
Holger Giese, Albert Zündorf (Eds.)

13.-14. Oktober 2003, Kassel, Germany

Proceedings

Holger Giese, Albert Zündorf (Ed.)

Fujaba Days 2003
13.-14. Oktober 2003, Kassel, Germany

Volume Editors

Prof. Dr. Albert Zündorf
University of Kassel, Department of Computer Science and Electrical Engineering
Wilhelmshöher Alle 73, 34121 Kassel, Germany
Albert.Zuendorf@uni-kassel.de

Dr. Holger Giese
University of Paderborn, Institute for Mathematics, EIM
Warburger Straße 100, 33098 Paderborn, Germany
hg@uni-paderborn.de

Program Committee

Albert Zündorf
University of Kassel, Germany

Tarja Systä
Tampere University of Technology, Finland

Wilhelm Schäfer
University of Paderborn, Germany

Luuk Groenewegen
Leiden University, Netherlands

Holger Giese
University of Paderborn, Germany

Local Organisation

Albert Zündorf, Rose-Marie Biehlig, University of Kassel

Editors' preface

Fujaba is an Open Source UML CASE tool project started at the software engineering
group of Paderborn University in 1997. In 2002 Fujaba has been redesigned and
became the Fujaba Tool Suite with a plug-in architecture allowing developers to add
functionality easily while retaining full control over their contributions.

At the early days, Fujaba had a special focus on code generation from UML diagrams
resulting in a visual programming language. Today, at least four rather independent
tool versions are under development in Paderborn and Kassel for supporting (1)
reengineering, (2) embedded systems, (3) the Fujaba Development Process, and (4)
education. According to our knowledge, quite a number of research groups have also
chosen Fujaba as a platform for their own UML related research. In addition, quite a
number of Fujaba users send us requests for more functionality and extensions.

Therefore, the 1st International Fujaba Days aim at bringing together Fujaba
developers and Fujaba users from all over the world to present their ideas and projects
and to discuss them with each other and with the Fujaba core development team.

Actually, we have managed to attract contributions from Finnland, Belgium, England
and from three different sites in Germany. In addition, there are other groups in
Canada, the Netherlands, Sweden and Italy that work on and with Fujaba but did not
manage to submit for this year's workshop.

To provide maximal benefits and to give anybody a chance to meet and to bond to all
the other peoples working in the Fujaba context, in addition to the talks and tutorials,
we have reserved a lot of time for discussions and working groups.

We hope, that you enjoy the workshop.

The editors

Table of Contents

Sven Burmester, Holger Giese
The Fujaba RealTime Statechart PlugIn 1

Martin Hirsch, Holger Giese
Towards the Incremental Model Checking of Complex RealTime UML Models 9

Matthias Tichy, Margarete Kudak
Visualization of the execution of Real-Time Statecharts 13

Pieter Van Gorp, Niels Van Eetvelde, Dirk Janssens
Implementing Refactorings as Graph Rewrite Rules on a Platform Independent
Metamodel 17

Leif Geiger, Christian Schneider, Albert Zündorf
Integrated, Document Centered Modelling in Fujaba 25

Carsten Amelunxen, Alexander Königs, Tobias Rötschke, Andy Schürr
Adapting FUJABA for Building a Meta Modelling Framework 29

Kalle Aaltonen, Jyrki Nummenmaa, Timo Poranen
Layout Algorithms for FUJABA Diagrams 35

Ari Seppi, Jyrki Nummenmaa
A Database Schema Diagram Plugin for Fujaba 39

YC 'Vik' Nuckchady
Turning FUJABA into a Collaborative Tool 45

Tutorials

Lothar Wendehals
10 Steps to build a Fujaba Plug-In 47

Matthias Tichy
How to add a new diagram to Fujaba 55

Susannah Moat
Adapting the Fujaba Code Generation Mechanism 75

Ira Diethelm, Leif Geiger, Albert Zündorf
Story Driven Modeling and programming with Fujaba 99

The Fujaba Real-Time Statechart PlugIn

Sven Burmester∗ and Holger Giese†
Software Engineering Group

University of Paderborn
Warburger Str. 100

D-33098 Paderborn, Germany

[burmi|hg]@upb.de

ABSTRACT
Distributed embedded real-time systems are one of the most
successful application areas of the UML. However, the UML
techniques for behavior modeling such as Statecharts in their
current form do not support real-time as required, because
of the unrealistic underlying zero-time execution assumption
for side-effects. With Real-Time Statecharts, a related ex-
tension has been developed for the Fujaba Tool Suite that
overcomes these limitations by supporting a well-defined
real-time semantics based on Timed Automata and code
synthesis which guarantees the specified timing characteris-
tics. Besides the Real-Time Statecharts the paper describes
the currently available tool support and the underlying prin-
ciples of the code generation for the currently supported
platform, Real-time Java.

Keywords
Statecharts, Real-Time, Embedded Systems, UML, Fujaba.

1. INTRODUCTION
Today, the Unified Modelling Language (UML) [13] is

successfully applied to model complex embedded systems.
However, the standard UML behavior modeling techniques
such as Statecharts are not appropriate in their current form.
For distributed real-time systems, the underlying zero-time
execution assumption for side-effects is often unrealistic and
conflicts with a consistent implementation of the high level
UML model on available hardware and software platforms.

With Real-Time Statecharts [4, 6], a related extension has
been developed for the Fujaba Tool Suite that overcomes
these limitations by supporting a well-defined real-time se-
mantics based on Timed Automata and code synthesis guar-
anteeing the specified timing characteristics.

The tool support currently available for Real-Time State-
charts in form of a Fujaba PlugIn consists of an extended
diagram notation, a time consistency checker, and code syn-
thesis. Additionally, a function permits to check whether
multiple Real-Time Statecharts can be scheduled on a sin-
gle node using the timing information extracted from the
real-time UML model.

∗Supported by the International Graduate School of Dy-
namic Intelligent Systems. University of Paderborn
†This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Struc-
tures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and founded by the Deutsche
Forschungsgemeinschaft.

In Section 2 we will first review the requirements for real-
time modeling with UML and the shortcomings of the cur-
rent UML support. Then, Real-Time Statecharts are de-
scribed informally in Section 3. Section 4 guides how to use
the Real-Time Statecharts PlugIn for the Fujaba Case-Tool.
The features of Real-time Java are described in Section 5 be-
fore the mapping from the Real-Time Statecharts to Real-
time Java code is shown in Section 6. Section 7 draws a
conclusion and gives a perspective on future work.

2. REAL-TIME MODELING
Developing software is divided in a phase of design and

a phase of implementation. During the design phase, the
structure and the behavior of the software are specified by
appropriate modeling languages such as UML, constituting
a standard for modeling these different aspects. A developer
can use Object- and Class-diagrams to model the structure
and Statechart- and Activity-diagrams to specify the behav-
ior.

For the specification of software for embedded real-time
systems, a number of object-oriented approaches [14, 1, 5, 7]
including ROOM [14] have been proposed. As most ROOM
concepts have been integrated into the UML 2.0 proposal of
the main tool vendors [13], they are likely to soon become
a part of the standard UML and will therefore be widely
available. However, these concepts do not address the tem-
poral behavior of the operational model and therefore do
not improve the situation when it comes to the automatic
code generation.

Another thread of development is the UML Profile for
Schedulability, Performance, and Time [12]. The profile de-
fines general resource and time models which are used to
describe the real-time specific attributes of the modeling el-
ements such as schedulability parameters or quality of ser-
vice (QoS) characteristics. Besides an abstract logic model,
a more concrete engineering model can be specified by us-
ing these extensions. The engineering model is later used
for the required model analysis and code generation. How-
ever, it remains an open question in the UML profile how all
required details of the engineering model are determined.

Therefore, the current practice when building embedded
software with hard real-time constraints is to specify the
software on a high abstraction level, then to partition it to
make it run on a real-time operating system in concurrent
threads (usually without adequate analysis), to implement
it, to test if the time restrictions hold and then usually to
re-partition it. Repeating this cycle a number of times is
usually very costly but mostly unavoidable.

1 FujabaDays 2003

Typically, an embedded software application consists of
several concurrent running threads1, often these threads are
periodic. When the application is employed in the real-time
domain, the time when each thread completes is of crucial
importance. The longest acceptable duration until the com-
pletion of a thread is designated by the deadline. In order to
accomplish a schedulability analysis, the so called worst case
execution time (WCET) of every thread has to be known.
This time characterizes the upper bound of the possible du-
ration of the thread, if it is executed on the processor of the
underlying computer system without preemption [10].

Unfortunately, UML Statecharts do not allow the integra-
tion of these important attributes. The only way to bring
time into UML Statecharts is the use of the so called Af-
ter - and When- constructs. These constructs can be used
to model temporal behavior, but are not sufficient to specify
real-time behavior [4, 6]. The underlying zero-time execu-
tion assumption cannot be fulfilled in a distributed setting,
as the required side-effects as well as the emitting of mes-
sages always require some minimal amount of time. Another
weakness is that a reasonable real-time semantics for State-
charts including the side-effects is therefore not possible.

Another approach for modeling temporal behavior are
Timed Automata [8, 11]. This kind of automata can be
used to specify real-time behavior in a well-defined manner,
dependent on clocks, but is very restricted in the output.

Real-Time Statecharts combine the advantages of State-
charts with those of the Timed Automata and add some
constructs and restrictions which allow the user to specify
real-time behavior and generate proper real-time code that
ensures the specified timing properties. This extension over-
comes the limitation of Statecharts w.r.t. real-time systems
by supporting a well-defined real-time semantics based on
Timed Automata [6].

3. REAL-TIME STATECHARTS
In the first part of this section, the syntax and semantics

of Real-Time Statecharts are explained informally. Section
3.2 introduces the problem of time conflicts.

3.1 Syntax and Semantics
Figure 1 depicts a Real-Time Statechart. It consists of

states and transitions, like usual Statecharts. The states
are extended –compared to usual Statecharts– with the fol-
lowing annotations: Time invariants, clock resets associ-
ated with entry()- and exit()-Methods, WCETs for the
entry()-, do()- and exit()-Methods, and a period for the
do()-Method.

Transitions are associated with events, guards, side-
effects, time-guards, clock resets, priorities, deadlines, worst
case execution times, and channels and events for synchro-
nization.

Let the set of clocks be denoted by C, a clock by ti ∈ C.
A time invariant is of the form

V
ti∈C ti ≤ Ti, Ti ∈ N ∪{∞}

and delivers the point in time when the specific state has to
be left via a transition.2 If the invariant does not contain
a clock tj ∈ C, this part is assumed to be tj ≤ ∞ and is
omitted in the graphical representation.

1Threads are often designated as Tasks or Processes
2For all time annotations the unit of time has to be the
same. For reasons of readability, it is disregarded in the
formulas.

Figure 1: Real-Time Statechart

In Figure 1, the invariant of state S1 is t0 ≤ 5 and the one
of S2 is t0 ≤ 20∧ t1 ≤ 13. The entry()-method is executed
when a state is entered, the exit()-method before the state
is exited. They have a WCET of 1 resp. 2 msec. Assign-
ing clocks to these operations resets them at the moment
of entrance resp. exit (t0 and t1 in state S2). In order to
perform analysises in the time domain (schedulability etc.),
the WCET for each operation needs to be known (described
by the annotation wcet = . . .). As the do()-operation is
executed periodically while the automaton stays in the spe-
cific state, it is reasonable to annotate a period with this
method. Often the user wants to specify a range for the
period instead of a certain value. Thus the period for the
do()-operation is specified by an interval (p ∈ [2; 3] in State
S1).

A transition is triggered if the associated event (e1) is
available, the guard ([x ≤ 2]) and the timeguard ([1 ≤
t0 ≤ 10]) evaluate to true. The timeguard is of the formV

ti∈C ai ≤ ti ≤ bi, ai ∈ N, bi ∈ N ∪ {∞}, ai ≤ bi. Simi-
lar to the invariants, a timeguard is assumed to contain the
expression 0 ≤ tj ≤ ∞ if no interval is specified for tj ∈ C
and is omitted in the graphical representation.

When the transition fires, all clocks denoted in the set of
clock resets are reset to 0 (t2 in the example) and the sideef-
fect is executed (action()). When a transition is triggered,
it fires. The firing will not be delayed. This behavior is
generally denoted as urgent behavior.

If multiple transitions are activated, the one being trig-
gered first fires. For the case that multiple transitions are
triggered at the same time and that they are mutual ex-
clusive, priorities have been introduced (In the example the
priority is 2, a priority of 1 will be omitted in the graphical
representation). Only if multiple transitions, being mutually
exclusive, are triggered at the same time, the one with the
highest priority of these transition fires. If the Statechart
is in a parallel AND-state, it is possible that multiple tran-
sitions that are not mutually exclusive are triggered at the
same time.

In addition to that, a worst case execution time (wcet = 5)
and a deadline are associated to a transition. The dead-
line is split into the relative and the absolute part. The
relative part is of the form [dlow, dup] and describes that
the switching (the execution of the transition) has to be
finished at least dup and at the earliest dlow after being
triggered. The absolute part is depicted by a term of the
form

V
ti∈C ti ∈ [di

low, di
up] and describes the lower and up-

per bounds dependant on the clocks ([0, ∞] is the default
interval for both parts). In the example, the deadline is
[0, 10] ∧ t1 ∈ [3, 11].

There exist 3 different types of synchronization: Exter-
nal synchronization by enqueing events, internal synchro-
nization, and synchronization via shared resources. Internal

FujabaDays 2003 2

synchronization makes sense when the Statechart is in a
parallel AND-state. Transitions can be associated with a
channel and one of the actions sending or receiving (e.g.
a? denotes receiving through channel a and a! denotes
the complementary action sending through a). A transi-
tion associated with such an internal synchronization fires
just when a transition with a complementary action through
the same channel is triggered, too. The third possibility is
the synchronization via shared resources. A shared resource
is, for example, a specific memory area, that is written by
some operations and read by some others. When some con-
current firing transitions are accessing the resource at the
same time, the effect of priority inversion [10, 3] can ap-
pear and may delay the execution of one transition due to
blocking effects.

Thus, the access should be controlled by a so called mon-
itor, reducing the blocking time. The user is demanded to
create a monitor-class in whose methods the critical sections
are rolled out. When the worst case execution times of these
methods are known and the monitor is associated with the
operations that use the methods of the monitor to access the
shared resources, then the maximal possible blocking time
is considered in a scheduling analysis (see Section 4).

3.2 Timing analysis
The possibility to specify behavior, based on clocks, leads

to the problem of time inconsistencies. If the user adds
time annotations without care, it may lead to non-realizable
behavior. Imagine a state with an invariant of t0 ≤ x
and leaving transitions, having a timeguard of the form
t0 ≥ x + n, n > 0. So, this state cannot be left before its
invariant exceeds, which will result in a so called time stop-
ping deadlock. Analyzing the structure and the annotations
of the Real-Time Statechart, these and other inconsistencies
can be found by an algorithm.

There exist 2 different kinds of inconsistencies: A Real-
Time Statechart is inconsistent if the specified behavior will
definitely lead to problems. It is called insecure if it is pos-
sible, but not certain to run into problems. An example for
insecureness is a state with a time invariant (e.g. t0 ≤ x)
and leaving transitions which are triggered by events. As it
is not possible to predict before runtime –without the use
of a Modelchecker– if the according event occurs, it is possi-
ble for this Statechart to run into a time stopping deadlock,
but not certain. A Statechart that is neither inconsistent,
nor insecure is called timeconform. The different forms of
inconsistency and insecureness are described in [4]. Some
inconsistencies can be removed automatically by an algo-
rithm, some can only be eliminated manually [4]. The user
can choose on his own if he wants to use the algorithm for
automatic inconsistency elimination.

If the user intends to run multiple Real-Time Statecharts
or different applications on the same target platform, he
sometimes wants to specify a maximum processor load for
every Statechart. This is done with the utilization factor
(the utilization factor has a range from 0 to 1).

The sketched static analysis algorithm detects temporal
inconsistencies at low costs. Some of the detected incon-
sistencies are removed automatically. Due to the incom-
pleteness of the analysis, it is only a supplement to model
checking but cannot, of course, replace it to detect all in-
consistencies in the general case.

4. USER GUIDE
This section addresses users, new to Real-Time State-

charts. It gives a step-by-step instruction how to create
a simple Real-Time Statechart, to check it for time consis-
tency and to generate executable code.

To use Real-Time Statecharts, the Fujaba Tool Suite and
the Real-Time Statechart PlugIn are required.3 After down-
loading, installing and starting Fujaba, Real-Time State-
charts can be used. As every Statechart is associated with a
class, the first step before creating a Real-Time Statechart
is creating a class diagram with at least one class (see Fig-
ure 2a) - c)). To do that, select the menu ,,Diagrams →
New Class Diagram“ and enter a diagram name. After that
choose the menu ,,Class Diagram → Create / Edit Class“
or press the first toolbar button as depicted in Figure 2 b).
This will result in a dialog, where the name of the new class
should be entered (Controller in the example). When choos-
ing the menu ,,Diagrams → New Realtime Statechart“ (see
Figure 3) the new class can be selected as the base class for
the new Real-Time Statechart.

a) New Class Diagram

b) New Class

c) Edit the new class

Figure 2: Creating a Class

3www.fujaba.de

3 FujabaDays 2003

Figure 3: Creating a Real-Time Statechart

Figure 4 shows the diagram-specific menustructure and
the toolbar, whoose actions can be used to edit the Real-
Time Statechart.

Figure 4: Menustructure and Toolbar

As a Statechart consists of states and transitions, the first
two buttons on the toolbar represent the actions ,,New /
Edit Realtime State...“ and ,,New / Edit Realtime Transi-
tion...“. There exist 3 different kinds of states: Start states,
stop states and complex states. The start state should be
unique for every Statechart. In the complex state, it is pos-
sible to specify the annotations described in Section 3.1 (see
Figure 5).

Figure 5: Dialog for States

The actions can be the call of methods, specified in the
corresponding class diagram, or commands from the target
language (e.g. Real-Time Java). Figure 6 depicts the dialog
for transitions. For every timing attribute (deadline, invari-
ant, timeguard), a final-flag can be set. When searching for
time inconsistencies (see Sections 3.2) and an inconsistency
that can be removed automatically by adjusting the specific
attribute is found, this is only done if the flag is not set.

When creating new states or transitions, the user is asked
to enter the worst case execution times for each operation.
These declarations are used when searching for time incon-
sistencies (see 3.2) or performing a scheduling analysis. Ad-
ditionally the WCETs of the ”simple, atomic operations”,

Figure 6: Dialog for Transitions

like the assignment of a long integer variable, the compari-
son of two integer variables and others, need to be specified
in an xml-file (see Figure 7). Furthermore the WCETs of
the actions can be specified in this doument, too. So in
principle, it is possible to use external tools, determining
the WCETs and providing this file.

<wcet>
<action id="RealtimeStatechartactionTrans1"

wcet="40" unit="ms" />

<systemconstant name="INTEGER ASSIGNMENT"
wcet="1" unit="ms"/>

<systemconstant name="LONG INTEGER ASSIGNMENT"
wcet="1" unit="ms"/>

<systemconstant name="INTEGER ADDITION"
wcet="2" unit="ms"/>

<systemconstant name="INTEGER COMPARISON"
wcet="1" unit="ms"/>

<systemconstant name="GET METHOD CALL"
wcet="2" unit="ms"/>

<systemconstant name="SET OR ADD METHOD CALL"
wcet="3" unit="ms"/>

<systemconstant name="OBJECT ASSIGNMENT"
wcet="3" unit="ms"/>

<systemconstant name="TYPE CAST"
wcet="1" unit="ms"/>

<systemconstant name="START APERIODIC THREAD"
wcet="6" unit="ms"/>

<systemconstant name="END APERIODIC THREAD"
wcet="5" unit="ms"/>

<systemconstant name="SLEEP AFTER THREAD START"
sleep="3" unit="ms"/>

...
</wcet>

Figure 7: wcet.xml

The path of the xml file can be set in the options dialog
(see Figure 8). When generating code, a schedule document
is generated (beside the source code files). This document
contains information about all threads that are started, their
WCETs and deadlines and which threads can run concur-
rently. These informations are needed for a scheduling ana-
lysis if multiple Real-Time Statecharts shall run in parallel
on the same target platform. The destination path for cre-
ating the schedule document can be set in the options dialog
as well.

FujabaDays 2003 4

In Section 3.2 it is described that a Real-Time Statechart
can be timeconform, insecure or inconsistent. The radio
buttons in the options panel are used to set the claimed
security level. The last attribute that can be set is the uti-
lization factor, described in section 3.2, either.

Figure 8: Options for Real-Time Statecharts

After specifying a Real-Time Statechart, the user should
check for time conformity. This is done by calling the menu
,,Realtime Statechart → Handle Time Inconsistencies“ or
pressing the equivalent button on the toolbar. Depending
on the set security level and on the final-flags for the timing
attributes (see Section 4), the inconsistencies are displayed
and removed automatically.

When the desired degree of time consistency is achieved,
it is possible to generate code. This is done by calling the
menu ,,Import/Export → Export (All) Class(es) to Java“.
Beside the source code file (that has the name of the class,
associated with the Statechart), the schedule document is
generated in the file specified by the options. This docu-
ment is used for a scheduling analysis of multiple Real-Time
Statecharts.

Even when there is just one Real-Time Statechart that
should run on the target platform, the user should perform
the scheduling analysis, as an additional class called Main is
generated. The Main class contains code for assigning prior-
itys to the threads (important for scheduling) and starts all
Real-Time Statecharts. As information about all involved
Real-Time Statecharts is required, this class is not generated
when calling ,,Export (All) Class(es) to Java“. For the same
reason, the user is asked to add all relevant schedule doc-
uments after starting the Scheduling Analysis (see Figure
9).

After generating all target code, it can be compiled and
started. For this, the de.uni paderborn.fujaba.umlrt.

realtimestatechart.sdm-package is required. This pack-
age is included in the libs/sdm.jar-file in Fujaba’s PlugIn
directory.

Figure 9: Declaration of Schedule Documents

5. REAL-TIME JAVA
The Real-Time Specification for Java (RTSJ) [2] provides

an API, defining classes and methods, allowing the use of
a real-time Scheduler and Memory Management in Java.
In particular, it is possible to gain deterministic garbage
collector behavior.

5.1 Scheduling
Figure 10 depicts the classes relevant for scheduling. As

in every application exists at most one scheduler, the class
Scheduler is implemented as a singleton. A Real-Time
Operating System (RTOS) can provide plenty of different
schedulers. One of the most common ones is the so called
Priority Scheduler. To be conform to the specification, an
implementation of the RTSJ has to deliver at least a Prior-
ity Scheduler. Of course it is possible to implement another
scheduler (e.g. written in the programming language C) and
use it in Java by accessing the routines of the scheduler
via the Java Native Interface (JNI),4 used in a subclass of
Scheduler.

0..1

0..1

v param

0..1

0..1

param >

0..1n < has

ReleaseParameters

SchedulingParameters

PriorityScheduler

«singleton»
Scheduler

Collapsed

NoHeapRealtimeThread

RealtimeThread

java.lang.Thread

Figure 10: Scheduling

To assign the data relevant for scheduling like dead-
lines, periods, start time points etc. to a thread, the class
java.lang.Thread is extended to RealtimeThread. Every
Thread that shall be scheduled has to be registered with
the instance of Scheduler via the has-association. Every
RealtimeThread (or NoHeapRealtimeThread) can contain
different parameters:

• SchedulingParameters

This object contains just the priority of the associated
thread, needed by the priority scheduler.

• ReleaseParameters

The release parameters contain the WCET, deadline
and the start time. If the thread is periodic, the object
contains the period, too. If a deadline-miss-handler is
specified, it is started at the point in time when the
deadline is missed. Similarly, a cost-overrun-handler
will be activated if the cost (WCET) is exhausted.

4java.sun.com

5 FujabaDays 2003

As it is not compulsory to provide the cost-overrun-
feature, it is not available in all implementations of
the RTSJ.

• MemoryParameters and MemoryArea

When a RealtimeThread allocates new objects, they
are allocated in the specified MemoryArea (see section
5.2). In the MemoryParameter object, a maximum
amount of memory can be specified for the current and
the immortal memory area (see section 5.2). Apart
from this, it is possible to set an allocation rate in
bytes per second that can be used for analysises.

• ProcessingGroupParameters

On some real-time platforms, the operating system
can guarantee that a thread never obtains more ex-
ecution time than specified by the WCET. If the
underlying operating system supports this capabil-
ity and the real-time thread has a reference to a
ProcessingGroupParameter object, the thread gets no
more execution time than indicated by the cost at-
tribute of this object.

• java.lang.Runnable

If the real-time thread has a reference to a runnable

object, the run()-method of this object is executed,
after starting the thread, instead of the run()-method
of the thread object.

public class PeriodicThread
extends RealtimeThread
{

public void run()
{

while (true)
{

...
waitForNextPeriod();

}
}

}

Figure 11: A periodic real-time thread

In Figure 11, it is shown how to implement a periodic
thread. The method waitForNextPeriod() accesses the pe-
riod attribut from the ReleaseParameters object and han-
dles the coordination with the scheduler. The method is
not exited before the scheduler allocates the processor for
the specific thread, again.

5.2 Memory Management
Real-time Java divides the memory into different areas

which are described in the following:

• Heap Memory

The heap is the ,,traditional“ memory. Sun’s virtual
machines use nothing but the heap memory for dy-
namic memory allocation.

• Immortal Memory

Instances allocated in the immortal memory area are
never erased. It is usefull to place objects there exist-
ing during the whole time the virtual machine runs.
Dynamic structures should not be allocated in this
area.

• Scoped Memory

Heap and immortal memory are implemented as sin-
gletons, but it is possible to create multiple scoped
memory areas. A scope memory area has a so called
reference count. This reference count is incremented
every time a new instance is allocated and decremented
when an instance is dereferenced. If a dereferenced ob-
ject is placed in the heap memory, it will be freed and
erased the next time the garbage collector runs. Being
in a scoped memory, it will not be freed before the ref-
erence count for the whole scope drops to zero. At the
moment when it becomes zero, the garbage collector
is executed by the active real-time thread.

NoHeapRealtimeThread

java.lang.Thread

RealtimeThread

Garbage Collector

Priority

Figure 12: Priorities

In Figure 10 in Section 5.1, the NoHeapRealtimeThread is
shown. Instances of this class have a higher priority than the
garbage collector (see Figure 12). If the garbage collector
runs and such a thread is started, it interrupts the garbage
collector. Conversely, a NoHeapRealtimeThread will never
be interrupted by the garbage collector. An ,,ordinary“ real-
time thread has a lower priority than the garbage collector.
So, real-time behavior can only be achieved with the use of
these threads if the application abdicates on dynamic struc-
tures and the garbage collector is never started.

As mentioned above, every real-time thread is associated
with a memory area. If a thread allocates new objects, they
are allocated in its memory area.5 Alternatively, objects
can be placed in the different areas via the use of reflection.
Therefore methods like MemoryArea.newInstance(...) or
MemoryArea.newArray(...) exist.

Attention has to be paid when creating a
NoHeapRealtimeThread object, as it is not possible to
instantiate it on the Heap, and only within the context of a
real-time thread.

This shall be clarified by the following example: In Figure
13, it is shown how to start a NoHeapRealtimeThread. At
first a ,,help-thread“ starter is created. This object is allo-
cated on the heap, but when it allocates objects on its own,
they are placed in the scoped memory, represented by the
object scopedMemory. This object scopedMemory represents
a scoped memory area, but it itself is placed on the heap.
The starter creates and starts a new NoHeapRealtimeThread

(nhrtt). As the memory area of starter is scopedMemory,
nhrtt is placed in scopedMemory. The RTSJ does not de-
mand the Thread.sleep(...) instruction, but in the ref-
erence implementation6 used, the virtual machine will hang
up without this command. This is a bug, that probably is
fixed in their new release.

5java.lang.Thread always allocates new instances in the
heap memory
6We used the free available reference implementation from
TimeSys (www.timesys.com)

FujabaDays 2003 6

public static void main(String[] args) {
Starter starter = new Starter();
ScopedMemory scopedMemory = new ...;
starter.setMemoryArea(scopedMemory);
starter.start();

}
public class Starter extends RealtimeThread {

public void run() {
NoHeapRealtimeThread nhrtt = new ...;
nhrtt.start();
try {

Thread.sleep(3);
} catch (InterruptedException e) {}

}
}

Figure 13: Starting a NoHeapRealtimeThread

5.3 Monitors
Often concurrent running threads access the same mem-

ory. These shared memory areas have to be controlled by a
so called monitor. Figure 14 gives an example for a monitor,
implemented in Java. The key word synchronized avoids
the parallel execution of the two methods.

public class Monitor {
public synchronized int readDate()
{

...
}
public synchronized writeData (int i)
{

...
}

}

Figure 14: Monitor

When a thread is inside a monitor (executes a synchro-

nized-method of the object), it cannot be interrupted by
another thread that wants to enter the monitor, too – even
when this second thread has a higher priority. This leads to
the well-known problem of priority inversion, described in
[10, 3]. To deal with priority inversion, some useful proto-
colls have been developed. These protocols do not avoid the
effect that a higher-priority thread is blocked by a lower-
priority thread, but these protocols minimize the blocking
time. Two well-known protocols are the Priority Inheritance
and the Priority Ceiling Protocols [10, 3]. These protocols
are represented in Real-time Java by two classes (see Fig-
ure 15). The priority inheritance protocol can be set when
required.

The use of Priority Ceiling Emulation is also possible, but
is only an optional element of any RTSJ implementation. It
is important to mention that setting one of these protocols
only has the expected effect if the underlying system pro-
vides the protocol.

6. CODE GENERATION
When generating source code from Real-Time State-

charts, at least one periodic thread –called main thread–
is created. This main thread administrates the Statechart
and has knowledge about the current state. In every period
it checks periodically the outgoing transitions of the current
state for being triggered and fires them if so.

PriorityCeilingEmulation

PriorityInheritance

MonitorControl

Figure 15: MonitorControl

There exist plenty of different patterns for implementing
Statecharts. In order to satisfy real-time requirements, a
variant without dynamic data structures has been choosen.
In the target class, a constant is generated for every state
(see Figure 16).

public static final int STATE S1 = 0;
public static final int STATE S2 = 1;
private int currentState = STATE 1;
public void handleTransitions() {

switch (currentState) {
case STATE S1:

if (/*check guard, timeguard and event*/) {
action();
t1 = 0;
currentState = STATE S2;

}
break;

case STATE S2:
...

}
}

Figure 16: Implementation of a Real-Time State-
chart

The attribute currentState indicates which state is valid
so that the main thread just handles the (outgoing) transi-
tions of the current state. As a Statechart can be in multiple
states simultaneously because of hierarchy and parallelism,
currentState is a more complex data structure than int,
shown in Figure 16.

When executing the main thread, it runs on a real phys-
ical machine. Thus it cannot run infinitely fast, but with a
minimal period. This results in the problem that a triggered
transition is not recognized at the moment of activation, but
with a delay, proportional –in the worst case– to the period.
That’s why the period should be as small as possible, but
with respect to processor load and its own WCET, the pe-
riod should be as long as possible. The deadline describes
the point in time when a side-effect needs to be terminated,
the WCET the time that is needed for execution and the
period describes the delay between triggering and start of
execution. Simplified, you can say: delay + WCET ≤ dead-
line must be satisfied. So the longest acceptable delay (and
resulting, the period) can be determined, depending on the
deadlines and WCETs. In general, shorter deadlines result
in shorter periods.

Side-effects with a WCET greater than the period cannot
be executed by the main thread. These actions are rolled out
into aperiodic threads. The sequence diagram in Figure 17
depicts the application flow, when this is done. FMainThread
is taken from the sdm-package, delivered with the Real-Time
Statechart PlugIn. Its logic is the same for every Real-Time
Statechart. The generated handler class implements the

7 FujabaDays 2003

interface FRealtimStatechart (defined in the sdm-package,
too). It contains all the Real-Time Statechart specific infor-
mation. First, the main thread calls handleTransitions()

to determine the points of activation for all outgoing transi-
tions of the current state. If the first activated transition has
to be executed in an own aperiodic thread, the handler calls
executeAperiodicThread() on the main thread to create
and start a new aperiodic thread. The start is aperiodic,
which results in concurrent running threads. As threads,
that once terminated, cannot be reused in Java, the aperi-
odic thread is created in a scoped memory that frees the al-
located memory after termination. After handling the tran-
sitions, the main thread waits for the next period.

periodic:FMainthread handler:FRealtimeStatechart

aperiodic:FAperiodicThread

handleTransitions()

start()

* long calculateActivationTime(id)

executeAperiodicThread()

new()

waitForNextPeriod()

Figure 17: Logic of the main thread

The outlined scheme for the code generation permits to
generate code for Real-time Java which ensures that the
specified deadlines are always met when the WCETs are
correct upper bounds.

7. CONCLUSION AND FUTURE WORK
Real-Time Statecharts provide a modeling technique, that

allows to specify complex behavior on the one hand and
real-time behavior on the other hand. Contrary to many
other models, Real-Time Statecharts contain all information
needed for code generation, which guarantees the specified
timing characteristics [4]. The concepts for code generation
are general, so that it is easy to adapt the generation algo-
rithm to other target code. It is planned to provide a C++
generation in addition to the Real-time Java code generation
soon.

Another capability of Real-Time Statecharts is the proof
of temporal consistency with incomplete, but effective al-
gorithms. In order to complete this verification, a model
checker has been employed as reported in [9].

In addition, the visualization of recorded execution traces
of Real-Time Statechart is planned [15].

Acknowledgements
We thank Florian Klein for his comments on earlier versions
of the paper.

8. REFERENCES
[1] M. Awad, J. Kuusela, and J. Ziegler. Object-Oriented

Technology for Real-Time Systems: A Practical
Approach Using OMT and Fusion. Prentice Hall, 1996.

[2] G. Bollella, B. Brosgol, S. Furr, S. Hardin, P. Dibble,
J. Gosling, and M. Turnbull. The Real-Time
Specification for JavaTM . Addison-Wesley, 2000.

[3] L. P. Briand and D. M. Roy. Meeting Deadlines in
Hard Real-Time Systems: The Rate Monotonic
Approach. IEEE Press, 1999.

[4] S. Burmester. Generierung von Java Real-Time code
für zeitbehaftete UML Modelle. Master’s thesis,
University of Paderborn, Software Engineering Group,
2002.

[5] B. P. Douglass. Real-Time UML: Developing Efficient
Objects for Embedded Systems. The Addison-Wesley
Object Technology Series. Addison-Wesley, October
1999. Second Edition.

[6] H. Giese and S. Burmester. Real-Time Statechart
Semantics. Technical Report tr-ri-03-239, Computer
Science Department, University of Paderborn, June
2003.

[7] H. Gomaa. Designing Concurrent, Distributed, and
Real-Time Applications with UML. Addison-Wesley,
January 2000.

[8] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
Symbolic Model Checking for Real-Time Systems. In
Proc. of IEEE Symposium on Logic in Computer
Science. IEEE Press, 1992.

[9] M. Hirsch and H. Giese. Towards the incremental
model checking of complex real-time uml models. In
Proc. of Frist Fujaba Days, Kassel, Germany, 2003.

[10] M. Joseph. Real time systems : specification
verification and analysis. Prentice Hall international
series in computer science. Prentice Hall, 1996.

[11] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
Nutshell. Springer International Journal of Software
Tools for Technology, 1(1), 1997.

[12] OMG. UML Profile for Schedulability, Performance,
and Time Specification. OMG Document
ptc/02-03-02, September 2002.

[13] OMG. UML 2.0 Superstructure final adopted
specification. Technical Report ptc/03-08-02, August
2003.

[14] B. Selic, G. Gullekson, and P. Ward. Real-Time
Object-Oriented Modeling. John Wiley & Sons, Inc.,
1994.

[15] M. Tichy and M. Kudak. Visualization of the
execution of real-time statecharts. In Proc. of Frist
Fujaba Days, Kassel, Germany, 2003.

FujabaDays 2003 8

Towards the Incremental Model Checking
of Complex Real-Time UML Models

Martin Hirsch and Holger Giese∗

Software Engineering Group
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

[mahirsch|hg]@upb.de

ABSTRACT
Today, the verification of complex distributed embedded real-time
systems employing model checking is largely limited by the state
explosion problem. We first report on the current tool support for
an approach which addresses this problem by means of a com-
positional model checking approach for a pattern and component
based UML 2.0 designs. However, the current checking covers
only an abstraction of the employed Realtime Statechart semantics
(cf. [4, 9]), and the compositional approach only works for prop-
erties which refer either to a single pattern or a single component.
We then present plans for an improved tool support which supports
the full Realtime Statechart semantics, enables the compositional
checking of non-local properties, and a model checker integration
which triggers required checks after a model update automatically
in the background.

Keywords
Model Checking, UML, Real-Time, Embedded Systems, Mecha-
tronic Systems, Compositional Verification, Fujaba.

1. INTRODUCTION
Mechatronic components [6], which beside their local control of

equipment are also interconnected with each other, result in a com-
plex distributed embedded real-time system. As such mechatronic
systems often contain real-time and safety-critical requirements, a
proper approach for the real-time and safety analysis is manda-
tory (cf. [11]). The worst-case real-time characteristics w.r.t. dead-
lines must be predictable, and appropriate means for the valida-
tion and/or verification are required. Thus, the engineer can judge
whether the resulting system still contains safety hazards. How-
ever, the verification of these systems by means of model checking
is often not possible today due to the state explosion problem.

In this paper we first report on the current tool support for an ap-
proach which is addressing this problem. It is restricted to the spe-
cific case of software controlling mechatronic systems (cf. [10]). It
uses a domain specific pattern and component based approach that
employs a subset of the UML 2.0 component model. The complex
software systems are composed of domain-specific patterns. These
patterns differ to some extent patterns introduced in standard liter-
ature e.g.[7]. In [7] patterns are each identified by classes, associa-

∗This work was developed in the course of the Special Research
Initiative 614 - Self-optimizing Concepts and Structures in Me-
chanical Engineering - University of Paderborn, and was published
on its behalf and founded by the Deutsche Forschungsgemein-
schaft.

tions etc. In our context the considered patterns are also described
by their ports resp. port-roles. In this manner using/instantiating
patterns we have to deal especially with the port behaviour. Each
of these patterns can be verfied individually. The complete com-
ponent behavior is derived by a composition of these patterns. For
a syntactically correct composition the verified pattern and compo-
nent properties are also guaranteed for the resulting overall system
behavior. However, currently only an abstraction of the Realtime
Statechart behavior can be checked and properties, which can be
compositionally verified, must be locally defined either for a single
pattern or a component.

A first required step is to transform the Realtime Statecharts into
the format of the model checker in a way that all aspects of the
semantics are covered. Then, the result of the model checking will
result in less false negatives, because a less abstract model, which
reflects the real behavior better, can be checked.

To address non-local properties, the approach can currently em-
ploy the compositional nature of the original approach and check a
proper subset of the overall system. We propose to automatically
determine such proper subsystems to incrementally check whether
a property holds by using a series of subsystems with increasing
model size. If from the verification follows that the property holds,
the compositional nature ensures that the property also holds for
the complete system.

Finally, we can improve the model checking support by integrat-
ing the automatic checking of properties if any update has happened
in the related UML model. Due to the compositional nature each
single checking can usually be done in the background in an incre-
mental fashion.

This paper is organized as follows. In Section 2 the employed
pattern-based approach for the modelling of real-time systems
with UML is sketched, and the related compositional approach for
model checking the resulting UML models is described afterwards
in the remainder of this section. Then, we describe the currently
in Fujaba realized tool support (Section 3). To support checking
non-local properties, we review in Section 4 the shortcomings of
the current tool support as well as ideas which permit to incremen-
tally extend the checked model until the property holds. In Section
5, the resulting requirements for realizing these concepts are sum-
marized. The paper finishes with a final conclusion.

2. REAL-TIME UML MODELLING
In this section, we first describe the main elements such as pat-

terns, connectors and components, which are used when modelling
real-time systems with UML. In the second subsection, we explain
the design steps which are necessary to get a safe real-time system.

9 FujabaDays 2003

2.1 Basis Elements
In our approach a pattern comprises of a set of roles that interact

only via a connector. Every connector connnects the related com-
ponent ports in the final system. In the instantiated system the ports
refine the roles and the components synchronize the ports. We fur-
ther have the restriction that for each pattern we have to specify a
protocol automaton and invariants for each role. An overall con-
straint in form of e.g. a TCTL formula is also possible. While
usually in untimed models the connector behavior is omitted, chan-
nel delay is of crucial importance for real-time systems and thus
has to be addressed explicitly in form of an additional connector
automaton.

:Shuttle :Shuttle

FrontRole

Coordination
Distance

RearRole

Figure 1: Modelling Example

Figure 1 shows an cut-out [10] of the convoy coordination be-
tween shuttles required for the software for the railcab research
project1. The railcab system employs a passive track system and
intelligent shuttles that operate autonomously and make indepen-
dent and decentralized operational decisions. The vision of the
railcab project is to combine the comforts of individual traffic, such
as flexible scheduling, on-demand availability of transportation and
individually equipped cars, with the cost and resource effectiveness
of public transportation. The control infrastructure of the shuttle-
based transportation system is based on satellite positioning and a
wireless communication network that enables communication be-
tween shuttles and stationary installations.

In our example the”DistanceCoordination” pattern realizes the
two roles”FrontRole” and”RearRole” which denote the positons in
a convoy. The two roles are connected via a connector represent-
ing the communication network in the shuttle system. Components
like the ”Shuttle” component are designed by coordinating and re-
fining each role automaton. The refinement has to respect the role
automaton and additionally has to respect the guaranteed behavior
of the roles in form of its invariants. An additional internal Real-
time Statechart [9] for coordination is used to describe the required
coordination. In the context of the example in Figure 1 this means
that the shuttle must confirm to the”DistanceCoordination” pattern
and has to operate as both”RearRole” and”FrontRole”.

2.2 Design Steps
Because of the results and semantic definitions from [8, 10] we

have the following sequence of integrated design and verification
activities organized into the following5 steps:

1. design the pattern and their roles,
2. verify each pattern,
3. design the composition,
4. verify each component, and
5. compose the system using the components and patterns.

Note that steps1 and2 have to be repeated for each required pat-
tern. When step3 and step4 have already been performed with
incomplete sets of patterns, the additional roles have to be added
1http://www-nbp.upb.de/en/index.html

to the component automata. Step5 finally ensures correct seman-
tical composition by a correct syntactical composition. An addi-
tional 6th step to perform verification for the overall system after
the composition made in step 5 is thus not necessary. The latter re-
sult is proven in [10]. This theorem is only valid for local properties
for patterns or components.

3. CURRENT TOOL SUPPORT
So far there exists a version of the model checking plugin called

UMLRTModelchecking for the CASE tool Fujaba [1] developed
in the context of SHUTTLE PG project [2] at the University of
Paderborn. This section describes its architecture.

3.1 Architecture
In SHUTTLE PG already some plugins helping us to model real-

time systems with UML-RT were developed. Figure 2 shows an

RTSTMetamodel.XML

Transformer

HUppaal.XML

Vanilla

Uppaal.XML

Uppaal Verifier

Fujaba (Core)

ErrorTraceHandling

−FPR2XML
−XML2HUppaal
−HUppaal2Uppaal
−UppaalVerifier
−ErrorTraceHandling

UMLRTPlugins

UMLRTModelchecking

UMLRTPatternPlugin

RealtimeStatechart

UMLRTPlugin

���������

�
	��

�
�����

�������
�����

Figure 2: Plugin Architecture

overview of the plugins that are currently available. The UMLRT-
Plugin, which allows us to model Realtime Component Diagrams
and generate JavaRT code, provides an own UML-RT metamodel.
The Realtime Statechart plugin [4] is also integrated. It is used to
model the role protocols and the component behavior. All other
plugins depend on the UMLRTPlugin. The pattern plugin, named
UMLRTPattern, enables us to identify patterns within the UML-
RT model and to manage them in an own repository. It is further
possible to select patterns form the repository and add them to the
UML-RT model. Finally, there is a plugin named UMLRTMod-
elchecking which enables the user e.g. to prove properties specified
in the UML model as TCTL-formulas. In the following, this plugin
is described in more detail.

3.2 Model Checking PlugIn
As seen in Figure 2 the UMLRTModelcheckig plugin requires

the UMLRTPlugin and Realtime Statechart plugin. Further the plu-
gin employs the real-time model checker UPPAAL [3] to verify
whether the properties, specified in the UML model, are fulfilled.
It is not necessary to add the whole model checker; only the veri-
fier engine is required. Since the plugin execution is arranged in 5
steps, it is easy to use another real-time model checker like RAVEN
[12] instead of UPPAAL by only making some changes.

The following paragraph describes the steps the existing plugin
performs to check a UML model. (1) In the first step the meta
data of a UML-RT model are exported and written to an separated
XML-file. If any constraint in form of a TCTL formula has been

FujabaDays 2003 10

added to the UML-RT model, it is also written to the XML-file. If
no TCTL-formula has been specified, the contraint”A[] not dead-
lock”, which means checking the model for deadlock freedom, is
automatically added to the file. (2a) Having generated this file, the
plugin enables the user to transform the UML-RT model to Hier-
archical Timed Automata [5]. Since there is no real-time model
checker which works directly on the Hierachical Timed Automata
model we have again to perform a transformation. (2b) The gen-
erated Hierarchical Timed Automata model is transformed to the
flat Timed Automata model by using the the tool Vanilla [5]. The
steps (2a + 2b) are executed in one step. Together with the TCTL-
constraints defined in the original UML-RT model, the flat Timed
Automata model can be used as input for the model checker tool
UPPAAL [3]. (3) The UPPAAL verifier is automatically started
after step (2). (4) The result of the verification and perhaps an er-
ror trace, if a property fails, is finally transformed back to UML
view. (5) In order to make the result more descriptive, there is a
visualization in Fujaba. Step (4) and (5) are currently only rudi-
mentary solved by a text window showing the UPPAAL tool out-
put. At present the transformation from step (2) works only for
Realtime Statecharts. Our aim in this first version is to achieve
a pessimistic abstraction of the original model. At present, only
the hierachy and the basic structures like transitions, guards and
states are supported, where as complex features like priorites are
currently not supported. Because of the latter fact, we have much
non-determinism in our Hierachical Timed Automata model and
this enormously enlarges the state space. As mentioned before the
basic structures are mapped to the basic structures of an Hierachical
Timed Automata as defined in [5]. To realize thedo-methods, exit-
methods and entry-methods every state in a Realtime Statechart can
have, we use a similar mapping as described in [9], where the se-
mantic of Realtime Statecharts is introduced. Another problem is to
transform the asynchronous communication model Realtime State-
charts have. In the Realtime Statechart model it is possible to send
messages in an asynchronous way, if a transition turns (cf. [9]).
We realize this by using the synchronous communication model of
Hierachical Timed Automata and extend it by adding a separate
automaton which manages a queue.

4. INCREMENTAL CHECKING
From [8] we know that local properties of patterns and compo-

nents are preserved by composition and can be checked separately.
It is to be noted that if only the basic components and pattern

that depend on the required property are checked, this can result
in a false negative. If the verification of properties which involve
more than one component is also required (non local properties),
we have to slightly adjust the approach. In this case we can exploit
the fact that proper subsets of the interconnected components and
patterns can be seen as components and patterns again, if the local
checks are not sufficient (cf. [8]).

Therefore, we can check a property by the following incremen-
tal procedure, shown in Figure 3. In the first step (1) we select a
minimal composed pattern/component that contains all in the prop-
erty referenced elements. After that we check whether the prop-
erty holds (2). If so, we are done. Otherwise the set of con-
sidered elements has to be extended in a way, that the composed
pattern/component contains the former one before continuing with
step 2). Extending the model we embark on the follwing strategy.
First we allocate all components specified in the selected require-
ments as mentioned before. If it is necessary to extend this model
we first add thus components which interconnect the compontents
selected in the last step, because often those compontents are in-
volved in the considered context. Otherwise if there is no more

���

� � ���

���� �

Figure 3: Example for incremental checking

component interconnecting another we select stepwise all neigh-
bours and add them (cf. Figure 3).

5. PLANNED TOOL SUPPORT
In Section 3 we described the current tool support. The planned

tool support is described in the following subsections.

5.1 Extended Transformation
Since there is no support for priorities which can be added to

transitions in the Realtime Statechart at the moment, we extend the
transformation by this concept. This is indeed not trivial, e.g. when
transitions consist of synchronization elements, because it is not
possible to invert them like guards. But if priorities are supported,
we have a more precisely manner to specify our UML model,
hence in the Hierachical Timed Automata model we have less non-
determinism. Regarding to the state space using on-the-fly model
checking, there is no enlargement as we have without priorities.

5.2 Improved Model Checking
In the current tool support there is no reasonable checking proce-

dure for large models. Based on the idea of the incremental check-
ing presented in Section 4 and the results from [10], we improve
our checking procedure.

First, it should be possible to select a subsystem and check
whether the specified proper TCTL-formulas are satisfied. It should
also be possible to select TCTL-constraints in the original model
and then start the verification process. To be sure, that the TCTL-
formulas are syntactically correct, we will implement a syntax-
checker. These two check procedures are finally combined with
the incremental checking.

5.3 Background Checking
At present there is only one checking mode, namely ”on re-

quest”. For the extension we plan to add a ”background mode”.
In detail this means that there will be something like a constistency
mechanism. If there is any update in the UML model, the user will
be informed and the verifier starts in the background.

6. CONCLUSION
The presented concepts, which the first author will realize within

his master thesis, outline how to extend the compositional approach
of [10] as well as its current tool support in several ways: (1) The
foundation to model checking taking the full Realtime Statecharts
semantics into account is sketched, (2) an incremental approach for
checking non-local properties with the smallest sufficient subsys-
tem model is presented, and (3) a plugin for the automatic check-
ing of properties in the case of relevant model updates in the back-
ground is described.

We expect, that the compositional nature of the employed ap-
proach ensures that for such an improved tool support holds that the

11 FujabaDays 2003

size of the models which have to be checked due to model updates
is usually rather small. Thus, the proposed background checking
will usually be a feasible and convenient solution. However, cur-
rently no empirical evidence for this thesis can be presented and
larger case studies are required to underpinn it by experimental
data.

Acknowledgements
We thank Daniela Schilling for her comments on earlier versions
of the paper.

7. REFERENCES
[1] http://www.fujaba.de.
[2] http://www.upb.de/cs/ag-schaefer/Lehre/PG/SHUTTLE.
[3] http://www.uppaal.com.
[4] S. Burmester. Generierung von Java Real-Time Code für

zeitbehaftete UML Modelle. Master’s thesis, Universität
Paderborn, Deutschland, Fachbereich Informatik –
Mathematik, Sept. 2002.

[5] A. David and M. O. M̈oller. From HUPPAAL to UPPAAL:
A transformation from Hierachical Timed Automata to Flat
Timed Automata. BRICS Report Series RS-01-11,
University of Aarhus, Denmark, Deparment of Computer
Science, BRICS, Mar. 2001.

[6] D. Dawson, D. Seward, D. Bradley, and S. Burge.
Mechatronics and the Design of Intelligent Machines and
Systems. Stanley Thornes, Nov. 2000.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[8] H. Giese. A Formal Calculus for the Compositional
Pattern-Based Design of Correct Real-Time Systems.
Technical Report tr-ri-03-240, University of Paderborn,
Germany, Deparment of Computer Science, July 2003.

[9] H. Giese and S. Burmester. Real-Time Statechart Semantics.
Technical Report tr-ri-03-239, University of Paderborn,
Germany, Deparment of Computer Science, June 2003.

[10] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the Compositional Verification of Real-Time UML
Designs. InProc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, Sept. 2003.

[11] D. S. Herrmann.Software Safety and Reliability :
Techniques, Approaches, and Standards of Key Industrial
Sectors. IEEE Computer Press, Nov. 1999.

[12] J. Ruf. Raven:Real-Time Analyzing and Verification
Environment.Journal on Universal Computer Science
(J.UCS), (1):89–104, Feb. 2001.

FujabaDays 2003 12

Visualization of the execution of Real-Time Statecharts
Matthias Tichy and Margarete Kudak

Software Engineering Group
University Of Paderborn

Warburgerstr. 100
33095 Paderborn

[mtt|kudak]@uni-paderborn.de

ABSTRACT
Embedded software systems are used in nearly all of today’s
industrial products. Statecharts are used for the specification of
the reactive behavior of those embedded systems. Since
embedded systems have typically no rich user interface to display
the current status of the system or even to display debug
messages, another way to monitor the execution of the embedded
system has to be used. In this paper we describe an extension of
the Fujaba Tool Suite to support on-/off-line monitoring of the
execution of Statecharts.1

Keywords
Statecharts, embedded systems, real-time systems, UML, Fujaba,
monitoring, execution traces.

1. INTRODUCTION
Embedded software systems are a big factor in today’s electronics
or industrial products. Since a nearly failure-free operation of
these embedded software systems is of utmost importance, high-
level languages for the design and implementation of the
embedded software system are employed. UML Statecharts are
one of those high-level languages. They are used to specify the
discrete behavior of software systems. Real-Time Statecharts [3]
are a variant of UML Statecharts especially geared to the
specification of hard real-time systems. Schedulability analysis
and Java RT code synthesis are offered to omit error-prone
manual implementation of the specification.
In case of a failure the developer of an embedded system wants to
know what exactly has gone wrong in the system. Since
embedded systems typically have no rich user interface to display
its current state or to display debug messages, other means to
view the behavioral activities, which lead to the failure, are
required.
We propose a monitoring and visualization framework for UML
and Real-Time Statecharts in the Fujaba Tool Suite [1]. This
framework allows the developer to monitor the execution of the
Statecharts. The monitoring data of the executed Statecharts are
visualized using UML Sequence Diagrams and Real-Time
Statecharts, with special markups. The visualization can either be

1 This work was developed in the course of the Special Research

Initiative 614 - Self-optimizing Concepts and Structures in
Mechanical Engineering - University of Paderborn, and was
published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

used in on-line mode visualizing the current behavior of the
system or in off-line mode visualizing older monitoring data. In
this paper we focus on real-time embedded systems and Real-
Time Statecharts. Nevertheless the approach is applicable to non
real-time systems as well.
In the next section we give an overview of our approach. In
Sections 3-5 we explain in more detail the different steps of our
approach. We conclude in Section 6, describe the current state of
work, and present some future research directions.

2. OVERVIEW

Figure 1. Framework architecture

Our proposed monitoring and visualization framework shown in
Figure 1 consists of mainly 3 parts. We have to support the
generation of execution traces to gather the data which contain the
behavior of the executed Statechart. For each monitored
Statechart an execution trace will be created during execution. In
Section 3 we show in detail the contents of an execution trace and
the different alternatives, which can be used to generate the
execution trace.
Since typically more than one Statechart will be visualized, the
execution traces of the different Statecharts must be merged prior
to visualization. In Section 4 we give a brief overview of how we
plan to merge those execution traces.
Finally, the merged execution traces are visualized by means of
UML Sequence Diagrams and Real-Time Statecharts. UML
Sequence Diagrams show the developer the message flow
between the Statecharts as well as time annotations. Additionally,
we add a graphical notion to show the current state of an executed
Statechart. In the Statechart oriented view of the execution, the
developer can see all Statecharts and their current state at a given
time. Here, the developer may see the cause for a wrongly fired

Real-Time
Statechart

Generation

Real-Time Sequence
Diagram / Statechart

Online/offline
visualisation

File

Java RT- Code
including

execution trace
generation

Execution Trace

13 FujabaDays 2003

transition. In Section 5 we give more details and some examples
diagrams.
The above mentioned visualization of the Statecharts’s execution
can be done on-line respective off-line. That means, the
visualization can display either past executions by reading the
execution traces from a file (off-line) or display the behavior of
currently executed Statecharts (on-line). If a monitored Statechart
is changing its state very fast and very often, the visualization
may lag in on-line mode.

Figure 2. Example

In the example above (Figure 2) two Real-Time Statecharts are
depicted which communicate via a wireless lan. In this small
example it may be obvious (but not for larger ones), that both
Statecharts may reach a deadlock. Initially Real-Time Statechart
A is in state A1 and is waiting for the message a to change into
state A2. Being in A1, A can also fire the transition “after(5)” and
then go into state A2. Real-Time Statechart B changes from state
B1 to B2 and sends the message a to A. Sending this message by
wireless lan can take longer than 5 ms, so A may go into state A2
without having received the message from B. The consequence of
this is, that Real-Time Statechart A is in A2 and is waiting for the
message b, while Real-Time Statechart B is in B2 waiting for the
message x to send the message b.

3. GENERATION OF EXECUTION
TRACES
A trace of the execution of a Statechart consists of several
execution activities. Each execution activity describes an activity
of the Statechart, for example firing a transition.
Generation of such execution traces during runtime is time-
critical, since it influences the temporal behavior of the
Statechart. For hard real-time systems the goal is to minimize the
temporal change.
For the generation of the execution traces several alternatives are
available. At first the Java Debug Interface (JDI) [7] can be used
to monitor the executed system. This would be a fairly easy
solution, since no change of the monitored software system is
required. Unfortunately, the runtime costs of JDI are way too

high. The measurements in [6] indicate an increase of runtime by
factors 100-300,000. Thus, JDI is completely out of the question.
A second solution is to instrument the compiled software. The
Byte Code Engineering Library (BCEL) [8] can be used to change
Java software after compilation. The negative effects of JDI can
be avoided by using instrumentation. Though, it is difficult to find
the correct code position where to add the data generation code.
Since we are generating the source code for the Statecharts
anyway, we may add the data generation code for the execution
activities as well. Additionally, then the code for generation of the
execution activities can be taken explicitly into account during
scheduling analysis.
Additionally, we need to decouple the generation of the execution
trace from everything else (file write, network write, etc.). We use
a queuing approach. Each execution activity will only be written
into a queue in the time-critical part of the system. During idle
time, the queue entries will be read and further processed for
writing to disk or network. If the queue becomes to large for the
monitored system, the developer must take appropriate actions.
For an individual execution activity it is important to know what
states, transitions and properties a Real-Time Statechart has. In
the execution trace are mainly four activities listed: the change of
a state, when a transition fires and the incoming and outgoing
messages between Real-Time Statecharts, as can be seen in Figure
2. Additionally, an execution activity may include information
about the different clocks used in the Real-Time Statechart and
may include data about local variables which are used in
transition guards.

4. MERGING OF DIFFERENT
EXECUTION TRACES
A typical embedded system is comprised of more than one active
system. These active systems are communicating with each other.
For our approach we do not only need to generate and visualize
the execution of one Statechart alone, but we have to display all
concurrent Statecharts of the embedded system and their
communication. Thus, the developer has the ability to see the
interaction of the Statecharts. This interaction is a typical cause of
complex errors in software.
To achieve this goal, we need to merge the execution traces of all
involved Statecharts for a coherent view of the system. Embedded
systems are often deployed on a distributed system and therefore
are executed on different computers with different local clocks.
Thus, clock differences and clock drift must be taken into account
for the merging of the execution traces.
The differences between local clocks can be tolerated by the use
of relative time stamps based on the known clock differences.
Dealing with clock drifts is more difficult. If the clock drift is
small and the absolute drift over the monitoring period is not too
large (fraction of seconds), it may be possible to ignore it.
Otherwise the approach of [4] has to be used. This approach uses
causal relationships, e.g. between incoming and outgoing
messages, to merge the execution activities in a correct order. In
contrast to [4] we know the originating Statecharts and thus
establishing a causal relationship is a lot easier.

5. VISUALIZATION
After merging the execution traces according to the last section,
we can visualize them in two different ways.

A1 A2
b

a / x

after 5 A

B1 B2
x /
b

/ a

B

wireless lan

FujabaDays 2003 14

5.1 Sequence Diagrams
UML Sequence Diagrams are used to display the communication
between the participating Statecharts. Each Statechart is
represented by an active object in the Sequence Diagram. The
messages between the Statecharts are displayed as arrows
between the lifelines. As an addition, the current state of the
Statechart is shown as a special graphical object on the lifeline
after a state change (see Figure 3). Time information has been
added to the Sequence Diagrams to show the timing behavior. In
real-time systems the timing behavior can often be the cause of
problems, which are difficult to find. For the sake of a clearer
presentation only some time annotations have been added to the
figure.

Figure 3. Sequence Diagram

The Sequence Diagram of Figure 3 shows the visualization of the
Real-Time Statechart (Figure 2). Using this form of visualization
the user can easily see, that Real-Time Statechart A fires the
transition “after 5” and only afterwards receives message a from
B. At this point of time the deadlock is reached, because A is
waiting for message b while B is waiting for message x to send
message b to A.

5.2 Statechart snapshots
For each point on the timeline of the above described Sequence
Diagram a snapshot of all Statecharts can be displayed. Such a
snapshot of a Statechart, displays the Statechart and an additional
markup of its current state. The Statechart view may be easier for
the developer to realize what the cause for a problem is. For
example in this view the developer can see why a certain
transition did not fire as expected and what the difference from
expected behavior is. In Figure 4 the developer can see that the
after 5 transition fired, since the message a has not been received.

5.3 Navigation
The user has different possibilities to navigate in the visualization.
Using a timeline, he can slow up and speed up the visualization. If
for example states are changing very quickly (fraction of
seconds), it is not possible to see exactly what happened. Due to
this, it makes sense to reduce the speed of the visualization.
Another navigation possibility is to pause and resume the

execution. Additionally, the user is able to specify a particular
point of time and to start the visualization from this timestamp.

Figure 4. Real-Time Statechart with special markups

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a framework for the visualization of
the behavior of embedded systems. This framework provides
visualization in form of UML Sequence Diagrams and Real-Time
Statecharts. The systems can be monitored off-line, i.e. a former
execution is displayed. Additionally the systems can be monitored
during runtime (on-line). Currently, we are at the implementation
stage of the proposed framework.
We focus on real-time systems specified by Real-Time
Statecharts. Nevertheless, the approach can be used to monitor
non real-time Statecharts as well. The Fujaba Tool Suite includes
support for StoryCharts [5]. StoryCharts are an extension of UML
Statecharts which may include StoryPattern as do-activity. Our
proposed approach may be extended to show the application of
the StoryPattern as well (in [2] a related approach for the
debugging of StoryDiagrams is described). Statistical evaluation
of a number of execution traces may be used to discover potential
faults of the system, which otherwise may go by unnoticed.

7. REFERENCES
[1] The Fujaba Tool Suite. http://www.fujaba.de, September

2003.

[2] Leif Geiger, Albert Zündorf. Graph Based Debugging with
Fujaba. In Proc. of the Workshop on Graph Based Tools,
International Conference on Graph Transformations,
Barcelona, Spain, October 6 - 12 2002.

[3] Holger Giese and Sven Burmester. Real-Time Statechart
Semantics. Technical Report tr-ri-03-239, Computer Science
Department, University of Paderborn, June 2003.

[4] C.E. Hrischuk and C.M. Woodside. Logical Clock
Requirements for Reverse Engineering Scenarios from a
Distributed System. IEEE Transactions on Software
Engineering, 28(4):321-339, April 2002.

[5] H.J. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating
UML Diagrams for Production Control Systems. In Proc. of
the 22nd International Conference on Software Engineering
(ICSE), Limerick, Irland, pp. 241-251, ACM Press, 2000.

A1 A2
b

a / x

after 5 A

B1 B2
x /
b

/ a

B

A B
a

A
B

x

A B

a

after 5

A

:A :B
t=0

t=4,5

t=10

t=12

t=9,5

15 FujabaDays 2003

[6] Katharina Mehner. Zur Performanz der Überwachung von
Methodenaufrufen mit der Java Platform Debugger
Architecture (JPDA). Java Spektrum, Ausgabe Nov./Dez.
2003 (in German).

[7] Sun Microsystems. Java Platform Debugger and Java Debug
Interface. http://java.sun.com/products/jpda, September
2003.

[8] The Jakarta Project. Byte Code Engineering Library.
http://jakarta.apache.org/bcel/, September 2003.

FujabaDays 2003 16

Implementing Refactorings as Graph Rewrite Rules
on a Platform Independent Metamodel

Pieter Van Gorp
Lab on Re-Engineering
University of Antwerp

pieter.vangorp@ua.ac.be

Niels Van Eetvelde
Formal Techniques in
Software Engineering
University of Antwerp

niels.vaneetvelde@ua.ac.be

Dirk Janssens
Formal Techniques in
Software Engineering
University of Antwerp

dirk.janssens@ua.ac.be

ABSTRACT
Increasingly more developers are applying refactorings - program
transformations that can improve the design of existing source code
- to make their software more easily adaptable to new requirements.
Because small changes to object-oriented software (such as renam-
ing a class) can require a lot of updates to several source files, tools
that automatically update the affected files can save these develop-
ers a lot of time. Although refactorings are based on basic OO con-
cepts (the redistribution of classes, variables and methods across
the class hierarchy) only, today’s development environments have
hardcoded them on the abstract syntax trees of programming lan-
guages such as Java or C# and do not update middleware deploy-
ment descriptors. To facilitate the building of new refactorings and
the extension of existing ones to new platforms, we suggest to im-
plement refactorings as declarative specifications on a platform in-
dependent metamodel. This paper describes how the metamodel,
the graph rewrite language and the architecture of the Fujaba UML
tool can be extended to provide the required infrastructure.

Keywords
Refactoring, Metamodeling, Graph Rewriting, Model Transforma-
tion, Middleware, Code Preserver, UML, SDM

1. CONTEXT
A refactoring is defined as a “behavior preserving program trans-
formation” [1]. Refactorings for OO software are based on the re-
distribution of classes, variables and methods across the class hier-
archy, mainly for the purpose of facilitating future adaptations and
extensions [2].

In order to maintain the system’s integrity, arefactoring toolneeds
to update the source code references affected by a refactoring. It
also needs to make sure that a refactoring is only executed when it
is guaranteed not to introduce inconsistencies. Regarding the auto-
matic updating of source code references, current generation refac-
toring tools do not take into account middleware deployment de-
scriptors which obviously leads to deployment conflicts after refac-

toring. Furthermore, they give no formal guarantees on behavior
preservation. Formal proofs rely on the correctness of the pre- and
postconditions of the implemented refactorings. Existing refactor-
ing implementations have hardcoded these constraints with third
generation programming languages.

Fujaba is an open source UML CASE tool that was originally
designed for Java code generation from Story Driven Modeling
(SDM) specifications [3]. SDM is a visual programming language
based on UML and graph rewriting. Graph rewriting is a feasible
formalism to reason about the behavior preservation of refactorings
[4]. In this paper, we report how we are extending Fujaba for imple-
menting refactorings as SDM specifications on a platform indepen-
dent metamodel without introducing inconsistencies in middleware
deployment descriptors.

2. METAMODEL REQUIREMENTS
As Don Roberts explains in his Ph.D. thesis [5], building a refac-
toring tool involves more than implementing the program trans-
formations. The tool should also be able to check the invariants,
pre- and postconditions of a (sequence of) refactoring(s) to ensure
source-consistency. Therefore, the tool needs a sufficiently expres-
sive metamodel. Similarly, a developer may want to trigger refac-
torings based on the presence of the bad code smells they can solve.
In this section, we evaluate whether Fujaba’s metamodel is suitable
for these purposes.

2.1 Evaluation of the Fujaba 4.0 Metamodel
Fujaba’s metamodel consists of 2 layers of abstraction, physically
separated by a lazy parser (see Figure 1).

The first layer is equivalent to the UML 1.4 metamodel which con-
tains the coarse OO constructs (such as namespaces, classes, op-
erations and attributes) but excludes all the method body informa-
tion which is required for maintaining the consistency between the
parsed model and the rest of the code when executing a refactoring
transformation [6].

The second layer of Fujaba’s metamodel refines the method body
as a partial Java abstract syntax tree. Although theif, for, while
andassignmentconstructs could be considered relatively platform
independent (they occur in C++ and C# as well), they do not fit
our refactoring purposes. On the one hand, one does not need to
understand the difference between conditionals and loops: it only
matters that a new variable scope is introduced. On the other hand,
Fujaba’s method body syntax tree does not contain the explicitac-

17 FujabaDays 2003

mailto:pieter.vangorp@ua.ac.be
file:niels.vaneetvelde@ua.ac.be
mailto:dirk.janssens@ua.ac.be

Figure 1: Fujaba 4.0 metamodel.ASGElementis equivalent to
the standard UML ModelElemententity. We can reuseUML-
Class, UMLGeneralization, UMLAttr and UMLParam from the
first layer of this metamodel. All PTNodesubtypes are part of
the second layer. They reflect a partial Java abstract syntax
tree and do not fit our refactoring purposes.

cess, updateand call information that is needed to reason about
refactoring.

Therefore, we propose to reuse the first layer of Fujaba’s meta-
model but use a new second metamodel layer that is minimal, yet
adequate for refactoring.

2.2 Running Example
To illustrate the need for a metamodel extension, we highlight the
tool requirements for automating a realistic Java middleware refac-
toring scenario. Our running example will be the “get cart items”
operation from the shopping cart class from the EJB implementa-
tion of the open source xPetstore application [7]. Enterprise Jav-
aBeans (EJB) is a standard component model for developing the
application tier of a web application [8]. EJB components are
managed by a container that interfaces with application server re-
sources. Services such as object distribution, resource and trans-
action management and security are configured by specifying de-
ployment attributes in an XML deployment descriptor.

1 /**
2 * @return Return a list of {@link CartItem} objects
3 *
4 * @ejb.interface-method
5 * @ejb.transaction-type
6 * type="NotSupported"
7 */
8 public Collection getCartItems() {
9 try {

10 ItemLocalHome ihome= ItemUtil.getLocalHome();
11 ArrayList items= new ArrayList();
12 Iterator it= _details.keySet().iterator();
13 while (it.hasNext()) {
14 String key= (String)it.next();
15 Integer value= (Integer) _details.get(key);
16 try {
17 ItemLocal ilocal= ihome.findByPrimaryKey(key);
18 ItemValue item= ilocal.getItemValue();
19 ProductValue prod= ilocal.getProduct()

20 .getProductValue();
21

22 CartItem ci = new CartItem(item.getItemId(),
23 prod.getProductId(),
24 prod.getName(),
25 item.getDescription(),
26 value.intValue(),
27 item.getListPrice());
28

29 items.add(ci);
30 }
31 catch (Exception cce) {
32 cce.printStackTrace();
33 }
34 }
35 // Sort the items
36 Collections.sort(items,
37 new CartItem.ItemIdComparator());
38 return items;
39 }
40 catch (Exception e) {
41 return Collections.EMPTY_LIST;
42 }
43 }

2.3 Metamodel Extensions for Refactoring
2.3.1 Motivating Refactoring Scenario

Suppose we are reading CartEJB.java in order to better understand
the system. Once we understand the undocumented try block from
line 17 to line 29, we decide to extract its body into a new method
with a name that fits the intention1. We will briefly share some
details on the design of xPetstore and the EJB component model in
general and then suggest a method name.

We know that the_detailsattribute represents a hash map from
product key strings to the integer amount of items of that type in
the cart. Line 17 uses the key of one product in the cart to re-
trieve a reference to the local item bean from the local item home
object. Consequently, the home object checks whether the appli-
cation server has a cached instance of the involved item and oth-
erwise adds a new object instance for the itemilocal bean to an
instance pool. Theilocal bean retrieves all its data from the under-
lying database unless it is configured with lazy loading. On line
18, a value objectitemencapsulating all this data is retrieved from
the ilocal bean. Line 19 navigates to the product bean associated
with the item bean and also constructs a value object for it. The
data from these two value objects is then used from lines 22 to 26
to construct a value object representing the appropriate amount of
cart items of the product from the current while loop iteration. Fi-
nally, on line 29, this value object is added to the list of items that
our sample method is supposed to compose. What about extracting
lines 17 to 27 to a method calledbuildCartItemVOfromDB? The
while loop would then look like:

13 while (it.hasNext()) {
14 String key= (String)it.next();
15 Integer value= (Integer) _details.get(key);
16 try {
17 CartItem ci= buildCartItemVOfromDB(ihome,
18 key, value);
19 items.add(ci);
20 }
21 catch (Exception cce) {
22 cce.printStackTrace();
23 }
24 }

1This reengineering activity is commonly referred to as therefactor
to understandpattern [9].

FujabaDays 2003 18

Figure 2: Overall view on the GrammyUML metamodel. Theadded-entityand added-linkstereotypes highlight what is added to the
UML 1.4 metamodel.

Note that we could move the declaration fromihomeinside the try
block as it is only used there, but we decide not to do it because
retrieving the home interface of a bean is a resource-intensive op-
eration.

2.3.2 Refactoring Implementation
Let us now consider the internals of this extract method refactor-
ing. The precondition of this refactoring states that (i) the sig-
nature of the method that needs to be created may not result in a
name conflict in the inheritance hierarchy of the containing class,
(ii) there should be no return statement among the extracted state-
ments, and (iii) within the selected source fragment, there should
be at most one update to a local variable. The postcondition states
that (i) there should exists a method with the chosen name in the
containing class, (ii) each local variable that is used in the ex-
tracted fragment but not declared in it should be a parameter of
the new method, (iii) each formal parameter that is used by the ex-
tracted statements should be a parameter of the new method, (iv) all
checked exceptions that are thrown from the extracted statements
(or from a method called by these statements), and that are not han-
dled by the extracted statements, should be listed in the signature
of the new method, and finally (v) in the original method, the ex-
tracted statements should be replaced by a method call to the new
method.

To be able to express these constraints, our refactoring metamodel
should include areturn action(e.g. for precondition ii), anupdate
action(e.g. for precondition iii), alocal variable declaration action
(e.g. for postcondition ii), anaccess action(e.g. for postcondition
ii and iii), a throw actionand ahandle action(e.g. for postcondition
iv), and finally acall action(e.g. for postcondition iv and v).

“Extract method” is an example of a refactoring that can only be ex-
ecuted by looking at the source code. It should be noted that this is
not the cause of the need for all of our metamodel extensions. The
“pull up method” refactoring for example can be triggered from a
class diagram and also requires reasoning about method calls and
accesses or updates to attributes. A part of its precondition for in-
stance states that the method under consideration should not make
any references (accesses or updates) to attributes that are part of

the subclass. Line 12 of our running example accesses the attribute
_detailsand calls thekeySetoperation for this object. Our sample
method can not be pulled up because the superclass ofEJBCart
(i.e. javax.ejb.SessionBean) does not own or inherit the_details
attribute. Without our metamodel extension, it would be impossi-
ble to check this precondition. Similarly, call behavior reasoning is
required for another part of the precondition: no methods that are
defined in the subclass should be called.

2.3.3 Proposed Extensions
GrammyUML is a minimal and backward compatible extension
of the standard UML metamodel that is adequate to reason about
refactoring (compose primitive refactorings, verify preservation
of behavioral properties, and trigger refactorings based on code
smells) [10]. As Fujaba’s first metamodel layer is largely equiv-
alent to the UML standard, all GrammyUML extensions apply to
Fujaba as well. All primitives in the method body that are needed
to reason about refactoring are modeled as variants of the standard
UML “action” entity. CallAction is a standard UML construct that
can be used to model call behavior in Fujaba. Accesses and updates
can apply to attributes, parameters and local variables. The latter
are not yet part of Fujaba’s metamodel. We add aLocalVariable
construct and associate it with its type.LocalVariableDeclationde-
fines where a local variable is defined. Its scope reaches to the last
Actionof the containingActionSequence. Thetry block from line 9
to line 39 for instance is anActionSequencethat implicitly defines
the scope ofihome, itemsand it. Also note the anonymous local
variables introduced by_details.keySet()on line 12 andnew Car-
tItem.ItemIdComparator()on line 37. Next to access, update and
call behavior, we also need the notion of a return statement, and
need to be able to reason about exceptions. Note that Fujaba’s sec-
ond metamodel layer would provide us aPTNodeReturnconstruct
but it does not link this construct to the object that is returned. We
provide this link in theSingleTargetActionconstruct whosetarge-
tRefinementcan be reused by all its subclasses or stereotypes (Ac-
cessAction, UpdateAction, LocalVariableDeclation, ReturnAction
andThrowAction). Figures 2 and 3 summarize the proposed meta-
model extensions.

19 FujabaDays 2003

Figure 3: GrammyUML metamodel fragment to model excep-
tion throwing and catching and returning the flow of control
from a method.

3. IMPLEMENTING REFACTORINGS IN
SDM

In this section we describe a small experiment with Fujaba’s graph
rewriting language. For the sake of understandability, we concen-
trate on the relatively simplePull Up Methodrefactoring.

3.1 Story Driven modelling
Story Driven Modelling (SDM) is a visual language for behavioral
modeling based on UML activity diagrams, UML collaboration di-
agrams and graph theory [11]. Based on our small refactoring ex-
periment, we identify some shortcomings of SDM for expressing
our sample refactorings and suggest how this problem could be
overcome.

3.2 Expressing Pull Up Method
From section 2 we recall thatPull Up Methodhas three important
preconditions: (i) no references (accesses or updates) should be
made to an attribute that is defined in the subclass, (ii) no meth-
ods that are defined in the subclass should be called and (iii) no
method with the same signature should already exist in the super-
class. Because of the lack of update and access information in the
metamodel, we only implemented the third precondition. The story
diagram expressing this precondition is shown in Figure 4. It has
one parameter node:method, which is the method to be pulled up.
The diagram consists of four patterns: In the first story, the un-
boundsuperclass:UMLMethodnode, representing any class in the
program is bound to the superclass of the class containingmethod.
The three other stories represent a loop over each methodmethod-
FromSCin the superclass (story 2) and a comparison between the
signature ofmethodFromSCand the signature ofmethod(story 3
and 4). The signatures are compared by comparing the names and
type of each parameter in the signature.

To be able to bindparamFromMethodto the correct parameter
of method in story 4 (i.e. the parameter with the same index
as paramFromMethodFromSC), we use SDM’squalified associ-
ations: the param link betweenmethodand paramFromMethod
in story 4 is qualified with the index of the parameter. In our

Figure 4: Story pattern for precondition (iii) of Pull Up Method

example, the value of this index is determined by evaluating the
expressionparamFromMethodFromSC.getIndex() . Al-
though this constraint can be defined in the Fujaba environment,
it is currently not possible to visualize it on a story diagram.

The control flow of the checkPrecondition procedure is straight-
forward: if the evaluation of the comparison is successfull, the
next parameter is tried. The loop continues until all parameters
are compared. If all parameters have identical names and types,
the superclass contains a method with the same signature and the
evaluation of the precondition returns false. If, however, the eval-
uation of story 4 fails, the method signatures are different, and the
next method of the superclass is tried. This explains thefailure
transition between story 4 and story 2. We experienced that SDM
currently does not support this ’nested loop break’ construction, so
for our experiment, we had to work-around this by implementing
the comparison in pure java code.

If the precondition returns true, the execution step of the refactoring
now moves the method from its containing class to the superclass.
In a story diagram this is expressed by breaking themethodsassoci-
ation link between the method and its containing class, and creating
a new one with the superclass. SDM allows these graph rewriting
operations by addingcreateanddestroymodifiers to the associa-
tions between the nodes. The diagram for the refactoring is shown
in Figure 5. To illustrate how Fujaba generates code out of the story
diagrams, the java code of the execute story is given below.

1 public void execute(ASGElement target)
2 {
3 boolean fujaba__Success = false ;
4 Iterator fujaba__IterContainerRevSubclassStub=null ;
5 UMLClass container, superclass = null ;
6 UMLGeneralization stub = null ;
7 UMLMethod method = null ;
8 try
9 {

10 fujaba__Success = false ;
11 // check object is really bound
12 JavaSDM.ensure (target != null) ;
13 // ensure correct type
14 JavaSDM.ensure (target instanceof UMLMethod) ;
15

FujabaDays 2003 20

Figure 5: The execution story diagram ofPull Up Method

16 // explicite type cast
17 method = (UMLMethod) target ;
18 // bind container : UMLClass
19 container = method.getParent () ;
20 JavaSDM.ensure (container != null) ;
21

22 // bind stub : UMLGeneralization
23 fujaba__IterContainerRevSubclassStub
24 = container.iteratorOfRevSubclass () ;
25 while (!(fujaba__Success) &&
26 fujaba__IterContainerRevSubclassStub.hasNext ())
27 {
28 try
29 {
30 stub = (UMLGeneralization)
31 fujaba__IterContainerRevSubclassStub.next();
32

33 // bind superclass : UMLClass
34 superclass = stub.getSuperclass () ;
35 JavaSDM.ensure (superclass != null) ;
36 // check isomorphic binding
37 JavaSDM.ensure
38 (!(container.equals (superclass))) ;
39 // delete link
40 container.removeFromMethods (method);
41 // create link
42 superclass.addToMethods (method);
43 fujaba__Success = true ;
44 }
45 catch (JavaSDMException fujaba__InternalException)
46 {
47 }
48 }
49 }
50 catch (JavaSDMException fujaba__InternalException)
51 {
52 fujaba__Success = false ;
53 }
54 }

To complete the experiment, the java code from the diagrams was
reused in a small gui plugin for Fujaba, which allowed us to apply
the refactoring on a class diagram (see Figure 6).

3.3 Extending SDM for refactoring
Even with such a small experiment we found that it was not possi-
ble to express every feature of a refactoring in SDM. Because SDM
supportsstatement activities, every problem expressing a constraint
graphically can always be solved by implementing this constraint
in pure java code. However, to be able to express refactorings in an

Figure 6: A refactoring plugin for Fujaba

efficient and elegant way, one needs to add some new features to the
SDM language. In the next paragraph we will suggest an extension,
which will be needed for expressing the sample refactorings in this
paper, but might be useful for other applications too. Of course,
more extensions will be needed in the future, as the implementa-
tion of other refactorings will raise the opportunity for adding new
constructs to the language.

The extension we propose here is the possibility of usingParam-
eterized graph expressions[4] in SDM. This is extremely useful
for expressing pre- and postconditions of refactorings. For exam-
ple: precondition (iii) ofExtract Methodrequires a check that a
local variable is updated only once inside the extracted block. This
means that there will be at most one path from the ActionSequence
node that represents the method body, to an UpdateAction node
with the LocalVariable node as its TargetRefinement. To express
this constraint using SDM, one would need an infinite number of
stories. If we allow regular expressions on the links in a story dia-
gram the expression

Figure 7: A regular expression pattern in SDM

would be sufficient to express all the possibilities.MB andV are
nodes of type ActionSequence and LocalVariable, andUA is an
UpdateAction node. When this graph expression is evaluated,MB
andV are bound to to their respective parameters. Then a path be-
tween the two end nodes, that satisfies the regular expressions and
unbound nodes (likeUA) in the pattern, is determined. If no such
path is found, the evaluation returns false. SDM already supports
the definition of an arbitrary path between two nodes in a story. So
this concept might serve as a basis for implementing the regular
expression extension.

4. ARCHITECTURAL REQUIREMENTS
To ensure that the parsed source code will be regenerated appropri-
ately, two new components are required in the Fujaba architecture.

21 FujabaDays 2003

We call these new components the “Code Preserver” and the “Re-
finement Repository”. These components complement the lexer,
the parser, the metamodel, and the code generator.

4.1 Code Preserver
4.1.1 Definition

A Code Preserveris a development tool component that stores all
the required source code files from which a model is extracted in
such a way that the complete system can be regenerated from a
transformation of the input model. A code preserver does not re-
quire a metamodel of all system properties and can preserve the
original code layout.

4.1.2 Motivation
First of all, for the sake of simplicity, we want to minimize the
amount of extensions to Fujaba’s metamodel as much as possible
(without sacrificing source consistency). However, if we want to
regenerate arbitrary method bodies with a conventional code gen-
erator, we would need a metamodel that contains all syntactically
possible source code constructs (cascaded method calls, local vari-
able declarations, type casts, type checks, ...). Otherwise, some
(fragments of) source code statements would get lost.

In addition to this problem, code generators assume a fixed code
layout for all instances of a particular metamodel element. This is
undesirable in the context of refactoring, where developers don’t
want to lose their layout each time they execute a refactoring.

4.1.3 Other Applications
To manage the rapid evolution of (and the number of alternatives
between) today’s middleware component models, we want to mini-
mize the work to add support for new XML deployment descriptors
to our refactoring framework. When developing an application to
evaluate the performance of a new component model (for which
there are no code generators available yet), one may want to exe-
cute refactorings to evolve from a small running example to a more
realistic prototype. With a code preserver, it would suffice to ex-
tend the Fujaba parser to integrate the new source code syntax in
our refactoring tool. Without a code preserver, we would also need
to write a new code generation template.

With a code preserver, it would suffice to extend the Fujaba parser
to handle the new source code syntax. Without a code preserver,
we would also need to write a new code generation template.

Our xPetstore sample is developed with the open source xDoclet
code generator [12] and the Poseidon UML tool [13]. xDoclet gen-
erates skeleton classes and the deployment descriptors for the EJB
component model from JavaDoc-annotated domain model sources.
Poseidon visualizes the domain model classes as UML class di-
agrams. Poseidon’s model is stored in an XMI file. Instead of
parsing and updating the XML deployment descriptors themselves,
we need to update the annotated java sources that define the input
model for xDoclet. We can obtain the new deployment descriptors
by deleting them and regenerating them with xDoclet. Addition-
ally, to maintain consistency with Poseidon, we need to update its
XMI file. This illustrates how a code preserver can facilitate the
integration of a set of special-purpose UML tools: Fujaba takes
care of generating model transformation code from graph rewrite
rules whereas xDoclet takes care of generating middleware frame-
work code from stereotyped class diagrams that are visualized by
Poseidon.

The fragment below illustrates the structure ofxpetstore.xmi:

1 <UML:Class xmi.id=’a1936’ name=’CartEJB’...
2 isRoot=’false’ isLeaf=’false’ isAbstract=’true’...>
3 ...
4 <UML:Classifier.feature>
5 ...
6 <UML:Operation xmi.id=’a2006’ name=’getCartItems’
7 isSpecification=’false’ ownerScope=’instance’...
8 isLeaf=’false’ isAbstract=’false’>
9 <UML:ModelElement.taggedValue>

10 ...
11 <UML:TaggedValue xmi.id=’a2008’...
12 dataValue=’@return Return a list of
13 {@link CartItem} objects

14 @ejb.interface-method

15 @ejb.transaction-type

16 type="NotSupported"’>
17 <UML:TaggedValue.type>
18 <UML:TagDefinition xmi.idref=’a91’/>
19 </UML:TaggedValue.type>
20 </UML:TaggedValue>
21 </UML:ModelElement.taggedValue>
22 <UML:BehavioralFeature.parameter>
23 <UML:Parameter xmi.id=’a2009’ ...
24 kind=’return’>
25 ...
26 </UML:Parameter>
27 </UML:BehavioralFeature.parameter>
28 </UML:Operation>
29 ...
30 </UML:Classifier.feature>
31 ...
32 </UML:Class>

For the sake of readability, some fragments are suppressed as
three dots. A code preserver could help us to keep track of
the model references (e.g.getCartItemsin the fragment above)
and preserve all other information (like@ejb.interface-methodand
@ejb.transaction-type) without including the information into a
dedicated metamodel. Of course, we would still need to write (or
reuse) an XMI parser but this would also be the case if we would
use a conventional code generator.

4.1.4 Overall Architecture
Figure 8 visualizes how the code preserver builds dynamic code
templates with lexer input while the sources are parsed into a
model. After refactoring, these templates are used to rebuild the
files for the updated model. The design and implementation of the
code preserver are beyond the scope of this paper.

4.1.5 Closing Remark
We should note that the abstraction level of a refactoring meta-
model depends on the set of supported refactorings. Moreover,
there is no ultimate refactoring metamodel as new refactorings are
continuously being discovered. The code preserver can help to de-
fer the inclusion of a metamodel entity until its semantics is an ex-
plicit part of the problem domain (i.e. the supported refactorings in
our case). For example, currently we have not included type checks
and type casts into our metamodel. Thanks to the code preserver,
we do support the update of the referred class name when the re-
name class refactoring is executed. If we would ever need to im-
plement a refactoring whose refactoring contract explicitly makes
use of type casts we would include a dedicatedtype cast actionin
our metamodel.

4.2 Refinement Repository

FujabaDays 2003 22

public Collection getCartItems() {
 try {
 ItemLocalHome ihome= ItemUtil.getLocalHome();
 ArrayList items= new ArrayList();
 Iterator it= _details.keySet().iterator();
 while (it.hasNext()) {
 String key= (String)it.next();
 Integer value= (Integer) _details.get(key);
 try {
 ItemLocal ilocal= ihome.findByPrimaryKey(key);
 ItemValue item= ilocal.getItemValue();
 ProductValue prod= ilocal.getProduct()
 .getProductValue();

Source Code
Deployment Descriptors
Build Files
…

Parse
and Preserve

Model

Parser

Code Preserver

CartEJB

getCartItems

Refactoring

Generate
and Reconstruct

Code Generator

public Collection getCartItems() {
 try {
 ItemLocalHome ihome= ItemUtil.getLocalHome();
 ArrayList items= new ArrayList();
 Iterator it= _details.keySet().iterator();
 while (it.hasNext()) {
 String key= (String)it.next();
 Integer value= (Integer) _details.get(key);
 try {
 ItemLocal ilocal= ihome.findByPrimaryKey(key);
 ItemValue item= ilocal.getItemValue();
 ProductValue prod= ilocal.getProduct()
 .getProductValue();

Code Preserver

public $0 $1() {
 try {
 $2 $3= $4.$5();
 $6 $7= new $8();
 $9 $10= $11.$12().$13();
 while ($14.$15()) {
 $16 $17= ($18)$19.$20();
 $21 $22= ($23) $24.$25($26);
 try {
 $27 $28= $29.$30($31);
 $32 $33= $34.$35();
 $36 $37= $38. $39)

Figure 8: The role of the code preserver within the overall ar-
chitecture.

4.2.1 Definition
A refinement repositoryis a development tool component that ex-
poses the model to model refinement transformations of an MDA
code generator.

4.2.2 Motivation
In this paper, we explore to what extent refactorings can be ex-
pressed on platform independent metamodels without sacrificing
consistency with the underlying sources and configuration files. In
the case of generated software, it is important to know the de-
pendencies between domain entities and their derived component
model specific classes.

First of all, refactorings on a domain entity should trigger a regen-
eration of all derived sources and configuration files. This regener-
ation can be implemented with existing black box code generators
such as xDoclet.

Secondly, all manually written code that makes use of the gener-
ated classes needs to be updated as well [14]. Suppose, for exam-
ple, we renameCart to ShoppingCartin the problem domain of
our xPetstore sample. Under the covers, this high level refactoring
would be decomposed into the primitive “rename class” refactor-
ings forCartEJB, CartLocalHome, CartValue, ... To execute such
high level refactorings, a refactoring tool would need to query the
code generator’s “refinement repository” in order to learn about the
name dependency from domain entities that are stereotyped asEJB
to the name of model elements representing their bean class, local
home class, value object class, ...

5. FUTURE WORK
First of all, this experiment calls for more validation. Among other
things, we need to implement a GrammyUML parser for Java, a
code preserver and a refinement repository. As a first step, we
are extending the open source AndroMDA code generator with Fu-
jaba’s SDM. We have selected AndroMDA because of its standard
JMI repository and its support for various middleware component
models [15]. In this project, we will implement our suggested SDM
extensions, along with lessons learned from a review of the MOF
QVT submissions [16]. Another interesting project would be to
extend Fujaba’s lazy parser with the proposed metamodel exten-
sions. We also have to investigate whether and how the UML 2.0

diagram exchange format can be parsed to GrammyUML because
the current XMI standard does not include such information.

In our future work on Model Driven Refactoring with Gram-
myUML we may cover additional refactorings, additional for-
malisms and additional languages.

We are working on both additional primitive OO refactorings and
high level composed refactorings supporting design and architec-
ture evolution.

We are also evaluating how the emerging XQuery and XUpdate
standards can be used to implement refactorings on XML repre-
senting GrammyUML models. Our goal is to compare our graph-
ical (SDM), in-memory implementation (in Fujaba) with a textual
(XML), database implementation mainly in terms of expressive-
ness and scalability.

An interesting validation case for the new code preserver archi-
tecture is implementing refactorings for C++ programs. Our ap-
proach would preserve not only the C++ programmer’s code con-
ventions concerning white-spaces and newlines, but would also
preserve hand-written forward declarations acrosscpp and header
files (which are often designed as API documentation).

6. ACKNOWLEDGEMENTS
We would like to thank Matthias Bohlen, the lead engineer behind
AndroMDA, for his valuable feedback on the draft of this paper.

23 FujabaDays 2003

7. REFERENCES
[1] William F. Opdyke.Refactoring: A Program Restructuring

Aid in Designing Object-Oriented Application Frameworks.
PhD thesis, University of Illinois at Urbana-Champaign,
1992.

[2] Tom Mens, Serge Demeyer, Bart Du Bois, Hans Stenten, and
Pieter Van Gorp. Refactoring: Current research and future
trends.Language Descriptions, Tools and Applications
(LDTA), 2002.

[3] University of Paderborn Software Engineering Group.
Fujaba. http://www.uni-paderborn.de/cs/fujaba/, August
2003.

[4] Tom Mens, Niels Van Eetvelde, Dirk Janssens, and Serge
Demeyer. Formalising refactorings with graph
transformations.Fundamenta Informaticae, 2003.

[5] Don Bradley Roberts.Practical Analysis for Refactoring.
PhD thesis, University of Illinois at Urbana-Champaign,
1999.

[6] Sander Tichelaar Serge Demeyer and Patrick Steyaert. Famix
2.0 – the famoos information exchange model.
http://www.iam.unibe.ch/ famoos/FAMIX/, 09 1999.

[7] Herve Tchepannou. xPetstore.
http://xpetstore.sourceforge.net/java2html/xpetstore-
ejb/xpetstore/services/cart/ejb/CartEJB.java.html, August
2003.

[8] Java Community Process. Enterprise JavaBeans
specification, August 2003.

[9] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
Object-Oriented Reengineering Patterns, chapter 5, pages
103–107. Morgan Kaufmann, 2002.

[10] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge
Demeyer. Towards automating source-consistent UML
refactorings. InProceedings of the 6th International
Conference on « UML » – The Unified Modeling Language.,
2003.

[11] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the unified
modeling language. In G. Engels and G. Rozenberg, editors,
Proc. of the6th International Workshop on Theory and
Application of Graph Transformation (TAGT), Paderborn,
Germany, LNCS 1764. Springer Verlag, 1998.

[12] xDoclet Project Team. xDoclet.
http://xdoclet.sourceforge.net/, September 2003.

[13] Gentleware. Poseidon for UML.
http://www.gentleware.com/, September 2003.

[14] Matthias Bohlen. AndroMDA 3.0 vision document: Moving
to the agile world. http://www.andromda.org/developerdocs/,
July 2003.

[15] AndroMDA Project Team. AndroMDA.
http://andromda.sourceforge.net/, September 2003.

[16] Tracy Gardner, Catherine Griffin, Jana Koehler, and Rainer
Hauser. A review of OMG MOF 2.0 Query / Views /
Transformations Submissions and Recommendations
towards the final Standard, July 2003.

FujabaDays 2003 24

http://www.uni-paderborn.de/cs/fujaba/
http://www.iam.unibe.ch/~famoos/FAMIX/
http://xpetstore.sourceforge.net/java2html/xpetstore-ejb/xpetstore/services/cart/ejb/CartEJB.java.html
http://xpetstore.sourceforge.net/java2html/xpetstore-ejb/xpetstore/services/cart/ejb/CartEJB.java.html
http://xdoclet.sourceforge.net/
http://www.gentleware.com/
http://www.andromda.org/developerdocs/
http://andromda.sourceforge.net/

Integrated, Document Centered Modelling in Fujaba

Leif Geiger
SE, Universität Kassel

Wilhelmshöher Allee 73
34121 Kassel

leif.geiger@uni-kassel.de

Christian Schneider
SE, Universität Kassel

Wilhelmshöher Allee 73
34121 Kassel

christian.schneider@uni-
kassel.de

Albert Zündorf
SE, Universität Kassel

Wilhelmshöher Allee 73
34121 Kassel

albert.zuendorf@uni-
kassel.de

ABSTRACT
Originally, Fujaba is an UML based CASE Tool with empha-
sis on code generation and round-trip engineering. To pro-
vide better process support, we have developed the XProM
plugin. The XProM plugin provides a document centered
view on a project where all UML diagrams are embedded
in dedicated chapters of an overall project handbook. The
UML diagram and the corresponding document are inte-
grated such that adding diagram(element)s automatically
adds chapters for the description of these diagram(element)s.

1. INTRODUCTION
Many modern software development approaches propose a
so-called usecase driven process, e.g. the Rational Unified
Process RUP, [5]. In these approaches, requirements are
analyzed using usecase diagrams and textual scenario de-
scriptions. During the analysis phase these textual scenario
descriptions are refined using UML behavior diagrams like
sequence diagrams or collaboration diagrams. In the design
phase, the program structure is defined using e.g. class dia-
grams and the program behavior may be modelled using e.g.
statecharts. Unfortunately, processes like RUP define only
the management aspects of software development. Techni-
cal guidance for the actual work and tight tool integration
are still missing.

Adressing these shortcomings we devloped the Fujaba De-
velopment Process (FUP) providing technical guidance for
the use of UML diagrams in different development phases
and guidance for going from one process phase to the next.
To provide optimal tool support for FUP, we extended the
Fujaba case tool with an HTML based text document edi-
tor with integrated editing of UML diagrams, shown in Fig-
ure 1. Thereby, Fujaba provides a project handbook that
guides the developers through the development process.

Figure 1: Usecase diagram with scenario for usecase
changeSpeed

2. DOCUMENT STRUCTURE
When a new project is started, Fujaba loads a master copy
file that provides an initial structure for the project hand-
book document. One may modify this initial document in
order to adapt it to company or project standards and store
the modified document as the new master copy for project
handbooks.

Similarly, a template description file is loaded, that con-
tains example document fragments for different kinds of
UML (diagram) elements. When such an element is added
to an UML diagram, the corresponding document fragment
is copied into the project handbook. The new fragment is
linked to the corresponding diagram element. For each dia-
gram, a pre-defined (and modifiable) anchor describes where
template fragments are inserted. The user may modify the
template to adapt it to company or project specific needs in
the same manner like the other project documents.

In the following we describe a possible document structure
used in the software development laboratory course of Win-
ter Term 2002 at the University of Kassel.

25 FujabaDays 2003

3. RUNNING EXAMPLE
The students had to model a game called “Mississippi Queen”
using the Fujaba project handbook. In this game, every
player has a steamer and has to ship it up the Mississippi
collecting passengers. This example was given to the stu-
dents as an initial example for a development process.

Every project starts with a skeleton of a project handbook.
First the requirements are collected in usecases. By adding
a usecase diagram to the document Fujaba automatically
extends the handbook with a chapter for the description
of this diagram. Similarly, adding a usecase to a usecase
diagram automatically adds a template for the textual de-
scription of that usecase to the corresponding description
chapter. These textual scenario descriptions have to be filled
by the developer. Figure 1 shows a usecase diagram for the
Mississippi Queen example and the textual description of a
standard scenario for usecase changeSpeed.

Our usecase description template defines that each textual
usecase description has a paragraph for the start situation,
a paragraph for the invocation of that usecase, a number of
steps outlining the execution of the usecase and a paragraph
for the result situation.

4. AUTOMATISM
To provide further aid for transition from one process phase
to another several automatisms have been introduced, cf.
[2] or [3]. One of these derives a so-called story board from
the textual scenario description. Initially, this story board is
just an activity diagram with one activity for each element
of the textual scenario. These activities contain the original
textual descriptions as a comment. Now the developer is
encouraged to model each step by a collaboration diagram
that is embedded in the corresponding story board activity,
cf. Figure 2.

The first activity of Figure 2 models the start situation of the
changeSpeed scenario with a steamer s belonging to player
Fred having color green. The developer modelled this situ-
ation as an object diagram consisting of a steamer object s,
a game object g and an object gui representing the players
graphical user interface. The attribute values of the object
s are modelled as attribute pre-conditions, saying e.g. that
the steamer still has six units of coal.

Figure 3: Class diagram automatically created dur-
ing story boarding

During creation of story boards all used elements like ob-
jects, links, attributes and methods have to be provided
with appropriate declarations in an accompanying class dia-

Figure 2: Storyboard for scenario changeSpeed

FujabaDays 2003 26

gram. This already ensures a consistent use of object kinds,
attributes, links and methods throughout all scenarios and
even within the following design phase. Figure 3 shows the
class diagram of the Mississippi Queen example, that has
been created during story boarding. Again, adding a class
to a class diagram automatically adds a description chapter
to the project handbook and adding a method to a class
adds a template for the description of this method that usu-
ally contains the activity diagram modelling the behavior of
this method.

Note, method bodies have to be specified, manually. How-
ever, in [2] and in [3] we propose a systematic approach for
the derivation of method bodies from story boards.

In our work presented at [4], this is extended by automatic
support for the generation of tests and for the embedding of
test protocols into the project handbook.

5. CONCLUSIONS AND FUTURE WORK
In our approach, the concept of the initial project handbook
structure and the automatically applied templates achieve a
well structured and uniform project documentation.

The approach showed to work well for the students in the
software development laboratory course. An idea of a soft-
ware process was given by the initial structure of the project
handbook and was supported continually by the evolving
document.

This encourages us to specify a detailed software develop-
ment process inspired by the Rational Unified Process, [5]
and Extreme Programming [1] to be implemented as struc-
tured project handbooks. The developers can then be aided
to apply the process by several automation tasks.

In addition, we plan to provide support for team collabora-
tion and for project planning and project management.

6. REFERENCES
[1] K. Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley Publishing Company, 1999.

[2] I. Diethelm, L. Geiger, T. Maier, and A. Zündorf.
Turning collaboration diagram strips into storycharts.
In Workshop on Scenarios and state machines: models,
algorithms, and tools; ICSE 2002. Orlando, Florida,
USA, 2002.

[3] I. Diethelm, L. Geiger, and A. Zündorf. Uml im
unterricht: Systematische objektorientierte
problemlösung mit hilfe von szenarien am beispiel der
türme von hanoi. In Erster Workshop der
GI-Fachgruppe Didaktik der Informatik. Bommerholz,
Germany, 2002.

[4] L. Geiger and A. Zündorf. Transforming graph based
scenarios into graph transformation based junit tests.
In Applications of Graph Transformations with
Industrial Relevance (AGTIVE 2003). Charlottesville,
Virginia, USA, Septembre 2003.

[5] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley
Publishing Company, 1999.

27 FujabaDays 2003

FujabaDays 2003 28

Adapting FUJABA
for Building a Meta Modelling Framework

Carsten Amelunxen, Alexander Königs, Tobias Rötschke, Andy Schürr
Technische Univeristät Darmstadt

Institut für Datentechnik, FG Echtzeitsysteme
Merckstraße 25

64283 Darmstadt, Germany

{amelunx|koenigs|rotschke|schuerr}@es.tu-darmstadt.de

ABSTRACT
The Real-Time Systems Lab performs research in the area
forward engineering of automotive system software and reen-
gineering of large industrial embedded systems in general.
We need adequate CASE-tools to evaluate our approaches.
These tools should be built on a shared meta modelling
framework according to current standards (e.g. MOF 2.0,
JMI, OCL, GXL). The FUJABA Tool Suite provides a sub-
stantial part of the required functionality (e.g. model editor,
graph rewriting engine, Java code generator), but has to be
adjusted to meet the standards. Currently, the necessary
extensions can only be implemented by changing the FU-
JABA core, which is unsatisfactory. We would prefer to
extract some FUJABA core functionality and distribute it
over additional plug-ins. By doing so we could benefit from
FUJABA for our meta modelling framework without com-
promising its present functionality.

1. INTRODUCTION
The mission of the Real-Time System Lab is to support meta
model driven application development (MMDA) with a spe-
cial emphasis on forward engineering of automotive system
software and reengineering of large industrial embedded sys-
tems in general. The MMDA concept extends OMG’s idea
of model-driven application development (MDA) to the next
higher level, where domain-specific tools and tool adaptions
have to be developed as well. On this level meta tools are
needed which support the specification of domain-specific
modelling languages (including the adaption of general-pur-
pose languages) and the generation of appropriate tools like
editors, analyzers, and code generators.

As a consequence of this rather general perspective seven dif-
ferent research projects are currently under way, listed and
categorized in table 1. Three projects belong directly to the
automotive system software development area, whereas the

remaining projects either address reengineering and safety
issues of embedded RT systems in general or belong to dif-
ferent application areas. The entries of the table indicate
on which levels of OMG’s model hierarchy (M1-M3) system
development activities are addressed:

M1 model driven application development

M2 development, adaption, extension, and integration of
(domain-specific) modelling languages and tools

M3 development of meta modelling languages and tools for
the model driven development of modelling tools

A
u
to

m
o
ti

v
e

C
iv

il
E
n
g
.

E
-L

e
a
rn

in
g

M
e
d
.

Im
a
g
in

g

S
e
c
u
ri

ty
E
n
g
.

Project 1 2 3 4 5 6 7

Construction T M T t T
Transformation T a M
Analysis T M T T a T
Aspect-Weaving M
Integration T M T T T
Visualization a M T
Code Generation M a a M

M – Meta tool, tool, and application development (M1-M3)
T – Tool and application development (M1,M2)
t – Tool development (M2)
a – Application Development (M1)

Table 1: Topic Overview

All projects make contributions to all three modelling levels
listed above, complementing each other. Due to the lack of
space it is not possible to describe the specific goals of and
relationships between all ongoing projects. As a consequence
the following text describes only two projects in more detail
which make very extensive usage of graph transformation
techniques.

Evolution of complex embedded systems. Complex, software-
intensive industrial systems like medical imaging systems
and mobile switches evolve continuously and provide an in-
creasing number of features. Usually, architectural mod-
els are proprietary with individual representations in design
models and source code and are adjusted in isolated reengi-
neering steps. Keeping architecture, detailed design and
implementation consistent is difficult, as the architectural

29 FujabaDays 2003

consequences of small changes are not obvious to develop-
ers, and software architects can not manually check every
detail. So continuous architectural analysis should be auto-
mated [18].

Data integration of CASE tools. Out industrial partner in
the automotive sector uses several independent tools in dif-
ferent phases of the development process (e.g. DOORS for
requirements engineering, Matlab for system architecture,
CTE for testing), resulting in a variety of documents for
the same project. Though these documents are related with
each other, the tools cannot keep them consistent with each
other. Trying to achieve consistency manually is time con-
suming and error-prone. So data integration of these tools
should be automated [7].

Obviously, both projects need solution for meta modelling,
which is also true for the other five projects. The general
requirements of our projects are:

• generating repository interfaces, marshalling and un-
marshalling tools from meta class diagrams

• generating static semantics checks and model analyz-
ers from predicate logic expressions

• generating model transformation tools from graph re-
writing rules

• generating tool integrators from triple graph gram-
mars, a graph transformation based declarative ap-
proach to define document-boundary crossing consis-
tency relationships [19]

• aspect weaving

• code generation

So it makes sense to define a shared meta modelling frame-
work where all pieces fit together. In section 2 we describe
how such a meta modelling framework should look like.
Next, we explain in section 3 how FUJABA can help us
to realize the framework and which modifications are neces-
sary. In section 4 we explain how ECLIPSE should provide
our framework with a common user interface and extensi-
bility, and why FUJABA should adopt ECLIPSE as well.
Finally, we discuss alternatives in section 5.

2. WHY WE NEED A META MODELLING
FRAMEWORK

To address the specific issues mentioned in section 1 we need
tools that provide different, but overlapping sets of features.
As summarized in table 2, an intermediate investigation of
existing tools reveiled, that many independent tools would
be needed to provide the most important features. However,
these tools do not interact with each other very well, and
most commercial tools cannot be extended to match our
requirements.

So we decided to select a small set of existing tools, i.e.
FUJABA [2], ECLIPSE [17] and Dresden-OCL compiler [10]
as a starting point for a meta modelling framework so that
the tools can exchange data with each other. To increase the

F
U

J
A

B
A

S
fP

T
o
g
e
th

e
r

A
rt

is
a
n

E
C

L
IP

S
E

R
a
ti

o
n
a
l
R

o
se

R
a
ti

o
n
a
l
R

o
se

/
R
T

A
rg

o
U

M
L
/
P
o
se

id
o
n

D
re

sd
e
n

O
C

L
-C

o
m

p
il
e
r

Architecture
Description
Language

- o o o - o (+) o -

Integration
Framework

- o - (o) (+) (o) - - -

Extensible
Code Generator

o + o o - - - - -

Model Driven
Architecture

+ (+) - (+) - - + - -

Meta Modelling o o (o) - (o) - - (o) -
OCL-Compiler - - - - - - - + +
Rule Interpre-
ter

+ - - - - - - - -

Available
Source Code

+ - - - + - - +/- +

License costs + - - (-) + (-) (-) +/- +

Table 2: Tools and features for meta-modelling

potential acceptance and interoperability of our framework,
it should adhere to the most recent standards.

The Object Management Group (OMG) is currently the au-
thority in the field of standardization of (meta-)modelling
languages. It is about to accept the current proposal for
MOF 2.0 [14] as standard meta modelling language. The
meta model of the next version of the popular Unified Mod-
elling Language, UML 2.0, which is the OMG standard mod-
elling language, will be defined using MOF 2.0. So it is very
likely, that MOF 2.0 will be the meta modelling language
and hence widely accepted in the near future.

The OMG standard format for tool interoperability is the
XML Metadata Interchange 2.0 (XMI) format [16]. Many
modelling and CASE-tools support XMI already. XMI used
to come in two variants, UML-XMI and MOF-XMI accord-
ing to the 1.x specifications of these languages. The variants
will be replaced by MOF-XMI according to MOF 2.0, and
hopefully be supported by more and more tools.

Rational Rose, the most important UML modelling tool,
does already support MOF-XMI according to the old 1.x
specification and will most likely support the 2.0 specifica-
tion soon. Many other tools however, support only UML-
XMI and our framework should be able to interact with
these “legacy” tools. The University of the Federal Armed
Forces Munich has already developed an XSLT script which
can translate UML-XMI to MOF-XMI.

Many CASE tools including FUJABA are currently written
in Java. To deal with meta models in Java, Sun as owner of
Java has released the Java Metadata Interface (JMI) Stan-
dard [3]. As many tools will adopt XMI to exchange meta-
data, they will use the JMI standard to represent it inter-
nally. So our framework should be written in Java according
to the JMI standard as well. The University of the Federal
Armed Forces is working on a tool to convert MOF-XMI
metadata to JMI compatible Java source code.

Static constraints that cannot be expressed graphically can
be written using the Object Constraint Language (OCL),

FujabaDays 2003 30

the OMG standard for constraints [15]. However, the se-
mantics of OCL is not fully defined though effort has been
spent to provide it with more precise meaning, e.g. [8].

Fujaba’
Codegenerator

generates
OCL Compiler

Import/Export MOF 2.0 XMI

UML XMI

XSLT

Java Programs / ECLIPSE Plug−ins

Compiler

Reengineering Tools

Safety Tool

AutomotiveUML

Fujaba’

otherRational
Rose

OCL Graphical MOF Editor

Triple Graph Grammars

Collaboration
Graph Transformation

Verification
Statical Contraint

JMI with GXL, simple XML
JMI with XMI Import/Export Implementation of Methods

Figure 1: A vision of the meta modelling framework
using FUJABA’

Figure 1 provides an overview of our framework denoted as
FUJABA’. The lower part deals with the interoperability
with other CASE tools using XMI. The upper part shows,
how FUJABA’ generates JMI compliant Java code for our
meta modelling tools from MOF compliant models, graph
transformation rules and OCL constraints.

3. FUJABA IN THE CORE OF THE META
MODELLING FRAMEWORK

FUJABA Tools Suite 4.0 allows to create and edit UML
class diagrams, activity diagrams and statecharts. Methods
of classes defined in a class diagram can be implemented by
specifying graph transformations on a UML collaboration
diagram or just typing Java source code. The control flow is
specified using UML-like activity diagrams, the graph trans-
formations are embedded inside its activities. Because UML
is widely known, it is easy to teach people how to use these
so-called story diagrams.

Using this technique makes sense, as existing (meta) models
are often defined in UML class diagrams. Mathematically,
these can be described as graphs. As we want to reason
about those existing models, graph rewriting rules provide
a proper means to describe rules and transformations. Usu-
ally, graphically represented rules are easier to understand
and mapped onto the existing models than textual rules.
When graphically rules become too complicated to under-
stand or are not expressive enough, the OCL still provides

a textual means to fill the gap within the standard of UML.

Consistency rules between data models should be described
by means of triple graph grammars. The FUJABA team is
already working to integrate them into future releases.

There is still some work to be done to adjust FUJABA to
our needs. The class diagramm editor has to be extended
by a MOF 2.0 compatible editor. We need to propose, how
MOF can be extended to cover story diagrams as standard-
ized notation for graph rewriting rules. The code generator
has to be replaced by a JMI-compliant variant. The XMI-
JMI converter from the University of the Federal Armed
Forces should be integrated into FUJABA. The existing
path expression compiler should be replaced by integrating
an OCL-Compiler, e.g. the Dresden OCL compiler. Option-
ally, FUJABA should be provided with UML packages, so
that diagrams can be organized in a more efficient way.

Some of the extensions, like changes of the diagram editor
and the code generator would require modifications of the
FUJABA core. However, it would be better to realise this
functionality as plug-ins, so that the user can choose between
the original, initially more stable and the new functionality
according to the new standards.

4. ADOPTING ECLIPSE
To provide our FUJABA-generated tools with a shared user
interface and let them operate with other tools, we want to
use ECLIPSE as integration framework. So all tools will
be realized as ECLIPSE plug-ins. Additionaly, we plan to
provide ECLIPSE with a MOF 2.0 compliant meta model.

If more and more FUJABA functionality is put into plug-ins,
it makes sense that FUJABA adopts the ECLIPSE plug-in
concepts as well. Eventually, FUJABA should become a
MOF-compliant compiler and an editor, separately usable
inside the ECLIPSE framework. Figure 2 shows, how the
current FUJABA core should be transformed into a smaller
FUJABA’ core with more plug-ins that finally can be re-
placed by the ECLIPSE plug-in manager. This would allow
more CASE tools to use its graph transformation engine,
even if third-party editors are used. However, ECLIPSE
does not provide data integration, but this is a core topic of
our research.

5. RELATED WORK
Although not yet complete, we have considered some related
work when working on our vision. Preliminary decisions for
the choice of FUJABA and JMI over other alternatives are
made based upon the following considerations.

5.1 IPSEN and PROGRES
IPSEN [13] is an existing integration framework, that could
be a starting point for our framework. The graph rewrit-
ing system PROGRES [20], which is based on IPSEN, could
be used as an alternative for FUJABA. PROGRES has a
more powerful language than FUJABA and is more stable
due to its higher degree of maturity. However, IPSEN and
PROGRES are written in Modula-3 and do not run on Win-
dows platforms, which are most common among our indus-
trial partners. PROGRES uses a proprietary GUI and does

31 FujabaDays 2003

Plug−in
Control

Eclipse

Plug−inPlug−in

Fujaba’

Fujaba

Graph−
transformation

Code−
generator

Graphical
Editor ... Plug−in

Control

Plug−in

Code− Graph−
transformation

Graphical
Editor ...generator

Plug−in
Control

Plug−in

...

Plug−in

...

Figure 2: Evolving from FUJABA’ to ECLIPSE

not comply to the newest standards, resulting in potentially
less acceptance. Besides, IPSEN and PROGRES are very
complex and do not have plug-in concept like FUJABA, so
further extensions are more difficult to realize.

5.2 JAXB and XML Schema
The Java Metadata Interface (JMI) defines a mapping for
MOF compliant models onto java technology. JMI uses XMI
for the interchange of metamodel and metadata. A similar
mapping could be achieved by using general data binding
frameworks like JAXB [6], Zeus [4] or Castor [5] together
with adequate XML schemata. The use of general data bind-
ing frameworks provides a less powerful mechanism because
they are developed for common purpose applications as op-
posed to JMI which is dedicated to metadata. Due to the
universal approach the entropy of such a mapping is higher
than the entropy of a domain specific approach like JMI.
JMI is a specialized interface and developed to fulfill the
demands of a MOF mapping onto java technology. This is
the advantage of JMI which makes JMI more suitable than
a general data binding framework.

However, support for JAXB and XML Schema could be an
optional feature of our framework. One possible application
would be interoperability based on GXL [21] instead of XMI.

5.3 Meta CASE Tools
Available Meta CASE Tools like MetaEdit [12, 11], DOME
[9], StP [1] would provide the possibility to generate CASE
Tools using Meta Models. Unfortunately, they do not pro-
vide graph transformations and are usually closed source.
So there is no way to extend those tools to meet our needs.

6. CONCLUSIONS
Adopting FUJABA for our meta modelling framework re-
quires reasonable effort, but starting from scratch would be
even worse. On the other hand, adjusting FUJABA towards
the upcoming standards by using XMI-MOF 2.0 as exchange
format, generating JMI-compliant Java code and integrating

FUJABA with ECLIPSE will increase the interoperability
and acceptance of FUJABA. As far as we can see, our pro-
posals follow the current trend of FUJABA development.
So joining the existing FUJABA community would be ben-
eficial both for us and the community.

Our next steps will be a more detailed analysis of alterna-
tive approaches and a feasibility study, to find out the best
strategy to realize our ideas.

7. REFERENCES
[1] Aonix. Software through Pictures (StP).

http://www.aonix.com/stp.html.

[2] S. Burmester, H. Giese, J. Niere, M. Tichy,
J. Wadsack, R. Wagner, L. Wendehals, and
A. Zündorf. Tool Integration at the Meta-Model Level
within the FUJABA Tool Suite. In Proc. Workshop on
Tool-Integration in System Development (TIS 2003),
pages 51–56, Helsinki, Finland, Sept. 2003.

[3] R. Dirckze. Java Metadata Interface (JMI)
Specification, v1.0. Unisys Corporation, Sun
Microsystems, Inc., June 2002.
http://java.sun.com/products/jmi/.

[4] Enhydra.org. ZEUS 3.5: Open Source Java/XML
Data Binding. http://zeus.enhydra.org/.

[5] Exolab.org. Castor 0.9.5. http://castor.exolab.org/.

[6] J. Fialli and S. Vajjhala, editors. The Java
Architecture for XML Binding (JAXB), v1.0. Sun
Microsystems, Inc., Jan. 2003.
http://java.sun.com/xml/jaxb/.

[7] R. Freude and A. Königs. Tool integration with
consistency relations and their visualisation. In Proc.
Workshop on Tool-Integration in System Development
(TIS 2003), pages 6–10, Helsinki, Finland, Sept. 2003.

[8] R. Hennicker, H. Hussmann, and M. Bidoit. On the
Precise Meaning of OCL Constraints. In T. Clark and
J. Warner, editors, Advances in Object Modelling with
the OCL, volume 2263 of LNCS, pages 70–85.
Springer, 2001.

[9] I. Honeywell. DOME Guide, v5.2.2, 1999.
http://www.htc.honeywell.com/dome/.

[10] H. Hussmann, B. Demuth, and F. Finger. Modular
Architecture for a Toolset Supporting OCL. In
A. Evans, S. Kent, and B. Selic, editors, UML 2000 -
The Unified Modelling Language. Advancing the
Standard, volume 1939 of LNCS, pages 278–293, York,
Oct. 2000. Springer.
http://dresden-ocl.sourceforge.net.

[11] S. Kelly. Improving the Integration of a
Domain-Specific Modelling Tool. In Proc. Workshop
on Tool-Integration in System Development (TIS
2003), pages 57–60, Helsinki, Finland, Sept. 2003.

[12] S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+: A
Fully Configurable Multi-User and Multi-Tool CASE
Environment. In P. Constantopoulos, J. Mylopoulos,
and Y. Vassiliou, editors, CAiSE, volume 1080 of
LNCS, pages 1–21. Springer, May 1996.

FujabaDays 2003 32

[13] M. Nagl, editor. Building Tightly Integrated Software
Development Environments: The IPSEN Approach,
volume 1170 of Lecture Notes on Computer Science.
Springer, 1996.

[14] Object Management Group, Inc. Meta Object Facility
(MOF) 2.0 Core Proposal, Apr. 2003.
http://www.omg.org/docs/ad/03-04-07.pdf.

[15] Object Management Group, Inc. Response to the
UML 2.0 OCL RfP (ad/2000-09-03), Jan. 2003.
http://www.omg.org/docs/ad/03-01-07.pdf.

[16] Object Management Group, Inc. XML Metadata
Interchange (XMI) Specification, v2.0, May 2003.
http://www.omg.org/docs/formal/03-05-02.pdf.

[17] Object Technology International, Inc. Eclipse
Platform Technical Overview, v2.1, Feb. 2003.
http://www.eclipse.org/whitepapers/eclipse-
overview.pdf.

[18] T. Rötschke and R. Krikhaar. Architecture Analysis
Tools to Support Evolution of Large Industrial
Systems. In Proc. IEEE International Conference on
Software Maintenance (ICSM), pages 182–193, Oct.
2002.

[19] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In E. W. Mayr, G. Schmidt,
and G. Tinhofer, editors, Graph-Theoretic Concepts in
Computer Science, 20th International Workshop, WG
’94, Herrsching, Germany, June 16-18, 1994,
Proceedings, volume 903 of Lecture Notes in Computer
Science, pages 151–163. Springer, 1995.

[20] A. Schürr, A. J. Winter, and A. Zündorf. Developing
Tools with the PROGRES Environment. In Nagl [13],
pages 356–369.

[21] A. Winter, B. Kullbach, and V. Riediger. An Overview
of the GXL Graph Exchange Language. In S. Diehl,
editor, Software Visualization, volume 2269 of LNCS,
pages 324–336. Springer, Berlin Heidelberg, 2002.

33 FujabaDays 2003

FujabaDays 2003 34

Layout Algorithms for FUJABA Diagrams ∗

[Extended Abstract]

Kalle Aaltonen
Department of Computer

Sciences
University of Tampere

Kanslerinrinne1, FIN-33014,
University of Tampere, Finland

kalle.aaltonen@uta.fi

Jyrki Nummenmaa
Department of Computer

Sciences
University of Tampere

Kanslerinrinne1, FIN-33014,
University of Tampere, Finland

jyrki@cs.uta.fi

Timo Poranen
†

Department of Computer
Sciences

University of Tampere
Kanslerinrinne1, FIN-33014,

University of Tampere, Finland

tp@cs.uta.fi

ABSTRACT
We describe how a layout algorithm for the UML class dia-
grams is designed and implemented. We also study how the
algorithm can be used with the FUJABA and applied with
other diagram types of FUJABA.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.2 [Software Engineering]: Object-oriented design meth-
ods—class diagrams, layout algorithm

General Terms
Layout algorithm, polyline grid drawing, FUJABA plugin

1. INTRODUCTION
The Unified Modeling Language (UML) [12] is currently the
standard notation for modeling software-intensive systems.
The UML can be used to visualize, construct, and document
the artifacts of a software system.

Graph drawing [2] addresses the problem of constructing
geometric representation of graphs. Every UML diagram
can be though as a graph, and how a graph corresponding to
a given UML diagram should be drawn, is a graph drawing
problem.

Usability tests [9, 10] and many theoretical results (see [2],
and references given there) verify that

∗Supported by the Academy of Finland (Project 51528).
†Work funded by the Tampere Graduate School in Informa-
tion Science and Engineering (TISE).

a good diagram helps the reader to understand
the system, but poor diagram can be confusing.

Three fundamental issues in graph drawing are the conven-
tions when drawing graph, the aesthetic criteria for a read-
able drawing and the constraints that a drawing may be
required to satisfy.

A drawing convention is a special rule that the drawing have
to satisfy [2]. Widely used conventions are the following:
polyline drawing (each edge is drawn as a polygonal chain),
straight line drawing (edges are straight lines), orthogonal
drawings (each edge is drawn as a polygonal chain of alter-
nating horizontal and vertical segments), grid drawing (ver-
tices, crossings, and edge bends have integer coordinates),
planar drawing (no edge crossings) and upward (down, left
and right) drawing.

Constraints are used to provide semantic information about
the meaning of the drawing in order to better reflect the
features of the underlying model [5, 13] (for example: place
“most important class” in the center of the layout). These
types of instructions usually cannot be automatically de-
duced by a diagram layout algorithm. Hence, the user has
to give them as additional input.

An aesthetic criterion is a general graphical property of the
layout that we would like to have [1, 2, 8, 10]. A well chosen
aesthetic criterion improves the readability of the given lay-
out (for example: minimize the total number of edge cross-
ings, maximize the symmetry in the drawing, and minimize
the number of the edge bends in the drawing).

FUJABA is an Open Source UML CASE tool [3]. FUJABA
project started at the software engineering group of Pader-
born University in 1997. In this extended abstract we de-
scribe briefly the basic theoretical properties of the layout
algorithm for class diagrams, how the algorithm is imple-
mented for the FUJABA, and how it can be used as a plu-
gin. Finally we discus open problems related on the layout
algorithm. We also study the applicability of the layout
algorithm for other diagram types used in FUJABA.

35 FujabaDays 2003

Figure 1: Two sample layouts for an artificial class diagram. A hand drawn layout is on the top, a basic
layout is on the down left and a layout with edge bend minimization is on the down right.

FujabaDays 2003 36

2. LAYOUT ALGORITHM FOR CLASS DI-
AGRAMS

Implemented layout algorithm is originally based on a C++
implementation [6] of an algorithm given by Nummenmaa
[7]. The layout algorithm constructs first an abstract graph
from the FUJABA objects (JPanel and JLine). Then this
graph obtained from different objects and their relations is
given as input to the layout algorithm. The steps that the
layout algorithm performs are as follows:

1. Graph is connected and biconnected.

2. If graph is non-planar, then it is planarized by adding
dummy vertices [4].

3. Graph is maximalized [11].

4. Canonical numbering for the vertices is calculated [7].

5. Visibility representation is constructed from the canon-
ical numbering [7].

6. The new positions for vertices is found by using the
visibility representation [6].

7. The total number of edge-bends is minimized by op-
timizing the positions of vertices and the routing of
edges [6].

The new coordinates of classes are updated after the last
phase. Basically, the layout algorithm works with any kind
of diagrams that contains objects (=vertices) and connec-
tions between these objects (=edges).

The basic theoretical properties of the layout algorithm are
the following:

1. Algorithm runs in linear time if the input graph is
planar, otherwise its running time is bounded by the
number of added dummy vertices in Phase 2.

2. Obtained drawing is a polyline grid drawing.

3. If graph corresponding to the class diagram to be drawn
is planar, then there is no edge crossings in the layout.

4. If graph is non-planar, then there will be edge crossings
in the final layout.

5. Classes do not overlap in the layout.

6. Algorithm works with variable size classes.

7. Algorithm does not change the sizes of the classes.
Only the positions of classes and edges are changed.

8. It is possible to construct different layouts for the same
class diagram by running the algorithm again.

9. It is possible to use a procedure that tries to minimize
the number of edge bends of the layout.

10. Algorithm does not take account any semantic infor-
mation concerning classes and their relations.

See Figure 1 for two sample layouts of an artificial class
diagram containing 14 classes. A hand drawn class diagram
is on the top and a new basic layout is on the down left.
In the layout the sizes of classes do not change, only new
positions are calculated. Edges are drawn with at most two
bends for an edge.

An experimental layout is on the down right in Figure 1.
In this layout the total number of edge bends is tried to
minimize by calculating better positions for classes. The
minimization of the total number of edge bends is one of
our research problems. The implementation for the edge-
bend minimization is still in progress.

3. IMPLEMENTATION
The algorithm is implemented with Java, since FUJABA
requires that. The code is, at the moment, divided into
eight files. Some files and classes are there for the FUJABA
plugin (the Layouter is added as a standard plugin), but the
important files considering the layout are

UMLClassDiagramAdapter.java
This file contains a class which is used to convert the
FUJABA’s UMLClassDiagram into a form that can be
used in the layout-algorithm. It also converts the new
layout back to FUJABA. The same layouter can also
be used for other types of diagrams, but the imple-
mentation needs a different adapter.

NodeInfo.java and EdgeInfo.java
These two files are added so that the layout-algorithm
is more general purpose. Diagram is first converted
into NodeInfo’s and EdgeInfo’s and only then fed to
the layout-algorithm, so these classes work as sort of
a bridge. With the help of these classes the actual
algorithm does not need to be changed every time it’s
used in a different program.

SimpleGraph.java and LayOut.java
These two files contain the actual implementation of
the algorithm. Originally the algorithm was imple-
mented with C++ and this version is translated from
that one. New methods are also added due to differ-
ences between C++ and Java.

4. USAGE
Using the Layouter in FUJABA is simple.

1. Start FUJABA with this Layouter added as plu-
gin.

2. Open a project.

3. Open the Class diagrams folder and choose a di-
agram.

4. The layout-button appears at the bottom of the
vertical panel of buttons. Press the button.

Every time you press the relayout-button again, you get
a different layout. So by doing this, you can try different
layouts until you find one that satisfies you.

At this moment it’s not possible to exploit manual changes
on diagrams when using the layout algorithm multiple times.

37 FujabaDays 2003

The whole diagram is relayouted when you press the relayout-
button. Also the manual changes in layout will be gone.

Currently there is no a button for the edge bend minimiza-
tion. To test this experimental feature a function call in
class UMLDiagramAdapter.java need to be changed.

5. FUTURE WORK
The implementation of this layout-algorithm is still very
much in progress and at this moment the plugin cannot be
downloaded from anywhere else but the FUJABA reposi-
tory. The publishable version of our plugin should be ready
December 2003.

Layout algorithm needs still some fine tuning and bug-fixing.
Phases 2 and 7 of the algorithm are hard combinatorial opti-
mization problems, and our goal is to study efficient heuristic
methods for them. Since the algorithm does not take ac-
count any semantic information about the underlying class
diagram, it might be possible to improve the readability of
the layout using this kind of information. For example, a
class that inherits another class, should be drawn below the
base class. Currently algorithm does not support any ad-
ditional information given by user (constraints) when con-
structing the layout. For example, user might want to draw
a subset of classes closely together or choose a set of classes
which positions in the layout are not allowed to change.

From the point of view of aesthetics, it could be possible to
consider some aesthetics better than they are implemented
in the current algorithm. Such aesthetics are the maximiza-
tion of the smallest angle between edges and the minimiza-
tion of the ratio of the sides of the smallest rectangle covering
the layout. It should be noticed that often the optimization
of one aesthetics contradicts with the optimization of an-
other aesthetics.

Layout algorithm is designed for abstract graphs. Therefore
it is, basically, possible to apply our algorithm for any kind
of diagrams that contain objects and relations between those
objects. If the considered diagram type (for example, com-
ponent diagrams) contains multiple edges between objects,
it is easy to modify the layout algorithm to support this
feature. Since the current layout algorithm does not take
account semantic information about the underlying graph,
there will be difficulties to apply the algorithm for diagrams
that contain additional information on the relation of ob-
jects (for example, hierarchical structure of statecharts).

To use the layout algorithm for other diagram types, it is in
most cases enough to modify the adapter class (UMLClass-
DiagramAdapter.java) that converts the FUJABA class di-
agram to the graph format that is understood by the layout
algorithm. If there is a need to take account any semantic
information on a given diagram type, at least the adapter
file and the main file of the drawing algorithm (Layout.java)
need changes. This latter task, depending on the wanted
drawing conventions and constraints, might be very com-
plex.

6. REFERENCES
[1] C. Batini, L. Furlani, and E. Nardelli. What is a good

diagram? In 4th Int. Conf. on the Entity Relationship
Approach, pages 312–319, 1985.

[2] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis.
Graph Drawing. Prentice Hall, 1999.

[3] Fujaba tool suite 4.0. Available at
http://http://www.uni-paderborn.de/cs/fujaba/.

[4] J. Hopcroft and R. Tarjan. Efficient planarity testing.
J. ACM, 21:549–568, 1974.

[5] C. Kosak, J. Marks, and S. Shieber. Automating the
layout of network diagrams with specified visual
organization. IEEE Trans. Syst. Man Cybern.,
SMC-24(2):440–454, 1994.

[6] T. Männistö, T. Systä, and J. Tuomi. SCED report
and user manual. Technical Report A-1994-5,
University of Tampere, Dept. Comp. Sciences, 1994.

[7] J. Nummenmaa. Constructing compact rectilinear
planar layouts using canonical representation of planar
graphs. Theor. Comp. Sci., 99:213–220, 1992.

[8] T. Poranen, E. Mäkinen, and J. Nummenmaa. How to
draw a sequence diagram. In Proc. 8th Symp. on
Programming Languages and Software Tools, pages
91–102, 2003.

[9] H. Purchase, J.-A. Allder, and D. Carrington. Graph
layout aesthetics in UML diagrams: user preferences.
J. Graph Alg. Appl, 6(3):255–279, 2002.

[10] H. Purchase, R. Cohen, and M. James. Validating
graph drawing aesthetics. In Proc. Int. Symp. on
Graph Drawing, number 1027 in LNCS, pages
435–446, 1996.

[11] R. Read. A new method for drawing a planar graph
given the cyclic order of the edges at each vertex.
Congr. Numer., 56:31–44, 1987.

[12] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual.
Addison-Wesley, 1999.

[13] R. Tamassia, G. Di Battista, and C. Batini. Automatic
graph drawing and readability of diagrams. IEEE
Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.

FujabaDays 2003 38

A Database Schema Diagram Plugin for Fujaba ∗

Ari Seppi
Department of Computer Sciences

University of Tampere
Kanslerinrinne1, FIN-33014, University of

Tampere, Finland

ari.seppi@uta.fi

Jyrki Nummenmaa
Department of Computer Sciences

University of Tampere
Kanslerinrinne1, FIN-33014, University of

Tampere, Finland

jyrki.nummenmaa@cs.uta.fi

ABSTRACT
Typically present-day software uses relational databases to
store persistent data. We describe a way to build an object-
oriented interface to a relational database. It is possible to
either edit the relational database schema graphically or to
reverse engineer the relational database description from the
database. It is possible to automatically generate an object-
oriented interface for the relational database. We have im-
plemented our methods as a plugin for the Fujaba platform.
We also describe shortly some experiences of using the plu-
gin.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design; D.2.2
[Software Engineering]: Design Tools and Techniques

General Terms
FUJABA plugin, database schema diagrams

1. INTRODUCTION
Most present-day information systems use relational databases
to store the persistent information[1]. Object-oriented soft-
ware systems are no exception in this respect. There is a
natural need to reflect this situation also in the software
development tools.

The basic requirement for this is that the software develop-
ment tools are able to model both object-oriented software
and a relational database. The present-day standard for OO
modeling is the use of UML. A relational database should
be modeled as it is, ie. tables with attributes, along with
primary and foreign keys.

These models should be used in the software development
toolset to create an object-oriented interface to the data in

∗Supported by the Academy of Finland (Project 51528)

the relational database. It should be understood that im-
plementing this interface is a boring and error-prone task,
and requires re-engineering whenever the database schema
changes. Therefore, it is best to automate this activity. It
should also be understood that just creating an interface to
the relations is not enough. It is natural that views and
queries are needed as the system is being developed. It
should also be possible to model those as a part of the re-
lational model and to create object-oriented access to the
views and queries as well.

We describe a way to accomplish these aforementioned tasks
within the Fujaba [2] framework. We have implemented a
Fujaba plugin to make these tasks possible in practice.

We assume that the reader is familiar with relation database
basics, as well as object-oriented software development.

2. THE RELATIONAL LEVEL
Graphically, the relational database is represented as a graph,
where the set of nodes is the set of relations and the set of
edges is the set of foreign-key relationships between the re-
lations. An example is given in Figure 1.

However, there are other important elements in the rela-
tional level, which also should be modeled. Although it is
possible to query single relations, it is likely that many or
most queries will in practice access data in several relations.
For software development, these queries are equally impor-
tant to model.

We have chosen two ways to model queries. First of all, it
is possible to model a view by selecting the attributes to
be included in the resulting view and by giving the textual
representation of the condition for the query representing
the view. Graphically, this is like making a new relation
based on the existing relations.

Secondly, it is possible to define a query, which uses a num-
ber of relations. The main difference between a view and
a query is as follows. When the view is used to access the
database, the result is a set of rows from the (virtual) view
relation. However, when the query is used to access the
database, each row in the result in fact consists of the full
rows of the relations used to define the content of the query.
That is, the answer contains full rows of original database
relations, which can then be used to e.g. update the data in
the database (unlike the rows of a view, which may, on the

39 FujabaDays 2003

other hand, be more appropriate to represent the required
answer).

The primary working method in mind with this toolset is
that the designer describes the relational database and views
and queries. These are then used to generate object-oriented
software, as described in the next sections. We have some
specific ideas on how to create this object-oriented interface
to support flexibly application development.

However, sometimes the database is changed without up-
dating the relational database diagram or it already ex-
ists. In these cases it is necessary to reverse engineer the
database description. We acknoledge the existence of the
REDDMOM toolset to do this reverse engineering. [5]

Due to shortage of resources, it seemed like an easier choice
to implement straightforward reverse engineering based on
the description of the database as SQL files or data defi-
nition statements in the database using JDBC access. If
more resources are available on a later date, then maybe
the more complete REDDMOM reverse engineering can be
used. However, this implies a need to unify the internal data
structures, to match the structures used by our forward en-
gineering software.

The present reverse engineering simply identifies the tables
and their attributes along with their data types from the
table descriptions. Similarly, the primary and foreign keys
and unique definitions are just taken in a straightforward
manner from the table definitions. It is also possbile to
guess foreign keys based on attribute names. Foreign key
guessing uses a very simple algorithm: First it checks if two
tables have one or more attributes with same names. After
that it accepts for foreign key guessing the attribute groups
that form a primary key or unique constraint.

The tools created by us do not use any real data access in the
reverse engineering, and apparently a more complete reverse
engineering tool such as the REDDMOM might prove useful.

We have no reverse engineering support for program source
code. However, it has been found that concentrating on the
data is more efficient at first phase (e.g. [3]). Of course, this
does not mean that source code reverse engineering would be
useless, but it does support our choice to prioritize reverse
engineering of data.

Graphically, the drawing area figures for the relations are as
follows. Tables are rectangles and views dashed rectangles.
Foreign key relations between tables are shown as arrows
pointing from foreign key’s table to table where key’s at-
tributes form a primary key. Query relations are displayed
as lines without an adornment on either end and finally a
view’s relation to a table is similar to composition in class
diagrams.

It is possible to output the SQL statements to create the
database and define the views. A database description in
HTML form is also produced.

3. THE OBJECT-ORIENTED INTERFACE
TO THE DATABASE

The automatic creation for an object-oriented interface to
a relational database naturally requires some design princi-
ples. That is, there must be some rules by which the respec-
tive classes are formed.

Our software is built with primarily JDBC access in mind.
JDBC, of course, provides a lot of flexibility as it can be
used to access databases from different vendors.

To start from the basic choices, there must be some data
types for the relation attributes. The data types used by
default in JDBC are, however, quite poor for a number of
reasons. First of all, one should not use primitive data types,
as they do not enable representation of null values. Even if
we get around this by using wrapper classes such as Integer
instead of int, we still face the situation that the services
given by different data types are different. There are no
similar constructors or setters from string values and there
is no consistent error management, for instance. Therefore,
we chose to implement our own SQL data types to wrap
the data in a unified wrapping primarily to better support
string operations, JDBC access, and error management.

Based on our SQL data types, a class is formed for each
relation and view. These classes contain SQL data type
attributes for table attributes, and methods to set/get values
(also as strings) as well as methods to access the database
for insert, modify, delete and retrieval of a single row.

In fact, two classes for a relation R are initially created:
a database class DB R to hold all automatically generated
code for relation R, and a class R, which inherits DB R.
The user is to add all necessary additions to class R, as
DB R may be regenerated later with minimal implications
to existing software.

In addition to the above methods, the class R also includes
a method to make a query of the form SELECT * FROM
R WHERE w, where w is a SQL condition to be given as
runtime input for the method. For each view, similar classes
are created to access the data through the view.

The treatment of queries is not similar to the relations and
views, as one may guess from the discussion in the previous
section. The difference between views and queries is in their
object-oriented interface as follows. Assume that a query
Q is of the form SELECT * FROM R1,...,Rn WHERE w,
where w is, again, an applicable condition. Then, the class
Q generated for Q contains methods for making query Q.
However, when the results are traversed, the values for each
row are returned as objects for all classes R1,...,Rn, instead
of just one class containing all attributes of the query. This
way, one gets objects which can be used to update the data
in these relations directly. Figure 2 contains classes gener-
ated from the relational database schema in Figure 1.

The plugin can be used to create the Java code for the classes
described above. Fujaba’s reverse engineering facilities may
then be used to add these classes to the class diagrams.

4. IMPLEMENTATION
The current implementation of the plugin has the function-
alities described above.

FujabaDays 2003 40

Figure 1: An example relational database schema

41 FujabaDays 2003

Figure 2: An example class diagram computed from the relational diagram in Figure 1

FujabaDays 2003 42

The first phase in a plugin design is the object modelling:
how to model the schema objects and their relationships.

First object class that comes to mind is naturally a database
schema itself, the second is a database table. After them we
move on to attributes and notice that they are complicated
enough structures to be objects of their own too. The same
goes for unique and foreign key constraints. Unique con-
straint doesn’t seem to need its own class (a list of names
would do), but implementing separate class is clearer and
- in this plugin’s case - also necessary because of Fujaba’s
structures. Two more classes are needed: one for views and
one for queries.

Secondly the objects in the classes need relations to each
other. Attributes and unique and foreign constraints are
related to a table (foreign constraints to two tables), and
because of Fujaba’s drawing model, the foreign keys also
have to be referred to in a schema so that they can be drawn
on the drawing area. Foreign keys and unique specifications
also refer to attributes.

In addition to actual scheme objects there was a need for
helper classes to use Fujaba’s drawing functionality, more
accurately, the helper classes were needed to create the grab-
bing dots between a table and a line connecting it with other
table.

Because some of the GUI objects in Fujaba core worked only
with UML object types, they could not be used directly on
the plugin. That is why the plugin contains classes that are
largely identical to classes in the core.

Unfortunately, the class diagram of the plugin is too large to
be given here. However, the implementation of the plugin
was not an unreasonable task using the guidelines of the
Fujaba project.

5. EXPERIENCE
The software methodology described here as evolved from
a set of command-line tools, where the relations, attributes
and such were originally specified using text files. The command-
line tools were then used for generating SQL and Java code.
We call this toolset Dbswtool. These tools were then imple-
mented in Fujaba in the form described above. The tools
and our software development methodology has up to this
point been used to develop three real applications. All these
applications use, in fact, Java servlets as the main technol-
ogy for the user interface.

The first of these applications is a group calendar, which
has fairly small number of only nine relations. These were
specified using Dbswtool. However, maintaining the design
data was maybe quite tedious and the generated code did
not originally contain all the useful features now present.
As a consequence, the generated object-oriented interface
to the database was not used maximally in the application
development.

The second of these applications is a set of simple course
evaluation forms. Initially, there were five relations, but
they were later unified into just three. The Fujaba im-
plementation was used and found easy, along with the re-

arrangement of the database. The database access has been
completely based on the generated interface.

The third application is a teaching management system.
This is by far the largest of these systems, with a database
of currently 48 tables. The development of the system is ex-
pected to be more or less over in a few months. The Fujaba
implementation is in use. There will be a fairly high number
of queries and views in the system, once it is completed.

However, with the database designed and basic servlet tech-
nology implemented, software development is found to be
relatively easy using our software development methodology
and the implemented Fujaba toolset.

6. FUTURE WORK
We believe that using the toolset now will give important
feedback on its suitability to application development. There
are some issues to be considered in the future development
of the toolset.

It might be beneficial to be able to access the REDDMOM
reverse engineering and evolving database management toolset.
However, this requires a careful study of the internals of both
toolsets, ours and REDDMOM.

Secondly, the database design is now only done on the rela-
tional level. There is a natural need to unify this into the
object-oriented modeling. One possible approach would be
to follow the database design ideas of Blaha et al. [4]

Thirdly, it is worth investigating whether something more
would be needed to generate from the database definitions.
Practical use of our toolset implementation will help to eval-
uate this.

7. REFERENCES
[1] R. Elmasri and S. Navathe. Fundamentals of Database

Systems 3 ed. Addison-Wesley, 2000.

[2] Fujaba tool suite 4.0. Available at
http://www.uni-paderborn.de/cs/fujaba/.

[3] J. Henrard, J.-L. Hainaut, J.-M. Hick, D. Roland, and
V. Englebert. Data structure extraction in database
reverse engineering. In Advances in Conceptual
Modeling: ER ’99 Workshops on Evolution and Change
in Data Management, Reverse Engineering in
Information Systems, and the World Wide Web and
Conceptual Modeling, Paris, France, November 15-18,
1999, Proceedings, pages 149–160, 1999.

[4] W. P. M.R. Blaha and J. E. J.E. Rumbaugh. Relational
database design using an object-oriented methodology.
Communications of the ACM, 31(4):414–427, 1988.

[5] Reengineering of distributed (federated)databases for
multimedia objectoriented middleware. Available at
http://www.upb.de/cs/reddmom/.

43 FujabaDays 2003

FujabaDays 2003 44

Turning FUJABA into a Collaborative Tool∗

YC ’Vik’ Nuckchady
Department of Computer Sciences

University of Tampere
Kanslerinrinne 1, FIN-33014, University of Tampere Finland

vik@cs.uta.fi

ABSTRACT
This paper describes a plug-in ColFuj that turns FUJABA
into a collaborative tool. The collaborative environment on
which it is based is introduced and a explanation is given on
how FUJABA actions are made distributive over a network
of collaborators.

General Terms
FUJABA plug-in[2], collaborative environment, object wrap-
ping

1. INTRODUCTION
It is said[1] that the Internet has been invented so that scien-
tists could collaborate. However, the current state of collab-
oration is passive. That is colloraborators on a project make
use of assistive technologies such as email and instant mes-
saging to communicate ideas and decisions. Indeed, there
are very few applications (file-sharing programs, multiplayer
games) that allow users to manipulate collectively shared
data in real-time. In this paper, we propose an architec-
ture and an environment that can be used with FUJABA in
order to make it a collaborative application.

The collaborative architecture is based on a centralized net-
work, with Participants (FUJABA clients) connected to a
Coordinator as shown below Fig. 1. This particular ar-
rangement evolves over the course of a session as the number
of active Collaborators change over that session. The basic
star network can break into two or more star networks or
join others to form a larger one with the aim of improving
the performance and efficiency of the session[3].

2. DESIGN AND IMPLEMENTATION
The plug-in is made up of two parts, a Collaborative Core1and
a set of Command Objects.

∗Supported by the Academy of Finland (Project 51528)
1Research in progress at the University of Tampere, Finland

COLLABORATOR

COLLABORATOR COLLABORATOR

COLLABORATOR COLLABORATOR

Replicated
Data

Replicated
Data

Replicated
Data

Replicated
Data

Replicated
Data

Point of Convergence
Backup

Point of Convergence

Figure 1: Network arrangement of Participants and

Coordinator in a session.

The Collaborative Core is made up of two components, the
Coordinator and the Participant. The latter is used by a
stand-alone application, for example FUJABA, to commu-
nicate data to the Coordinator. The latter runs indepen-
dently from the Participant though it can be triggered at
any participanting site. This feature is used whenever the
network can be optimized for performance by rewiring the
Participants to new Coordinators. The Coordinator runs
three Services that Participant must connect to using the
appropriate Sevice Connectors. The Services that runs are
the Admin, Data and Visualization (Viz). Only the latter
is an optional connection from the point of view of the Par-
ticipant. The Admin Service is mainly responsible for gath-
ering statistics data through the network of collaborators.
The Data Service is used for distributing authorized actions
on the shared data to the Participants and Backup Coor-
dinators. The last service is used mainly for distributing
User Interface actions to Participants in order to establish a
sence of presence in the session. Fig. 2 below illustrates how
the Model View Controller design of FUJABA is enhanced
through the use of the Collaborative Core. The latter is
provided in the plug-in as the jar file CollaborativeCore.jar.

A FUJABA object is wrapped into a Command Object so
that it can be distributed and executed at the participating
sites. The concept is simillar to that of Remote Procedure
Calls. Indeed, in the case of distributing the effect of drag-
ging a class on the canvas, the setX() and setY() calls to the
local object is packed by the appropriate Command Object
and sent to the Coordinator. The latter then broadcasts it
to all the connected Participants which then have the com-

45 FujabaDays 2003

Data Service

Admin Service

View Service

������������W ������������W

������������W

������������W

	�		�	
�

�
W ��

��

View

Model

Controller

C
O

L
L

A
B

O
R

A
T

IV
E

C
O

R
E

FUJABA Objects

Wrapped FUJABA Objects

Figure 2: Decomposition of FUJABA according

to the Collaborative MVC pattern. The pattern

shaded components in the Controller are the con-

stituents of ColFuj.

Figure 3: Screenshot of FUJABA with the plug-in

ColFuj loaded.

plementary Command Object sets the X and Y values of the
appropriate FSAObject to the new values.

3. USAGE
When a collaborator starts FUJABA with ColFuj, a small
panel of three leds appear on the main tool bar (Fig. 3).
These leds flicker whenever data is read from the network.
Each of these led is attached to a Service Connector. So,
the red, green and blue ones correspond to the Admin, Data
and Visualization Service Connectors respectively. The par-
ticipation of a collaborator can be toggled on and off by
clicking on the appropriate led. Hence, clicking on the red

one causes the FUJABA client to connect to and disconnect
from a Coordinator. It must be noted that disconnecting
from the network causes all the leds to turn off and turning
it on activates all the leds. If the blue ’led is turned off, col-
laboration still continues but the client will not be informed
of the presence of the other collaborators. When the green
led is turned on, the session is frozen and the Coordinator
sends an up-to-date copy of the shared data to the newly
joined Participant (FUJABA client). For that duration, the
actions of the other Participants are buffered and executed
after the synchronization process has completed. In other
terms, changes to the data are not reflected immediately.

4. FUTURE WORK
The Collaborative Core mentioned above is still evolving and
hence ColFuj will change accordingly. However, objects that
have already been wrapped will still work on future versions
of the Core. Currently, work is being done in extending

more FUJABA functionalities from a single user mode to a
collaborative one. The current stable version of the plug-in is
that changes in the geometry of class diagrams are reflected
on all FUJABA clients.

5. REFERENCES
[1] J. Udell. Internet groupware for scientific collaboration.

Available at http:
//udell.roninhouse.com/GroupwareReport.html.

[2] L. Wendehals. 10 steps to buils a fujaba plug-in.
Available from Software Engineering Group of the
University of Paderborn.

[3] N. YC and J. Nummenmaa. An architecture for
building collaborative tools in java. In Proc. 8th

Symposium on Programming Languages and Software

Tools, pages 174–186, 2003.

FujabaDays 2003 46

10 Steps to build a Fujaba Plug-in

Lothar Wendehals
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
lowende@upb.de

October 14th, 2003

Abstract

Current initiatives in the field of integrated development environ-
ment (IDE) and CASE tool integration such as Eclipse and Together
indicate that tool integration has become an important issue for the
IT industry. However, current integration platforms fall short to ad-
dress the underlying problems of overlapping meta-models and their
consistency when it comes to tool integration. Within the Fujaba
Tool Suite in contrast a framework has been developed which en-
ables an integration of tools not only at the feature and user interface
level but also at the meta-model level. This tutorial enables the par-
ticipant to build a Fujaba plug-in in ten steps. The participant will
learn how to define a meta-model that can be connected to Fujaba’s
meta-model, how to extend the user interface of Fujaba and how to
deploy a plug-in.

47 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

10 Steps To Build a Fujaba Plug-in

Lothar Wendehals

University of Paderborn
Software Engineering Group

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 210 Steps To Build a Fujaba Plug-in

Example: Diagram with Nodes and EdgesExample: Diagram with Nodes and Edges

• Create a plug-in that adds a new diagram kind with nodes and edges
• Nodes should be connected to UMLClass in Fujaba’s meta-model
• User can create new diagram and can add nodes and edges to it
• Fujaba should be able to save and load the diagram
• User can define shape of nodes

FujabaDays 2003 48

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 310 Steps To Build a Fujaba Plug-in

Step 1: Implement the PlugStep 1: Implement the Plug--in Interfacein Interface

Two possibilities:

• Implement the interface
de.upb.lib.plugins.PluginInterface

• Extend abstract class
de.upb.lib.plugins.AbstractPlugin

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 410 Steps To Build a Fujaba Plug-in

Step 2: Define Your MetaStep 2: Define Your Meta--ModelModel

• Build the new meta-model with Fujaba and generate code

• Use the Abstract Syntax Graph (ASG) classes as super-classes

• Saving and loading is managed by ASGElement

ASGElement ASGDiagram

0..n 0..1

MyDiagram

< elements

MyNode MyEdge
< leftNode

< rightNode 0..n
0..n

0..1

0..1

My Meta-Model

MyDiagramItem

49 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 510 Steps To Build a Fujaba Plug-in

Step 3: Connect to Fujaba’s MetaStep 3: Connect to Fujaba’s Meta--ModelModel

• Connect MyNode to Fujaba’s UMLClass by using the Meta-Model
Integration Pattern

• An bi-directional association is established between MyNode and
UMLClass

• Fujaba is still compilable without the plug-in

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 610 Steps To Build a Fujaba Plug-in

Step 4: Implement ActionsStep 4: Implement Actions

• Implement actions for creating MyDiagram, MyNode and MyEdge

public class NewMyDiagramAction extends AbstractAction
{

public void actionPerformed (ActionEvent event)
{

// create diagram and add to project
MyDiagram myDiagram = new MyDiagram ();
UMLProject.get().addToDiags (myDiagram);

// show diagram
FrameMain.get().createNewTreeItems();
FrameMain.get().selectTreeItem (myDiagram);

}
}

FujabaDays 2003 50

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 710 Steps To Build a Fujaba Plug-in

Step 5: Visualize the MetaStep 5: Visualize the Meta--ModelModel

• Implement a rendering class for each meta-model class by extending
de.uni_paderborn.fujaba.fsa.unparse.AbstractUnparseModule

• UnparseModules describe how elements are displayed

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 810 Steps To Build a Fujaba Plug-in

Step 6: Enable Configuration of PlugStep 6: Enable Configuration of Plug--inin

• Implement panel for configuring options of plug-in by extending
de.uni_paderborn.fujaba.app.OptionsPanel

• Panel is displayed in environment dialog for plug-ins

• Implement data storage class by extending
de.uni_paderborn.fujaba.basic.AbstractOptions

• Data is saved in separate file for each plug-in by AbstractOptions

PreferencesPanel
+setPreferences():void
+setDefaults():void
+okPressed():void
+getPreferredTabName():String

MyPluginPreferencesPanel
+setPreferences():void
+setDefaults():void
+okPressed():void
+getPreferredTabName():String

AbstractPreferences
-modified:Boolean

+isModified():Boolean
+setModified(Boolean value):void
+setDefaults():void

MyPluginPreferences
+setDefaults():void
+setNodesShape(int value):void
+getNodesShape():int

51 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 910 Steps To Build a Fujaba Plug-in

Step 7: Define the User InterfaceStep 7: Define the User Interface

• Create file stable.xml with description of user interface extensions
• Define for each action class the action’s name, it’s icon, etc.

<Action id="newMyNode" class="de.upb.myplugin.actions.NewMyNodeAction"
enabled="true">
<Name>Create a new node</Name>
<Mnemonic>n</Mnemonic>
<ToolTip>Create a new node and add it to diagram</ToolTip>
<Icon>de/upb/mydiagram/images/newNode.gif</Icon>

</Action>

• Define menus, popup-menus and toolbars
<PopupMenu class="de.upb.myplugin.metamodel.MyDiagram”>

<MenuSection id="editSection">
<MenuItem actionId=“newMyNode"/>

</MenuSection>
</PopupMenu>

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 1010 Steps To Build a Fujaba Plug-in

Step 7: Define the User InterfaceStep 7: Define the User Interface

FujabaDays 2003 52

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 1110 Steps To Build a Fujaba Plug-in

Step 8: Define the Change of the UIStep 8: Define the Change of the UI

• Define how the UI will look like, if MyDiagram is displayed
• Extend the abstract class

de.uni_paderborn.fujaba.app.FrameDecorator
• Define changing of menus, toolbars, etc.
• Define the tree node of MyDiagram within the diagrams tree

• Add new FrameDecorator to list of FrameDecorators during
initializing the plug-in

FrameDecorator
+enterDiagram(ASGDiagram diagram):void
+leaveDiagram(ASGDiagram diagram):void
+getTreeNode(ASGDiagram diagram):DefaultMutableTreeNode
+getDestTabTitle():String

MyDiagramFrameDecorator
+enterDiagram(ASGDiagram diagram):void
+leaveDiagram(ASGDiagram diagram):void
+getTreeNode(ASGDiagram diagram):DefaultMutableTreeNode
+getDestTabTitle():String

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 1210 Steps To Build a Fujaba Plug-in

Step 9: Define PlugStep 9: Define Plug--in Descriptionin Description
• Description contains:

• Name of the class implementing Fujaba’s plug-in interface
• Name of the plug-in
• Version number
• Name of the plug-in library
• Web address where to download the plug-in
• Required Kernel version
• Additional paths for CLASSPATH variable
• List of required plug-ins
• Textual information about the plug-in with

• Short and detailed description
• Vendor and contact address

• Description stored in file named plugin.xml

53 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 1310 Steps To Build a Fujaba Plug-in

Step 9: PlugStep 9: Plug--in Description in Description -- ExampleExample
<?xml version="1.0" standalone="no"?>
<!DOCTYPE Plugin SYSTEM "http://www.upb.de/cs/fujaba/DTDs/Plugin.dtd">

<Plugin pluginClass="de.upb.myplugin.MyPlugin">
<Name>My Plugin</Name>

<Version major="1" minor="0“ build="0"/>

<PluginLib>MyPlugin.jar</PluginLib>

<Source>http://www.fujaba.de/downloads/plugins/MyPlugin/1_0/MyPlugin.zip</Source>

<Kernel major="4" minor="0" revision="1"/>

<RequiredPlugins>
<PluginId pluginClass="de.upb.anotherplugin.AnotherPlugin" major="1" minor="0"/>

</RequiredPlugins>

<Description>
<ShortDescription>My first Fujaba Plug-in</ShortDescription>
<DetailedDescription>This is just a test plug-in.</DetailedDescription>
<Vendor>University of Paderborn</Vendor>
<Contact>mailto:lowende@upb.de</Contact>

</Description>
</Plugin>

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

Lothar Wendehals - 1410 Steps To Build a Fujaba Plug-in

Step 10: Deploy the PlugStep 10: Deploy the Plug--inin

• Create library with all classes, icons, etc. of the plug-in
• Create new directory within Fujaba’s plug-in directory
• Copy library, plugin.xml and stable.xml to this directory
• Start Fujaba, that’s it!

FujabaDays 2003 54

How to add a new diagram to Fujaba

Matthias Tichy
Software Engineering Group

University Of Paderborn

October 14th, 2003

Abstract

In the context of CASE tools, typically all applications use some
meta-model for the design representation. An instance of such a meta-
model resembles the design of the new application. This instance
is shown as a graphical diagram to ease the comprehension for the
developer of the design. For the developer of a CASE tool it imposes
a burden to create the graphical diagram based on the meta-model
instance and to keep it up-to-date.

The Fujaba Tool Suite provides sophisticated support for this prob-
lem in the form of the Fujaba Swing Adapter (FSA) architecture.
For the graphical view the developer only needs to develop the initial
mapping from the meta-model to the graphical view, whereas the later
synchronization is almost automatically done by the FSA architecture.

In this tutorial we introduce the FSA architecture and its concepts.
We show how it can be used for the creation of graphical diagrams. A
stripped down real-life example will be used to show the pre-requisites
on the meta-model side and how the initial mapping from the meta-
model instance to the graphical representation is done. We finish with
some tips and tricks.

55 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 1

The Fujaba Diagram Visualization
Architecture

Matthias Tichy
Software Engineering Group

University of Paderborn

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 2

Contents

• Motivation

• Architecture

• Details

• Common pitfalls

FujabaDays 2003 56

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 3

Graphical Case Tool Design

• graphical Diagrams are instances of certain meta-
models (e.g. UML meta-model)

• A instance is changed by the user or the
application itself
– structural changes
– value changes

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 4

Case Tool Design

UMLClass
name : String

UMLAttr
name : String

UMLBaseType
name : String

type

attributes

1

n

n

1

Meta-Model

:UMLClass
name = „HelloWorld“

:UMLAttr
name = „hello“

:UMLBaseType
name = „String“

type

attributes

Instance • Structural
Changes
– deleting links
– (deleting

objects)
• value changes

<<delete>>

<<delete>>

:UMLAttr
name := „test2“

57 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 5

Graphical Tools

• Graphical visualization of Meta-Model instance

• Initial creation of a graphical representation is
relatively easy (the mapping)

• On each change doing the whole mapping again is
not feasible

• Managing incremental differences
– between graphical representation and model

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 6

Graphical Tools

• Problem keeping both parts in sync
– Propagating meta-model instance changes to graphical

representation and vice versa

• Solution: Model View Controller Architecture
(MVC)

Meta-Model
instance

Graphical
representationController

application
changes

user changes

FujabaDays 2003 58

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 7

MVC

• Controller forwards changes from one part to the
other part

Meta-Model
instance

Graphical
representationController

• Application changes:
– Changing attributes
– Adding links
– Removing links

• User changes:
– Edited text
– Moving objects
– Selections

Change mapping

Change mapping

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 8

Our solution

• Swing is used for the Graphical Visualisation part

• Meta-Model supports Java PropertyChange
mechanism for the change management (Observer
Pattern)
– PropertyChangeListener
– addTo- / removeFrom- methods
– firePropertyChange()-methods

59 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 9

Swing
element

Our solution

Unparse ModuleMeta-Model
instance

Swing
element

<<create>>

<<create>>

Updater

initial phase

afterwards

property change eventsattribute changes

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 10

Swing
element

Our solution

Unparse ModuleMeta-Model
instance

FSA
element

<<create>>

<<create>>

Updater

initial phase

afterwards
property change eventsattribute changes

• Problem: bi-directional associations between
Meta-Model instance and Swing elements needed
Fujaba Swing Adapter (FSA)

Swing
element
Swing

element

<<create>>

forwarding

FujabaDays 2003 60

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 11

Architectural Overview

Meta-Model instance

FSA

Swing Updater

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 12

Architectural Overview

• design issue: one logic element may be presented
by multiple graphical elements

• e.g.
– a class is shown using more than one graphical element
– a class shown in three class diagrams

• solution: qualified assoc between logic elements
and graphical elements
– key: parentID + . + propertyName
– this key should be unique

61 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 13

Details – next slides

Swing
element

Unparse ModuleMeta-Model
instance

FSA
element

<<create>>

<<create>>

Updater

property change eventsattribute changes

Swing
element
Swing

element

<<create>>

forwarding

1.

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 14

Example

FujabaDays 2003 62

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 15

Requirements on the meta-model part

• Subclass your classes from ASGElement (or
implement LogicUnparseInterface)
– ASGElement provides support for

PropertyChangeListener
• firePropertyChange()- methods
• addToPropertyChangeListeners()
• removeFromPropertyChangeListeners()

• Add firePropertyChange() calls for
– Attribute changes
– adding and removing of links

• eg. a new class in a class diagram
• or a new attribute in a class

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 16

access methods / to-1 assoc

• set-Method (eg. UMLAttr.setName()):
public void setName (String newName)

{

if (this.name == null ||
!this.name.equals (newName))

{

String oldName = this.name;
this.name = newName;

firePropertyChange ("name", oldName, newName);

}
}

attr name

63 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 17

access methods / to-n assoc

• to-n assocs are implement using collections

• Use the class CollectionChangeEvent to express
adding and removing of elements

• Fujaba uses FProp*-Collection Classes
– automatically call firePropertyChange() if you add() or

delete from the collection classes

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 18

UMLClass.addToAttrs()
private FPropTreeMap attrs;
public boolean addToAttrs (UMLAttr obj)

{
boolean changed = false;

if ((obj != null) && (obj.getName() != null))
{

if (this.attrs == null)
{

this.attrs = new FPropTreeMap (FujabaComparator.getLessString(),
this, "attrs");

}
UMLAttr oldValue = (UMLAttr) this.attrs.put (obj.getName(), obj);
if (oldValue != obj)
{

if (oldValue != null)
{

oldValue.setParent (null);
oldValue.removeYou();

}
obj.setParent (this);
changed = true;

}
}
return changed;

}

assoc name

fireProperty

FujabaDays 2003 64

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 19

FPropTreeMap.put()
public synchronized Object put (Object key, Object value)

{

boolean fire = getPropertyChangeSupport() != null &&
!this.containsKey (key);

Object result = super.put (key, value);

//if the key was already in this map, the PropElement fires the
event

if (fire)
{

firePropertyChange (result, value, key,
CollectionChangeEvent.ADDED);

}

return result;
}

fireProperty
call

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 20

Excursion

• Generate Meta-Model source-code including
PropertyChange stuff
– Why bother with PropertyChange stuff? Generate it!
– Just use Fujaba!

• add <<JAVA_BEAN>> Stereotype to every class
– this stereotype must be created in the adding dialog

• everything is generated on the fly (needs at least
upcoming Fujaba 4.0.1 or the latest Fujaba 3)

65 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 21

Details – next slides

Swing
element

Unparse ModuleMeta-Model
instance

FSA
element

<<create>>

<<create>>

Updater

property change eventsattribute changes

Swing
element
Swing

element

<<create>>

forwarding

2.

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 22

Unparse module

• Unparse modules build the FSA/Swing
counterparts of meta-model instances.

• Each meta-model class needs one unparse module.
• Unparse modules must be named in a special way:

– Normally: UM + class.getName()
– But: UMLClass UMClass

• (just overwrite:
ASGElement.createUnparseModuleName())

– must be in subpackage: unparse

FujabaDays 2003 66

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 23

Unparse module

• create():
– initial mapping to swing (resp. FSA*) classes.

• getMainFsaName():
– name for the main entry, which is created by the

unparse module.
• getChildProperties():

– names of the children of the meta-model instance
• getContainerForProperties():

– returns the container for the children

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 24

public FSAObject create (FSAObject parent, LogicUnparseInterface incr)
{

UMLAttr attr = (UMLAttr) incr;
FSAPanel mainPanel = null;

mainPanel = new FSAPanel (incr, getMainFsaName(), parent.getJComponent());
mainPanel.setLayout (new ColumnRowLayout (0, ColumnRowLayout.ROW));

FSAComboBoxLabel iconLabel = new FSAComboBoxLabel (incr, "umlVisibility",
mainPanel.getJComponent(), new UMLAttrVisibilityJComboBoxLabel());

iconLabel.addToUpdater (iconLabel.createDefaultUpdater());

FSATextFieldLabel nameField = new FSATextFieldLabel (incr, "name“,
mainPanel.getJComponent());

nameField.addToUpdater (nameField.createDefaultUpdater());

FSALabel colonLabel = new FSALabel (incr, "colon", mainPanel.getJComponent());
colonLabel.setText (" : ");

FSAComboBoxLabel typeLabel = new FSAComboBoxLabel (attr, "attrType",
mainPanel.getJComponent());

typeLabel.setModel (UMLTypeListComboBoxModel.get());
typeLabel.addToUpdater (typeLabel.createDefaultUpdater());
AbstractUpdater updater = new TypeUpdater (attr, "attrType",

typeLabel.getDefaultAttrName());
typeLabel.addToUpdater (updater);

return mainPanel;
}

UnparseModule

Icon

Name

Panel

:

Type

67 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 25

Unparse module: UMClass
public void getChildProperties (Set props)

{
super.getChildProperties (props);
props.add ("attrs");

}

public FSAObject create (FSAObject parent, LogicUnparseInterface incr)
{

UMLClass clazz = (UMLClass) incr;

FSASeparatedPanel panel = new FSASeparatedPanel (incr, getMainFsaName(), parent.getJComponent());
panel.setBorder (new LineBorder (Color.black));

FSAUnderlinedObject namePanel = new FSAUnderlinedObject (incr, "classNamePanel", panel.getJComponent());
namePanel.setLayout (new ColumnRowLayout (0, ColumnRowLayout.COLUMN));

FSATextFieldLabel classNameTextField = new FSATextFieldLabel (incr, "name", namePanel.getJComponent());

FSACollapsable tmpCollapsable;
tmpCollapsable = new FSACollapsable (incr, "attributePanel", panel.getJComponent());

return panel;
}

public String getContainerForProperty (String property)
{
if ("attrs".equals (property))

{
return "attributePanel";

}

return super.getContainerForProperty (property);
}

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 26

UnparseModule
mainPanel = new FSAPanel (incr, getMainFsaName(), parent.getJComponent());
mainPanel.setLayout (new ColumnRowLayout (0, ColumnRowLayout.ROW)); Panel

incr:UMLAttr

mainPanel:FSAPanel parent:FSAPanel

:ColumnRowLayout

<<create>>
<<create>>

<<create>>

:JPanel
<<create>>

:JPanel

parent.getID() + „.“ + getMainFsaName()

FujabaDays 2003 68

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 27

UnparseModule
FSATextFieldLabel nameField = new FSATextFieldLabel (incr, "name“,

mainPanel.getJComponent());
nameField.addToUpdater (nameField.createDefaultUpdater());

Name

incr:UMLAttr

mainPanel:FSAPanel parent:FSAPanel

:ColumnRowLayout

<<create>>

:JPanel :JPanel

mainPanel.getID() + „-“ + „name“

nameField:FASTex...

parent.getID() + „.“ + getMainFsaName()

:JTextFieldLabel
<<create>>

:LogicAndFSAUpdater
<<create>>

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 28

Details – next slides

Swing
element

Unparse ModuleMeta-Model
instance

FSA
element

<<create>>

<<create>>

Updater

property change eventsattribute changes

Swing
element
Swing

element

<<create>>

forwarding

3.

69 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 29

Updater and Translators

• Updater
– forwards changes and the changed values
– is called for each PropertyChangeEvent

• can execute arbitrary code on
PropertyChangeEvents
– e.g.: hide or show graphical elements

(VisibilityUpdater)
• relevant class: AbstractUpdater
• each FSA* class has a default updater – often

sufficient

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 30

Updater and Translators

• Translators
– used for value changes
– for example to convert types (Integer <-> String)

• Interface: Methods
– public Object translateFsaToLogic (Object value);
– public Object translateLogicToFsa (Object value);

• Hint: an updater is a translator, too

FujabaDays 2003 70

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 31

What FSA’s are available

• Panels:
– FSAPanel
– FSACollapsable (collapseble panel)
– FSAResizable (resizable panel)
– FSALayeredPane

• Text:
– FSALabel
– FSATextFieldLabel
– FSAComboBox

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 32

What FSA’s are available

• Lines:
– FSAPolyLine
– FSAGrabs
– FSABends
– FSAArrow

• Minor stuff:
– FSACircle
– FSASeparator

71 FujabaDays 2003

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 33

Common pitfalls

• forgotten firePropertyChange calls
• misspelled property names
• misspelled unparse module class name
• unparse module in wrong package

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 34

How to avoid FSA

• one basic unparse module for your diagram
– create your special Swing component

• after that do anything yourself

• You may add Swing elements into FSAContainer

FujabaDays 2003 72

University of Paderborn
Software Engineering Group
Prof. Dr. Wilhelm Schäfer

The Fujaba Diagram Visualization Architecture Matthias Tichy - 35

Thank you for your attention!

Questions?

73 FujabaDays 2003

FujabaDays 2003 74

Adapting the Fujaba Code Generation
Mechanism

Susannah Moat
University College London

October 14th, 2003

Abstract

This tutorial aims to give an insight into the workings of the Fujaba
code generation mechanism, and equip the listener with the necessary
knowledge to adapt the system to his/her needs.

We will begin by examining the basic design and core classes in-
volved in code generation, and then via a simple example of a univer-
sity model, we will see how Fujaba progresses from a UML diagram to
an internal model of the diagram, and finally to Java code. This will
require us to consider how an outline class structure is generated, and
then to study how association generation builds on these foundations.

We will then summarise different scenarios for adapting the mech-
anism and the main components of the system which would need re-
placing. The tutorial will finish with an opportunity for the listeners to
work through a basic example of adapting the code generation mech-
anism, and finally discuss or query any points which may have arisen
during the talk.

75 FujabaDays 2003

Adapting the Fujaba Code
Generation Mechanism

Susannah Moat

University College London

S.Moat@cs.ucl.ac.uk

Susannah Moat Adapting the Fujaba Code Generation Mechanism 2

Code generation mechanism design
Generating classes, attributes and
methods
Generating associations
Making alterations to the mechanism
Summary and questions

Code generation mechanism design
Generating classes, attributes and
methods
Generating associations
Making alterations to the mechanism
Summary and questions

Overview

FujabaDays 2003 76

Susannah Moat Adapting the Fujaba Code Generation Mechanism 3

The code generation mechanism

Susannah Moat Adapting the Fujaba Code Generation Mechanism 4

CodeGenStrategyHandler

Chain of Responsibility of subclasses of
CodeGenStrategyHandler

Each handler subclass is responsible for a
subclass of ASGElement (usually a
UMLIncrement)
The ASGElement is passed along the chain
until a handler determines that it is
responsible for the object
In certain cases, the ASGElement is carried
further along the chain to be processed by
later handlers after the original handler has
finished

77 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 5

The handler chain in action

«singleton»
:CodeGenFactory

:OOGenStrategyClient

:UMLStoryActivityOOHandler :UMLStoryPatternOOHandler :UMLProjectOOHandler

:UpdateImportOfFileOOHandler

:UMLFileOOHandler

1: generateUMLProject(theProject)

1.1: generate(theProject, null, null)

1.1.1: isResponsible(theProject) 1.1.2.1: isResponsible(theProject) 1.1.2.2.1: isResponsible(theProject)

1.1.2: generate(theProject, null, null) 1.1.2.2: generate(theProject, null, null)

1.1.2.2.2: generateSourceCode(theProject,
null, null)

1.1.2.2.2.1: generateSourceCodeFor(tmpFile,
null, null)

1.1.2.2.2.1.1: generate(tmpFile, null, null)

Susannah Moat Adapting the Fujaba Code Generation Mechanism 6

CodeGenFunction
Used in processing of diagrams defining
behaviour, e.g. activity diagrams
Chain of Responsibility of subclasses in same
manner as CodeGenStrategyHandler

Each function subclass is responsible for generating a
different type of dynamically generated statement, e.g.
• ReturnStatOOFunction for return statements
• ObjectCreateOOFunction for object creation statements

Type of code required is specified in method call on
chain
Uses abstract description of statement – OOStatement
etc. classes

FujabaDays 2003 78

Susannah Moat Adapting the Fujaba Code Generation Mechanism 7

CodeGenVisitor
Subclasses are for specific languages

e.g. JavaGenVisitor for Java

Contains methods for generating
statements determinable from static
class structure

Class, attribute and method declarations
Import and package statements

Contains methods for generating
lanaguage specific code from
OOStatement descriptions

Susannah Moat Adapting the Fujaba Code Generation Mechanism 8

CodeGenFactory and
CodeGenTargetParser

CodeGenFactory
uses a
CodeGenTargetParser
to load the desired
configuration of the
mechanism from an
XML file
This causes instances
of the other
mechanism classes to
be created

<codegenfactory>
<codegenstrategy

name="de...OOGenStrategyClient">
<name>JavaStrategy</name>
-- add handlers
<object name="de...UMLProjectOOHandler"

method="appendHandler">
</object> ...
-- add functions
<object name="de...ReturnStatOOFunction"

method="appendFunction">
</object> ...
-- add visitor
<visitor name="de...JavaGenVisitor">
<name>JavaGenVisitor</name>
</visitor>
</codegenstrategy>
<codegentarget>
<name>java</name>
<fullName>Java (Compilable)</fullName>
<codegentargetentry>
<strategyName>JavaStrategy</strategyName>
<visitorName>JavaGenVisitor</visitorName>
</codegentargetentry>
</codegentarget>
</codegenfactory>

codegen/javatarget.xml

79 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 9

Code generation mechanism design
Generating classes, attributes and
methods
Generating associations
Making alterations to the mechanism
Summary and questions

Overview

Susannah Moat Adapting the Fujaba Code Generation Mechanism 10

Example: University

{ordered}

FujabaDays 2003 80

Susannah Moat Adapting the Fujaba Code Generation Mechanism 11

Generating classes

Susannah Moat Adapting the Fujaba Code Generation Mechanism 12

Generating classes - 2
UpdateImportOfFileOOHandler

Checks that all necessary classes are imported
UpdateImportOfFileOOHandler.continueChain == true,
so the UMLFile is passed along the chain to
UMLFileOOHandler

UMLFileOOHandler
Initialises the visitor for file creation

• File extension determined by visitor (eg. .java)
Responsible for generating header and footer, package
declaration and import statements.

UMLClassOOHandler
Generates a class declaration via a method call on the
visitor
Passes the UMLAttr and UMLMethod objects back to the
handler chain

81 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 13

Generating classes – 3

// hey emacs, this is -*- java -*-
package university;

public abstract class Student
{
}

// end of file Student.

Student.java

Susannah Moat Adapting the Fujaba Code Generation Mechanism 14

Generating inheritance
relationships

// hey emacs, this is -*- java -*-
package university;

public class GraduatingStudent
extends Student
{
}

// end of file GraduatingStudent.

GraduatingStudent.java

FujabaDays 2003 82

Susannah Moat Adapting the Fujaba Code Generation Mechanism 15

Generating attributes

// hey emacs, this is -*- java -*-
package university;

public abstract class Student
{

private String name;

}

// end of file Student.

Student.java

Susannah Moat Adapting the Fujaba Code Generation Mechanism 16

Generating attributes – 2

• If so desired, access methods are
generated for every attribute

• CODE_DISPLAY_LEVEL

• getName: return this.name;

• setName: this.name = newName;

• Methods are public (umlVisibility)
whereas attribute is private
(visibility)

• Encapsulation

83 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 17

Generating methods

// hey emacs, this is -*- java -*-
package university;

public abstract class Student
{

private String name;

public void setName(String newName)
{

this.name = newName;
}

public String getName()
{

return this.name;
}

}

// end of file Student.

Student.java

Susannah Moat Adapting the Fujaba Code Generation Mechanism 18

Generating method content
from activity diagrams

Suppose we had an alternative getName() specified by the
user via an activity diagram

FujabaDays 2003 84

Susannah Moat Adapting the Fujaba Code Generation Mechanism 19

Generating method content
from activity diagrams - 2

Flow analysis performed on diagram to ensure correct
order of code generation, then UMLActivitys are handled

Susannah Moat Adapting the Fujaba Code Generation Mechanism 20

Generating method content
from activity diagrams - 3

:UMLMethodOOHandler

:OOGenToken

memoStmt : OOMemoStatement returnStmt : OOReturnStatement

visitor:OOGenVisitor

1: getSourceCode()

1.1: getSourceCode(visitor) 1.2: getSourceCode(visitor)

1.1.1: getSourceCode(this) 1.2.1: getSourceCode(this)

"System.out.println(\"Name is \" + name);" "return (name) ;"

// hey emacs, this is -*- java -*-
package university;

public abstract class Student
{

private String name;

public void setName(String newName)
{

this.name = newName;
}

public String getName()
{

System.out.println("Name is "
+ name);

return (name) ;
}

}

// end of file Student.

Student.java

OOGenToken contains a list of OOStatements

85 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 21

Code generation mechanism design
Generating classes, attributes and
methods
Generating associations
Making alterations to the mechanism
Summary and questions

Overview

Susannah Moat Adapting the Fujaba Code Generation Mechanism 22

Generating associations
Overview of the generation process

UMLAttr and UMLMethod objects (and the contents of
the methods) are created from templates
• AssocCodeGenerator

The normal mechanism for generating attributes and
methods is then used

Plan
Example of the generation process using a 1-to-1
association
Brief summary of differences in generating other types
of association

FujabaDays 2003 86

Susannah Moat Adapting the Fujaba Code Generation Mechanism 23

1-to-1 association
degree department

Susannah Moat Adapting the Fujaba Code Generation Mechanism 24

Analysing the roles
Association is not
qualified

no UMLQualifier
objects

department
Part of a bidirectional
association
To-One role
• cardString == “1“
• so Degree is given

• private Department
attribute

• public
set-method

• public
get-method

87 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 25

Analysing the roles – 2

Susannah Moat Adapting the Fujaba Code Generation Mechanism 26

Analysing the roles – 3

FujabaDays 2003 88

Susannah Moat Adapting the Fujaba Code Generation Mechanism 27

Creating code for the methods

#BeginCodeBlock = assoc-set-v1
boolean changed = false;

if (this.$RIGHTROLE$!= value)
{

if (this.$RIGHTROLE$!= null)
{

$RIGHTCLASS$ oldValue =
this.$RIGHTROLE$;

this.$RIGHTROLE$ = null;
oldValue.$REMOVE$;

}
this.$RIGHTROLE$ = value;
if (value != null)
{

value.$INSERT$;
}
changed = true;

}
return changed;
#EndCodeBlock

Association Template
$RIGHTROLE$ = department
$RIGHTCLASS$ =
Department
$INSERT$ =
setDegree (this)
$REMOVE$ =

setDegree (null)

public boolean setRightRole ($RIGHTCLASS$ value)

Susannah Moat Adapting the Fujaba Code Generation Mechanism 28

Creating code for the methods - 2
boolean changed = false;
if (this.department != value)
{

if (this.department != null)
{

Department oldValue = this.department;
this.department = null;
oldValue.setDegree (null);

}
this.department = value;
if (value != null)
{

value.setDegree (this);
}
changed = true;

}
return changed;

$RIGHTROLE$ =
department
$RIGHTCLASS$ =
Department
$INSERT$ =
setDegree (this)
$REMOVE$ =
setDegree (null)

89 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 29

boolean changed = false;
if (this.department != value)
{

if (this.department != null)
{

Department oldValue = this.department;
this.department = null;
oldValue.setDegree (null);

}
this.department = value;
if (value != null)
{

value.setDegree (this);
}
changed = true;

}
return changed;

Bi-directional associations

boolean changed = false;
if (this.department != value)
{

if (this.department != null)
{

Department oldValue = this.department;
this.department = null;
oldValue.setDegree (null);

}
this.department = value;
if (value != null)
{

value.setDegree (this);
}
changed = true;

}
return changed;

boolean changed = false;
if (this.department != value)
{

if (this.department != null)
{

Department oldValue = this.department;
this.department = null;
oldValue.setDegree (null);

}
this.department = value;
if (value != null)
{

value.setDegree (this);
}
changed = true;

}
return changed;

boolean changed = false;
if (this.department != value)
{

if (this.department != null)
{

Department oldValue = this.department;
this.department = null;
oldValue.setDegree (null);

}
this.department = value;
if (value != null)
{

value.setDegree (this);
}
changed = true;

}
return changed;

boolean changed = false;
if (this.department != value)
{

if (this.department != null)
{

Department oldValue = this.department;
this.department = null;
oldValue.setDegree (null);

}
this.department = value;
if (value != null)
{

value.setDegree (this);
}
changed = true;

}
return changed;

• Consistency must be maintained
public boolean setDepartment(Department value)

Susannah Moat Adapting the Fujaba Code Generation Mechanism 30

Differences in other
association types

Different data structures need to be used for the
attribute, e.g.

To-Many associations - Hashset (FHashSet)
Qualified associations - Hashmap (FHashMap)
Ordered associations- Linked list (FLinkedList)
Sorted associations – Hashset (FHashSet) with
comparator

Different methods need to be added for access
to the attribute

Reflect data structure and therefore association

FujabaDays 2003 90

Susannah Moat Adapting the Fujaba Code Generation Mechanism 31

Code generation mechanism design
Generating classes, attributes and
methods
Generating associations
Making alterations to the mechanism
Summary and questions

Overview

Susannah Moat Adapting the Fujaba Code Generation Mechanism 32

Making alterations to the
mechanism

Possible scenarios
Handling new metamodel elements / handling
metamodel elements differently
Different requirements for associations
• e.g. Different container objects required, non-

standard methods required

Generating a new language

Combinations of the above are of course
possible!

91 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 33

Changing metamodel
element handling

Create new handler(s)
Subclass of OOGenStrategyHandler or existing handler
for element, e.g. UMLProjectOOHandler
Key methods are
• OOGenToken generateSourceCode (ASGElement incr,
OOGenToken prevToken, Object param[])

• boolean isResponsible (ASGElement incr)
• boolean needToken()

Create new XML configuration file
Could obviously edit existing file but would thereby lose
current configuration

Parse configuration file
Call from plugin class which extends AbstractPlugin
CodeGenTargetParser.parse("mynewconfigfile.xml",

getClassLoader());

Susannah Moat Adapting the Fujaba Code Generation Mechanism 34

Changing metamodel
element handling – 2

Enable new target
Example – new target name = "rtjava"

Vector v = JavaPreferences.get().getCodeGenTargetName();

String rtjava = "rtjava";
if (!v.contains (rtjava))

v.add (rtjava);

String java = "java";
if (v.contains (java))

v.remove (java);

JavaPreferences.get().setCodeGenTargetName (v);

FujabaDays 2003 92

Susannah Moat Adapting the Fujaba Code Generation Mechanism 35

Different requirements for
associations

Non-standard methods required?
Create new templates

Create a new visitor
Key methods

• To generate non-standard methods
• public String getAssocTemplateName()
• public String getReferenceTemplateName()

• To use different container classes
• public String getContainerName
(OOCollectionEnum containerType, boolean
bound)

If generating currently supported language, subclass
current visitor and simply override above methods –
otherwise subclass OOGenVisitor/CodeGenVisitor

Create new XML file, parse and enable target

Susannah Moat Adapting the Fujaba Code Generation Mechanism 36

Generating a new language

Create a new visitor
Subclass OOGenVisitor/CodeGenVisitor
depending on requirements
Key methods
• String getSourceCode([OOStatement classes])

methods
• getSourceCode methods visit the OOStatement classes -

verify that appropriate code is generated from the
abstract statement descriptions

• Various class declaration, package declaration etc.
methods

• Specify or override where necessary
• See OOGenVisitor/JavaGenVisitor create*, generate*

methods
• Template and container methods as before

93 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 37

Generating a new language - 2

Create new XML file, parse and
enable target

NB Bear in mind that OOStatements only abstractly
describe single statements. If the use of a new language
requires a different sequence of statements, it will not be
enough to simply replace the visitor – code using
OOStatements must also be changed

Susannah Moat Adapting the Fujaba Code Generation Mechanism 38

Code generation mechanism design
Generating classes, attributes and
methods
Generating associations
Making alterations to the mechanism
Summary and questions

Overview

FujabaDays 2003 94

Susannah Moat Adapting the Fujaba Code Generation Mechanism 39

Summary
Main classes in fundamental code generation
mechanism and their relationships
Generating code from static models and brief
look at dynamic models

classes, attributes, methods and method content

Building associations through addition of
attribute and method objects
Outline of starting points when changing the
code generation mechanism in a variety of
situations

Written guide to workings of code generation mechanism on the
Fujaba website (under Developer Documentation)

Extra Slides

95 FujabaDays 2003

Susannah Moat Adapting the Fujaba Code Generation Mechanism 41

To-Many associations

Hashset used (FHashSet)
Following methods are added to class Degree

hasInGraduatingStudent
iteratorOfGraduatingStudent
sizeOfGraduatingStudent
addToGraduatingStudent
removeFromGraduatingStudent
removeAllFromGraduatingStudent

Class GraduatingStudent gets setDegree and getDegree
methods
Same for composition and aggregation associations

Susannah Moat Adapting the Fujaba Code Generation Mechanism 42

Ordered and Sorted

Linked list used (FLinkedList)
As well as the extra methods for To-Many associations, the
following methods are added to the class Module

getLectureAt
indexOfLecture, lastIndexOfLecture
iteratorOfLecture(Lecture lowerBound)

• Returns an iterator for all objects following lowerBound
isBeforeOfLecture, isAfterOfLecture
getFirstOf, getLastOf
getNextOf, getPreviousOf
getNextIndexOf, getPreviousIndexOf

For a {sorted} association, a set (FHashSet) with a comparator
is used, and only the methods getFirstOf and getLastOf are
added

FujabaDays 2003 96

Susannah Moat Adapting the Fujaba Code Generation Mechanism 43

Qualified associations

To-One associations use FHashMap
All qualified associations have the following methods

hasKeyInModule, iteratorOfModule, keysOfModule,
entriesOfModule, sizeOfModule

The contents of the following methods, which we have
seen before, is different

hasInModule, addToModule, removeFromModule,
removeKeyFromModule, removeAllFromModule

For To-One associations, the method getFromModule is
also added

97 FujabaDays 2003

FujabaDays 2003 98

Story Driven Modeling and programming with Fujaba

Ira Diethelm
Gaußschule

Löwenwall 18a
38100 Braunschweig

ira.diethelm@uni-
kassel.de

Leif Geiger
FPM, Universität Kassel
Wilhelmshöher Allee 73

34121 Kassel

leif.geiger@uni-kassel.de

Albert Zündorf
FPM, Universität Kassel
Wilhelmshöher Allee 73

34121 Kassel

zuendorf@uni-kassel.de

ABSTRACT
The Unified Modeling Language UML has become the stan-
dard language for object-oriented modelling and documen-
tation of software projects. The CASE tool Fujaba now uses
the UML as visual programming language. Fujaba allows to
do every phase of the software development process, from re-
quirements analysis to testing, on the UML level. Fujaba not
only defines a visual programming language but also provi-
des tight tool integration for its own software development
process called Fujaba Process (FUP).

In the FUP the developer systematically derives the comple-
te software specification out of textual descriptions captured
in the requirement phase. This is done in five different pha-
ses:

1. For each Usecase the developer writes textual descrip-
tions of several scenarios describing this Usecase.

2. The textual descriptions have to be transformed into
so called Storyboards. These are activity diagrams that
contain object diagrams which describe the flow of the
scenario comic strip like.

3. The classdiagram is derived (yet) manual but syste-
matically out of the Storyboards.

4. For each Storyboard it is possible to generate a test
method automatically which can be used to verify how
many scenarios are already covered by the current im-
plementation. The tests can also be used to ensure
synchrones between scenarios and implementation.

5. By comparison and analysis of all Storyboards with
a special eye on similar and alternative sequences we
manage to create systematically (though manual) the
behavioral description for each method that is involved
in the scenarios. This procedure was first performed
with students of a secondary school in Braunschweig,
see [1, 2].

6. Fujaba can now generate standard Java code out which
can then be compiled with a standard Java compiler.

7. The so generated program code can now be tested with
our object browser and visual debugger Dobs.

Phase 2 to 5, the systematical derivation from Storyboards
to a complete design specification is called Story Driven Mo-
deling. In our tutorial we show how these systematically
derivations are used and how easy method bodies can be
programmed graphically with Fujaba.

Hope to see you.

1. REFERENCES
[1] I. Diethelm, L. Geiger, T. Maier, and A. Zündorf.

Turning collaboration diagram strips into storycharts.
In Workshop on Scenarios and state machines: models,
algorithms, and tools; ICSE 2002. Orlando, Florida,
USA, 2002.

[2] I. Diethelm, L. Geiger, and A. Zündorf. Uml im
unterricht: Systematische objektorientierte
problemlösung mit hilfe von szenarien am beispiel der
türme von hanoi. In Erster Workshop der
GI-Fachgruppe Didaktik der Informatik. Bommerholz,
Germany, 2002.

99 FujabaDays 2003

	GEJ03.pdf
	Context
	Metamodel Requirements
	Evaluation of the Fujaba 4.0 Metamodel
	Running Example
	Metamodel Extensions for Refactoring
	Motivating Refactoring Scenario
	Refactoring Implementation
	Proposed Extensions

	Implementing refactorings in SDM
	Story Driven modelling
	Expressing Pull Up Method
	Extending SDM for refactoring

	Architectural Requirements
	Code Preserver
	Definition
	Motivation
	Other Applications
	Overall Architecture
	Closing Remark

	Refinement Repository
	Definition
	Motivation

	Future Work
	Acknowledgements
	REFERENCES

	FujabaDaysStatechartVisualisation-cameraready2.pdf
	INTRODUCTION
	OVERVIEW
	GENERATION OF EXECUTION TRACES
	MERGING OF DIFFERENT EXECUTION TRACES
	VISUALIZATION
	Sequence Diagrams
	Statechart snapshots
	Navigation

	CONCLUSION AND FUTURE WORK
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

