
GReAT : The Graph RewritingGReAT : The Graph Rewriting
and Transformation Languageg g

Daniel Balasubramanian
Graduate Research Assistant, ISIS,

Copyright © Vanderbilt University/ISIS 2007

Overview

IntroductionIntroduction
What is GReAT?

Overall pictureOverall picture
Example rule
Wh t b iWhere to begin
Running the transformation

What is GReAT?

A graphical way of specifying modelA graphical way of specifying model
transformations
Incorporates the meta-models of the input p p
and output models directly
Specify the transformation inside GME
Can run the transformation from inside or
outside GME

Inside: GR-Engine, Debugger
Outside: GR-Engine (command line), Code
Generator (fastest)Generator (fastest)

Overall picture

Arbitrary number of input and output modelsArbitrary number of input and output models
Each of these models can be of any domain

I t

FSM Model

Inputs

Outputs

HFSM Model
GReAT

Transformation

FSM Model

ASM Model

TM Model

Transformations

Sequence of explicitly sequenced transformationSequence of explicitly sequenced transformation
rules
Rule patterns are drawn using UML notation with
elements from the meta-models
Once a pattern is found

1. Existing elements can be deleted
2. New elements can be created
3 Elements can be selected and passed to the next rule3. Elements can be selected and passed to the next rule
4. Attributes of any existing objects can be accessed and

manipulated

Example rule
These are passed in from the previous rule

ThThese pass
objects to the

next rule

This gives
For every LocalPort we find in the incoming
Compound Component, we create a new Queue,
and we create a new simple association between

This gives
access to
object’s

attributes
the port and the queue

Overall process

All transformations begin by creating a newAll transformations begin by creating a new
UMLModelTransformer (UMT) project in
GME

This is a specific GME paradigm; that is, it is a
modeling language for creating model
transformations
What is defined in this project? (next slide)

What is inside a UMT Project?

1 Configuration information1. Configuration information
• Gives information about the input and output files

and the names of the meta-models, etc.,
2. Transformation rules

• A sequence of patterns that are matched; if aA sequence of patterns that are matched; if a
match occurs, an action can take place (objects
can be created, destroyed, or attributes
h d)changed)

Parts of a UMT Project

The meta-models
of the input/output

Package that holds
temporary class diagrams

(crosslinks)
models

Folder that holds the

Configuration folder that
contains configuration
info, user includes, etc.

transformation rules

Performing the transformation

After giving the configuration information andAfter giving the configuration information and
specifying the transformation rules, we have
three ways of performing the transformationy p g

GR-Engine : interpreter, used while developing
transformation for fast testing
Debugger : used during development to debug
transformations
Code Generator : used once a transformation
reaches a mature state – produces executable
code (very fast)code (very fast)

Transformation Artifacts

A number of intermediate artifacts areA number of intermediate artifacts are
generated to perform the transformation

1 -gr xml file: the xml representation of the1. -gr.xml file: the xml representation of the
transformation rules

2 Udm/ directory: contains h and cpp files2. Udm/ directory: contains .h and .cpp files
used to access models

3 Config mga: contains configuration3. Config.mga: contains configuration
information in a separate file

Next tutorials

Initial setupInitial setup
Defining rules
Advanced featuresAdvanced features

GReAT Tutorial Part I :GReAT Tutorial Part I :
Initial Setupp

Daniel Balasubramanian
Graduate Research Assistant, ISIS,

Copyright © Vanderbilt University/ISIS 2007

Overview: 5 steps to transformation

1 Create a UMLModelTransformer project1. Create a UMLModelTransformer project
2. Attach meta-models for all input/outputs
3 Specify configuration information3. Specify configuration information
4. Define transformation (next presentation)

F l ’ll d ib h• For example purposes, we’ll describe how to set-
up the SignalFlow2FlatSF sample that comes
with GReAT (samples/SignalFlow2FlatSF mga)with GReAT (samples/SignalFlow2FlatSF.mga)

5. Run Transformation

Step 1 : Creating the project

In GME :In GME :
File > New Project…
Select
UMLM d lT fUMLModelTransformer
Select Create New
Create Project FileCreate Project File
Give filename

Step 1 (continued)
• You should have an empty project that looks like the following
-Rename the Root Folder element to “RF”

• Now save the project and exit

Step 2 : Attaching meta-models

Open the meta-models for all input andOpen the meta models for all input and
output models (may have to repeat this
several times) – these are MetaGME style
MMMMs
Invoke the MetaGME2UMT interpreter

Select the UMT project you created in step 1
when asked where to save

Step 2 (continued)

If asked if you want to copy the constraints,If asked if you want to copy the constraints,
say no
You’ll see a dialog like this:g

Click OK, and then run the MetaGMEClick OK, and then run the MetaGME
interpreter (be sure to say yes when asked if
you want to register your paradigm)

Step 2 (continued)

Open the UMT project -- the meta-model willOpen the UMT project the meta model will
be attached and should look like the following
Rename it so that the “New” prefix and theRename it so that the New prefix and the
post-fixed numbers are gone

Step 2 (continued)

Repeat this process for all other meta-modelsRepeat this process for all other meta models
involved during the transformation

For our SignalFlow transformation, we’ll have twoFor our SignalFlow transformation, we ll have two
meta-models attached (GS_SignalFlow and
GS_FlatSF)
After attaching both, the browser should look like
the following:

Step 3 : Specify Configuration

The configuration information givesThe configuration information gives
information on input/output files, meta-
information, etc.,
The configuration model editor (interpreter
with GReAT) assists in quickly creatingwith GReAT) assists in quickly creating
configurations

Step 3 (continued)

Invoke the configuration model editorInvoke the configuration model editor

This will bring up a dialog box like the one on
th t lidthe next slide

Step 3 (continued)

Fill in the file names, and be sure to changeFill in the file names, and be sure to change
the “File mode” to:

“Write” if the file doesn’t yet exist
“Read and Write” if the file exists
but will be modified
“R d d W it t C ” if“Read and Write to a Copy” if you
want to open an existing file
and make any changes on a newand make any changes on a new
file

Step 3 (continued)

The completed configuration for our exampleThe completed configuration for our example
should look like this:

The FlatSF model doesn’t exist, so open it as “write”

Configuration Folder and Information is created

Step 3 (continued)

Describes info about transformation rules file
and Udm files

Step 3 (continued)

1. We need to insert a “FileObject” inside each of1. We need to insert a FileObject inside each of
the FileType models

2. Set the “ObjectPath” attribute of both
FileObjects to “RootFolder;”FileObjects to RootFolder;

Step 3 (continued)

The configuration model should look like thisThe configuration model should look like this
(if you have more than two input/output files,
then you will have more elements):y)

Step 4 : Specify Initial Rule

We need to specify at least one rule to haveWe need to specify at least one rule to have
a working transformation
Insert a transformation folder in the rootInsert a transformation folder in the root
folder in your project

1 Right click on Root Folder (named RF)1. Right click on Root Folder (named RF)
2. Select Insert Folder
3 Select Transformation3. Select Transformation

Step 4 : Specify Initial Rule

Right click on the newly insertedRight click on the newly inserted
Transformation folder and insert a block

This Block will be the top level container of allThis Block will be the top level container of all
transformation rules
Rename this block to “TopBlock”

RenameRename

Step 4 : Specify Initial Rule

Open this block and insert:Open this block and insert:
Two In-ports

Name one FlatIn and the other SFIn
One Rule

Name this RuleOne

Step 4 : Specify Initial Rule

Open RuleOne and insert:Open RuleOne and insert:
Two In-ports (default names are fine)
One reference to the RootFolder from the GS_FlatSF

di (thi Fl tR tF ld)paradigm (name this FlatRootFolder)
One reference to the RootFolder from the GS_SignalFlow
paradigm (name this SFRootFolder)
Connect the top In-port to the SFRootFolder

Connect the bottom In-port to the SFRootFolder
Connect the top In-port to the FlatRootFolder

Select “Binding” for both connection role types

Step 4 : Specify Initial Rule

Rule one should now look like this:Rule one should now look like this:

Now wire the In-ports of TopBlock to the In-
ports of RuleOne

Step 4 : Specify Initial Rule

TopBlock should now look like this:TopBlock should now look like this:

Now drag a reference to TopBlock inside
the Configuration Model

Step 4 : Specify Initial Rule

The configuration model should now lookThe configuration model should now look
like this:

Step 4 : Specify Initial Rule

Connect the FileObjects to the In-ports ofConnect the FileObjects to the In ports of
TopBlock

This passes the Root Folders of the input files toThis passes the Root Folders of the input files to
the transformation

Next tutorial

Defining transformation rulesDefining transformation rules
Running the transformation

GReAT Tutorial Part II :GReAT Tutorial Part II :
Transformation Rules

Daniel Balasubramanian
Graduate Research Assistant, ISIS,

Copyright © Vanderbilt University/ISIS 2007

Overview

The easiest way to understand theThe easiest way to understand the
semantics of rules is through examples
We’ll start from simple rules and work toWe ll start from simple rules and work to
complex patterns

Simple Binding

1. These objects

2. This UML composition
says that we find all

CompoundComponents
are “bound” to the

input ports; this
means they are

passed in from the

CompoundComponents
contained inside this

RootFolder

passed in from the
previous rule

3 For each Compound3. For each Compound
Component we find, we
simply pass it to the next

rule

Simple Creation

2 Thi UML iti

1. These objects
are “bound” to the

2. This UML composition
says that we find all

CompoundComponents
contained inside this

input ports; this
means they are

passed in from the
previous rule

RootFolder

4 W h
previous rule

3. For each
CompoundComponent

4. We pass the
CompoundComponent
and the corresponding
RootContainer to thep p

we fine, we create a
RootContainer inside

the RootFolder

RootContainer to the
next rule

Objects in blue are created new after all
bj t i bl k (b d bj t) hobjects in black (bound objects) have

been found (change the Action attribute
in the attribute panel)

Simple Deletion

1 The RootFolder1. The RootFolder
element is passed

in from the previous
rule

2. For each2. For each
CompoundComponent

in the RootFolder,
delete it

3. The RootFolder is
passed to the next rule

Objects drawn in red
are deleted

More Complex Pattern

Association matched

Association created

Finds a Signal connection between ports in two
different levels of Compound Components

Attribute mapping

1 The RootFolders 4. These are 1. The RootFolders
are passed in from
the previous rule

passed to the
next rule

2. For each House,
we create a new
PurchaseOrder

3. The attribute
mapping sets the

name of the
P h O d tPurchaseOrder to
the name of the

House

Guards

1. The House
is passed inis passed in

from the
previous rule

4 This guard
2. We find two rooms
in the House with an

AdjacentTo

4. This guard
ensures that the

HasDoor attribute of
the AdjacentTo

connection between
them

3. A match is only

connection is true

3. A match is only
valid if the

expression in the
guard “HasDoor”

l t t tevaluates to true

Test/Case Blocks

A Test block holds CasesA Test block holds Cases
Similar to If/Else construct in programming

C i lCases contain normal
patterns; if a match is

found, outputs are
passed to the next

A Cut element inside
a Case means that if
the pattern matches passed to the next

rule, otherwise no
outputs are produced

p
inside this Case, the
inputs are no longer
passed to any other

CasesCases

GReAT Tutorial Part III :GReAT Tutorial Part III :
Advanced Features

Daniel Balasubramanian
Graduate Research Assistant, ISIS,

Copyright © Vanderbilt University/ISIS 2007

Overview

1 Crosslinks1. Crosslinks
2. Global Objects
3 Sorting3. Sorting
4. Distinguished Merging

1 - Crosslinks

Often in a transformation we need to be ableOften in a transformation, we need to be able
to create and subsequently match
associations that are not present in the meta-p
models

These can even be between elements of different
meta-models

1 - Crosslinks

Consider the SignalFlow2FlatSF exampleConsider the SignalFlow2FlatSF example
In order to flatten the hierarchy, we need to be
able to associate Ports in the GS SignalFlow MM _ g
with Queues in the GS_FlatSF MM
These associations are between elements
belonging to different meta-models
Solution: specify this with crosslinks

1 – How to specify crosslinks

1 Right click on the root folder > Insert Model1. Right click on the root folder > Insert Model
> Package

2 Rename this package to “Crosslinks” (so2. Rename this package to Crosslinks (so
that it’s easier to identify)

This is our newly inserted package

1 – How to specify crosslinks (cont’d)

3. Inside the Crosslinks package, insert a3. Inside the Crosslinks package, insert a
ClassDiagram, and rename it to CL

Class diagram inside our package

4. Inside this class diagram we will drag
references to the meta-model elements to

Class diagram inside our package

which we want to specify new possible
associations

1 – How to specify crosslinks (cont’d)

5. Inside the class diagram (CL), drag5. Inside the class diagram (CL), drag
references to any MM elements you want to
be able to associate with each other

1. For our SignalFlow example, we’ll drag a
reference to the Queue from the GS_FlatSF MM,
and a reference to the PortBase from theand a reference to the PortBase from the
GS_SignalFlow MM

6. Switch to connection mode and connect the
elements

1. Choose Association for the connection role type

1 – How to specify crosslinks (cont’d)

7 The crosslinks class diagram should look7. The crosslinks class diagram should look
like this:

8. Rename the rolenames at the ends of the
associations to something uniqueassociations to something unique

Before renaming rolenames After renaming rolenamesg g

1 – How to specify crosslinks (cont’d)

9 You can now create simple associations9. You can now create simple associations
between ports and queues in your
transformation

1. These will exist only during the transformation
10 Make sure you use the correct rolenames!10. Make sure you use the correct rolenames!

2 – Global Objects

Motivation: we don’t always want to have to explicitlyMotivation: we don t always want to have to explicitly
pass an object between every rule
Solution: create a global container that can contain
objects

The global container contains the objects you don’t want to
have to pass between ruleshave to pass between rules

2 Global Objects (cont’d)

1 Create a new package in the root folder1. Create a new package in the root folder
(just as if creating a crosslinks package)

• Important difference: Set the “Temporary”Important difference: Set the Temporary
attribute of this package to True

Inserting Package
Setting Temporary attribute to true

2 – Global Objects (cont’d)

2. Insert a class diagram in the package2. Insert a class diagram in the package
• Rename to CL (for easier identification)

Inside CL create a new class (this will be

Class diagram inside our package

3. Inside CL, create a new class (this will be
the global container)

• Name it GO (for identification)• Name it GO (for identification)

2 – Global Objects (cont’d)

4 Also drag a reference into CL of the object4. Also, drag a reference into CL of the object
you want the global object (GO) to contain

• We’ll use the RootContainer object from theWe ll use the RootContainer object from the
GS_FlatSF paradigm

5. Switch to connection mode and create a
simple association between the two
elements

• Give meaningful rolenames, and set attribute
multiplicity accordingly

2 – Global Objects (cont’d)

6. The class diagram should look like this:6. The class diagram should look like this:

7. There will now be one instance of GO
available anywhere in the transformationavailable anywhere in the transformation

1. We can associate it with an instance of a
RootContainer in our rules

2 - Global Objects (example)

Create the assocation between the GlobalCreate the assocation between the Global
Object and the RootContainer in the following
way:y

Notice we don’t pass GO through an Out-port

2 - Global Objects (example)

Now we can access this RootContainer in aNow we can access this RootContainer in a
subsequent rule as follows:

GO h l b l We can find theGO has global
scope, so we
don’t need to
pass it along

We can find the
RootContainer

from its
association with

GO
p g

GO

3 – Sorting

GReAT is non-deterministic in the sense thatGReAT is non deterministic in the sense that
we don’t know the order in which packets
from one rule will be passed to the next rulep
By specifying a sorting criterion based the
attributes of an object, we can control theattributes of an object, we can control the
order that packets will be passed

3 – Sorting (cont’d)

Consider this rule:Consider this rule:
Give name
of sorting

function herefunction here

If we want to ensure that the Primitives are passed
to the next rule in order of increasing argCount, we
need to give a name of a sorting function on that
Out-port

We define this function in the Configuration FolderWe define this function in the Configuration Folder

3 – Sorting (cont’d)

1. Left-click on
this Out-port

1. Left click on the top Out-port
2. In the attribute panel, there will be a prompt

for a sorting function; give a name of
“A C F ”“ArgCmpFunc”

3 – Sorting (cont’d)

We’ve specified a sorting function but weWe ve specified a sorting function, but we
haven’t defined it anywhere

We do this in the configuration folderWe do this in the configuration folder
Right click on the Configuration Folder > Insert
Model > Code Library

3 – Sorting (cont’d)

Open this Code Library modelOpen this Code Library model
Insert a Compare Function element

Left click on this Compare Function, and the
Att ib t P l ill l k lik th f ll iAttribute Panel will look like the following:

3 – Sorting (cont’d)

rhs and lhs are both derived fromrhs and lhs are both derived from
Udm::Object (in our case, they are both of
type Primitive)yp)

Their attributes are accessed in the same manner
as Udm::Object attributes

These two objects
are both Primitives

We specify the function hereWe specify the function here

3 – Sorting (cont’d)

Add the following to Function BodyAdd the following to Function Body

The names of the two incoming parameters
t ti f ti lh d hto our sorting function are lhs and rhs
Our rule states that lhs will be before rhs in a
li t if it C t i l th th C t flist if its argCount is less than the argCount of
rhs

3 – Sorting (cont’d)

We can also insert a User Code LibraryWe can also insert a User Code Library
element into the Code Library model

This gives us the ability to include other
headers and libraries that we can reference
in any compare functions

See user manual for full details

4 – Distinguished Merging

Consider a situation such as the following:Consider a situation such as the following:

We want to connect the output ports of
RuleOne to the Input ports of RuleTwo in a p p
one to one manner
However, we cannot simply find all Out-ports
in RuleOne and all In-ports in RuleTwo

We only need a subset of the matches

4 – Distinguished Merging (cont’d)

We divide this into two rules:We divide this into two rules:
First rule: select only a subset of matches to pass
to the next rule (the correct Out-ports and In-(p
ports)

We want these three matches

Second rule: connect the ports

4 – Distinguished Merging (cont’d)
Rule one:

Specify the same sorting
f ti h t tfunction on each output

port to sort the ports by y-
coordinate

Also set the “Distinguished cross product” attribute of this rule to true

4 – Distinguished Merging (cont’d)

Rule Two: only correct subset of Input PortsRule Two: only correct subset of Input Ports
and Output Ports are entering this rule

Simply create the signal connection between themSimply create the signal connection between them

4 – Distinguished Merging (cont’d)

The two rules together look like this:The two rules together look like this:

Set the distinguished
cross product

attribute of this rule
t t

Specify a sorting
function on both of
these output portsto true these output ports

