GReAT : The Graph Rewriting

and Transformation LLanguage

Daniel Balasubramanian
Graduate Research Assistant, ISIS

Copyright © Vanderbilt University/ISIS 2007

Overview

Introduction
o What iIs GReAT?

Overall picture

Example rule

Where to begin

Running the transformation

What 1s GReAT?

A graphical way of specifying model
transformations

Incorporates the meta-models of the input
and output models directly

Specify the transformation inside GME

Can run the transformation from inside or
outside GME
o Inside: GR-Engine, Debugger

o Outside: GR-Engine (command line), Code
Generator (fastest)

Overall picture

Arbitrary number of input and output models
o Each of these models can be of any domain

Inputs

B Qutputs

[FSM Model
FSM Model

B GReAT
[HESM Model > Transformation

Y, TM Model
[ASM Model }

Transformations

Sequence of explicitly sequenced transformation
rules

Rule patterns are drawn using UML notation with
elements from the meta-models

Once a pattern is found
1. Existing elements can be deleted
2. New elements can be created
3. Elements can be selected and passed to the next rule

2. Attributes of any existing objects can be accessed and
manipulated

Example rule

These are passed in from the previous rule

/

LIn)

Z dac t
: CnnrpnppnnuunndCDnTnppDnnnEennt g These pPass
LOut objects to the

¥ RootContainer
| _1{ nextrule

cRootContainer
—:._II

RlIn ROt

| Adrioute Atfribute
| old : String nesy - String

Cleue

: ; LocalPort Eueue
" AttributeMapping LoeeiPort et queue

e’

4 n Ll

*®
This gives \ \

access to For every LocalPort we fing in the incoming\
object’s Compound Component, we\create a new Queue,
attributes and we create a new simple association between

the port and the queue

Overall process

All transformations begin by creating a new
UMLModelTransformer (UMT) project In
GME

o This Is a specific GME paradigm; that Is, it is a

modeling language for creating model
transformations

o What is defined in this project? (next slide)

What 1s inside a UMT Project?

Configuration information

Gives information about the input and output files
and the names of the meta-models, etc.

Transformation rules

A sequence of patterns that are matched; if a
match occurs, an action can take place (objects
can be created, destroyed, or attributes
changed)

Parts ot a UMT Project

PaCkage that hOIdS fggregate l Inheritance] heta]

temporary class diagrams [SignalFlonzFlatsF =] The meta-models
(CrOSS”nkS) e W [SE CignialFlov2Flats I Of the input/output

\‘-P"_&I EIDSSLV
+ 4@ FlatSF / models

+-d@® SignalFlo

|y 2 SFOFSF

+-|_J z=_Config

Folder that holds the
transformation rules

Configuration folder that
contains configuration
info, user includes, etc.

Performing the transtormation

After giving the configuration information and
specifying the transformation rules, we have
three ways of performing the transformation

o GR-Engine : interpreter, used while developing
transformation for fast testing

o Debugger : used during development to debug
transformations

o Code Generator : used once a transformation
reaches a mature state — produces executable
code (very fast)

Transformation Artifacts

A number of intermediate artifacts are
generated to perform the transformation

-gr.xml file: the xml representation of the
transformation rules

Udm/ directory: contains .h and .cpp files
used to access models

Config.mga: contains configuration
iInformation in a separate file

Next tutorials

Initial setup
Defining rules
Advanced features

GReAT Tutorial Part 1 :
Initial Setup

Daniel Balasubramanian
Graduate Research Assistant, ISIS

Copyright © Vanderbilt University/ISIS 2007

Overview: 5 steps to transtormation

Create a UMLModelTransformer project
Attach meta-models for all input/outputs
Specify configuration information

Define transformation (next presentation)

For example purposes, we’ll describe how to set-
up the SignalFlow2FlatSF sample that comes
with GReAT (samples/SignalFlow2FlatSF.mga)

Run Transformation

‘ Step 1 : Creating the project

= In GME :

o File > New Project...

o Select
UMLModelTransformer

o Select Create New
o Create Project File
o Give filename

Select Paradigm

Flease zelect a Faradigm from the following list, vou can alzo regizter new
Paradigmz on your local machine or from a databaze. To parze an =kl file
containing pour paradigm gelect “Add File. " and then the “=ML Files" file type.

%]

Paradigrn | 5 | Yerzion | Connection sting
G5_FiniteStatetd achine uo M MGA=C:\Mobiesh\GREAT _VS8%5 ampl
G5_FlatSF U M b GA=C: b obies\GREAT V5845 ampl
G5_Houzetdodel uo A MGA=C:\Mobiesh\GREAT _VSEWS ampl
GE5_Order uo A MGA=C:\Mobiesh\GREAT VS84S5 ampl
35_SignalFlow U M M EA=C: \Mobies\GREAT V5845 ampl
35_StateChart U M M EA=C: \Mobies\GREAT V5845 ampl
HF 5k z MAA b GéA=C: \Program Files\GME \Paradigr
LampDiagram U MAA b GA=C: Wk obiesh DR _M52_WCEzar
MetaGE z MAA b GA=C: \Program Files\GME \Paradigr
SF z MAA b GA=C: "FProgram Files\GME \Paradigr
ML U Mo b GA=C: M obieshJDM_MNS2 WCEhetc
I Li odelTransfarmer U MHAA b GA=C:AMobies\GREAT _WS84Metal
%5 >
AddfomFile.. | Add from DB... Remave P
" Sustermwide
o Far uger anly
Create New. . Cloze Purge/Select. ..

" For both

[

(£

‘ Step 1 (continued)

* You should have an empty project that looks like the following
-Rename the Root Folder element to “RF”

UMLModelTransformer - Root Folder
File Edit Wew Help

JSi|lHdBRX| DA 4 daih S S| M|~

mEEER =T ? cHeE®AIOR

Aggregate | Inheritancel Meta I
IHoot Falder LI

|8 P& wsr

Agaregate | Inheritancel beta I

IFh:u:ut Faolder

x
|F|00t Folder el | -.F"' RF
Attributes | Preferences | Properties
uthor
ersion
Commen t
|
- H

* Now save the project and exit

Step 2 : Attaching meta-models

Open the meta-models for all input and
output models (may have to repeat this
several times) — these are MetaGME style
MMs

Invoke the MetaGME2UMT interpreter

ks @ém}i:ﬂ*#"ﬂ

Select the UMT project you created in step 1
when asked where to save

Step 2 (continued)

If asked If you want to copy the constraints,
say no

You'll see a dialog like this:

MetaGME2UMT X

o 1, Boeing3F.mga has been CreatedModified.
\I‘}) 2. Changes have been made ko this metamodel.

Fun MekaGME Interpreter ta reflect these changes in the paradigm.

Click OK, and then run the MetaGME
Interpreter (be sure to say yes when asked |if
you want to register your paradigm)

Step 2 (continued)

Open the UMT project -- the meta-model will
e attached and should look like the following

Rename It so that the “New” prefix and the
nost-fixed numbers are gone

Agareqate] Inheritance] b eta] Aaqrenate |Inheritance] Meta l

L. & New5_FlatS F100000001 |
=Ry . | ——
+ ff NewG5_FlatSF100000001

Step 2 (continued)

Repeat this process for all other meta-models
iInvolved during the transformation

o For our SignalFlow transformation, we’ll have two
meta-models attached (GS_SignalFlow and
GS_FlatSF)

o After attaching both, the browser should look like
the following:

Aggredate l Inheritance] bdeta]

GS_SignalFlow |
-5 RF

Step 3 : Specity Contiguration

The configuration information gives
Information on input/output files, meta-
Information, etc.

The configuration model editor (interpreter
with GReAT) assists in quickly creating
configurations

Step 3 (continued)
Invoke the configuration model editor

@EFQE&&HE
This will bring up a dialog box like the one on
the next slide

Step 3 (continued)

Fill in the file names, and be sure to change
the “File mode” to:

GReAT Configuration Model Editor

o “Write” If the file doesn’t yet exist

o “Read and Write” if the file exists =z 2 =
but will be modified -

1 “Read and Write to a Copy” if you™~ cee 0
want to open an existing file == 22 .
and make any changes on a new =iz, e jJ
file

Step 3 (continued)

The completed configuration for our example
should look like this:

GReAT Configuration Model Editor.

G5_FlatsF
FileTypell: G5_FlatsF_File
IMeta name: 55_FlatsF
7 1 T (11 T ” Roatl 4 RootFald
The FlatSF model doesn’t exist, so open it as “write’— 50" o
Rur in rermory? true
DTD} x50 file path: UdrniaS_FlaksF.xsd

EE e

> Cpenfiwrite/Update File name: FlatSFOutput.moa
Copy file name:

_ G5_SignalFlow
Aggregate llnherltance] M eta] _ - :
FileTypell: 55_SignalFlow _File
|Ennfiguratiun - Meta name: G5 _SignalFlow
RootClass name: RootFaolder
= ':- RF —» |Fie mods: read

Bl sl

=<z ConfigurationFolder RUn in memary? true

+ T"ﬁ Ennfiguratinn DTD=SD File path: Udmia5_SignalFlow, xsd

] Cpenfiwtite/Update File name: SFInput.mga
+- 14l G5_FlatSF

=g Copy i e [
+ T4l GS_SignalFlow

Configuration Folder and Information is created

Step 3 (continued)

Describes info about transformation rules file

and Udm files

GReAT Configuration Model Editor

y =

Metélﬁfomati on

GS_FlatSF_File i

=5 Signalklow File File

:/

B

|
\

> SignalkFlow File

B Openfwrite/Update File name:

55 _FlatsF
FileTypell 35 _FlaksF_File
Meka name: G53_FlaksF
RootClass name: RootFolder
File: rode: write
Run in memary? true

DTDY %30 file path:
Dpenfrite/Update File name:

UdmiG3_FlaksF.xsd
FlatsFoukput. mga

Copy file name:

535 _signalFlow
FileTvpelly; G3_3ignalFlow_File
Meka name: G3_SignalFlom
RootClass name: RootFolder
File: rnode: re:ad
Run in memary? frue

DTDY %30 File path:
SFInput.rga

Copy file nane:

Udrala3_SignalFlow, xsd

[

EE e

e

Cancel

Step 3 (continued)

1. We need to insert a “FileObject” inside each of

the FileType mo\dels
|

uil

I

hetalnfomation

E:

GS_FlatSF_File_File

E:

S SignalFlow File File

| Y4 —
\ ' L
GB_FlatSF_File
4

G5 SignalFlow File

FilsObjett
|File ject
Axttributes l i rences] Fropertiss

|EI biectPath? - RootFalder;

O
FileObject

2. Set the “ObjectI:I’ath” attribute of both
FileObjects to “RootFolder;”

Step 3 (continued)

The configuration model should look like this
(If you have more than two input/output files,
then you will have more elements):

Metalnformation }
|:: Fil O
5 FlatSF_File File
=5 FlatsF_File
4
|:* Fil)
5 SignalFlow File File

5 SignalFlow File

Step 4 : Specity Initial Rule

We need to specify at least one rule to have
a working transformation

Insert a transformation folder in the root

folder in your project
1. Right click on Root Folder (named RF)
2. Select Insert Folder - =

. a
3. Select Transformation -

Step 4 : Specity Initial Rule

Right click on the newly inserted
Transformation folder and insert a block

o This Block will be the top level container of all
transformation rules

0 Rename this block to “TopBlock”

=% RF
+-_J ConfigurationFalder

-l GS_FlatSF Agaregate | Inheitance | Meta |
+ M G5_SignalFlow
ew | ransformation

]NEWBIDEK Ll
=i BE

[ZF ConfigurationFolder

- 1d GS_FlatsF

Step 4 : Specity Initial Rule

Open this block and insert:
2 Two In-ports
Name one Flatin and the other SFIn

o One Rule
Name this RuleOne

* (]

a
SFIn FuleCne

Step 4 : Specity Initial Rule

Open RuleOne and insert:
o Two In-ports (default names are fine)

o One reference to the RootFolder from the GS_FlatSF
paradigm (name this FlatRootFolder)

o One reference to the RootFolder from the GS_SignalFlow
paradigm (name this SFRootFolder)

o Connect the top In-port to the SFRootFolder
Connect the bottom In-port to the SFRootFolder

Connect the top In-port to the FlatRootFolder
o Select “Binding” for both connection role types

Step 4 : Specity Initial Rule

Rule one should now look like this:

FlatRaootFalder
- RootFolder

SFRootFalder
cRootFalder

Now wire the In-ports of TopBlock to the In-
ports of RuleOne

Step 4 : Specity Initial Rule

TopBlock should now look like this:

[) =
Flatln | =

i I] In +
u__.

SEln Fuleidne

Now drag a reference to TopBlock inside
the Configuration Model

Step 4 : Specity Initial Rule

The configuration model should now look
like this:

Ll

Metalnfornation }

E: Fil O
GS_FlatSF_File_File
GS_FlatSF_File [una S]
* 3 =FI

E‘ TopBlock
= Fil O

G5 _SignalFlow File File

S SignalFlow File

Step 4 : Specity Initial Rule

Connect the FileObjects to the In-ports of
TopBlock

o This passes the Root Folders of the input files to
the transformation

Metalnformation }
E: Fil
S FlatSF_File File
GS_FlatSF_File Fla S
SFI
4
E‘ TopBElock
i Fil [
=5 SignalFlow File File
S SignalFlow File

Next tutorial

Defining transformation rules
Running the transformation

GReAT Tutorial Part 11 :

Transformation Rules

Daniel Balasubramanian
Graduate Research Assistant, ISIS

Copyright © Vanderbilt University/ISIS 2007

Overview

The easiest way to understand the
semantics of rules is through examples

We’'ll start from simple rules and work to
complex patterns

Simple Binding

1. These objects
are “bound” to the
input ports; this
means they are
passed in from the
previous rule

/

O— Rootcer 2. This UML composition
ne says that we find all
* CompoundComponents
o S |y contained inside this
out RootFolder

s RootFalder

a
\‘ RoofF older
oD—
In

L

3. For each Compound

Component we find, we

simply pass it to the next
rule

Simple Creation

1. These objects
are “bound” to the
Input ports; this
means they are
passed in from the
previous rule

3. For each
CompoundComponent
we fine, we create a
RootContainer inside
the RootFolder

RootFolder

O Rootroier 2. This UML composition
'/' L . says that we find all
) CompoundComponents
CompoundComponent contained inside this

cCompoundComponent ﬁ
; Out RootFolder
\A RootFalder
n—» - RootFolder
In

s > 4. We pass the
e CompoundComponent
‘RootContainer / and the corresponding
jot RootContainer to the
. v next rule

Objects in blue are created new after all
objects in black (bound objects) have
been found (change the Action attribute
In the attribute panel)

Simple Deletion

1. The RootFolder
element is passed
in from the previous

rule
\ RoatFalder
u—>- - RootFolder
I a
+
2. For each
CompoundComponent CompoundComponent
. p CompoundCormponent
in the RootF_oIder, : =
delete it

ot

Objects drawn in red
are deleted

3. The RootFolder is
passed to the next rule

More Complex Pattern

CompoundCamponent
u—» cCompoundComponent n
LIn ” LOut
+ + +
RootContainer
- RootContainer
Rlin ROut
a
[
CompoundCGaompanent

- CompoundComponent / Association matched
”
L] /

ForBase At
. FonBase ForBase Glele
Ei,L{ - PortBase quele : Queue
= 5
? : o.® port quele
’—' ” .
Signal
- Signal

Association created

!

Finds a Signal connection between ports in two
different levels of Compound Components

Attribute mapping

1. The RootFolders
are passed in from
the previous rule

4. These are
/ passed to the

2. For each House,
we create a new
PurchaseOrder

3. The attribute
mapping sets the
name of the
PurchaseOrder to
the name of the
House

RootFolder House / neXt rU|e
u cRootFolder L i : .I|
In a Ot
u : - cPurchasedrder _,_“
In) S out
| Aribute Aftribute
| odd © Sfring new - String

AftributeMapping

|.i'-.ttril:|utel'-.-1 apping

Altributes l F"referenu:es] F'ru:uperties]

ExprezzionString Purchaszelrder.name(]= House. name(];

(Guards

1. The House
IS passed in
from the
previous rule

House

cHouse n

L X]

a ot

2. We find two rooms
In the House with an
AdjacentTo
connection between
them

sroAdjacentTo d=tAdjacent(To
0.7

Room?2
- Room

* o[

AdjacentTo

4. This guard
ensures that the
HasDoor attribute of
the AdjacentTo
connection is true

3. Amatch is only
valid if the
expression in the
guard “HasDoor”
evaluates to true

s AdjacentTo /®\
HasDoor

|HasD oor

Attribubes l F'referenu:es] F'ru:uperties]

E =pressions ting return [BdjacentT o.HasDoar(]);

Test/Case Blocks

A Test block holds Cases
o Similar to If/Else construct in programming

RS |
| / C.ut

Cases contain normal —
patterns; if a match is A Cut element inside
found, outputs are > D {ﬂ:: > 5] a Case means that if
passed to the next " the pattern matches
rule, otherwise no Caselne inside this Case, the
outputs are produced inputs are no longer
o -{g::) >] passed to any other
In Cases
CaseTwo

GReAT Tutorial Part 111 :
Advanced Features

Daniel Balasubramanian
Graduate Research Assistant, ISIS

Copyright © Vanderbilt University/ISIS 2007

Overview

Crosslinks

Global Objects
Sorting

Distinguished Merging

1 - Crosslinks

Often in a transformation, we need to be able
to create and subsequently match
associations that are not present in the meta-
models

o These can even be between elements of different
meta-models

1 - Crosslinks

Consider the SignalFlow2FlatSF example

o In order to flatten the hierarchy, we need to be
able to associate Ports in the GS_SignhalFlow MM
with Queues in the GS_FlatSF MM

o These associations are between elements
belonging to different meta-models

o Solution: specify this with crosslinks

1 — How to specity crosslinks

1. Right click on the root folder > Insert Model
> Package

2. Rename this package to “Crosslinks” (so
that It’s easier to identify)

rozzlinks
—]... %%
[+ ohfigurationFolder
: Croszlinks
[+ @ MewTransformatian

This is our newly inserted package

1 — How to specity crosslinks (cont’d)

Inside the Crosslinks package, insert a
ClassDiagram, and rename it to CL

CL

|

Class diagram inside our package

Inside this class diagram we will drag
references to the meta-model elements to

which we want to specify new possible
associations

1 — How to specity crosslinks (cont’d)

Inside the class diagram (CL), drag
references to any MM elements you want to
be able to associate with each other

1. For our SignhalFlow example, we’ll drag a
reference to the Queue from the GS_FlatSF MM,
and a reference to the PortBase from the
GS_SignalFlow MM

Switch to connection mode and connect the
elements

1. Choose Association for the connection role type

1 — How to specity crosslinks (cont’d)

The crosslinks class diagram should look
like this:

Queue PorBase
==Mom== E"Gx Elljﬁ* ==iom ==
A A

Rename the rolenames at the ends of the
associations to something unigue

Queue ForBase Queue FortBase
==ptom=s [d5t | coptnpn== ==ftnome== '-'E'-'E ':": ==Atome»
o= 0. e 8

a 2 ’ ’

Before renaming rolenames After renaming rolenames

]]
[=] =]

1 — How to specity crosslinks (cont’d)

You can now create simple associations
between ports and queues in your
transformation

1. These will exist only during the transformation
Make sure you use the correct rolenames!

2 — Global Objects

Motivation: we don’t always want to have to explicitly
pass an object between every rule

Solution: create a global container that can contain

objects

o The global container contains the objects you don’t want to
have to pass between rules

2 Global Objects (cont’d)

Create a new package in the root folder
(Just as If creating a crosslinks package)

Important difference: Set the “Temporary”
attribute of this package to True

|NewF‘ackage

Attributes l F'referenu:es1 Properties

Emﬁue

Setting Temporary attribute to true

Inserting Package

2 — Global Objects (cont’d)

Insert a class diagram in the package
Rename to CL (for easier identification)

CL

Class diagram inside our package

Inside CL, create a new class (this will be
the global container)

Name it GO (for identification)

2 — Global Objects (cont’d)

Also, drag a reference into CL of the object

you want the global object (GO) to contain
We'll use the RootContainer object from the
GS_FlatSF paradigm

Switch to connection mode and create a

simple association between the two
elements

Give meaningful rolenames, and set attribute
multiplicity accordingly

2 — Global Objects (cont’d)

The class diagram should look like this:

GO

FootContainer
==haodel==

There will now be one instance of GO
available anywhere in the transformation

1. We can associate it with an instance of a
RootContainer in our rules

2 - Global Objects (example)

Create the assocation between the Global

Object and the RootContainer in the following
way.

Notice we don’t pass GO through an Out-port

FlatRootFolder

. FootContainer G0
u RoofFolder - RootContainer | Ll BT
In 3 a 4
Elg%aéit?:%trdﬂ?er CompoundComponent
u ; - CCompoundComponent _,_l’
In p 2 oLt

2 - Global Objects (example)

Now we can access this RootContainer in a
subsequent rule as follows:

PortBase
O :Forbase
In)
GO has global We can find the
scope, SO we 60 RootContainer RootContainer
J ’ » (GO | RootContainer [from its
don’'t need to ; - om |
pass it along § association with
GO

Clleue
CQueUe

3 — Sorting

GReAT Is non-deterministic in the sense that
we don’t know the order in which packets
from one rule will be passed to the next rule

By specifying a sorting criterion based the
attributes of an object, we can control the
order that packets will be passed

3 — Sorting (cont’d)

Consider this rule:

CompoundComponent
CCompoundCompaonent e

Primitive
- Primitive

In a

n—»-

RootContainer
CRootContainer

f

ot

In

f

Clleue
CGuele

L

it

Give name
of sorting
function here

If we want to ensure that the Primitives are passed
to the next rule in order of increasing argCount, we
need to give a name of a sorting function on that

Out-port

o We define this function in the Configuration Folder

3 — Sorting (cont’d)

CompoundComponent

u—» cCompoundComponent e

In ”

RootContainer

n—,. cRootContainer |

In)

Primitive
- Prifmitive n
3 Outv\
QleUe
S Cueue 4,4“
- it

1. Left-click on
this Out-port

Left click on the top Out-port
In the attribute panel, there will be a prompt

for a sorting function; give a name of

“ArgCmpFunc’

Altributes l Preferences | Properties |

—)

Attributes | Preferences | Properties

Compare function

ArgCmpFunc

3 — Sorting (cont’d)

We've specified a sorting function, but we
haven't defined it anywhere
2 We do this in the configuration folder

o Right click on the Configuration Folder > Insert
Model > Code Library

|Eu:unfiguratiu:unFu:uIder ﬂ

3 — Sorting (cont’d)

Open this Code Library model

Insert a Compare Function element
<

CompareFunction

Left click on this Compare Function, and the
Attribute Panel will look like the following:

|E DDDDDD Function

Attributes l Preferences | Froperties

3 — Sorting (cont’d)

rhs and |hs are both derived from

Udm::Object (in our case, they are both of

type Primitive)

o Their attributes are accessed In the same manner
as Udm::Object attributes

|EampareFunctiDn

\ Altributes l Preferences | Properties

These two objects
are both Primitives

We specify the function here

3 — Sorting (cont’d)

Add the following to Function Body

|EnmpareFunctiDn

Aftributes l Preferences] F'ru:uperties]

Function Body return (Ihe. argCount]] <= rhe. argCount(]);

The names of the two iIncoming parameters
to our sorting function are lhs and rhs

Our rule states that Ihs will be before rhs In a

list if its argCount Is less than the argCount of
rhs

3 — Sorting (cont’d)

We can also insert a User Code Library
element into the Code Library model

UserCodelibrany

This gives us the abllity to include other
headers and libraries that we can reference
INn any compare functions

o See user manual for full details

4 — Distinguished Merging

Consider a situation such as the following:

On out 3 Qi out [3 [Ot (- AN out 3
Or < oul Or < o« Ar = oot 4@n 3 o[
O ot O out[3 @i out Y- 3 In out [

Rulene RuleTwo FuleOne FuleTwio

We want to connect the output ports of
RuleOne to the Input ports of RuleTwo in a
one to one manner

However, we cannot simply find all Out-ports
In RuleOne and all In-ports in RuleTwo

o We only need a subset of the matches

4 — Distinguished Merging (cont’d)

We divide this into two rules:

o First rule: select only a subset of matches to pass
to the next rule (the correct Out-ports and In-
ports)

Cut []]I % {ﬂ In Ot 3

N = OutlE dn = outld
i [I§] I:Il_rtEI [|I!]n ot [3

,_,
oo

) L

FuleTwo

FuleCne

We want these three matches

o Second rule: connect the ports

4 — Distinguished Merging (cont’d)

Rule one:
Fram
cBaseComponent CutputFPort
u—» - : CutputPort _,.n\
I] Op
F

|IF'

Altributes | F"referenu:es] F'ru:uperties]

Ta |Enmpare function YPosCrp
cBaseComponent InputFort /

o ’ e o Specify the same sorting
i / function on each output
[\/ port to sort the ports by y-
[‘ coordinate
D Ot In oot [
Orn = otid Orn = ot
L 1t out [3 -1 out [3
FuleCne Fule Twio

0 Also set the “Distinguished cross product” attribute of this rule to true

4 — Distinguished Merging (cont’d)

Rule Two: only correct subset of Input Ports
and Output Ports are entering this rule

o Simply create the signal connection between them

From L
cBaseComponent CutputFort
u— — - OutputPort me
18 2
B ;
CompoundCamponent ,Eé?nnas:l
CCampoundCompanent il
- e
]
F To
CBaseComponent InputFort n o
(>] L] - SInputPort gﬂx
IF
”

4 — Distinguished Merging (cont’d)

The two rules together look like this:

> 5 Eﬁf' -
SelectPorts ConnectPorts
Set the distingwshed

cross product SpeC|fy a sorting

attribute of this rule function on both of
to true these output ports

