signal is used for technical purposes only but not for navigation (refer to GLONASS ICD).

#### 1.2. GENERAL VIEW

TF50 General view is shown in figure below.



The PCB of the receiver has dimensions 71 mm  $\times$  51 mm. MCX female connector is used for connection to an active antenna. Antenna power supply is provided via central wire of coaxial cable. Using antennas from third party vendors must be taken carefully because of TF50 antenna's power supplying circuit has 100 mA current limitations. Moreover for current design TF50 must use only active antenna so the connection to passive antennas is prohibited.

20-pin two rows 2.0x2.0 mm pin strip header (for example, 151220-2420TH from 3M) is used as a output connector.

#### **1.3. ANTENNA REQUIREMENTS**

Third party vendor active GPS/GLONASS antenna for TF50 should meet following requirements:

| 1. | 3dB Bandwidth | 15701610 MHz |
|----|---------------|--------------|
| 2. | Impedance     | 50Ω          |
| 3. | Polarization  | RHCP         |
| 4. | Gain*         | 2030 dB      |
| 5. | Noise Figure  | 2.0 dB max   |
|    |               |              |

#### TF50 GPS & GLONASS User's Manual

- 6. VSWR 1.5 dB
- 7. Current 100 mA Max
- 8. Supply Voltage\*\* 5V

#### Notes:

\* Actually TF50 requires 15~25 dB of additional gain for its proper operation. Additional gain less than 15 dB may cause the total receiver noise figure and sensitivity degradation. Additional gain more than 25 dB may cause easy non-linear suppression of GLONASS or GPS signals by out-of-band interfering signals.

Additional gain is defined as antenna LNA minus cable losses. Cable losses depend on cable type and its length. Generally, the greater outer diameter of cable, the less loss it will be.

\*\* For TF50 "External "Option.

If the receiver is expected to use as a GPS only receiver, it is possible to use GPS only antennas.

| 1. General                   |     |
|------------------------------|-----|
| 1.1 Frequency                |     |
| L1                           | +   |
| L2                           | -   |
| 1.2 Supported signals        |     |
| GPS (C/A)                    | +   |
| GLONASS (C/A)                | +   |
| WAAS                         | -   |
| EGNOS                        | -   |
| GALILEO                      | -   |
| CHINA SATs                   | -   |
| 1.3 Channels                 |     |
| 16                           | +   |
| 1.4 Tracking capability      |     |
| Carrier-aided tracking       | +   |
| 2. Performance               |     |
| 2.1 Autonomous mode, PDOP <4 |     |
| 2.1.1 Plane                  |     |
| CEP                          |     |
| GPS                          | 9 m |
| GLONASS                      | 8 m |
| GPS+ GLONASS                 | 7 m |
| 2Drms                        |     |

#### **1.4. SPECIFICATION**

| GPS                                | 24 m                                         |
|------------------------------------|----------------------------------------------|
| GLONASS                            | 24 m<br>20 m                                 |
|                                    |                                              |
| GPS+ GLONASS                       | 14 m                                         |
| 2.1.2 Height<br>CEP                |                                              |
|                                    | 14                                           |
| GPS                                | 14 m                                         |
| GLONASS                            | 13 m                                         |
| GPS+ GLONASS                       | 8 m                                          |
| rms                                |                                              |
| GPS                                | 40 m                                         |
| GLONASS                            | 38 m                                         |
| GPS+ GLONASS                       | 25 m                                         |
| 2.1.3 Velocity                     |                                              |
| rms                                |                                              |
| GPS+ GLONASS                       | 0.05 m/s                                     |
| 2.1.4 Time                         |                                              |
| rms                                |                                              |
| GPS+ GLONASS                       | 0.1 µs                                       |
| 2.2 Differential mode              |                                              |
| 2.2.1 Coordinates                  |                                              |
| CEP                                | 3 m                                          |
| 2.2.2 Velocity                     |                                              |
| 2Drm <i>s</i>                      | 0.1 m/s                                      |
| 2.3 Acquisition time (TTFF) (mean) |                                              |
| Hot start                          | 5 s (stored almanac,ephemeris,time,position) |
| Warm start                         | 30 s(stored almanac,time,position)           |
| Cold start                         | 120 s(no almanac,ephemeris,time,position)    |
| Reacquisition                      | 1 s                                          |
| 2.4 Dynamics                       |                                              |
| Speed (max.)                       | 950 m/s                                      |
| Altitude (max.)                    | 18 km                                        |
| Acceleration                       | 6g                                           |
| Jerk                               | 1 g/s                                        |
| 2.5 Update rate                    |                                              |
| Hz (max.)                          | 5 Hz                                         |
| 3. Interfaces                      |                                              |
| 3.1 Communication                  |                                              |
| Baud rate                          | 900 ~ 115200                                 |
| EIA RS-232                         | + (see "OPTION 5" in Section 4)              |
| 3.2 1 PPS                          |                                              |
| Duration (u sec)                   | 10                                           |
| Level                              | TTL                                          |
| Time scale                         |                                              |
| GPS time                           | -                                            |
| GLONASS time                       |                                              |
| UTC (USNO)                         | +                                            |
| UTC (SU)                           | +                                            |
| Pulse                              |                                              |
|                                    |                                              |

| Positive/Negative                | Р                                            |
|----------------------------------|----------------------------------------------|
| Programmable                     | -                                            |
| 3.3 Output data                  |                                              |
| Datum                            |                                              |
| WGS84 and PZ90                   | +                                            |
| Time difference                  | +                                            |
| Velocity                         | +                                            |
| Heading                          | +                                            |
| Channel status                   | +                                            |
| Ephemeris data                   | +                                            |
| Almanac data                     | +                                            |
| Raw measurement data             | +                                            |
| 3.4 Data formats                 |                                              |
| Output                           |                                              |
| NMEA 0183                        |                                              |
| Version                          | 2.30                                         |
| Baud rate (default)              | 4800                                         |
| Binary                           |                                              |
| Version                          | 4.0x                                         |
| Baud rate (default)              | 9600                                         |
| Differential                     |                                              |
| RTCM SC-104                      |                                              |
| Version                          | 2.2                                          |
| Baud rate (default)              | 9600                                         |
| Types                            | TBD                                          |
| 3.5 Prime Power                  |                                              |
| Input voltage                    | 3.3 V +- 5%                                  |
| Supplied current                 | 200 mA typ.                                  |
| Backup voltage                   | 1.5 ~ 3.3 V                                  |
| Backup current                   | 50µA @ 3.0V                                  |
| LED configuration                | see "OPTION 3" in Section 4                  |
| On board rechargeable Li battery | see "OPTION 1 " in Section 4                 |
| 4. Physical                      |                                              |
| 4.1 Dimensions                   |                                              |
| W x L x H (mm)                   | 71 x 51 x 12                                 |
| Weight (g)                       | < 50 g                                       |
| 4.2 Antenna connector            |                                              |
| Туре                             | MCX(optional:SMA), straight or right angle   |
| 4.3 Output connector             |                                              |
| 20-Pin I/O, 2.0 mm               | Straight header (optional: other directions) |
| Debug 14-Pin I/O                 | - (see "OPTION 2" in Section 4)              |
| 5. Antenna                       |                                              |
| 5.1 Antenna type                 |                                              |
| Active antenna                   | + (passive antenna not recommended)          |
| 5.2 Requirement                  | see Section 1.3                              |
| 5.3 Input Power                  |                                              |
| External voltage                 | 5.0 V (see "OPTION 4" in Section 4)          |
| 6. Environmental                 |                                              |
|                                  |                                              |

| 6.1 Operating temp. |                          |
|---------------------|--------------------------|
| Degree              | -40 to +85 °C            |
| 6.2 Storage temp.   |                          |
| Degree              | -40 to +85 °C            |
| 6.3 Vibration       |                          |
| Hz                  | 20 to 1000 Hz, 2 to 12 g |

#### 2. MECHANICAL CHARACTERISTICS

#### 2.1. OUTLINE DRAWING

The outlines of the receiver are given in figure below.



TF50 has the following dimensions: 71 mm (length), 51 mm (width).

The height of top side components is 5 mm. The height of bottom side components is 4 mm. There are 4 mounting holes 3.0 mm in diameter.

#### TF50 GPS & GLONASS User's Manual

#### 2.2. OUTPUT CONNECTOR

General top view of output connector (JP1) is shown in figure below.



The table below contains list of input/output signals.

| Pin | Туре | Name    | Description                  |  |
|-----|------|---------|------------------------------|--|
| 1   | Ι    | ANT_PWR | External Antenna Power       |  |
| 2   |      | NC      | Not Connected                |  |
| 3   | Ι    | BAT     | Back Up Battery              |  |
| 4   | Ι    | VDD     | 3.3V Power Input             |  |
| 5   | Ι    | M_RES   | Manual Reset Input           |  |
| 6   | Ι    | PRG_FL  | Programming Control          |  |
| 7   | Ι    | NC      | Not Connected                |  |
| 8   |      | NC      | Not Connected                |  |
| 9   |      | NC      | Not Connected                |  |
| 10  |      | GND     | Ground                       |  |
| 11  | 0    | TX1     | Transmit Data, Serial Port 1 |  |
| 12  | Ι    | RX1     | Receive Data, Serial Port 1  |  |
| 13  |      | GND     | Ground                       |  |
| 14  | 0    | TX2     | Transmit Data, Serial Port 2 |  |
| 15  | Ι    | RX2     | Receiver Data, Serial Port 2 |  |
| 16  |      | GND     | Ground                       |  |
| 17  | Ι    | ETM     | External Time Mark           |  |
| 18  |      | GND     | Ground                       |  |
| 19  | 0    | 1PPS    | 1PPS Time Mark Output        |  |
| 20  |      | NC      | Not Connected                |  |

#### ANT\_PWR

external antenna power supply voltage

#### BAT

external back-up battery voltage, 1.5~3.3V

#### VDD

main power supply voltage, +3.3V.

#### M\_RES

manual reset signal, active low with internal pull-up in MAX793. M\_RES has pull-up current  $250\mu A$  max. Pulse width for this input should be at least 100ns.

#### PRG\_FL

programming flag, active low, connected with 20kOhm pull-up resistor. For TF50 it's possible to upload firmware to the FLASH via serial port. It's considered that for OK uploading no power, host personal computer or communication failures should occur during this procedure. If some failures took place and uploading procedure was completed with errors, it's necessary to make PRG\_FL low and repeat the uploading procedure.

#### TX1, TX2

transmit data via serial port#1 and #2.

#### **RX1, RX2**

receive data via serial port#1 and #2.

#### ETM

external time mark. TF50 can measure the time of external time mark

#### 1PPS

output one second time mark, pulse width is about 10  $\mu$ s. Its polarity (positive or negative) can be programmed by control command via serial port. Default is positive.

#### 3. INTERFACES

#### 3.1. ELECTRICAL SPECIFICATION

The receiver has two serial asynchronous ports (Port#1 and Port#2) for communication with external equipment. Each port has two options: the first meets the EIA RS-232 standard electrical specification and the second has TTL logic levels.

The receiver supports following software selectable serial port parameters – 900...115200 bit/s baud rate; 5-, 6-, 7- or 8-bit data length; 1 or 2 stop bits; even, odd or no parity.

The default serial port configurations parameters are as follows:

• data length:8 bits

- two stop bits
- parity bit: not used.
- Baud rate: 9600, binary protocol

#### 3.2. DATA FORMATS

The receiver supports the following data protocols:

- proprietary binary
- ASCII NMEA complying with NMEA 0183 v.2.30
- RTCM SC-104 V.2.2 for differential corrections data

#### 4. TF50 OPTIONS

TF50 can have following options:

**OPTION 1.** In "On Board Battery" Option 8mAh rechargeable battery is mounted and used as a back-up power source when main power is off. There is a charger circuit for rechargeable battery consisting of diode and current limiting resistance. In "External Battery" Option no rechargeable battery is used and external battery should be connected to pin#3 of output connector as a back-up power source. Since TF50 operates under -  $40 \sim +85^{\circ}$ C temperature, it's necessary to keep in mind about the rechargeable battery more NARROW operating temperature range. Besides it the battery capacity can 1.5 times DECREASE under -20°C temperature. The average discharge time (from 3.0 to 1.5V) for the mounted rechargeable battery is about 400 hours (more than 16 days). Default: "On Board Battery" Option. Important notice for the case of external backup battery use. Backup current strongly depends on value of backup voltage i.e. the greater backup voltage the greater current. For 3.0V supply voltage current will be about 50 microamperes. RTC and SRAM are operable up to 1.5V backup voltage. The backup current for this voltage is about several microamperes. Validity of data stored in SRAM is guaranteed by verifying data check sum.

**OPTION 2.** In "Debug" Option JP2 connector is mounted onto PCB. External ADSP EZ-ICE Elite-Kit development tool could be connected with JP2 to debug firmware design. Default: "Debug-No" Option.

**OPTION 3.** The aim for "LED" Option is to indicate different TF50 current modes of operation such as searching, tracking, or navigation. Default: "LED" Option.

**OPTION 4.** In "Internal 3.3V" Option, antenna is supplied directly with 3.3V power voltage from TF50 main power input (pin#4 in TF50 output connector). Otherwise ("External" Option) active antenna will be supplied with external voltage that must be connected to ANT\_PWR pin #1 of output connector. At any case in order not to damage antenna power supply circuit in TF50, permitted antenna current mustn't exceed 100mA. Default: "External" Option

**OPTION 5.** Interface signals TX1, TX2, RX1, RX2 can have TTL levels for "RS-232 TTL" Option or +-6V levels for "EIA RS-232" Option. Default: "EIA RS-232" Option.

#### 5. BINARY PROTOCOL SPECIFICATION

#### 5.1 GENERAL

This Protocol defines the requirements for establishing a communication interface between the TF50 OEM board and external equipment via communication Port #1. TF50 can receive input messages from the external equipment, and can send output messages to the external equipment.

The input messages are control commands by which the external equipment can set or query various operating parameters. The output messages are used to indicate the acceptance or rejection of commands, to respond to query commands with requested operating parameters, and to output position data and raw measurements periodically.

<u>The general message structure</u>

| Preamble | Message    | Payload | Checksum | Postamble (for |
|----------|------------|---------|----------|----------------|
|          | Identifier |         |          | input messages |
|          | (MID)      |         |          | only)          |

#### Preamble

The Preamble is sent in the following order: "F" is first byte, "T" is last byte.

#### **Message Identifier**

The possible values of the Message identifier are defined in Sections 5.2 and 5.3 of this Protocol.

#### Payload

The byte-length of the Payload is unambiguously defined by Message Identifier as specified in Sections 5.2 and 5.3 of this Protocol. The number of bytes is odd for all messages. The payload data may content any 8-bit value. Where multi-byte values are in the payload data, the big-endian order is used.

**Note:** Parameters indicated as "signed" are two's complement, with the sign bit (+ or -) occupying the MSB.

#### Checksum

The checksum is transmitted high order byte first followed by the low byte. The

checksum is sum of all the 16-bit values formed by MID and payload bytes in bigendian order and then only low-order 16 bits are retained as the checksum.

#### Postamble

The Postamble 0xFF FF is sent with input messages to TF50 receiver. Output messages from the receiver have no Postamble.

#### **5.2 INPUT MESSAGES**

Table 1 lists the TF50 binary input messages.

| MID (Hex) | ASCII | Name                                          |
|-----------|-------|-----------------------------------------------|
| 0x31      | 1     | Set main serial port                          |
| 0x56      | V     | Poll firmware version                         |
| 0x32      | 2     | Initialize data                               |
| 0x54      | Т     | Set GMT                                       |
| 0x46      | F     | Set clock frequency offset                    |
| 0x58      | Х     | Set approximate user position                 |
| 0x33      | 3     | Set GPS Almanac                               |
| 0x34      | 4     | Set GLONASS Almanac                           |
| 0x35      | 5     | Mode control                                  |
| 0x43      | С     | Poll clock status                             |
| 0x41      | А     | Poll GPS Almanac                              |
| 0x4C      | L     | Poll GLONASS Almanac                          |
| 0x49      | Ι     | Poll GPS Ephemeris                            |
| 0x45      | Е     | Poll GLONASS Ephemeris                        |
| 0x50      | Р     | Poll Navigation parameters                    |
| 0x53      | S     | Store Almanacs                                |
| 0x55      | U     | Store last user position and frequency offset |
| 0x44      | D     | DGPS control                                  |
| 0x5A      | Z     | Exclude SV                                    |
| 0x42      | В     | Debug data output ON/OFF                      |
| 0x4D      | М     | Switch to NMEA Protocol                       |

Table 1 TF50 binary input messages

#### 5.2.1 Set main serial port

Example: FAST1 - Preamble & MID (ASCII) 0x00 01 97 0F 0F - Payload (ASCII) 0x41 A6 FF - Message checksum and Postamble

#### **TF50 GPS & GLONASS User's Manual**

| Name        | Bytes | Scale | Example | Units  | Description |
|-------------|-------|-------|---------|--------|-------------|
| MID         | 1     |       | 0x31    |        | ASCII 1     |
| Reserved    | 1     |       | 0x00    |        |             |
| Baud rate   | 2     |       | 0x01 97 | coded  | See Table 2 |
| Data format | 2     |       | 0x0F 0F | bitmap | See Table 3 |

Payload length: 5 bytes

Table 2 Baud rate codes

| Baud<br>rate | 900     | 1200    | 1800    | 2400    | 3600    | 4800    | 7200    | 9600    |
|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Code         | 0x02 17 | 0x01 97 | 0x02 16 | 0x01 96 | 0x02 15 | 0x01 95 | 0x02 14 | 0x01 94 |

| Baud<br>rate | 14400   | 19200   | 28800   | 38400   | 57600   | 76800   | 115200  | 153600  |
|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Code         | 0x02 13 | 0x01 93 | 0x02 12 | 0x01 92 | 0x02 11 | 0x01 91 | 0x02 10 | 0x01 90 |

 Table 3 Bit allocation in the "Data format" word

 MSB

| MSB  |                                                 |       |   |      |       |   |   |   |    |    |      |       |    |    | LSB |
|------|-------------------------------------------------|-------|---|------|-------|---|---|---|----|----|------|-------|----|----|-----|
|      | Transmitter                                     |       |   |      |       |   |   |   |    |    | Reco | eiver |    |    |     |
| Rese | erved                                           | P S L |   | Rese | erved | Р |   |   | S  | L  |      |       |    |    |     |
| 1    | 2                                               | 3     | 4 | 5    | 6     | 7 | 8 | 9 | 10 | 11 | 12   | 13    | 14 | 15 | 16  |
| Lic  | L is length field: number of data hits $-L + 5$ |       |   |      |       |   |   |   |    |    |      |       |    |    |     |

L is length field: number of data bits = L + 5

S is stop bit field: number of stop bits = S + 1

P is parity field:

P = 000 or 100 or 010 or 110: none

P = 001: even

 $\mathbf{P} = \mathbf{011:} \qquad \qquad \mathbf{odd}$ 

P = 101: always zero

P = 111: always one

#### 5.2.2 Poll Firmware Version

Example:

FASTV - Preamble & MID (ASCII)

0x00 00 00- Payload (ASCII)

| Name     | Bytes | Scale | Example | Units | Description |
|----------|-------|-------|---------|-------|-------------|
| MID      | 1     |       | 0x56    |       | ASCII V     |
| Reserved | 3     |       | 0x00    |       |             |

Payload length: 3 bytes

#### 5.2.3 Initialize data

Sets approximate user position, current time and receiver clock frequency

offset.

Example:

FAST2 - Preamble & MID (ASCII)

0x00 10 FB 0D 09 1F 4D 3A 5D 82 62 00 00 27 10 - Payload (hex)

0x53 20 FF - Message checksum and Postamble

| Name          | Bytes     | Scale            | Example    | Units   | Description                        |
|---------------|-----------|------------------|------------|---------|------------------------------------|
| MID           | 1         |                  | 0x32       |         | ASCII 2                            |
| Reset Config. | 1         |                  | 0x00       | Bitmap  | See Table 4                        |
| ECEF X        | 2, signed | $*2^{16}$        | 0x10 FB    | cm      | Approximate user position:         |
| ECEF Y        | 2, signed | *2 <sup>16</sup> | 0x0D 09    | cm      | X=2849 km, Y= 2187 km,             |
| ECEF Z        | 2, signed | *2 <sup>16</sup> | 0x1F 4D    | cm      | Z= 5252 km                         |
| GMT           | 4         |                  | 0x3A 5D 82 | seconds | Number of seconds elapsed since    |
|               |           |                  | 62         |         | the beginning of January 1, 1970   |
| Freq. Offset  | 2, signed |                  | 0x00 00    | Hertz   | Estimate frequency offset of the   |
|               |           |                  |            |         | receiver clock relative to GPS     |
|               |           |                  |            |         | carrier, range= $\pm$ 32767 Hz     |
| Freq. Range   | 2         |                  | 0x27 10    | Hertz   | Uncertainty of the clock frequency |
|               |           |                  |            |         | (10000 Hz)                         |

Payload length: 15 bytes

| Table 4 Bit allocation | n in the | "Reset | Config' | ' byte |
|------------------------|----------|--------|---------|--------|
|------------------------|----------|--------|---------|--------|

| Config   | Description                                             |  |  |  |  |  |  |  |
|----------|---------------------------------------------------------|--|--|--|--|--|--|--|
| 0x00     | Enable warm/hot start                                   |  |  |  |  |  |  |  |
| 0x01     | Clear ephemeris - set cold start                        |  |  |  |  |  |  |  |
| 0x02     | Clear ephemeris&almanac - set initial acquisition start |  |  |  |  |  |  |  |
| 0x030xff | TBD                                                     |  |  |  |  |  |  |  |

#### 5.2.4 Set GMT

Sets Greenwich Mean Time for current moment .

Example:

FASTT - Preamble & MID (ASCII)

0x00 3A 5D 82 62 - Payload

0x10 BF FF - Message checksum and Postamble

| Name     | Bytes | Scale | Example Units Description |         | Description                                                         |
|----------|-------|-------|---------------------------|---------|---------------------------------------------------------------------|
| MID      | 1     |       | 0x54                      |         | ASCII T                                                             |
| Reserved | 1     |       | 0x00                      |         |                                                                     |
| GMT      | 4     |       | 0x3A 5D 82<br>62          | seconds | Number of seconds elapsed since<br>the beginning of January 1, 1970 |

Payload length: 5 bytes

#### 5.2.5 Set clock frequency offset

Example:

FASTF - Preamble & MID (ASCII)

0x00 00 00 27 10- Payload (ASCII)

| Name         | Bytes     | Scale | Example | Units | Description                                                                                    |
|--------------|-----------|-------|---------|-------|------------------------------------------------------------------------------------------------|
| MID          | 1         |       | 0x46    |       | ASCII F                                                                                        |
| Reserved     | 1         |       | 0x00    |       |                                                                                                |
| Freq. offset | 2, signed |       | 0x00 00 | Hertz | Estimate frequency offset of the receiver clock relative to GPS carrier, range= $\pm$ 32767 Hz |
| Freq. range  | 2         |       | 0x27 10 | Hertz | Uncertainty of the clock frequency (10000 Hz)                                                  |

Payload length: 5 bytes

#### 5.2.6 Set approximate user position

Example:

FASTX - Preamble & MID (ASCII)

0x00 10 FB 0D 09 1F 4D - payload (hex)

0x95 51 FF - Message checksum and Postamble

| Name     | Bytes     | Scale     | Example Units |    | Description                |  |  |  |
|----------|-----------|-----------|---------------|----|----------------------------|--|--|--|
| MID      | 1         |           | 0x58          |    | ASCII X                    |  |  |  |
| Reserved | 1         |           | 0x00          |    |                            |  |  |  |
| ECEF X   | 2, signed | $*2^{16}$ | 0x10 FB       | cm | Approximate user position: |  |  |  |
| ECEF Y   | 2, signed | $*2^{16}$ | 0x0D 09       | cm | X=2849 km, Y= 2187 km,     |  |  |  |
| ECEF Z   | 2, signed | $*2^{16}$ | 0x1F 4D       | cm | Z= 5252 km                 |  |  |  |

Payload length: 7 bytes

#### 5.2.7 Set GPS Almanac

Set GPS almanac data for usage in the current session. This command does not write the almanac data into the flash memory. The command "Store almanacs" is used to write the GPS and GLONASS almanacs of current session into the flash memory.

Example:

FAST3 - Preamble & MID (ASCII)

---- Payload

| Name          | Bytes     | Scale | Example | Units                 | Description                    |
|---------------|-----------|-------|---------|-----------------------|--------------------------------|
| MID           | 1         |       | 0x33    |                       | ASCII 3                        |
| PRN           | 1         |       |         |                       | Satellite PRN number (1-32)    |
| Wna           | 2         |       |         |                       | Almanac week number            |
| Wn            | 2         |       |         |                       | Receive time week number       |
| Tow           | 4         |       |         | seconds               | Second of GPS week (receive    |
|               |           |       |         |                       | time)                          |
| config&health | 2         |       |         |                       | See Table 5                    |
| Е             | 2         | *2-21 |         |                       | Eccentricity                   |
| Тоа           | 2         |       |         | seconds               | Almanac reference time         |
| i0            | 2, signed | *2-19 |         | semicycles            | Inclination angle              |
| Omegadot      | 2, signed | *2-38 |         | semicycles/sec        | Rate of right ascension        |
| Roota         | 4         | *2-11 |         | meters <sup>1/2</sup> | Square root of semi-major axis |
| omega0        | 4, signed | *2-23 |         | semicycles            | Longitude of ascending node    |
| Omega         | 4, signed | *2-23 |         | semicycles            | Argument of perigee            |
| m0            | 4, signed | *2-23 |         | semicycles            | Mean anomaly at reference time |
| af0           | 2, signed | *2-20 |         | seconds               | Clock correction               |
| af1           | 2, signed | *2-38 |         | sec/sec               | Clock correction               |

Payload length: 39 bytes

| MSB | 8 |   |   |   |     |                |   |   |    |                              |       |         |      |    | LSB |
|-----|---|---|---|---|-----|----------------|---|---|----|------------------------------|-------|---------|------|----|-----|
|     |   |   |   |   | SV  | SV config (see |   |   |    | Satellite data&signal health |       |         |      |    |     |
|     |   |   |   |   | ICD | ICD GPS-200C)  |   |   |    | (see                         | ICD G | PS - 20 | 00C) |    |     |
| 1   | 2 | 3 | 4 | 5 | 6   | 7              | 8 | 9 | 10 | 11                           | 12    | 13      | 14   | 15 | 16  |

#### 5.2.8 Set GLONASS Almanac

Set GLONASS almanac data for usage in the current session. This command does not write the almanac data into the flash memory. The command "Store almanacs" is used to write the GPS and GLONASS almanacs of current session into the flash memory.

Example:

FAST4 - Preamble & MID (ASCII)

----- Payload (hex)

0x---- FF - Message checksum and Postamble

| Name     | Bytes     | Scale | Example | Units      | Description                       |
|----------|-----------|-------|---------|------------|-----------------------------------|
| MID      | 1         |       | 0x34    |            | ASCII 4                           |
| SV ID    | 1         |       |         |            | Satellite number (1-24)           |
| Litera   | 1, signed |       |         |            | Satellite frequency number        |
|          |           |       |         |            | (-712)                            |
| Health   | 1         |       |         |            | Satellite health: $0x30 = bad$    |
|          |           |       |         |            | 0x31 = good                       |
| Reserved | 8         |       |         |            | TBD                               |
| Na       | 2         |       |         | days       | Reference day number              |
| Ln       | 4, signed | *2-20 |         | semicycles | Longitude of first ascension node |
| Tln      | 4         | *2-5  |         | seconds    | Reference time of the first       |
|          |           |       |         |            | ascending node                    |
| Di       | 4, signed | *2-20 |         | semicycles | Correction to inclination         |

#### TF50 GPS & GLONASS User's Manual

| DT       | 4, signed | *2-9  | s/orbit_period              | Correction to the mean value of |
|----------|-----------|-------|-----------------------------|---------------------------------|
|          |           |       |                             | Draconian period                |
| Dtdot    | 1, signed | *2-14 | s/orbit_period <sup>2</sup> | Rate of change of Draconian     |
|          |           |       |                             | period                          |
| Reserved | 5         |       |                             | TBD                             |
| Е        | 2         | *2-20 |                             | Eccentricity                    |
| Omega    | 2, signed | *2-15 | semicycles                  | Argument of perigee             |
| tn       | 2, signed | *2-18 | seconds                     | Satellite time correction       |

Payload length: 41 bytes

#### 5.2.9 Mode control

Example:

FAST5 - Preamble & MID (ASCII)

---..- Payload (ASCII)

0x---- FF - Message checksum and Postamble

| Name            | Bytes     | Scale | Example | Units   | Description                                |
|-----------------|-----------|-------|---------|---------|--------------------------------------------|
| MID             | 1         |       | 0x35    |         | ASCII 5                                    |
| Pos Mode        | 1         |       |         | bitmap  | Position fix mode control, see             |
|                 |           |       |         |         | Table 6                                    |
| Alt_For_Hold    | 2         |       |         | meters  |                                            |
| Clock hold      | 1         |       |         | seconds | Time interval during which the             |
| timeout         |           |       |         |         | clock bias extrapolation is                |
|                 |           |       |         |         | allowable                                  |
| Hold priorities | 1         |       |         |         | Priority against altitude and              |
|                 |           |       |         |         | Tshift <sup>(1)</sup> :                    |
|                 |           |       |         |         | C(0x43) = clock priority                   |
|                 |           |       |         |         | A(0x41) = altitude priority                |
| GLONASS         | 4, signed |       |         | cm      | GLONASS system time shift                  |
| Tshift          |           |       |         |         | (divided by speed of light) relative       |
|                 |           |       |         |         | to GPS time                                |
| Tshift alg      | 1         |       |         |         | Tshift fixing algorithm:                   |
|                 |           |       |         |         | N $(0x4D)$ = never fixed                   |
|                 |           |       |         |         | ~ $(0x7E)$ = flexible <sup>(2)</sup>       |
|                 |           |       |         |         | F(0x46)= always fixed                      |
| NSV             | 1         |       |         |         | Number of SV to compute Tshift             |
| Tshift priority | 1         |       |         |         | Priority against altitude <sup>(3)</sup> : |
|                 |           |       |         |         | T(0x54) = Tshift higher priority           |
|                 |           |       |         |         | A(0x41) = altitude higher priority         |
| Elevation       | 1         |       |         | degrees | Elevation mask for Navigation              |
| mask            |           |       |         |         | solution                                   |
| SNR mask        | 1         |       |         |         | SNR mask for Navigation solution           |
| PDOP mask       | 1         | *2-3  |         |         | PDOP mask for Navigation                   |
|                 |           |       |         |         | solution <sup>(1)</sup>                    |
| HDOP mask       | 1         | *2-3  |         |         | HDOP mask for Navigation                   |
|                 |           |       |         |         | solution <sup>(1)</sup>                    |
| Update_rate     | 1         | *0.2  |         | seconds | Output position update rate                |
| Reserved        | 6         |       |         |         | TBD                                        |

Payload length: 23 bytes

- If the number of SV in solution is 4 or less, this parameter sets priority of clock rate fixing against altitude fixing or GLONASS system time shift fixing, see also Note (3).
- (2) Compute GLONASS system time shift if number of SV in solution is nSV or more, and hold it fixed if number of SV is nSV or less.
- (3) If the number of SV in solution is 4 or less, this parameter sets priority of GLONASS system time shift fixing against altitude fixing.

Table 6 Bit allocation in the "Pos Mode" word

| Mode | Description                                                                          |
|------|--------------------------------------------------------------------------------------|
| 0x00 | Only 3D solution allowable                                                           |
| 0x01 | 1 satellite solution allowable                                                       |
| 0x02 | 2 satellite solution allowable                                                       |
| 0x03 | 3 satellite solution (2D) allowable                                                  |
| 0x04 | 4 satellite solution (3D) allowable                                                  |
| 0x08 | Reserved                                                                             |
| 0x10 | Altitude hold mode allowable                                                         |
| 0x20 | Clock hold mode allowable                                                            |
| 0x40 | Recent computed altitude must be used for altitude hold mode, otherwise Alt_For_Hold |
| 0x80 | Reserved                                                                             |

#### 5.2.10 Poll clock status

Example:

FASTC - Preamble & MID (ASCII)

0x00 00 00 - Payload (ASCII)

| Name     | Bytes | Scale | Example | Units | Description |
|----------|-------|-------|---------|-------|-------------|
| MID      | 1     |       | 0x43    |       | ASCII C     |
| Reserved | 3     |       | 0x00    |       |             |

Payload length: 3 bytes

#### 5.2.11 Poll GPS Almanac

Example: FASTA - Preamble & MID (ASCII) 0xFF 00 00 - Payload 0x41 FF - Message checksum and Postamble

| Name     | Bytes | Scale | Example | Units | Description                                                                           |
|----------|-------|-------|---------|-------|---------------------------------------------------------------------------------------|
| MID      | 1     |       | 0x41    |       | ASCII A                                                                               |
| PRN      | 1     |       | 0xFF    |       | GPS satellite PRN number (1-32)<br>0xFF requests all available GPS<br>almanac records |
| Reserved | 2     |       |         |       |                                                                                       |

Payload length: 3 bytes

#### 5.2.12 Poll GLONASS Almanac

Example:

FASTL - Preamble & MID (ASCII)

0x20 00 00 - payload

0x4C 20 FF - Message checksum and Postamble

| Name     | Bytes | Scale | Example | Units | Description                                                                               |
|----------|-------|-------|---------|-------|-------------------------------------------------------------------------------------------|
| MID      | 1     |       | 0x4C    |       | ASCII L                                                                                   |
| PRN      | 1     |       | 0x20    |       | GLONASS satellite number (1-24)<br>0xFF requests all available<br>GLONASS almanac records |
| Reserved | 2     |       | 0x00 00 |       |                                                                                           |

Payload length: 3 bytes

#### 5.2.13 Poll GPS Ephemeris

Example:

FASTI - Preamble & MID (ASCII)

0x20 00 00- Payload

| Name     | Bytes | Scale | Example | Units | Description                                                                             |
|----------|-------|-------|---------|-------|-----------------------------------------------------------------------------------------|
| MID      | 1     |       | 0x49    |       | ASCII I                                                                                 |
| PRN      | 1     |       | 0x20    |       | GPS satellite PRN number (1-32)<br>0xFF requests all available GPS<br>ephemeris records |
| Reserved | 2     |       | 0x00 00 |       |                                                                                         |

Payload length: 3 bytes

#### 5.2.14 Poll GLONASS Ephemeris

Example:

FASTE - Preamble & MID (ASCII)

0x18 00 00- Payload

0x45 18 FF - Message checksum and Postamble

| Name     | Bytes | Scale | Example | Units | Description                                                                                 |
|----------|-------|-------|---------|-------|---------------------------------------------------------------------------------------------|
| MID      | 1     |       | 0x45    |       | ASCII I                                                                                     |
| PRN      | 1     |       | 0x18    |       | GLONASS satellite number (1-24)<br>0xFF requests all available<br>GLONASS ephemeris records |
| Reserved | 2     |       | 0x00    |       |                                                                                             |

Payload length: 3 bytes

#### 5.2.15 Poll Navigation parameters

Example:

FASTP - Preamble & MID (ASCII)

0x00 - Payload

| Name     | Bytes | Scale | Example | Units | Description |
|----------|-------|-------|---------|-------|-------------|
| MID      | 1     |       | 0x50    |       | ASCII P     |
| Reserved | 3     |       | 0x00    |       |             |

Payload length: 3 bytes

#### 5.2.16 Store Almanacs

Writes the GPS and GLONASS almanacs received in current session into the flash memory. Output position and raw measurement data may be suspended for several seconds during the process of writing into the flash memory.

Example: FASTS - Preamble & MID (ASCII)

0x00 - Payload

| Name     | Bytes | Scale | Example | Units | Description |
|----------|-------|-------|---------|-------|-------------|
| MID      | 1     |       | 0x53    |       | ASCII S     |
| Reserved | 3     |       | 0x00    |       |             |

Payload length: 3 bytes

#### 5.2.17 Store last user position and frequency offset

Writes the latest user position and frequency offset of the receiver clock estimated in current session into the flash memory. Output position and raw measurement data may be suspended for several seconds during the process of writing into the flash memory. Example: FASTU - Preamble & MID (ASCII) 0x00 00 00 - Payload 0x55 00 FF - Message checksum and Postamble

| Name     | Bytes | Scale | Example | Units | Description |
|----------|-------|-------|---------|-------|-------------|
| MID      | 1     |       | 0x55    |       | ASCII U     |
| Reserved | 3     |       | 0x00    |       |             |

Payload length: 3 bytes

#### 5.2.18 DGPS control

TBD

#### 5.2 19 Exclude SV from navigation solution

Example:

FASTZ - Preamble & MID (ASCII)

0x18 01 00 - Payload

0x5B 18 FF - Message checksum and Postamble

| Name     | Bytes | Scale | Example | Units | Description                                           |
|----------|-------|-------|---------|-------|-------------------------------------------------------|
| MID      | 1     |       | 0x5A    |       | ASCII Z                                               |
| SVID     | 1     |       | 0x18    |       | SV system number:<br>GPS SV: 132<br>GLONASS SV: 33-56 |
| ON/OFF   | 1     |       | 0x01    |       | 0x01 = OFF (exclude)<br>0x00 = ON (restore)           |
| Reserved | 1     |       | 0x00    |       |                                                       |

Payload length: 3 bytes

#### 5.2.20 Debug data output ON/OFF

Example:

FASTB - Preamble & MID (ASCII)

0x30 00 00 - Payload

0x42 30 FF - Message checksum and Postamble

| Name     | Bytes | Scale | Example | Units | Description             |
|----------|-------|-------|---------|-------|-------------------------|
| MID      | 1     |       | 0x42    |       | ASCII B                 |
| ON/OFF   | 1     |       | 0x30    |       | 0x30 - OFF<br>0x31 - ON |
| Reserved | 2     |       | 0x00 00 |       |                         |

Payload length: 3 bytes

#### 5.2.21 Switch to NMEA Protocol

When a valid message is received, the parameters are stored in the non-volatile memory, and then the receiver restarts using the saved parameters.

Example:

FASTM - Preamble & MID (ASCII)

0x----- - Payload

0x-- -- FF - Message checksum and Postamble

| Name          | Bytes | Scale | Example | Units   | Description                |
|---------------|-------|-------|---------|---------|----------------------------|
| MID           | 1     |       | 0x4D    |         | ASCII M                    |
| Reserved      | 1     |       | 0x00    |         |                            |
| GGA Talker ID | 1     |       |         |         | NMEA Talker Identifier:    |
|               |       |       |         |         | P=GP, L=GL, N=GN, 0=OFF    |
| GGA rate      | 1     | *0.2  |         | seconds | Output rate of GGA message |
| GGA Checksum  | 1     |       |         |         | 0x00 - disable checksum    |
|               |       |       |         |         | 0x01 - enable checksum     |
| GLL Talker ID | 1     |       |         |         | NMEA Talker Identifier:    |
|               |       |       |         |         | P=GP, L=GL, N=GN, 0=OFF    |
| GLL rate      | 1     | *0.2  |         | seconds | Output rate of GLL message |
| GLL Checksum  | 1     |       |         |         | 0x00 - disable checksum    |
|               |       |       |         |         | 0x01 - enable checksum     |
| GSA Talker ID | 1     |       |         |         | NMEA Talker Identifier:    |
|               |       |       |         |         | P=GP, L=GL, N=GN, 0=OFF    |
| GSA rate      | 1     | *0.2  |         | seconds | Output rate of GSA message |
| GSA Checksum  | 1     |       |         |         | 0x00 - disable checksum    |
|               |       |       |         |         | 0x01 - enable checksum     |
| GSV Talker ID | 1     |       |         |         | NMEA Talker Identifier:    |
|               |       |       |         |         | P=GP, L=GL, N=GN, 0=OFF    |
| GSV rate      | 1     | *0.2  |         | seconds | Output rate of GSV message |
| GSV Checksum  | 1     |       |         |         | 0x00 - disable checksum    |
|               |       |       |         |         | 0x01 - enable checksum     |
| RMC Talker ID | 1     |       |         |         | NMEA Talker Identifier:    |
|               |       |       |         |         | P=GP, L=GL, N=GN, 0=OFF    |
| RMC rate      | 1     | *0.2  |         | seconds | Output rate of RMC message |
| RMC Checksum  | 1     |       |         |         | 0x00 - disable checksum    |
|               |       |       |         |         | 0x01 - enable checksum     |
| VTG Talker ID | 1     |       |         |         | NMEA Talker Identifier:    |
|               |       |       |         |         | P=GP, L=GL, N=GN, 0=OFF    |
| VTG rate      | 1     | *0.2  |         | seconds | Output rate of VTG message |
| VTG Checksum  | 1     |       |         |         | 0x00 - disable checksum    |
|               |       |       |         |         | 0x01 - enable checksum     |

Payload length: 19 bytes

#### **5.3 OUTPUT MESSAGES**

Table 7 lists TF50 binary output messages.

| MID (Hex) | ASCII | Name                     |  |
|-----------|-------|--------------------------|--|
| 0x76      | V     | Firmware version         |  |
| 0x72      | r     | Raw measurement data     |  |
| 0x78      | Х     | Measured position data   |  |
| 0x63      | С     | Clock status             |  |
| 0x61      | а     | GPS Almanac data         |  |
| 0x6C      | 1     | GLONASS Almanac data     |  |
| 0x69      | i     | GPS Ephemeris data       |  |
| 0x65      | e     | GLONASS Ephemeris data   |  |
| 0x70      | р     | Navigation parameters    |  |
| 0x62      | b     | Debug data               |  |
| 0x2B      | +     | Command acknowledgement  |  |
| 0x3F      | ?     | Command NAcknowledgement |  |

Table 7 TF50 binary output messages

#### 5.3.1 Firmware version

Response to poll.

Example:

FASTv - Preamble & MID (ASCII)

1.02 - Payload (ASCII)

0xD7 60 - Message checksum (hex)

| Name        | Bytes | Scale | Example | Units | Description   |
|-------------|-------|-------|---------|-------|---------------|
| MID         | 1     |       | 0x76    |       | ASCII v       |
| Reserved    | 1     |       | 0x00    |       |               |
| F/W version | 4     |       | 1.02    |       | 0x31 2E 30 32 |

Payload length: 5 bytes

#### 5.3.2 Raw measurement data

Example:

FASTr - Preamble & MID (ASCII)

---...- Payload (hex)

#### **TF50 GPS & GLONASS User's Manual**

| Name        | Bytes     | Scale  | Example | Units  | Description                        |
|-------------|-----------|--------|---------|--------|------------------------------------|
| MID         | 1         |        | 0x72    |        | ASCII r                            |
| PRN         | 1         |        | 0x21    |        | Satellite PRN number $(156)$ . For |
|             |           |        |         |        | GLONASS satellites this field      |
|             |           |        |         |        | content is $32 + SV$ slot number.  |
|             |           |        |         |        | The slot number information is     |
|             |           |        |         |        | derived from GLONASS Almanac.      |
|             |           |        |         |        | When TF50 has ephemeris data       |
|             |           |        |         |        | for a SV but no almanac, the PRN   |
|             |           |        |         |        | number is set to zero.             |
| Warning     | 1         |        |         |        | TBD                                |
| Carrier     | 1         |        | 0x0F    |        | GLONASS Carrier Number             |
| number      |           |        |         |        | (-7+12). For GPS satellites:       |
|             |           |        |         |        | 0xFF                               |
| Sat X       | 4, signed |        |         | cm     | Satellite ECEF coordinate X        |
| Sat Y       | 4, signed |        |         | cm     | Satellite ECEF coordinate Y        |
| Sat Z       | 4, signed |        |         | cm     | Satellite ECEF coordinate Z        |
| Channel     | 1         |        |         |        | unsigned char                      |
| number      |           |        |         |        |                                    |
| SNR         | 1         |        |         |        | Signal-to-noise ratio              |
| SigR        | 1         | *0.1   |         | meters | unsigned char                      |
|             |           |        |         |        | DLL residual                       |
| SigPhi      | 1         | *2-10  |         | cycles | unsigned char                      |
|             |           |        |         |        | PLL residual                       |
| Phase       | 6, signed | *2-12  |         | cycles | Full pseudo-doppler phase          |
| Pseudorange | 4         | *10-10 |         | S      |                                    |
| Doppler     | 4, signed | *10-4  |         | Hz     | Pseudo-doppler frequency           |
| Status      | 2         |        |         | bitmap | See Table 8                        |

Payload length: 35 bytes

 Table 8 Bit allocation in the "Status" word



u = 1 if data is used in navigation solution, u = 0 otherwise

E = 1 if ephemeris data is available, E = 0 otherwise

#### 5.3.3 Measured position data

Example:

FASTx - Preamble & MID (ASCII)

----- Payload (hex)

#### **TF50 GPS & GLONASS User's Manual**

| Name           | Bytes     | Scale | Example | Units  | Description                        |
|----------------|-----------|-------|---------|--------|------------------------------------|
| MID            | 1         |       | 0x78    |        | ASCII x                            |
| Reserved       | 1         |       | 0x00    |        |                                    |
| RcvTime        | 4         |       |         | ms     | Signal receive time in millisecond |
|                |           |       |         |        | of week of GPS time                |
| X-position     | 4, signed |       |         | cm     | Antenna ECEF coordinate X          |
| Y-position     | 4, signed |       |         | cm     | Antenna ECEF coordinate Y          |
| Z-position     | 4, signed |       |         | cm     | Antenna ECEF coordinate Z          |
| R-offset       | 4, signed |       |         | cm     | Receiver clock offset in           |
|                |           |       |         |        | centimeters                        |
| X-dot          | 2, signed | *32   |         | m/s    | Antenna X velocity                 |
| Y-dot          | 2, signed | *32   |         | m/s    | Antenna Y velocity                 |
| Z-dot          | 2, signed | *32   |         | m/s    | Antenna Z velocity                 |
| R-dot          | 2, signed | *16   |         | m/s    | Receiver clock shift               |
| DOP            | 1         | *8    |         |        | PDOP if position is obtained in 3D |
|                |           |       |         |        | solution, and HDOP otherwise       |
| GPS SVs in fix | 1         |       |         |        |                                    |
| GLONASS        | 1         |       |         |        |                                    |
| SVs in fix     |           |       |         |        |                                    |
| Mode           | 1         |       |         | Bitmap | See Table 9                        |

Payload length:

33 bytes

Table 9 Bit allocation in the "Mode" word

| Mode | Description                                                                      |
|------|----------------------------------------------------------------------------------|
| 0x00 | No navigation solution                                                           |
| 0x01 | 1 satellite solution                                                             |
| 0x02 | 2 satellite solution                                                             |
| 0x03 | 3 satellite solution (2D)                                                        |
| 0x04 | ≥4 satellite solution                                                            |
| 0x08 | Differential solution                                                            |
| 0x10 | Altitude hold mode                                                               |
| 0x20 | Clock hold mode                                                                  |
| 0x40 | Recent computed altitude was used for altitude hold mode, otherwise Alt_For_Hold |
| 0x80 | Reserved                                                                         |

#### 5.3.4 Clock status

Response to poll.

Example:

FASTc - Preamble & MID (ASCII)

----- Payload (hex)

| Name                  | Bytes     | Scale | Example | Units  | Description                                                                                                          |
|-----------------------|-----------|-------|---------|--------|----------------------------------------------------------------------------------------------------------------------|
| MID                   | 1         |       | 0x63    |        | ASCII c                                                                                                              |
| Reserved              | 1         |       | 0x00    |        |                                                                                                                      |
| wn                    | 2         |       |         |        | GPS week number                                                                                                      |
| RcvTime               | 4         |       |         | ms     | Signal receive time in millisecond of week of GPS time                                                               |
| R-offset              | 4, signed |       |         | cm     | Receiver clock offset in centimeters                                                                                 |
| R-dot                 | 2, signed | *16   |         | m/s    | Receiver clock shift                                                                                                 |
| GLONASS<br>Tshift     | 4, signed |       |         | cm     | GLONASS system time shift relative to GPS time                                                                       |
| Tshift alg            | 1         |       |         |        | Tshift fixing algorithm:<br>N (0x4D)= never fixed<br>$\sim$ (0x7E)= flexible <sup>(1)</sup><br>F(0x46)= always fixed |
| nSV                   | 1         |       |         |        | Number of SV to compute Tshift                                                                                       |
| Tshift priority       | 1         |       |         |        | Priority against altitude <sup>(2)</sup> :<br>T(0x54)= Tshift higher priority<br>A(0x41)= altitude higher priority   |
| Reserved              | 1         |       |         |        |                                                                                                                      |
| TDOP                  | 1         | *8    |         |        |                                                                                                                      |
| GPS SVs in fix        | 1         |       |         |        |                                                                                                                      |
| GLONASS<br>SVs in fix | 1         |       |         |        |                                                                                                                      |
| Mode                  | 1         |       |         | Bitmap | See Table 10                                                                                                         |

Payload length: 25 bytes

#### Notes:

- (1) Compute GLONASS system time shift if number of SV in solution is nSV or more, and hold it fixed if number of SV is nSV or less.
- (2) If the number of SV in solution is 4 or less, this parameter sets priority of

GLONASS system time shift fixing against altitude fixing.

| Mode | Description                                                             |
|------|-------------------------------------------------------------------------|
| 0x00 | No navigation solution                                                  |
| 0x01 | 1 satellite solution                                                    |
| 0x02 | 2 satellite solution                                                    |
| 0x03 | 3 satellite solution (2D)                                               |
| 0x04 | ≥4 satellite solution                                                   |
| 0x08 | Differential solution                                                   |
| 0x10 | Altitude hold mode                                                      |
| 0x20 | Clock hold mode                                                         |
| 0x40 | Recent computed was used for altitude hold mode, otherwise Alt_For_Hold |
| 0x80 | Reserved                                                                |

Table 10 Bit allocation in the "Mode" word

#### 5.3.5 GPS Almanac data

Response to poll.

Example:

FASTa - Preamble & MID (ASCII)

----- Payload (hex)

0x---- Message checksum (hex)

| Name          | Bytes     | Scale | Example | Units                 | Description                       |
|---------------|-----------|-------|---------|-----------------------|-----------------------------------|
| MID           | 1         |       | 0x61    |                       | ASCII a                           |
| PRN           | 1         |       |         |                       | Satellite PRN number (1-32)       |
|               |           |       |         |                       | 0x00 means "No data for requested |
|               |           |       |         |                       | PRN"                              |
| Wna           | 2         |       |         |                       | Almanac week number               |
| Wn            | 2         |       |         |                       | Receive time week number          |
| Tow           | 4         |       |         | seconds               | Second of GPS week (receive       |
|               |           |       |         |                       | time)                             |
| config&health | 2         |       |         |                       | See Table 11                      |
| Е             | 2         | *2-21 |         |                       | Eccentricity                      |
| Тоа           | 2         |       |         | seconds               | Almanac reference time            |
| iO            | 2, signed | *2-19 |         | semicycles            | Inclination angle                 |
| Omegadot      | 2, signed | *2-38 |         | semicycles/sec        | Rate of right ascension           |
| Roota         | 4         | *2-11 |         | meters <sup>1/2</sup> | Square root of semi-major axis    |
| omega0        | 4, signed | *2-23 |         | semicycles            | Longitude of ascending node       |
| Omega         | 4, signed | *2-23 |         | semicycles            | Argument of perigee               |
| m0            | 4, signed | *2-23 |         | semicycles            | Mean anomaly at reference time    |
| af0           | 2, signed | *2-20 |         | seconds               | Clock correction                  |
| af1           | 2, signed | *2-38 |         | sec/sec               | Clock correction                  |

Payload length: 39 bytes

| MSB | 6 |   |   |   |     |        |       |   |    |          |         |         |          |    | LSB |
|-----|---|---|---|---|-----|--------|-------|---|----|----------|---------|---------|----------|----|-----|
|     |   |   |   |   | SV  | config | (see  |   | 6  | Satellit | e datað | ksigna  | l health | 1  |     |
|     |   |   |   |   | ICD | GPS-2  | (00C) |   |    | (see     | ICD G   | PS - 20 | 00C)     |    |     |
| 1   | 2 | 3 | 4 | 5 | 6   | 7      | 8     | 9 | 10 | 11       | 12      | 13      | 14       | 15 | 16  |

#### 5.3.6 GLONASS Almanac data

Response to poll.

Example:

FASTI - Preamble & MID (ASCII)

----- Payload (hex)

| Name     | Bytes     | Scale | Example | Units                       | Description                                                          |
|----------|-----------|-------|---------|-----------------------------|----------------------------------------------------------------------|
| MID      | 1         |       | 0x6C    |                             | ASCII 1                                                              |
| SV ID    | 1         |       |         |                             | Satellite number (1-24)<br>0x00 means "No data for requested<br>PRN" |
| Litera   | 1, signed |       |         |                             | Satellite frequency number (-712)                                    |
| Health   | 1         |       |         |                             | Satellite health: $0x30 = bad$<br>0x31 = good                        |
| Reserved | 8         |       |         |                             | TBD                                                                  |
| Na       | 2         |       |         | days                        | Reference day number                                                 |
| Ln       | 4, signed | *2-20 |         | semicycles                  | Longitude of first ascension node                                    |
| Tln      | 4         | *2-5  |         | seconds                     | Reference time of the first                                          |
|          |           |       |         |                             | ascending node                                                       |
| Di       | 4, signed | *2-20 |         | semicycles                  | Correction to inclination                                            |
| DT       | 4, signed | *2-9  |         | s/orbit_period              | Correction to the mean value of                                      |
|          |           |       |         |                             | Draconian period                                                     |
| dTdot    | 1, signed | *2-14 |         | s/orbit_period <sup>2</sup> | Rate of change of Draconian                                          |
|          |           |       |         |                             | period                                                               |
| Reserved | 5         |       |         |                             | TBD                                                                  |
| e        | 2         | *2-20 |         |                             | Eccentricity                                                         |
| omega    | 2, signed | *2-15 |         | semicycles                  | Argument of perigee                                                  |
| tn       | 2, signed | *2-18 |         | seconds                     | Satellite time correction                                            |

Payload length: 41 bytes

### 5.3.7 GPS Ephemeris data

Response to poll.

Example:

FASTi - Preamble & MID (ASCII)

----- Payload (hex)

| Name        | Bytes     | Scale | Example | Units                 | Description                       |
|-------------|-----------|-------|---------|-----------------------|-----------------------------------|
| MID         | 1         |       | 0x69    |                       | ASCII i                           |
| PRN         | 1         |       |         |                       | Satellite PRN number (1-32)       |
|             |           |       |         |                       | 0x00 means "No data for requested |
|             |           |       |         |                       | PRN"                              |
| tow         | 4         |       |         | seconds               | Second of GPS week                |
| Reserved    | 2         |       |         |                       |                                   |
| wn          | 2         |       |         |                       | GPS week number                   |
| prec&health | 2         |       |         |                       | see Table 12 for bit allocation   |
| tgd         | 2, signed | *2-31 |         | seconds               | Group delay                       |
| iodc        | 2         |       |         |                       | Clock data issue                  |
| toc         | 2         | *24   |         | seconds               | Clock data reference time         |
| af2         | 2, signed | *2-55 |         | sec/sec <sup>2</sup>  | Clock correction                  |
| af1         | 2, signed | *2-43 |         | sec/sec               | Clock correction                  |
| af0         | 4, signed | *2-31 |         | seconds               | Clock correction                  |
| iode        | 2         |       |         |                       | Ephemeris data issue              |
| cuc         | 2, signed | *2-29 |         | radians               | Harmonic correction term          |
| cus         | 2, signed | *2-29 |         | radians               | Harmonic correction term          |
| crc         | 2, signed | *2-5  |         | meters                | Harmonic correction term          |
| crs         | 2, signed | *2-5  |         | meters                | Harmonic correction term          |
| cic         | 2, signed | *2-29 |         | radians               | Harmonic correction term          |
| cis         | 2, signed | *2-29 |         | radians               | Harmonic correction term          |
| deltan      | 2, signed | *2-43 |         | semicycles/sec        | Mean anomaly correction           |
| m0          | 4, signed | *2-31 |         | semicycles            | Mean anomaly at reference time    |
| e           | 4         | *2-33 |         |                       | Eccentricity                      |
| roota       | 4         | *2-19 |         | meters <sup>1/2</sup> | Square root of semi-major axis    |
| toe         | 2         | *24   |         | seconds               | Reference time for ephemeris      |
| omega0      | 4, signed | *2-31 |         | semicycles            | Longitude of ascending node       |
| i0          | 4, signed | *2-31 |         | semicycles            | Inclination angle                 |
| omega       | 4, signed | *2-31 |         | semicycles            | Argument of perigee               |
| omegadot    | 4, signed | *2-43 |         | semicycles/sec        | Rate of right ascension           |
| idot        | 2, signed | *2-43 |         | semicycles/sec        | Rate of inclination               |
| Valid       | 4         |       |         | bitmap                | Data valid flag:                  |
|             |           |       |         |                       | 0x80 00 00 00 - valid             |
|             |           |       |         |                       | otherwise - invalid               |

Payload length: 77 bytes

| Table 12 Bit allocation in the | "prec&health" word |
|--------------------------------|--------------------|
|--------------------------------|--------------------|

| MSB | 3 |      |       |   |   |      |       |         |      |    |      |          |         |      | LSB |
|-----|---|------|-------|---|---|------|-------|---------|------|----|------|----------|---------|------|-----|
|     |   | Rese | erved |   |   |      | U     | RA      |      |    |      | Satellit | e healt | h    |     |
|     |   |      |       |   |   | (see | ICD C | GPS - 2 | 00C) |    | (see | ICD G    | PS - 2  | 00C) |     |
| 1   | 2 | 3    | 4     | 5 | 6 | 7    | 8     | 9       | 10   | 11 | 12   | 13       | 14      | 15   | 16  |

#### 5.3.8 GLONASS Ephemeris data

Response to poll.

Example:

FASTe - Preamble & MID (ASCII)

---- payload (hex)

| Name        | Bytes     | Scale | Example | Units             | Description                              |
|-------------|-----------|-------|---------|-------------------|------------------------------------------|
| MID         | 1         |       | 0x65    |                   | ASCII e                                  |
| SV ID       | 1         |       |         |                   | Satellite number (1-24)                  |
|             |           |       |         |                   | 0x00 means "No data for requested        |
|             |           |       |         |                   | PRN"                                     |
| Litera      | 1, signed |       |         |                   | Satellite frequency number               |
|             |           |       |         |                   | (-712)                                   |
| Health      | 1         |       |         |                   | Satellite health: $0x30 = bad$           |
|             |           |       |         |                   | 0x31 = good                              |
| Flags       | 2         |       |         | bitmap            | Combined n1, n2, n3 flags in             |
|             |           |       |         |                   | accordance with GLONASS ICD.             |
|             |           |       |         |                   | See Table 13                             |
| Tb          | 2         | *15   |         | min               | Ephemeris data reference time            |
|             |           |       |         |                   | within the day expressed in              |
|             |           |       |         |                   | GLONASS time scale =                     |
|             |           | 11    |         |                   | UTC(SU)+ 3 hours                         |
| X           | 4, signed | *2-11 |         | kilometers        | Satellite PZ-90 X coordinate             |
| Y           | 4, signed | *2-11 |         | kilometers        | Satellite PZ-90 Y coordinate             |
| Z           | 4, signed | *2-11 |         | kilometers        | Satellite PZ-90 Z coordinate             |
| Xdot        | 4, signed | *2-20 |         | km/c              | Satellite PZ-90 velocity X'              |
| Ydot        | 4, signed | *2-20 |         | km/c              | Satellite PZ-90 velocity Y'              |
| Zdot        | 4, signed | *2-20 |         | km/c              | Satellite PZ-90 velocity Z'              |
| Xdotdot     | 2, signed | *2-30 |         | km/c <sup>2</sup> | Satellite perturbation acceleration      |
|             |           |       |         |                   | X"                                       |
| Ydotdot     | 2, signed | *2-30 |         | km/c <sup>2</sup> | Satellite perturbation acceleration      |
|             |           |       |         |                   | Y"                                       |
| Zdotdot     | 2, signed | *2-30 |         | km/c <sup>2</sup> | Satellite perturbation acceleration      |
|             |           |       |         |                   | Z"                                       |
| Tk          | 4         |       |         | seconds           | Start time (modulo one day) of the       |
|             |           |       |         |                   | 30-second frame in satellite time        |
|             |           |       |         |                   | scale tk from which the ephemeris        |
|             |           |       |         |                   | data is derived.                         |
| tn          | 4, signed | *2-30 |         | seconds           | Bias between satellite time scale        |
|             |           |       |         |                   | and GLONASS system time scale            |
|             |           |       |         |                   | at tb time moment                        |
| Tc          | 4, signed | *2-27 |         | seconds           | Bias between GLONASS system              |
|             |           |       |         |                   | time scale and $UTC + 3$ hours time      |
|             |           |       |         |                   | scale, $\tau_c$ . The same as in Almanac |
|             |           |       |         |                   | data.                                    |
| Gn          | 2, signed | *2-40 |         | dimensionless     | Frequency offset of the on-board         |
|             |           |       |         |                   | frequency standard at tb time            |
|             |           |       |         |                   | moment                                   |
| Dn          | 2         |       |         | days              | Age of ephemeris (interval from          |
|             |           |       |         |                   | the moment when ephemeris data           |
|             |           |       |         |                   | was uploaded to tb time moment           |
| Reserved    | 4         |       |         |                   |                                          |
| Davload lon | .1        | autor |         |                   |                                          |

Payload length: 57 bytes

Table 13 Bit allocation in the "flags" word



#### 5.3.9 Navigation parameters

Response to poll.

Example:

FASTp - Preamble & MID (ASCII)

------ Payload (ASCII)

0x---- Message checksum (hex)

| Name            | Bytes     | Scale | Example | Units   | Description                                           |
|-----------------|-----------|-------|---------|---------|-------------------------------------------------------|
| MID             | 1         |       | 0x70    |         | ASCII p                                               |
| Pos Mode        | 1         |       |         | bitmap  | Position fix mode control, see                        |
|                 |           |       |         |         | Table 14                                              |
| Alt_For_Hold    | 2         |       |         | meters  |                                                       |
| Clock hold      | 1         |       |         | seconds | Time interval during which the                        |
| timeout         |           |       |         |         | clock bias extrapolation is                           |
|                 |           |       |         |         | allowable                                             |
| Hold priorities | 1         |       |         |         | Priority against altitude and Tshift <sup>(1)</sup> : |
|                 |           |       |         |         | C(0x43) = clock priority                              |
|                 |           |       |         |         | A(0x41) = altitude priority                           |
| GLONASS         | 4, signed |       |         | cm      | GLONASS system time shift                             |
| Tshift          | _         |       |         |         | (divided by speed of light) relative                  |
|                 |           |       |         |         | to GPS time                                           |
| Tshift alg      | 1         |       |         |         | Tshift fixing algorithm:                              |
|                 |           |       |         |         | N ( $0x4D$ )= never fixed                             |
|                 |           |       |         |         | ~ $(0x7E)$ = flexible <sup>(2)</sup>                  |
|                 |           |       |         |         | F(0x46)= always fixed                                 |
| nSV             | 1         |       |         |         | Number of SV to compute Tshift                        |
| Tshift priority | 1         |       |         |         | Priority against altitude <sup>(3)</sup> :            |
|                 |           |       |         |         | T(0x54)= Tshift higher priority                       |
|                 |           |       |         |         | A(0x41)= altitude higher priority                     |
| Elevation       | 1         |       |         | degrees | Elevation mask for Navigation                         |
| mask            |           |       |         |         | solution                                              |
| SNR mask        | 1         |       |         |         | SNR mask for Navigation solution                      |
| PDOP mask       | 1         | *2-3  |         |         | PDOP mask for Navigation                              |
| -               |           | 2     |         |         | solution <sup>(1)</sup>                               |
| HDOP mask       | 1         | *2-3  |         |         | HDOP mask for Navigation                              |
| -               |           |       |         |         | solution <sup>(1)</sup>                               |
| Update_rate     | 1         | *10   |         | seconds | Output position update rate                           |
| Reserved        | 4         |       |         |         | TBD                                                   |

Payload length: 21 bytes

- If the number of SV in solution is 4 or less, this parameter sets priority of clock rate fixing against altitude fixing or GLONASS system time shift fixing, see also Note (3).
- (2) Compute GLONASS system time shift if number of SV in solution is nSV or more, and hold it fixed if number of SV is nSV or less.
- (3) If the number of SV in solution is 4 or less, this parameter sets priority of GLONASS system time shift fixing against altitude fixing.

Table 14 Bit allocation in the "Pos Mode" word

| Mode | Description                                                                          |
|------|--------------------------------------------------------------------------------------|
| 0x00 | Only 3D solution allowable                                                           |
| 0x01 | 1 satellite solution allowable                                                       |
| 0x02 | 2 satellite solution allowable                                                       |
| 0x03 | 3 satellite solution (2D) allowable                                                  |
| 0x04 | 4 satellite solution (3D) allowable                                                  |
| 0x08 | Reserved                                                                             |
| 0x10 | Altitude hold mode allowable                                                         |
| 0x20 | Clock hold mode allowable                                                            |
| 0x40 | Recent computed altitude must be used for altitude hold mode, otherwise Alt_For_Hold |
| 0x80 | Reserved                                                                             |

#### 5.3.10 Command acknowledgement

Example:

FAST+ -Preamble & MID (ASCII)

V- Payload (ASCII)

0x2B 56 - Message checksum (hex)

| Name    | Bytes | Scale | Example   | Units | Description                                     |
|---------|-------|-------|-----------|-------|-------------------------------------------------|
| MID     | 1     |       | 0x2B      |       | ASCII +                                         |
| Ack. ID | 1     |       | V (ASCII) |       | "Poll F/W version" command has been received OK |

Payload length: 1 byte

#### 5.3.11 CommandNAcknowledgement

Example: FAST? Preamble & MID (ASCII) 0x56- Payload 0x3F 56 - Message checksum (hex)

| Bytes | Scale            | Example      | Units  | Description                                                |
|-------|------------------|--------------|--------|------------------------------------------------------------|
| 1     |                  | 0x3F         |        | ASCII ?                                                    |
| 1     |                  | V (ASCII)    |        | "Poll F/W version" command has been received with an error |
|       | <b>Bytes</b> 1 1 | BytesScale11 | 1 0x3F | 1 0x3F                                                     |

Payload length: 1 byte

#### 6. NMEA PROTOCOL SPECIFICATION

#### 6.1 GENERAL

This Protocol defines the requirements for establishing a communication interface between TF50 navigation receiver and external equipment via communication Port #1 in the NMEA-0183 format. The NMEA-0183 format is defined by the National Marine Electronics Association (NMEA) Standard for Interfacing Marine Electronic Devices, Version 2.30, March 1, 1998. TF50 can receive input messages from the external equipment, and can send output messages to the external equipment.

#### 6.2 OUTPUT MESSAGES

Table 1 contains list of TF50 NMEA output messages.

| DATA                                         | Talker Identifier | Sentence<br>Formatter | Туре |
|----------------------------------------------|-------------------|-----------------------|------|
| Position Fix Data                            | GP                | GGA                   | А    |
| Geographic Position –<br>Latitude/Longitude  | GP or GN          | GLL                   | А    |
| DOP and Active<br>Satellites                 | GN                | GSA                   | А    |
| Satellites In View                           | GP and GN         | GSV                   | A, Q |
| Recommended<br>Minimum Specific<br>GNSS Data | GP or GN          | RMC                   | А    |
| Track Made Good And<br>Ground Speed          | GP(default) or GN | VTG                   | А    |

 Table 15
 TF50 NMEA output message

Column "Type" of Table 1 defines type of output data. Character "A" means that output data are generated automatically if appropriate Character "Q" means that data are available on receiver output in response to correspondent query command.

#### 6.2.1 GGA – Position Fix Data

Time, position and fix related data for a GPS receiver.



#### Notes:

1. GPS Quality Indicator: 0 = Fix not available or invalid

- 1 = GPS SPS Mode, fix valid
- 2 = Differential GPS, SPS Mode, fix valid
- 3 = GPS PPS Mode, fix valid
- 4 = Real Time Kinematic. System used in RTK mode with fixed integers
- 5 = Float RTK. Satellite system used in RTK mode, floating integers
- 6 = Estimated (dead reckoning) Mode
- 7 = Manual Input Mode
- 8 = Simulator Mode

The GPS Quality Indicator field shall not be a null field.

2. Time in seconds since last SC104 Type 1 or 9 update, null field when DGPS is not used.

#### 6.2.2 GLL – Geographic Position Lat/Lon

Latitude and Longitude of vessel position, time of position fix and status.

#### \$--GLL, llll.ll, a, yyyyy, yy, a, hhmmss.ss, A, a\*hh<CR><LF>



#### Notes:

1. Positioning system Mode Indicator: A = Autonomous mode

D = Differential mode

- E = Estimated (dead reckoning) mode
- M = Manual input mode

S = Simulator mode

- N = Data not valid
- The positioning system Mode Indicator field supplements the positioning system Status field, the Status field shall be set to V = Invalid for all values of Indicator mode except for A = Autonomous and D = Differential. The positioning system Mode Indicator and Status field shall not be null field.

#### 6.2.3 GSA – DOP and Active Satellites

GNSS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentence, and DOP values.

If only GPS or GLONASS is used for the reported position solution the DOP values pertain to the individual system. If GPS and GLONASS are combined to obtain the reported position solution, multiple GSA messages are produced, one with the GPS satellites, another with the GLONASS satellites. Each of these GSA messages shall have talker ID GN, to indicate that the satellites are used in a combined solution and each shall have the PDOP, HDOP and VDOP for the combined satellites used in position.





1. Satellite ID numbers. To avoid possible confusion caused by repetition of satellite ID numbers when using multiple satellite systems, the following convention has been adopted:

a) GPS satellites are identified by their PRN numbers, which range from 1 to 32.

b) The WAAS system has reserved numbers 33 - 64 to identify its satellites.

c) The numbers 65 – 96 are used for GLONASS satellites. GLONASS satellites are identified by 64 + satellites slot number. The slot number are 1 through 24 for the full GLONASS constellation of 24 satellites, this dives a range of 65 through 88. The number 89 through 96 are available if slot number above 24 are allocated to on-orbit spares.

#### 6.2.4 GSV - Satellites In View

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites maximum per transmission, additional satellite data sent in second or third message. Total number of message being transmitted and the number of message being transmitted are indicated in the first two fields.

If multiple GPS and GLONASS satellites are in view, use separate GSV sentences with talker ID GP to show the GPS satellites in view and talker GL to show the GLONASS satellites in view. The GN identifier shall not be used with this sentence.



1. Satellite information may require the transmission of multiple messages. The first field specifies the total number of messages, minimum value 1. The second field identifies the order of these messages (messages number), minimum value 1.

2. A variable number of "Satellite ID – Elevation – Azimuth – SNR" sets are allowed up to a maximum of four sets per messages. Null fields are not required for unused sets when less than four sets are transmitted.

3. Satellite ID number. To avoid possible confusion caused by repetition of satellite ID numbers when using multiple satellite systems, the following convention has been adopted:

a) GPS satellites are identified by their PRN numbers, which range from 1 to 32.

b) The WAAS systems has reserved numbers 33 – 64 to identify its satellites.

d) The numbers 65 – 96 are used for GLONASS satellites. GLONASS satellites are identified by 64 + satellites slot number. The slot number are 1 through 24 for the full GLONASS constellation of 24 satellites, this dives a range of 65 through 88. The number 89 through 96 are available if slot number above 24 are allocated to on-orbit spares.

Receiver updates satellites in view data one time per minute.

#### 6.2.5 RMC – Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver. All data fields must be provided, null fields used only when data is temporarily unavailable.





1. TF50 does not support magnetic variation.

2. Positioning system Mode Indicator: A = Autonomous mode

D = Differential mode E = Estimated (dead reckoning) mode M = Manual input mode S = Simulator mode N = Data not valid

3. The positioning system Mode Indicator field supplements the positioning system Status field, the Status field shall be set to V = Invalid for all values of Indicator mode except for A = Autonomous and D = Differential. The positioning system Mode Indicator and Status field shall not be null fields.

#### 6.2.6 VTG – Track Made Good And Ground Speed

The actual course and speed relative to the ground.

\$--VTG,x.x,T,x.x,M,x.x,N,x.x,K,a\*hh<CR><LF>



1. Positioning system Mode Indicator:

A = Autonomous mode

D = Differential mode

E = Estimated (dead reckoning) mode

M = Manual input mode

S = Simulator mode

N = Data not valid

2. TF50 does not support magnetic variation. The x.x field is always

empty.

The positioning system Mode Indicator field shall not be a null field.

#### **6.3 INPUT MESSAGES**

NMEA input messages are provided to allow to control TF50 receiver while in NMEA protocol mode. TF50 receiver may be put into NMEA mode by sending the TF50 Binary Protocol message "Switch to NMEA Protocol". If the receiver is in TF50 Binary mode, all NMEA messages are ignored. Once the receiver is put into NMEA mode, the following transport-level message may be used to command the receiver:

| Start Sequence | Payload           | Checksum         | End Sequence                              |
|----------------|-------------------|------------------|-------------------------------------------|
| $PFST, ^1,$    | Data <sup>2</sup> | *CS <sup>3</sup> | $\langle CR \rangle \langle LF \rangle^4$ |

#### Notes:

- 1. Message Identifier (MID) consists of three alpha-numeric characters.
- 2. Message specific data: <data>,<data>,...,<data>
- 3. CS is one byte checksum as defined in the NMEA specification. Checksum field must be fill in correctly for each input messages.
- 4. Each message is terminated using Carriage Return (CR) and Line Feed (LF) symbols which is \r\n which is hex 0D0A

Table 16 lists TF50 NMEA input messages.

| Message                   | MID | Description                                       |
|---------------------------|-----|---------------------------------------------------|
| XYZ Initialization        | XYZ | Approximate user position, time, etc.             |
| LLA Initialization        | LLA | Approximate user position, time, etc.             |
| DGPS Control              | DIF | Set Port B parameters for DGPS input/output       |
| Rate Control              | RAT | Set output message rate                           |
| Store Position            | STP | Store last user position into non-volatile memory |
| Store Almanacs            | STA | Store almanacs into non-volatile memory           |
| Switch to Binary Protocol | BIN | Switch to TF50 Binary Protocol                    |

Table 16 TF50 NMEA input messages

#### 6.3.1 XYZ Initialization

This command is used to initialize TF50 receiver by providing approximate user position in ECEF coordinates, clock offset and time. Correct initialization parameters enable the receiver to acquire signals quickly.

Example:

\$PFST,XYZ,2845800,2196900,5251000,8000,76,223500,3\*CS

| Name               | Example     | Unit    | Description                  |
|--------------------|-------------|---------|------------------------------|
| Start Sequence     | \$PFST,XYZ, |         |                              |
| ECEF X             | 2845800     | Meters  | X coordinate                 |
| ECEF Y             | 2196900     | Meters  | Y coordinate                 |
| ECEF Z             | 5251000     | Meters  | Z coordinate                 |
| Clock offset       | 8000        | Hz      | Clock Offset of the receiver |
| Week number        | 76          |         | GPS Week Number              |
| Time of week       | 223500      | Seconds | GPS Time Of Week             |
| Start Mode         | 3           |         | See Table 17                 |
| Checksum           |             |         |                              |
| <cr><lf></lf></cr> |             |         | End Sequence                 |

Note: If a data field is empty, the corresponding parameter will not be changed.

Table 17 Start Mode

| Hex  | Description                  |  |
|------|------------------------------|--|
| 0x01 | Hot Start - all data valid   |  |
| 0x02 | Warm Start - clear ephemeris |  |
| 0x03 | Cold Start                   |  |

#### 6.3.2 LLA Initialization

This command is used to initialize TF50 receiver by providing approximate user position in Latitude/Longitude/Altitude coordinates, clock offset and time. Correct initialization parameters enable the receiver to acquire signals quickly.

Example:

\$PFST,LLA,55.7,37.6,200,8000,76,223500,3\*CS

#### TF50 GPS & GLONASS User's Manual

| Name               | Example     | Unit    | Description                   |
|--------------------|-------------|---------|-------------------------------|
| Start Sequence     | \$PFST,LLA, |         |                               |
| Lat                | 55.7        | Degrees | Latitude (range -90 to 90)    |
| Lon                | 37.6        | Degrees | Longitude (range -180 to 180) |
| Alt                | 200         | Meters  | Altitude                      |
| Clock offset       | 8000        | Hz      | Clock Offset of the receiver  |
| Week number        | 76          |         | GPS Week Number               |
| Time of week       | 223500      | Seconds | GPS Time Of Week              |
| Start Mode         | 3           |         | See Table 18                  |
| Checksum           |             |         |                               |
| <cr><lf></lf></cr> |             |         | End Sequence                  |

Note: If a data field is empty, the corresponding parameter will not be changed.

Table 18 Start Mode

| Hex  | Description                  |  |  |
|------|------------------------------|--|--|
| 0x01 | Hot Start - all data valid   |  |  |
| 0x02 | Warm Start - clear ephemeris |  |  |
| 0x03 | Cold Start                   |  |  |

#### 6.3.3 DGPS Control

This command is used to control the serial port used to send or receive RTCM differential corrections. When a valid message is received, the parameters are stored in the non-volatile memory, and then the receiver restarts using the saved parameters.

Example:

\$PFST,DIF,IN,9600,8,1,0\*CS

| Name               | Example     | Unit | Description                                                      |
|--------------------|-------------|------|------------------------------------------------------------------|
| Start Sequence     | \$PFST,DIF, |      |                                                                  |
| Input/Output       | IN          |      | OUT - if the receiver is used as differential correction station |
|                    |             |      | IN - if the receiver set to operate in differential mode         |
| Baud               | 9600        |      | Baud rate                                                        |
| DataBits           | 8           |      | 8 or 7                                                           |
| StopBits           | 1           |      | 1 or 0                                                           |
| Parity             | 0           |      | 0=None, 1=Odd, 2=Even                                            |
| Checksum           |             |      |                                                                  |
| <cr><lf></lf></cr> |             |      | End Sequence                                                     |

#### 6.3.4 Rate Control

This command is used to control the output of standard NMEA messages.

Example:

\$PFST,RAT,GN,VTG,DIS,1000,ECS\*CS

| Name               | Example     | Unit | Description                                     |
|--------------------|-------------|------|-------------------------------------------------|
| Start Sequence     | \$PFST,RAT, |      |                                                 |
| Talker             | GN          |      | Talker Identifier: GP, GL or GN                 |
| Message            | VTG         |      | Output message                                  |
| Mode               | DIS         |      | ENA - enabled                                   |
|                    |             |      | DIS - disabled                                  |
|                    |             |      | QRY - query command (for GSV only)              |
| Rate               | 1000        | ms   | Output rate. Will be rounded in the receiver to |
|                    |             |      | nearest multiple of 200 ms                      |
| Checksum enable    | ECS         |      | ECS - enable checksum                           |
|                    |             |      | DCS - disable checksum                          |
| Checksum           |             |      |                                                 |
| <cr><lf></lf></cr> |             |      | End Sequence                                    |

#### 6.3.5 Store Position

This command is used to store last computed user position and receiver clock offset into non-volatile memory.

Example:

\$PFST,STP,POSITION\*CS

| Name               | Example     | Unit | Description     |
|--------------------|-------------|------|-----------------|
| Start Sequence     | \$PFST,STP, |      |                 |
| Marker             | POSITION    |      | String constant |
| Checksum           |             |      |                 |
| <cr><lf></lf></cr> |             |      | End Sequence    |

#### 6.3.6 Store Almanacs

This command is used to store last received almanacs into non-volatile memory.

Example:

\$PFST,STA,ALMANACS\*CS

| Name               | Example     | Unit | Description     |
|--------------------|-------------|------|-----------------|
| Start Sequence     | \$PFST,STA, |      |                 |
| Marker             | ALMANACS    |      | String constant |
| Checksum           |             |      |                 |
| <cr><lf></lf></cr> |             |      | End Sequence    |

#### 6.3.7 Switch to Binary Protocol

This command is used to control the serial port used to send or receive RTCM differential corrections. When a valid message is received, the parameters are stored in the non-volatile memory, and then the receiver restarts using the saved parameters.

```
Example:
$PFST,BIN,115200,8,1,0*CS
```

#### TF50 GPS & GLONASS User's Manual

| Name               | Example     | Unit | Description           |
|--------------------|-------------|------|-----------------------|
| Start Sequence     | \$PFST,BIN, |      |                       |
| Baud               | 115200      |      | Baud rate             |
| DataBits           | 8           |      | 8 or 7                |
| StopBits           | 1           |      | 1 or 0                |
| Parity             | 0           |      | 0=None, 1=Odd, 2=Even |
| Checksum           |             |      |                       |
| <cr><lf></lf></cr> |             |      | End Sequence          |