Open|SpeedShop User Manual

February 4, 2014
Version 2.1

Contributions from Krell Institute, LANL, LLNL, SNL

Table of Contents

Why do I need Performance AnalySis? ... 5
1 What is Performance AnalysSiS?......mmmmmssssssssssssssssssssssssssens 8
2 How to use Performance AnalysSiS.....sssssssssssssssssssssssssssss 9
2.1 Sequential Code Performance ANalySiS.......mmssssssssssssssssssssss 10
2.2 Shared Memory APPliCAtiONS ... ssssssssaes 10
2.3 Message Passing APPlIiCAtioNs ... 11
3 Introduction to Open|SpeedShop ... ——————— 12
3.1 Basic Concepts, Interface, Workflow ... 12
3.1.1 CoMMON TEIMINOIOZY -.ceuceueerrerreerereereeseessesseessesssssesssessssssesssssesssssss st ssssssssssssssssssssssessssasessnes 13
3.1.2 Concept of an EXPEriMeNTt ... sssssssssssssssssssssssssssssssasssanes 14
3.2 Performance EXperiments OVEIVIEWoiimssssmsssmsssssssssssssassssssssssssssssssssasasass 14
3.2.1 Individual Experiment DeSCriptionsceeeeeeseessmersmeessessseessesssesssessssssseesssssssesssessseeens 14
3.2.3 Sampling Experiments DeSCIiPLiONScueerreenerseeserseessesssessessessesssesssessessessssssessesssessees 16
3.2.4 Tracing Experiments DeSCriptiOns ... ssssssssssssssesseses 16
3.2.5 Paralle]l EXPeriment SUPPOTt. .. eeerseereessesssessseesseesssesssessssessessssssssssssessssssssssssesssssseeens 17
3.3 Running an EXperiment ... 17
4 How to Gather and Understand Profiles ..., 23
4.1 Program Counter Sampling EXperiment........sssssss 23
4.2 Call Path Profiling (usertime) EXperimentcooummmmmsssimssmsmsssmsmsssssssssssassssnss 25
5 How to Relate Data to Architectural Properties........cmmmmmmmmsmmmm. 28
5.1 Hardware Counter Sampling (hwcsamp) EXperiment........osssssss 30
5.1.1 Hardware Counter Sampling (hwcsamp) experiment performance data gathering
... 33
5.1.1.1 Hardware Counter Sampling (hwcsamp) experiment parameters........oeeseesseerseeens 33

5.1.2 Hardware Counter Sampling (hwcsamp) experiment performance data viewing
WITR GUI oottt seessessesess s sssss s ss st s s ssss s s s sessses s sssnsssnss s sssnsssnessnsssnssasesanes 33
5.1.2.1 Getting the PAPI counter as the GUIs Source Annotation Metricenenneeneessneens 33
5.1.2.2 Viewing Hardware Counter Sampling Data with the GUI ... 35

5.1.3 Hardware Counter Sampling (hwcsamp) experiment performance data viewing
... 36
5.2 Hardware Counter Experiment (AWc) ... 39

5.2.1 Hardware Counter Threshold (hwc) experiment performance data gathering....40
5.2.2 Hardware Counter Threshold (hwc) experiment performance data viewing with

GU e eeeeeeeeteesseesse s s s s s s8R RS8R RS ES 40
5.2.3 Hardware Counter Threshold (hwc) experiment performance data viewing with

0) PPN 42

6 Hardware Performance Counters and Their Use.........commmmmmmn. 43

6.1 Using the Hardware counter experiments to find bottleneckscococornneneresennns 45

6.1.1 How to find memory bandwidth bottlenecks using O|SS hwc experiments............ 45

6.1.2 How to find memory cache usage issues using O|SS hwc experimentsc.ccecu.c.. 45

6.1.3 How to find load/store imbalance using O|SS hwc experiments..........coueereenseenees 45

7 1/0 Tracing and I/O Profiling.......c.cumsssssssssssss s 45

7.1 OOCORE EXQMPIe....iiisciirnsismsssssmsss s s ssassssssasssssssssases 46

7.2 Lustre Striping COMMANAS....ccumsmsmssssmsmssassssssssssssssssssssssasass 47

7.3 Open|SpeedShop I/0 Tracing and I/0 Profiling.........csns 48

7.3 Open|SpeedShop I/0 Tracing General USAgeouusmsmmmsmsmsmsssmsmssssssssssssssssssssssssssasass 52
7.3.11/0 Base Tracing (i0) eXperiment.......ccuummmmmssssssssssssssssssssasasas 52
7.3.1.1 1/0 Base Tracing (io) experiment performance data gathering..........een. 52
7.3.1.2 1/0 Base Tracing (io) experiment performance data viewing with CLI................ 52
7.3.1.31/0 Base Tracing (io) experiment performance data viewing with GUI 53
7.3.2 1/0 Extended Tracing (10t) eXperiment..... s 53
7.3.2.11/0 Extended Tracing (iot) experiment performance data gathering........c..cc....... 53
7.3.2.2 1/0 Extended Tracing (iot) experiment performance data viewing with GUI....53
7.3.2.31/0 Extended Tracing (iot) experiment performance data viewing with CLI.....56
7.4 Open|SpeedShop Lightweight I/0 Profiling General Usageocuuumsmsmsmsmsmsnsnsasans 57
7.4.11/0 Profiling (iop) experiment performance data gathering........coneenreeseeseenn. 57
7.4.2 1/0 Profiling (iop) experiment performance data viewing with GUIcccccesvuucnn. 57
7.4.31/0 Profiling (iop) experiment performance data viewing with CLI......cccccovuenreuneee 59
8 Applying Experiments to Parallel COUEes ... 62
8.1 MPI Tracing EXpPeriment ... sssssssssssssssssssssssssssssses 64
8.1.1 MPI Tracing Experiments performance data gathering.......cccooneeneeneeneeenseeseesseeens 73
8.1.2 MPI Tracing Experiments performance data viewing with GUI.......cccooeenmeenreemreceneenn. 73
8.1.3 MPI Tracing Experiments performance data viewing with CLIL.......ccouuonmienrrerecnecnn. 73
8.2 Threading Analysis SECHION ... ————————— 73
8.2.1 Threading Specific Experiment (pthreads)........cmn, 75
8.2.1.1 Threading Specific (pthreads) experiment performance data gathering............. 76
8.2.1.2 Threading Specific (pthreads) experiment performance data viewing with GUI
... 76
8.2.1.3 Threading Specific (pthreads) experiment performance data viewing with CLI
... 76
8.2 NVIDIA CUDA ANalysis SECHIONcccocrmrmsmsmsmsnsssssssmsssssssssssssmsssaes 77
8.3.1 NVIDIA CUDA Tracing (cuda) experiment performance data gathering................. 77

8.3.2 NVIDIA CUDA Tracing (cuda) experiment performance data viewing with GUI..77
8.3.3 NVIDIA CUDA Tracing (cuda) experiment performance data viewing with CLI...78

9 Memory Analysis TeChNIQUEScvcummmmsmmsmsmmsmsmmsssmsmssassssas 80
9.1 Memory Analysis Tracing (mem) experiment performance data gathering..... 80
9.2 Memory Analysis Tracing (mem) experiment performance data viewing with
00 0 80
9.3 Memory Analysis Tracing (mem) experiment performance data viewing with
60 81

10 Advanced Analysis TEChNIQUEScccucmsmsmsmmsmssssmsmssmssssmsss 83
10.1 Comparison Script Argument DeSCription........ouimssssssssssasassss 84

10.1.1 osscompare MetriC argUMENL ... 84
10.1.2 osscompare rows Of OULPUL ArGUMENTccereueeeeceeeereressseesssessesssessseesssesssesssesssessssssssees 85
10.1.3 osscompare OUtpUt NAME ATGUIMEIIL.ccureurerreurerresseeressessessessessesssssesssssssssssssssesssssessessessenes 85
10.1.4 osscompare view type or granularity argument. ... eeseesseessessessseessseenees 86

11 Open|SpeedShop User INterfaces......cummmmmmsmnmsmsmsssssssssssssssssssssssssssssessens 86

11.1 Command Line Interface BasiCs.......cmmmmmmmmmssssssssssns 86

11.1.2 CLI Metric Expressions and Derived TYPes. .. nenenseeneesessssseesessesssesssesseenns 88
11.2 CLI Batch SCripting ... 89
11.3 Python SCriPtiNg ... ssssassssssssssses 920
11.4 MPI_PCONELIOl SUPPOTT cueeeeesesesssscsssssssssssssmsssssssss s ssssssssssssssssssssssssssssssssssssssasasasssssssss 90

11.5 Graphical User Interface BasiCS......ummmmmmmmmssssisisssssssssssssssssssssssssssasasssssssss 20

11.5.1 Basic Initial View - Default VIEeW.......connnnsnnnssssssssssssssssssssssssssanas 90
11.5.1.7 ICON TOOIBAT w.ceureeureeeerueessseseesssesssessssessssssssesssse s sss s s s sss e bbb s b e s st 91

11.5.1.2 View/Display Choice SEIECLIONcccvveerienrrereeereereiseisssssessees 92

12.1 Cray and BIUe GENE ... ssssssssssssssssssssssssssssssssssssssasasasssssssss 94
12.1 Cray Specific Static aprun Information ... ————— 95
13 Setup and Build for Open|SpeedShop......counnmnnnmnns. 96
13.1 Open|SpeedShop Cluster Install ... ——————— 96
13.2 Open|SpeedShop Blue Gene Platform Install.........ciinnnsmssn. 97
13.3 Open|SpeedShop Cray Platform Install..........covinssssssssss 97
13.4 Execution Runtime Environment SEtup ... 97
13.4.1 Example MOdUle file ... ssssssssssssssssssssssssans 97
13.4.2 EXample SOfteNV fIle ... ssssssssssssssssssssssssssssasssssssssans 98
13.4.3 EXample dOtKit file ... secssseesssssesssesssssssesssesssesssesssssssssssesssessssees 98

14 Additional Information and Documentation SOUICEScoumrmmsmssssssnsssasanas 99
14.1 Final EXperiment OVerVIEW.......comsmsmssasasssssssss 99
14.2 Additional DoCUMENTAtIONcuicsmsmsmsmsismsmsmsmsassssssssssssssssssssssssssssss s sssssssasasasasssssss 100
15 Convenience Script Basic Usage Reference Information.........ccovvrsesnsesnnsnnas 101
15.1 Suggested WOTrKfloW ... ssssssssssssssssssss 101
15.2 CONVENIENCE SCTIPLS v s s sasassssss e ses 101
15.3 Report and Database Creation ... 101
15.4 osscompare: Compare Database Files ... 101
15.5 osspcsamp: Program Counter EXperiment ... 102
15.6 ossusertime: Call Path EXperiment ... 102
15.7 osshwc, osshwctime: HWC EXperiments ... 103
15.8 osshwcsamp: HWC EXPeriment ...ssnsmmsssssssssssssssssssssssssssssssassssssssess 103
15.9 05510, 0SSiot: /O EXPErimentscccssssssmssssssmsmmsssssssssssssssssssssssssssssssssassssssssess 103
15.10 ossmpi, ossmpit: MPI EXperiments ... 104
15.11 ossfpe: FP Exception EXperiment ... 104
15.12 ossmem: Memory Analysis EXperiment..........un 105
15.13 osspthread: POSIX Thread Analysis EXperiment.........mn. 105
15.14 osscuda: NVIDIA CUDA Tracing EXperiment ... 105
15.15 Key Environment Variables.......cussssssssssssssssasssssss 105
16 Hybrid (openMP and MPI) Performance Analysis........ccummmmmmmmnns 107
16.1 Focus on individual Rank to get Load Balance for Underlying Threads.......... 108
16.2 Clearing Focus on individual Rank to get bank to default behavior.................. 110

Why do | need Performance Analysis?

! Where are the bottlenecks in my program? \

My parallel application works fine on 10
nodes but on 1000 nodes it slows to a

[s my parallel program

scalable?

I[s my program optimized for running on
this new system?

Are these new libraries faster than the old
R

All these questions can be answered by using Performance Analysis.

About this Manual

This manual will provide you with a basic understanding of performance analysis.
You will learn how to plan and run Open|SpeedShop performance experiments on
your applications.

This manual intends to give users an understanding of the general experiments
available in Open|SpeedShop that can be used to analyze application code. There is
extensive information provided about how to use the Open|SpeedShop experiments
and how to view the performance information in informative ways. Hopefully this
will allow users to start optimizing and analyzing the performance of application
code.

Open|SpeedShop is a community effort by The Krell Institute with current direct
funding from the Department of Energy's National Nuclear Security Administration
(DOE NNSA). It builds on a broad list of community provided infrastructures,
notably the Paradyn Project's Dyninst APl and MRNet (Multicast Reduction
Network) from the University of Wisconsin at Madison, the Libmonitor profiling tool,
and the Performance Application Programming Interface (PAPI) from the University
of Tennessee at Knoxville. Open|SpeedShop is an open source multi platform Linux
performance tool which is targeted to support performance analysis of applications
running on both single node and large scale 1A64, IA32, EM64T, AMD64, PPC, Blue
Gene and Cray XT/XE/XK platforms.

Open|SpeedShop is explicitly designed with usability in mind and is for application
developers and computer scientists. The base functionality includes:
Sampling Experiments

Support for Call Stack Analysis

Hardware Performance Counters

MPI Profiling and Tracing

/0 Profiling and Tracing

Floating Point Exception Analysis

Memory Function Tracing

POSIX Thread Function Tracing

NVIDIA CUDA Event Tracing

In addition, Open|SpeedShop is designed to be modular and extensible. It supports
several levels of plug-ins, which allow users to add their own performance
experiments.

Open|SpeedShop development is hosted by the Krell Institute. The infrastructure
and base components of Open|SpeedShop are released as open source code
primarily under LGPL. Highlights include:
e Comprehensive performance analysis for sequential, multithreaded,
and MPI applications

http://www.krellinst.org/

No need to recompile the user’s application.

Supports both first analysis steps as well as deeper analysis options
for performance experts

Easy to use GUI and fully scriptable through a command line interface
and Python

Supports Linux Systems and Clusters with Intel and AMD processors
Extensible through new performance analysis plugins ensuring
consistent look and feel

In production use on all major cluster platforms at LANL, LLNL, and
SNL

Features include:

Four user interface options: batch, command line interface, graphical
user interface and Python scripting AP

Supports multi-platform single system image (SSI) and traditional
clusters.

Scales to large numbers of processes, threads, and ranks.

View performance data using multiple customizable views.

Save and restore performance experiment data and symbol
information for post experiment performance analysis.

View performance data for all of application’s lifetime or smaller time
slices.

Compare performance results between processes, threads, or ranks
between a previous experiment and current experiment.

Interactive CLI help facility, which lists the CLI commands, syntax, and
typical usage.

Option to automatically group like-performing processes, threads, or
ranks.

Create MPI traces in OTF (Open Trace Format).

1 What is Performance Analysis?

Performance Analysis, also called software profiling or performance tuning, is not
only a way to measure the speed and efficiency of a program but also to identify
bottlenecks in parallel applications. Software developers are facing new issues
when writing code for massively parallel applications. There may be issues in code
that does not become apparent until it is run on thousands (or tens of thousands, or
hundreds of thousands, etc....) of cores. Performance Analysis can be used to
identify problems and tune applications for optimal speed and efficiency.

There are many aspects of a program that can be measured in order to analyze its
performance. You can measure the time each function takes or the call paths within
an application. There are a number of hardware counters available, like the number
of floating point operations per second (FLOPS) performed or the number of data
cache misses. You can monitor the [/0 operations for a program to analyze its
interaction with the file system.

Not only are there many possible things to measure about a program there are also
different ways to measure them. You can instrument your program by adding
performance routines to the source code, you can have a performance tool
periodically take samples from a program as it runs, or you can preload certain
library functions to monitor those calls.

There are a number of different performance tools that can help you measure the
different performance aspects of your code. There are built in Unix commands like
time or gprof that can give you some basic timing information. This manual
describes how to use Open|SpeedShop, a robust performance tool capable of
analyzing unmodified binaries. Throughout the manual will show real world
examples of performance analysis using Open|SpeedShop.

2 How to use Performance Analysis

Performance analysis is an essential part of the development 3.

cycle, and should be included as early as possible. It can W

have an impact on the patterns used in message passing, or | Coding |
the layout of the data structures used and the algorithms v
themselves. Your end goal should be correct and efficient > v

code. Typically one would measure the performance of some | Debugging |
code and analyze the results. You then modify the code or v
algorithms as appropriate and repeat the measurements =

from before, analyzing the differences in successive runs to \ 4

ensure an increase in performance. | T“;f”g |

The most basic performance analysis tool is the Unix “time”

command, which can measure the CPU and wall clock time for an application. You
could also keep track of application’s performance as you vary the input parameters.
This type of performance analysis is very simple but has the disadvantage of the
measurements being coarse grain and not allowing you to pinpoint any
performance bottlenecks within the application.

Another performance analysis method is code integration (or instrumentation) of
performance probes. This method allows a much finer grain analysis however it can
be hard to maintain and required significant beforehand knowledge of what
information to measure and record.

An alternative to the simple and coarse grain or complex and fine grain approach is
the use of performance analysis tools. Performance Tools enable fine grain analysis
that can be resulted to the source code and work universally across applications.

There are two ways performance analysis tools gather information from
applications. One way is through statistical sampling, which periodically interrupts
the execution of the program to record its location. Statistical distributions across
all locations are reported, and data is typically aggregated over time. Time is the
most common metric, but other metrics are possible. Statistical sampling is useful
to get an overview of the applications performance, as it provides low and uniform
overhead.

Event tracing is another way for performance analysis tools to gather information.
In this case the tool can gather and store individual application events, for example,
function invocations, MPI messages or I/0 calls. The events recorded are typically
time stamped and proved detailed per event information. This method can lead to
huge data volumes and higher, potentially bursty overheads.

There are a number of different performance analysis tools, so how do you select
the right one for your application? A tool must have the right features for what you

are trying to measure. Keep in mind which questions you are looking to answer and
how deep do you want to analyze the code. A tool must also match your
application’s workflow, and may need access to and knowledge about the source
code and the machine environment. Other things to keep in mind when choosing a
tool are having a local installation of the tool and the availability of local support for
the tool. Getting started on Performance Analysis can be a challenging and
sometimes overwhelming undertaking so it’s a good idea to have some support
system in place to help you through the hard parts.

Parts of this manual will focus on general performance analysis information,
followed by many detailed examples using the Open|SpeedShop performance
analysis tool. Open|SpeedShop has an easy to use GUI and command line options; it
includes both sampling and tracing in a single framework and doesn’t require
recompilation of the application. Itis extensible through user written plug-ins.
Open|SpeedShop is also maintained and supported within the Tri-lab clusters, Blue
Gene, and Cray platforms run by Lawrence Livermore, Los Alamos and Sandia
National Laboratories. It is also available at a number of other laboratories and
business around the world.

The following sections give a quick overview of what to look for in your
Performance Analysis for different types of applications.

2.1 Sequential Code Performance Analysis

You should identify the most computationally intensive parts of
Sk] your application. Find out where is your application spending
i | most of its time: in modules or libraries, on particular statements
ois? o th,} in your code, or within certain functions. Check to make sure the
- most time is being spent in the computational kernels. Ask
Lcase | yourselfif the amount of time that each section takes matches your
intuition.
Explore the impact of the memory hierarchy. Check to see if your
Mast Memoty

application has excessive data cache misses. Find out where your
data is located. One can also assess the impact of the virtual
memory Translation Lookaside Buffer (TLB) misses.

Check the interaction of you application with external resources by checking the
efficiency of the [/0 and looking at the time spent in system libraries.

2.2 Shared Memory Applications oo | [e
==

Shared memory applications have a single shared storage that is s =

accessible from any CPU. The programming models common to L2 Cache

{ Man Memony

10

shared memory applications include threadsn (e.g. POSIX threads, and OpenMP.

The typical performance issues with shared memory

applications include limited bus bandwidth where a LMMJ'(C“_J s J'LMMJ
bottleneck occurs when many CPUs are trying to access i L
the same resources. There can be synchronization [Mm H cPU CPU j- Mem]

overhead associated with thread startup. There can be
problems with not balancing the workload among threads properly, or most
efficiently. There can be complications with Non-Uniform Memory Access (NUMA).

2.3 Message Passing Applications

Message passing applications use a distributed memory model with sequential or
shared memory nodes coupled by a network. In this case data is exchanged using
message passing via a Message Passing Interface (MPI).

The typical performance issues associated with message passing applications
include long blocking times while waiting on data, or low messaging rates creating
bottlenecks due to insufficient network bandwidth.

11

3 Introduction to Open|SpeedShop

Open|SpeedShop is an open source performance analysis tool framework. It
provides the most common performance analysis steps all in one tool. It is easily
extendable by writing plugins to collect and display performance data. It also comes
with built in experiments to gather and display several types of performance
information.

Open|SpeedShop provides several flexible and easy ways to interact with it. There
is a GUI to launch and examine experiments, a command line interface that provides
the same access as the GUI, as well as python scripts. There are also convenience
scripts that allow you to run standalone experiments on applications and examine
the results at a later time.

The existing experiments for Open|SpeedShop all work on unmodified application
binaries. Open|SpeedShop has been tested on a variety of Linux clusters and
supports Cray and Blue Gene systems.

3.1 Basic Concepts, Interface, Workflow our cu PyYOISS

Open|SpeedShop has three ways for the user to Open | SpeedShop™
examine the results of a performance test,

i i Code Open Source
called experiments, a GUI, a command line T e -

interface or through python libraries. The user i L

can also start experiments by using those three

options or by an additional method of the command line launched convenience
scripts. For example to launch one of the convenience scripts for the pcsamp
experiment (Program Counter Sampling) the user executes the command
osspcsamp “<application>”", where <application> is the executable under study
along with any arguments. The convenience scripts will then create a database for
the results of that experiment.

sjuswuadxy

— ~'| The user can examine any database in
o s g < || the GUI with the command:

——y i ‘ openss —f <db file>

~ 1 The GUI will proved some simple

graphics to help you understand the

results and will relate the data back to

the source code when possible.

12

3.1.1 Common Terminology

Technical terms can have multiple and/or context sensitive meanings, therefore this
section attempts to explain and clarify the meanings of the terms used in this
document, especially with respect to the Open|SpeedShop tools.

Experiment: A set of collectors and executables bound together to generate
performance information that can be viewed in human readable form.

Focused Experiment: The current experiment commands operate on. The
user may run or view multiple experiments simultaneously and unless a
particular experiment is specified directly, the focused experiment will
be used. Experiments are given an enumeration, called an experiment id,
for identification.

Component(s): A component is a somewhat self-contained code section of
the Open|SpeedShop performance tool. This section of code does a set
of specific related tasks for the tool. For example, the GUI component
does all the tasks related to displaying Open|SpeedShop wizards,
experiment creation, and results using a graphical user interface. The
CLI component does similar functions but uses the interactive command
line delivery method.

Collector: The portion of the tool containing logic that is responsible for the
gathering of the performance metric. A collector is a portion of the
code that is included in the experiment plugin.

Metric: The measurement, which the collector/experiment is gathering. A
metric could be a time, an occurrence counter, or other entity, which
reflects in some way on the application’s performance and is gathered
by a performance experiment at application runtime directly by the
collector.

Offline: A link override mechanism that allows for gathering performance
data using libMonitor to link Open|SpeedShop performance data
gathering software components into the user application. For the
Open|SpeedShop offline mode of operation, the application must be run
from start up to completion. The performance results may be viewed
after the application terminates normally.

Param: Each collector allows the user to set certain values that control the
way a collector behaves. The parameter or param may cause the
collector to perform various operations at certain time intervals or it
may cause a collector to measure certain types of data. Although
Open|SpeedShop provides a standard way to set a parameter, it is up to
the individual collector to decide what to do with that information.
Detailed documentation about the available parameters is part of the
collector's documentation.

Framework: The set of API functions that allows the user interface to
manage the creation and viewing of performance experiments. It is the
interface between the user interface and the cluster support and
dynamic instrumentation components.

13

Plugin: A portion (library) of the performance tool that can be loaded and
included in the tool at tool start-up time. Development of the plugin
uses a tool specific interface (API) so that the plugin, and the tool it is to
be included in, know how to interact with each other. Plugins are
normally placed in a specific directory so that the tool knows where to
find the plugins.

Target: This is the application or part of the application one is running the
experiment on. In order to fine tune what is being targeted,
Open|SpeedShop gives target options that describes file names, host
names, thread identifiers, rank identifiers and process identifiers.

3.1.2 Concept of an Experiment

Open|SpeedShop uses the concept of an experiment to describe the gathering of
performance measurement data for a particular performance area of

interest. Experiments consist of the collector responsible for the gathering of the
measurements associated with the performance area of interest. The collector,
which is a small dynamic or static object library, also contains functions that can
interpret the gathered measurements, i.e., performance data, into a human
understandable form. The experiment definition also includes the application being
examined and how often the data will be gathered (the sampling rate). The
application’s symbol information is saved into the experiment output file so that
performance reports can be generated from the performance data file alone. The
application, itself, need not be present to view the performance data at a later time.

3.2 Performance Experiments Overview

Open|SpeedShop refers to the different performance measurements as experiments.
Each experiment can measure and analyze different aspects of the code’s
performance. The experiment type, or type of data gathered, is chosen by the user.
Any experiment can be applied to any application, with the exception of MPI specific
experiments being applied to non-MPI applications.

Each experiment consists of collectors and views. The collectors define specific
performance data sources, for example, program counter samples, call stack
samples, hardware counters or tracing of library routines. Views specify how the
performance data is aggregated and presented to the user. It is possible to
implement multiple collectors per experiment.

3.2.1 Individual Experiment Descriptions

The following table provides a quick overview of the different experiment types that
come with Open|SpeedShop.

14

Experiment

Experiment Description

pcsamp

Periodic sampling the program counters gives a low-overhead view of where the time
is being spent in the user application.

usertime

Periodic sampling the call path allows the user to view inclusive and exclusive time
spent in application routines. It also allows the user to see which routines called
which routines. Several views are available, including the “hot” path.

hwc

Hardware events (including clock cycles, graduated instructions, instruction and data
cache and TLB misses, floating-point operations) are counted at the machine
instruction, source line and function levels.

hwcsamp

Similar to hwec, except that sampling is based on time, not PAPI event overflows. Up to
six events may be sampled during the same experiment.

hwctime

Similar to hwc, except that call path sampling is also included.

io

Accumulated wall-clock durations of input/output (I/0) system calls: read, readv,
write, writev, open, close, dup, pipe, creat and others. Show call paths for each
unique I/0 call path.

iop*

Lightweight 1/0 profiling: Accumulated wall-clock durations of I/0 system calls: read,
readv, write, writev, open, close, dup, pipe, creat and others, but individual call
information is not recorded.

iot

Similar to io, except that more information is gathered, such as bytes moved, file
names, etc.

mpi

Captures the time spent in and the number of times each MPI function is called. Show
call paths for each MPI unique call path.

mpit

Records each MPI function call event with specific data for display using a GUI or a
command line interface (CLI). Trace format option displays the data for each call,
showing its start and end times.

mpiotf

Write MPI calls trace to Open Trace Format (OTF) files to allow viewing with Vampir
or converting to formats of other tools.

fpe

Find where each floating-point exception occurred. A trace collects each with its
exception type and the call stack contents. These measurements are exact, not
statistical.

mem*

Captures the time spent in and the number of times each memory function is called.
Show call paths for each memory function’s unique call path

pthreads*

Captures the time spent in and the number of times each POSIX thread function is
called. Show call paths for each POSIX thread function’s unique call path

cuda*

Captures the NVIDIA CUDA events that occur during the application execution and
report times spent for each event, along with the arguments for each event, in an
event-by-event trace.

15

* Only available in Open|SpeedShop using CBTF collection mechanism (currently under
development)

3.2.3 Sampling Experiments Descriptions

Program counter sampling (pcsamp) experiment, call path profiling (usertime)
experiment, and the three hardware counter experiments (hwc, hwctime, hwcsamp)
all use a form of sampling based performance information gathering techniques.

Program Counter Sampling (pcsamp) is used to record the Program Counter (PC) in
the user application being monitored by interrupting the application at an user
defined time interval, with the default being 100 times a second. This experiment
provides a low overhead overview of the time distribution for the application. Its
lightweight overview provides a good first step for analyzing the performance of an
application.

The Call Path Profiling (usertime experiment) gathers both the PC sampling
information and also records call stacks for each sample. This allows the later
display of the call path information about the application as well as inclusive and
exclusive timing data (see section 4.2). This experiment is used to find hot call paths
(call paths that take the most time) and see who is calling whom.

The Hardware Counter experiments (hwc, hwctime, hwcsamp) access data like
Cache and TLB misses. The experiments hwc and hwctime, sample a hardware
counter events, based on an event threshold. The default event is PAPI TOT_CYC
overflows. Please see chapter 5 for more information on PAPI and hardware
counter related experiments. Instead using a threshold, the hwcsamp experiment
samples up to six events based on a sample time, similar to the usertime and
pcsamp experiments. The hwcsamp experiment default events are PAPI_FP_OPS
and PAPI_TOT_CYC.

3.2.4 Tracing Experiments Descriptions

The Input/Output tracing and profiling experiments (io, iot, iop), MPI Tracing
Experiments (mpi, mpit, mpiotf), Memory tracing (mem), POSIX thread tracing
(pthread), and the Floating Point Exception Tracing (fpe) all use a form of tracing or
wrapping of the function names to record performance information. Tracing
experiments do not use timers or thresholds to interrupt the application. Instead
they intercept the function calls of interest by using a wrapper function that records
timing and function argument information, calls the original function, and then
records this information for later viewing with Open|SpeedShop’s user interface
tools.

The Input/Output tracing experiments (io, iot) record invocation of all POSIX 1/0
events. They both provide aggregated and individual timings and, in addition, the

16

iot experiment also provides argument information for each call. To obtain a more
lightweight overview of application I/0 usage, use the [/0O profiling experiment. The
lightweight /0 experiment (iop) records the invocation of all POSIX 1/0 events,
accumulating the information, but does not save individual call information like the
io and iot experiments do. That allows the iop experiment database to be smaller
and makes the iop experiment faster than the io and iot experiments.

The memory tracing experiment (mem) records invocation of all tracked memory
function calls, also referred to as events. The mem experiment provides aggregated
and individual timings and also provides argument information for each call.

The MPI Tracing Experiments (mpi, mpit, mpiotf) record invocation of all MPI
routines as well as aggregated and individual timings. The mpit experiment
provides argument information for each call. The mpiotf experiment creates Open
Trace Format (OTF) output.

The Floating Point Exception Tracing (fpe) is triggered by any FPE caused by the
application. It can help pinpoint numerical problem areas.

The POSIX thread tracing experiment (pthreads) records invocation of all tracked
POSIX thread related function calls, also referred to as events. The pthreads
experiment provides aggregated and individual timings and also provides argument
information for each call.

3.2.5 Parallel Experiment Support

Open|SpeedShop supports MPI and threaded codes; it has been tested with a variety
of MPI implementations. The thread support is based on POSIX threads and
OpenMP is supported through POSIX threads. Open|SpeedShop reports the activity
of the POSIX threads that represent the OpenMP threads, but currently doesn’t do
any special processing for OpenMP specifically.

Any Open|SpeedShop experiment can be applied to any parallel application. This
means you can run the program counter sampling experiment on a non-parallel
application as well as a MPI or threaded application. The experiment data collectors
are automatically applied to all tasks/threads. The default views aggregate (sum the
performance data) across all tasks/threads but data from individual tasks/threads
are available. The MPI calls are wrapped, and MPI function elapsed time and
parameter information is displayed.

3.3 Running an Experiment

First think about what parameters you want to measure then choose the
appropriate experiment to run. You may want to start by running the pcsamp

17

experiment since it is a lightweight experiment and will give an overview of the
timing for the entire application.

Once you have selected the experiment to run you can launch it with either the
wizard in the GUI or by using the command line convenience scripts. For example
say you have decided to run the pcsamp experiment on the Semi coarsening
Multigrid Solver MPI application smg2000 (a good benchmark application). On the
command line you would issue the command:

> osspcsamp “mpirun -np 256 smg2000 -n 65 65 65”

Where “mpirun -np 256 smg2000 -n 65 65 65” is a typical MPI application
launching command you would normally use to launch the smg2000 application.
mpirun, a MPI driver script or executable, is here used to launch smg2000 on 256
processors with “-n 65 65 65” is passed as an argument to smg2000. An example of
a typical MPI smg2000 pcsamp experiment run along with the application and
experiment output follows below:

> osspcsamp “mpirun -np 2 smg2000 -n 65 65 65”

[openss]: pcsamp experiment using the pcsamp experiment default sampling rate: "100".
[openss]: Using OPENSS_PREFIX installed in /opt/OSS-mrnet

[openss]: Setting up offline raw data directory in /tmp/jeg/offline-oss

[openss]: Running offline pcsamp experiment using the command:

"mpirun -np 2 /opt/0SS-mrnet/bin/ossrun "./smg2000 -n 65 65 65" pcsamp”

Running with these driver parameters:

(nx, ny, nz) = (65, 65, 65)

(Px, Py,Pz)=(2,1,1)

(bx, by, bz) = (1,1,1)

(cx, cy, cz) = (1.000000, 1.000000, 1.000000)
(n_pre, n_post) = (1,1)

dim =3

solver ID = 0

Struct Interface:

Struct Interface:
wall clock time = 0.049847 seconds
cpu clock time = 0.050000 seconds

Setup phase times:

SMG Setup:
wall clock time = 0.635208 seconds
cpu clock time = 0.630000 seconds

Solve phase times:

SMG Solve:

wall clock time = 3.987212 seconds

cpu clock time = 3.970000 seconds

Iterations = 7

Final Relative Residual Norm = 1.774415e---07

[openss]: Converting raw data from /tmp/jeg/offline---oss into temp file X.0.openss

18

Processing raw data for smg2000
Processing processes and threads ...
Processing performance data ...
Processing functions and statements ...

[openss]: Restoring and displaying default view for:
/home/jeg/DEMOS/demos/mpi/openmpi---1.4.2 /smg2000/test/smg2000---pcsamp---1.openss
[openss]: The restored experiment identifier is: -x 1

Exclusive CPU time % of CPU Time Function (defining location) in seconds.
3.630000000 43.060498221 hypre_SMGResidual (smg2000: smg_residual.c,152)
2.860000000 33.926453144 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
0.280000000 3.321470937 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
0.210000000 2491103203 hypre_Semilnterp (smg2000: semi_interp.c,126)
0.150000000 1.779359431 opal _progress (libopen-pal.so.0.0.0)
0.100000000 1.186239620 mca_btl_sm_component_progress (libmpi.so.0.0.2)
0.090000000 1.067615658 hypre_SMGAxpy (smg2000: smg_axpy.c,27)
0.080000000 0.948991696 ompi_generic_simple_pack (libmpi.s0.0.0.2)
0.070000000 0.830367734 __GI_memcpy (libc---2.10.2.s0)
0.070000000 0.830367734 hypre_StructVectorSetConstantValues (smg2000:
struct_vector.c,537)
0.060000000 0.711743772 hypre_SMG3BuildRAPSym (smg2000: smg3_setup_rap.c,233)

When the application completes a default report will be printed on screen. The
performance information gathered during execution of the experiment will be
stored in a database called smg2000-pcsamp.openss. You can use the
Open|SpeedShop GUI to analyze the data in detail. Run the openss command to load
that database file or open the file directly using the “-f” option:

> openss —f smg2000-pcsamp.openss

Below we show basic examples of how to use the GUI to view the output database
file created by the convenience script.

19

i rl.

Open|SpeedShop

-

Executables: smg2000 Host: localhost.localdomain Processes/Ranks,/Threads:(2) O ...

3.630000000
2.860000000
0.280000000
0.210000000
0.150000000

43.060498221
33.926453144
3.321470937
2.491103203
1.779359431
1.186239620

hypre_SMGResidual (smg2000: smg residual.c,152)
hyprekiydicﬂ.educﬁon (smg2000: cyclic_reduction.c,757)
hypre_SemiRestrict (smg2000: semi_restrict.c,125)
hypre_Semilnterp (smg2000: semi_interp.c,126)
opal_progress (libopen-pal.s0.0.0.0)
mca_btl_sm_component_progress (libmpi.s0.0.0.2)

Open|SpeedShop

Toolbar to switch

33926453144
3521470937
2491103203
1.779359431
1.186230620

: n_ (smg2000: sy residuad ¢, 152)

hypre®yclicRedection {nug2000: cyclic_reduction.c, 757)
hypre_ SemiRestrict (smg2000; sems_nestrict.c.125)
hypre Seosiluterp (seag2000) send interp.c,126)
opal_progees (lbopes pal.w 0.0.0)

mca_ bl sm_component_progress (libmspiw.0.0.2)

20

You can choose to view data for Functions, Statements or Linked Objects. To switch
from one view type to another, first select the view granularity (Function,

Statement, or Linked Object), then select the type of view. For the default views,
select the “D” icon.

I F.T;___,_.__“.k__ ——

29655990510
10,320284698
7591933571
7591933571
TaTe3TIR

You can manipulate the windows within the GUI and double click functions or
statements to see the source code directly.

21

7591931571
75019335571
7743772
1795964785
TINELTE

Open|SpeadShop

1 hypre_BoxdoopiBepin(losp s,

%2 A data box, start, base stride, A,

253 w_data_box. stit, base_stride, xi,

el r dutu_box, sturt, buse_strude, n);

235 wdefioe HYPRE_BOX_SEP_FKIVATE locpk.losgd Joopj, Alxi,rs
p Bredoo)

22

4 How to Gather and Understand Profiles

A profile is the aggregated measurements collected during the experiment. Profiles
look at code sections over time. There are advantages to using profiles since they
reduce the size of performance data and typically the data is collected with low
overhead. So profiles can provide a good overview of the performance of an
application.

The disadvantage of using a profile is that you are required to know beforehand
how to aggregate the data collected. Also, since profiles provide more of an
overview, they omit the performance details of individual events. There could also
be an issue where selecting an inappropriate sampling frequency could skew the
results of the profile.

Statistical Performance Analysis is a standard profiling technique, it involves
interrupting the execution of the application in periodic intervals to record the
location of the execution (Program Counter value). It can also be used to collect
additional data like stack traces or hardware counters. Again the advantage of this
method is its low overhead. Itis good for getting an overview of the program and
finding the hotspots (time intensive areas) within the program.

4.1 Program Counter Sampling Experiment

The sampling experiments available in Open|SpeedShop include Program Counter
Sampling, Call Path Profiling and Hardware Counter. The Program Counter
Sampling experiment (osspcsamp) provides approximate CPU time for each line and
function in the program. The Call Path Profiling experiment (ossusertime) provides
inclusive vs. exclusive CPU time (see section 4.2), and also includes call stacks.
There is a number of Hardware Counter experiments (osshwc, osshwctime) that
sample hardware counter overflows and osshwcsamp that can periodically sample
up to six hardware counter events.

A flat profile will answer the basic question: “Where does my code spend its time?”.
This will be displayed as a list of code elements with varying granularity, i.e.
statements, functions and libraries (linked objects), with the time spent at each
function. Flat profiling can be done through sampling, which allows us to avoid the
overhead of direct measurements. We must ensure we request a sufficient number
of samples (sampling rate) to get an accurate result.

An example of flat profiling would be running the program counter sampling in
Open|SpeedShop. We will run the convenience script on our test program smg2000:

> osspcsamp “mpirun -np 256 smg2000 -n 50 50 50”

23

It is recommended that you compile your code with the -g option in order to see the
statements in the sampling. The pcsamp experiment also takes a sampling
frequency as an optional parameter, the available parameters are high (200 samples
per second), low (50 samples per second) and the default value is 100 samples per
second. If we wanted to run the same experiment with the high sampling rate we
would simply issue the command:

> osspcsamp “mpirun -np 256 smg2000 -n 50 50 50” high

We can view the results of this flat profile in the Open|SpeedShop GUI by using the
“openss -f <database filename>" command.

Lile Tocls Uelp

¥ pe Sampling 1] | 00X
~ Froces Contral
-, | Ciim W) Pese B vt [I G

h‘[ﬁ\l’w Loaded: Click on the Nen™ button e bogin the experimant.

1% Stars Yanel (1] | %) ManageProcesesPane (1] | W00 x
LU L 7L 5 5/ g6 showine rencsion nepors
Exclusive CPU time ln seconds. | % of CPU Time | Function (defining locativnl
b= 2600000 53174600 bypre_SMGRosidual (smg2000: smy_residual c,152)
- 1 HOOOO0 12936508 Iypre_CyclicRoduction (smg2000: eyclic_reductionc, 757)
< 0.1 10000 2182540 Mypre_Semilnterp (wmg2000: semi_interp.c,126)
-0, 100000 1084127 hypee_Semiltestrict (sng2000: seml_restricte, 125}
- 0.060000 1587302 bypre_SMGIDuldNAPSym (smg2000: ung2 setup_rap.c.156)
~0.050000 0.992063 hypre_SMG38IARAPSym (smg2000: smg)_setsp_rap.c,233)
- 0.050000 0.092063 hypee_SMGAxpy (smg2000: smy_axpyc.27)
= 0040000 0.793651 hypre_StructVectorClearGhastValues (stmg2000h struct_vectore!
+—0,040000 0.793651 hypee_StroctAspy (smg2000; struct_axpy.c, 25}
" — 0030000 0.595238 IypregStractMatrininitializeData (smg2000: struct_matrixe314
0050000 L3932 _brrovre StractVectorSerCanatantValues (sme2000: struct vectoe.c A¥
-
Command Panel | BOOx
openm> >

We can use this information to identify the critical regions. The profile shows
computationally intensive code regions by displaying the time spent per function or
per statement. While viewing this we must ask ourselves:
e “Are those the functions/statements that we expected to be taking the most
time?”
e “Does this match the computational kernels?”
e “Are any runtime functions taking a lot of time?”

We want to identify any components that are bottlenecks. We can do this by
viewing the profile aggregated by shared (linked) objects, making sure the correct
or expected modules are present, then analyze the impact of those support and/or
runtime libraries.

24

4.2 Call Path Profiling (usertime) Experiment

Function The call path profiling (usertime) experiment can add some

information that is missing from the flat profiles. It is able to

distinguish routines called from multiple callers, and

[‘“";‘*’“] [Fontion] understand the call invocation history. This provides context

for the performance data. It also gathers stack traces for

: each performance sample and only aggregates samples with
o equal stack traces. For the user, this simplifies the view by

‘ showing the caller/callee relationship. It can also highlight

the hot call paths, the paths through the application that take
m the most time.

The call path profiling experiment also provides inclusive
and exclusive time. Exclusive time is the time spent inside a
function only, for example function B. Whereas inclusive
time is the time spend inside a function and its children, for
example the full chain of function C, D and E.

The call path profiling experiment is similar to the program l]

counter sampling experiment since it collects program "‘\—‘\ '
counter information, except that it collects call stack k;‘fi:n
information at every sample. There are, of course, tradeoffs [£

\ et

with that, you obtain additional context information from the
call stacks but there is now a higher overhead and necessarily lower sampling rate.

We can run the call path profiling experiment using the Open|SpeedShop
convenience script on our test program smg2000:

> ossusertime “mpirun -np 256 smg2000 -n 50 50 50”

Again it is recommended that you compile your code with the —g option in order to
see the statements in the sampling. The usertime experiment also takes a sampling
frequency as an optional parameter, the available parameters are high (70 samples
per second), low (18 samples per second) and the default value is 35 samples per
second. Note that these sample rates are lower then the pcsamp experiment
because of the increased amount of data being collected. If we wanted to run the
same experiment with the low sampling rate we would simply issue the command:

> ossusertime “mpirun -np 256 smg2000 -n 50 50 50” low

We can view the results of this experiment in the Open|SpeedShop GUI. The view is
similar to the pcsamp view but this time the inclusive CPU time is also shown.

25

Ele Tocls Help

wommopmwery | woer. EXClUSIVE Inclusive e
[ocess Control———————— Time — Time ' {
' - - - = o

VSL!us | Loaded saved data from fie homedieg) -

twe Stats Panel 21 | w1 ManageProcessesy WOOx
S Y L d o A O e (i gt

032095560 g0 work {hyaral hydrs, £.12) I

51.771428 13.365780 apal_progress Dibopwn-pa 6.0.0.0)

40.257142 40285713 10.39315% mea_btl sm_comporent progress {mca_bts sm.so: btl am_frag.c.0)

10285714 10285714 2 655455 mei_pred_cb)_progeess (moa_penl_obl so: pesi_obl_start ¢.0)

2714286 84 514282 0700745 meca_pmd obl recv imca_pmi_obl.so pmi obl start.c.0)

0.02857) 0.028571 0007376 pob (Fc-2.10,1.50)

0.028%71 2457143 0007376 ompi_request defadt wat ol (lhmpe0.0.0.1)

0,028571 0028571 0007376 ma_ped_cbl_recv_Yag callback_match (mca_penl ol so: pel_obl st
e | 2

Command 'anelJ WO Ex
openss>>

Below we see the Exclusive CPU time on highlighted lines that indicate relatively
high CPU times.

Ele Tools Welp
) Custom Expenment (1] | (W) User Time [2) | @ x
fvocess Control
- - » 3 =
Status:| Loaded saved data from fie /h Jeq/d penmpitydra-Gsertime 2 openiss.
twr S2ats Paced 121 | w; ManagoPiocessestaned (2] | 11 Source Pacel 121 | G OoOx
mmwl* Yeard penmphydrac

:] 3

>

12

nt g

10.428571
71790055

Hot to cold color shaded %

erformance B00Ex
R data points

While performance tools will point out potential bottlenecks and hot areas it is still
up to the user to interpret most data in the correct context as well as note areas of
the code you may want to probe further. If the inclusive and exclusive times are
similar this means the child executions are insignificant (with respect to CPU time)
and it may not be useful to profile below this layer. If the inclusive time is

26

significantly greater then the exclusive time then you should focus your attention to
the execution times of the children.

Open|Speed Shop *

Hot Call Path

The stack trace views in Open|SpeedShop are similar to the well-known Unix
profiling tool gprof.

- . Callers of ,
------------ “hypre SMGResidual™

Loadod: Click on the "Run” buctin 10 begin the experiment, T R —=\

S T

3000 Houe: localhoet Pids: 3 Rasks: 2 Thrends: 3 et ||

&!m hypre ! mﬁmum;m*-dve -
54230080 hypre SMGRelax (g 2000 sy nln.l,nl)

0 1.2658629 hygre_FinalizelndtComy g2000: computat
0142857 2164357 hypee_InitializetnidtComp (smg2000; £A72) \

“hypre SMGResndual”

~ Pivot routine:
“hypre_ SMGResidual”

27

5 How to Relate Data to Architectural Properties

So far we have been focusing mostly on timing. Timing information shows where
your code spends its time by displaying hot functions/statements/libraries and hot
call paths. Butit doesn’t show you why it is spending so much time in those areas.
You need to know if the computationally intensive parts of the code are as efficient
as they can be to reduce the time spent there or if there are resources that are
constraining the execution of the code. These answers can be very platform
dependent. Areas of bottlenecks can differ from system to system, and portability
issues can cause a drop in performance. There may be a need to tune your code
based on the architectural parameters of the system. In order to do this we will
investigate the interaction between the application and the hardware to make sure
there is an efficient use of hardware resources.

Modern memory system are complex, they
can have deep hierarchies and explicitly He

managed memory. Systems can implement
Non-Uniform Memory Access (NUMA) or u
streaming/prefetching methods. The key

to memory is location. Are you accessing i

the same data repeatedly or are you
accessing neighboring data. You will want
to look at your codes read/write intensity,
the prefetch efficiency, the cache miss rate
at all levels, TLB miss rates and the
overhead from NUMA.

-——-——mg
-—n—-—-uz-n‘

Monwry

Some system differences can affect the computational intensity like the cycles per
instruction (CPI) or the number of floating point instructions. Other architectural
features that can differ between systems include branches, the number of branches
taken, the miss speculation or wrong branch prediction results.

If your code is using anything like single instruction multiple data (SIMD), any type
of multimedia or streaming extensions the performance of all of these things could
differ greatly from system to system.

General system-wide information including [/0 busses, network counters, also
power or temperature sensors; all could affect the performance of your code. But it
can be difficult to relate this information to your source code.

Hardware performance counters are used to keep track of architectural features.
Typically most features that are packaged inside the CPU allow counting hardware
events transparently without any overhead. Newer platforms also provide system
counters on things like network cards and switches or environmental sensors.

28

The drawback to hardware counters is that their availability differs between
platforms and processor types. Even systems that allow the same counters may
have slight semantic differences between platforms. In some cases access to
hardware counters may require privileged access or kernel patches.

Performance Application Programming Interface (PAPI) allows access to hardware
counters through APIs and simple runtime tools. You can find more information on
PAPI at http://icl.cs.utk.edu/papi.

Open|SpeedShop provides three hardware counter experiments that are
implemented on top of PAPI. It provides access to PAPI and native counters like
data cache misses, TLB misses and bus accesses.

There are a few basic models to follow in hardware counter experiments. The first
is thresholding, where the user selects a counter and the application runs until a
fixed number of events have been reached on that counter. Then a PC sample is
taken at that location every time the counter increases by the preset fixed number.
The ideal threshold, the fixed number at which to monitor, is dependent on the
application. Another model is a timer based sampling where the counters are
checked at given time intervals.

Open|SpeedShop provides three hardware counter experiments, hwc for flat
hardware counter profiles using a single hardware counter, hwctime for profiles
with stack traces using a single hardware counter and hwcsamp for PC sampling
with multiple hardware counters. Both osshwc and osshwctime support non-
derived PAPI presets, all non-derived events are reported by “papi_avail -a”. You
can also see the available events by running the experiments (osshwc or
osshwctime) with no arguments. The experiments include all native events for that
specific architecture. Some PAPI event names are listed in sections below, but
please see the PAPI documentation for the full list.

The threshold you choose depends on the application, you want to balance overhead
with accuracy. Remember a higher threshold will record less samples. Rare events
need a smaller threshold or that information may be lost (never triggered and
recorded). Frequent events should use a larger threshold, to reduce the overhead of
collecting the information. Selecting the right threshold can take experience or
some trial and error.

HINT: Running the sampling based hardware counter experiment, osshwcsamp,
can help you get an idea for a threshold value to try when running the osshwc and
osshwctime experiments which are threshold based. Since the ideal number of
events (threshold) depends on the application and the selected counter, for events
other than the default, the hwcsamp experiment can be used to get an overview of
counter activity.

29

http://icl.cs.utk.edu/papi

The default threshold is set to a very large value to match the default event
(PAPI_TOT_CYC). For all other events, it is recommended that the user run
hwcsamp first to get an idea of how many times a particular event occurs (the count
of the event) during the life of the program. A reasonable threshold can be
determined from the hwcsamp data by determining the average counts per thread
of execution and then setting the hwc/hwctime threshold to some small fraction of
that. For example, if you see 1333333333 PAPI_L1_DCM's over the life of the
program when running the hwcsamp experiment and there were 524 processes
used during the application run, the this is the formula you could use to find a
reasonable threshold for the hwc and hwctime experiments when using the
PAPI_L1_DCM event for the same application. So the formula that could be used is as
follows:

(Average counts per thread) / 1000 == Threshold for hwc/hwctime
In this case:
(1333333333/524)/1000 ==2544529/1000 == 2545

Using this formula one could use 2545 as the threshold value in hwc and hwctime
for PAPI_L1_DCM and expect to get a reasonable data sample of that event.

5.1 Hardware Counter Sampling (hwcsamp) Experiment

The osshwcsamp experiment supports both derived and non-derived PAPI presets
and is able to sample up to six counters at one time. Again you can check the
available counters by running osshwcsamp with no arguments. All native events are
available including architecture specific events listed in the PAPI documentation.
Native events are also reported by papi_native_avail.

The hardware counter sampling experiment uses a sampling rate (instead of the
threshold used in the previous experiments). But like the threshold, the sampling
rate is depended on the application and must be balanced between overhead and
accuracy. In this case the lower the sampling rate the less samples recorded.

The convenience script for this is experiment is:
> osshwesamp “mpirun -np 256 smg2000 -n 50 50 50” <event list> <sampling_rate>

Note if a counter does not appear in the output, there may be a conflict in the
hardware counters. To find conflicts use

> papi_event_chooser PRESET <list_of_events>

Here is a list of some possible hardware counter combinations to use (list provided
by Koushik Ghosh, LLNL).

For Xeon processors:

PAPI FP_INS, PAPI LD _INS, PAPI SR_INS ‘ Load store info, memory bandwidth

30

needs

PAPI L1 DCM, PAPI L1_TCA L1 cache hit/miss ratios
PAPI_L2_DCM, PAPI_L2_TCA L2 cache hit/miss ratios
LAST_LEVEL_CACHE_MISSES, L3 cache info

LAST_LEVEL_CACHE_REFERENCES

MEM_UNCORE_RETIRED:REMOTE_DRAM, Local/nonlocal memory access
MEM_UNCORE_RETIRED:LOCAL_DRAM

For Opteron processors:

PAPI_FAD_INS, PAPI_FML_INS Floating point add multiply
PAPI_FDV_INS, PAPI_FSQ_INS Square root and divisions
PAPI_FP_OPS, PAPI_VEC_INS Floating point and vector instructions

READ_REQUEST_TO_L3_CACHE:ALL_CORES, | L3 cache
L3_CACHE_MISSES:ALL_CORES

When selecting PAPI events you must determine if they are a valid combination. In
general combination that are valid will pass the test:

> papi_event_chooser PRESET event1 event2 ... eventN

The output for a valid combination will contain:

event_chooser.c PASSED

Here is an example using PAPI to check if a three-event combination is valid.

> papi_event_chooser PRESET PAPI_FP_INS PAPI_LD_INS PAPI_SR_INS

PAPI Version 4.1.2.1
Vendor string and code : Genuinelntel (1)
Model string and code : Intel Nehalem (21)

CPU Revision :5.000000

PAPI_VEC_SP 0x80000069 No Single precision vector/SIMD instructions
PAPI_VEC_DP 0x8000006a No Double precision vector/SIMD instructions
Total events reported: 44

event_chooser.c PASSED

Below shows the output of the osshwcsamp experiment with the counters for Total
Cycles and Floating Point Operations.

31

Open|SpeedShop

Remember that you do not always need to use the Open|SpeedShop GUI to examine
the output of experiments, you can also use the command line interface to view all of
the same information. For example the same output from above can be seen on the
command line:

32

5.1.1 Hardware Counter Sampling (hwcsamp) experiment performance data gathering

The hardware counter sampling experiment convenience script is “osshwcsamp”.
Use this convenience script in this manner to gather counter values for unique up to

six (6) hardware counters:
osshwcsamp “how you normally run your application” <papi event list> < sampling rate>

5.1.1.1 Hardware Counter Sampling (hwcsamp) experiment parameters

The hwcsamp experiment is timer based not threshold based. What that means is a
timer is used to periodically interrupt the processor. For the hwcsamp experiment,
each time the timer interrupts the processor, the values of the hardware counter
events specified will be read up and reset to 0 for the next timer cycle. This is
repeated until the program finishes. Open|SpeedShop allows the user to control the
sampling rate.

The following is an example of how to gather data for the smg2000 application on a
Linux cluster platform using the osshwcsamp convenience script and specifying a
specific set of PAPI hwc events. In the next example the user is choosing to only
sample 45 times a second instead of the default 100 times a second. Why would
you want to do this? One reason would be to save database size, a lower sampling
rate may give an accurate portrayal of the application behavior.

> osshwcsamp “mpirun -np 256 smg2000 -n 50 50 50” PAPI_L1_DCM,PAPI_L2_DCA,PAPI_L2_DCM,PAPI_L3_DCA,PAPI_L3_TCM

> osshwcsamp “mpirun -np 256 smg2000 -n 50 50 50” PAPI_L1_DCM,PAPI_L2_DCA,PAPI_L2_DCM 45

5.1.2 Hardware Counter Sampling (hwcsamp) experiment performance data viewing
with GUI

To launch the GUI on any experiment, use “openss -f <database name>".

5.1.2.1 Getting the PAPI counter as the GUIs Source Annotation Metric

In order to make one of the PAPI or native hardware counters the counter that will

show up in the source view, one can click on the “SA” icon, which represents Source
Annotation. This brings up an option dialogue that allows you to chose the source

annotation metric.

33

R

0 HCHANGE SOURCE ANNOTATION METRIC Select won to launch dislog box which will ewser) |
nusber of opelonal metricd o view s the crostion of -
[t source panel.

typee_ CyclicReduction (smg2000: cyclic_reduction.c,757)
hypee_Semilnterp (smg2000: semi_tmterp.c, 126}
_SemiRestrict (sqg2000. sies_restrict.e, 125)
ogal_progrees (b e, 1.0.3)
opal_gemenc_wmple_unpock (e so.1.001)
hypee_StrucAxpy (smgR000s struce_nxgry.€.25)
ues (e 2000: smg <, 379)

In this example the native counter we want to choose is L2_LD_PREFETCH. When

we click to choose that counter and click on “OK” the Stats Panel view will

regenerate and the source annotation metric will become L2_LD_PREFETCH.
Source Panel Annotation Dlolog

The regenerated view now shows the results for only L2_LD:PREFETCH.

34

|) | 11

Process Loaded: Click on the “Run” button to begin the expesmment.

hypew_SMGResidual (smgd000 smp_residsal <, 152)
hypee, CychicReduction (smg2000: cyelic_reduction ¢, 757)
hypee_Semilnterp (smg2000: semi_tmterp c, 126}
hypeo_SemiRestricr (sap2000. sees resirict.e, 125)
ogal_progress (bl e, 1.0.3)

opal_gemenc_wmple_un, (hbemgn s0.1.0.2)
hypee_StruccAxpy £ struce_nxgry.c 25)
hypee_SMGS J

Now double clicking on the Stats Panel result line of choice will focus the source
panel and use the PAPI or native counter that was chosen by using the Source
Annotation dialog.

.

OpeniSpeedShop N

|

Process Loaded: Click on the “Run” button to begin the expesmment.

ypre_StructMarris TA,
pre_StractVector *x,

Eypry_StructVector *b,

ogal _;wpm Cliberpel. e, 1.0.3)
opal_gemenc_wmple_unpock (bbep o 1.0.1)

5.1.2.2 Viewing Hardware Counter Sampling Data with the GUI

To launch the GUI on any experiment, use “openss -f <database name>*.

35

The GUI view below represents an example of the default view for the hardware
counter sampling (hwcsamp) experiment. In the default view the first set of
performance data shown is program counter exclusive time (where the program is
statistically spending its time) and the percentage of time spent in each function of
the program. The next information is the hardware counter event counts listed in
columns by the hardware counter event. Column three represents the counts that
were recorded for PAPI_TOT_CYC and column four represents the counts for
PAPI_FP_OPS. What this view can indicate to the viewer is whether or not the
specified hardware counter events are occurring and if they are, then how prevalent
are they. With this information the user could isolate down to see exactly where a
particular event is occurring by using the hwc or hwctime experiment These two
experiments are threshold based. Which ultimately means you can map the
performance data back to the source because the actual event triggered the
recording of the counts of the event. This experiment, hwcsamp, is timer based, so
Open|SpeedShop cannot take you exactly to the line of source where the hwc events
are happening. hwcsamp is more of an overview experiment that tells the user
which events are occurring to subsequently use hwc or hwctime to pinpoint where
in the source the specified hardware counter event is occurring.

File Tools Help
) HN S Pl (1] T 001 %
Process Coutmi
-1 I Connrt D pee D Uipduis 8 leseniiaty
Stubiist] Process Louded: Click an the Tun® buttan tn begin the mxperiment
(%) Stwta Pamed (1] | 9 ManageProcessesPunel 11] | B0 x
e T i View THaghsy Chodce
U Bl 0 S 0V LB OA £ Fvinx Punctinns Heport: * Punctions . Statements - Linked Objects
Executables smg2000 Host: locallo st Jocakd i P Hands Threadw(2) 0
T r S L e o i | RAPSON V| AN [Pancion (dcting outon) ||

- 3.92000000< 44697833523 11772604888 1198486900 Byprw SNGResicdel (ang2000: xng |

i:s’l"\ a3 ' 2.510000000 28.020296465 TATHIII 309 F128504000 Bypre CyclicRedaction (seg2000 t)‘l;

“”’,m:“‘ 0.310000000 3534777651 915610917 48863259 opal_progress (libopes pal.»0.0.0.0) |

‘.l.i»ﬂ’lu(l =0, 300000000 FANTEIN66 910260309 1006529525 Mypre SemiRestrict (smg2000) sen |

2964652233 0.290000000 3306727480 74155835 AR5099 38 mca_btl_un_component_pmgress (le_

0. 260000000 29064652223 TR1833030 GE064505 Mypre Semilnterp (smg2000: seoni ll::

&l I >

Cowmunmd Pasel & GO x

[opensms> L

5.1.3 Hardware Counter Sampling (hwcsamp) experiment performance data viewing

36

To launch the CLI on any experiment, use “openss -cli -f <database name>“. The
following example was run on the Yellowstone platform at NCAR/UCAR using the
job script shown below.

5.1.3.1 Job Script and osshwcsamp command

#!/bin/csh

#

LSF batch script to run an MPI application

#

#BSUB -P Pnnnnnnnn # project code

#BSUB -W 00:30 # wall-clock time (hrs:mins)
#BSUB -n 64 # number of tasks in job
#BSUB -R "span[ptile=4]" # run 4 MPI tasks per node
#BSUB -] sweep3d-hwcsamp # job name

#BSUB -o sweep3d-hwcsamp.%].out # output file name in which %] is replaced by the job ID
#BSUB -e sweep3d-hwcsamp.%].err # error file name in which %] is replaced by the job ID
#BSUB -q regular # queue

module load openspeedshop

mkdir -p /glade/scratch/${USER}/sweep3d

rm -rf /glade/scratch/${USER}/sweep3d/hwcsamp

mkdir /glade/scratch/${USER}/sweep3d/hwcsamp

setenv OPENSS_RAWDATA _DIR /glade/scratch/${USER}/sweep3d/hwcsamp

setenv REQUEST_SUSPEND_HPC_STAT 1

echo "running (on compute node): osshwcsamp”
osshwcsamp "mpirun.sf /glade/u/home/galaro/demos/sweep3d/orig/sweep3d.mpi”
PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM

5.1.3.2 osshwcsamp experiment CLI Default view

openss -cli -f L1-64PE-sweep3d.mpi-hwcsamp.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview -v summary

Exclusive % of CPU papi_l1_dcm papi_l1_icm papi_l1_tcm papi_l1_Idm papi_l1_stm Function (defininglocation)

CPU time in Time

seconds.

824.870000 38.689781 8646497071 117738843 8764235914 8396159476 196649065 _libc_poll (libc-2.12.50)
799.300000 37.490443 46691996441 367096209 47059092650 46247555479 281624221 sweep (sweep3d.mpi:
sweep.f,2)

75.000000 3.517807 782716992 10680760 793397752 757322217 20159725
PAMI::Interface::Context<PAMI::Context>::advance (libpami.so: ContextInterface.h,158)

55.750000 2.614903 597583047 8038242 605621289

579127274 14647999 Lapilmpl::Context::Advance<true, true, false> (libpami.so: Context.h,220)

52.970000 2.484510 550761926 7569975 558331901 535841812 11563657 _libc_enable_asynccancel (libc-
2.12.s0)

49.850000 2.338169 518605433 6979361 525584794 502551336 12757207 _lapi_dispatcher<false> (libpami.so:
lapi_dispatcher.c,57)

48.080000 2.255149 488545916 6784192 495330108476065093 9649598 Lapilmpl::Context::TryLock<true, true,
false> (libpami.so: Context.h,198)

47.750000 2.239671 479947719 6732551 486680270471343480 6436257 _libc_disable_asynccancel (libc-
2.12.s0)

26.680000 1.251401 275998769 3888499 279887268269841454 4697170 udp_read_callback (libpamiudp.so:
lapi_udp.c,538)

25.880000 1.213878 1522697263 12118336 1534815599 1507685061 9619348 _intel_ssse3_rep_memcpy
(libirc.so)

21.960000 1.030014 223197680 3086626 226284306215787794 5879517 _lapi_shm_dispatcher (libpami.so:
lapi_shm.c,2283)

37

14.910000 0.699340 154744623 2075688 156820311 149803306 3979337 Lapilmpl::Context::CheckContext

(libpami.so: CheckParam.cpp,21)

13.990000 0.656188 151052863 2000330 153053193 146967548 3167039 Lapilmpl::Context::Unlock<true, true,

false> (libpami.so: Context.h,204)

5.1.3.2 osshwcsamp experiment CLI Status command and view
openss>>expstatus

Experiment definition
{# Expld is 1, Status is NonExistent, Saved database is L1-64PE-sweep3d.mpi-hwcsamp.openss
Performance data spans 1:7.958138 mm:ss from 2013/03/27 22:32:45 to 2013/03/27 22:33:53
Executables Involved:
sweep3d.mpi
Currently Specified Components:
-hys6128 -p 2765 -t 47176895393312 -r 3 (sweep3d.mpi)
-hys6128 -p 2766 -t 47824321252896 -r 0 (sweep3d.mpi)
-hys6128 -p 2767 -t 47369830317600 -r 1 (sweep3d.mpi)
-hys6128 -p 2768 -t 47378742910496 -r 2 (sweep3d.mpi)
-hys6129 -p 22862 -t 47327259860512 -r 5 (sweep3d.mpi)
-hys6129 -p 22863 -t 47201888194080 -r 6 (sweep3d.mpi)
-hys6129 -p 22864 -t 47185544437280 -r 7 (sweep3d.mpi)

-h ys6250 -p 11462 -t 47028080107040 -r 63 (sweep3d.mpi)
-h ys6250 -p 11463 -t 47600632852000 -r 60 (sweep3d.mpi)
-hys6250 -p 11464 -t 47494028697120 -r 61 (sweep3d.mpi)
-hys6250 -p 11465 -t 47944527175200 -r 62 (sweep3d.mpi)
Previously Used Data Collectors:
hwcsamp
Metrics:
hwcsamp::exclusive_detail
hwcsamp::percent
hwcsamp::threadAverage
hwcsamp::threadMax
hwcsamp::threadMin
hwcsamp::time
Parameter Values:
hwcsamp::event = PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM
hwcsamp::sampling_rate = 100
Available Views:
hwcsamp

}
5.1.3.3 osshwcsamp experiment CLI Load Balance command and view

openss>>expview -m loadbalance

Max CPU Rank Min CPU Rank Average Function (defining location)
Time of Time of CPU Time

Across Max Across Min Across

Ranks(s) Ranks(s) Ranks(s)

14.890000 28 10.950000 27 12.888594 _libc_poll (libc-2.12.50)

14.270000 47 11.780000 51 12.489062 sweep (sweep3d.mpi: sweep.f,2)

1.620000 43 0.840000 37 1.171875 PAMI:Interface::Context<PAMI::Context>::advance (libpami.so:

ContextInterface.h,158)

1.320000 16 0.570000 3 0.871094 Lapilmpl::Context::Advance<true, true, false> (libpami.so: Context.h,220)

1.130000 60 0.500000 2 0.778906 _lapi_dispatcher<false> (libpami.so: lapi_dispatcher.c,57)

1.110000 35 0.520000 49 0.751250 Lapilmpl::Context::TryLock<true, true, false> (libpami.so: Context.h,198)

1.030000 42 0.600000 12 0.827656 _libc_enable_asynccancel (libc-2.12.s0)
0.950000 62 0.520000 38 0.746094 _libc_disable_asynccancel (libc-2.12.s0)
0.700000 6 0.200000 59 0.343125 _lapi_shm_dispatcher (libpami.so: lapi_shm.c,2283)
0.630000 33 0.250000 0 0.404375 _intel_ssse3_rep_memcpy (libirc.so)

0.600000 18 0.270000 16 0.416875 udp_read_callback (libpamiudp.so:

38

5.1.3.4 osshwcsamp experiment CLI Linked Object command and view
openss>>expview -v linkedobjects

Exclusive % of CPU papi_l1_dcm papi_l1_icm papi_l1_tcm papi_l1_ldm papi_l1_stm LinkedObject

CPU time in Time

seconds.

928.310000 43.541541 9818946796 133244862 9952191658 9543597734 215608918 libc-2.12.s0
811.920000 38.082373 47212355914 369525459 47581881373 46596204924 441601622 sweep3d.mpi
311.490000 14.610157 3356646038 44875637 3401521675 3255300343 80090932 libpami.so
29.640000 1.390237 1824778610 12931604 1837710214 1680978945 127174346 libirc.so
26.930000 1.263127 287313329 3994016 291307345 281053971 4763152 libpamiudp.so
22.250000 1.043616 1049603690 9037920 1058641610 1033650896 11422120 libpthread-2.12.s0

1.440000 0.067542
0.020000 0.000938
0.010000 0.000469

72649683 620083 73269766 71327993
1286256 23770 1310026 1232178

327 394 721 313

1007704 libmpich.so.3.3
5222 1d-2.12.s0
13 librt-2.12.s0

2132.010000 100.000000 63623580643 574253745 64197834388 62463347297 881674029 Report Summary

openss>>

5.2 Hardware Counter Experiment (hwc)

As an example we will run the osshwc experiment on our test program smg2000.
The convenience script for this is experiment is:

> osshwc “mpirun -np 256 smg2000 -n 50 50 50” <counter> <threshold>

This is the same syntax as the osshwctime experiment. Note that if your output is
empty, try lowering the <threshold> value, it is calculated by Open|SpeedShop by
default. You can try lowering the threshold value if there have not been enough
PAPI event occurrences to record. Also see the HINT in the osshwcsamp section
above. You can run osshwcsamp and use a formula to create a reasonable threshold.
Any counter reported by “papi_avail -a” that is not derived is available for use. You
can also see the available counters by using the osshwc or osshwctime commands
with no arguments. Native counters are listed in the PAPI documentation.

PAPI Name Description

PAPI_L1_DCM L1 data cache misses high
PAPI_L2_DCM L2 data cache misses high/medium
PAPI_L1_DCA L1 data cache accesses high
PAPI_FPU_IDL Cycles in which FPUs are idle high/medium
PAPI_STL_ICY Cycles with no instruction issue high/medium
PAPI_BR_MSP Miss-predicted branches medium/low
PAPI_FP_INS Number of floating point instructions high
PAPI_LD_INS Number of load instructions high
PAPI_VEC_INS Number of vector/SIMD instructions high/medium
PAPI_HW_INT Number of hardware interrupts low
PAPI_TLB_TL Number of TLB misses low

39

Note the Threshold indications are just for rough guidance and are dependent on
the application. Also remember that not all counters will exist on all platforms, run
osshwc with no arguments to see the available hardware counters available.

In the sections below, we show the outputs from the osshwc experiment, note that
the default counter is the total cycles.

5.2.1 Hardware Counter Threshold (hwc) experiment performance data gathering

The hardware counter threshold experiment convenience script is “osshwc”. Use
this convenience script in this manner to gather counter values for one unique
hardware counter:

osshwc “how you normally run your application” <papi event > < threshold value>

tbd

5.2.2 Hardware Counter Threshold (hwc) experiment performance data viewing with
GUI

To launch the GUI on any experiment, use “openss -f <database name>".
This image shows the default view for the hwc experiment run with the smg2000
MPI application using PAPI_TOT_CYC as the hardware counter event. Double

clicking on a line in the Stats Panel or on the bar chart will take the user to the
source file and line represented by that line of performance information.

40

Open|SpeedShop

2.104575163 hypre_Semilaterp (mug2000: semi_interp.c,126)

2941176471 hypre_SemiRestrict (smg2000: semi_nestrict.c,125)
muu&v

1.3H8888HNY
1.307189542
0980392157

The next image displays the output from the osshwctime experiment where the
counter is the L1 cache misses.

Open|SpeedShop

conn Loaded: Click on the "Run™ button to begin the expertment.

:

i

36.729857020

BHB6255924
8056872038
7227480152
7109004739

41

5.2.3 Hardware Counter Threshold (hwc) experiment performance data viewing with
CLi

To launch the CLI on any experiment, use “openss -cli -f <database name>".

42

6 Hardware Performance Counters and Their Use

In this section we will explore the importance of simple Hardware Counter Metrics
(HCM) through some easy to understand examples. We will also use a simple Matrix
multiplication example to illustrate performance optimization.

The Memory Pyramid illustrates the impact of er
memory on the performance of an application.
The closer the memory is to the CPU the faster,
and smaller, it will be. Memory further away
from the CPU is slower but larger. The most
expensive operation is moving data. The
application can only do useful work on the data at SRRTEG L3 SR \
the top of the pyramid. For a given algorithm,
serial performance is all about maximizing CPU
flop rate and minimizing memory operations in
scientific code. The table below shows the access

Main Memory

Remote Memory

latencies in clock cycles for the Nehalem Intel Disk
processor.
Memory Access latency in clock cycles
L1 4
L2 9
L3 47
Main local NUMA 81
Main non-local NUMA 128

The following example uses BLAS operations to illustrate the impact of moving data.
BLAS operations are Basic Linear Algebra Subprograms that proved library function
calls for vectors and matrices. We use the Flops/Ops to understand how sections of
the code relate to simple memory access patterns as typified by these BLAS
operations. The following table show the number of Flops/Ops for each operation,
where A, B and C are NxN Matrices; x and y are Nx1 Vectors; and k is a Scalar.

Level | Operation # Memory | # Flops | Flops/Ops | Comments on
Refs or Ops Flops/Ops
1 y=kx+y 3n 2n 2/3 Achieved in
Benchmarks
2 y=Ax+y n? 2n? 2 Achieved in
Benchmarks
3 C=AB+C 4n? 2n3 n/2 Exceeds HW MAX

Below is an example of the BLAS Level 1 using the experiment osshwc (or
osshwcsamp) to get the following PAPI counters: PAPI_FP_OPS, PAPI_TOT_CYC,
PAPI_LD_INS, PAPI ST _INS, PAPI TOT_INS. Where the derived metrics of interest

43

are: GLOPS (Giga Logical Operations per Second), Float_ops/cycle,
Instructions/cycle, Loads/Cycle, Stores/Cycle, and Flops/memory Ops.

BLAS 1 Kernel: DAXPY; y = alpha *x +y

Kernel Code: (n=10,000) looped 1000,000 times for timing purposes
doi=1,n
y(i) = alpha *x(i) + y(i)
enddo

The following table shows the PAPI data for this example:

n Mem FLOPS Loop PAPI_LD_INS | PAPI_SR_INS | PAPI_FP_OPS | PAPI.TOT_CYCLE | PAPI_TOT_INS
Ref=3n Calc BLAS
code
10000 | 30000 20000 | 100000 1.02E+09 5.09E+08 1.03E+09 2.04E+09 2.43E+09
Code time sec Code GFLOPS FPC IPC LPC SPC
6.4596E-06 3.096124 0.505386876 1.190989226 0.500489716 0.249412341
Error PAPI FLOPS Error corrected Error Mem Refs PAPI_GLOPS PAPI FLOPS/OPS Calc FLOPS/OPS
FLOPS
-93.80% 3.10% -2.15% 3.195244288 0.673937178 0.6666667

The processors used in this example have a Floating Multiply-Add (FMADD)
instruction set. Although this instruction performs two Floating Point operations, it
is counted as one Floating Point instruction in PAPI. Because of this, there are
situations where PAPI_FP_INS may produce fewer Floating Point counts then
expected. In this example PAPI_FP_OPS was multiplied by 2 to match the theoretical,
expected FLOP count. The formula for calculating Load Instructions was:

(2 vectors)*(vec_lecth)*(loop)*(bytes_per_word)*(8 bits_per_byte) /(128 bits_per_load)

What can the Hardware Counter Metrics tell us about the code performance? The
set of useful metrics that can be calculated for functions are:

FLOPS/Memory Ops (FMO) | We would like this to be large which would imply
good data locality. (Also called Computational
Intensity or Ops/Refs)

FLOPS/Cycle (FPC) Large values for floating point intensive codes
suggests efficient CPU utilization.

Instructions/Cycle (IPC) Large values suggest good balance with minimal
stalls.

Loads/Cycle (LPC) Useful for calculating FMO, may indicate good stride
through arrays.

Stores/Cycle (SPC) Useful for calculating FMO, may indicate good stride
through arrays.

BLAS Operation Kernel PAPI_GFLOPS FMO FPC IPC LPC SPC

1 y=alpha*x+y do loop 0.67 0.67 | 051 | 1.19 | 0.50 | 0.25

44

2 y=A*x+y do loop 0.94 2.00 | 0.14 [0.26 | 0.07 | 0.00
2 y=A*x+y DGEMV 1.89 029 | 042 | 0.15 | 0.03
3 C=A*B+C do loop(kji) 6.29 087 | 1.74 | 0.21 | 0.00
3 C=A*B+C DGEMM 12.96 1.84 | 1.26 | 0.59 | 0.01

The following table shows single CPU simple code Hardware Counters for simple
math kernels using the AMD Budapest Processor. Other hwc metrics that are useful

are also shown.

3D Fast Fourier | Matrix QR HPCCG (linear system
Code Transforms; Multiplication | Factorization | solver); sparseMV;
256x256x256 500x500 N = 2350 100x100x100
Computational 1.33 1.71 1.68 0.64
Intensity; Ops/Ref
MFLOPS /papi 952 4159 3738 352
MFLOPS code 1370 4187 4000 276
Percent peak 19.8 86.7 77.9 7.3
fpOps/TLB miss 841.6515146 9040759.488 | 697703.964 14.05636016
fpOps/D1 cache miss 25.5290058 167.9364898 | 144.9081716 | 10.24364227
fpOps/DC_MISS 29.42427018 170.5178224 | 149.9578195 | 11.1702481
Ops/cycle 0.4 1.75 1.56 0.15

6.1 Using the Hardware counter experiments to find bottlenecks

6.1.1 How to find memory bandwidth bottlenecks using O|SS hwc experiments

TBD

6.1.2 How to find memory cache usage issues using O|SS hwc experiments

TBD

6.1.3 How to find load/store imbalance using O|SS hwc experiments

TBD

7 1/0 Tracing and 1/0 Profiling

[/0 could be a significant percentage of the execution time for an application and
can depend on many things including Checkpoints, analysis output, visualization
and I/0 frequencies. The I/0 pattern in the application also matters, whether it is
N-to-1 or N-to-N and if there are simultaneous read or write requests. Certainly the
nature of the application is also important to the I/0 usage, if it is data intensive,
traditional HPC with scalable data or out-of-core, that is, an application that works

45

on data that is larger then the available system memory. The type of file system and
striping available on the cluster: NFS, Lustre, Panasas or other Object Storage
Targets (OSTs). What /0 libraries your code is using MPI-10, hdf5, PLFS or others.
Also the I/0 is dependent on other jobs that are running and stressing the 1/0 sub-
systems.

The obvious thing to explore first while tuning your code is to try and use a parallel
file system. Then optimize your code for [/O patterns. Match checkpoint /0
frequency to Mean Time Before Interrupt (MTBI) of the system. Make sure your
code is using the appropriate libraries.

7.1 OOCORE Example

We will examine an example using the benchmarking application OOCORE, an out-
of-core solver, from the Department of Defense High Performance Computing
Modernization Program (DoD HPCMP). It is an out-of-core ScaLAPACK (Scalable
LAPACK) benchmark from the University of Tennessee, Knoxville (UTK). It can be
configured to be disk I/0 intensive. It characterizes a very important class of HPC
applications involving the use of Method of Moments (MOM) formulation for
investigating electromagnetics (e.g. radar cross-section, antenna design). It solves
dense matrix equations by LU (lower triangular, upper triangular), QR or Cholesky
decomposition.

OOCORE is used by HPCMP to evaluate 1/0 system scalability. For our needs this
application or similar out-of-core dense solver benchmarks help to point out the
important points in performance analysis like I/0 overhead minimization. The use
of Matrix Multiply kernel which makes it possible to achieve close to peak
performance of the machine if tuned well. It can highlight “blocking” which is very
important to tune for deep memory hierarchies.

The following example was run on 16 cores on a Quad-Core, Quad-Socket Opteron
IB cluster. We want to compare two different file systems, Lustre I/0 with striping
and NFS I/0. We use the ossio convenience script:

> ossio “srun -N 1 -n 16 ./testzdriver-std”
Sample Output from Lustre run:

TIME M N MB NB NRHS P Q Fact/SolveTime Error Residual

WALL 31000 31000161614 4 1842.20 1611.59 4.51E+15 1.45E+11

DEPS =1.110223024625157E---016

sum(xsol_i) = (30999.9999999873,0.000000000000000E+000)
sum|xsol_i-x_i| = (3.332285336962339E---006,0.000000000000000E+000)
sum|xsol_i-x_i|/M = (1.074930753858819E---010,0.000000000000000E+000)
sum|xsol_i-x_i|/(M*eps) = (968211.548505533,0.000000000000000E+000)

From output of two separate runs using Lustre and NFS:
LU Fact time with Lustre= 1842 secs;

46

LU Fact time with NFS = 2655 secs

From the final times we see there is an 813 second penalty (more than 30%) if you
do not use parallel file system like Lustre! The run time difference 75% of the 813
seconds is mostly [/0: (1360 + 99) - (847 + 7) = 605 seconds.

p \
NFS Ru;/ \ Lustre Run
Min_t(sec) | Max_t(sec) /A{vﬂsec] Function Call Min_\‘gec) Max_t(sec) | Avg t(sec) | Function Call
1102.380 | 1360.727 61.310 _libc_read(/lib64/ 368.89 847.919 508.658 _libc_read(/lib64/
libpthread-.5.s0) libpthread-.5.s0)
31.192 99.444 49.018 _libc_write(/lib64/ | 6.270 7.896 6.850 _libc_write(/lib64/
libpthread-2.5.s0) libpthread-2.5.s0)

7.2 Lustre Striping Commands

To set or get the Lustre file system (Ifs) striping information you can use the

following commands:

> Ifs setstripe -s (size bytes; k, M, G) —c(cout; -1 all) -i (index; -1 round robin) <file | directory>

Typical defaults for setstripe are -s 1M -c 4 -i -1 (usually good to try first). File

striping is set upon file create.
> Ifs getstrip <file | directory>
Example for getstrip is:

> Ifs getstrip —verbose ./oss_Ifs_strip_16 | grep stripe_count

stripe_count: 16 stripe_size: 1048576 strip_offset: -1

1 PE writes; BW limited 1 file per process, BW enhanced

T

-

f+ do 1/0; Could be most optimal

Using OOCORE I/0 performance and the libc_read time from Open|SpeedShop, the
following graph shows the output of an I/0 experiment used to identify optimal Ifs
striping from load balance view (max, min and avg) for 16 way parallel run).

47

1200

= MIN

8

Wall Time, secs
g

:

Stripe count=1 Stripe count=4 Stripe count=8 Stripe count=16

7.3 Open|SpeedShop 1/0 Tracing and 1/0 Profiling
An example of how to use the Open|SpeedShop usertime experiment to profile I/0 is

shown below. This example compares Open|SpeedShop data to instrumentation
data.

48

Open | SpeedShop

i Sas e ai_sup5art (eoeetsy.
21 85T 2 BN 03 172581 __wits_nacanod (Tbe4Nepttread 2 50 sesssesassans PURFORMANCE FIGURES FOR SOCVIR *+*++"

I8 11 71428 12071580 _read rozancl (bedStptresd-2 5.0 PO SRR e
30N 30887 3215544 ™! a5, dgemm_copyan 1 s T —
NUMEER OF FUOATING POINT OPERATIONS= 33353335611
1088571 46718 1001802 canapen_ (sl inganthusis
02287 0.2288M 026345 _G meeqy|ib6sRe25s) fo e e
OVERALL MALOPS. N197.479
S MATROCMUITIPLY MLOPS 6294608

Open|SpeedShop also has an iot experiment for extended 1/0 Tracing. It will record
each event in chronological order, and collect additional information like function
parameters and function return values. You should use the extended 1/0 tracing
when you want to trace the exact order of events. Or when you want to see the
return values or bytes that were read or written.

Beware of serial I/0 in applications, illustrated in the code below (code from Mike
Davis, Cray Inc.).

49

Below shows the output of the Open|SpeedShop iot experiment on the serial I/0

code:

Open |SpeedShop

Be Tods Hap
Custom aoclm 1]
Pio?-t Cantrdd
‘Sisus rocess Laaded: Ciick on the “Run 2ution 1 56 the exparimane™ ,
L Panal 1] (C2 6 513
THADTEROBW 1B B8 Showing Per Evont Report % Cikian
Fnﬂﬂla' {nonei Hest: glory238 ProessesMarkaTheeaos(4) 0,

Sn Tena - {10 Gt Timeims) % of Total Tme | Call Sravck Functien {dalining Iccation)
201000/08 122254 5,229000 & 822028 >_lbz_read {libs4Sbpthvend 2.5 3c)
C20N0NGNE 13:2254 0028000 S Q0783 >__tbe_write /IbEAIRptrasc-2 S 50
~201006/00 132254 2008000 1883318 > lbc rewd (NbeLNbpthrend-2 4 s0)
~R01006108 13:2254 D.053000 13364058 >__ Wbz wiite /1 bE4 bpthrend £ 5 32)
C2NENE 1322 54 D IE1000 14 255300 >l write |/IbBdlBpthresd 2 § w0

201006/08 13:22.54 0.710000 2304147 > Ibe read (Nbe4Nbettvend-2.5.50)
201000108 13:22.54 D.016000 3636836 »__lbs_rood (Nibg4Nibpthread 2.5 s¢)
CRAN0090E 132204 DA aanen >_ lbz_read (NinEa%ibpthroad-2 5 s6)

201004108 13:22.54 0 225000 5 780369 > e read (NisG4Nbpttrend-2.5 90)

C201000/8 12:2284 0.021000 4 838710 > bz _read |libé4%bpthread.2.5.5¢c)
ek inTa T, R K R S R 1 - T

SHOWS EVENT BY

L EVENT LIST:

Clicking on this
gives each callto a
1/O function being
traced as shown.

Belowis a
graphical trace
view of the same
data showing
serialization of
fwrite() (THE RED
BARS for each PE)
with another tool.

We can run the io or iot experiment convenience scripts on smg2000 application:

> ossio[t] “mpirun -np 256 smg2000 -n 50 50 50” [default | <list of I/O functions>]

Where by default the I/0 function list to trace is all, the specific functions are: creat,
creat64, dup, dup2, Iseek, Iseek64, open, open64, pipe, pread, pread64, pwrite,

pwrite64, read, readv, write, writev.

Things to remember with I/0: Avoid writing to one file from all MPI tasks. If you
need to do it make sure distinct offsets for each PE starts at a stripe boundary. Use

buffered I/0 if you must do this.

51

If each process writes it’s own file then the parallel file system attempts to load
balance the OST taking advantage of the stripe characteristics. Meta data server
overhead can often create severe I/0 problems. Minimize the number of files
accessed per PE and minimize each PE doing operations like seek, open, close, stat
that involve inode information. 1/0 time is usually not measured even in
applications that keep some function profile. Open|SpeedShop can shed light on
time spent in I/0 using the io and iot experiments.

7.3 Open|SpeedShop I/0 Tracing General Usage

The Open|SpeedShop io and iot I/0 function tracing experiments wrap the most
common I/0 functions, record the time spent in each I/0 function, record the call
path along which I/0 function was called, record the time spent along each call path
to an [/0 function, and record the number of times each function was called. In
addition the iot experiment also records information about each individual I/0
function call. The values of the arguments and the return value from the I/0
function are recorded.

7.3.11/0 Base Tracing (io) experiment

The base 1/0 tracing experiment gathers data for the following /0 functions: close,
creat, creat64, dup, dup?2, Iseek, Iseek64, open, open64, pipe, pread, pread64, pwrite,
pwrite64, read, readv, write, and writev. Itis a trace type experiment that wraps
the real I/0 calls and records information before and after calling the real I/0
functions. This, base, /0 experiment records the basic I/0 information as stated in
the introductory section, but does not record the arguments to each call. That is
done in the extended (iot) experiment.

7.3.1.11/0 Base Tracing (io) experiment performance data gathering

The base [/0 tracing (io) experiment convenience script is “ossio”. Use this

convenience script in this manner to gather base I/0 tracing performance data:
ossio “how you normally run your application” <list of I/O function(s)>

The following is an example of how to gather data for the [OP application on a Linux
cluster platform using the ossio convenience script. It gathers performance data for

all the I/0 functions because there is no list I/O functions specified after the quoted
application run command.

ossio "srun-n 512 ./I0R"
7.3.1.2 1/0 Base Tracing (io) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss -cli -f <database name>".

52

7.3.1.3 1/0 Base Tracing (io) experiment performance data viewing with GUI
To launch the GUI on any experiment, use “openss -f <database name>".
7.3.21/0 Extended Tracing (iot) experiment

7.3.2.11/0 Extended Tracing (iot) experiment performance data gathering

The extended I/0 tracing (iot) experiment convenience script is “ossiot”. Use this

convenience script in this manner to gather extended /0 tracing performance data:
ossiot “how you normally run your application” <list of I/O function(s)>

The following is an example of how to gather data for the [OP application on a Linux
cluster platform using the ossiot convenience script. It gathers performance data
for all the I/0 functions because there is no list [/O functions specified after the
quoted application run command.

ossiot "srun-n 512./I0R"

7.3.2.21/0 Extended Tracing (iot) experiment performance data viewing with GUI
To launch the GUI on any experiment, use “openss -f <database name>".

This is the default GUI view for the iot experiment. This view give a summary of the
[/0 functions that were called, how many times they were called and the amount of
time spent in each function. The percentage of the total /O time is also attributed to
each I/0 function. The time is aggregated (totaled) across all the threads, ranks, or
processes that were part of the application. The functions that called the /0
functions are available by choosing one of the call path views.

53

Nembes of Calle | Funetion (ideffaing he

close ibe-2 12 90: synenllqomplare 5,62)
_GI__read (it 21260 syscall ceneplate S.82)
__libe_opes (libe-Z 12w sywenlbtrmplate. S 52)

XIS I write (libe-2 12 o syscallvemplane 5.42)

000w 01 libee_Laeek (Tibe-2 12 50: syvenll dpmplune £ 52)

Here the user has chosen the C+ view icon and the Stats Panel now shows all the call
paths in the users application. This view shows the every possible call paths
through the source to all the I/0 functions that were called during the execution of
this application. From this one could validate that this is expected behavior and if
not find where the I/0 in this application is not behaving as expected.

Open|SpeedShop (oo rzmeri156) P

san
@562 in _ libe_start_mume (libmossor o 0,00 mainc 541}
@ 258 in _libe_stars_maés (lihe-Z12 s libe-staat c.96)
@ 517 in menitor_main Oideavcnitonse.0.0.0: main.c,492)
@ 193 in main (1OR: 106, ¢, 108)
@ 2021 In TestloSys (10R: OR . 1848)
00 3160 1OR_Clow POSEX (1O micci POSIX.,325)
@ 706 10 close Lon-colecur sumaoe memes -mpl so: wrapgers <, 685)
@ 52 it hoke (121230 spseall aregilare. 5, 62)
_wtart (3000

This view is the load balance view, which gives the min, max, average values for the
/0 function call time across all the ranks in this application. In this view we are
seeing some wide ranges between the min and max values for some of the [/O
functions. It may be useful to see if we can identify the ranks by using the Cluster

54

Analysis view. -
l OpeniSpeedshop (on rzmeri156) .

yscul) aemmy SAJ)
_GI__seadd (1e2.12.90¢ spscall ressplate 5,62)
_libe_open (libe-2. 12 wee syweall-templace. S82)
wiite (b 1L s syseali-templace 5,82)
0.017103 O etk (libe 212 scc syveadt tenmgplase. § 42)

This view, generated by choosing CA icon, the shows that there are two groups of
ranks where the 1/0 is performing in similar manner. For group 2 (labeled -c 3
below), there are two ranks where the rest of the 512 ranks perform like group 1
(labeled -c 2 below). Investigation by examining ranks 312 or 317 by comparing it
to one of the ranks in the other group could shed some light on why group 2 is not
similar to the rest. This may or may not be significant, but is here for illustration.

Open|SpeedShop (on rmert156) .

02, rernetlb0S, reomes| 106, rnetl 113, ramerid 2], remel 153, romer| 124, same!

1102 - HOBSE, BUSUS . 46712558251 269 Ruse; 312 317
L]

,,,,,,,,, e e

choae (Hibe-212.u0: syscall-template S.A2)
L6 reod (libe 212 00! syscall templnte 525
e _open (Mbe-2.12.m: wpveall-temphane 5,402)
wrire (Mc-2.12501 syscall-templare 5, 62)

_GL__libe ek (2,320 wyveall-Losspidate 5,62

55

7.3.2.31/0 Extended Tracing (iot) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss -cli -f <database name>".

The command line interface (CLI) can provide the same data options as the
graphical user interface (GUI) views. Here are some examples of the performance
data that can be viewed and the commands in order to generate the CLI views.

>openss -cli -f IOR-iot-0.0penss

openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

[/0Call % of Number Function (defining location)
Time(ms) Total of
Time Calls
1858436.714506 61.486889 2048 close (libc-2.12.s0: syscall-template.S,82)
1055603.730633 34.924939 2048 _ GI__read (libc-2.12.s0: syscall-template.S,82)
108107.666680 3.576772 1024 _libc_open (libc-2.12.s0: syscall-template.S,82)
335.820251 0.011111 3072 write (libc-2.12.s0: syscall-template.S,82)
8.756634 0.000290 4096 _ GI__libc_Iseek (libc-2.12.s0: syscall-template.S,82)
openss>>expview -m loadbalance

Max /O Rank MinI/O Rank Average I/O Function (defining location)
Call Time of Call Time of Call Time
Across Max Across Min Across
Ranks(ms) Ranks(ms) Ranks(ms)
4114.522156 509 2680.653110 273 3629.759208 close (libc-2.12.s0: syscall-template.S,82)
2824.349452 346 0.315392 317 2061.726036 __GI__read (libc-2.12.s0: syscall-template.S,82)
989.579445 358 5.784552 414 211.147786 _libc_open (libc-2.12.s0: syscall-template.S,82)
4.574762 65 0.424622 494 0.655899 write (libc-2.12.s0: syscall-template.S,82)
0.044708 184 0.011079 317 0.017103 __GI__libc_lseek (libc-2.12.s0: syscall-template.S,82)
openss>>expview -v calltrees,fullstack

I/OCall % of Number Call Stack Function (defining location)
Time(ms) Total of
Time Calls
_start (IOR)
> @ 562 in _libc_start_main (libmonitor.s0.0.0.0: main.c,541)
>> @ 258 in __libc_start_main (libc-2.12.s0: libc-start.c,96)
>>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
>>>> @ 153 in main (IOR: IOR.c,108)
>>>>> @ 2021 in TestloSys (IOR: IOR.c,1848)
>>>>>> @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
>>>>>>> @ 766 in close (iot-collector-monitor-mrnet-mpi.so: wrappers.c,685)
1858418.863034 61.486298 512 >>>>>>>> @ 82 in close (libc-2.12.s0: syscall-template.S,82)
_start (IOR)
> @ 562 in _libc_start_main (libmonitor.s0.0.0.0: main.c,541)
>> @ 258 in _libc_start_main (libc-2.12.so: libc-start.c,96)
>>> @ 517 in monitor_main (libmonitor.s0.0.0.0: main.c,492)
>>>> @ 153 in main (IOR: IOR.c,108)
>>>>> @ 2173 in TestloSys (IOR: IOR.c,1848)
>>>>>> @ 2611 in WriteOrRead (IOR: IOR.c,2562)
>>>>>>> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
>>>>>>>> @ 223 in read (iot-collector-monitor-mrnet-mpi.so: wrappers.c,137)
1055603.730633 34.924939 2048 >>>>>>>>> @ 82 in _GI__read (libc-2.12.s0: syscall-template.S,82)
_start (IOR)
> @ 562 in _libc_start_main (libmonitor.s0.0.0.0: main.c,541)
>> @ 258 in _libc_start_main (libc-2.12.s0: libc-start.c,96)

56

>>> @ 517 in monitor_main (libmonitor.so0.0.0.0: main.c,492)

>>>> @ 153 in main (IOR: IOR.c,108)

>>>>> @ 2004 in TestloSys (IOR: IOR.c,1848)

>>>>>> @ 104 in IOR_Create_POSIX (IOR: aiori-POSIX.c,74)

>>>>>>> @ 670 in open64 (iot-collector-monitor-mrnet-mpi.so: wrappers.c,608)
103350.518692 3.419380 512 >>>>>>>> @ 82 in _libc_open (libc-2.12.s0: syscall-template.S,82)

_start (IOR)

> @ 562 in _libc_start main (libmonitor.s0.0.0.0: main.c,541)

>> @ 258 in __libc_start_main (libc-2.12.s0: libc-start.c,96)

>>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)

>>>> @ 153 in main (IOR: IOR.c,108)

>>>>> @ 2161 in TestloSys (IOR: IOR.c,1848)

>>>>>> @ 195 in IOR_Open_POSIX (IOR: aiori-POSIX.c,173)

>>>>>>> @ 670 in open64 (iot-collector-monitor-mrnet-mpi.so: wrappers.c,608)
4757.147988 0.157392 512 >>>>>>>> @ 82 in _libc_open (libc-2.12.s0: syscall-template.S,82)

_start (IOR)

> @ 562 in _libc_start main (libmonitor.s0.0.0.0: main.c,541)

>> @ 258 in __libc_start_main (libc-2.12.s0: libc-start.c,96)

>>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)

>>>> @ 153 in main (IOR: IOR.c,108)

>>>>> @ 2013 in TestloSys (IOR: IOR.c,1848)

>>>>>> @ 2608 in WriteOrRead (IOR: IOR.c,2562)

>>>>>>> @ 244 in IOR _Xfer_POSIX (IOR: aiori-POSIX.c,224)

>>>>>>>> @ 321 in write (iot-collector-monitor-mrnet-mpi.so: wrappers.c,239)
316.176763 0.010461 2048 >>>>>>>>> @ 82 in write (libc-2.12.s0: syscall-template.S,82)

7.4 Open|SpeedShop Lightweight 1/0 Profiling General Usage

The Open|SpeedShop iop /0 function profiling experiment wraps the most common
[/0 functions, records the time spent in each /0 function, record the call path along
which I/0 function was called, record the time spent along each call path to an I/0
function, and record the number of times each function was called.

7.4.1 1/0 Profiling (iop) experiment performance data gathering

The 1/0 Profiling (iop) experiment convenience script is “ossiop”. Use this
convenience script in this manner to gather lightweight /0 profiling performance
data:

ossiop “how you normally run your application”

The following is an example of how to gather data for the IOP application on the
Cray platform using the ossiop convenience script.

ossiop "aprun -n 64 ./I0OR"
7.4.2 1/0 Profiling (iop) experiment performance data viewing with GUI

To launch the GUI on any experiment, use “openss -f <database name>".

57

The first image below, shows the default view for the iop experiment run on a
50000 rank IOR application job. The performance information in the default view is
the time spent in [/0 functions and the percentage of time spent in each I/0 function.

=

Wiy l mm-: l
: A T P

I mzsxmz\sm __wrie (Ipthread 2 11.3.50)

} AT opentsd (Ebpehned -2 17.9.00)
F9TRASTAOORE] | read (hisgehread 2110900
| 25500161 X29T cloow (litysthread 211 350}
__teackfi4 (libpthremd 2.11 2 00)

In the image below, the hot call path view for the iop experiment run on a 50000
rank IOR application job is displayed. The performance information in the hot call
path view is the top five call paths to each of the 1/0 functions that took the most
time, time spent in I/0 functions and the percentage of time spent in each I/0
function.

58

J [Process Loadad: Chok oa the Tun” S6men o begin the expenmeni.

Teathstys (IORC 108 ¢, 1838)
2600 In WeireOrFased (080 10600, 25631
O 344 10 20N Xl POSIX (10K saoei PO« J34)
LASTAIPAIN, 19TIRI TR 225008 LI Lwotle (libgthioed 211 9.50)
Testhobyy CIOR |0, ¢, 1543)
' @ 3V5 tn X0 Opws POSIX (IR aderd-POSIC e, 171}
CAAI20I025 560 SALEII02) SeeEa) 1610090 openhd ([ibpthrosd 2 11.350)
L Teaabys (08 |08 ()B4}
| & 204 i 2OR_Creste_POSIX (1L 206 POSIX2 74)
| ST . ST ssY 16535927 upentrd (Iivgtlirend 211900
r Teathabs (10 10R. ¢, 16480
. O 2611 m WriteOrRend (N1 106Lc.2562)
o o 251 In DOR XS PNOSIX (100 mioei POSILE 224)
LIOTSISTMAL. TSI LK) 18N road) (Ipthirondd-3.11. 3 50
" TeutSesys (100 100 £, 15480
@ 31600 06 _Close | IR abers WOSIX 6, 3150
clone (iimgetiont 2114 58)

This image shows the min, max, average time spent in each of the I/0 functions
showing the rank of the minimum value and the rank of the maximum value for each
of the /0 functions. This view indicates if there is an imbalance relative to the I/0
in the application being run. This may or may not be expected.

__white (ibgthrend 2 11 390}

FITASE] opeatet (bgahrend 2 11 2)

o 30 read (ispehread-2.11.3 50
a0 chowe (libgrhread 211 2 an)
aer? __Mewekfod (libpberend 2 13 3m)

7.4.3 1/0 Profiling (iop) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss -cli -f <database name>“.

59

The command line interface (CLI) can provide the same data options as the
graphical user interface (GUI) views. Here are some examples of the performance
data that can be viewed and the commands in order to generate the CLI views.

> openss -cli -f IOR-iop-1.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

Exclusive Inclusive % of Function (defining location)

I/Ocall I/Ocall Total

timesin timesin Exclusive

seconds. seconds. CPU Time
38297.339900 38297.339900 96.460929 _ write (libpthread-2.11.3.s0)
741.019727 741.019727 1.866434 open64 (libpthread-2.11.3.s0)
598.432332 598.432332 1.507294 read (libpthread-2.11.3.s0)
63.383924 63.383924 0.159647 close (libpthread-2.11.3.s0)
2.261454 2.261454 0.005696 _ Iseek64 (libpthread-2.11.3.s0)

openss>>expview -v calltrees,fullstack

Exclusive Inclusive % of Call Stack Function (defining location)
[/Ocall 1/Ocall Total
timesin timesin Exclusive
seconds. seconds. CPU Time
TestloSys (IOR: IOR.c,1848)
> @ 2608 in WriteOrRead (IOR: IOR.c,2562)
>> @ 244 in IOR Xfer_POSIX (IOR: aiori-POSIX.c,224)
38297.339900 38297.339900 96.460929 >>>_write (libpthread-2.11.3.s0)
TestloSys (IOR: IOR.c,1848)
> @ 2611 in WriteOrRead (IOR: IOR.c,2562)
>> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
598.432332 598.432332 1.507294 >>>read (libpthread-2.11.3.s0)
TestloSys (IOR: IOR.c,1848)
> @ 104 in IOR_Create_POSIX (IOR: aiori-POSIX.c,74)
472137142 472.137142 1.189189 >>open64 (libpthread-2.11.3.s0)
TestloSys (IOR: IOR.c,1848)
> @ 195 in IOR_Open_POSIX (IOR: aiori-POSIX.c,173)
268.882585 268.882585 0.677245 >>open64 (libpthread-2.11.3.s0)
TestloSys (IOR: IOR.c,1848)
> @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
61.587482 61.587482 0.155123 >>close (libpthread-2.11.3.s0)
TestloSys (IOR: IOR.c,1848)
> @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
1.796442 1.796442 0.004525 >>close (libpthread-2.11.3.50)
TestloSys (IOR: IOR.c,1848)
> @ 2608 in WriteOrRead (IOR: IOR.c,2562)
>> @ 234 in IOR _Xfer_POSIX (IOR: aiori-POSIX.c,224)
1.280113 1.280113 0.003224 >>>_lIseek64 (libpthread-2.11.3.s0)
TestloSys (IOR: IOR.c,1848)
> @ 2611 in WriteOrRead (IOR: IOR.c,2562)
>> @ 234 in IOR _Xfer_POSIX (IOR: aiori-POSIX.c,224)
0.981341 0.981341 0.002472 >>>_lseek64 (libpthread-2.11.3.s0)

In the above command line interface output, the expview command with no options
gives the overview or summary view for all the ranks and threads. One can view
the performance information for individual ranks (using -r <rank number>) or

60

individual threads (using -t <thread number>) or individual processes (using —-p
<process id>). One can also give a range of ranks, threads, or processes using their
respective option.

For the calltree view, the display is showing where the /0 function were called
from in the users application source. In this example, most of I/0 time was spent in
the write [/0 function along the path shown in the first individual calltree. The
calltree with fullstack option forces the calltree view to not collapse any similar sub-
trees, which makes the view more explicit. Without the fullstack option the calltrees
would be more consolidated.

61

8 Applying Experiments to Parallel Codes

The ideal scenario for the execution of parallel code using pthreads or OpenMP is
efficient threading, where all threads are assigned work that can execute
concurrently. Or for MPI code, the job is properly load balanced so all MPI ranks do
the same about of work and no MPI rank is stuck waiting.

What are some things that can cause these ideal scenarios to fail? (taken from LLNL
parallel processing tutorial) MPI jobs can become unbalanced if an equal amount of
work was not assigned to each rank, possibly through the number of array
operations not being equal for each rank or loop iterations not being evenly
distributed. You can still have problems even if your work seems to be evenly
distributed. For example if you evenly distribute a sparsely populated array then
some ranks may end up with very little or no work while others will have a full
workload. With adaptive grid models some ranks need to redefine their mesh while
other don’t. With N-body simulations some work migrates to other ranks so those
ranks will have more to do while the others have less.

Performance analysis can help you with load balancing and an even distribution of
work. Tools like Open|SpeedShop are designed to work on parallel jobs. It supports
threading and message passing and automatically tracks all ranks and thread during
execution. It can also store the performance info per process, rank or thread for
individual evaluation. All of the experiments for Open|SpeedShop can be run on
parallel jobs, collectors are applied to all ranks on all nodes. The results of an
experiment can be displayed as an aggregation across all ranks or threads, which is
the default view, or you can select individual or groups of ranks or threads to view.
There are also experiments specifically designed for tracing MPI function calls.

Open|SpeedShop has been tested with a variety of MPI versions including Open MP],
MVAPICH[2] and MPICH2 on Intel, Blue Gene, and Cray systems. Open|SpeedShop is
able to identify the MPI task (rank info) through the MPIR interface for the online
version or through PMPI preload for the offline version. To run MPI code with
Open|SpeedShop just include the MPI launcher as part of the executable as normal,
below are several examples:

> ossmpi “mpirun -np 128 sweep3d.mpi”

> osspcsamp “mpirun -np 32 sweep3d.mpi”

> ossio “srun -N 4 -n 16 sweep3d.mpi”

> openss -offline —f “mpirun -np 128 sweep3d.mpi” hwctime
> openss —-online -f “srun —N 8 -n 128 sweep3d.mpi” usertime

The default view for parallel applications is to aggregate the information collected
across all ranks. You can manually include or exclude individual ranks, processes or

62

threads to view their specific results. You can also compare ranks by using the
Customize Stats panel View and creating a compare column for the process groups
or individual ranks. Cluster analysis is also available, it can be used to find outliers,
ranks that are performing very differently then the others. From the Stats Panel
toolbar or context menu you can automatically create groups of similar performing
ranks or threads. Through the Stat Panel Open|SpeedShop also provides common
analysis functions designed for quick analysis of MPI applications. There are load
balance views that calculate min, max and average values across ranks, processes or
threads. The image below shows the Open|SpeedShop buttons for Load Balance and

next to that Cluster Analysis.

- OpenSpeedShop

Lile Tools [cip

frero Wizard v wwmu]

Generate Load Balance
View by clicking “LB” aix

| Process Conmrol
I a1
[- | | | » W Terminc |
Statas: Loaded saved disa froa (e /ome ey d B dinasers/sweepdd- 0000, opess.
"’ Seats Paned ll)‘!j Mqu’mv:a I"ﬂb]ﬁl"‘_‘
\ f " u’ ' l [2 [‘ u h h Showing Load Ralance (min max,svwe) Repaer
}mumkw wcv:pdu mpl Hostx: (001) merlisd Jlm § U Pmcusm Runks/ lmnm mou Q
\ Vm Tv—lmm CPU time in wnl Max Faclunivwe m time in sec] Mvrage rn‘ln\rml time m l’mrli n Mrﬁmm |nrn on) =
4 52000000 7 05000000 612694333 wweep_ (swoepSdonpi)
1. 50000000 3. 12000000 2 17005000 cans_polcevent_word (Nbelar3 so. 1)
008200000 0. 18000000 013115000 sowce_ (sweepdd mpl)
OL2000000 0. 18000000 0 OBCAES5000 elan_progressChannets (ibclan.so. 1)
01000000 OL1000000 001000000 ean_dopar (ibelan.so. 1)
Q01000000 001000000 001000000 _elan_dopusWair (Mbelan.so. 1)
L= 001000000 Q01000000 0 QO ROO0000 clan dopwlsiRomeve (Msclanao1) =]
. 3 *
Command Paned “5]:'],':”"

|
| operss> >

|

Below we see the creation of a comparison between to ranks in Open|SpeedShop.

63

Bl Create columns for each I ——

_ process set for comparison Use CustomizeStatsPanel
. Choose CC icon
W o ‘
[miafafx)
Avallabde Collecwory; I useriine 2 ‘
Avnilabhe Metrica/Modéiera: cxchusne_detil v if
[rersar /s ooy ok [Threat:
i mer 105 8l gov 16683 ! I
LS - ::‘
Commend Panel | L= EY
| opense>>
Select set of ranks/threads/
processes
for each column
Now we see those to ranks compared side by side in the statistics panel.
El Open|SpeedShop -0 %
Ble Tools Help
| m_m--mfn' [Pu— = [RIBIEIX]
Process C

- Rank 0] Rank 1
troen e /Botme yeg/demus/ datsetff e/ ssertime sweepdd-256p openss

= Stns Punel {11 " el [1] ¢ | L1INIIFIES
PrvarafaEi s @R imm B B (8o Soving Funcrions Repore

HView consists af ¢ columes click on the metadata kofor details.

| woereime -x 1 -1 oce 104tk gov - - uservime x 1 b mce 106 lnk gov -« | | Punction (defning location) '
| 15 34285684 1514285684 sweep_ (sweep3d mpe: sweep £,2)

1,51428568 1.82857139 cland_polievent_word (libelan3 so.1)

0.28571428 025714285 souree_ (sweepSd mpl; sowrce 1.2)

-0.11428571 0,02857143 elan_polfWord (lbelanse 1)

0.08571428 0LO2857143 elan _progressRxPraglise {libelan.so.1) }s
| ‘._-llﬂiluuh B AORA ot e thunsk hye (Bt cn Al I l"E:
| Command Panel @M‘
“’-m\ >>

8.1 MPI Tracing Experiment

In this section we will go through an MPI tracing experiment with Open|SpeedShop.
The experiment will be similar to the 1/0 tracing experiment; it will record all MPI
call invocations. There are two MPI experiments and associated convenience scripts,

64

ossmpi, which will record call times and ossmpit, which will record call times and
arguments. Equal events will be aggregated to save space in the database as well as
to reduce the overhead. There is one more MPI experiment that will save the full
MPI traces in the Open Trace Format (OTF) with the convenience script ossmpiotf.

Again we will run experiment on the smg2000 application. The syntax for the
experiment is:

> ossmpi[t] “srun -N 4 -n 32 smg2000 -n 50 50 50” [default | <list MPI functions> | mpi_category]

The default behavior is to trace all MPI functions, but a comma separated list of MPI

functions can be giving if you only want to trace specific functions, e.g. MPI_Send,

MPI_Recv,..., etc. You can also select an mpi_category to trace: "all”,
asynchronous p2p”, "collective_com”, "datatypes”, "environment”,
"graphs_contexts_comms”, "persistent_com”, "process_topologies”, and
“synchronous_p2p”.

» n

»on

The image below shows the results of the MPI experiment in the default view.

Eile Yool belp

Proce Displays Experiment

- |t Metadata 8 Tromiio

Seatue:| Process on the “Run” batton to begin the expetiment.

) star | ManageProcesesPaned (1] | £ ‘EJ‘E x
ey —

3‘ W el & ¥ He L T) L8 ea Bgmmenmaln i Agoregated Results s

; s 2000 Hoats {64) hyperionSa3 lnlgor ... Pe Teambs Threads:(313) 0 z

Metadata for Experament |
Applcation command:
Executables: smg2000
Experiment type: mpi
Hostls): hyperonSSiiinlygov hyperioaSSdlinlgov hyperionS8Slinlgov hyperionSatlinl
Processes, Ranks or Threads: 0-511

ByperionS87 lal gov hyperionS8Slnlgov hyperinS80.linl pov ID

Numberof Calll | Punction (efining kcation)
s12 PMPI_Init (enonitor sa 0.0.0: pmple 94)

mmuw] Ml MIT Call Thisedmy) lAmW

151, 147000 167504000 FOR.ZII004 512 PMPL_Finaliae (Hbmonsor 50.0.0.0c prapic223)
0152000 0474000 0306 512 MPI_Allgathery (Mbanpich so.1.0c aligathery ., 7X)

— 043000 0.212000 0. 133008 512 MPI_Allgathes (Meopich so. 10 aligather.c.70)
L0 1000 2034000 L3100 512 MPE_Barrier (Banpich s).0c barrier.c 56)
QOI000 10323000 O717s™ H144 MPE_Allredwon (libmpich.so 1.0: allredsoe «.59)
0.000001 611617000 097TES2 HETHA MPT_ Waitall (ibmpich.so. L0 waitall.<.57)
Q.000001 0.600000 0.001156 5400030 MPL_lsend (Ehmpich.se Lt send.c.58)

-~ Q00000] 0.069000 0000665 5400036 MPE_Irecy (hangich sa 1.0 recv.c 48)

I

Next we see the MPI function call path view, shown below.

65

Here is the default pcsamp view based on functions.

Open|SpeedShop

jacld_ (1u,C.256: jacld.1,5)

jacu_ (l.Cx256: jacu.r,5)

$s0r_ (IWLC.256: ssor.1,4)

exchange 3 (1u.C.256: exchange_3.15)
__GI_memcpy (libe-2.5.50)

Here is the load balance view based on functions.

66

Open!SpeedShop

Loaded: Click on the Run” button to begin the experiment.

bits_ (lu.C.256: blis.£,4)

jackd_ (1u.C.256: jacld.f,5)

jaeu_ (l.C.256: jacuf,5)

sso7_ (I.C.256: ssor.[4)

__Gl_memcpy (libe-2.5,50)
exchange_3_ (JwC.256: exchange_3.1,5)

Next we see the load balance view base on Linked Objects (libraries).

67

OpeniSpeedShop

Here is the pcsamp view of Rank 255 performance data only.

68

bles_ (1402562 hits.t,4)

jocdd_ (lu.C.256: jadd LS)

buts_ (18.C.256: buts.f,4)

jaca_ (. C.256: jmcu.f,5)

ptheead_spin_lock (libpthread 2.5.50)
odu_test_new_connoction (libmpich.so. 1.0: om_user.c,29)
ssor_ (lu.C.256: ssor.(4)

_G1_memepy (libe-2.5.50)

exchange_3_ (h.C.256: exchange 3.£5)
MPID_DeviceChedk (libenpich,so.1.0: viacheck.c,254)

Below we examine Rank 255 further but this time using the load balance view in the
Command Line Interface for Open|SpeedShop.

openss>>expview -m loadbalance

Max MPI Call Time Rank of Max Min MPICall Time Rankof Min Average MPI Call Function
(defining location)
Across Ranks(ms) Across Ranks(ms) Time Across Ranks{ms)
150332.97 0 120351.97 36 131361.13 MPI_Recv (libmpich.s0.1.0: recv.c,60)
17636.11 36 1103.53 0 5443.08 MPI_Send (libmpich.s0.1.0: send.c,65)
16470.53 19 353.81 0 5255.33 MPI_Wait (libmpich.s0.1.0: wait.c,51)
3206.45 255 3.00 17 2000.27 MPI_Alireduce {libmpich.so.1.0: allreduce.c,59)
915.17 754.39 83 792.07 PMB¥MInit (libmonitor.s0.0.0.0: pmpi.c,94)
16.00 a8 P1_Finalize (libmonitor.s0.0.0.0: pmpl.c,223)
9.28 230 MPI_Irecv (libmpich.so0.1.0: irecv.c,48)
1.22 247 .10 MPI_Bcast (libmpich.so0.1.0: beast.c,81)
0.51 53 035 0.41 MPI_Barrier (libmpich.so0.1.0: barrier.c,56)
openss>>

Here we look at the difference between Rank 255 and Rank 0.

69

openss>>expview -r 255 -m exclusive_time openss>>expview -r 0 -m exclusive_time

Exclusive MPI Call Function (defining location) Exclusive MPI Call Function (defining location)
Time(ms) Time{ms)

138790.370000 MP1_Recv (libmpich.se,1.0: recv.c,60) 150332.974000 MPI_Recv (libmpich.s0.1.0: recv.c,60)
8841.088000 MP_Wait (libmpich.s0.1.0: walt.c,51) 1103.539000 MPI_Send (libmpich.s0.1.0: send.c,65)
3337.737000, MP1_Send (libmpich.s0.1.0: send.c,65) 807.433000 PMPI1_Init (ibmonitor.s0.0.0.0: pmpi.c,94)
3529(;6.454000 Pl_Allreduce (libmpich.so.1.0: allreduce.c, 353.810000 MPI_Wait (llbmpich.so.1.0: wait.c,51)

. D00 PMPI_Finalize (libmonitor.s0.0.0.0: pmpi.c,
8.903000 MPI_Alireduce (libmpich.so.1.0: allreduce.c,59)
4.701000 MPI_lrecv (W 195000 MPI_lrecv (libmpich.so.1.0: irecv.c,48)
1.221000 MPI_Bcast (libmp 0.438000 MPI1_Barrier (libmpich.s0.1.0: barrier.c,56)
0.396000 MPI_Barrier (libmpichg.%,.0: . 0.076000 MPI_Bcast (libmpich.so0.1.0: beast.c,81)

MPI Experiment comparison of rank 255 to
another (rank 0) shows
Rank 255 mding much more time in
MPI duce and MPI Wait

Next we see the hot call paths for MPI_Wait on Rank 255.

openss>>expview -r 255 -vcalltrees, fullstack -f MPI_Wait

Exclusive MPI Call %of Total Number of Calls Call Stack Function (defining location)
Time(ms)

>>>>main (lu.C.256)

>>>>> @ 140 in MAIN__ (lu.C.256: lu.f,46)

>>>>>> @ 180 in ssor_ (lu.C.256: ssor.f,4)

>>>>>>> @ 213 in rhs_ (lu.C.256: rhs.f,5)

>>>>>3>> @ 224 in exchange_3_ (lu.C.256: exchange_3.1,5)

>>>>>3>>> @ 893 in mpi_wait_ (mpi-mvapich-rt-offline.so: wrappers-fortran.c,893)

>>>>>>>>>> @ BBY in mpi_wait -mvapich-rt-offline.so: wrappers-fortran.c,885)
6010,978000 3.87 250 >>>>>>3>>>> @ 51 in MP| Jl':ﬁ(libmpiduo.l.l): wait.c,51)

>>>>main (lu.C.256)
>>>>> @ 140 Iin MAIN__ (lu.C.256: lu.f,46)

>>>>>> @ 180 in ssor_ (lu.C.256: ssor.f,4)
Most expensive call >5>5>>> @ 64 in rhs_ (.C.256: rhs.f,5)
path 1o I_Walt >>>>>>>> @ 88 in exchange_3_ (lu.C.256: exchange_3.£,5)
>>>>>>>>> @ 893 in mpi_wait_ (mpi-mvapich-rt-offline.so: wrappers-fortran.c,893)

>>>>>>>>>> @ 889 in mpi_wait -mvapich-rt-offline.so: wrappers-fortran.c,885
2798.770000 1805823 250 >>>>>>>>>>> @ 51 f.inm_v}:':ﬁ'(nunm,x.m w-h.:,Sl)m J

In this experiment we did program counter sampling to get an overview of the
application. We noticed that smp_net_lookup showed up in function load balance
view, which caused us to take a look at the linked object view. The load balance on
the linked object showed some imbalance, so we looked at the cluster analysis view
and found that rank 255 was an outlier.

70

We then took a closer look at rank 255 and saw that the pcsamp output shows most
of the time was spent in smp_net_lookup. We used the MPI experiment to determine
if we can get more clues and saw that a load balance view on the MPI experiment
shows rank 255’s MPI-Allreduce time is the highest of the 256 ranks. We then
looked at rank 255 and a representative rank from the rest of the ranks and noted
the differences in MPI_Wait, MPI_Send and MPI_Allreduce. We looked at the call
paths to MPI_Wait to determine why the wait was occurring.

The mpit experiment has a performance information entry for each MPI function
call. In addition to the time spent in each MPI function, information like source and
destination rank, bytes sent or received are also available. You can selectively view
the information you desire.

Below we see the default event view for an MPI application.

o Click the “EL" icon :
o e e r
,___m For the event list display w00

- 1 Gt LIS YT B Termman
mf?mu-u Loadedt: Click on the "Run” button to begin the exper: (8 LiSt Of ind-iVidual WI
R T T e ———T ' Events in order of
= = < occurrence.
W 0 7 e 8 1 g "
: — T mdusivs ben Coll Tt gl | CaltStack Punerion (efiming locacom) il

0T/ 13 19:30:50
2010.07/13 150
2000071 K9S
2001 19:30:51
2007713 35 E
I0MOTID TS
2000,07/13 195051
2HVOT/ 13 1930:51
WHOTAD ¥ 52
00T/ I 1902

200007713 10:30:51
R

> PMPL_Enit (Messebior 00000 pmple 94)

>PMPL_Ink (Wbeoniton so.0.0.00 pmple94)
> > > >MPI_Waktall (Hwnplso0.0.0; pwatalle)

» > MM _Allgsther (Bmplan 00) paligather.c.41)

> = > >MP_Allgsthery (Bbmplsa 0.0 1 paligsthery . 40)
>MP1_Rarrier (Hbmpisa0.0.1: pharrier.c, 3}

» > > »MP1_Waltall (Hmpise 0.0.3: pwasallc 39

>3 33> >%>>MPI_Wakall (Sbmplso0.0.1: pwaltall.c¥9)
>335 5= >MP_Waitall (libmpisa0.0.1: pwsttallc39)
e e > > > > ML Waitall (libeaniso.00. 1 swaitall c 30 ¢
m——— -

bl LR==

We can create our own event view with the OV button.

71

Open SpeedShop

| Elle Tocls Help

\
Status: Process Toaded: Click on the "Run” butron to begn

[Stets Panel 11192 MarsageProcessesanel |

FCli(;ll(1 the ‘DV’; icon
or the optional view s =
diate hox —

LTSI ES
— |
& L B e Tk TR L B BR 60 Showing Munctions Repor:
Execumbles: nbody Hos:: localhestiocaidon SHOW OPTIONAL VIEW: Select icon to launch dialog box wikids witl preseat
. a number of optional fields/columes o indude in the creation of an
Exclusive MPFCall Time(ms % of Tarl oprianal view of the exisring dam
2357.121579 70993243 100 MPL_Waitall (1lmgi.s0.0.0.0: pwaitall c,39)
~738.420986 22240219 100 M Allreduce (libmpiso 0.0.0: palireduce.c 40)
215,049948 6,477007 2 MPL_lnie (libinpiso0.0.0: pinitc21)
6935016 0.208873 2 MPI_Finalize (Hbmpl.50.0.0,0: plinalize.c35)
- 1032697 0031103 100 MPI_tsend (libmpiso.0.0.0: pisend.c.40)
0589067 0,029739 2 MPE_Scactery (Hbmplso 0.0.0; pecaterv.c,40)
0373066 0.011236 100 MPL_lrecy (Ibmpi $0.0.0.0: pirecv.c,39)
0283167 0.008529 2 MPL_Gathery (Iibmpiso0.0.0: pgatherv.c.£0)
<l i il
" Gommand Panl | L= =1 ES
openss >

You can use the views dialog box to choose what metric to display.

Select the metric values
you want to see in the

display and click OK \
Use the Optional Views Dialog box
to choose the performance metrics
to be displayed in the StatsPanel
and click OK

Clicking OK will regenerate the
StatsPanel with the new metrics

displayed

Gt onalViews Didog

MPIT Hapwranent Cusors Repein Selacron Delog
1 M v Thne Vs
T MPIT Inchiive Tme Valoes
L] MAPIT Muineoes Time Yalues
U1 MPIT Maxkwem Tune Vilwes,
C] MIMIT Aversge Time Values.
) MPIT Cownt (Calls Ta Puncoon),
=) MY fxclumive Time Perconcige Values.
) MIPIT Standare Devanon Vaiues
L MPIT Meseage Sioe Vinlues
MPIT Iperment Event List (v trace) ORLY
S MY Individual Event Suart Times.
1 MINT Individual Event Siop Timws,
1 MPIT Souroe Rank Nimsbers.
1 MPIT Destinacion Rank Numbers.
=1 MPIT Messige Tag Values
5 MPT Comenuniomor Used Values
51 MPIT Message Dats Type Values
=1 MPIT Puncrion Depeadent Recum Values.

[t | avnty | x| o

After choosing the event to view it will then be displayed.

72

' Note: _ i
The newly selected metrics are
g displayed.

—

?

2010007/ K8 193051 >3 >3 >3 >>>>MPI_Waltall (ibewpisa0.01: pwat

2010/07/13 19-30:51 3 e e e e e e ML Wkt (Rbenpinn 0.001: pw

201000718 19:30.51 333w e e 3 > ML Waitall (Bbmnpls0.0.0.1: pwaltall.

333555555 >MPI_Waitall (Hhmpisa 0.0.1: pwaita

4 2w e e e e e e MM Wanktall (Benplac 0.0, 1: pwaitn

2010707753 193051 A >>>>MPF1_Wakall (Wplsooo

201/07/13 19-30:51 e e e e >8P _Wanitall (Ienplan 001 pwad
2010°07/13 193051 > > MM Waltal) (lilempieo.0.0.1:
M1 10] . . 0 251 AAA D41 nharrer <

nndaa N A

8.1.1 MPI Tracing Experiments performance data gathering
Much of this information is described above in the main MPI Tracing Experiments

section, but for completeness, this is the convenience script description for running
the MPI specific tracing experments.

> ossmpi[t] “srun -N 4 -n 32 smg2000 -n 50 50 50” [default | <list MPI functions> | mpi_category]

8.1.2 MPI Tracing Experiments performance data viewing with GUI

To launch the GUI on any experiment, use “openss -f <database name>*.

8.1.3 MPI Tracing Experiments performance data viewing with CLI

To launch the CLI on any experiment, use “openss —cli —f <database name>*.

8.2 Threading Analysis Section

We just did an experiment that uses MPI but we can do a similar analysis on
applications that use threads. To analyze a threaded application first we can run the

73

pcsamp experiment to get an overview, then look at the load balance view to detect
if there are any widely varying values and finally do cluster analysis to find any
outliers.

The image below shows the default view for an application with 4 threads, the
information displayed is the aggregated total from all threads.

Open|SpeadShop

bloverhs_ (DLW.x: solve_subs.f,206)

2 _solve_omp fn0 (bLW.x: 2_solve f43)
compute_rhs_omp_fn0 (bLW.x: rhs [18)
y_salve__omp_fn.0 (LW.x: y_solve.f,43)
x_solve_omp_fn.0 (be.W.x: x_solve.f45)
matmul_sub_ (bE.W.X: salve_subs.f.56)
matvec_sub_ (bt W.x: solve_subs.f,27)
thsinic_ (brw.x: indtializc.£,225)

Next we see the load balance view based on functions.

74

- acmss' POSD(’I’hreadstob

|emempute_rhe_omp_fn0 (5 Wx: rhet)

matvee vt (e W.x)

Ihwinet_ (W, W.x)

-p _get_num_preo (g L0
bereri_ (e W)

CEEN dnh (ewa)

Mnﬁ.ﬂm Initiakee L)

Then we look at a cluster analysis view based on functions.

Open'SpeedShop

binverhs_ (BLW.x: solve_suhs.t,206)

2 solve omp fn0 (bLW.x: 2 solveS43)
compute_rhs_omp_n.0 (be.W.x: rhs f,18)
y_solve .onv_{nn (bl.w.x ¥ _solvet, ﬂ)
matmul sab

8.2.1 Threading Specific Experiment (pthreads)

An experiment specific to tracking POSIX thread function calls and analyzing those
calls is also available in Open|SpeedShop. The experiment is called pthreads and it

75

traces several POSIX thread related functions. Like all the other tracing experiments,
number of calls, time spent in each function, the call paths to each POSIX thread
function, and an event-by-event trace is available. Load balance and cluster

analysis features are also available.

8.2.1.1 Threading Specific (pthreads) experiment performance data gathering

8.2.1.2 Threading Specific (pthreads) experiment performance data viewing with GUI

To launch the GUI on any experiment, use “openss -f <database name>".

8.2.1.3 Threading Specific (pthreads) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss -cli -f <database name>".

76

8.2 NVIDIA CUDA Analysis Section

The Open|SpeedShop version with CBTF collection mechanisms supports tracing
CUDA events in a NVIDIA CUDA based application. An event by event list of CUDA
events and the event arguments are listed.

8.3.1 NVIDIA CUDA Tracing (cuda) experiment performance data gathering

To run the NVIDIA CUDA experiment, use the osscuda convenience script and
specify the CUDA application as an argument. If there are no arguments to the

application then no quotes are necessary, but they are placed here for consistency.
The osscuda script will run the experiment by running the QTC application and will
create an Open|SpeedShop database file with the results of the experiment. Viewing

of the performance information can be done with the GUI or CLI.

osscuda “./QTC”

8.3.2 NVIDIA CUDA Tracing (cuda) experiment performance data viewing with GUI

This section shows the default view for the NVIDIA CUDA experiment for the QTC
application. Use the following command to open the GUI to see the QTC CUDA
experiment performance information.

To launch the GUI on any experiment, use “openss -f <database name>".

openss —-f QTC-cuda.openss

bw Joce M:

=101 .
Pesteas Cotiod

P T W P Seprp———

s Raow [V | stmageProcasssPawd [1] -
Vin Ospbay Chace
LU ol b TN AT o 0T Siretien et v R
Exscaratdes: OTC tosi: mQNT boskkrrmes M | Dvesch:

Exchasne 1O Col Trvanrr % o Totad Nertes o Gt i dehtay beebu
oo OTC o ch

77

The view below is the statistics panel and source view panel showing the
relationship of the statistics to the actual source in the program.

Opan)| Speed Shop [on mi-TeLiamLgey)
b ek it |
-0 » .
Trocess Cartrul
- - ») o
SRR Ivocess Loaded: Chek on M o™ Sutan 10 Seg i sxporment
™ Sarce P V] WL w o w Soes Pared 1] » »
N . Ul h a8 e Sewin Calliees Fattas Rigot
B0 Aoaw " Maen Sy Sascoisies OTG Hom mizsT aesctomar Pyse) | Tireacs. |
- - e
QTE_theviowccagahd, lptooo| ol)OS ascy el (char "N ek, (onal Exohumbon VO 1% of Total | Mavier of C2 Cuth 5100k Furihon dawbriog lotation) s
TR 3 »

s e ITC! e cpp, 194 [
. £ 220 1 Murflenchroek| Mt Clateesed, |
-;‘. »> & 280 0 runTestishs: sting oons il r:nu-’l;,
©°e - (
=0 ont e e
| =)
o7 CHDCK CLDW, RO »
=3 1 W o Tirwr: S2op Temrrad, Ko Crdy™) o
‘
il Trck: o Terwe St uaosaT 3
P gl e (1] | - »
Mo | Satia | Mrocees Bets o Aon | Vhroet T
Lol Oucomecias - [$oyromic Procoss 5t I
N n
& Dscirmwe oo Lhwooered

8.3.3 NVIDIA CUDA Tracing (cuda) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss -cli -f <database name>".

Here we show a trace view of the output from the osscuda experiment run. Note the
-f CUDA is required do to the fact this is a prototype. This restriction will be
removed in the future. This trace shows the actions taken during the execution of
the CUDA application matmul on the Titan Cray platform at ORNL.

openss>>expview -v trace -f CUDA

Start Time(d:h:m:s) Exclusive % of Call Stack Function (defining location)
I/0 Call Total
Time(ms)
2013/08/21 18:31:21.611 11.172864 1.061071 >>>>>copy 64 MB from host to device (CUDA)
2013/08/21 18:31:21.622 0.371616 0.035292 >>>>>copy 2.1 MB from host to device (CUDA)
2013/08/21 18:31:21.623 0.004608 0.000438 >>>>>copy 16 KB from host to device (CUDA)
2013/08/21 18:31:21.623 0.003424 0.000325 >>>>set 4 KB on device (CUDA)
2013/08/21 18:31:21.623 0.003392 0.000322 >>>>set 137 KB on device (CUDA)
2013/08/21 18:31:21.623 0.120896 0.011481 >>>>compute_degrees(int¥, int*, int, int)<<<[256,1,1], [64,1,1]>>> (CUDA)
2013/08/21 18:31:21.623 13.018784 1.236375 >>>>QTC_device(float*, char*, char¥, int¥, int*, int*, float*, int*, int, int, int, float, int, int, int, int,
bool)<<<[256,1,1], [64,1,1]>>> (CUDA)
2013/08/21 18:31:21.636 0.035232 0.003346 >>>>reduce_card_device(int*, int)<<<[1,1,1], [1,1,1]>>> (CUDA)
2013/08/21 18:31:21.636 0.002112 0.000201 >>>>>copy 8 bytes from device to host (CUDA)
2013/08/21 18:31:21.636 1.375616 0.130640 >>>>trim_ungrouped_pnts_indr_array(int, int¥, float*, int¥*, char¥, char*, int¥, int¥, float¥, int¥, int,
int, int, float, int, bool)<<<[1,1,1], [64,1,1]>>> (CUDA)
2013/08/21 18:31:21.638 0.001344 0.000128 >>>>>copy 260 bytes from device to host (CUDA)
2013/08/21 18:31:21.638 0.025600 0.002431 >>>>update_clustered_pnts_mask(char*, char*, int)<<<[1,1,1], [64,1,1]>>> (CUDA)
2013/08/21 18:31:21.638 11.724960 1.113503 >>>>QTC_device(float¥, char¥, char¥, int¥, int*, int*, float¥, int¥, int, int, int, float, int, int, int, int,
bool)<<<[256,1,1], [64,1,1]>>> (CUDA)

78

79

9 Memory Analysis Techniques

The Open|SpeedShop version with CBTF collection mechanisms supports tracing
memory allocation and deallocation function calls in user applications. An event-by-
event list of memory function call events and the memory function call event
arguments are listed. The Open|SpeedShop experiment name for the memory
analysis experiment is “mem”. The high water memory mark is not currently
available but is coming in the future.

9.1 Memory Analysis Tracing (mem) experiment performance data

gathering

To run the memory analysis experiment, use the ossmem convenience script and
specify the application as an argument. If there are no arguments to the application
then no quotes are necessary, but they are placed here for consistency. Using the
sweep3d application as an example, here the ossmem script will apply the memory
analysis experiment by running the sweep3d application with the Open|SpeedShop
memory trace collector, gather the data and will create an Open|SpeedShop
database file with the results of the experiment. Viewing of the performance

information can be done with the GUI or CLIL
ossmem “mpirun -np 64 ./sweep3d.mpi”

9.2 Memory Analysis Tracing (mem) experiment performance data
viewing with CLI

To launch the CLI on any experiment, use “openss -cli -f <database name>".

Here we show a trace view of the output from the ossmem experiment run. This
trace shows the default view and the load balance view for the execution of the
sweep3d.mpi application on the Titan Cray platform at ORNL. The example below
also contains an expcompare CLI command example where two of the programs
ranks are compared against each other. This may be useful if there appears to be
load imbalance when examining the -m loadbalance output.

openss -cli -f sweep3d.mpi-mem-1.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

Exclusive % of Number Function (defining location)

Mem Call Total of

Time(ms) Time Calls

674.690825 66.448540 1132566 _ libc_malloc (libc-2.11.3.50)
340.667562 33.551460 1127337 _ cfree (libc-2.11.3.50)
openss>>expview -m loadbalance

Max Rank Min Rank Average Function (defining location)

Exclusive of Exclusive of Exclusive Mem call Max Mem call Min Mem call
time in time in time in

seconds. seconds. seconds.

Across Across Across

80

9.3 Memory Analysis Tracing (mem) experiment performance data
viewing with GUI

To launch the GUI on any experiment, use “openss -f <database name>*.

The first GUI view show below is the default view for the mem experiment. It shows
the memory functions that were called in the application, how many times they
were called, the time spent in each of the memory functions, and the percentage of
the overall memory function time was spent in each of the memory functions. The
paths to each memory, through the source, are available through the call path views.

.' Opantspeedshep. =

Luondn C3ck an the Taar” Barmes 15 Sagut e wgperment

e 0w 3 1) Bea)

In this (C+ icon) call path view we see the call paths to the memory functions called
in this application.

81

M _malen (M) A1 S0

Gt (et impt e W68
SR e et Clhewas b w00 0 mwin o Sl
S e st maln (W3 20200
S RIY o eetr_madn (Tvesnon se 0 00 mle o 4

Slooe_anto_ Lywoepsd g)
o wl.,-u_M byt vl

& __antn_adbo ([ipg o sl
AR Azew w2 e _rmalee (M2 1L 300)
4NN Pedare_trees (beapech _pgtw 1400 S
3408

. 38131971 fde mmalioe (bbe2 1L o)

In the view below, one has chosen the “LB” icon and generated the load balance
view. This view shows the min, max, and average time across all the ranks in the
application. The ranks of the min and max time values are also shown. If there is a
significant difference between the min, max, and average time, there may be load
imbalance. To identify the ranks, threads, or processes that are acting out of balance,
use the cluster analysis feature activated by clicking on the “CA” icon.

Laondad C3ck am the Tast” Barme 15 Sazet e wpariment

__libe_mmalor (lise 211200
et QG2 1) 0

In this view, generated by clicking on the “CA” icon, we see that Open|SpeedShop
has determined that there are four unique groups where the aggregate time for the
groups differs enough to report this to the user. The columns in the Stats Panel
display show the times that are reflective of each of the ranks in the group. The
information (I+) icon can be used to view which ranks, etc. are included in each of
the cluster groups.

82

Ihe Do tirdy

* Marwry Traeing 11) »
Proeses Cnterd

- » ») *

PR 7e ccon Lasded. Click o the “Faa” button to bega thy expecrman

s bl |1) | s Msrspbvomsssatanel (1] | . .
Vs Thophas Chaden

I u el 58" e 8 T 5 m L R G M by Covmpantivg Akalph Bapert & i

| 4 2 Averags Ennsnm Mo 1 Averese bt W] o 4 Avecie Tackasin M| « 5, Amesge baraiin W] Fortion (sjag batlen)
T LRET) ezl A - M onalin (Bha2 | |
T)

[] . 0

10 Advanced Analysis Techniques

Analyzing the results of a single performance experiment can be useful for
debugging and tuning your code. But comparing the results of different
experiments can show you how the performance of an application has changed.

This is useful if you want to track how the performance varies for each new version
of an application, or understanding how a different compiler or compiler options
can affect the performance of your application. This also allows you to do scalability
tests to see how the performance of your application scales with the number of
processors. It's also helpful just to see the progress you have made while tuning
your code.

Open|SpeedShop has options to allow you to compare performance data. You can
use the Custom Compare Panel (CC icon) in the GUI or the osscompare convenience
script.

”

> osscompare “dbl.openss, db2.openss,...” [options]

This will produce a side-by-side comparison listing, you can compare up to 8
databases at once. You can see the osscompare man page for more details. Below is
an example of comparing two different pcsamp experiments on the smg2000
application.

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss”

[openss]: Legend: -c 2 represents smg2000-pcsamp.openss

[openss]: Legend: -c 4 represents smg2000---pcsamp---1.openss

-c 2, Exclusive CPU-c 4, Exclusive CPU Function (defining location)

time in seconds. time in seconds.
3.870000000 3.630000000 hypre_SMGResidual (smg2000:smg_residual.c,152)
2.610000000 2.860000000 hypre_CyclicReduction (smg2000:cyclic_reduc;on.c,757)

83

2.030000000 0.150000000 opal_progress (libopen-pal.so.0.0.0)

1.330000000 0.100000000 mca_btl_sm_component_progress (libmpi.so.0.0.2:
topo_unity_component.c,0)

0.280000000 0.210000000 hypre_Semilnterp (smg2000: semi_interp.c,126)

0.280000000 0.040000000 mca_pml_ob1_progress (libmpi.s0.0.0.2: topo_unity_component.c, 0)

10.1 Comparison Script Argument Description

The Open|SpeedShop comparison script accepts a number of arguments. This
section describes the acceptable options for those individual arguments. For a
quick overview see section 14.4 osscompare: Compare Database Files. As described
above the osscompare script accepts at least two and up to eight comma separated
database file names, enclosed in quotes as the mandatory argument. By default the
compared metric is the primary metric produced by the experiment. For most
experiments, the metric is exclusive time, however the hardware counter
experiments use the count of the number of hardware counter overflows as the
metric to be compared. These are the default or mandatory arguments to
osscompare. The following sections describe the arguments for osscompare in
more detail.

10.1.1 osscompare metric argument

The osscompare metric argument specifies the performance information type that
Open|SpeedShop will use to compare against when looking at each database file in
the compare database file list. To find the metric specifications that are legal and
produce comparison outputs, one can open one of the database files with the
Open|SpeedShop command line interface (CLI), and list the available metrics.

openss -cli -f smg2000-pcsamp.openss
openss>>list -v metrics
pcsamp::percent
pcsamp::threadAverage
pcsamp::threadMax
pcsamp::threadMin
pcsamp::time

You can use the output of the list metrics command as an argument to the
osscompare command as shown in the examples below.

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss”
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss” percent
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss” threadMin
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss” threadMax

Some exceptions do apply. For example, some experiments such as usertime and

hwctime have “details” type metrics output by the list metrics CLI command (list -v
metrics). These will not work as a metric argument to osscompare.

84

For the hardware counter experiments: hwc and hwctime, you can use the actual
PAPI event name in addition to the metric names output from the list metric
command. The example database file was generated using the PAPI_TOT_CYC event.

openss -cli -f smg2000-hwc.openss

openss>>[openss]: The restored experiment identifier is: -x 1
openss>>list -v metrics

hwc::overflows

hwec::percent

hwec::threadAverage

hwc::threadMax

hwec::threadMin

Here we show a couple osscompare examples where “hwc::overflows” can be
used interchangeably with PAPI_TOT_CYC.

osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" hwc::overflows
osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss” PAPI_ TOT_CYC

10.1.2 osscompare rows of output argument

osscompare allows the user to specify how many lines of the comparison output to

be output. The argument is optional and
"rows=nn" is defined as follows:

nn" - Number of rows/lines of performance data output.

In this example, only ten (10) lines of comparison will be shown when the
osscompare command is executed. It will be the most interesting, or top, ten lines.

osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" hwc::overflows rows=10

10.1.3 osscompare output name argument.

osscompare allows the user to specify the name to be used when writing out the

comparison output files. The argument is optional and
"oname=<output file name>" is defined as follows:
"output file name" - Name given to the output files created for the comparison.

This argument is valid when the environment variable OPENSS_CREATE_CSV is set
to 1. In this example, the comparison files created when the osscompare command
is executed will be named smg_hwc_cmp.csv and/or smg_hwc_cmp.txt.

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss” oname=mar2013_pcsamp_cmp
This example will generate comparison files named using the specified oname specification.

8 -rw-rw-r--. 1 jegjeg 4475 Mar 11 15:53 mar2013_pcsamp_cmp.compare.csv
8 -rw-rw-r--. 1 jegjeg 4841 Mar 11 15:53 mar2013_pcsamp_cmp.compare.txt

85

10.1.4 osscompare view type or granularity argument.

osscompare allows an optional view type argument. It represents the granularity of
the view. Open|SpeedShop allows for viewing performance data at three levels:
linked object level, function level, and at the statement level. osscompare will

produce output at one of those levels based on the view type argument where:
"viewtype=<functions | statements | linkedobjects >" is defined as follows:
"functions” - View type granularity is per function
"statements” - View type granularity is per statement
"linkedobjects" - View type granularity is per library (linked object)

This example will produce a side-by-side comparison for the statement level, not the
default function level. So, this example will compare statement performance values
in each of the two databases and produce a side-by-side comparison showing how
each statement in the application differed from the two experiments.

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss” viewtype=statements

11 Open|SpeedShop User Interfaces

Throughout this manual we have been using the Open|SpeedShop GUI, we
would encourage you to play around with the interface to become familiar with it.
The GUI lets you peel-off and rearrange any panel. There are also context sensitive
menus so you can right click on any location to access a different view or to activate
additional panels.

[f you prefer not to use the GUI there are three other options that all have
equal functionality. First there is the command line interface that we have also seen
throughout this manual, which you can launch with the -cli option:
> openss -cli

There is also the immediate command (batch) interface. This uses the -batch flag:

> openss -batch < openss_cmd_file
> openss —-batch -f <exe> <experiment>

Lastly there is a python scripting AP], so you can launch Open|SpeedShop
commands within a python script.

> python openss_python_script_file.py

11.1 Command Line Interface Basics

86

The CLI offers an interactive command line interface with processing like gdb
or dbx. There are several interactive commands that allow you to create
experiments, provide you with process/thread control or enable you to view
experiment results. You can find the full CLI documentation at
http://www.openspeedshop.org/doc/cli doc/ but here we will briefly cover some

important points. Here is a quick overview of some commands (those marked with
* are only available for the online version):

Experiment Creation Result Presentation
e expcreate e expview
e expattach* e opengui
Experiment Control Misc. Commands
e expgo e help
e expwait* o list
e expdisable* o log
e expenable* e record
Experiment Storage e playback
e expsave e history
e exprestore e quit

The following is a simple example to create, run and view data from an

experiment using the CLL

> openss —cli

Open the CLI.

openss>> expcreate —-f “mutatee 2000” pcsamp

Create an experiment using pcsamp with
this application.

openss>> expgo

Run the experiment and create the
database

openss>> expview

Display the default view of the
performance data.

You can also get alternative views of the performance data within the CLI. The
following is a list of some options to change the way the information is displayed.

help or help commands

Display CLI help text

expview

Show the default view for experiment

expview -v statements

Show time-consuming statements

expview -v loops

Show time-consuming loops

expview -v linkedobjects

Show time spent in libraries

expview -v calltrees, fullstack

See all unique call paths in the application.

expview -m loadbalance

See load balance across all the ranks/threads/processes in the
experiment.

expview -r <rank_num>

See data for specific rank(s)

expcompare -r 1 -r 2 -m time

Compare rank 1 to rank 2 for metric equal to “time”. Other
metrics are allowed. This is a usage example.

list -v metrics

See the list of optional performance data metrics.

list —v src

See the list of source files associated with experiment.

list —v obj

See the list of object files associated with experiment.

87

http://www.openspeedshop.org/doc/cli_doc/

list -v ranks See the list of ranks associated with experiment .

list -v hosts See machine host names associated with experiment .

expview -m <metric> See performance data for the metric specified .

expview -v calltrees, fullstack See <number> of call paths from the list of expensive call

<experiment type> <number> paths.

expview -v calltrees, fullstack usertime2 Shows the top two call paths in execution time.

expview <experiment-name><number> Shows <number> of the functions from the list of the top time-
consuming functions.

expview pcsamp?2 Shows the two functions taking the most time.

expview -v statements Show <number> of the statements from the list of the top

<experiment-name><number> time-consuming statements

Remember if you want the GUI at any time just issue the command opengui in the
CLIL

11.1.2 CLI Metric Expressions and Derived Types

Open|SpeedShop has the capability to create derived metric from the gathered
metrics by using the metric expression math functionality in the command line
interface (CLI). One can access the overview from the CLI by typing this help CLI
command.

openss>>help metric_expression

skekskkkskskkk

<metric_expression> ::=<string> ([<constant> ||<metric_expression>][,
[<constant> ||<metric_expression>] |*)

A user defined expression that uses metrics to compute a special value for display in a report.

User defined expression can be added to an<expMetric_list>.
A functional notation is used to build the desired expression and the following, simple, arithmetic operations are
available:

Function # arguments returns

Uminus() 1 unary minus of the argument

Abs() 1 Absolute value of the argument

Add() 2 summation of the arguments

Sub() 2 difference of the arguments

Mult() 2 product of the arguments

Div() 2 first argument divided by second

Mod() 2 remainder of divide operation

Min() 2 minimum of the arguments

Max() 2 maximum of the arguments

A_Add() 1 sum of all the data samples specified for the view

A _Mult() 1 product of all the data samples specified for the view

A Min() 1 minimum of all the data samples specified for the view

A_Max() 1 maximum of all the data samples specified for the view

Sqrt() 1 square root of the argument

Stdev() 3 standard deviation calculation

Percent() 2 percent the first argument is of the second

Condexp() 3 "C"expression: "(first argument) ? second argument : third argument”
Header() 2 use the first argument as a column header for the display of the second

88

Note:

Integer and floating constants are supported as arguments as are the metric keywords associated with the
experiment view.

Arguments to these functions can be<metric_expressions>, with the exception of the first argument of 'Header".

The first argument of 'Header' must be a character string that is preceded with and followed by "\"'.

When the '-v summary' option is used, it is not generally possible to produce a meaningful column summary.
A summary is produced for Add(), Max(), Min(), Percent(), A_Add(), A_Max and A_Min().

Examples:

expview hwc -m count,Header(\"percent of counts\",Percent(count,A_Add(count)) -v summary
expview mpi -v butterfly -f MPI_Alltoallv -m time,Header("average time/count",Div(Mult(time,1000),counts))

To examine an example, we take the default view, expview command and add the
capability to add the percentage that each function contributes to the total.

Add the header by using the “Header” phrase to create a header for the new data
column that is being added. The “Percent” phrase to create the arithmetic
expression that divides the PAPI_L1_DCM counts (count) for each function by the
total number of PAPI_L1_DCM counts in the application(A_Add(count)).

openss>>expview -m count,Header(\"percent of counts\",Percent(count,A_Add(count)))

Exclusive percent Function (defining location)
PAPI_L1_DCM of counts
Counts

342000000 52.333588 hypre_SMGResidual (smg2000: smg_residual.c,152)
207500000 31.752104 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
20500000 3.136955 hypre_Semilnterp (smg2000: semi_interp.c,126)
15000000 2.295333 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
8500000 1.300689 pack_predefined_data (libmpi.s0.0.0.3)
7000000 1.071155 unpack predefined_data (libmpi.s0.0.0.3)

11.2 CLI Batch Scripting

If you have a known set of command you want to issue you can create a plain text
file with CLI commands. For example we create a batch file that will create, run then
view the pcsamp experiment run on the application fred.

Create batch file commands

> echo expcreate —f fred pcsamp >> input.script
> echo expgo >> input.script

> echo expview pcsamp10 >> input.script

Now to run the batch file input.script we use the -batch option to openss.

> openss —-batch < input.script

89

Note that currently, in this context, this interface is only supported via the online
version of Open|SpeedShop, so it must have been build with the
OPENSS_INSTRUMENTOR=mrnet options.

11.3 Python Scripting

The Open|SpeedShop python API allows users to execute the same interactive/batch
commands directly through python. Users can intersperse the normal python code
with commands to Open|SpeedShop. Currently this interface is only supported via
the online version of Open|SpeedShop.

11.4 MPI_Pcontrol Support

Open|SpeedShop also supports the MPI_Pcontrol function. This feature allows the
user to gather performance data only for sections of their code bounded by the
MPI_Pcontrol calls. The MPI_Pcontrol must be added to the source code of the
application. MPI_Pcontrol(1) enables the gathering of performance data and
MPI_Pcontrol(0) disables the gathering. You must also set the Open|SpeedShop
environment variable OPENSS_ENABLE_MPI_PCONTROL to 1 in order to activate
the MPI_Pcontrol call recognition, otherwise it will be ignored. Optionally you can
set the OPENSS_START_ENABLED environment variable to 1 to have performance
data gathered until a MPI_Pcontrol(0) call is encountered. If
OPENSS_START_ENABLED is no set no performance data will be gathered until a
MPI_Pcontrol(1) call is encountered. Note that for OPENSS_START_ENABLED to
have any effect OPENSS_ENABLE_MPI_PCONTROL must be set.

11.5 Graphical User Interface Basics

This section gives an overview of the OpenSpeedShop graphical user interface
focusing on the basic functionality of the GUI.

To launch the GUI on any experiment, use “openss -f <database name>".

11.5.1 Basic Initial View — Default View
Because this example usertime experiment default view has many of the icons and

features of the other Open|SpeedShop experiments it is used here for illustration
purposes.

90

Openfipaeeshap

Eile Tooks Eietp

= User Thne {1 | SO0 w
Prucess Comtrod

- . - 3 »

St Process Loaded: Click om the "Sen” hutton 10 begin the experimens

e Sta Paned 1] | aManageirocessestind 1] | RO

) : iy Vv ! Disgrlay Choior

Lw el him e A L8 B oe Sowing Functinms Bt ® Funitions 2 Stesemeats 3 Linked Objets O Ligs
Exvoutables sog2000 Host: jeghoss Pids 2 Ranks 2 Threads: 2

[Factumtve CI imo i s Inchisrve CPU time s % o Totsl Evchaten CRU Panetion (efsmmg oomion |
L7542 45 !

pdial (g 2000 sing_resatusd o, 135

Cyehiciodurtion [amp00: cyelic_reduction 757
Somilestrict [smpano

M _resines o L2

progress (1
k (libmpl so 1A opal_datatype_wmgock ¢ 357)

b0 LA bil_sm_cosspanent.c

0.445

02067143
04000
0SNTI

200 smgd_serup_riep . 233
Semnep;
bypue_Semilntes P00 sewn_interp.c 126)
opel_progres (ldspi.vo | opul_pregresc, 166) :1
v

opsd_genetic_simphe_pock (itwpt so. L0R apal_detatype_poack ¢, 254

11.5.1.1 Icon ToolBar

o' oL (s @ eF He [7S lov (& LB A e Showing Functions Report:

The most used items that can be found in the StatsPanel menu that is found under the StatsPanel tab
are also available in the StatsPanel ToolBar. The StatsPanel Toolbar is provided as a

convenience. The following is a quick overview of the toolbar options. The contents of the toolbar
vary by experiment, because some options don't make sense for all experiments. The following table
describes the icons and the functionality they represent.

"T" Information This option shows the metadata for the experiment. Information such
as the experiment type, processes, ranks, threads, hosts, and other
experiment specific information is displayed.

“u” Update This option updates the information in the StatsPanel display. This
can be used to display any new data that may have come from the
nodes on which the application is running.

"CL" Clear auxiliary Clear auxiliary information. If the user has chosen a time segment of
information the performance data or a specific function to view the data for. This
option clears the settings for that and allows the next view selection
to show data for the entire program again.

"D" Default View The default view icon shows the performance results based on the
view choice granularity selection.

"S,down | Statements per | Show the performance results related back to the source statements
arrow” Function in the application for the selected function. Highlight a function in the
StatsPanel and click on this icon.

"C, plus Call paths w/o | Show all the calling paths in this application. Duplicate paths will not
sign" coalescing be coalesced. All of the calling paths will be shown in their entirety.

"C, plus Call paths w/o Show all the calling paths in this application for the selected function

91

sign, coalescing per only. Highlight a function in the StatsPanel and click on this

down Function icon. Duplicate paths will not be coalesced. All of the calling paths

arrow" will be shown in their entirety.

"HC" Hot Call Path Show the callpath in the application that took the most time. This is a
short cut to find the "hot" call path.

"B" Butterfly view Show the butterfly view which displays the callers and callees of the
selected function. Highlight a function in the StatsPanel and click on
this icon. Then repeat to "drill" down into the callers and/or callees.

"TS" Time Segment Show a portion of the performance data results based on the time
segment selected.

"ov" Optional View Use this dialog to select which performance metrics to be shown in
the new performance data report.

“SA” Source Choose which metric to use in the source panel to annotate the

Annotation source. Defaults are different for each experiment, but mostly: time.

"LB" Load Balance Show the load balance view, which displays the min, max, and average
performance values for the application. Only available on threaded
or multiple process applications.

"CA" Cluster Analysis | Show the comparative analysis view which displays the output of a
cluster analysis algorithm run against the threaded or multiple
process performance analysis results for the user application. The
goal of this view is to find outlying threads or processes and report
the groups of like performing threads, processes, or ranks.

"cc" Custom Raise the custom comparison panel which provides mechanisms

Compare allowing the user to create custom views of the performance analysis

results. This allows the user to supplement the provided
Open|SpeedShop views.

11.5.1.2 View/Display Choice Selection

The View/Display Choice set of buttons allows users to choose what granularity to
use for a particular display. The normal usage scenario, is to choose a view choice
granularity and then select a view by choosing one of the icons described in the
table above. The choices, as shown in the image below, are to see the performance
data displayed:

Per Function - Display the performance information relative to each function
in the program that had performance data gathered during the experiment
that was run.

Per Statement - Display the performance information relative to each
statement in the program that had performance data gathered during the
experiment that was run

Per Linked Object - Display the performance information relative to each
library or linked object in the program that had performance data gathered
during the experiment that was run.

Per Loop - Display the performance information relative to each loop in the
program that had performance data gathered during the experiment that
was run. Note that the loop performance information is only shown for loops
that actually were executed. There may be loops in the application that will
not show up in the display because they did were not executed or had
minimal time attributed to them.

92

The image below illustrates that double clicking on a line of statistical information
in the Stats Panel will focus the source panel at the line of source representing the
performance information and annotates the source with that information. Note the
hot to cold color highlighting of the source. The higher the performance values are
the hotter the color. Red is the hottest color, so source highlighted in red is taking

the most time in the program being profiled.
()nenvSp_e_edShop

s ———

Process Loaded: Click on the "Run™ button to begin the experdssent.

s,
A_dats_box, start, base_stride, Al,
x_datn_box, start, hase_stride, xi,
v data_box, start, buse_stride, ri);

7.591933571
7117437722
37950667RS
3.202846975

93

12 Special System Support

12.1 Cray and Blue Gene

When shared library support is limited the normal manner of running experiments
in Open|SpeedShop doesn’t work. You must link the collectors into the static
executable. Currently Open|SpeedShop has static support on Cray and the Blue
Gene P/Q platforms. You must relink the application with the osslink command to
add support for the collectors.

The osslink command is a script that will help with linking. Calls to it are usually
embedded inside an application’s makefiles. The user generally needs to fine the
target that creates the actual static executable and create a collector target that links
in the selected collector. The following is an example for re-linking the smg2000
application.

smg2000: smg2000.0
@echo "Linking" $@ "... "
${CC} -0 smg2000 smg2000.0 ${LFLAGS}

smg2000-pcsamp: smg2000.0
@echo "Linking" $@ "... "
osslink -v -c pcsamp ${CC} -0 smg2000-pcsamp smg2000.0 ${LFLAGS}

smg2000-usertime: smg2000.0
@echo "Linking" $@ "... "
osslink -v -c usertime ${CC} -o smg2000-usertime smg2000.0 ${LFLAGS}

smg2000-hwcsamp: smg2000.0
@echo "Linking" $@ "... "
osslink -v -c hwesamp ${CC} -0 smg2000-hwcsamp smg2000.0 ${LFLAGS}

smg2000-io: smg2000.0
@echo "Linking" $@ "... "
osslink -v -c io ${CC} -0 smg2000-io smg2000.0 ${LFLAGS}

smg2000-iot: smg2000.0
@echo "Linking" $@ "... "
osslink -v -c iot ${CC} -0 smg2000-iot smg2000.0 ${LFLAGS}

smg2000-mpi: smg2000.0
@echo "Linking" $@ "... "
osslink -v -¢ mpi ${CC} -0 smg2000-mpi smg2000.0 ${LFLAGS}

Running the re-linked executable will cause the application to write the raw data
files to the location specified by the environment variable OPENSS_RAWDATA_DIR.
Normally, in the cluster environment where shared executables are being run, the
conversion from raw data to an Open|SpeedShop database is done under the hood.
However, in this case you must use the ossutil command to create the database file

94

manually. Of course you can add the ossutil command to a batch script to eliminate
the step of manually issuing that command. Once you have the Open|SpeedShop
database files create you can view them normally with the GUI or CLI.

Below is an example of a job script that will execute these steps for you.

#PBS -q debug
#PBS -N smg2000-pcsamp

must have a clean raw data directory each run
rm -rf /home/USER/smg2000/test/raw
mkdir /home/USER/smg2000/test/raw

setenv OPENSS_RAWDATA_DIR /home/USER/smg2000/test/raw
setenv OPENSS_DB_DIR /home/USER/smg2000/test/

cd /home/jgalaro/smg2000/test

needs -bb to have the original executable available
when doing ossutil
aprun -bb -n 16 /home/USER/smg2000/test/smg2000-pcsamp

creates a X.0.openss database file, please
load the module pointing to openspeedshop before accessing ossutil
ossutil /home/jgalaro/smg2000/test/raw

There have been recent changes to the shared library support in Open|SpeedShop.
Dynamic shared library support is now available in newer Cray and Blue Gene
operating systems. There is support for both shared and static binaries on the Cray
and on the Blue Gene Q platforms.

Also being worked on is a replacement mechanism for having to re-link the static
binaries to insert the Open|SpeedShop collectors into the application. It will use the
Dyninst binary rewriter to insert the collectors under the hood. Then you could use
the same convenience scripts and interface for all types of applications.

12.1 Cray Specific Static aprun Information

Note, in the above execution of the statically linked executable that we need to add
the -b option to the aprun call. The option is needed because Open|SpeedShop
stores information about the executable location when it is running. Without the -b
option the executable is run in a temporary location that is not available when the
raw data information is being converted into the Open|SpeedShop database file.

95

13 Setup and Build for Open |SpeedShop

Open|SpeedShop is setup to work with the AMD Opteron or Athlon and the Intel x86,
x86-64, and Itanium-2 architectures. It has been tested on many Linux Distributions
include SLES, SUSE, RHEL, Fedora Core, CentOS, Debian, Ubuntu and many others. It
has been installed on the IBM Blue Gene P/Q and the Cray XT/XE/XK systems. The
OpenSpeedShop website contains information on special builds and usage
instructions.

The source code for Open|SpeedShop is available for download at the
Open|SpeedShop project home on Sourceforge:
http://sourceforge.net/projects/openss

Or CVS access is available at:
http://sourceforge.net/scm/?type=cvs&group id=176777

Packages and additional information can be found on the Open|SpeedShop website:
http://www.openspeedshop.org/

13.1 Open|SpeedShop Cluster Install

Open|SpeedShop comes with a set of bash install scripts that will build
Open|SpeedShop and any components it needs from source tarballs. First it will
check to see if the correct supporting software is installed on your system, if the
needed software isn’t installed it will ask to build it for you. The only thing you need
to do is provide a few arguments for the install script. For a normal setup you
would just specify the directory to install in, what build task you want to do, and the
location of your MPI and QT installs. For example:

./install-tool --build-offline --openss-prefix /opt/myoss --with-openmpi /opt/openmpi-1.5.5 -with-
mvapich /opt/mvapich-1.1

After the install has successfully completed there are a few important environment
variable you need to set. Again set OPENSS_PREFIX for the install location, the
OPENSS_PLUGIN_PATH for the directory where the plugins are stored, if you
installed with more then one MPI version you must specify which to use with
OPENSS_MPI_IMPLEMENATION, lastly add the Open|SpeedShop bin directory to
your PATH and lib64 directory to your LD_LIBRARY_PATH. Examples of the
necessary environment variables that need to be set are as follows:

export OPENSS_PREFIX=/opt/myoss

export OPENSS_MPI_IMPLEMENTATION=0openmpi

export OPENSS_PLUGIN_PATH=$0PENSS_PREFIX/lib64/openspeedshop
export LD_LIBRARY_PATH=$OPENSS_PREFIX/lib64:$LD_LIBRARY_PATH
export PATH=$OPENSS_PREFIX/bin:$PATH

96

http://sourceforge.net/projects/openss
http://sourceforge.net/scm/?type=cvs&group_id=176777
http://www.openspeedshop.org/

13.2 Open|SpeedShop Blue Gene Platform Install

Please reference the OpenSpeedShop 2.1 Build and Install Guide.
13.3 Open|SpeedShop Cray Platform Install
Please reference the OpenSpeedShop 2.1 Build and Install Guide.
13.4 Execution Runtime Environment Setup

This section gives an example of a module file, softenv file and dotkit that can be
used to set-up the Open|SpeedShop execution environments.

13.4.1 Example modaule file

This is an example of a module file used for a cluster installation. Use module load
<filename of module file> to activate the Open|SpeedShop runtime environment.

#%Modulel.0# ######H#H#H## #HH#HAHAHHHHHHAHAHUH RS HAHAEHHH HHHAHFHHHAHEH S H S H
HHHH#HH#HHHHA
openss modulefile
##
proc ModulesHelp { } {
global version openss
puts stderr "\topenss - loads the OpenSpeedShop software & application environment"
puts stderr "\n\tThis adds $oss/* to several of the"
puts stderr "\tenvironment variables."
puts stderr "\n\tVersion $version\n"

module-whatis "loads the OpenSpeedShop runtime environment"
for Tcl script use only

set version 2.1

set oss /opt/0SS21

setenv OPENSS_PREFIX $oss

setenv OPENSS_DOC_DIR $oss/share/doc/packages/OpenSpeedShop
prepend-path PATH $o0ss/bin

prepend-path MANPATH $o0ss/share/man

set unameexe "/bin/uname"
if { [file exists $unameexe] } {
set machinetype [exec /bin/uname -m]
if { $machinetype == "x86" ||
$machinetype == "i386" ||
$machinetype == "i486" ||
$machinetype == "i586" ||
$machinetype == "i686" } {

97

13.4.2 Example softenv file

This is an example of a softenv file used for a Blue Gene/Q installation. Use the
“resoft <filename of softenv file>” command to activate the Open|SpeedShop
runtime environment.

13.4.3 Example dotkit file

98

This is an example of a dotkit file used for a 64-bit cluster platform installation and
is not generalized to support different platforms other than the 64-bit cluster it was
written for. Use the “use <filename of dotkit file>” command to activate the
Open|SpeedShop runtime environment. Note: do not include the “.dk” portion of
the filename when using the “use” command.

#c performance/profile

#d Open|Speedshop (Version 2.1)

dk_setenv OPENSS_PREFIX /usr/global/tools/openspeedshop/oss-dev/0SS21
dk_setenv OPENSS_PLUGIN_PATH $OPENSS_PREFIX/lib64 /openspeedshop
dk_setenv OPENSS_DOC $OPENSS_PREFIX/share/doc/packages/OpenSpeedShop/
dk_alter PATH $OPENSS_PREFIX/bin

dk_alter LD_LIBRARY_PATH $OPENSS_PREFIX/lib64

dk_setenv DYNINSTAPI_RT_LIB $OPENSS_PREFIX/lib64 /libdyninstAPI_RT.so
dk_setenv XPLAT_RSH rsh

dk_setenv OPENSS_MPI_IMPLEMENTATION mvapich

dk_test "dk_cev OPENSS_RAWDATA DIR" -eq 0 && dk_setenv OPENSS_RAWDATA_DIR
/p/1scratchb/${USER}

14 Additional Information and Documentation Sources

14.1 Final Experiment Overview

In the table below we match up a few general questions you may ask yourself with
the experiments you may want to run in order to find the answer.

Where does my code spend most of its time?

e Flat profiles (pcsamp)
e Getting inclusive/exclusive timings with callstacks (usertime)
e Identifying hot callpaths (usertime + HP analysis)

How do I analyze cache performance?

e Measure memory performance using hardware counters (hwc)
e Compare to flat profiles (custom comparison)
o Compare multiple hardware counters (N x hwc, hwcsamp)

How to identify [/0 problems?

e Study time spent in I/0 routines (io, iot and lightweight iop)
e Compare runs under different scenarios (custom comparisons)

How to identify memory problems?

¢ Study time spent in memory allocation/de-allocation routines (mem)
e Look for load imbalance (LB view) and outliers (CA view)

How do I find parallel inefficiencies in OpenMP and/or threaded applications?

e Study time spent in POSIX thread routines (pthreads)
e Look for load imbalance (LB view) and outliers (CA view)

How do [find parallel inefficiencies in MPI applications?

e Study time spent in MPI routines (mpi)
e Look for load imbalance (LB view) and outliers (CA view)

How do I find parallel inefficiencies in NVIDIA CUDA applications?

e Study time spent in CUDA routines and the CUDA event execution trace. (cuda)

99

14.2 Additional Documentation

The python scripting API documentation can be found at
http://www.openspeedshop.org/docs/pyscripting doc or in the
.../share/doc/packages/openspeedshop/pyscripting_doc folder in the install
directory.

There are also man pages for openss and every convenience script. There’s
also a quick start guide that you can download from
http://www.openspeedshop.org

There is also an Open|SpeedShop Forum where you can ask questions and
read posts at http://www.openspeedshop.org/forums There is also an email list
that you can send your questions to oss-questions@openspeedshop.org

100

http://www.openspeedshop.org/docs/pyscripting_doc
http://www.openspeedshop.org/
http://www.openspeedshop.org/forums
mailto:oss-questions@openspeedshop.org

15 Convenience Script Basic Usage Reference Information

This section provides a quick overview of the convenience scripts that can be used to either
compare experiment data to other experiment data or to gather performance information
for each of the various performance metric types that Open|SpeedShop supports.

15.1 Suggested Workflow

We recommend an O|SS workflow consisting of two phases. First, gathering the
performance data using the convenience scripts. Then using the GUI or CLI to view the data.

15.2 Convenience Scripts

vslJsers are encouraged to use the convenience scripts that hide some of the underlying
options for running experiments. The full command syntax can be found in the User’s Guide.
The script names correspond to the experiment types and are: osspcsamp, ossusertime,
osshwc, osshwcsamp, osshwctime, ossio, ossiot, ossmpi, ossmpit, ossmpiotf, ossfpe
plus an osscompare script.

Note: Make sure to set OPENSS RAWDATA DIR (See KEY ENVIRONMENT VARIABLES
section for info). When running Open|SpeedShop, use the same syntax that is used to run
the application/executable outside of O|SS, but enclosed in quotes; e.g., Using an MPI with
mpirun: osspcsamp “mpirun -np 512 ./smg2000” Using SLURM/srun: osspcsamp “srun -
N 64 -n512./smg2000-n555"” Redirection to/from files inside quotes can be problematic,
see convenience script “man” pages for more info.

15.3 Report and Database Creation

Running the pcsamp experiment on the sequential program named mexe: osspcsamp
mexe results in a default report and the creation of a SQLite database file mexe-
pcsamp.openss in the current directory; the report:

% CPU Time CPU time Function

48.990 11.650 f3 (mexe: m.c, 24)
33.478 7.960 f2 (mexe: m.c,15)
17.451 4.150 f1 (mexe: m.c,6)
0.084 0.020 work(mexe:m.c,33)

To access alternative views in the GUI: openss -f mexe-pcsamp.openss loads the database
file. Then use the GUI toolbar to select desired views; or, using the CLI: openss —cli —f mexe-
pcsamp.openss to load the database file. Then use the expview command options for
desired views.

15.4 osscompare: Compare Database Files

General form:
osscompare “<db_filel>, < db_file2>[,<db_file>...]” [time | percent | <other metrics>] [rows=nn]
[viewtype=functions| statements | linkedobjects] > [oname = <csv filename>]

Where:

101

“<db_file>” represents an Open|SpeedShop database file created by running an
Open|SpeedShop experiment on an application.

[time | percent | <other metrics>] represent the metric that the comparison will use to
differentiate the performance information for each experiment database.

[rows=nn] indicates how many rows of output you want to have listed.
[viewtype=functions| statements | linkedobjects] select the granularity of the view output.
The comparison is either done at the function, statement, or library view level. Function

level is the default granularity.

[oname = <csv filename>] Name the output filename when comma separated list output is
requested.

Example:

osscompare “smg-runl.openss,smg-run2.openss”
osscompare “smg-runl.openss,smg-run2.openss” percent rows=10

Please type “man osscompare” for more details.
15.5 osspcsamp: Program Counter Experiment

General form:
osspcsamp “<command> < args>" [high | low | default | <sampling rate>]

Sequential job example:
osspcsamp “smg2000 -n 50 50 50”

Parallel job example:
osspcsamp “mpirun -np 128 smg2000 -n 50 50 50”

Additional arguments:
high: twice the default sampling rate (samples per second)
low: half the default sampling rate
default: default sampling rate is 100
<sampling rate>: integer value sampling rate

15.6 ossusertime: Call Path Experiment

General form:
ossusertime “<command> < args>" [high | low | default | <sampling rate>]

Sequential job example:
ossusertime “smg2000 -n 50 50 50”

Parallel job example:
ossusertime “mpirun -np 64 smg2000 -n 50 50 50”

102

Additional arguments:
high: twice the default sampling rate (samples per second)
low: half the default sampling rate
default: default sampling rate is 35
<sampling rate>: integer value sampling rate

15.7 osshwc, osshwctime: HWC Experiments

General form:
osshwc[time] “<command> < args>" [default | <PAPI_event> | <PAPI threshold> | <PAPI_
event><PAPI threshold>]

Sequential job example:
osshwc[time] “smg2000 -n 50 50 50”

Parallel job example:
osshwc[time] “mpirun -np 128 smg2000 -n 50 50 50”

Additional arguments:
default: event (PAPI_TOT_CYC), threshold (10000)
<PAPI_event>: PAPI event name
<PAPI threshold>: PAPI integer threshold

15.8 osshwcsamp: HWC Experiment

General form:
osshwcsamp “<command>< args>" [default | <PAPI_event_list>| <sampling_rate>]

Sequential job example:
osshwcsamp “smg2000 -n 50 50 50”

Parallel job examples:
osshwecsamp “mpirun -np 128 smg2000 -n 50 50 50”
osshwcsamp “srun -N 32 -n 128 sweep3d.mpi” PAPI_L1_DCM,PAPI_L1_DCA 200

Additional arguments:
default: events(PAPI_TOT_CYC and PAPI_FP_OPS), sampling _rate is 100
<PAPI_event_list>: Comma separated PAPI event list <sampling rate>:Integer value
sampling rate

15.9 ossio, ossiot: 1/0 Experiments

General form:
ossio[t] “<command> < args>" [default | f_t_list]

Sequential job example:
ossio[t] “smg2000 -n 50 50 50”

103

Parallel job example:
ossio[t] “mpirun -np 128 smg2000 -n 50 50 50”

Additional arguments:
default: trace all I/0 functions
< f _t_list>: Comma-separated list of I/O functions to trace, one or more of the

following: close, creat, creat64, dup, dup2, Iseek, Iseek64, open, open64, pipe,

pread, pread64, pwrite, pwrite64, read, readv, write, and writev

15.10 ossmpi, ossmpit: MPI Experiments

General form:
ossmpi[t] “<mpirun><mpiargs><command><args>" [default | f_t_list]

Parallel job example:
ossmpi[t] “mpirun -np 128 smg2000 -n 50 50 50”

Additional arguments:
default: trace all MPI functions
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero or more of:
MPI_Allgather, ... MPI_Waitsome and/or zero or more of the MPI group categories:

MPI Category Argument

All MPI Functions all

Collective Communicators collective_com
Persistent Communicators persistent_com
Synchronous Point to Point synchronous_p2p
Asynchronous Point to Point asynchronous_p2p
Process Topologies process_topologies
Groups Contexts Communicators graphs_contexts_comms
Environment environment
Datatypes datatypes

MPI File 1/0 fileio

15.11 ossfpe: FP Exception Experiment

General form:
ossfpe “<command> < args>" [default | f_t_list]

Sequential job example:
ossfpe “smg2000 -n 50 50 50”

Parallel job example:
ossfpe “mpirun -np 128 smg2000 -n 50 50 50”

Additional arguments:
default: trace all floating-point exceptions

104

<f t_list>: Comma-separated list of exceptions to trace, consisting of one or more of:
inexact_result, division_by_zero, underflow, overflow, invalid_operation

15.12 ossmem: Memory Analysis Experiment

General form:
ossmem “<command> < args>" [default | f_t _list]

Sequential job example:
ossmem “smg2000 -n 50 50 50”

Parallel job example:
ossmem “mpirun -np 128 smg2000 -n 50 50 50”

Additional arguments:
default: trace all supported memory functions
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or more of: malloc,
free, memalign, posix_mem align, calloc and realloc

15.13 osspthread: POSIX Thread Analysis Experiment

General form:
osspthread “<command> < args>" [default | f_t_list]

Sequential job example:
osspthread “smg2000 -n 50 50 50”

Parallel job example:
osspthread “mpirun -np 128 smg2000 -n 50 50 50”

Additional arguments:
default: trace all POSIX thread functions
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or more of:
pthread_create, pthread_mutex_init, pthread_mutex_destroy, pthread_mutex_lock,
pthread_mutex_trylock, pthread_mutex_unlock, pthread_cond_init,
pthread_cond_destroy, pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, and pthread_cond_timedwait

15.14 osscuda: NVIDIA CUDA Tracing Experiment

General form:
osscuda “<command> < args>"

Sequential job example:
osscuda “eigenvalues --matrix-size=4096"

Parallel job example:
osscuda “mpirun -np 64 -npernode 1 Imp_linux -sf gpu < in.]j”

15.15 Key Environment Variables

105

EXECUTION RELATED VARIABLES

DESCRIPTION

OPENSS_RAWDATA_DIR

Used on cluster systems where a /tmp file system is
unique on each node. It specifies the location of a
shared file system path which is required for O|SS to
save the “raw” data files on distributed systems.
OPENSS_RAWDATA_DIR="shared file system
path” Example: export
OPENSS_RAWDATA_DIR=/lustre4 /fsys/userid

OPENSS_ENABLE_MPI_PCONTROL

Activates the MPI_Pcontrol function recognition,
otherwise MPI_Pcontrol function calls will be ignored
by O|SS.

OPENSS_DATABASE_ONLY

When running the Open|SpeedShop convenience
scripts only create the database file and do NOT put
out the default report. Used to reduce the size of the
batch file output files if user is not interested in
looking at the default report.

OPENSS_RAWDATA_ONLY

When running the Open|SpeedShop convenience
scripts only gather the performance information into
the OPENSS_RAWDATA_DIR directory, but do NOT
create the database file and do NOT put out the
default report.

OPENSS_DB_DIR

Specifies the path to where O|SS will build the
database file. On a file system without file locking
enabled, the SQLite component cannot create the
database file. This variable is used to specify a path to
a file system with locking enabled for the database file
creation. This usually occurs on lustre file systems
that don’t have locking
enabled. OPENSS_DB_DIR="file system
path” Example: export
OPENSS_DB_DIR=/opt/filesys/userid

OPENSS_MPI_IMPLEMENTATION

Specifies the MPI implementation in use by the
application; only needed for the mpi, mpit, and mpiotf
experiments. These are the currently supported MPI
implementations: openmpi, lampi, mpich, mpich2,
mpt, lam, mvapich, mvapich2. For Cray, IBM, Intel
MPI implementations, use mpich2.
OPENSS_MPI_IMPLEMENTATION="MPI impl.

name” Example: export
OPENSS_MPI_IMPLEMENTATION=0openmpi

In most cases, O|SS can auto-detect the MPI in use.

106

16 Hybrid (openMP and MPI) Performance Analysis

For this example/tutorial we have run Open|SpeedShop convenience script on the
NPB-MZ BT program and created a database file that has 4 ranks each of which has
4 underlying openMP threads.

What this example intends to show is that you can look at hybrid performance first
at the MPI level and then can look under the MPI rank to see how the threads are
performing. At the MPI level you can see load balance and outliers, then focus on a
rank and look at load balance and outliers for the underlying threads. Within a
terminal window we enter:

openss -f bt-mz.B.4-pcsamp-1.openss

to bring up the Open|SpeedShop GUI.

In the GUI view below, we display the aggregated results for the application at the
statement level granularity. When the default view first comes up the view is at the
function level granularity. To switch to the statement level select the Statements
button in the View/Display Choice section on the right hand side of the Stats Panel
display and then click the “D” icon for default view. This will switch the Stats Panel
view to statement level granularity.

Now the Stats Panel is displaying the statements that took the most time in the
application run. For this execution of BT, the statement at line 440 took the most
time. By double clicking on the statement, Open|SpeedShop focuses on the source
for that line of the application source and highlights that line.

In the view below, we moved the ManageProcess panel tab to the lower panel and
split the upper panel using the vertical splitter icon on the far right side of the
original upper panel.

Note: Left mouse down and hold on the panel tab then slide the panel you want to

move to another location on the Open|SpeedShop GUI or off onto other parts of your
display.

107

OpenjSpesdShep X

I a2
A33¢ thaliacjeloc) = rhadLic je e
ke 8 dhell) abbadk ia)

X bve 47134 438
3 s 1401} 436 bl = bvoctl) - abliockiy 1) Pawect 1)

$_sclve 11470) o - Mclaiayered)
x whw 481} 0

» salve (1480}

e i0)

e ti67)

»_suive fi466)

*_sedve 1(870)
2_sobew fAT A}
.

16.1 Focus on individual Rank to get Load Balance for Underlying Threads

In the next view (below) we used the ManageProcess panel to highlight one rank
and an individual thread within the rank to show only that threads performance
data in the Stats Panel view.

Note: Use the focus on threads and processes Manage Process panel option to focus

on individual threads within a rank. Right mouse button down on the Manage
Process panel tab to see the options.

108

OpenjSpesdShep X

43ze
A33¢ thaliacjeloc) = rhadLic je e
ke 8 dhell) abbadk ia)

X sobve 1471} 438
3 v (1401} 436 bweel) = twoctl) - ablockiy 1) Pavect 1)

e t40) :;: - iskekdi 2 aree 1)
x_scbvefi406) "

Maf167)

w_sobve {471}

¥ bt (37

y_sbve d0W5)

= b li418)

»_sobew f(406}

In the next GUI view, we used the ManageProcess panel to highlight one rank to
show the performance data from all the threads that are executed under that
particular rank in order to see only that performance data in the Stats Panel view.

Note: Use the "focus on selected rank and underlying threads" Manage Process

panel option to focus on all the threads within a rank. Right mouse button down on
the Manage Process panel tab to see the options.

109

OpenjSpesdShep X

ol precsn abbodk, e, diack
dammraion sbiock(3.5), bblack(% A1, cblacki(% 5)
eger |

L odep=is 7
chbock(1 j) = ebviocki 1 53 . abbocke(1,41 bkack (3)
> - k(1 2) Mok (2,)

- tdocki 1.3)" bieck (1,41
bk 1 43* Nideck(4

16.2 Clearing Focus on individual Rank to get bank to default behavior

Note: Once you focus on individual or groups of ranks, e.g. venturing away from the
default aggregated views, then you need to use the "CL" clear auxiliary setting icon
to clear away all the optional selections and get back to looking at the aggregated
results again.

110

OpenjSpesdShep X

AT 1A heY n Lresd U TRTTESY

140322075260102 140022118430832 x_solve{1440)
1483221 15436832 140321964947 200 = woben 4(471)
140322075280102 140021904047200 x_sobve 11401}
140323075240192 1403219733900 x_sohve f(476)
140323072330904 1403221 10436532 x_sobve f1485)
THOITITINAIEIIZ 140031964547 200 *_wobve di401)
140322075230302 13032196407 200 M 67)
1409331 18436532 140021 5045947200 =_whe fl466)
1404221 18436832 L40022075240192 2_sebve N(870)
140323075240102 yaobw 0397}

J0322075240102 Duscvaneced
J40332110636602 Dhsamnecsed

After clearing the specific rank and/or thread selections, we can click the "LB" load
balance icon and Open|SpeedShop will display the min, max, average values across
all the ranks in the hybrid code. This helps decide if there is imbalance across the
ranks of the hybrid application. We can focus on individual ranks to see the balance
across the openMP threads that are in an individual rank (next example image).

111

OpeniSpasdShep “

Prooes Tosded: Chdk o the T bumion tm bogm he expermment,

sterpe(0)

5 sodve [440)
a_wohef{ari)
X_sehe 1401)
»_wahw H{476)
b 1(481)
a_wolve fi486)
haf(67)
w_wohw K584)
«_sobe 1{206)

No U~ -0 wu
-__-o oo N WS

J0322075240102 Duscvaneced
J40332110636602 Dhsamnecsed

e

Here we used the Manage Process panel "Focus on selected rank and underlying
threads" menu options to view the load balance across the 4 openMP threads for the
rank 0 process.

OpeniSpasdshep X

140322075240102

1403221 15436832

140322075240102

140323075240192 x_sche {(476)
140323072330904 x_sodve (485)
THOITITIMAIEEIZ *_yobve di401)
140322075230502 M 67)
1403321 1M436832 =_whe f466)
1404221 18456832 *_sebve (1870)
140323075240102 y b 397}

J403220752401902 Duscaneced
J403321I0634602 Dhsamnecsed
140001 0T W o

112

Please also explore the various options offered via a panel's pull down menu.
Clicking on a colored downward-facing arrow or using the Stats Panel icons can
access further options. Red icons represent view options, such as updating the data
or clearing the view options. The "green" icons correspond to different possible
views of the performance data. The "dark blue" icons correspond to analysis
options while the "light blue" icon corresponds to information about the
experiment. There is context sensitive text that is shown when you hover over the
icons.

113

