



**USER'S MANUAL** 

# MCA-E2701

Product Model: CBI-2701

Ver. 1.3



#### Notes to Users

The specifications of the product are under continuous improvement and while every effort is made to keep this manual up-to-date, we reserve the right to update the contents of this user's manual without prior notice. Therefore, you should thoroughly read this user's manual even if you have often purchased this product before.

Using this product requires technical knowledge of hardware and software.

Use this product only under the specified conditions such as power supply, voltage, temperature, and humidity range. Interface Corporation's products are not designed with components intended to ensure a level of reliability suitable for use under conditions that might cause serious injury or death.

Please consult our Technical Support Center if you intend to use our products for special purpose, such as use for moving vehicles, medical treatment, aerospace engineering, controlling nuclear power, submerged translators and so on. This product is made under strict quality management, however, when using this product for the purposes that may result in any damages, lost profits, or any other incidental or consequential damages resulting from breakdown of this product, the user is required to take adequate and appropriate measures, such as installing safety devices to avoid possible serious accidents.

#### **Conventions Used in This Manual**

| Î | This icon denotes a warning, which advises you of precautions to take to avoid injury, data loss, or system crash. |
|---|--------------------------------------------------------------------------------------------------------------------|
| 7 | This icon denotes a note, caution, or warning.                                                                     |

#### Indemnification

Interface Corporation makes no warranties regarding damages resulting from installation or use of this product, whether hardware or software, and assume that such risk reverts to the user.

Interface Corporation shall not be liable for any incidental or consequential damages, including damages or other costs resulting from defects which might be contained in the product, product supply delay or product failure, even if advised of the possibility thereof. Customer's right to recover damages caused by fault or negligence on the part of Interface Corporation shall be limited to the amount paid by the customer for that product.

This product including its software may be used only in Japan. Interface Corporation can not be responsible for the use of this product outside Japan. Interface Corporation does not provide technical support service outside Japan.

### Warranty

Interface Corporation products are warranted for a period of either one year or two years from the date of shipment, as evidenced by receipts or other documentation. This warranty does not apply to the software products and expendable supplies such as batteries.

**Note:** You can determine the warranty period at our Web site by the serial number of your product. Those without Internet access should contact the Sales Information Center.

During the warranty period Interface Corporation will, as a general rule, replace or recondition the defective product without charge, in which case the user will be required to pay the shipping costs, except as set forth below.

The Warranty provided herein does not cover expendable supplies such as batteries and damages, defects, malfunctions, or failures caused by impact during transportation while under owner's responsibility; owner's failure to follow the instructions and the precautions contained in this manual; modification and/or repair of the product by other than Interface Corporation, trouble caused by use with peripherals not specified by Interface Corporation, power failure or surges, fire, earthquake, tidal wave and/or flood.

This warranty applies only when the product is used in Japan.

Interface Corporation warrants its repairs for six months, and will again repair the same defective part without additional charge provide the product is economically repairable. In that case, the user should attach a copy of the most recent repair report to the repair request form. If no repair report is attached, it will be considered as a new repair request.

# **Before You Export Interface Products**

The foreign exchange and foreign trade law of Japan controls the export of this product, due to its possible use as a STRATEGIC MATERIAL. Therefore, before you export this product, you must secure an export permit from the Ministry of Economy, Trade and Industry of Japan.

# **Revision History**

| Version | Date          | Comments                                                                                     |
|---------|---------------|----------------------------------------------------------------------------------------------|
| 1.0     | October 2003  | User's manual MCA-E2701 published.                                                           |
| 1.1     | October 2003  | Manual revised:                                                                              |
|         |               | The model of user's manual MCA-E2701 changed from the CBI-2701                               |
|         |               | and CBI-2702 to the CBI-2701.                                                                |
| 1.2     | December 2003 | Manual revised:                                                                              |
|         |               | Section 3.1 Hardware Specifications                                                          |
|         |               | Low-level input current changed from                                                         |
|         |               | $I_{IL} = -0.6 \text{ mA (max.)}$ to $I_{IL} = -1.1 \text{ mA (max.)}$ .                     |
|         |               | High-level input current changed from                                                        |
|         |               | $I_{IH} = +40 \mu\text{A} (\text{max.}) \text{ to } I_{IH} = +11 \mu\text{A} (\text{max.}).$ |
|         |               | Low-level output voltage added.                                                              |
|         |               | Chapter 6 Address Assignment added.                                                          |
|         |               | Section 7.1 Checkpoints                                                                      |
|         |               | A problem and solution added.                                                                |
| 1.3     | July 2004     | Manual revised:                                                                              |
|         |               | Section 4.2 Protecting Output Transistors added.                                             |
|         |               | Section 5.4 Multiple CardBus Cards added.                                                    |
|         |               | Chapter 6 Address Assignment deleted.                                                        |

Due to constant product improvements, the information in this user's manual is subject to change without prior notice.

### -Contents-

| Chapter 1 Introduction                                                                                                                                                                                                                       | 3                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1.1 Summary                                                                                                                                                                                                                                  |                       |
| Chapter 2 Signal Definitions                                                                                                                                                                                                                 | 6                     |
| 2.1 Cable Connector Pin Assignments 2.2 Signals 2.3 Attached Cable 2.3.1 Dimensions of the Connector 2.3.2 Wire Connection                                                                                                                   | 7<br>7<br>7           |
| Chapter 3 Specifications                                                                                                                                                                                                                     | 9                     |
| 3.1 Hardware Specifications 3.2 Circuit Diagram 3.3 Interrupt Sources 3.3.1 Interval Timer 3.3.2 Timing Chart for Interrupt Signals                                                                                                          | 9<br>11<br>12         |
| Chapter 4 External Connections                                                                                                                                                                                                               | 15                    |
| 4.1 Example Connections 4.1.1 General Purpose Digital Inputs/Outputs (IN1/OUT1 through IN48/OUT48) 4.2 Protecting Output Transistors 4.2.1 Suppressing Inductively Induced Voltage 4.2.2 Suppressing In-Rush Current 4.3 Reset Input (RSTIN) | 16<br>)18<br>18<br>19 |
| Chapter 5 Installation                                                                                                                                                                                                                       | 21                    |
| 5.1 Card Installation                                                                                                                                                                                                                        | 21<br>21              |
| Chapter 6 Notes for Users                                                                                                                                                                                                                    | 23                    |
| 6.1 Cautions, Periodic, Inspections, and Storage                                                                                                                                                                                             | 23                    |
| Chapter 7 Troubleshooting                                                                                                                                                                                                                    | 25                    |
|                                                                                                                                                                                                                                              |                       |

# **Chapter 1 Introduction**

# 1.1 Summary

The CBI-2701 is a multifunction digital input/output card for CardBus-based computers. It provides 48 CMOS gated high-voltage digital input and 48 TTL open-collector output channels. This card includes a timer/counter circuit. This timer/counter circuit can be used as an interval timer. This card does not require an external power supply because the input circuit is CMOS-gated high-voltage input. External reset signal input is supported by a connector.

#### 1.1.1 Features

- TTL open-collector output channels (+5 Vdc to +24 Vdc)
   Output circuits on the CBI-2701 have TTL open-collector buffers. This feature provides up to +40 mA (max.) of current.
- 2. CMOS-gated high-voltage input channels (0 Vdc to  $\pm$ 24 Vdc) Input circuits have protection diode, so this product inputs  $\pm$ 30 Vdc (max.). It can also input TTL level signal because of  $\pm$ 5 Vdc pull-up resistor of 4.7 k $\Omega$ .
- 3. External reset input (RSTIN)

  The RSTIN signal resets this card. This signal can also be configured as one of the interrupt sources.
- 4. Built-in timer/counter

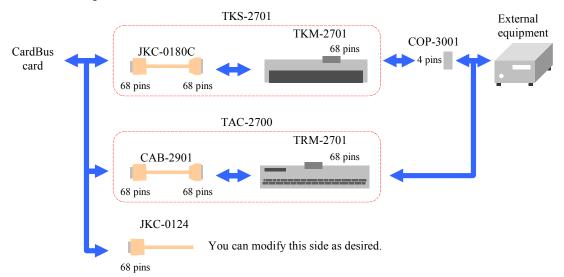
The CBI-2701 has a timer/counter circuit that can be used as an interval timer as mentioned above. A software selectable clock period of  $10~\mu s$ ,  $100~\mu s$ , 1~ms, 10~ms, and 100~ms and a software programmable frequency divisor in the range of 1 through 15 are supported. The output of the built-in timer/counter circuit can be used as interrupt sources.

- Software configurable interrupt source
   Software configurable interrupt sources are supported. Each interrupt can be masked or unmasked individually.
- 6. Cable

The JKC-0124 cable is included with the CBI-2701. You can modify one side as desired.

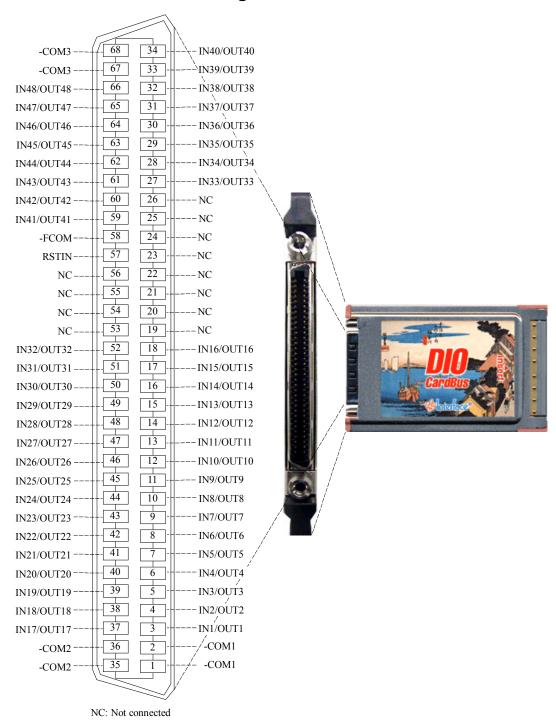
# **1.2 Optional Products**

### 1.2.1 Accessories


| Part Number              | Description                                                                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TKS-2701                 | The TKS-2701 is composed of a cable and terminal block. The JKC-0180C straight                                                                             |
| Cable: JKC-0180C         | cable converts a PC Card 68-pin male connector to 68-pin female connector. The                                                                             |
| Terminal block: TKM-2701 | cable length is 1.2 m. The TKS-2701 terminal block has 68 screw terminals for easy                                                                         |
|                          | connection of field signals. It has a PC Card 68-pin male connector. It also includes                                                                      |
|                          | hardware for mounting on a standard DIN rail.                                                                                                              |
|                          | * The e-CON plug connector is not included in this product, so please prepare our                                                                          |
|                          | connector pack COP-3001 or equivalent.                                                                                                                     |
| TAC-2700                 | The TAC-2700 is composed of a cable and terminal block. The CAB-2901 straight                                                                              |
| Cable: CAB-2901          | cable converts a PC Card 68-pin male connector to 68-pin half-pitch female                                                                                 |
| Terminal block: TRM-2700 | connector. The cable length is 1.5 m. The TRM-2700 terminal block has 68 screw                                                                             |
|                          | terminals for easy connection of field signals. It has a 68-pin half-pitch male                                                                            |
|                          | connector. It also includes hardware for mounting on a standard DIN rail.                                                                                  |
| COP-3001                 | This is a 18-pack of e-CON connector.                                                                                                                      |
|                          | Connector catalog number: XN2A-1430 (OMRON Corporation)                                                                                                    |
| BBD-0817 (Japanese)      | This is a CardBus enable for DOS.                                                                                                                          |
| BPA-0507 (Japanese)      | The BPA-0507 software controls Interface digital input/output boards from your application running on Windows XP, Windows 2000, Windows Me, or Windows 98. |
| BPC-0506 (Japanese)      | This software provides VI (diagram) for Interface digital input/output card on                                                                             |
|                          | LabVIEW of National Instruments Corporation.                                                                                                               |
| BPD-0805 (Japanese)      | This software retrieves the configuration registers for MS-DOS and PC DOS.                                                                                 |
| GPC-2000 (Japanese)*     | Digital input/output driver software for Windows XP/2000/Me/98/95                                                                                          |
| GPD-2000 (English)*      | Digital input/output driver software for Windows XP/2000/Me/98/95                                                                                          |
| GPF-2000 (Japanese)      | Digital input/output driver software for MS-DOS and PC DOS                                                                                                 |
| GPG-2000 (Japanese)      | Digital input/output driver software for Linux, RTLinux, SH-Linux, and                                                                                     |
|                          | SH-RTLinux                                                                                                                                                 |
| GPH-2000 (English)       | Digital input/output driver software for Linux, RTLinux, SH-Linux, and                                                                                     |
|                          | SH-RTLinux                                                                                                                                                 |

Refer to our Web site for the latest information and prices of optional products.

#### Notes:


- You may download software drivers from our Web site free of charge. We also provide software drivers on CD-ROM for a nominal fee.
- \*The CBI-2701 does not support Windows NT and Windows 95.

### Connection Diagram



# **Chapter 2 Signal Definitions**

# 2.1 Cable Connector Pin Assignments



Note: For prevention of incorrect insertion, the card frame and contraction tube of the attached cable are the same color. Check if they are the same color when you connect the cable with the card.

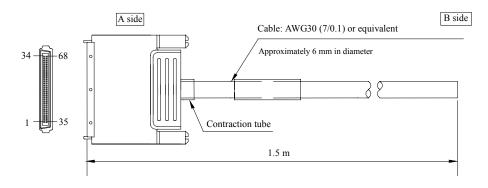
# 2.2 Signals

Signal Description

| Signal                            | Pin Number                                                         | Direction    |                          | Description                                                                                                                                                            |
|-----------------------------------|--------------------------------------------------------------------|--------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IN1/OUT1                          | 3                                                                  | Input/output | Digital input/output     | General purpose digital input/output<br>Interrupt input signal 1                                                                                                       |
| IN2/OUT2                          | 4                                                                  |              | signal<br>(bi-direction) | General purpose digital input/output<br>Interrupt input signal 2                                                                                                       |
| IN3/OUT3                          | 5                                                                  |              |                          | General purpose digital input/output<br>Interrupt input signal 3                                                                                                       |
| IN4/OUT4                          | 6                                                                  |              |                          | General purpose digital input/output<br>Interrupt input signal 4                                                                                                       |
| IN5/OUT5<br>through<br>IN48/OUT48 | 7 through 18,<br>27 through 34,<br>37 through 52,<br>59 through 66 |              |                          | General purpose digital input/output                                                                                                                                   |
| RSTIN                             | 57                                                                 | Input        | External reset signal    | This is a reset signal input. An external circuit can reset this CardBus card by asserting this signal, and an external circuit can request service from the computer. |

Use corresponding pins for ground.

Ground Pin Selection\*1


| Signal            | Pin Number | Ground |
|-------------------|------------|--------|
| IN1 through IN16  | 1, 2       | -COM1  |
| IN17 through IN32 | 35, 36     | -COM2  |
| IN33 through IN48 | 67, 68     | -COM3  |
| RSTIN             | 58         | -FCOM  |

Note: \*1 -COM1, -COM2, -COM3, and -FCOM are connected inside the CardBus card.

# 2.3 Attached Cable

The JKC-0124 cable is included with the CBI-2701. This cable has a single 68-pin half-pitch female on the A side. You can modify the B side as desired. The cable length is 1.5 m.

### 2.3.1 Dimensions of the Connector



### 2.3.2 Wire Connection

| CN1 | Color of<br>Wire<br>Cover | Dot Mark . Color |    |
|-----|---------------------------|------------------|----|
| 1   | gray                      | re               | d  |
| 2   | gray                      | blac             | k  |
| 3   | orange                    | re               | d  |
| 4   | orange                    | blac             | k  |
| 5   | gray                      | re               | d  |
| 6   | gray                      | <b>—</b> blac    | k  |
| 7   | white                     | - re             | d  |
| 8   | white                     | <b>—</b> blac    | k  |
| 9   | yellow                    | re               | d  |
| 10  | yellow                    | blac             | k  |
| 11  | pink                      | re               | d  |
| 12  | pink                      | blac             | k  |
| 13  | orange                    | <b></b>          | ed |
| 14  | orange                    | blac             | k  |
| 15  | gray                      | re               | ed |
| 16  | gray                      | <b>—</b> — blac  | k  |
| 17  | white                     | re               | ed |
| 18  | white                     | <b>—</b> — blac  | k  |
| 19  | pink                      | re               | ed |
| 20  | pink                      | <b>b</b> lac     | k  |
| 21  | gray                      | re               | ed |
| 22  | gray                      | <b>b</b> lac     | k  |
| 23  | white                     | <b></b> re       | ed |
| 24  | white                     | <b>b</b> lac     | k  |
| 25  | orange                    | <b>r</b> e       | ed |
| 26  | orange                    | <b>b</b> lac     | k  |
| 27  | yellow                    | re               | d  |
| 28  | yellow                    | <b>—</b> blac    | k  |
| 29  | pink                      | re               | d  |
| 30  | pink                      | <b>—</b> — blac  | k  |
| 31  | orange                    | re               | ed |
| 32  | orange                    | blac             | k  |
| 33  | gray                      | re               | d  |
| 34  | gray                      | blac             | k  |

| CN1 | Color of<br>Wire<br>Cover | Dot Mark . Color |       |
|-----|---------------------------|------------------|-------|
| 35  | white                     |                  | red   |
| 36  | white                     |                  | black |
| 37  | white                     |                  | red   |
| 38  | white                     |                  | black |
| 39  | yellow                    |                  | red   |
| 40  | yellow                    |                  | black |
| 41  | pink                      |                  | red   |
| 42  | pink                      |                  | black |
| 43  | orange                    |                  | red   |
| 44  | orange                    |                  | black |
| 45  | orange                    |                  | red   |
| 46  | orange                    |                  | black |
| 47  | gray                      |                  | red   |
| 48  | gray                      |                  | black |
| 49  | white                     |                  | red   |
| 50  | white                     |                  | black |
| 51  | yellow                    |                  | red   |
| 52  | yellow                    |                  | black |
| 53  | orange                    | (*1)             | red   |
| 54  | orange                    | <b></b> (*1)     | black |
| 55  | yellow                    |                  | red   |
| 56  | yellow                    |                  | black |
| 57  | pink                      |                  | red   |
| 58  | pink                      |                  | black |
| 59  | gray                      | <b></b> (*1)     | red   |
| 60  | gray                      | (*1)             | black |
| 61  | white                     | <b></b> (*1)     | red   |
| 62  | white                     | <b></b> (*1)     | black |
| 63  | yellow                    | <b></b> (*1)     | red   |
| 64  | yellow                    | <b></b> (*1)     | black |
| 65  | pink                      | <b></b> (*1)     | red   |
| 66  | pink                      | <b></b> (*1)     | black |
| 67  | yellow                    |                  | red   |
| 68  | yellow                    |                  | black |

#### Notes:

- \*1 These dot marks are printed in straight succession.
- The heavy lines indicate twisted-pair wires.
- The braided shield is connected to the ground of CN1.

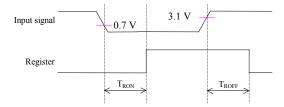
# **Chapter 3** Specifications

# 3.1 Hardware Specifications

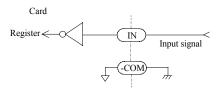
General Purpose Digital Input Circuits

| Parameter                | Specification                                                                      |
|--------------------------|------------------------------------------------------------------------------------|
| Input signals            | IN1 through IN48 (bi-direction), RSTIN                                             |
| Input configuration      | CMOS-gated high-voltage input                                                      |
|                          | (with 4.7 k $\Omega$ pull-up resistor and protection diode, able to connect to TTL |
|                          | level output)                                                                      |
|                          | 74VHC14 or equivalent                                                              |
| Input logic              | 1 ← Low                                                                            |
|                          | $0 \leftarrow \text{High}$                                                         |
| Maximum voltage rating   | +30 Vdc                                                                            |
| Input voltage range      | 0 Vdc to +24 Vdc                                                                   |
| Input impedance          | $4.7 \text{ k}\Omega$ pull-up resistor                                             |
| Low-level input current  | $I_{IL} = -1.1 \text{ mA (max.)}$                                                  |
| High-level input current | $I_{IH} = +11 \mu A (\text{max.})$                                                 |
| Low-level input voltage  | $V_{IL} = +0.7 \text{ V (max.)}$                                                   |
| High-level input voltage | $V_{IH} = +3.1 \text{ V (min.)}$                                                   |
| Input response time      | $T_{RON} = 0.1 \mu s$ (typ.)                                                       |
|                          | $T_{ROFF} = 0.1 \mu s (typ.)$                                                      |

#### General Purpose Digital Output Circuits

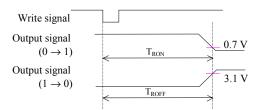

| Parameter                | Specification                                                         |
|--------------------------|-----------------------------------------------------------------------|
| Output signals           | OUT1 through OUT48 (bi-direction)                                     |
| Output configuration     | TTL open-collector output (with 4.7 kΩ pull-up resistor)              |
|                          | TD62597AFN or equivalent                                              |
| Output logic             | $1 \rightarrow \text{Low}$                                            |
|                          | $0 \rightarrow \text{High}$                                           |
| Maximum voltage rating   | +30 Vdc                                                               |
| Applied voltage range    | +5 Vdc to +24 Vdc                                                     |
| Output voltage range     | 0 Vdc to the applied voltage                                          |
| Maximum output current   | $I_{OL} = +40 \text{ mA}$                                             |
| Low-level output voltage | $V_{OL} = +0.2 \text{ V (max.)} (I_{OL} = +10 \text{ mA})$            |
|                          | $V_{OL} = +0.5 \text{ V (max.)} (I_{OL} = +40 \text{ mA})$            |
| Output response time     | $T_{RON} = 1.0 \mu s$ (typ.) (with the maximum load)                  |
|                          | $T_{ROFF} = 1.0 \mu s$ (typ.) (with the maximum load)                 |
|                          | (Low-to-high transition time varies depending on the load impedance.) |

#### **Basic Specifications**

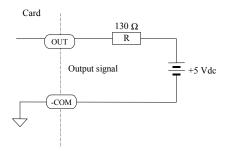

| Parameter                  | Specification                                                         |
|----------------------------|-----------------------------------------------------------------------|
| Isolation                  | No-isolation No-isolation                                             |
| Interrupt sources          | 6 sources (IN1, IN2, IN3, IN4, interval timer, and RSTIN)             |
|                            | One IRQ required (automatically assigned by the Plug and Play system) |
| Wiring requirements        | Approximately 1.5 m or less (depending on the wiring environment)     |
| Number of slot required    | 1 slot                                                                |
| Number of I/O ports        | 16 ports (automatically assigned by the Plug and Play system)         |
| Power consumption          | +3.3 Vdc: 175 mA (typ.)                                               |
| Bus requirements           | PC Card Standards-Based CardBus                                       |
| Card size                  | PCMCIA/JEITA Type II                                                  |
| Environmental conditions   | Operating temperature: 0 °C to 50 °C                                  |
|                            | Relative humidity: 20% to 90% (non-condensing)                        |
| Acceptable cable connector | CN1: HDRA-E68FT2-SL (68-pin PC Card connector)                        |
|                            | (Honda Tsushin Kogyo Co., Ltd.) or equivalent                         |

#### Input Response Time

We define the input response time as required for the input data to travel to the CardBus card register. The input response time includes propagation delays of input buffer ICs. The following figure shows an input waveform and the corresponding CardBus card register timing chart.

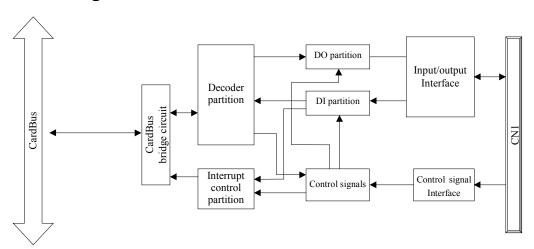



The following figure shows the test circuit for the input response time.




#### • Output Response Time

We define the output response time as required for the output data to travel to an output pin on the CardBus card after a CBI write command is issued. The output response time includes CBI write cycle duration and propagation delays of output buffer ICs. The following figure shows a CBI write signal and output waveforms.

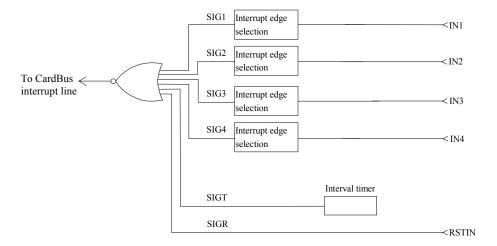



The following figure shows the test circuit for the output response time.



Note: The input response time and output response time do not include the processing time of the computer.

# 3.2 Circuit Diagram




# 3.3 Interrupt Sources

This board can generate interrupts to the computer with the following sources.

| Interrupt Source | Description                  |
|------------------|------------------------------|
| SIG1             | Input signal from IN1        |
| SIG2             | Input signal from IN2        |
| SIG3             | Input signal from IN3        |
| SIG4             | Input signal from IN4        |
| SIGT             | Interval timer interrupt     |
| SIGR             | External reset input (RSTIN) |

The interrupt circuit consists of the interrupt edge selection circuit blocks and the interrupt source selection circuit blocks.



Interrupt requests are cleared under the following conditions:

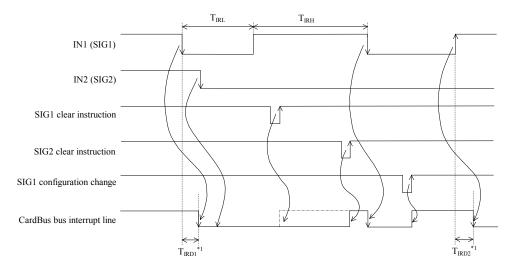
- SIG1, SIG2, SIG3, SIG4
  - When the software deasserts the request explicitly.
  - When you change the settings of the interrupt edge selection, the interrupt source selection, or the interrupt mask. (Only the corresponding interrupt source)
  - When the CardBus reset occurs.
  - When the RSTIN signal is asserted.
- SIGT
  - When the software deasserts the request explicitly.
  - When you change the interrupt mask. (Only the corresponding interrupt source)
  - When the CardBus reset occurs.
  - When the RSTIN signal is asserted.
  - When the interval timer is reset.
- SIGR
  - When the software deasserts the request explicitly.
  - When you change the interrupt mask. (Only the corresponding interrupt source)
  - When the CardBus reset occurs.

When the computer is turned on, all interrupt requests are cleared.

#### 3.3.1 Interval Timer

The interval timer can be used to generate an interrupt to the host computer every timer cycle period. The timer cycle period is given by the following equation:

 $T = RATE \times CLK$ .


*T*: Timer cycle period *RATE*: integer 1 through 15

CLK: 10 µs, 100 µs, 1 ms, 10 ms, 100 ms

This timer begins counting immediately after both *RATE* and *CLK* are programmed, and it will keep counting until a stop instruction is issued. It is recommended that you use an interrupt timer interval greater than or equal to 10 ms. Windows XP, Windows 2000, Windows NT 4.0, Windows Me, and Windows 98 cannot handle a large number of interrupts within a short time period. In such a case, Windows may hang up or freeze.

### 3.3.2 Timing Chart for Interrupt Signals

Where we assume that IN1 and IN2 are selected as interrupt sources for SIG1 and SIG2, respectively and the falling edge of each signal is selected as an interrupt edge.



The computers accept interrupt requests when the CardBus bus interrupt signal is low level.

Switching Characteristics for IN1, IN2, IN3, IN4

| Symbol                                                                      | Parameter                                              | Min. | Тур. | Unit |
|-----------------------------------------------------------------------------|--------------------------------------------------------|------|------|------|
| T <sub>IRL</sub> Low-level time                                             |                                                        | 600  |      | ns   |
| $T_{IRH}$ High-level time                                                   |                                                        | 1.5  | _    | μs   |
| T <sub>IRDI</sub> *1 High-to-low transition to interrupt request delay time |                                                        | _    | 500  | ns   |
| $T_{IRD2}^{*1}$                                                             | Low-to-high transition to interrupt request delay time | _    | 1    | μs   |

Note: \*1 The delay time T<sub>IRD1</sub> and T<sub>IRD2</sub> are the interval between the instant when input signals go from high-level to low-level or from low-level to high-level and the instant when the card requests an interrupt on the CardBus bus, not when the computer begins to process the interrupt request.



#### Switching Characteristics for RSTIN

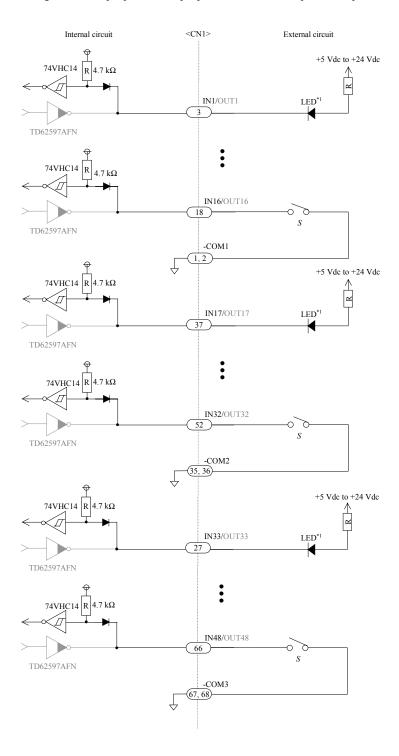
| Symbol          | Parameter                                                                                                                         |    | Тур. | Unit |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|----|------|------|
| $T_{RW}$        | RSTIN low-level time                                                                                                              | 10 |      | μs   |
| $T_{IRD3}^{*2}$ | High-to-low transition of RSTIN to interrupt request delay time *3 (clear delay time for output flip-flop and internal registers) |    | 5    | μs   |

#### Notes:

- \*2 In another aspect,  $T_{IRD3}$  is the delay time for output flip-flops and internal registers to be cleared after RSTIN is asserted. Output pins require a response time of 0.5  $\mu$ s plus  $T_{IRD3}$  to be cleared to high-level.
- $\bullet$  \*3 The delay time  $T_{IRD3}$  is the interval between when RSTIN goes from high-level to low-level and when the card requests an interrupt on the CardBus bus, not when the computer begins to process the interrupt request.

# **Chapter 4 External Connections**

Keep these important points in mind when connecting the card with external equipment.


FAILURE TO OBSERVE THESE IMPORTANT SAFETY PRECAUTIONS MIGHT RESULT IN EXCESSIVE VOLTAGE IN THE CARDBUS CARD CIRCUITS, CAUSING AN ELECTRICAL FIRE, WITH POSSIBLE OPEN FLAME AND SMOKE.

| ! Never connect an output signal to other output signals except open-collector outputs that are capable of |
|------------------------------------------------------------------------------------------------------------|
| wire-OR connection.                                                                                        |
| ! Never short-circuit an output signal to external power supply anodes.                                    |
| ! The maximum voltage rating of output cirtcuit is +30 Vdc.                                                |
| ! The maximum output current of each general purpose digital output channel is +40 mA.                     |
| ! The maximum voltage rating of input cirtcuit is +24 Vdc.                                                 |
| ! Double-check that polarities are correct before connecting external power supplies.                      |
| ! Keep the signal cable away from other equipment as far as possible to avoid electromagnetic              |
| interference.                                                                                              |

# **4.1 Example Connections**

# 4.1.1 General Purpose Digital Inputs/Outputs (IN1/OUT1 through IN48/OUT48)

The digital input/output circuit has 48 inputs/outputs, numbered from IN1/OUT1 through IN48/OUT48. Each pin can be configured as an input pin or an output pin. The maximum output current per channel is +40 mA.



#### 1. Digital input

Programs can read data from the input pins by issuing the IN instructions to the corresponding I/O port addresses.

| Input Data | INxx | External Circuit |
|------------|------|------------------|
| 1          | Low  | Closed (S: on)   |
| 0          | High | Open (S: off)    |

#### 2. Digital output

Programs can write data to output pins by issuing the OUT instructions to the corresponding I/O port addresses.

| Output Data OUTxx External Circ |      | External Circuit |
|---------------------------------|------|------------------|
| 1                               | Low  | Closed (LED: on) |
| 0                               | High | Open (LED: off)  |

#### Notes:

- Data 0 must be previously output to the pin before using it as an input. Data 0 is output when the CardBus card is powered up or reset.
- \*1 The following description shows how to determine resistance of the currrent limiting resistor. Where  $I_{\text{LED}}\left(\mathbf{A}\right)$  is the LED operating current,  $V_{\text{LED}}\left(\mathbf{V}\right)$  is the LED forward bias,  $V_{\text{OL}}\left(\mathbf{V}\right)$  is the low-level output voltage of the output pin, and  $V_{\text{DD}}\left(\mathbf{V}\right)$  is the supply voltage, the current limiting resistance  $R\left(\Omega\right)$  is obtained by the following equation:

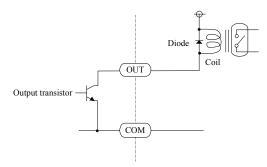
$$R = (V_{\rm DD} - V_{\rm LED} - V_{\rm OL}) / I_{\rm LED}$$
.

Use appropriate resistors to meet the operating conditions of the LED and supply voltage.

Power consumption P (W) of the resistor is obtained by the following equation:

$$P = I_{\text{LED}}^2 \times R$$
.

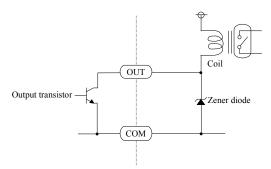
Power consumption of the resistor must be less than the power rating of the resistor.


# 4.2 Protecting Output Transistors

### 4.2.1 Suppressing Inductively Induced Voltage

When the dc voltage is switched off in an inductive circuit, a high voltage is induced to attempt to maintain the current in the circuit. As a result, an arc is produced at the contact of the switch. When you use this board to control an inductive circuit, the high voltage spike generated by switching off an inductive device may damage the output transistor on the board. You should protect the circuit by using a clamping or despiking diode.

#### **Rectifying Diode**

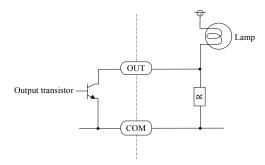

The diode connects in reverse bias against the power supply positive voltage to prevent short circuit. When the transistor switches off the circuit, the induced voltage forward-biases the diode then the current flows through the diode. The coil is safely discharged. The reverse direction breakdown voltage of the diode requires ten times the applied voltage.



#### Zener Diode

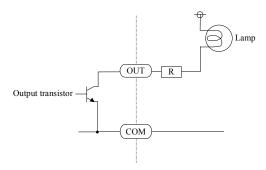
The Zener diode connects with the coil in series and with the output transistor in parallel. When the transistor switches off the circuit, the reverse-biased Zener diode flows the current to discharge the coil. The Zener voltage of the Zener diode is recommended to be nearly equal to the power supply voltage.

-18-



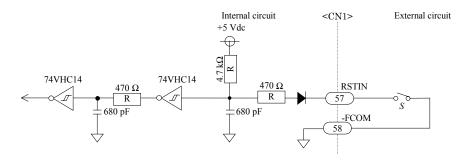

### 4.2.2 Suppressing In-Rush Current

When a lamp is turned on, excessive current called as in-rush current could flow in the circuit. The overcurrent may damage the output transistor of this board. The in-rush current could reach 10 times normal operating current. If the peak value of the current exceeds the maximum current rating of the output transistor, you should protect the output transistor.


#### **Shunt Resistor**

A shunt resistor connects in parallel to an output transistor to sink, or bypass, current. The resistance of the shunt resistor may require from 20% to 30% of the lamp resistance to reduce the peak of the in-rush current to half. In this shunt resistor configuration, the circuit dissipates power regardless of the output transistor switching state.




#### **Series Resistor**

A resistor connects in series between the lamp and the output transistor. This series resistor reduces the current flowing in the circuit. Reducing the current decreases the brightness of the lamp.

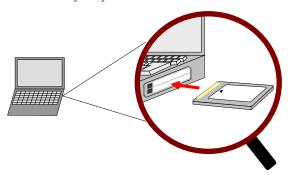


# 4.3 Reset Input (RSTIN)

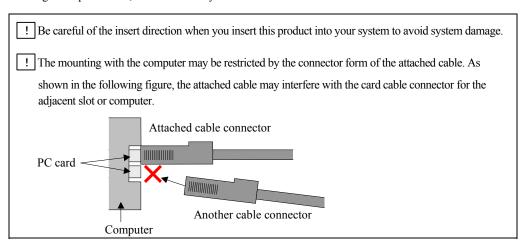
A signal on the pin 57 of CN1 is an external reset signal. When this signal is asserted, an interrupt occurs to your computer. This signal can be masked or unmasked. To be recognized as a valid reset signal, a  $10 \,\mu s$  minimum assertion of the RSTIN signal is required.



| Board Status | RSTIN | External Circuit |
|--------------|-------|------------------|
| Reset        | On    | Closed (S: on)   |
| Operating    | Off   | Open (S: off)    |


# **Chapter 5** Installation

BE SURE TO ELIMINATE STATIC ELECTRICITY OF YOUR BODY BEFORE YOU INSTALL OR REMOVE THIS PRODUCT.


### 5.1 Card Installation

When you install this product in your system, read the manual of your system which refers to the PC card slot.

- Make sure that the system is turned off and the power cable is unplugged.
   (This card corresponds to Hot Swap. You can insert this card when the system turns on.)
- 2. Insert the card into the PC card slot in your system.



3. Plug in the power cord, and turn on the system.



# 5.2 Driver Software Installation

Refer to our Web site for the Help of each optional software when you install and use it.

### 5.3 Card Uninstallation

The method of removing PC card from your system differs depending on each system. Please read the manual of your system.

! Do not remove this product when accessing to the external equipment. Your system may not operate correctly.

# 5.4 Multiple CardBus Cards

When using multiple cards in one system, it is required to write the CardBus ID number to the ROM in the card. The CardBus ID configuration utility program in the software can configure the number. Refer to Help files for more details.

#### Notes:

- Write the configured CardBus ID number on the back side of each card to easily confirm the number.
- Please download and use the newest version about software.

The following example shows the CardBus ID number is "0."



Back side of the card

# **Chapter 6 Notes for Users**

For your safety, follow all warnings and instructions described in this manual.

# 6.1 Cautions, Periodic, Inspections, and Storage

Failure to follow this warning may result in electric shock, burns, serious injury, and in some cases, even cause death.



• Keep this product away from flammable gases.

Use this product only under the conditions as shown below.

### **Environmental Specifications**

| Parameter               | Specification                            |
|-------------------------|------------------------------------------|
| Temperature Range       | 0 °C to 50 °C                            |
| Relative Humidity Range | 20% to 90% (non-condensing)              |
| Dust                    | Typical office environment               |
| Corrosive Gas           | None                                     |
| Noise                   | Far from power source and its wiring     |
| Voltage Requirements    | CardBus specification: +3.3 Vdc (+/-3 V) |

The following inspections should be carried out on this card periodically.

#### Periodic Inspections

| Item               | Checkpoint                                                      |  |  |
|--------------------|-----------------------------------------------------------------|--|--|
| Cable Connections  | Be sure that all connectors and cables are installed correctly. |  |  |
| Connector Contacts | Check for dirt or corrosion.                                    |  |  |

computer

# TO AVOID DAMAGE TO THE CARD AND POSSIBLE INJURY, TAKE APPROPRIATE PRECAUTIONS AS DESCRIBED BELOW WHEN HANDLING IT.

# Caution! ! This card should be stored exactly the same way as when it was received. Proceed as follows: 1. Put the card back in its PC card case. Wrap the PC card case with the original packing material. 3. Avoid excessive humidity. 4. Do not expose the card to the direct rays of the sun. 5. Store the card at room temperature. ! Do not modify the card. Interface Corporation assumes no liability for any malfunctions resulting from users' unauthorized modification of the card. ! Take measures to avoid and minimize shock, vibration, magnetic fields, and static electricity in the storage or operating environment of this card. ! Make sure that the card is disconnected from the cable before inserting or removing any cards. ! Please keep the attached cable in a horizontal position for approximately 10 cm from the card connection part as below, and fix it not to move, even if stress starts. Fixed CBI-4641 Attached cable Approximately 10 cm

# **Chapter 7 Troubleshooting**

# 7.1 Checkpoints

| Problem                                                                             | Solution                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data cannot be                                                                      | Double-check all cable connections.                                                                                                                                                                                                                                           |
| transferred correctly.                                                              | Set up your equipment to meet the timing characteristics of this card, such as data setup time, input/output response time.                                                                                                                                                   |
|                                                                                     | If the power requirements exceed the system power budget, the circuits on the card or connected external circuits cannot be driven properly. Prepare an external power supply for your CardBus card.                                                                          |
| Interrupts do not occur.                                                            | Set up the card interrupt configuration such as edge selection or sources to be consistent with your application and external circuits.                                                                                                                                       |
|                                                                                     | If the interrupt configuration is correct, but the interrupt is masked, the interrupt will not occur. Unmask the interrupt that you want to use.                                                                                                                              |
| The computer does not recognize this card.                                          | Use the PCI device viewer (BPF-0801) to examine the CardBus cards on your computer after downloading it from our Web site. Please send the result to our Technical Support Center by fax or e-mail. The PCI device viewer may be downloaded from our Web site free of charge. |
| The computer does not response after Standby mode. (Input and output are disabled.) | Set the System standby setting to "Never".                                                                                                                                                                                                                                    |

# -Index-

| В                                    | JKC-0124                                | 3, 7  |
|--------------------------------------|-----------------------------------------|-------|
|                                      | L                                       |       |
| BBD-0817 4                           |                                         |       |
| C                                    | Linux                                   | 4     |
|                                      | 0                                       |       |
| Card installation                    | -                                       |       |
| Card uninstallation                  | Optional products                       | 4     |
| CMOS-gated high-voltage input        | P                                       |       |
| COP-30014                            | Г                                       |       |
| D                                    | PCI device viewer                       | 25    |
| D                                    | Protecting output transistors           |       |
| Delay time                           | Inductively induced voltage             | 18    |
| Driver software installation21       | In-rush current                         | 19    |
| E                                    | R                                       |       |
| Environmental specifications         | Reset signal input                      |       |
| •                                    | RSTIN                                   | 3, 14 |
| G                                    | Response time                           | 10    |
| General purpose digital input        | RSTIN                                   | 7     |
| IN1 through IN4816                   | RTLinux                                 | 4     |
| General purpose digital output       | C                                       |       |
| OUT1 through OUT4816                 | S                                       |       |
| GPC-20004                            | SH-Linux                                | 4     |
| GPD-20004                            | SH-RTLinux                              | 4     |
| GPF-20004                            | Specifications                          |       |
| GPG-20004                            | Basic specifications                    | 9     |
| GPH-20004                            | General purpose digital input circuits  | 9     |
| Ground pin7                          | General purpose digital output circuits | 9     |
| I                                    | T                                       |       |
| Interrupt                            | TAC-2700                                | 4     |
| Interrupt sources                    | TKS-2701                                | 4     |
| Interval timer                       | TRM-2700                                | 4     |
| Switching characteristics            | TTL open-collector output               | 3, 9  |
| Timing chart for interrupt signal 13 | W                                       |       |
| J                                    | Wire connection                         | 8     |

#### For Assistance:

Please visit our Web site (www.interface.co.jp) or send a fax (0120-621553(in Japan)) or e-mail (support@interface.co.jp) to the Technical Support Center.

We recommend you to ask questions from our Web site to shorten the answering time.

If the problem is urgent, please consult the Sales Information Center.

When you contact us, we need the information on the **Technical Support Form** provided with this manual plus the information listed below so we can answer your questions as quickly as possible.

| Computer Environment       | Computer brand and model, specific operating system, software configuration, other interface boards installed if any. |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Description of The Problem | Situations where the product was used.                                                                                |  |

Technical support is available during business hours.

We provide a product rental service so you can evaluate our product prior to purchase.

| Inquiries                       | Refer to                 | Phone                         | FAX                       |
|---------------------------------|--------------------------|-------------------------------|---------------------------|
| Product Rental Service          | Technical Support Center | 082-262-1630 (in Japan)       | 082-262-1552 (in Japan)   |
| Distributors,<br>Shipping Date, | Sales Information Center | 0120-447213<br>(in Japan)     | 0120-458257<br>(in Japan) |
| Prices, Others                  |                          | E-mail: sales@interface.co.jp |                           |

#### **Repair and Maintenance**

The company will, at its option, replace its product, which the company, upon inspection, shall determine to be defective in material and/or workmanship. If the product is obviously damaged or defective, please return it using procedures outlined below.

- 1. Fill out the **Repair Request Form**. Describe hardware configurations of the board and malfunction in detail.
- 2. Fax the **Repair Request Form** to the Technical Support Center.
- 3. We will send you a repair quotation by return fax.
- 4. Carefully repack the damaged product, enclosing the **Repair Request Form**, and forward it (shipping prepaid) to the repair group, at our Oita Plant (address shown below).

When the damage or defect is not obvious, please contact the Sales Information Center or our Technical Support Center.

Be aware that depending on the extent and type of damage, the unit may not be economically repairable. If so, we will notify you immediately.

| Receiver's Address  | Repair Group, Oita Plant, Interface Corporation<br>1428, Shimobaru, Aki-machi, Higashikunisaki-gun, Oita, 873-0231 Japan |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| Contact Information | Technical Support Center Phone: 082-262-1630 (Available during business hours) FAX: 082-262-1552                         |

# Visit our Web site (www.interface.co.jp) for:

| Technical Support   | Frequently asked questions, related technical terminology                                |
|---------------------|------------------------------------------------------------------------------------------|
| Product Information | The latest information about our products; specifications, product selection guides, etc |
| Useful Information  | Discount information, rental information, distributors                                   |
| Downloads Service   | Drivers, technical documents such as I/O port maps, sample programs, and user's          |
|                     | manual data.                                                                             |

The design and contents of the web site are under constant review. Therefore, there might be some changes in its design and contents.

is a trademark of Interface Corporation (under application).

Other product and company names are trademarks, registered trademarks, or servicemarks of their respective owners.

#### © 2003, 2004 Interface Corporation

All rights reserved. No part of this publication may be reproduced or altered in any form or by any means without the written permission of Interface Corporation.