

Open|SpeedShop User Manual

February 4, 2014
Version 2.1

Contributions from Krell Institute, LANL, LLNL, SNL

 2

Table of Contents

Why do I need Performance Analysis? .. 5

1 What is Performance Analysis? .. 8

2 How to use Performance Analysis ... 9
2.1 Sequential Code Performance Analysis .. 10
2.2 Shared Memory Applications ... 10
2.3 Message Passing Applications ... 11

3 Introduction to Open|SpeedShop ... 12
3.1 Basic Concepts, Interface, Workflow ... 12

3.1.1 Common Terminology ... 13
3.1.2 Concept of an Experiment .. 14

3.2 Performance Experiments Overview .. 14
3.2.1 Individual Experiment Descriptions .. 14
3.2.3 Sampling Experiments Descriptions .. 16
3.2.4 Tracing Experiments Descriptions ... 16
3.2.5 Parallel Experiment Support ... 17

3.3 Running an Experiment ... 17

4 How to Gather and Understand Profiles .. 23
4.1 Program Counter Sampling Experiment .. 23
4.2 Call Path Profiling (usertime) Experiment ... 25

5 How to Relate Data to Architectural Properties.. 28
5.1 Hardware Counter Sampling (hwcsamp) Experiment .. 30

5.1.1 Hardware Counter Sampling (hwcsamp) experiment performance data gathering
... 33

5.1.1.1 Hardware Counter Sampling (hwcsamp) experiment parameters 33
5.1.2 Hardware Counter Sampling (hwcsamp) experiment performance data viewing
with GUI .. 33

5.1.2.1 Getting the PAPI counter as the GUIs Source Annotation Metric .. 33
5.1.2.2 Viewing Hardware Counter Sampling Data with the GUI ... 35

5.1.3 Hardware Counter Sampling (hwcsamp) experiment performance data viewing
... 36

5.2 Hardware Counter Experiment (hwc) .. 39
5.2.1 Hardware Counter Threshold (hwc) experiment performance data gathering 40
5.2.2 Hardware Counter Threshold (hwc) experiment performance data viewing with
GUI ... 40
5.2.3 Hardware Counter Threshold (hwc) experiment performance data viewing with
CLI .. 42

6 Hardware Performance Counters and Their Use.. 43
6.1 Using the Hardware counter experiments to find bottlenecks 45

6.1.1 How to find memory bandwidth bottlenecks using O|SS hwc experiments 45
6.1.2 How to find memory cache usage issues using O|SS hwc experiments 45
6.1.3 How to find load/store imbalance using O|SS hwc experiments 45

7 I/O Tracing and I/O Profiling ... 45
7.1 OOCORE Example .. 46
7.2 Lustre Striping Commands .. 47

 3

7.3 Open|SpeedShop I/O Tracing and I/O Profiling .. 48
7.3 Open|SpeedShop I/O Tracing General Usage ... 52
7.3.1 I/O Base Tracing (io) experiment ... 52

7.3.1.1 I/O Base Tracing (io) experiment performance data gathering 52
7.3.1.2 I/O Base Tracing (io) experiment performance data viewing with CLI 52
7.3.1.3 I/O Base Tracing (io) experiment performance data viewing with GUI 53

7.3.2 I/O Extended Tracing (iot) experiment .. 53
7.3.2.1 I/O Extended Tracing (iot) experiment performance data gathering 53
7.3.2.2 I/O Extended Tracing (iot) experiment performance data viewing with GUI 53
7.3.2.3 I/O Extended Tracing (iot) experiment performance data viewing with CLI 56

7.4 Open|SpeedShop Lightweight I/O Profiling General Usage 57
7.4.1 I/O Profiling (iop) experiment performance data gathering ... 57
7.4.2 I/O Profiling (iop) experiment performance data viewing with GUI 57
7.4.3 I/O Profiling (iop) experiment performance data viewing with CLI 59

8 Applying Experiments to Parallel Codes .. 62
8.1 MPI Tracing Experiment .. 64

8.1.1 MPI Tracing Experiments performance data gathering... 73
8.1.2 MPI Tracing Experiments performance data viewing with GUI 73
8.1.3 MPI Tracing Experiments performance data viewing with CLI 73

8.2 Threading Analysis Section .. 73
8.2.1 Threading Specific Experiment (pthreads) ... 75

8.2.1.1 Threading Specific (pthreads) experiment performance data gathering 76
8.2.1.2 Threading Specific (pthreads) experiment performance data viewing with GUI
... 76
8.2.1.3 Threading Specific (pthreads) experiment performance data viewing with CLI
... 76

8.2 NVIDIA CUDA Analysis Section .. 77
8.3.1 NVIDIA CUDA Tracing (cuda) experiment performance data gathering 77
8.3.2 NVIDIA CUDA Tracing (cuda) experiment performance data viewing with GUI .. 77
8.3.3 NVIDIA CUDA Tracing (cuda) experiment performance data viewing with CLI ... 78

9 Memory Analysis Techniques .. 80
9.1 Memory Analysis Tracing (mem) experiment performance data gathering 80
9.2 Memory Analysis Tracing (mem) experiment performance data viewing with
CLI .. 80
9.3 Memory Analysis Tracing (mem) experiment performance data viewing with
GUI ... 81

10 Advanced Analysis Techniques .. 83
10.1 Comparison Script Argument Description.. 84

10.1.1 osscompare metric argument ... 84
10.1.2 osscompare rows of output argument .. 85
10.1.3 osscompare output name argument. ... 85
10.1.4 osscompare view type or granularity argument. .. 86

11 Open|SpeedShop User Interfaces ... 86
11.1 Command Line Interface Basics .. 86

11.1.2 CLI Metric Expressions and Derived Types .. 88
11.2 CLI Batch Scripting .. 89
11.3 Python Scripting ... 90
11.4 MPI_Pcontrol Support .. 90

 4

11.5 Graphical User Interface Basics .. 90

11.5.1 Basic Initial View – Default View ... 90
11.5.1.1 Icon ToolBar ... 91
11.5.1.2 View/Display Choice Selection .. 92

12.1 Cray and Blue Gene ... 94
12.1 Cray Specific Static aprun Information .. 95

13 Setup and Build for Open|SpeedShop ... 96
13.1 Open|SpeedShop Cluster Install ... 96
13.2 Open|SpeedShop Blue Gene Platform Install ... 97
13.3 Open|SpeedShop Cray Platform Install .. 97
13.4 Execution Runtime Environment Setup .. 97

13.4.1 Example module file ... 97
13.4.2 Example softenv file ... 98
13.4.3 Example dotkit file .. 98

14 Additional Information and Documentation Sources .. 99
14.1 Final Experiment Overview .. 99
14.2 Additional Documentation ... 100

15 Convenience Script Basic Usage Reference Information 101
15.1 Suggested Workflow ... 101
15.2 Convenience Scripts .. 101
15.3 Report and Database Creation .. 101
15.4 osscompare: Compare Database Files  ... 101
15.5 osspcsamp: Program Counter Experiment  .. 102
15.6 ossusertime: Call Path Experiment  .. 102
15.7 osshwc, osshwctime: HWC Experiments  .. 103
15.8 osshwcsamp: HWC Experiment  ... 103
15.9 ossio, ossiot: I/O Experiments  .. 103
15.10 ossmpi, ossmpit: MPI Experiments  .. 104
15.11 ossfpe: FP Exception Experiment  ... 104
15.12 ossmem: Memory Analysis Experiment .. 105
15.13 osspthread: POSIX Thread Analysis Experiment ... 105
15.14 osscuda: NVIDIA CUDA Tracing Experiment ... 105
15.15 Key Environment Variables ... 105

16 Hybrid (openMP and MPI) Performance Analysis ... 107
16.1 Focus on individual Rank to get Load Balance for Underlying Threads 108
16.2 Clearing Focus on individual Rank to get bank to default behavior.................. 110

 5

Why do I need Performance Analysis?

All these questions can be answered by using Performance Analysis.

Where are the bottlenecks in my program?

My parallel application works fine on 10
nodes but on 1000 nodes it slows to a
crawl, what’s happening?

Is my parallel program
scalable?

Is my program optimized for running on
this new system?

Are these new libraries faster than the old
versions?

 6

About this Manual

This manual will provide you with a basic understanding of performance analysis.
You will learn how to plan and run Open|SpeedShop performance experiments on
your applications.

This manual intends to give users an understanding of the general experiments
available in Open|SpeedShop that can be used to analyze application code. There is
extensive information provided about how to use the Open|SpeedShop experiments
and how to view the performance information in informative ways. Hopefully this
will allow users to start optimizing and analyzing the performance of application
code.

Open|SpeedShop is a community effort by The Krell Institute with current direct
funding from the Department of Energy's National Nuclear Security Administration
(DOE NNSA). It builds on a broad list of community provided infrastructures,
notably the Paradyn Project's Dyninst API and MRNet (Multicast Reduction
Network) from the University of Wisconsin at Madison, the Libmonitor profiling tool,
and the Performance Application Programming Interface (PAPI) from the University
of Tennessee at Knoxville. Open|SpeedShop is an open source multi platform Linux
performance tool which is targeted to support performance analysis of applications
running on both single node and large scale IA64, IA32, EM64T, AMD64, PPC, Blue
Gene and Cray XT/XE/XK platforms.

Open|SpeedShop is explicitly designed with usability in mind and is for application
developers and computer scientists. The base functionality includes:

 Sampling Experiments
 Support for Call Stack Analysis
 Hardware Performance Counters
 MPI Profiling and Tracing
 I/O Profiling and Tracing
 Floating Point Exception Analysis
 Memory Function Tracing
 POSIX Thread Function Tracing
 NVIDIA CUDA Event Tracing

In addition, Open|SpeedShop is designed to be modular and extensible. It supports
several levels of plug-ins, which allow users to add their own performance
experiments.

Open|SpeedShop development is hosted by the Krell Institute. The infrastructure
and base components of Open|SpeedShop are released as open source code
primarily under LGPL. Highlights include:

 Comprehensive performance analysis for sequential, multithreaded,
and MPI applications

http://www.krellinst.org/

 7

 No need to recompile the user’s application.
 Supports both first analysis steps as well as deeper analysis options

for performance experts
 Easy to use GUI and fully scriptable through a command line interface

and Python
 Supports Linux Systems and Clusters with Intel and AMD processors
 Extensible through new performance analysis plugins ensuring

consistent look and feel
 In production use on all major cluster platforms at LANL, LLNL, and

SNL

Features include:
 Four user interface options: batch, command line interface, graphical

user interface and Python scripting API.
 Supports multi-platform single system image (SSI) and traditional

clusters.
 Scales to large numbers of processes, threads, and ranks.
 View performance data using multiple customizable views.
 Save and restore performance experiment data and symbol

information for post experiment performance analysis.
 View performance data for all of application’s lifetime or smaller time

slices.
 Compare performance results between processes, threads, or ranks

between a previous experiment and current experiment.
 Interactive CLI help facility, which lists the CLI commands, syntax, and

typical usage.
 Option to automatically group like-performing processes, threads, or

ranks.

 Create MPI traces in OTF (Open Trace Format).

 8

1 What is Performance Analysis?

Performance Analysis, also called software profiling or performance tuning, is not
only a way to measure the speed and efficiency of a program but also to identify
bottlenecks in parallel applications. Software developers are facing new issues
when writing code for massively parallel applications. There may be issues in code
that does not become apparent until it is run on thousands (or tens of thousands, or
hundreds of thousands, etc.…) of cores. Performance Analysis can be used to
identify problems and tune applications for optimal speed and efficiency.

There are many aspects of a program that can be measured in order to analyze its
performance. You can measure the time each function takes or the call paths within
an application. There are a number of hardware counters available, like the number
of floating point operations per second (FLOPS) performed or the number of data
cache misses. You can monitor the I/O operations for a program to analyze its
interaction with the file system.

Not only are there many possible things to measure about a program there are also
different ways to measure them. You can instrument your program by adding
performance routines to the source code, you can have a performance tool
periodically take samples from a program as it runs, or you can preload certain
library functions to monitor those calls.

There are a number of different performance tools that can help you measure the
different performance aspects of your code. There are built in Unix commands like
time or gprof that can give you some basic timing information. This manual
describes how to use Open|SpeedShop, a robust performance tool capable of
analyzing unmodified binaries. Throughout the manual will show real world
examples of performance analysis using Open|SpeedShop.

 9

2 How to use Performance Analysis

Performance analysis is an essential part of the development
cycle, and should be included as early as possible. It can
have an impact on the patterns used in message passing, or
the layout of the data structures used and the algorithms
themselves. Your end goal should be correct and efficient
code. Typically one would measure the performance of some
code and analyze the results. You then modify the code or
algorithms as appropriate and repeat the measurements
from before, analyzing the differences in successive runs to
ensure an increase in performance.

The most basic performance analysis tool is the Unix “time”
command, which can measure the CPU and wall clock time for an application. You
could also keep track of application’s performance as you vary the input parameters.
This type of performance analysis is very simple but has the disadvantage of the
measurements being coarse grain and not allowing you to pinpoint any
performance bottlenecks within the application.

Another performance analysis method is code integration (or instrumentation) of
performance probes. This method allows a much finer grain analysis however it can
be hard to maintain and required significant beforehand knowledge of what
information to measure and record.

An alternative to the simple and coarse grain or complex and fine grain approach is
the use of performance analysis tools. Performance Tools enable fine grain analysis
that can be resulted to the source code and work universally across applications.

There are two ways performance analysis tools gather information from
applications. One way is through statistical sampling, which periodically interrupts
the execution of the program to record its location. Statistical distributions across
all locations are reported, and data is typically aggregated over time. Time is the
most common metric, but other metrics are possible. Statistical sampling is useful
to get an overview of the applications performance, as it provides low and uniform
overhead.

Event tracing is another way for performance analysis tools to gather information.
In this case the tool can gather and store individual application events, for example,
function invocations, MPI messages or I/O calls. The events recorded are typically
time stamped and proved detailed per event information. This method can lead to
huge data volumes and higher, potentially bursty overheads.

There are a number of different performance analysis tools, so how do you select
the right one for your application? A tool must have the right features for what you

 10

are trying to measure. Keep in mind which questions you are looking to answer and
how deep do you want to analyze the code. A tool must also match your
application’s workflow, and may need access to and knowledge about the source
code and the machine environment. Other things to keep in mind when choosing a
tool are having a local installation of the tool and the availability of local support for
the tool. Getting started on Performance Analysis can be a challenging and
sometimes overwhelming undertaking so it’s a good idea to have some support
system in place to help you through the hard parts.

Parts of this manual will focus on general performance analysis information,
followed by many detailed examples using the Open|SpeedShop performance
analysis tool. Open|SpeedShop has an easy to use GUI and command line options; it
includes both sampling and tracing in a single framework and doesn’t require
recompilation of the application. It is extensible through user written plug-ins.
Open|SpeedShop is also maintained and supported within the Tri-lab clusters, Blue
Gene, and Cray platforms run by Lawrence Livermore, Los Alamos and Sandia
National Laboratories. It is also available at a number of other laboratories and
business around the world.

The following sections give a quick overview of what to look for in your
Performance Analysis for different types of applications.

2.1 Sequential Code Performance Analysis

You should identify the most computationally intensive parts of
your application. Find out where is your application spending
most of its time: in modules or libraries, on particular statements
in your code, or within certain functions. Check to make sure the
most time is being spent in the computational kernels. Ask
yourself if the amount of time that each section takes matches your
intuition.

Explore the impact of the memory hierarchy. Check to see if your
application has excessive data cache misses. Find out where your
data is located. One can also assess the impact of the virtual

memory Translation Lookaside Buffer (TLB) misses.

Check the interaction of you application with external resources by checking the
efficiency of the I/O and looking at the time spent in system libraries.

2.2 Shared Memory Applications

Shared memory applications have a single shared storage that is
accessible from any CPU. The programming models common to

 11

shared memory applications include threadsn (e.g. POSIX threads, and OpenMP.

The typical performance issues with shared memory
applications include limited bus bandwidth where a
bottleneck occurs when many CPUs are trying to access
the same resources. There can be synchronization
overhead associated with thread startup. There can be
problems with not balancing the workload among threads properly, or most
efficiently. There can be complications with Non-Uniform Memory Access (NUMA).

2.3 Message Passing Applications

Message passing applications use a distributed memory model with sequential or
shared memory nodes coupled by a network. In this case data is exchanged using
message passing via a Message Passing Interface (MPI).

The typical performance issues associated with message passing applications
include long blocking times while waiting on data, or low messaging rates creating
bottlenecks due to insufficient network bandwidth.

 12

3 Introduction to Open|SpeedShop

Open|SpeedShop is an open source performance analysis tool framework. It
provides the most common performance analysis steps all in one tool. It is easily
extendable by writing plugins to collect and display performance data. It also comes
with built in experiments to gather and display several types of performance
information.

Open|SpeedShop provides several flexible and easy ways to interact with it. There
is a GUI to launch and examine experiments, a command line interface that provides
the same access as the GUI, as well as python scripts. There are also convenience
scripts that allow you to run standalone experiments on applications and examine
the results at a later time.

The existing experiments for Open|SpeedShop all work on unmodified application
binaries. Open|SpeedShop has been tested on a variety of Linux clusters and
supports Cray and Blue Gene systems.

3.1 Basic Concepts, Interface, Workflow

Open|SpeedShop has three ways for the user to
examine the results of a performance test,
called experiments, a GUI, a command line
interface or through python libraries. The user
can also start experiments by using those three
options or by an additional method of the command line launched convenience
scripts. For example to launch one of the convenience scripts for the pcsamp
experiment (Program Counter Sampling) the user executes the command
osspcsamp “<application>”, where <application> is the executable under study
along with any arguments. The convenience scripts will then create a database for
the results of that experiment.

The user can examine any database in
the GUI with the command:
 openss –f <db file>
The GUI will proved some simple
graphics to help you understand the
results and will relate the data back to
the source code when possible.

 13

3.1.1 Common Terminology

Technical terms can have multiple and/or context sensitive meanings, therefore this
section attempts to explain and clarify the meanings of the terms used in this
document, especially with respect to the Open|SpeedShop tools.

Experiment: A set of collectors and executables bound together to generate
performance information that can be viewed in human readable form.

Focused Experiment: The current experiment commands operate on. The
user may run or view multiple experiments simultaneously and unless a
particular experiment is specified directly, the focused experiment will
be used. Experiments are given an enumeration, called an experiment id,
for identification.

Component(s): A component is a somewhat self-contained code section of
the Open|SpeedShop performance tool. This section of code does a set
of specific related tasks for the tool. For example, the GUI component
does all the tasks related to displaying Open|SpeedShop wizards,
experiment creation, and results using a graphical user interface. The
CLI component does similar functions but uses the interactive command
line delivery method.

Collector: The portion of the tool containing logic that is responsible for the
gathering of the performance metric. A collector is a portion of the
code that is included in the experiment plugin.

Metric: The measurement, which the collector/experiment is gathering. A
metric could be a time, an occurrence counter, or other entity, which
reflects in some way on the application’s performance and is gathered
by a performance experiment at application runtime directly by the
collector.

Offline: A link override mechanism that allows for gathering performance
data using libMonitor to link Open|SpeedShop performance data
gathering software components into the user application. For the
Open|SpeedShop offline mode of operation, the application must be run
from start up to completion. The performance results may be viewed
after the application terminates normally.

Param: Each collector allows the user to set certain values that control the
way a collector behaves. The parameter or param may cause the
collector to perform various operations at certain time intervals or it
may cause a collector to measure certain types of data. Although
Open|SpeedShop provides a standard way to set a parameter, it is up to
the individual collector to decide what to do with that information.
Detailed documentation about the available parameters is part of the
collector's documentation.

Framework: The set of API functions that allows the user interface to
manage the creation and viewing of performance experiments. It is the
interface between the user interface and the cluster support and
dynamic instrumentation components.

 14

Plugin: A portion (library) of the performance tool that can be loaded and
included in the tool at tool start-up time. Development of the plugin
uses a tool specific interface (API) so that the plugin, and the tool it is to
be included in, know how to interact with each other. Plugins are
normally placed in a specific directory so that the tool knows where to
find the plugins.

Target: This is the application or part of the application one is running the
experiment on. In order to fine tune what is being targeted,
Open|SpeedShop gives target options that describes file names, host
names, thread identifiers, rank identifiers and process identifiers.

3.1.2 Concept of an Experiment

Open|SpeedShop uses the concept of an experiment to describe the gathering of
performance measurement data for a particular performance area of
interest. Experiments consist of the collector responsible for the gathering of the
measurements associated with the performance area of interest. The collector,
which is a small dynamic or static object library, also contains functions that can
interpret the gathered measurements, i.e., performance data, into a human
understandable form. The experiment definition also includes the application being
examined and how often the data will be gathered (the sampling rate). The
application’s symbol information is saved into the experiment output file so that
performance reports can be generated from the performance data file alone. The
application, itself, need not be present to view the performance data at a later time.

3.2 Performance Experiments Overview

Open|SpeedShop refers to the different performance measurements as experiments.
Each experiment can measure and analyze different aspects of the code’s
performance. The experiment type, or type of data gathered, is chosen by the user.
Any experiment can be applied to any application, with the exception of MPI specific
experiments being applied to non-MPI applications.

Each experiment consists of collectors and views. The collectors define specific
performance data sources, for example, program counter samples, call stack
samples, hardware counters or tracing of library routines. Views specify how the
performance data is aggregated and presented to the user. It is possible to
implement multiple collectors per experiment.

3.2.1 Individual Experiment Descriptions

The following table provides a quick overview of the different experiment types that
come with Open|SpeedShop.

 15

Experiment Experiment Description

pcsamp Periodic sampling the program counters gives a low-overhead view of where the time
is being spent in the user application.

usertime Periodic sampling the call path allows the user to view inclusive and exclusive time
spent in application routines. It also allows the user to see which routines called
which routines. Several views are available, including the “hot” path.

hwc Hardware events (including clock cycles, graduated instructions, instruction and data
cache and TLB misses, floating-point operations) are counted at the machine
instruction, source line and function levels.

hwcsamp Similar to hwc, except that sampling is based on time, not PAPI event overflows. Up to
six events may be sampled during the same experiment.

hwctime Similar to hwc, except that call path sampling is also included. 

io Accumulated wall-clock durations of input/output (I/O) system calls: read, readv,
write, writev, open, close, dup, pipe, creat and others. Show call paths for each
unique I/O call path.

iop* Lightweight I/O profiling: Accumulated wall-clock durations of I/O system calls: read,
readv, write, writev, open, close, dup, pipe, creat and others, but individual call
information is not recorded.

iot Similar to io, except that more information is gathered, such as bytes moved, file
names, etc.

mpi Captures the time spent in and the number of times each MPI function is called. Show
call paths for each MPI unique call path.

mpit Records each MPI function call event with specific data for display using a GUI or a
command line interface (CLI). Trace format option displays the data for each call,
showing its start and end times.

mpiotf Write MPI calls trace to Open Trace Format (OTF) files to allow viewing with Vampir
or converting to formats of other tools.

fpe Find where each floating-point exception occurred. A trace collects each with its
exception type and the call stack contents. These measurements are exact, not
statistical.

mem* Captures the time spent in and the number of times each memory function is called.
Show call paths for each memory function’s unique call path

pthreads* Captures the time spent in and the number of times each POSIX thread function is
called. Show call paths for each POSIX thread function’s unique call path

cuda* Captures the NVIDIA CUDA events that occur during the application execution and
report times spent for each event, along with the arguments for each event, in an
event-by-event trace.

 16

* Only available in Open|SpeedShop using CBTF collection mechanism (currently under
development)

3.2.3 Sampling Experiments Descriptions

Program counter sampling (pcsamp) experiment, call path profiling (usertime)
experiment, and the three hardware counter experiments (hwc, hwctime, hwcsamp)
all use a form of sampling based performance information gathering techniques.

Program Counter Sampling (pcsamp) is used to record the Program Counter (PC) in
the user application being monitored by interrupting the application at an user
defined time interval, with the default being 100 times a second. This experiment
provides a low overhead overview of the time distribution for the application. Its
lightweight overview provides a good first step for analyzing the performance of an
application.

The Call Path Profiling (usertime experiment) gathers both the PC sampling
information and also records call stacks for each sample. This allows the later
display of the call path information about the application as well as inclusive and
exclusive timing data (see section 4.2). This experiment is used to find hot call paths
(call paths that take the most time) and see who is calling whom.

The Hardware Counter experiments (hwc, hwctime, hwcsamp) access data like
Cache and TLB misses. The experiments hwc and hwctime, sample a hardware
counter events, based on an event threshold. The default event is PAPI_TOT_CYC
overflows. Please see chapter 5 for more information on PAPI and hardware
counter related experiments. Instead using a threshold, the hwcsamp experiment
samples up to six events based on a sample time, similar to the usertime and
pcsamp experiments. The hwcsamp experiment default events are PAPI_FP_OPS
and PAPI_TOT_CYC.

3.2.4 Tracing Experiments Descriptions

The Input/Output tracing and profiling experiments (io, iot, iop), MPI Tracing
Experiments (mpi, mpit, mpiotf), Memory tracing (mem), POSIX thread tracing
(pthread), and the Floating Point Exception Tracing (fpe) all use a form of tracing or
wrapping of the function names to record performance information. Tracing
experiments do not use timers or thresholds to interrupt the application. Instead
they intercept the function calls of interest by using a wrapper function that records
timing and function argument information, calls the original function, and then
records this information for later viewing with Open|SpeedShop’s user interface
tools.

The Input/Output tracing experiments (io, iot) record invocation of all POSIX I/O
events. They both provide aggregated and individual timings and, in addition, the

 17

iot experiment also provides argument information for each call. To obtain a more
lightweight overview of application I/O usage, use the I/O profiling experiment. The
lightweight I/O experiment (iop) records the invocation of all POSIX I/O events,
accumulating the information, but does not save individual call information like the
io and iot experiments do. That allows the iop experiment database to be smaller
and makes the iop experiment faster than the io and iot experiments.

The memory tracing experiment (mem) records invocation of all tracked memory
function calls, also referred to as events. The mem experiment provides aggregated
and individual timings and also provides argument information for each call.

The MPI Tracing Experiments (mpi, mpit, mpiotf) record invocation of all MPI
routines as well as aggregated and individual timings. The mpit experiment
provides argument information for each call. The mpiotf experiment creates Open
Trace Format (OTF) output.

The Floating Point Exception Tracing (fpe) is triggered by any FPE caused by the
application. It can help pinpoint numerical problem areas.

The POSIX thread tracing experiment (pthreads) records invocation of all tracked
POSIX thread related function calls, also referred to as events. The pthreads
experiment provides aggregated and individual timings and also provides argument
information for each call.

3.2.5 Parallel Experiment Support

Open|SpeedShop supports MPI and threaded codes; it has been tested with a variety
of MPI implementations. The thread support is based on POSIX threads and
OpenMP is supported through POSIX threads. Open|SpeedShop reports the activity
of the POSIX threads that represent the OpenMP threads, but currently doesn’t do
any special processing for OpenMP specifically.

Any Open|SpeedShop experiment can be applied to any parallel application. This
means you can run the program counter sampling experiment on a non-parallel
application as well as a MPI or threaded application. The experiment data collectors
are automatically applied to all tasks/threads. The default views aggregate (sum the
performance data) across all tasks/threads but data from individual tasks/threads
are available. The MPI calls are wrapped, and MPI function elapsed time and
parameter information is displayed.

3.3 Running an Experiment

First think about what parameters you want to measure then choose the
appropriate experiment to run. You may want to start by running the pcsamp

 18

experiment since it is a lightweight experiment and will give an overview of the
timing for the entire application.

Once you have selected the experiment to run you can launch it with either the
wizard in the GUI or by using the command line convenience scripts. For example
say you have decided to run the pcsamp experiment on the Semi coarsening
Multigrid Solver MPI application smg2000 (a good benchmark application). On the
command line you would issue the command:

> osspcsamp “mpirun –np 256 smg2000 –n 65 65 65”

Where “mpirun –np 256 smg2000 –n 65 65 65” is a typical MPI application
launching command you would normally use to launch the smg2000 application.
mpirun, a MPI driver script or executable, is here used to launch smg2000 on 256
processors with “-n 65 65 65” is passed as an argument to smg2000. An example of
a typical MPI smg2000 pcsamp experiment run along with the application and
experiment output follows below:

> osspcsamp “mpirun –np 2 smg2000 –n 65 65 65”

[openss]: pcsamp experiment using the pcsamp experiment default sampling rate: "100".
[openss]: Using OPENSS_PREFIX installed in /opt/OSS-mrnet
[openss]: Setting up offline raw data directory in /tmp/jeg/offline-oss
[openss]: Running offline pcsamp experiment using the command:
"mpirun -np 2 /opt/OSS-mrnet/bin/ossrun "./smg2000 -n 65 65 65" pcsamp"

Running with these driver parameters:
(nx, ny, nz) = (65, 65, 65)
(Px, Py, Pz) = (2, 1, 1)
(bx, by, bz) = (1, 1, 1)
(cx, cy, cz) = (1.000000, 1.000000, 1.000000)
(n_pre, n_post) = (1, 1)
dim = 3
solver ID = 0
===
Struct Interface:
===
Struct Interface:
 wall clock time = 0.049847 seconds
 cpu clock time = 0.050000 seconds
===
Setup phase times:
===
SMG Setup:
 wall clock time = 0.635208 seconds
 cpu clock time = 0.630000 seconds
===
Solve phase times:
===
SMG Solve:
 wall clock time = 3.987212 seconds
 cpu clock time = 3.970000 seconds
Iterations = 7
Final Relative Residual Norm = 1.774415e-­­07
[openss]: Converting raw data from /tmp/jeg/offline-­­oss into temp file X.0.openss

 19

Processing raw data for smg2000
Processing processes and threads ...
Processing performance data ...
Processing functions and statements ...

[openss]: Restoring and displaying default view for:
 /home/jeg/DEMOS/demos/mpi/openmpi-­­1.4.2/smg2000/test/smg2000-­­pcsamp-­­1.openss
[openss]: The restored experiment identifier is: ­x 1

Exclusive CPU time % of CPU Time Function (defining location) in seconds.
 3.630000000 43.060498221 hypre_SMGResidual (smg2000: smg_residual.c,152)
 2.860000000 33.926453144 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 0.280000000 3.321470937 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 0.210000000 2.491103203 hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.150000000 1.779359431 opal_progress (libopen-pal.so.0.0.0)
 0.100000000 1.186239620 mca_btl_sm_component_progress (libmpi.so.0.0.2)
 0.090000000 1.067615658 hypre_SMGAxpy (smg2000: smg_axpy.c,27)
 0.080000000 0.948991696 ompi_generic_simple_pack (libmpi.so.0.0.2)
 0.070000000 0.830367734 __GI_memcpy (libc-­­2.10.2.so)
 0.070000000 0.830367734 hypre_StructVectorSetConstantValues (smg2000:
struct_vector.c,537)
 0.060000000 0.711743772 hypre_SMG3BuildRAPSym (smg2000: smg3_setup_rap.c,233)

When the application completes a default report will be printed on screen. The
performance information gathered during execution of the experiment will be
stored in a database called smg2000-pcsamp.openss. You can use the
Open|SpeedShop GUI to analyze the data in detail. Run the openss command to load
that database file or open the file directly using the “-f” option:

> openss –f smg2000-pcsamp.openss

Below we show basic examples of how to use the GUI to view the output database
file created by the convenience script.

 20

 21

You can choose to view data for Functions, Statements or Linked Objects. To switch
from one view type to another, first select the view granularity (Function,
Statement, or Linked Object), then select the type of view. For the default views,
select the “D” icon.

You can manipulate the windows within the GUI and double click functions or
statements to see the source code directly.

 22

 23

4 How to Gather and Understand Profiles

A profile is the aggregated measurements collected during the experiment. Profiles
look at code sections over time. There are advantages to using profiles since they
reduce the size of performance data and typically the data is collected with low
overhead. So profiles can provide a good overview of the performance of an
application.

The disadvantage of using a profile is that you are required to know beforehand
how to aggregate the data collected. Also, since profiles provide more of an
overview, they omit the performance details of individual events. There could also
be an issue where selecting an inappropriate sampling frequency could skew the
results of the profile.

Statistical Performance Analysis is a standard profiling technique, it involves
interrupting the execution of the application in periodic intervals to record the
location of the execution (Program Counter value). It can also be used to collect
additional data like stack traces or hardware counters. Again the advantage of this
method is its low overhead. It is good for getting an overview of the program and
finding the hotspots (time intensive areas) within the program.

4.1 Program Counter Sampling Experiment

The sampling experiments available in Open|SpeedShop include Program Counter
Sampling, Call Path Profiling and Hardware Counter. The Program Counter
Sampling experiment (osspcsamp) provides approximate CPU time for each line and
function in the program. The Call Path Profiling experiment (ossusertime) provides
inclusive vs. exclusive CPU time (see section 4.2), and also includes call stacks.
There is a number of Hardware Counter experiments (osshwc, osshwctime) that
sample hardware counter overflows and osshwcsamp that can periodically sample
up to six hardware counter events.

A flat profile will answer the basic question: “Where does my code spend its time?”.
This will be displayed as a list of code elements with varying granularity, i.e.
statements, functions and libraries (linked objects), with the time spent at each
function. Flat profiling can be done through sampling, which allows us to avoid the
overhead of direct measurements. We must ensure we request a sufficient number
of samples (sampling rate) to get an accurate result.

An example of flat profiling would be running the program counter sampling in
Open|SpeedShop. We will run the convenience script on our test program smg2000:

> osspcsamp “mpirun –np 256 smg2000 –n 50 50 50”

 24

It is recommended that you compile your code with the –g option in order to see the
statements in the sampling. The pcsamp experiment also takes a sampling
frequency as an optional parameter, the available parameters are high (200 samples
per second), low (50 samples per second) and the default value is 100 samples per
second. If we wanted to run the same experiment with the high sampling rate we
would simply issue the command:

> osspcsamp “mpirun –np 256 smg2000 –n 50 50 50” high

We can view the results of this flat profile in the Open|SpeedShop GUI by using the
“openss –f <database filename>” command.

We can use this information to identify the critical regions. The profile shows
computationally intensive code regions by displaying the time spent per function or
per statement. While viewing this we must ask ourselves:

 “Are those the functions/statements that we expected to be taking the most
time?”

 “Does this match the computational kernels?”
 “Are any runtime functions taking a lot of time?”

We want to identify any components that are bottlenecks. We can do this by
viewing the profile aggregated by shared (linked) objects, making sure the correct
or expected modules are present, then analyze the impact of those support and/or
runtime libraries.

 25

4.2 Call Path Profiling (usertime) Experiment

The call path profiling (usertime) experiment can add some
information that is missing from the flat profiles. It is able to
distinguish routines called from multiple callers, and
understand the call invocation history. This provides context
for the performance data. It also gathers stack traces for
each performance sample and only aggregates samples with
equal stack traces. For the user, this simplifies the view by
showing the caller/callee relationship. It can also highlight
the hot call paths, the paths through the application that take
the most time.

The call path profiling experiment also provides inclusive
and exclusive time. Exclusive time is the time spent inside a
function only, for example function B. Whereas inclusive
time is the time spend inside a function and its children, for
example the full chain of function C, D and E.

The call path profiling experiment is similar to the program
counter sampling experiment since it collects program
counter information, except that it collects call stack
information at every sample. There are, of course, tradeoffs
with that, you obtain additional context information from the
call stacks but there is now a higher overhead and necessarily lower sampling rate.

We can run the call path profiling experiment using the Open|SpeedShop
convenience script on our test program smg2000:

> ossusertime “mpirun –np 256 smg2000 –n 50 50 50”

Again it is recommended that you compile your code with the –g option in order to
see the statements in the sampling. The usertime experiment also takes a sampling
frequency as an optional parameter, the available parameters are high (70 samples
per second), low (18 samples per second) and the default value is 35 samples per
second. Note that these sample rates are lower then the pcsamp experiment
because of the increased amount of data being collected. If we wanted to run the
same experiment with the low sampling rate we would simply issue the command:

> ossusertime “mpirun –np 256 smg2000 –n 50 50 50” low

We can view the results of this experiment in the Open|SpeedShop GUI. The view is
similar to the pcsamp view but this time the inclusive CPU time is also shown.

 26

Below we see the Exclusive CPU time on highlighted lines that indicate relatively
high CPU times.

While performance tools will point out potential bottlenecks and hot areas it is still
up to the user to interpret most data in the correct context as well as note areas of
the code you may want to probe further. If the inclusive and exclusive times are
similar this means the child executions are insignificant (with respect to CPU time)
and it may not be useful to profile below this layer. If the inclusive time is

 27

significantly greater then the exclusive time then you should focus your attention to
the execution times of the children.

The stack trace views in Open|SpeedShop are similar to the well-known Unix
profiling tool gprof.

 28

5 How to Relate Data to Architectural Properties

So far we have been focusing mostly on timing. Timing information shows where
your code spends its time by displaying hot functions/statements/libraries and hot
call paths. But it doesn’t show you why it is spending so much time in those areas.
You need to know if the computationally intensive parts of the code are as efficient
as they can be to reduce the time spent there or if there are resources that are
constraining the execution of the code. These answers can be very platform
dependent. Areas of bottlenecks can differ from system to system, and portability
issues can cause a drop in performance. There may be a need to tune your code
based on the architectural parameters of the system. In order to do this we will
investigate the interaction between the application and the hardware to make sure
there is an efficient use of hardware resources.

Modern memory system are complex, they
can have deep hierarchies and explicitly
managed memory. Systems can implement
Non-Uniform Memory Access (NUMA) or
streaming/prefetching methods. The key
to memory is location. Are you accessing
the same data repeatedly or are you
accessing neighboring data. You will want
to look at your codes read/write intensity,
the prefetch efficiency, the cache miss rate
at all levels, TLB miss rates and the
overhead from NUMA.

Some system differences can affect the computational intensity like the cycles per
instruction (CPI) or the number of floating point instructions. Other architectural
features that can differ between systems include branches, the number of branches
taken, the miss speculation or wrong branch prediction results.

If your code is using anything like single instruction multiple data (SIMD), any type
of multimedia or streaming extensions the performance of all of these things could
differ greatly from system to system.

General system-wide information including I/O busses, network counters, also
power or temperature sensors; all could affect the performance of your code. But it
can be difficult to relate this information to your source code.

Hardware performance counters are used to keep track of architectural features.
Typically most features that are packaged inside the CPU allow counting hardware
events transparently without any overhead. Newer platforms also provide system
counters on things like network cards and switches or environmental sensors.

 29

The drawback to hardware counters is that their availability differs between
platforms and processor types. Even systems that allow the same counters may
have slight semantic differences between platforms. In some cases access to
hardware counters may require privileged access or kernel patches.

Performance Application Programming Interface (PAPI) allows access to hardware
counters through APIs and simple runtime tools. You can find more information on
PAPI at http://icl.cs.utk.edu/papi.

Open|SpeedShop provides three hardware counter experiments that are
implemented on top of PAPI. It provides access to PAPI and native counters like
data cache misses, TLB misses and bus accesses.

There are a few basic models to follow in hardware counter experiments. The first
is thresholding, where the user selects a counter and the application runs until a
fixed number of events have been reached on that counter. Then a PC sample is
taken at that location every time the counter increases by the preset fixed number.
The ideal threshold, the fixed number at which to monitor, is dependent on the
application. Another model is a timer based sampling where the counters are
checked at given time intervals.

Open|SpeedShop provides three hardware counter experiments, hwc for flat
hardware counter profiles using a single hardware counter, hwctime for profiles
with stack traces using a single hardware counter and hwcsamp for PC sampling
with multiple hardware counters. Both osshwc and osshwctime support non-
derived PAPI presets, all non-derived events are reported by “papi_avail –a”. You
can also see the available events by running the experiments (osshwc or
osshwctime) with no arguments. The experiments include all native events for that
specific architecture. Some PAPI event names are listed in sections below, but
please see the PAPI documentation for the full list.

The threshold you choose depends on the application, you want to balance overhead
with accuracy. Remember a higher threshold will record less samples. Rare events
need a smaller threshold or that information may be lost (never triggered and
recorded). Frequent events should use a larger threshold, to reduce the overhead of
collecting the information. Selecting the right threshold can take experience or
some trial and error.

HINT: Running the sampling based hardware counter experiment, osshwcsamp,
can help you get an idea for a threshold value to try when running the osshwc and
osshwctime experiments which are threshold based. Since the ideal number of
events (threshold) depends on the application and the selected counter, for events
other than the default, the hwcsamp experiment can be used to get an overview of
counter activity.

http://icl.cs.utk.edu/papi

 30

The default threshold is set to a very large value to match the default event
(PAPI_TOT_CYC). For all other events, it is recommended that the user run
hwcsamp first to get an idea of how many times a particular event occurs (the count
of the event) during the life of the program. A reasonable threshold can be
determined from the hwcsamp data by determining the average counts per thread
of execution and then setting the hwc/hwctime threshold to some small fraction of
that. For example, if you see 1333333333 PAPI_L1_DCM's over the life of the
program when running the hwcsamp experiment and there were 524 processes
used during the application run, the this is the formula you could use to find a
reasonable threshold for the hwc and hwctime experiments when using the
PAPI_L1_DCM event for the same application. So the formula that could be used is as
follows:

(Average counts per thread) / 1000 == Threshold for hwc/hwctime
In this case:
(1333333333/524)/1000 == 2544529/1000 == 2545

Using this formula one could use 2545 as the threshold value in hwc and hwctime
for PAPI_L1_DCM and expect to get a reasonable data sample of that event.

5.1 Hardware Counter Sampling (hwcsamp) Experiment

The osshwcsamp experiment supports both derived and non-derived PAPI presets
and is able to sample up to six counters at one time. Again you can check the
available counters by running osshwcsamp with no arguments. All native events are
available including architecture specific events listed in the PAPI documentation.
Native events are also reported by papi_native_avail.

The hardware counter sampling experiment uses a sampling rate (instead of the
threshold used in the previous experiments). But like the threshold, the sampling
rate is depended on the application and must be balanced between overhead and
accuracy. In this case the lower the sampling rate the less samples recorded.

The convenience script for this is experiment is:

> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” <event_list> <sampling_rate>

Note if a counter does not appear in the output, there may be a conflict in the
hardware counters. To find conflicts use

> papi_event_chooser PRESET <list_of_events>

Here is a list of some possible hardware counter combinations to use (list provided
by Koushik Ghosh, LLNL).

For Xeon processors:
PAPI_FP_INS, PAPI_LD_INS, PAPI_SR_INS Load store info, memory bandwidth

 31

needs
PAPI_L1_DCM, PAPI_L1_TCA L1 cache hit/miss ratios
PAPI_L2_DCM, PAPI_L2_TCA L2 cache hit/miss ratios
LAST_LEVEL_CACHE_MISSES,
LAST_LEVEL_CACHE_REFERENCES

L3 cache info

MEM_UNCORE_RETIRED:REMOTE_DRAM,
MEM_UNCORE_RETIRED:LOCAL_DRAM

Local/nonlocal memory access

For Opteron processors:
PAPI_FAD_INS, PAPI_FML_INS Floating point add multiply
PAPI_FDV_INS, PAPI_FSQ_INS Square root and divisions
PAPI_FP_OPS, PAPI_VEC_INS Floating point and vector instructions
READ_REQUEST_TO_L3_CACHE:ALL_CORES,
L3_CACHE_MISSES:ALL_CORES

L3 cache

When selecting PAPI events you must determine if they are a valid combination. In
general combination that are valid will pass the test:

> papi_event_chooser PRESET event1 event2 … eventN

The output for a valid combination will contain:

event_chooser.c PASSED

Here is an example using PAPI to check if a three-event combination is valid.

> papi_event_chooser PRESET PAPI_FP_INS PAPI_LD_INS PAPI_SR_INS
-­­-PAPI Version :4.1.2.1
Vendor string and code : GenuineIntel (1)
Model string and code : Intel Nehalem (21)
CPU Revision : 5.000000
…
…
PAPI_VEC_SP 0x80000069 No Single precision vector/SIMD instructions
PAPI_VEC_DP 0x8000006a No Double precision vector/SIMD instructions
-­­-Total events reported: 44
event_chooser.c PASSED

Below shows the output of the osshwcsamp experiment with the counters for Total
Cycles and Floating Point Operations.

 32

Remember that you do not always need to use the Open|SpeedShop GUI to examine
the output of experiments, you can also use the command line interface to view all of
the same information. For example the same output from above can be seen on the
command line:

> openss ­cli ­f smg2000­hwcsamp­1.openss

openss>>[openss]: The restored experiment identifier is: ­x 1

openss>>expview

Exclusive CPU time % of CPU Time PAPI_TOT_CYC PAPI_FP_OPS
Function (defining location) in seconds.
 3.920000000 44.697833523 11772604888 1198486900 hypre_SMGResidual (smg2000:
smg_residual.c,152)
 2.510000000 28.620296465 7478131309 812850606 hypre_CyclicReduction (smg2000:
cyclic_reduction.c, 757)
 0.310000000 3.534777651 915610917 48863259 opal_progress (libopen-
pal.so.0.0.0)
 0.300000000 3.420752566 910260309 100529525 hypre_SemiRestrict (smg2000:
semi_restrict.c,125)
 0.290000000 3.306727480 874155835 48509938 mca_btl…ress (libmpi.so.0.0.2)

openss>>expview ­v linkedobjects

Exclusive CPU time % of CPU Time PAPI_TOT_CYC PAPI_FP_OPS LinkedObject in seconds.
 7.710000000 87.315968290 22748513124 2396367480 smg2000
 0.610000000 6.908267271 1789631493 126423208 libmpi.so.0.0.2
 0.310000000 3.510758777 915610917 48863259 libopen-pal.so.0.0.0
 0.200000000 2.265005663 521249939 46127342 libc-2.10.2.so
 8.830000000 100.0 25975005473 2617781289 Report Summary

openss>>

 33

5.1.1 Hardware Counter Sampling (hwcsamp) experiment performance data gathering

The hardware counter sampling experiment convenience script is “osshwcsamp”.
Use this convenience script in this manner to gather counter values for unique up to
six (6) hardware counters:

osshwcsamp “how you normally run your application” <papi event list> < sampling rate>

5.1.1.1 Hardware Counter Sampling (hwcsamp) experiment parameters

The hwcsamp experiment is timer based not threshold based. What that means is a
timer is used to periodically interrupt the processor. For the hwcsamp experiment,
each time the timer interrupts the processor, the values of the hardware counter
events specified will be read up and reset to 0 for the next timer cycle. This is
repeated until the program finishes. Open|SpeedShop allows the user to control the
sampling rate.

The following is an example of how to gather data for the smg2000 application on a
Linux cluster platform using the osshwcsamp convenience script and specifying a
specific set of PAPI hwc events. In the next example the user is choosing to only
sample 45 times a second instead of the default 100 times a second. Why would
you want to do this? One reason would be to save database size, a lower sampling
rate may give an accurate portrayal of the application behavior.

> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” PAPI_L1_DCM,PAPI_L2_DCA,PAPI_L2_DCM,PAPI_L3_DCA,PAPI_L3_TCM

> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” PAPI_L1_DCM,PAPI_L2_DCA,PAPI_L2_DCM 45

5.1.2 Hardware Counter Sampling (hwcsamp) experiment performance data viewing
with GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

5.1.2.1 Getting the PAPI counter as the GUIs Source Annotation Metric

In order to make one of the PAPI or native hardware counters the counter that will
show up in the source view, one can click on the “SA” icon, which represents Source
Annotation. This brings up an option dialogue that allows you to chose the source
annotation metric.

 34

In this example the native counter we want to choose is L2_LD_PREFETCH. When
we click to choose that counter and click on “OK” the Stats Panel view will
regenerate and the source annotation metric will become L2_LD_PREFETCH.

The regenerated view now shows the results for only L2_LD:PREFETCH.

 35

Now double clicking on the Stats Panel result line of choice will focus the source
panel and use the PAPI or native counter that was chosen by using the Source
Annotation dialog.

5.1.2.2 Viewing Hardware Counter Sampling Data with the GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

 36

The GUI view below represents an example of the default view for the hardware
counter sampling (hwcsamp) experiment. In the default view the first set of
performance data shown is program counter exclusive time (where the program is
statistically spending its time) and the percentage of time spent in each function of
the program. The next information is the hardware counter event counts listed in
columns by the hardware counter event. Column three represents the counts that
were recorded for PAPI_TOT_CYC and column four represents the counts for
PAPI_FP_OPS. What this view can indicate to the viewer is whether or not the
specified hardware counter events are occurring and if they are, then how prevalent
are they. With this information the user could isolate down to see exactly where a
particular event is occurring by using the hwc or hwctime experiment These two
experiments are threshold based. Which ultimately means you can map the
performance data back to the source because the actual event triggered the
recording of the counts of the event. This experiment, hwcsamp, is timer based, so
Open|SpeedShop cannot take you exactly to the line of source where the hwc events
are happening. hwcsamp is more of an overview experiment that tells the user
which events are occurring to subsequently use hwc or hwctime to pinpoint where
in the source the specified hardware counter event is occurring.

5.1.3 Hardware Counter Sampling (hwcsamp) experiment performance data viewing

 37

To launch the CLI on any experiment, use “openss –cli –f <database name>“. The
following example was run on the Yellowstone platform at NCAR/UCAR using the
job script shown below.

5.1.3.1 Job Script and osshwcsamp command

#!/bin/csh

LSF batch script to run an MPI application

#BSUB -P Pnnnnnnnn # project code
#BSUB -W 00:30 # wall-clock time (hrs:mins)
#BSUB -n 64 # number of tasks in job
#BSUB -R "span[ptile=4]" # run 4 MPI tasks per node
#BSUB -J sweep3d-hwcsamp # job name
#BSUB -o sweep3d-hwcsamp.%J.out # output file name in which %J is replaced by the job ID
#BSUB -e sweep3d-hwcsamp.%J.err # error file name in which %J is replaced by the job ID
#BSUB -q regular # queue

module load openspeedshop

mkdir -p /glade/scratch/${USER}/sweep3d
rm -rf /glade/scratch/${USER}/sweep3d/hwcsamp
mkdir /glade/scratch/${USER}/sweep3d/hwcsamp
setenv OPENSS_RAWDATA_DIR /glade/scratch/${USER}/sweep3d/hwcsamp

setenv REQUEST_SUSPEND_HPC_STAT 1

echo "running (on compute node): osshwcsamp"
osshwcsamp "mpirun.lsf /glade/u/home/galaro/demos/sweep3d/orig/sweep3d.mpi"
PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM

5.1.3.2 osshwcsamp experiment CLI Default view

openss -cli -f L1-64PE-sweep3d.mpi-hwcsamp.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview -v summary

 Exclusive % of CPU papi_l1_dcm papi_l1_icm papi_l1_tcm papi_l1_ldm papi_l1_stm Function (defining location)
CPU time in Time
seconds.
824.870000 38.689781 8646497071 117738843 8764235914 8396159476 196649065 __libc_poll (libc-2.12.so)
799.300000 37.490443 46691996441 367096209 47059092650 46247555479 281624221 sweep (sweep3d.mpi:
sweep.f,2)
 75.000000 3.517807 782716992 10680760 793397752 757322217 20159725
PAMI::Interface::Context<PAMI::Context>::advance (libpami.so: ContextInterface.h,158)
 55.750000 2.614903 597583047 8038242 605621289
579127274 14647999 LapiImpl::Context::Advance<true, true, false> (libpami.so: Context.h,220)
 52.970000 2.484510 550761926 7569975 558331901 535841812 11563657 __libc_enable_asynccancel (libc-
2.12.so)
 49.850000 2.338169 518605433 6979361 525584794 502551336 12757207 _lapi_dispatcher<false> (libpami.so:
lapi_dispatcher.c,57)
 48.080000 2.255149 488545916 6784192 495330108 476065093 9649598 LapiImpl::Context::TryLock<true, true,
false> (libpami.so: Context.h,198)
 47.750000 2.239671 479947719 6732551 486680270 471343480 6436257 __libc_disable_asynccancel (libc-
2.12.so)
 26.680000 1.251401 275998769 3888499 279887268 269841454 4697170 udp_read_callback (libpamiudp.so:
lapi_udp.c,538)
 25.880000 1.213878 1522697263 12118336 1534815599 1507685061 9619348 __intel_ssse3_rep_memcpy
(libirc.so)
 21.960000 1.030014 223197680 3086626 226284306 215787794 5879517 _lapi_shm_dispatcher (libpami.so:
lapi_shm.c,2283)

 38

 14.910000 0.699340 154744623 2075688 156820311 149803306 3979337 LapiImpl::Context::CheckContext
(libpami.so: CheckParam.cpp,21)
 13.990000 0.656188 151052863 2000330 153053193 146967548 3167039 LapiImpl::Context::Unlock<true, true,
false> (libpami.so: Context.h,204)

5.1.3.2 osshwcsamp experiment CLI Status command and view

openss>>expstatus

 Experiment definition
{ # ExpId is 1, Status is NonExistent, Saved database is L1-64PE-sweep3d.mpi-hwcsamp.openss
 Performance data spans 1:7.958138 mm:ss from 2013/03/27 22:32:45 to 2013/03/27 22:33:53
 Executables Involved:
 sweep3d.mpi
 Currently Specified Components:
 -h ys6128 -p 2765 -t 47176895393312 -r 3 (sweep3d.mpi)
 -h ys6128 -p 2766 -t 47824321252896 -r 0 (sweep3d.mpi)
 -h ys6128 -p 2767 -t 47369830317600 -r 1 (sweep3d.mpi)
 -h ys6128 -p 2768 -t 47378742910496 -r 2 (sweep3d.mpi)
 -h ys6129 -p 22862 -t 47327259860512 -r 5 (sweep3d.mpi)
 -h ys6129 -p 22863 -t 47201888194080 -r 6 (sweep3d.mpi)
 -h ys6129 -p 22864 -t 47185544437280 -r 7 (sweep3d.mpi)
 …
 -h ys6250 -p 11462 -t 47028080107040 -r 63 (sweep3d.mpi)
 -h ys6250 -p 11463 -t 47600632852000 -r 60 (sweep3d.mpi)
 -h ys6250 -p 11464 -t 47494028697120 -r 61 (sweep3d.mpi)
 -h ys6250 -p 11465 -t 47944527175200 -r 62 (sweep3d.mpi)
 Previously Used Data Collectors:
 hwcsamp
 Metrics:
 hwcsamp::exclusive_detail
 hwcsamp::percent
 hwcsamp::threadAverage
 hwcsamp::threadMax
 hwcsamp::threadMin
 hwcsamp::time
 Parameter Values:
 hwcsamp::event = PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM
 hwcsamp::sampling_rate = 100
 Available Views:
 hwcsamp
 }

5.1.3.3 osshwcsamp experiment CLI Load Balance command and view

openss>>expview -m loadbalance

 Max CPU Rank Min CPU Rank Average Function (defining location)
 Time of Time of CPU Time
 Across Max Across Min Across
Ranks(s) Ranks(s) Ranks(s)
14.890000 28 10.950000 27 12.888594 __libc_poll (libc-2.12.so)
14.270000 47 11.780000 51 12.489062 sweep (sweep3d.mpi: sweep.f,2)
1.620000 43 0.840000 37 1.171875 PAMI::Interface::Context<PAMI::Context>::advance (libpami.so:
ContextInterface.h,158)
1.320000 16 0.570000 3 0.871094 LapiImpl::Context::Advance<true, true, false> (libpami.so: Context.h,220)
1.130000 60 0.500000 2 0.778906 _lapi_dispatcher<false> (libpami.so: lapi_dispatcher.c,57)
1.110000 35 0.520000 49 0.751250 LapiImpl::Context::TryLock<true, true, false> (libpami.so: Context.h,198)
1.030000 42 0.600000 12 0.827656 __libc_enable_asynccancel (libc-2.12.so)
0.950000 62 0.520000 38 0.746094 __libc_disable_asynccancel (libc-2.12.so)
0.700000 6 0.200000 59 0.343125 _lapi_shm_dispatcher (libpami.so: lapi_shm.c,2283)
0.630000 33 0.250000 0 0.404375 __intel_ssse3_rep_memcpy (libirc.so)
0.600000 18 0.270000 16 0.416875 udp_read_callback (libpamiudp.so:

 39

5.1.3.4 osshwcsamp experiment CLI Linked Object command and view

openss>>expview -v linkedobjects

 Exclusive % of CPU papi_l1_dcm papi_l1_icm papi_l1_tcm papi_l1_ldm papi_l1_stm LinkedObject
CPU time in Time
seconds.
 928.310000 43.541541 9818946796 133244862 9952191658 9543597734 215608918 libc-2.12.so
 811.920000 38.082373 47212355914 369525459 47581881373 46596204924 441601622 sweep3d.mpi
 311.490000 14.610157 3356646038 44875637 3401521675 3255300343 80090932 libpami.so
 29.640000 1.390237 1824778610 12931604 1837710214 1680978945 127174346 libirc.so
 26.930000 1.263127 287313329 3994016 291307345 281053971 4763152 libpamiudp.so
 22.250000 1.043616 1049603690 9037920 1058641610 1033650896 11422120 libpthread-2.12.so
 1.440000 0.067542 72649683 620083 73269766 71327993 1007704 libmpich.so.3.3
 0.020000 0.000938 1286256 23770 1310026 1232178 5222 ld-2.12.so
 0.010000 0.000469 327 394 721 313 13 librt-2.12.so
2132.010000 100.000000 63623580643 574253745 64197834388 62463347297 881674029 Report Summary
openss>>

5.2 Hardware Counter Experiment (hwc)

As an example we will run the osshwc experiment on our test program smg2000.
The convenience script for this is experiment is:

> osshwc “mpirun –np 256 smg2000 –n 50 50 50” <counter> <threshold>

This is the same syntax as the osshwctime experiment. Note that if your output is
empty, try lowering the <threshold> value, it is calculated by Open|SpeedShop by
default. You can try lowering the threshold value if there have not been enough
PAPI event occurrences to record. Also see the HINT in the osshwcsamp section
above. You can run osshwcsamp and use a formula to create a reasonable threshold.
Any counter reported by “papi_avail –a” that is not derived is available for use. You
can also see the available counters by using the osshwc or osshwctime commands
with no arguments. Native counters are listed in the PAPI documentation.

 40

Note the Threshold indications are just for rough guidance and are dependent on
the application. Also remember that not all counters will exist on all platforms, run
osshwc with no arguments to see the available hardware counters available.

In the sections below, we show the outputs from the osshwc experiment, note that
the default counter is the total cycles.

5.2.1 Hardware Counter Threshold (hwc) experiment performance data gathering

The hardware counter threshold experiment convenience script is “osshwc”. Use
this convenience script in this manner to gather counter values for one unique
hardware counter:

osshwc “how you normally run your application” <papi event > < threshold value>

tbd

5.2.2 Hardware Counter Threshold (hwc) experiment performance data viewing with
GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

This image shows the default view for the hwc experiment run with the smg2000
MPI application using PAPI_TOT_CYC as the hardware counter event. Double
clicking on a line in the Stats Panel or on the bar chart will take the user to the
source file and line represented by that line of performance information.

 41

The next image displays the output from the osshwctime experiment where the
counter is the L1 cache misses.

 42

5.2.3 Hardware Counter Threshold (hwc) experiment performance data viewing with
CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

 43

6 Hardware Performance Counters and Their Use

In this section we will explore the importance of simple Hardware Counter Metrics
(HCM) through some easy to understand examples. We will also use a simple Matrix
multiplication example to illustrate performance optimization.

The Memory Pyramid illustrates the impact of
memory on the performance of an application.
The closer the memory is to the CPU the faster,
and smaller, it will be. Memory further away
from the CPU is slower but larger. The most
expensive operation is moving data. The
application can only do useful work on the data at
the top of the pyramid. For a given algorithm,
serial performance is all about maximizing CPU
flop rate and minimizing memory operations in
scientific code. The table below shows the access
latencies in clock cycles for the Nehalem Intel
processor.

Memory Access latency in clock cycles
L1 4
L2 9
L3 47

Main local NUMA 81
Main non-local NUMA 128

The following example uses BLAS operations to illustrate the impact of moving data.
BLAS operations are Basic Linear Algebra Subprograms that proved library function
calls for vectors and matrices. We use the Flops/Ops to understand how sections of
the code relate to simple memory access patterns as typified by these BLAS
operations. The following table show the number of Flops/Ops for each operation,
where A, B and C are NxN Matrices; x and y are Nx1 Vectors; and k is a Scalar.

Level Operation # Memory

Refs or Ops
Flops Flops/Ops Comments on

Flops/Ops
1 y = kx + y 3n 2n 2/3 Achieved in

Benchmarks
2 y = Ax + y n2 2n2 2 Achieved in

Benchmarks
3 C = AB + C 4n2 2n3 n/2 Exceeds HW MAX

Below is an example of the BLAS Level 1 using the experiment osshwc (or
osshwcsamp) to get the following PAPI counters: PAPI_FP_OPS, PAPI_TOT_CYC,
PAPI_LD_INS, PAPI_ST_INS, PAPI_TOT_INS. Where the derived metrics of interest

 44

are: GLOPS (Giga Logical Operations per Second), Float_ops/cycle,
Instructions/cycle, Loads/Cycle, Stores/Cycle, and Flops/memory Ops.

BLAS 1 Kernel: DAXPY; y = alpha * x + y

Kernel Code: (n=10,000) looped 1000,000 times for timing purposes

do i = 1, n
 y(i) = alpha * x(i) + y(i)
enddo

The following table shows the PAPI data for this example:

n Mem
Ref=3n

FLOPS
Calc

Loop
BLAS
code

PAPI_LD_INS PAPI_SR_INS PAPI_FP_OPS PAPI_TOT_CYCLE PAPI_TOT_INS

10000 30000 20000 100000 1.02E+09 5.09E+08 1.03E+09 2.04E+09 2.43E+09

Code time sec

Code GFLOPS

FPC

IPC

LPC

SPC
6.4596E-06 3.096124 0.505386876 1.190989226 0.500489716 0.249412341

Error PAPI FLOPS

Error corrected

FLOPS

Error Mem Refs

PAPI_GLOPS

PAPI FLOPS/OPS

Calc FLOPS/OPS

-93.80% 3.10% -2.15% 3.195244288 0.673937178 0.6666667

The processors used in this example have a Floating Multiply-Add (FMADD)
instruction set. Although this instruction performs two Floating Point operations, it
is counted as one Floating Point instruction in PAPI. Because of this, there are
situations where PAPI_FP_INS may produce fewer Floating Point counts then
expected. In this example PAPI_FP_OPS was multiplied by 2 to match the theoretical,
expected FLOP count. The formula for calculating Load Instructions was:

(2 vectors)*(vec_lecth)*(loop)*(bytes_per_word)*(8 bits_per_byte)/(128 bits_per_load)

What can the Hardware Counter Metrics tell us about the code performance? The
set of useful metrics that can be calculated for functions are:

FLOPS/Memory Ops (FMO) We would like this to be large which would imply

good data locality. (Also called Computational
Intensity or Ops/Refs)

FLOPS/Cycle (FPC) Large values for floating point intensive codes
suggests efficient CPU utilization.

Instructions/Cycle (IPC) Large values suggest good balance with minimal
stalls.

Loads/Cycle (LPC) Useful for calculating FMO, may indicate good stride
through arrays.

Stores/Cycle (SPC) Useful for calculating FMO, may indicate good stride
through arrays.

BLAS Operation Kernel PAPI_GFLOPS FMO FPC IPC LPC SPC

1 y=alpha*x+y do loop 0.67 0.67 0.51 1.19 0.50 0.25

 45

2 y=A*x+y do loop 0.94 2.00 0.14 0.26 0.07 0.00
2 y=A*x+y DGEMV 1.89 0.29 0.42 0.15 0.03
3 C=A*B+C do loop(kji) 6.29 0.87 1.74 0.21 0.00
3 C=A*B+C DGEMM 12.96 1.84 1.26 0.59 0.01

The following table shows single CPU simple code Hardware Counters for simple
math kernels using the AMD Budapest Processor. Other hwc metrics that are useful
are also shown.

Code

3D Fast Fourier
Transforms;
256x256x256

Matrix
Multiplication
500x500

QR
Factorization
N = 2350

HPCCG (linear system
solver); sparseMV;
100x100x100

Computational
Intensity; Ops/Ref

1.33 1.71 1.68 0.64

MFLOPS/papi 952 4159 3738 352
MFLOPS code 1370 4187 4000 276
Percent peak 19.8 86.7 77.9 7.3
fpOps/TLB miss 841.6515146 9040759.488 697703.964 14.05636016
fpOps/D1 cache miss 25.5290058 167.9364898 144.9081716 10.24364227
fpOps/DC_MISS 29.42427018 170.5178224 149.9578195 11.1702481
Ops/cycle 0.4 1.75 1.56 0.15

6.1 Using the Hardware counter experiments to find bottlenecks

6.1.1 How to find memory bandwidth bottlenecks using O|SS hwc experiments

TBD

6.1.2 How to find memory cache usage issues using O|SS hwc experiments

TBD

6.1.3 How to find load/store imbalance using O|SS hwc experiments

TBD

7 I/O Tracing and I/O Profiling

I/O could be a significant percentage of the execution time for an application and
can depend on many things including Checkpoints, analysis output, visualization
and I/O frequencies. The I/O pattern in the application also matters, whether it is
N-to-1 or N-to-N and if there are simultaneous read or write requests. Certainly the
nature of the application is also important to the I/O usage, if it is data intensive,
traditional HPC with scalable data or out-of-core, that is, an application that works

 46

on data that is larger then the available system memory. The type of file system and
striping available on the cluster: NFS, Lustre, Panasas or other Object Storage
Targets (OSTs). What I/O libraries your code is using MPI-IO, hdf5, PLFS or others.
Also the I/O is dependent on other jobs that are running and stressing the I/O sub-
systems.

The obvious thing to explore first while tuning your code is to try and use a parallel
file system. Then optimize your code for I/O patterns. Match checkpoint I/O
frequency to Mean Time Before Interrupt (MTBI) of the system. Make sure your
code is using the appropriate libraries.

7.1 OOCORE Example

We will examine an example using the benchmarking application OOCORE, an out-
of-core solver, from the Department of Defense High Performance Computing
Modernization Program (DoD HPCMP). It is an out-of-core ScaLAPACK (Scalable
LAPACK) benchmark from the University of Tennessee, Knoxville (UTK). It can be
configured to be disk I/O intensive. It characterizes a very important class of HPC
applications involving the use of Method of Moments (MOM) formulation for
investigating electromagnetics (e.g. radar cross-section, antenna design). It solves
dense matrix equations by LU (lower triangular, upper triangular), QR or Cholesky
decomposition.

OOCORE is used by HPCMP to evaluate I/O system scalability. For our needs this
application or similar out-of-core dense solver benchmarks help to point out the
important points in performance analysis like I/O overhead minimization. The use
of Matrix Multiply kernel which makes it possible to achieve close to peak
performance of the machine if tuned well. It can highlight “blocking” which is very
important to tune for deep memory hierarchies.

The following example was run on 16 cores on a Quad-Core, Quad-Socket Opteron
IB cluster. We want to compare two different file systems, Lustre I/O with striping
and NFS I/O. We use the ossio convenience script:

> ossio “srun –N 1 -n 16 ./testzdriver-std”

Sample Output from Lustre run:

TIME M N MB NB NRHS P Q Fact/SolveTime Error Residual
-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­
WALL 31000 31000 16 16 1 4 4 1842.20 1611.59 4.51E+15 1.45E+11
DEPS = 1.110223024625157E-­­016
sum(xsol_i) = (30999.9999999873,0.000000000000000E+000)
sum|xsol_i­x_i| = (3.332285336962339E-­­006,0.000000000000000E+000)
sum|xsol_i­x_i|/M = (1.074930753858819E-­­010,0.000000000000000E+000)
sum|xsol_i­x_i|/(M*eps) = (968211.548505533,0.000000000000000E+000)

From output of two separate runs using Lustre and NFS:
 LU Fact time with Lustre= 1842 secs;

 47

 LU Fact time with NFS = 2655 secs

From the final times we see there is an 813 second penalty (more than 30%) if you
do not use parallel file system like Lustre! The run time difference 75% of the 813
seconds is mostly I/O: (1360 + 99) – (847 + 7) = 605 seconds.

NFS Run Lustre Run
Min_t(sec) Max_t(sec) Avg_t(sec) Function Call Min_t(sec) Max_t(sec) Avg_t(sec) Function Call
1102.380 1360.727 1261.310 __libc_read(/lib64/

libpthread-.5.so)
368.898 847.919 508.658 __libc_read(/lib64/

libpthread-.5.so)
31.192 99.444 49.018 __libc_write(/lib64/

libpthread-2.5.so)
6.270 7.896 6.850 __libc_write(/lib64/

libpthread-2.5.so)

7.2 Lustre Striping Commands

To set or get the Lustre file system (lfs) striping information you can use the
following commands:

> lfs setstripe –s (size bytes; k, M, G) –c(cout; -1 all) –i (index; -1 round robin) <file | directory>

Typical defaults for setstripe are –s 1M –c 4 –i -1 (usually good to try first). File
striping is set upon file create.

> lfs getstrip <file | directory>

Example for getstrip is:

> lfs getstrip –verbose ./oss_lfs_strip_16 | grep stripe_count

stripe_count: 16 stripe_size: 1048576 strip_offset: -1

Using OOCORE I/O performance and the libc_read time from Open|SpeedShop, the
following graph shows the output of an I/O experiment used to identify optimal lfs
striping from load balance view (max, min and avg) for 16 way parallel run).

 48

7.3 Open|SpeedShop I/O Tracing and I/O Profiling

An example of how to use the Open|SpeedShop usertime experiment to profile I/O is
shown below. This example compares Open|SpeedShop data to instrumentation
data.

 49

Open|SpeedShop also has an iot experiment for extended I/O Tracing. It will record
each event in chronological order, and collect additional information like function
parameters and function return values. You should use the extended I/O tracing
when you want to trace the exact order of events. Or when you want to see the
return values or bytes that were read or written.

Beware of serial I/O in applications, illustrated in the code below (code from Mike
Davis, Cray Inc.).

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#define VARS_PER_CELL 15

/*** Write a single restart file from many MPI processes */

int write_restart (
MPI_Comm comm /// MPI communicator
, int num_cells /// number of cells on this process
, double *cellv /// cell vector
){
int rank; // rank of this process within comm
int size; // size of comm
int tag; // for MPI_Send, MPI_Recv
int baton; // for serializing I/O
FILE *f; // file handle for restart file

 50

/**
*
Procedure:
* Get MPI parameters
*/

MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
tag = 4747;

if(rank == 0)
{
/**
* Rank 0 create a fresh restart file,
* and start the serial I/O;
*write cell data, then pass the baton to rank 1
*/

f = fopen ("restart.dat", "wb");
fwrite(cellv, num_cells, VARS_PER_CELL *sizeof (double), f);
fclose(f);
MPI_Send(&baton, 1, MPI_INT, 1, tag, comm);
} else {
/**
* Ranks 1 and higher wait for previous rank to complete I/O,
* then append its cell data to the restart file,
* then pass the baton to the next rank
*/

MPI_Recv(&baton, 1, MPI_INT, rank ­1, tag, comm, MPI_STATUS_IGNORE);
f = fopen("restart.dat", "ab");
fwrite(cellv, num_cells, VARS_PER_CELL *sizeof (double), f);
fclose(f);
if(rank < size ­1) {
 MPI_Send(&baton, 1, MPI_INT, rank + 1, tag, comm);
 }
}

/**
* All ranks have posted to the restart file;
* return to caller
*/

return 0;
}

int main(int argc, char *argv[]) {
 MPI_Comm comm;
 int comm_rank;
 int comm_size;
 int num_cells;
 double *cellv;
 int i;
 MPI_Init (&argc, &argv);
 MPI_Comm_dup(MPI_COMM_WORLD, &comm);
 MPI_Comm_rank(comm, &comm_rank);
 MPI_Comm_size(comm, &comm_size);

 /**
 * Make the cells be distributed somewhat evenly across ranks
 */

 51

 num_cells = 5000000 + 2000 * (comm_size /2 ­ comm_rank);
 cellv = (double *) malloc (num_cells * VARS_PER_CELL * sizeof (double));

 for (i = 0; i < num_cells * VARS_PER_CELL; i++){

 cellv[i] = comm_rank;
 }

 write_restart(comm, num_cells, cellv);
 MPI_Finalize ();
 return 0;
}

Below shows the output of the Open|SpeedShop iot experiment on the serial I/O
code:

We can run the io or iot experiment convenience scripts on smg2000 application:

> ossio[t] “mpirun –np 256 smg2000 –n 50 50 50” [default | <list of I/O functions>]

Where by default the I/O function list to trace is all, the specific functions are: creat,
creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread, pread64, pwrite,
pwrite64, read, readv, write, writev.

Things to remember with I/O: Avoid writing to one file from all MPI tasks. If you
need to do it make sure distinct offsets for each PE starts at a stripe boundary. Use
buffered I/O if you must do this.

 52

If each process writes it’s own file then the parallel file system attempts to load
balance the OST taking advantage of the stripe characteristics. Meta data server
overhead can often create severe I/O problems. Minimize the number of files
accessed per PE and minimize each PE doing operations like seek, open, close, stat
that involve inode information. I/O time is usually not measured even in
applications that keep some function profile. Open|SpeedShop can shed light on
time spent in I/O using the io and iot experiments.

7.3 Open|SpeedShop I/O Tracing General Usage

The Open|SpeedShop io and iot I/O function tracing experiments wrap the most
common I/O functions, record the time spent in each I/O function, record the call
path along which I/O function was called, record the time spent along each call path
to an I/O function, and record the number of times each function was called. In
addition the iot experiment also records information about each individual I/O
function call. The values of the arguments and the return value from the I/O
function are recorded.

7.3.1 I/O Base Tracing (io) experiment

The base I/O tracing experiment gathers data for the following I/O functions: close,
creat, creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread, pread64, pwrite,
pwrite64, read, readv, write, and writev. It is a trace type experiment that wraps
the real I/O calls and records information before and after calling the real I/O
functions. This, base, I/O experiment records the basic I/O information as stated in
the introductory section, but does not record the arguments to each call. That is
done in the extended (iot) experiment.

7.3.1.1 I/O Base Tracing (io) experiment performance data gathering

The base I/O tracing (io) experiment convenience script is “ossio”. Use this
convenience script in this manner to gather base I/O tracing performance data:

ossio “how you normally run your application” <list of I/O function(s)>

The following is an example of how to gather data for the IOP application on a Linux
cluster platform using the ossio convenience script. It gathers performance data for
all the I/O functions because there is no list I/O functions specified after the quoted
application run command.

ossio "srun -n 512 ./IOR"

7.3.1.2 I/O Base Tracing (io) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

 53

7.3.1.3 I/O Base Tracing (io) experiment performance data viewing with GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

7.3.2 I/O Extended Tracing (iot) experiment

7.3.2.1 I/O Extended Tracing (iot) experiment performance data gathering

The extended I/O tracing (iot) experiment convenience script is “ossiot”. Use this
convenience script in this manner to gather extended I/O tracing performance data:

ossiot “how you normally run your application” <list of I/O function(s)>

The following is an example of how to gather data for the IOP application on a Linux
cluster platform using the ossiot convenience script. It gathers performance data
for all the I/O functions because there is no list I/O functions specified after the
quoted application run command.

ossiot "srun -n 512 ./IOR"

7.3.2.2 I/O Extended Tracing (iot) experiment performance data viewing with GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

This is the default GUI view for the iot experiment. This view give a summary of the
I/O functions that were called, how many times they were called and the amount of
time spent in each function. The percentage of the total I/O time is also attributed to
each I/O function. The time is aggregated (totaled) across all the threads, ranks, or
processes that were part of the application. The functions that called the I/O
functions are available by choosing one of the call path views.

 54

Here the user has chosen the C+ view icon and the Stats Panel now shows all the call
paths in the users application. This view shows the every possible call paths
through the source to all the I/O functions that were called during the execution of
this application. From this one could validate that this is expected behavior and if
not find where the I/O in this application is not behaving as expected.

This view is the load balance view, which gives the min, max, average values for the
I/O function call time across all the ranks in this application. In this view we are
seeing some wide ranges between the min and max values for some of the I/O
functions. It may be useful to see if we can identify the ranks by using the Cluster

 55

Analysis view.

This view, generated by choosing CA icon, the shows that there are two groups of
ranks where the I/O is performing in similar manner. For group 2 (labeled –c 3
below), there are two ranks where the rest of the 512 ranks perform like group 1
(labeled –c 2 below). Investigation by examining ranks 312 or 317 by comparing it
to one of the ranks in the other group could shed some light on why group 2 is not
similar to the rest. This may or may not be significant, but is here for illustration.

 56

7.3.2.3 I/O Extended Tracing (iot) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

The command line interface (CLI) can provide the same data options as the
graphical user interface (GUI) views. Here are some examples of the performance
data that can be viewed and the commands in order to generate the CLI views.

>openss -cli -f IOR-iot-0.openss

openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

 I/O Call % of Number Function (defining location)
 Time(ms) Total of
 Time Calls
1858436.714506 61.486889 2048 close (libc-2.12.so: syscall-template.S,82)
1055603.730633 34.924939 2048 __GI___read (libc-2.12.so: syscall-template.S,82)
 108107.666680 3.576772 1024 __libc_open (libc-2.12.so: syscall-template.S,82)
 335.820251 0.011111 3072 write (libc-2.12.so: syscall-template.S,82)
 8.756634 0.000290 4096 __GI___libc_lseek (libc-2.12.so: syscall-template.S,82)
openss>>expview -m loadbalance

 Max I/O Rank Min I/O Rank Average I/O Function (defining location)
 Call Time of Call Time of Call Time
 Across Max Across Min Across
 Ranks(ms) Ranks(ms) Ranks(ms)
4114.522156 509 2680.653110 273 3629.759208 close (libc-2.12.so: syscall-template.S,82)
2824.349452 346 0.315392 317 2061.726036 __GI___read (libc-2.12.so: syscall-template.S,82)
 989.579445 358 5.784552 414 211.147786 __libc_open (libc-2.12.so: syscall-template.S,82)
 4.574762 65 0.424622 494 0.655899 write (libc-2.12.so: syscall-template.S,82)
 0.044708 184 0.011079 317 0.017103 __GI___libc_lseek (libc-2.12.so: syscall-template.S,82)
openss>>expview -v calltrees,fullstack

 I/O Call % of Number Call Stack Function (defining location)
 Time(ms) Total of
 Time Calls
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2021 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
 >>>>>>> @ 766 in close (iot-collector-monitor-mrnet-mpi.so: wrappers.c,685)
1858418.863034 61.486298 512 >>>>>>>> @ 82 in close (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2173 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 2611 in WriteOrRead (IOR: IOR.c,2562)
 >>>>>>> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 >>>>>>>> @ 223 in read (iot-collector-monitor-mrnet-mpi.so: wrappers.c,137)
1055603.730633 34.924939 2048 >>>>>>>>> @ 82 in __GI___read (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)

 57

 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2004 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 104 in IOR_Create_POSIX (IOR: aiori-POSIX.c,74)
 >>>>>>> @ 670 in open64 (iot-collector-monitor-mrnet-mpi.so: wrappers.c,608)
 103350.518692 3.419380 512 >>>>>>>> @ 82 in __libc_open (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2161 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 195 in IOR_Open_POSIX (IOR: aiori-POSIX.c,173)
 >>>>>>> @ 670 in open64 (iot-collector-monitor-mrnet-mpi.so: wrappers.c,608)
 4757.147988 0.157392 512 >>>>>>>> @ 82 in __libc_open (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2013 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 2608 in WriteOrRead (IOR: IOR.c,2562)
 >>>>>>> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 >>>>>>>> @ 321 in write (iot-collector-monitor-mrnet-mpi.so: wrappers.c,239)
 316.176763 0.010461 2048 >>>>>>>>> @ 82 in write (libc-2.12.so: syscall-template.S,82)

7.4 Open|SpeedShop Lightweight I/O Profiling General Usage

The Open|SpeedShop iop I/O function profiling experiment wraps the most common
I/O functions, records the time spent in each I/O function, record the call path along
which I/O function was called, record the time spent along each call path to an I/O
function, and record the number of times each function was called.

7.4.1 I/O Profiling (iop) experiment performance data gathering

The I/O Profiling (iop) experiment convenience script is “ossiop”. Use this
convenience script in this manner to gather lightweight I/O profiling performance
data:

ossiop “how you normally run your application”

The following is an example of how to gather data for the IOP application on the
Cray platform using the ossiop convenience script.

 ossiop "aprun -n 64 ./IOR"

7.4.2 I/O Profiling (iop) experiment performance data viewing with GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

 58

The first image below, shows the default view for the iop experiment run on a
50000 rank IOR application job. The performance information in the default view is
the time spent in I/O functions and the percentage of time spent in each I/O function.

In the image below, the hot call path view for the iop experiment run on a 50000
rank IOR application job is displayed. The performance information in the hot call
path view is the top five call paths to each of the I/O functions that took the most
time, time spent in I/O functions and the percentage of time spent in each I/O
function.

 59

This image shows the min, max, average time spent in each of the I/O functions
showing the rank of the minimum value and the rank of the maximum value for each
of the I/O functions. This view indicates if there is an imbalance relative to the I/O
in the application being run. This may or may not be expected.

7.4.3 I/O Profiling (iop) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

 60

The command line interface (CLI) can provide the same data options as the
graphical user interface (GUI) views. Here are some examples of the performance
data that can be viewed and the commands in order to generate the CLI views.

> openss -cli -f IOR-iop-1.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

 Exclusive Inclusive % of Function (defining location)
 I/O call I/O call Total
 times in times in Exclusive
 seconds. seconds. CPU Time
38297.339900 38297.339900 96.460929 __write (libpthread-2.11.3.so)
 741.019727 741.019727 1.866434 open64 (libpthread-2.11.3.so)
 598.432332 598.432332 1.507294 read (libpthread-2.11.3.so)
 63.383924 63.383924 0.159647 close (libpthread-2.11.3.so)
 2.261454 2.261454 0.005696 __lseek64 (libpthread-2.11.3.so)

openss>>expview -v calltrees,fullstack

 Exclusive Inclusive % of Call Stack Function (defining location)
 I/O call I/O call Total
 times in times in Exclusive
 seconds. seconds. CPU Time
 TestIoSys (IOR: IOR.c,1848)
 > @ 2608 in WriteOrRead (IOR: IOR.c,2562)
 >> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
38297.339900 38297.339900 96.460929 >>>__write (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 2611 in WriteOrRead (IOR: IOR.c,2562)
 >> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 598.432332 598.432332 1.507294 >>>read (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 104 in IOR_Create_POSIX (IOR: aiori-POSIX.c,74)
 472.137142 472.137142 1.189189 >>open64 (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 195 in IOR_Open_POSIX (IOR: aiori-POSIX.c,173)
 268.882585 268.882585 0.677245 >>open64 (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
 61.587482 61.587482 0.155123 >>close (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
 1.796442 1.796442 0.004525 >>close (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 2608 in WriteOrRead (IOR: IOR.c,2562)
 >> @ 234 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 1.280113 1.280113 0.003224 >>>__lseek64 (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 2611 in WriteOrRead (IOR: IOR.c,2562)
 >> @ 234 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 0.981341 0.981341 0.002472 >>>__lseek64 (libpthread-2.11.3.so)

In the above command line interface output, the expview command with no options
gives the overview or summary view for all the ranks and threads. One can view
the performance information for individual ranks (using –r <rank number>) or

 61

individual threads (using –t <thread number>) or individual processes (using –p
<process id>). One can also give a range of ranks, threads, or processes using their
respective option.

For the calltree view, the display is showing where the I/O function were called
from in the users application source. In this example, most of I/O time was spent in
the write I/O function along the path shown in the first individual calltree. The
calltree with fullstack option forces the calltree view to not collapse any similar sub-
trees, which makes the view more explicit. Without the fullstack option the calltrees
would be more consolidated.

 62

8 Applying Experiments to Parallel Codes

The ideal scenario for the execution of parallel code using pthreads or OpenMP is
efficient threading, where all threads are assigned work that can execute
concurrently. Or for MPI code, the job is properly load balanced so all MPI ranks do
the same about of work and no MPI rank is stuck waiting.

What are some things that can cause these ideal scenarios to fail? (taken from LLNL
parallel processing tutorial) MPI jobs can become unbalanced if an equal amount of
work was not assigned to each rank, possibly through the number of array
operations not being equal for each rank or loop iterations not being evenly
distributed. You can still have problems even if your work seems to be evenly
distributed. For example if you evenly distribute a sparsely populated array then
some ranks may end up with very little or no work while others will have a full
workload. With adaptive grid models some ranks need to redefine their mesh while
other don’t. With N-body simulations some work migrates to other ranks so those
ranks will have more to do while the others have less.

Performance analysis can help you with load balancing and an even distribution of
work. Tools like Open|SpeedShop are designed to work on parallel jobs. It supports
threading and message passing and automatically tracks all ranks and thread during
execution. It can also store the performance info per process, rank or thread for
individual evaluation. All of the experiments for Open|SpeedShop can be run on
parallel jobs, collectors are applied to all ranks on all nodes. The results of an
experiment can be displayed as an aggregation across all ranks or threads, which is
the default view, or you can select individual or groups of ranks or threads to view.
There are also experiments specifically designed for tracing MPI function calls.

Open|SpeedShop has been tested with a variety of MPI versions including Open MPI,
MVAPICH[2] and MPICH2 on Intel, Blue Gene, and Cray systems. Open|SpeedShop is
able to identify the MPI task (rank info) through the MPIR interface for the online
version or through PMPI preload for the offline version. To run MPI code with
Open|SpeedShop just include the MPI launcher as part of the executable as normal,
below are several examples:

> ossmpi “mpirun –np 128 sweep3d.mpi”

> osspcsamp “mpirun –np 32 sweep3d.mpi”

> ossio “srun –N 4 –n 16 sweep3d.mpi”

> openss –offline –f “mpirun –np 128 sweep3d.mpi” hwctime

> openss –online –f “srun –N 8 –n 128 sweep3d.mpi” usertime

The default view for parallel applications is to aggregate the information collected
across all ranks. You can manually include or exclude individual ranks, processes or

 63

threads to view their specific results. You can also compare ranks by using the
Customize Stats panel View and creating a compare column for the process groups
or individual ranks. Cluster analysis is also available, it can be used to find outliers,
ranks that are performing very differently then the others. From the Stats Panel
toolbar or context menu you can automatically create groups of similar performing
ranks or threads. Through the Stat Panel Open|SpeedShop also provides common
analysis functions designed for quick analysis of MPI applications. There are load
balance views that calculate min, max and average values across ranks, processes or
threads. The image below shows the Open|SpeedShop buttons for Load Balance and
next to that Cluster Analysis.

Below we see the creation of a comparison between to ranks in Open|SpeedShop.

 64

Now we see those to ranks compared side by side in the statistics panel.

8.1 MPI Tracing Experiment

In this section we will go through an MPI tracing experiment with Open|SpeedShop.
The experiment will be similar to the I/O tracing experiment; it will record all MPI
call invocations. There are two MPI experiments and associated convenience scripts,

 65

ossmpi, which will record call times and ossmpit, which will record call times and
arguments. Equal events will be aggregated to save space in the database as well as
to reduce the overhead. There is one more MPI experiment that will save the full
MPI traces in the Open Trace Format (OTF) with the convenience script ossmpiotf.

Again we will run experiment on the smg2000 application. The syntax for the
experiment is:

> ossmpi[t] “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category]

The default behavior is to trace all MPI functions, but a comma separated list of MPI
functions can be giving if you only want to trace specific functions, e.g. MPI_Send,
MPI_Recv,…, etc. You can also select an mpi_category to trace: "all”,
"asynchronous_p2p”, "collective_com”, "datatypes”, "environment”,
"graphs_contexts_comms”, "persistent_com”, "process_topologies”, and
“synchronous_p2p”.

 The image below shows the results of the MPI experiment in the default view.

Next we see the MPI function call path view, shown below.

 66

Here is the default pcsamp view based on functions.

Here is the load balance view based on functions.

 67

Here is the default view based on Linked Objects (libraries).

Next we see the load balance view base on Linked Objects (libraries).

 68

Here we see the cluster analysis view based on Linked Objects.

Here is the pcsamp view of Rank 255 performance data only.

 69

Below we examine Rank 255 further but this time using the load balance view in the
Command Line Interface for Open|SpeedShop.

Here we look at the difference between Rank 255 and Rank 0.

 70

Next we see the hot call paths for MPI_Wait on Rank 255.

In this experiment we did program counter sampling to get an overview of the
application. We noticed that smp_net_lookup showed up in function load balance
view, which caused us to take a look at the linked object view. The load balance on
the linked object showed some imbalance, so we looked at the cluster analysis view
and found that rank 255 was an outlier.

 71

We then took a closer look at rank 255 and saw that the pcsamp output shows most
of the time was spent in smp_net_lookup. We used the MPI experiment to determine
if we can get more clues and saw that a load balance view on the MPI experiment
shows rank 255’s MPI-Allreduce time is the highest of the 256 ranks. We then
looked at rank 255 and a representative rank from the rest of the ranks and noted
the differences in MPI_Wait, MPI_Send and MPI_Allreduce. We looked at the call
paths to MPI_Wait to determine why the wait was occurring.

The mpit experiment has a performance information entry for each MPI function
call. In addition to the time spent in each MPI function, information like source and
destination rank, bytes sent or received are also available. You can selectively view
the information you desire.

Below we see the default event view for an MPI application.

We can create our own event view with the OV button.

 72

You can use the views dialog box to choose what metric to display.

After choosing the event to view it will then be displayed.

 73

8.1.1 MPI Tracing Experiments performance data gathering

Much of this information is described above in the main MPI Tracing Experiments
section, but for completeness, this is the convenience script description for running
the MPI specific tracing experments.

> ossmpi[t] “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category]

8.1.2 MPI Tracing Experiments performance data viewing with GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

8.1.3 MPI Tracing Experiments performance data viewing with CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

8.2 Threading Analysis Section

We just did an experiment that uses MPI but we can do a similar analysis on
applications that use threads. To analyze a threaded application first we can run the

 74

pcsamp experiment to get an overview, then look at the load balance view to detect
if there are any widely varying values and finally do cluster analysis to find any
outliers.

The image below shows the default view for an application with 4 threads, the
information displayed is the aggregated total from all threads.

Next we see the load balance view based on functions.

 75

Then we look at a cluster analysis view based on functions.

8.2.1 Threading Specific Experiment (pthreads)

An experiment specific to tracking POSIX thread function calls and analyzing those
calls is also available in Open|SpeedShop. The experiment is called pthreads and it

 76

traces several POSIX thread related functions. Like all the other tracing experiments,
number of calls, time spent in each function, the call paths to each POSIX thread
function, and an event-by-event trace is available. Load balance and cluster
analysis features are also available.

8.2.1.1 Threading Specific (pthreads) experiment performance data gathering

8.2.1.2 Threading Specific (pthreads) experiment performance data viewing with GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

8.2.1.3 Threading Specific (pthreads) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

 77

8.2 NVIDIA CUDA Analysis Section

The Open|SpeedShop version with CBTF collection mechanisms supports tracing
CUDA events in a NVIDIA CUDA based application. An event by event list of CUDA
events and the event arguments are listed.

8.3.1 NVIDIA CUDA Tracing (cuda) experiment performance data gathering

To run the NVIDIA CUDA experiment, use the osscuda convenience script and
specify the CUDA application as an argument. If there are no arguments to the
application then no quotes are necessary, but they are placed here for consistency.
The osscuda script will run the experiment by running the QTC application and will
create an Open|SpeedShop database file with the results of the experiment. Viewing
of the performance information can be done with the GUI or CLI.

osscuda “./QTC”

8.3.2 NVIDIA CUDA Tracing (cuda) experiment performance data viewing with GUI

This section shows the default view for the NVIDIA CUDA experiment for the QTC
application. Use the following command to open the GUI to see the QTC CUDA
experiment performance information.

To launch the GUI on any experiment, use “openss –f <database name>“.

openss –f QTC-cuda.openss

 78

The view below is the statistics panel and source view panel showing the
relationship of the statistics to the actual source in the program.

8.3.3 NVIDIA CUDA Tracing (cuda) experiment performance data viewing with CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

Here we show a trace view of the output from the osscuda experiment run. Note the
–f CUDA is required do to the fact this is a prototype. This restriction will be
removed in the future. This trace shows the actions taken during the execution of
the CUDA application matmul on the Titan Cray platform at ORNL.

openss>>expview -v trace -f CUDA

 Start Time(d:h:m:s) Exclusive % of Call Stack Function (defining location)
 I/O Call Total
 Time(ms)
2013/08/21 18:31:21.611 11.172864 1.061071 >>>>>copy 64 MB from host to device (CUDA)
2013/08/21 18:31:21.622 0.371616 0.035292 >>>>>copy 2.1 MB from host to device (CUDA)
2013/08/21 18:31:21.623 0.004608 0.000438 >>>>>copy 16 KB from host to device (CUDA)
2013/08/21 18:31:21.623 0.003424 0.000325 >>>>set 4 KB on device (CUDA)
2013/08/21 18:31:21.623 0.003392 0.000322 >>>>set 137 KB on device (CUDA)
2013/08/21 18:31:21.623 0.120896 0.011481 >>>>compute_degrees(int*, int*, int, int)<<<[256,1,1], [64,1,1]>>> (CUDA)
2013/08/21 18:31:21.623 13.018784 1.236375 >>>>QTC_device(float*, char*, char*, int*, int*, int*, float*, int*, int, int, int, float, int, int, int, int,
bool)<<<[256,1,1], [64,1,1]>>> (CUDA)
2013/08/21 18:31:21.636 0.035232 0.003346 >>>>reduce_card_device(int*, int)<<<[1,1,1], [1,1,1]>>> (CUDA)
2013/08/21 18:31:21.636 0.002112 0.000201 >>>>>copy 8 bytes from device to host (CUDA)
2013/08/21 18:31:21.636 1.375616 0.130640 >>>>trim_ungrouped_pnts_indr_array(int, int*, float*, int*, char*, char*, int*, int*, float*, int*, int,
int, int, float, int, bool)<<<[1,1,1], [64,1,1]>>> (CUDA)
2013/08/21 18:31:21.638 0.001344 0.000128 >>>>>copy 260 bytes from device to host (CUDA)
2013/08/21 18:31:21.638 0.025600 0.002431 >>>>update_clustered_pnts_mask(char*, char*, int)<<<[1,1,1], [64,1,1]>>> (CUDA)
2013/08/21 18:31:21.638 11.724960 1.113503 >>>>QTC_device(float*, char*, char*, int*, int*, int*, float*, int*, int, int, int, float, int, int, int, int,
bool)<<<[256,1,1], [64,1,1]>>> (CUDA)

 79

 80

9 Memory Analysis Techniques

The Open|SpeedShop version with CBTF collection mechanisms supports tracing
memory allocation and deallocation function calls in user applications. An event-by-
event list of memory function call events and the memory function call event
arguments are listed. The Open|SpeedShop experiment name for the memory
analysis experiment is “mem”. The high water memory mark is not currently
available but is coming in the future.

9.1 Memory Analysis Tracing (mem) experiment performance data
gathering
To run the memory analysis experiment, use the ossmem convenience script and
specify the application as an argument. If there are no arguments to the application
then no quotes are necessary, but they are placed here for consistency. Using the
sweep3d application as an example, here the ossmem script will apply the memory
analysis experiment by running the sweep3d application with the Open|SpeedShop
memory trace collector, gather the data and will create an Open|SpeedShop
database file with the results of the experiment. Viewing of the performance
information can be done with the GUI or CLI.

ossmem “mpirun –np 64 ./sweep3d.mpi”

9.2 Memory Analysis Tracing (mem) experiment performance data
viewing with CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

Here we show a trace view of the output from the ossmem experiment run. This
trace shows the default view and the load balance view for the execution of the
sweep3d.mpi application on the Titan Cray platform at ORNL. The example below
also contains an expcompare CLI command example where two of the programs
ranks are compared against each other. This may be useful if there appears to be
load imbalance when examining the –m loadbalance output.

openss -cli -f sweep3d.mpi-mem-1.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

Exclusive % of Number Function (defining location)
 Mem Call Total of
 Time(ms) Time Calls
674.690825 66.448540 1132566 __libc_malloc (libc-2.11.3.so)
340.667562 33.551460 1127337 __cfree (libc-2.11.3.so)
openss>>expview -m loadbalance

 Max Rank Min Rank Average Function (defining location)
Exclusive of Exclusive of Exclusive Mem call Max Mem call Min Mem call
 time in time in time in
seconds. seconds. seconds.
 Across Across Across

 81

Ranks(ms) Ranks(ms) Ranks(ms)
1.798064 33 0.193179 1023 0.658878 __libc_malloc (libc-2.11.3.so)
1.029151 48 0.076400 1001 0.332683 __cfree (libc-2.11.3.so)

openss>>expcompare -r 33 -r 1023

 -r 33, -r 33, % -r 33, -r 1023, -r 1023, -r Function (defining location)
Exclusive of Total Number Exclusive % of 1023,
Mem Call Time of Mem Call Total Number
Time(ms) Calls Time(ms) Time of
 Calls
1.798064 65.998580 3297 0.193179 65.455562 349 __libc_malloc (libc-2.11.3.so)
0.926334 34.001420 3292 0.101951 34.544438 346 __cfree (libc-2.11.3.so)

9.3 Memory Analysis Tracing (mem) experiment performance data
viewing with GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

The first GUI view show below is the default view for the mem experiment. It shows
the memory functions that were called in the application, how many times they
were called, the time spent in each of the memory functions, and the percentage of
the overall memory function time was spent in each of the memory functions. The
paths to each memory, through the source, are available through the call path views.

In this (C+ icon) call path view we see the call paths to the memory functions called
in this application.

 82

In the view below, one has chosen the “LB” icon and generated the load balance
view. This view shows the min, max, and average time across all the ranks in the
application. The ranks of the min and max time values are also shown. If there is a
significant difference between the min, max, and average time, there may be load
imbalance. To identify the ranks, threads, or processes that are acting out of balance,
use the cluster analysis feature activated by clicking on the “CA” icon.

In this view, generated by clicking on the “CA” icon, we see that Open|SpeedShop
has determined that there are four unique groups where the aggregate time for the
groups differs enough to report this to the user. The columns in the Stats Panel
display show the times that are reflective of each of the ranks in the group. The
information (I+) icon can be used to view which ranks, etc. are included in each of
the cluster groups.

 83

10 Advanced Analysis Techniques

Analyzing the results of a single performance experiment can be useful for
debugging and tuning your code. But comparing the results of different
experiments can show you how the performance of an application has changed.
This is useful if you want to track how the performance varies for each new version
of an application, or understanding how a different compiler or compiler options
can affect the performance of your application. This also allows you to do scalability
tests to see how the performance of your application scales with the number of
processors. It’s also helpful just to see the progress you have made while tuning
your code.

Open|SpeedShop has options to allow you to compare performance data. You can
use the Custom Compare Panel (CC icon) in the GUI or the osscompare convenience
script.

> osscompare “db1.openss, db2.openss,…” [options]

This will produce a side-by-side comparison listing, you can compare up to 8
databases at once. You can see the osscompare man page for more details. Below is
an example of comparing two different pcsamp experiments on the smg2000
application.

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp­1.openss”

[openss]: Legend: ­c 2 represents smg2000­pcsamp.openss
[openss]: Legend: -c 4 represents smg2000-­­pcsamp-­­1.openss
­c 2, Exclusive CPU­c 4, Exclusive CPU Function (defining location)
time in seconds. time in seconds.
 3.870000000 3.630000000 hypre_SMGResidual (smg2000:smg_residual.c,152)
 2.610000000 2.860000000 hypre_CyclicReduction (smg2000:cyclic_reduc;on.c,757)

 84

 2.030000000 0.150000000 opal_progress (libopen­pal.so.0.0.0)
 1.330000000 0.100000000 mca_btl_sm_component_progress (libmpi.so.0.0.2:
topo_unity_component.c,0)
 0.280000000 0.210000000 hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.280000000 0.040000000 mca_pml_ob1_progress (libmpi.so.0.0.2: topo_unity_component.c, 0)

10.1 Comparison Script Argument Description

The Open|SpeedShop comparison script accepts a number of arguments. This
section describes the acceptable options for those individual arguments. For a
quick overview see section 14.4 osscompare: Compare Database Files. As described
above the osscompare script accepts at least two and up to eight comma separated
database file names, enclosed in quotes as the mandatory argument. By default the
compared metric is the primary metric produced by the experiment. For most
experiments, the metric is exclusive time, however the hardware counter
experiments use the count of the number of hardware counter overflows as the
metric to be compared. These are the default or mandatory arguments to
osscompare. The following sections describe the arguments for osscompare in
more detail.

10.1.1 osscompare metric argument

The osscompare metric argument specifies the performance information type that
Open|SpeedShop will use to compare against when looking at each database file in
the compare database file list. To find the metric specifications that are legal and
produce comparison outputs, one can open one of the database files with the
Open|SpeedShop command line interface (CLI), and list the available metrics.

openss -cli -f smg2000-pcsamp.openss
 openss>>list -v metrics
 pcsamp::percent
 pcsamp::threadAverage
 pcsamp::threadMax
 pcsamp::threadMin
 pcsamp::time

You can use the output of the list metrics command as an argument to the
osscompare command as shown in the examples below.

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss"
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" percent
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" threadMin
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" threadMax

Some exceptions do apply. For example, some experiments such as usertime and
hwctime have “details” type metrics output by the list metrics CLI command (list –v
metrics). These will not work as a metric argument to osscompare.

 85

For the hardware counter experiments: hwc and hwctime, you can use the actual
PAPI event name in addition to the metric names output from the list metric
command. The example database file was generated using the PAPI_TOT_CYC event.

openss -cli -f smg2000-hwc.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>list -v metrics
hwc::overflows
hwc::percent
hwc::threadAverage
hwc::threadMax
hwc::threadMin

Here we show a couple osscompare examples where “hwc::overflows” can be
used interchangeably with PAPI_TOT_CYC.

osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" hwc::overflows
osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" PAPI_TOT_CYC

10.1.2 osscompare rows of output argument

osscompare allows the user to specify how many lines of the comparison output to
be output. The argument is optional and

"rows=nn" is defined as follows:
 "nn" - Number of rows/lines of performance data output.

In this example, only ten (10) lines of comparison will be shown when the
osscompare command is executed. It will be the most interesting, or top, ten lines.

osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" hwc::overflows rows=10

10.1.3 osscompare output name argument.

osscompare allows the user to specify the name to be used when writing out the
comparison output files. The argument is optional and

"oname=<output file name>" is defined as follows:
 "output file name" - Name given to the output files created for the comparison.

This argument is valid when the environment variable OPENSS_CREATE_CSV is set
to 1. In this example, the comparison files created when the osscompare command
is executed will be named smg_hwc_cmp.csv and/or smg_hwc_cmp.txt.

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" oname=mar2013_pcsamp_cmp

This example will generate comparison files named using the specified oname specification.

8 -rw-rw-r--. 1 jeg jeg 4475 Mar 11 15:53 mar2013_pcsamp_cmp.compare.csv
8 -rw-rw-r--. 1 jeg jeg 4841 Mar 11 15:53 mar2013_pcsamp_cmp.compare.txt

 86

10.1.4 osscompare view type or granularity argument.

osscompare allows an optional view type argument. It represents the granularity of
the view. Open|SpeedShop allows for viewing performance data at three levels:
linked object level, function level, and at the statement level. osscompare will
produce output at one of those levels based on the view type argument where:
 "viewtype=<functions | statements | linkedobjects >" is defined as follows:

"functions" - View type granularity is per function
"statements" - View type granularity is per statement
"linkedobjects" - View type granularity is per library (linked object)

This example will produce a side-by-side comparison for the statement level, not the
default function level. So, this example will compare statement performance values
in each of the two databases and produce a side-by-side comparison showing how
each statement in the application differed from the two experiments.

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" viewtype=statements

11 Open|SpeedShop User Interfaces

 Throughout this manual we have been using the Open|SpeedShop GUI, we
would encourage you to play around with the interface to become familiar with it.
The GUI lets you peel-off and rearrange any panel. There are also context sensitive
menus so you can right click on any location to access a different view or to activate
additional panels.

 If you prefer not to use the GUI there are three other options that all have
equal functionality. First there is the command line interface that we have also seen
throughout this manual, which you can launch with the –cli option:

> openss -cli

There is also the immediate command (batch) interface. This uses the –batch flag:

> openss –batch < openss_cmd_file
> openss –batch –f <exe> <experiment>

Lastly there is a python scripting API, so you can launch Open|SpeedShop
commands within a python script.

> python openss_python_script_file.py

11.1 Command Line Interface Basics

 87

 The CLI offers an interactive command line interface with processing like gdb
or dbx. There are several interactive commands that allow you to create
experiments, provide you with process/thread control or enable you to view
experiment results. You can find the full CLI documentation at
http://www.openspeedshop.org/doc/cli_doc/ but here we will briefly cover some
important points. Here is a quick overview of some commands (those marked with
* are only available for the online version):

Experiment Creation

 expcreate
 expattach*

Result Presentation
 expview
 opengui

Experiment Control
 expgo
 expwait*
 expdisable*
 expenable*

Misc. Commands
 help
 list
 log
 record
 playback
 history
 quit

Experiment Storage
 expsave
 exprestore

 The following is a simple example to create, run and view data from an
experiment using the CLI.

> openss –cli Open the CLI.

openss>> expcreate –f “mutatee 2000” pcsamp Create an experiment using pcsamp with
this application.

openss>> expgo Run the experiment and create the
database

openss>> expview Display the default view of the
performance data.

You can also get alternative views of the performance data within the CLI. The
following is a list of some options to change the way the information is displayed.

help or help commands Display CLI help text 

expview Show the default view  for experiment

expview -v statements Show time-consuming statements 

expview -v loops Show time-consuming loops

expview -v linkedobjects Show time spent in libraries 

expview -v calltrees,fullstack See all unique call paths  in the application.

expview -m loadbalance See load balance across all the ranks/threads/processes in the
experiment.

expview –r <rank_num> See data for specific rank(s)

expcompare –r 1 –r 2 –m time Compare rank 1 to rank 2 for metric equal to “time”. Other
metrics are allowed. This is a usage example.

list –v metrics See the list of optional performance data metrics. 

list –v src See the list of source files associated with experiment.

list –v obj See the list of object files associated with experiment.

http://www.openspeedshop.org/doc/cli_doc/

 88

list –v ranks See the list of ranks associated with experiment  .

list –v hosts See machine host names associated with experiment  .

expview –m <metric> See performance data for the metric specified  .

expview –v calltrees,fullstack
<experiment type> <number>

See <number> of call paths from the list of expensive call
paths. 

expview –v calltrees,fullstack usertime2  Shows the top two call paths in execution time. 

expview <experiment-name><number> Shows <number> of the functions from the list of the top time-
consuming functions.

expview pcsamp2 Shows the two functions taking the most time. 

expview –v statements
<experiment-name><number>

Show <number> of the statements from the list of the top
time-consuming statements

Remember if you want the GUI at any time just issue the command opengui in the
CLI.

11.1.2 CLI Metric Expressions and Derived Types

Open|SpeedShop has the capability to create derived metric from the gathered
metrics by using the metric expression math functionality in the command line
interface (CLI). One can access the overview from the CLI by typing this help CLI
command.

openss>>help metric_expression

<metric_expression> ::=<string> ([<constant> ||<metric_expression>] [,
[<constant> ||<metric_expression>]]*)

A user defined expression that uses metrics to compute a special value for display in a report.

User defined expression can be added to an<expMetric_list>.
A functional notation is used to build the desired expression and the following, simple, arithmetic operations are
available:
 Function # arguments returns
 -------- ----------- -------
 Uminus() 1 unary minus of the argument
 Abs() 1 Absolute value of the argument
 Add() 2 summation of the arguments
 Sub() 2 difference of the arguments
 Mult() 2 product of the arguments
 Div() 2 first argument divided by second
 Mod() 2 remainder of divide operation
 Min() 2 minimum of the arguments
 Max() 2 maximum of the arguments
 A_Add() 1 sum of all the data samples specified for the view
 A_Mult() 1 product of all the data samples specified for the view
 A_Min() 1 minimum of all the data samples specified for the view
 A_Max() 1 maximum of all the data samples specified for the view
 Sqrt() 1 square root of the argument
 Stdev() 3 standard deviation calculation
 Percent() 2 percent the first argument is of the second
 Condexp() 3 "C" expression: "(first argument) ? second argument : third argument"
 Header() 2 use the first argument as a column header for the display of the second

 89

Note:

Integer and floating constants are supported as arguments as are the metric keywords associated with the
experiment view.

Arguments to these functions can be<metric_expressions>, with the exception of the first argument of 'Header'.

The first argument of 'Header' must be a character string that is preceded with and followed by '\"'.

When the '-v summary' option is used, it is not generally possible to produce a meaningful column summary.
A summary is produced for Add(), Max(), Min(), Percent(), A_Add(), A_Max and A_Min().

Examples:

 expview hwc -m count,Header(\"percent of counts\",Percent(count,A_Add(count)) -v summary
 expview mpi -v butterfly -f MPI_Alltoallv -m time,Header("average time/count",Div(Mult(time,1000),counts))

To examine an example, we take the default view, expview command and add the
capability to add the percentage that each function contributes to the total.

Add the header by using the “Header” phrase to create a header for the new data
column that is being added. The “Percent” phrase to create the arithmetic
expression that divides the PAPI_L1_DCM counts (count) for each function by the
total number of PAPI_L1_DCM counts in the application(A_Add(count)).

openss>>expview -m count,Header(\"percent of counts\",Percent(count,A_Add(count)))

 Exclusive percent Function (defining location)
PAPI_L1_DCM of counts
 Counts
 342000000 52.333588 hypre_SMGResidual (smg2000: smg_residual.c,152)
 207500000 31.752104 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 20500000 3.136955 hypre_SemiInterp (smg2000: semi_interp.c,126)
 15000000 2.295333 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 8500000 1.300689 pack_predefined_data (libmpi.so.0.0.3)
 7000000 1.071155 unpack_predefined_data (libmpi.so.0.0.3)

11.2 CLI Batch Scripting

If you have a known set of command you want to issue you can create a plain text
file with CLI commands. For example we create a batch file that will create, run then
view the pcsamp experiment run on the application fred.

Create batch file commands
> echo expcreate –f fred pcsamp >> input.script
> echo expgo >> input.script
> echo expview pcsamp10 >> input.script

Now to run the batch file input.script we use the –batch option to openss.

> openss –batch < input.script

 90

Note that currently, in this context, this interface is only supported via the online
version of Open|SpeedShop, so it must have been build with the
OPENSS_INSTRUMENTOR=mrnet options.

11.3 Python Scripting

The Open|SpeedShop python API allows users to execute the same interactive/batch
commands directly through python. Users can intersperse the normal python code
with commands to Open|SpeedShop. Currently this interface is only supported via
the online version of Open|SpeedShop.

11.4 MPI_Pcontrol Support

Open|SpeedShop also supports the MPI_Pcontrol function. This feature allows the
user to gather performance data only for sections of their code bounded by the
MPI_Pcontrol calls. The MPI_Pcontrol must be added to the source code of the
application. MPI_Pcontrol(1) enables the gathering of performance data and
MPI_Pcontrol(0) disables the gathering. You must also set the Open|SpeedShop
environment variable OPENSS_ENABLE_MPI_PCONTROL to 1 in order to activate
the MPI_Pcontrol call recognition, otherwise it will be ignored. Optionally you can
set the OPENSS_START_ENABLED environment variable to 1 to have performance
data gathered until a MPI_Pcontrol(0) call is encountered. If
OPENSS_START_ENABLED is no set no performance data will be gathered until a
MPI_Pcontrol(1) call is encountered. Note that for OPENSS_START_ENABLED to
have any effect OPENSS_ENABLE_MPI_PCONTROL must be set.

11.5 Graphical User Interface Basics

This section gives an overview of the OpenSpeedShop graphical user interface
focusing on the basic functionality of the GUI.

To launch the GUI on any experiment, use “openss –f <database name>”.

11.5.1 Basic Initial View – Default View

Because this example usertime experiment default view has many of the icons and
features of the other Open|SpeedShop experiments it is used here for illustration
purposes.

 91

11.5.1.1 Icon ToolBar

The most used items that can be found in the StatsPanel menu that is found under the StatsPanel tab
are also available in the StatsPanel ToolBar. The StatsPanel Toolbar is provided as a
convenience. The following is a quick overview of the toolbar options. The contents of the toolbar
vary by experiment, because some options don't make sense for all experiments. The following table
describes the icons and the functionality they represent.

"I" Information This option shows the metadata for the experiment. Information such

as the experiment type, processes, ranks, threads, hosts, and other
experiment specific information is displayed.

“U” Update This option updates the information in the StatsPanel display. This
can be used to display any new data that may have come from the
nodes on which the application is running.

"CL" Clear auxiliary
information

Clear auxiliary information. If the user has chosen a time segment of
the performance data or a specific function to view the data for. This
option clears the settings for that and allows the next view selection
to show data for the entire program again.

"D" Default View The default view icon shows the performance results based on the
view choice granularity selection.

"S, down
arrow"

Statements per
Function

Show the performance results related back to the source statements
in the application for the selected function. Highlight a function in the
StatsPanel and click on this icon.

"C, plus
sign"

Call paths w/o
coalescing

Show all the calling paths in this application. Duplicate paths will not
be coalesced. All of the calling paths will be shown in their entirety.

"C, plus Call paths w/o Show all the calling paths in this application for the selected function

 92

sign,
down
arrow"

coalescing per
Function

only. Highlight a function in the StatsPanel and click on this
icon. Duplicate paths will not be coalesced. All of the calling paths
will be shown in their entirety.

"HC" Hot Call Path Show the callpath in the application that took the most time. This is a
short cut to find the "hot" call path.

"B" Butterfly view Show the butterfly view which displays the callers and callees of the
selected function. Highlight a function in the StatsPanel and click on
this icon. Then repeat to "drill" down into the callers and/or callees.

"TS" Time Segment Show a portion of the performance data results based on the time
segment selected.

"OV" Optional View Use this dialog to select which performance metrics to be shown in
the new performance data report.

“SA” Source
Annotation

Choose which metric to use in the source panel to annotate the
source. Defaults are different for each experiment, but mostly: time.

"LB" Load Balance Show the load balance view, which displays the min, max, and average
performance values for the application. Only available on threaded
or multiple process applications.

"CA" Cluster Analysis Show the comparative analysis view which displays the output of a
cluster analysis algorithm run against the threaded or multiple
process performance analysis results for the user application. The
goal of this view is to find outlying threads or processes and report
the groups of like performing threads, processes, or ranks.

"CC" Custom
Compare

Raise the custom comparison panel which provides mechanisms
allowing the user to create custom views of the performance analysis
results. This allows the user to supplement the provided
Open|SpeedShop views.

11.5.1.2 View/Display Choice Selection

The View/Display Choice set of buttons allows users to choose what granularity to
use for a particular display. The normal usage scenario, is to choose a view choice
granularity and then select a view by choosing one of the icons described in the
table above. The choices, as shown in the image below, are to see the performance
data displayed:

 Per Function – Display the performance information relative to each function
in the program that had performance data gathered during the experiment
that was run.

 Per Statement – Display the performance information relative to each
statement in the program that had performance data gathered during the
experiment that was run

 Per Linked Object – Display the performance information relative to each
library or linked object in the program that had performance data gathered
during the experiment that was run.

 Per Loop – Display the performance information relative to each loop in the
program that had performance data gathered during the experiment that
was run. Note that the loop performance information is only shown for loops
that actually were executed. There may be loops in the application that will
not show up in the display because they did were not executed or had
minimal time attributed to them.

 93

The image below illustrates that double clicking on a line of statistical information
in the Stats Panel will focus the source panel at the line of source representing the
performance information and annotates the source with that information. Note the
hot to cold color highlighting of the source. The higher the performance values are
the hotter the color. Red is the hottest color, so source highlighted in red is taking
the most time in the program being profiled.

 94

12 Special System Support

12.1 Cray and Blue Gene

When shared library support is limited the normal manner of running experiments
in Open|SpeedShop doesn’t work. You must link the collectors into the static
executable. Currently Open|SpeedShop has static support on Cray and the Blue
Gene P/Q platforms. You must relink the application with the osslink command to
add support for the collectors.

The osslink command is a script that will help with linking. Calls to it are usually
embedded inside an application’s makefiles. The user generally needs to fine the
target that creates the actual static executable and create a collector target that links
in the selected collector. The following is an example for re-linking the smg2000
application.

smg2000: smg2000.o
 @echo "Linking" $@ "... "
 ${CC} –o smg2000 smg2000.o ${LFLAGS}

smg2000-pcsamp: smg2000.o
 @echo "Linking" $@ "... "
 osslink –v ‐c pcsamp ${CC} ­o smg2000-pcsamp smg2000.o ${LFLAGS}

smg2000-usertime: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c usertime ${CC} -o smg2000-usertime smg2000.o ${LFLAGS}

smg2000­hwcsamp: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c hwcsamp ${CC} ­o smg2000-hwcsamp smg2000.o ${LFLAGS}

smg2000-io: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c io ${CC} ­o smg2000­io smg2000.o ${LFLAGS}

smg2000-iot: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c iot ${CC} ­o smg2000­iot smg2000.o ${LFLAGS}

smg2000-mpi: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c mpi ${CC} –o smg2000­mpi smg2000.o ${LFLAGS}

Running the re-linked executable will cause the application to write the raw data
files to the location specified by the environment variable OPENSS_RAWDATA_DIR.
Normally, in the cluster environment where shared executables are being run, the
conversion from raw data to an Open|SpeedShop database is done under the hood.
However, in this case you must use the ossutil command to create the database file

 95

manually. Of course you can add the ossutil command to a batch script to eliminate
the step of manually issuing that command. Once you have the Open|SpeedShop
database files create you can view them normally with the GUI or CLI.

Below is an example of a job script that will execute these steps for you.

#PBS ­q debug
#PBS ­N smg2000-pcsamp
…
must have a clean raw data directory each run
rm ­rf /home/USER/smg2000/test/raw
mkdir /home/USER/smg2000/test/raw

setenv OPENSS_RAWDATA_DIR /home/USER/smg2000/test/raw
setenv OPENSS_DB_DIR /home/USER/smg2000/test/

cd /home/jgalaro/smg2000/test

needs –bb to have the original executable available
when doing ossutil
aprun ­bb ­n 16 /home/USER/smg2000/test/smg2000­pcsamp

creates a X.0.openss database file, please
load the module pointing to openspeedshop before accessing ossutil
ossutil /home/jgalaro/smg2000/test/raw

There have been recent changes to the shared library support in Open|SpeedShop.
Dynamic shared library support is now available in newer Cray and Blue Gene
operating systems. There is support for both shared and static binaries on the Cray
and on the Blue Gene Q platforms.

Also being worked on is a replacement mechanism for having to re-link the static
binaries to insert the Open|SpeedShop collectors into the application. It will use the
Dyninst binary rewriter to insert the collectors under the hood. Then you could use
the same convenience scripts and interface for all types of applications.

12.1 Cray Specific Static aprun Information

Note, in the above execution of the statically linked executable that we need to add
the –b option to the aprun call. The option is needed because Open|SpeedShop
stores information about the executable location when it is running. Without the –b
option the executable is run in a temporary location that is not available when the
raw data information is being converted into the Open|SpeedShop database file.

 96

13 Setup and Build for Open|SpeedShop

Open|SpeedShop is setup to work with the AMD Opteron or Athlon and the Intel x86,
x86-64, and Itanium-2 architectures. It has been tested on many Linux Distributions
include SLES, SUSE, RHEL, Fedora Core, CentOS, Debian, Ubuntu and many others. It
has been installed on the IBM Blue Gene P/Q and the Cray XT/XE/XK systems. The
OpenSpeedShop website contains information on special builds and usage
instructions.

The source code for Open|SpeedShop is available for download at the
Open|SpeedShop project home on Sourceforge:

http://sourceforge.net/projects/openss

Or CVS access is available at:
 http://sourceforge.net/scm/?type=cvs&group_id=176777

Packages and additional information can be found on the Open|SpeedShop website:
http://www.openspeedshop.org/

13.1 Open|SpeedShop Cluster Install

Open|SpeedShop comes with a set of bash install scripts that will build
Open|SpeedShop and any components it needs from source tarballs. First it will
check to see if the correct supporting software is installed on your system, if the
needed software isn’t installed it will ask to build it for you. The only thing you need
to do is provide a few arguments for the install script. For a normal setup you
would just specify the directory to install in, what build task you want to do, and the
location of your MPI and QT installs. For example:

./install-tool --build-offline --openss-prefix /opt/myoss --with-openmpi /opt/openmpi-1.5.5 –with-
mvapich /opt/mvapich-1.1

After the install has successfully completed there are a few important environment
variable you need to set. Again set OPENSS_PREFIX for the install location, the
OPENSS_PLUGIN_PATH for the directory where the plugins are stored, if you
installed with more then one MPI version you must specify which to use with
OPENSS_MPI_IMPLEMENATION, lastly add the Open|SpeedShop bin directory to
your PATH and lib64 directory to your LD_LIBRARY_PATH. Examples of the
necessary environment variables that need to be set are as follows:

export OPENSS_PREFIX=/opt/myoss
export OPENSS_MPI_IMPLEMENTATION=openmpi
export OPENSS_PLUGIN_PATH=$OPENSS_PREFIX/lib64/openspeedshop
export LD_LIBRARY_PATH=$OPENSS_PREFIX/lib64:$LD_LIBRARY_PATH
export PATH=$OPENSS_PREFIX/bin:$PATH

http://sourceforge.net/projects/openss
http://sourceforge.net/scm/?type=cvs&group_id=176777
http://www.openspeedshop.org/

 97

13.2 Open|SpeedShop Blue Gene Platform Install

Please reference the OpenSpeedShop 2.1 Build and Install Guide.

13.3 Open|SpeedShop Cray Platform Install

Please reference the OpenSpeedShop 2.1 Build and Install Guide.

13.4 Execution Runtime Environment Setup

This section gives an example of a module file, softenv file and dotkit that can be
used to set-up the Open|SpeedShop execution environments.

13.4.1 Example module file

This is an example of a module file used for a cluster installation. Use module load
<filename of module file> to activate the Open|SpeedShop runtime environment.

#%Module1.0##
#########
openss modulefile

proc ModulesHelp { } {
 global version openss
 puts stderr "\topenss - loads the OpenSpeedShop software & application environment"
 puts stderr "\n\tThis adds $oss/* to several of the"
 puts stderr "\tenvironment variables."
 puts stderr "\n\tVersion $version\n"
}
module-whatis "loads the OpenSpeedShop runtime environment"
for Tcl script use only
set version 2.1
set oss /opt/OSS21

setenv OPENSS_PREFIX $oss
setenv OPENSS_DOC_DIR $oss/share/doc/packages/OpenSpeedShop
prepend-path PATH $oss/bin
prepend-path MANPATH $oss/share/man

set unameexe "/bin/uname"
if { [file exists $unameexe] } {
 set machinetype [exec /bin/uname -m]
 if { $machinetype == "x86" ||
 $machinetype == "i386" ||
 $machinetype == "i486" ||
 $machinetype == "i586" ||
 $machinetype == "i686" } {

 98

 setenv OPENSS_PLUGIN_PATH $oss/lib/openspeedshop
 setenv DYNINSTAPI_RT_LIB $oss/lib/libdyninstAPI_RT.so
 prepend-path LD_LIBRARY_PATH $oss/lib
 }
 if { $machinetype == "x86_64" } {
 setenv OPENSS_PLUGIN_PATH $oss/lib64/openspeedshop
 setenv DYNINSTAPI_RT_LIB $oss/lib64/libdyninstAPI_RT.so
 prepend-path LD_LIBRARY_PATH $oss/lib64
 }
 if { $machinetype == "ia64" } {
 setenv OPENSS_PLUGIN_PATH $oss/lib/openspeedshop
 setenv DYNINSTAPI_RT_LIB $oss/lib/libdyninstAPI_RT.so
 prepend-path LD_LIBRARY_PATH $oss/lib
 }
}

13.4.2 Example softenv file

This is an example of a softenv file used for a Blue Gene/Q installation. Use the
“resoft <filename of softenv file>” command to activate the Open|SpeedShop
runtime environment.

The OpenSpeedShop .soft file.
Remember to type "resoft" after working on this file.

OSS = /home/projects/oss/oss
TARCH = bgq

Set up OSS environment variables

Find the executable portions of OpenSpeedShop (order is important here)
PATH += $OSS/$TARCH/bin
PATH += $OSS/bin

Find the libraries for OpenSpeedShop (order is important here)
LD_LIBRARY_PATH += $OSS/$TARCH/lib64
LD_LIBRARY_PATH += $OSS/lib64

Find the runtime collectors
OPENSS_PLUGIN_PATH = $OSS/$TARCH/lib64/openspeedshop

Tell the tool what the application MPI implementation is
Needed if supporting multiple implementations and running the "mpi", "mpit", or "mpiotf" experiments
OPENSS_MPI_IMPLEMENTATION = mpich2

Paths to documentation and man pages
OPENSS_DOC_DIR = $OSS/share/doc/packages/OpenSpeedShop
MANPATH = $OSS/share/man

Use the basic environment.
@default

13.4.3 Example dotkit file

 99

This is an example of a dotkit file used for a 64-bit cluster platform installation and
is not generalized to support different platforms other than the 64-bit cluster it was
written for. Use the “use <filename of dotkit file>” command to activate the
Open|SpeedShop runtime environment. Note: do not include the “.dk” portion of
the filename when using the “use” command.

#c performance/profile
#d Open|Speedshop (Version 2.1)
dk_setenv OPENSS_PREFIX /usr/global/tools/openspeedshop/oss-dev/OSS21
dk_setenv OPENSS_PLUGIN_PATH $OPENSS_PREFIX/lib64/openspeedshop
dk_setenv OPENSS_DOC $OPENSS_PREFIX/share/doc/packages/OpenSpeedShop/
dk_alter PATH $OPENSS_PREFIX/bin
dk_alter LD_LIBRARY_PATH $OPENSS_PREFIX/lib64

dk_setenv DYNINSTAPI_RT_LIB $OPENSS_PREFIX/lib64/libdyninstAPI_RT.so
dk_setenv XPLAT_RSH rsh
dk_setenv OPENSS_MPI_IMPLEMENTATION mvapich
dk_test `dk_cev OPENSS_RAWDATA_DIR` -eq 0 && dk_setenv OPENSS_RAWDATA_DIR
/p/lscratchb/${USER}

14 Additional Information and Documentation Sources

14.1 Final Experiment Overview

In the table below we match up a few general questions you may ask yourself with
the experiments you may want to run in order to find the answer.

Where does my code spend most of its time?

 Flat profiles (pcsamp)
 Getting inclusive/exclusive timings with callstacks (usertime)
 Identifying hot callpaths (usertime + HP analysis)

How do I analyze cache performance?

 Measure memory performance using hardware counters (hwc)
 Compare to flat profiles (custom comparison)
 Compare multiple hardware counters (N x hwc, hwcsamp)

How to identify I/O problems?

 Study time spent in I/O routines (io, iot and lightweight iop)
 Compare runs under different scenarios (custom comparisons)

How to identify memory problems?

 Study time spent in memory allocation/de-allocation routines (mem)
 Look for load imbalance (LB view) and outliers (CA view)

How do I find parallel inefficiencies in OpenMP and/or threaded applications?

 Study time spent in POSIX thread routines (pthreads)
 Look for load imbalance (LB view) and outliers (CA view)

How do I find parallel inefficiencies in MPI applications?

 Study time spent in MPI routines (mpi)
 Look for load imbalance (LB view) and outliers (CA view)

How do I find parallel inefficiencies in NVIDIA CUDA applications?

 Study time spent in CUDA routines and the CUDA event execution trace. (cuda)

 100

14.2 Additional Documentation

 The python scripting API documentation can be found at
http://www.openspeedshop.org/docs/pyscripting_doc or in the
…/share/doc/packages/openspeedshop/pyscripting_doc folder in the install
directory.

 There are also man pages for openss and every convenience script. There’s
also a quick start guide that you can download from
http://www.openspeedshop.org

 There is also an Open|SpeedShop Forum where you can ask questions and
read posts at http://www.openspeedshop.org/forums There is also an email list
that you can send your questions to oss-questions@openspeedshop.org

http://www.openspeedshop.org/docs/pyscripting_doc
http://www.openspeedshop.org/
http://www.openspeedshop.org/forums
mailto:oss-questions@openspeedshop.org

 101

15 Convenience Script Basic Usage Reference Information

This section provides a quick overview of the convenience scripts that can be used to either
compare experiment data to other experiment data or to gather performance information
for each of the various performance metric types that Open|SpeedShop supports.

15.1 Suggested Workflow
We recommend an O|SS workflow consisting of two phases. First, gathering the
performance data using the convenience scripts. Then using the GUI or CLI to view the data.

15.2 Convenience Scripts
￼Users are encouraged to use the convenience scripts that hide some of the underlying
options for running experiments. The full command syntax can be found in the User’s Guide.
The script names correspond to the experiment types and are: osspcsamp, ossusertime,
osshwc, osshwcsamp, osshwctime, ossio, ossiot, ossmpi, ossmpit, ossmpiotf, ossfpe
plus an osscompare script.

Note: Make sure to set OPENSS RAWDATA DIR (See KEY ENVIRONMENT VARIABLES
section for info). When running Open|SpeedShop, use the same syntax that is used to run
the application/executable outside of O|SS, but enclosed in quotes; e.g., Using an MPI with
mpirun: osspcsamp “mpirun -np 512 ./smg2000” Using SLURM/srun: osspcsamp “srun -
N 64 -n 512 ./smg2000 -n 5 5 5” Redirection to/from files inside quotes can be problematic,
see convenience script “man” pages for more info.

15.3 Report and Database Creation

Running the pcsamp experiment on the sequential program named mexe: osspcsamp
mexe  results in a default report and the creation of a SQLite database file mexe-
pcsamp.openss in the current directory; the report:

% CPU Time CPU time Function
48.990 11.650 f3 (mexe: m.c, 24)
33.478 7.960 f2 (mexe: m.c,15)
17.451 4.150 f1 (mexe: m.c,6)
 0.084 0.020 work(mexe:m.c,33)

To access alternative views in the GUI: openss –f mexe-pcsamp.openss loads the database
file. Then use the GUI toolbar to select desired views; or, using the CLI: openss –cli –f mexe-
pcsamp.openss to load the database file. Then use the expview command options for
desired views.

15.4 osscompare: Compare Database Files 

General form:
osscompare “<db_file1>, < db_file2>[,<db_file>...]” [time | percent | <other metrics>] [rows=nn]
[viewtype=functions| statements | linkedobjects] > [oname = <csv filename>] 

Where:

 102

“<db_file>” represents an Open|SpeedShop database file created by running an
Open|SpeedShop experiment on an application.

[time | percent | <other metrics>] represent the metric that the comparison will use to
differentiate the performance information for each experiment database.

[rows=nn] indicates how many rows of output you want to have listed.

[viewtype=functions| statements | linkedobjects] select the granularity of the view output.
The comparison is either done at the function, statement, or library view level. Function
level is the default granularity.

[oname = <csv filename>]  Name the output filename when comma separated list output is
requested.

Example:
osscompare “smg-run1.openss,smg-run2.openss” 
osscompare “smg-run1.openss,smg-run2.openss” percent rows=10

Please type “man osscompare” for more details.

15.5 osspcsamp: Program Counter Experiment 

General form:
osspcsamp “<command> < args>” [high | low | default | <sampling rate>]

Sequential job example: 
osspcsamp “smg2000 –n 50 50 50” 

Parallel job example: 
osspcsamp “mpirun –np 128 smg2000 –n 50 50 50” 

Additional arguments: 

high: twice the default sampling rate (samples per second) 
low: half the default sampling rate 
default: default sampling rate is 100 
<sampling rate>: integer value sampling rate

15.6 ossusertime: Call Path Experiment 

General form:
ossusertime “<command> < args>” [high | low | default | <sampling rate>]

Sequential job example: 
ossusertime “smg2000 –n 50 50 50” 

Parallel job example: 
ossusertime “mpirun –np 64 smg2000 –n 50 50 50” 

 103

Additional arguments: 
high: twice the default sampling rate (samples per second) 
low: half the default sampling rate 
default: default sampling rate is 35 
<sampling rate>: integer value sampling rate

15.7 osshwc, osshwctime: HWC Experiments 

General form:
osshwc[time] “<command> < args>” [default | <PAPI_event> | <PAPI threshold> | <PAPI_
event><PAPI threshold>] 

Sequential job example: 
osshwc[time] “smg2000 –n 50 50 50” 

Parallel job example: 
osshwc[time] “mpirun –np 128 smg2000 –n 50 50 50” 

Additional arguments: 
default: event (PAPI_TOT_CYC), threshold (10000) 
<PAPI_event>: PAPI event name 
<PAPI threshold>: PAPI integer threshold

15.8 osshwcsamp: HWC Experiment 

General form:
osshwcsamp “<command>< args>” [default | <PAPI_event_list>| <sampling_rate>]

Sequential job example:
osshwcsamp “smg2000 –n 50 50 50” 

Parallel job examples: 
osshwcsamp “mpirun –np 128 smg2000 –n 50 50 50” 
osshwcsamp “srun –N 32 –n 128 sweep3d.mpi” PAPI_L1_DCM,PAPI_L1_DCA 200

Additional arguments: 
default: events(PAPI_TOT_CYC and PAPI_FP_OPS), sampling_rate is 100
<PAPI_event_list>: Comma separated PAPI event list <sampling_rate>:Integer value
sampling rate

15.9 ossio, ossiot: I/O Experiments 

General form:
ossio[t] “<command> < args>” [default | f_t_list] 

Sequential job example: 
ossio[t] “smg2000 –n 50 50 50” 

 104

Parallel job example: 
ossio[t] “mpirun –np 128 smg2000 –n 50 50 50” 

Additional arguments: 

default: trace all I/O functions 

< f_t_list>: Comma-separated list of I/O functions to trace, one or more of the
following: close, creat, creat64, dup, dup2, lseek, lseek64, open, open64, pipe,
pread, pread64, pwrite, pwrite64, read, readv, write, and writev

15.10 ossmpi, ossmpit: MPI Experiments 

General form:
ossmpi[t] “<mpirun><mpiargs><command><args>” [default | f_t_list] 

Parallel job example:
ossmpi[t] “mpirun –np 128 smg2000 –n 50 50 50” 

Additional arguments:
default: trace all MPI functions 
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero or more of:
MPI_Allgather, MPI_Waitsome and/or zero or more of the MPI group categories:

MPI Category Argument
All MPI Functions 
Collective Communicators
Persistent Communicators
Synchronous Point to Point
Asynchronous Point to Point
Process Topologies 
Groups Contexts Communicators
Environment 
Datatypes
MPI File I/O

all 
collective_com
persistent_com
synchronous_p2p
asynchronous_p2p
process_topologies
graphs_contexts_comms
environment 
datatypes
fileio

15.11 ossfpe: FP Exception Experiment 

General form:
ossfpe “<command> < args>” [default | f_t_list] 

Sequential job example:
ossfpe “smg2000 –n 50 50 50” 

Parallel job example:
ossfpe “mpirun –np 128 smg2000 –n 50 50 50” 

Additional arguments:

default: trace all floating-point exceptions 

 105

<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or more of:
inexact_result, division_by_zero, underflow, overflow, invalid_operation

15.12 ossmem: Memory Analysis Experiment

General form:
ossmem “<command> < args>” [default | f_t_list] 

Sequential job example:
ossmem “smg2000 –n 50 50 50” 

Parallel job example:
ossmem “mpirun –np 128 smg2000 –n 50 50 50” 

Additional arguments:

default: trace all supported memory functions 
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or more of: malloc,
free, memalign, posix_mem align, calloc and realloc

15.13 osspthread: POSIX Thread Analysis Experiment

General form:
osspthread “<command> < args>” [default | f_t_list] 

Sequential job example:
osspthread “smg2000 –n 50 50 50” 

Parallel job example:
osspthread “mpirun –np 128 smg2000 –n 50 50 50” 

Additional arguments:

default: trace all POSIX thread functions 
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or more of:
pthread_create, pthread_mutex_init, pthread_mutex_destroy, pthread_mutex_lock,
pthread_mutex_trylock, pthread_mutex_unlock, pthread_cond_init,
pthread_cond_destroy, pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, and pthread_cond_timedwait

15.14 osscuda: NVIDIA CUDA Tracing Experiment

General form:
osscuda “<command> < args>”

Sequential job example:
osscuda “eigenvalues --matrix-size=4096” 

Parallel job example:
osscuda “mpirun -np 64 -npernode 1 lmp_linux -sf gpu < in.lj” 

15.15 Key Environment Variables
 

 106

EXECUTION RELATED VARIABLES DESCRIPTION
OPENSS_RAWDATA_DIR  Used on cluster systems where a /tmp file system is

unique on each node. It specifies the location of a
shared file system path which is required for O|SS to
save the “raw” data files on distributed systems.
OPENSS_RAWDATA_DIR=”shared file system
path” Example: export
OPENSS_RAWDATA_DIR=/lustre4/fsys/userid

OPENSS_ENABLE_MPI_PCONTROL  Activates the MPI_Pcontrol function recognition,
otherwise MPI_Pcontrol function calls will be ignored
by O|SS.

OPENSS_DATABASE_ONLY When running the Open|SpeedShop convenience
scripts only create the database file and do NOT put
out the default report. Used to reduce the size of the
batch file output files if user is not interested in
looking at the default report.

OPENSS_RAWDATA_ONLY When running the Open|SpeedShop convenience
scripts only gather the performance information into
the OPENSS_RAWDATA_DIR directory, but do NOT
create the database file and do NOT put out the
default report.

OPENSS_DB_DIR  Specifies the path to where O|SS will build the
database file. On a file system without file locking
enabled, the SQLite component cannot create the
database file. This variable is used to specify a path to
a file system with locking enabled for the database file
creation. This usually occurs on lustre file systems
that don’t have locking
enabled. OPENSS_DB_DIR=”file system
path” Example: export
OPENSS_DB_DIR=/opt/filesys/userid

OPENSS_MPI_IMPLEMENTATION  Specifies the MPI implementation in use by the
application; only needed for the mpi, mpit, and mpiotf
experiments. These are the currently supported MPI
implementations: openmpi, lampi, mpich, mpich2,
mpt, lam, mvapich, mvapich2. For Cray, IBM, Intel
MPI implementations, use mpich2.
OPENSS_MPI_IMPLEMENTATION=”MPI impl.
name” Example: export
OPENSS_MPI_IMPLEMENTATION=openmpi

In most cases, O|SS can auto-detect the MPI in use.

 107

16 Hybrid (openMP and MPI) Performance Analysis

For this example/tutorial we have run Open|SpeedShop convenience script on the
NPB-MZ BT program and created a database file that has 4 ranks each of which has
4 underlying openMP threads.

What this example intends to show is that you can look at hybrid performance first
at the MPI level and then can look under the MPI rank to see how the threads are
performing. At the MPI level you can see load balance and outliers, then focus on a
rank and look at load balance and outliers for the underlying threads. Within a
terminal window we enter:  

openss -f bt-mz.B.4-pcsamp-1.openss 

to bring up the Open|SpeedShop GUI.

In the GUI view below, we display the aggregated results for the application at the
statement level granularity. When the default view first comes up the view is at the
function level granularity. To switch to the statement level select the Statements
button in the View/Display Choice section on the right hand side of the Stats Panel
display and then click the “D” icon for default view. This will switch the Stats Panel
view to statement level granularity.

Now the Stats Panel is displaying the statements that took the most time in the
application run. For this execution of BT, the statement at line 440 took the most
time. By double clicking on the statement, Open|SpeedShop focuses on the source
for that line of the application source and highlights that line.

In the view below, we moved the ManageProcess panel tab to the lower panel and
split the upper panel using the vertical splitter icon on the far right side of the
original upper panel.

Note: Left mouse down and hold on the panel tab then slide the panel you want to
move to another location on the Open|SpeedShop GUI or off onto other parts of your
display.

 108

16.1 Focus on individual Rank to get Load Balance for Underlying Threads

In the next view (below) we used the ManageProcess panel to highlight one rank
and an individual thread within the rank to show only that threads performance
data in the Stats Panel view.

Note: Use the focus on threads and processes Manage Process panel option to focus
on individual threads within a rank. Right mouse button down on the Manage
Process panel tab to see the options.

 109

In the next GUI view, we used the ManageProcess panel to highlight one rank to
show the performance data from all the threads that are executed under that
particular rank in order to see only that performance data in the Stats Panel view.

Note: Use the "focus on selected rank and underlying threads" Manage Process
panel option to focus on all the threads within a rank. Right mouse button down on
the Manage Process panel tab to see the options.

 110

16.2 Clearing Focus on individual Rank to get bank to default behavior

Note: Once you focus on individual or groups of ranks, e.g. venturing away from the
default aggregated views, then you need to use the "CL" clear auxiliary setting icon
to clear away all the optional selections and get back to looking at the aggregated
results again.

 111

After clearing the specific rank and/or thread selections, we can click the "LB" load
balance icon and Open|SpeedShop will display the min, max, average values across
all the ranks in the hybrid code. This helps decide if there is imbalance across the
ranks of the hybrid application. We can focus on individual ranks to see the balance
across the openMP threads that are in an individual rank (next example image).

 112

Here we used the Manage Process panel "Focus on selected rank and underlying
threads" menu options to view the load balance across the 4 openMP threads for the
rank 0 process.

 113

Please also explore the various options offered via a panel's pull down menu.
Clicking on a colored downward-facing arrow or using the Stats Panel icons can
access further options. Red icons represent view options, such as updating the data
or clearing the view options. The "green" icons correspond to different possible
views of the performance data. The "dark blue" icons correspond to analysis
options while the "light blue" icon corresponds to information about the
experiment. There is context sensitive text that is shown when you hover over the
icons.

