

REJ10J0926-0200(T)

E8 Emulator

Rev.2.00
Jun. 23, 2005

Additional Document for User's Manual
R0E000080KCE00EP3

Renesas Microcomputer Development Environment System
M16C Family / M16C/Tiny Series

Notes on Connecting the M16C/26, M16C/26A, M16C/28, and
M16C/29

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor
for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various
means, including the Renesas Technology Corp. Semiconductor home page (http://
www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a
total system before making a final decision on the applicability of the information and
products. Renesas Technology Corp. assumes no responsibility for any damage, liability or
other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp.
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace,
nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported
into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or
the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the
products contained therein.

Notes regarding these materials

Contents

Section 1 Specifications of the E8 Emulator ..1

Section 2 Connecting the Emulator with the User System ..3

Section 3 Pin Assignments of the E8 Connector ...5

Section 4 Example of E8 Connection ..7

Section 5 Differences between the MCUs and the Emulator...11

Section 6 Applicable Tool Chain and Partner Tools ..17

1

Section 1 Specifications of the E8 Emulator

Table 1.1 shows the specifications of the M16C/Tiny Series E8 Emulator.

Table 1.1 Specifications of the M16C/Tiny Series E8 Emulator

Target MCU M16C/ Family M16C/Tiny Series
M16C/26, M16C/26A, M16C/28 and M16C/29 Groups

Usable MCU mode Single-chip mode
Break function - Address-match break, 6 points

- PC break (up to 255 points)
- Forcible break

Trace function Not available
Flash memory programming function Available
User interface Clock-synchronized serial (communicating via P64/P65/P66/P67)
Program for the E8 Emulator ROM size: 2 KB, RAM size: 128 bytes
Emulator power supply Unnecessary (USB bus powered, power supplied from the PC)
Interface with host machine USB (USB 1.1, full speed)

* Also connectable to host computers that support USB 2.0
Power supply function Can supply 3.3 V or 5.0 V to the target board (300 mA, max)

M16C/26
M16C/26A
M16C/28 (Normal version)
M16C/29 (Normal version)

3.0--5.5 V (f(BCLK)=20MHz)
2.7--5.5 V (f(BCLK)=10MHz)

M16C/26T (T version)
M16C/28 (T version)
M16C/29 (T version)

3.0--5.5 V

Power voltage

M16C/26T (V version)
M16C/28 (V version)
M16C/29 (V version)

4.2--5.5 V

2

3

Section 2 Connecting the Emulator with the User System

Before connecting an E8 emulator (hereafter referred to as emulator) with the user system, a connector must be
installed in the user system so that a user system interface cable can be connected. When designing the user system,
refer to Figure 3.1, Pin Assignments of the E8 Connector, and Figure 4.1, Example of E8 Connection, shown in this
manual.
Before designing the user system, be sure to read the E8 emulator user’s manual and the hardware manual for related
MCUs.

Table 2.1 shows the recommended connector for the emulator.

Table 2.1 Recommended Connector

Type Number Manufacturer Specifications
2514-6002 3M Limited 14-pin straight type

Connect pins 2, 6, 10, 12, and 14 of the user system connector to GND firmly on the PCB. These pins are used as
electrical GND and to monitor the connection of the user system connector. Note the pin assignments of the user
system connector.

Pin 1

Pin 2
User system

Connector

User system interface cable

Figure 2.1 Connecting the User System Interface Cable to the User System

Notes: 1. Do not place any components within 3 mm of the connector.

2. When the emulator is used in the writer mode, connect the emulator similarly to the user system.

4

5

Section 3 Pin Assignments of the E8 Connector

Figure 3.1 shows the pin assignments of the connector.

Figure 3.1 Pin Assignments of the E8 Connector

Pin 1 mark

Pin 2

Pin 1 mark
Connector

Pin NO.
M16C/Tiny

MCU signals
1 P65(SCLK)
2 Vss
3 CNVss.
4
5 P67(TxD)
6 Vss
7 P16
8 Vcc
9 P64(BUSY)

10 Vss
11 P66(RxD)
12 Vss
13 RESET
14 Vss

Pin 1
Pin 14
Pin 13

N.C. P85(EPM)

P86(CE)

6

7

Section 4 Example of E8 Connection

Figure 4.1 shows the connecting example.

Figure 4.1 Example of E8 Connection

In the ‘Writing Flash memory’ mode, where the user program is simply written to the flash memory, the specification
of connection between the E8 and the MCU is the same as that shown in Figure 4.1.

＊: Open-collector buffer

P65

P66

P67

CNVss

RESET

Vcc Vcc Vcc Vcc

User
logic

Vcc

*

User system

14-pin 2.54-mm-pitch
connector

P64

P85

P 86 or P16

M16C/ Tiny

Vcc

SCLK

RxD

TxD

BUSY

EPM

CE

CNVss

RESET

Vss

* 1

* 1

*1:
For EPM and CE, select one of
the following settings
(1) EPM-P85: Disconnected

CE-P86: Connected
(2) EPM-P85:

CE-P16:

Pulled-up at 4.7kΩ or more

Pulled-up at
4.7kΩ or more

Pulled-up at
4.7kΩ or more

Pulled-down at
4.7kΩ or more

Connected
Connected

8

Notes: 1. P64, P65, P66 and P67 pins are used by the E8 emulator. Connect the E8 emulator to the MCU pins. For

MCU pins P65, P66 and P67, pull up and connect to the emulator.

Figure 4.2 Connection of E8 Emulator and MCU

2. The E8 emulator uses the P86 or P85, and P16 pins for the MCU control. Connect the E8 emulator to the
MCU pins.
* If the P86 and CE pins are connected, the sub-clock function cannot be used.
* If the P85 and EPM pins and the P16 and CE pins are connected, respectively, NMI cannot be used.

Figure 4.3.1 Connection of E8 Emulator and P86 Pin

Figure 4.3.2 Connection of E8 Emulator and P85 and P16 Pins

P86/CE
M16C/ TinyCE

EPM

User system
connector

7

P85/EPM

P16
M16C/ TinyCE

EPM

User system
connector

7

4

P65/ SCLK

P67/TxD

Vcc Vcc
Pulled-up at
4.7kΩ or more

User system
connector

1

5

P64/ BUSY

P66/ RxD

9

11
M16C/ Tiny

P65

P67

P66

P64

Vcc

9

3. The E8 emulator uses the CNVss pin for the MCU control. Connect the E8 emulator to the MCU pins

through pull-down.

Figure 4.4 Connection of E8 Emulator and CNVss Pin

4. The RESET pin is used by the E8 emulator. Create the following circuit by connecting the open-collector

output buffer so that reset input can be accepted from the E8 emulator.

Figure 4.5 Example of a Reset Circuit

5. Connect Vss and Vcc with the Vss and Vcc of the MCU, respectively.
6. Connect nothing with N.C.
7. The amount of voltage permitted to input to Vcc must be within the guaranteed range of the microcomputer.

CNVss M16C/ TinyCNVss

Pulled-down at
4.7kΩ or more

User system
connector

1

RESET

User
logic

Vcc

*

Pulled-up at
4.7kΩ or more

＊: Open-collector buffer

M16C/ TinyRESET

User system
connector

13

10

8. Figure 4.6 shows the interface circuit in the E8 emulator. Use this figure as a reference when determining
the pull-up resistance value.

Figure 4.6 Interface Circuit in the Emulator (Reference)

22
Ω22

22Ω

22 Ω
22 Ω

Ω

RxD

SCLK

22 Ω

74LVC125A

Vcc

BUSY

RESET

Emulator control circuit User system connector

22Ω

22Ω

* Power of the upper 74VLC125A is supplied from Vcc in the user system connector.

9

13

8

74LVC125A

10
0k

Ω

10
0k

Ω

11

1

100k Ω

1M
Ω

100k Ω

5
TxD

*

3CNVss
EPM 4

CE 7

10k Ω

100kΩ

100k Ω

11

Section 5 Differences between the MCUs and the Emulator

1. Program area for the E8 emulator
 Table 5.1 lists the program area for the E8 emulator.
 Do not change this area, otherwise the E8 emulator will not operate normally. In this case, restart the High-

performance Embedded Workshop with the ‘Download emulator firmware’ mode.

Table 5.1 Program Area for the E8 Emulator

ROM Size Program Area for E8 Emulator
Group Type

Number Programming
Area Data Area

RAM Size
Vector Area ROM Area RAM Area

M30262F3 24KB 1KB
M30262F4 32KB 1KB
M30262F6 48KB 2KB

M16C/26

M30262F8 64KB 2KB
M30260F3A 24KB 1KB
M30260F6A 48KB 2KB
M30260F8A 64KB 2KB
M30260F3 24KB 1KB
M30260F6 48KB 2KB
M30260F8 64KB 2KB

M30263F3A 24KB 1KB
M30263F6A 48KB 2KB

M16C/26A

M30263F8A 64KB 2KB
M30280F6 48KB 4KB
M30280F8 64KB 4KB
M30280FA 96KB 8KB
M30281F6 48KB 4KB
M30281F8 64KB 4KB

M16C/28

M30281FA 96KB 8KB
M30290FA 96KB 8KB
M30290FC 128KB 12KB
M30291FA 96KB 8KB

M16C/29

M30291FC 128KB

4 KB

12KB

FFFE4h--FFFE7h,
FFFE8h--FFFEBh,
FFFECh--FFFEFh,
FFFF4h--FFFF7h,
FFFFCh--FFFFFh

2 KB of the
programming

area
[*1]

128 bytes
[*1]
[*2]

*1: When the High-performance Embedded Workshop is used in ‘Download emulator firmware’ mode, the dialog box

shown in Figure 5.1 is displayed. Specify an area which is not used in the user system.
 When the High-performance Embedded workshop is started in ‘Does not download emulator firmware’ mode,

program area for the E8 emulator cannot be changed because the previous setting remains effective. When you
change the program area for the E8 emulator, restart the High-performance Embedded Workshop in ‘Download
emulator firmware’ mode.

12

Figure 5.1 [Firmware Location & WDT] Dialog Box

*2: RAM area used by the M16C E8 emulator debugger V.1.01.00 or later is 128 bytes. The former versions of emulator
debuggers use 256 bytes.

2. Debugging of the watchdog timer
 When debugging the user program using the watchdog timer, select the [Debugging of program that uses WDT]

check box in the [Firmware Location & WDT] dialog box. By selecting this box, the watchdog timer is being
refreshed during the operation of the program for the E8 emulator. Note that if a memory is accessed the memory
reference or modification, the watchdog timer will be refreshed by the program for the E8 emulator.

Figure 5.2 [Firmware Location & WDT] Dialog Box

Note: When the High-performance Embedded workshop is started in ‘Does not download emulator firmware’ mode, the
setting of the check box shown above cannot be changed because the previous setting remains effective. When
you change the setting of the check box of the [Debugging of program that uses WDT], restart the High-
performance Embedded Workshop in ‘Download emulator firmware’ mode.

13

3. ID code of flash memory
 When the 7 bytes ID code (Table 5.2) written to the flash memory is other than FFh, FFh, FFh, FFh, FFh, FFh, FFh,

input the ID code into the dialog box shown in Figure 5.3 which is displayed when starting up the High-
performance Embedded Workshop.

 When debugging in ‘Download emulator firmware’ mode or ‘Does not download emulator firmware’ mode, FFh,
FFh, FFh, FFh, FFh, FFh, FFh is written into the ID code area regardless of the contents of the user program. In
‘Writing flash memory’ mode, the contents of the user program are input into the ID code area.

Table 5.2 ID Code Storage Area of M16C/Tiny

Address Description
FFFDFh First byte of ID code
FFFE3h Second byte of ID code
FFFEBh Third byte of ID code
FFFEFh Fourth byte of ID code
FFFF3h Fifth byte of ID code
FFFF7h Sixth byte of ID code
FFFFBh Seventh byte of ID code

Figure 5.3 [ID Code verification] Dialog Box

[Note on Writing Flash memory mode]
When the ID code is specified by the -ID option of the lmc30, download the MOT file or HEX file. When the X30 file
is downloaded, the ID code is not effective. When downloading the X30 file, specify the ID code using an assembler
directive command such as “.BYTE”. The file to which the ID code specified by the assembler directive command
“.ID” is output varies depending on the version of the assembler. For details, refer to the user’s manual of the assembler.

14

4. When the emulator system is initiated, it initializes the general registers and part of the control registers as shown in

Table 5.3.
Table 5.3 Register Initial Values at Emulator Power-On

Status Register Initial Value
PC Reset vector value in the vector address table
R0 to R3 (bank 0, 1) 0000h
A0, A1 (bank 0, 1) 0000h
FB (bank 0, 1) 0000h
INTB 0000h
USP 0000h
ISP Work RAM Address for the E8 emulator + 80h *
SB 0000h

Emulator
Power-On

FLG 0000h
Note: The Work RAM address for the E8 emulator is specified in [Firmware Location & WDT] dialog box when the High-

performance Embedded Workshop starts up in “Download emulator firmware” mode.

5. Operation clock while the user program remains idle
While the user program remains idle, the E8 emulator program changes the main clock divide-by-N value as it runs.

6. Reset
The reset vector is used by the E8 emulator program. If the MCU is reset while executing the user program, control
is transferred to the E8 emulator program and the user program is made to stop.

7. Memory access during emulation execution
When referring or modifying the memory contents, the user program is temporarily halted. For this reason, realtime
emulation cannot be performed.

8. The emulator controls the MCUs by using the P64, P65, P66, P67, RESET , CNVss pins, and P86 or P85 and P16
pins.

9. The power consumed by the MCU increases by several mA or over 10 mA. This is because the user power supply
drives one 74LVC125A to make the communication signal level match the user-system power-supply voltage.

10. The emulator uses up to 14-byte stack pointer when a user program breaks. Accordingly, reserve the 14-byte
addresses for the stack area.

11. When debugging, the flash memory is frequently re-written by the E8 emulator. Therefore, do not use an MCU that
has been used for debugging.

 Also, as the program for the E8 emulator is written into the MCU while debugging, do not save the contents of the
MCU’s flash memory that have been used for debugging or use them as the ROM data for products.

15

12. SFR used by the program for the E8 emulator
 As the SFR listed in Table 5.4 is used by the program for the E8 emulator, do not change a value. Otherwise, the E8

emulator cannot be controlled. And they are not initialized by selecting [Debug] -> [Reset CPU] or with the RESET
command. If their contents are referred to, a value that has been set in the program for the E8 emulator will be read.

Table 5.4 SFR Used by Program for E8 Emulator

Address Register Symbol Bit Notes on using
the E8 emulator

03A8h UART1 transmit/receive mode register U1MR All bits [*1]
03AAh, 03ABh UART1 transmit buffer register U1TB All bits [*1]
03ACh UART1 transmit/receive control register 0 U1C0 All bits [*1]
03ADh UART1 transmit/receive control register 1 U1C1 All bits [*1]
03AEh, 03AFh UART1 receive buffer register U1RB All bits [*1]
03B0h UART transmit/receive control register 2 UCON Bits 1, 3, 4, 5 and 6 [*2]
03ECh Port P6 register P6 Bits 4, 5, 6 and 7 [*2]
03EEh Port P6 direction register PD6 Bits 4, 5, 6 and 7 [*2]
025Dh Pin Assignment Control Register [*3] PACR Bit 7 [*2]

*1 Do not change the value of the register.
*2 Do not change the value of the bits listed above. When operating this register, change it by a bit operating

instruction, etc.
*3 Not included in the M16C/26 group.

13. Interrupts used by the E8 emulator program
 The BRK instruction interrupt, address match interrupt, single-step interrupt, and DBC interrupt are used by the E8

emulator program. Therefore, make sure the user program does not use these interrupts.

14. NMI interrupt
 If NMI interrupts are to be used, be sure to take the necessary measures before executing the user program by, for

example, disabling automatic updates of the watch window and freezing the display of the memory window in order
to ensure that no memory accesses will occur during user program execution.
If an NMI interrupt occurs while the user program remains idle or when memory contents are referenced or changed
during user program execution, device operation becomes uncontrollable by the E8 emulator.

15. Reserved area
 The addresses not specified in the Hardware Manual for M16C/26, M16C/26A, M16C/28, and M16C/29 Groups

are reserved area. Do not change the contents. Otherwise, the E8 emulator cannot be controlled.

16. Debugging in the stop mode or wait mode
 When using the stop mode or wait mode on a user program, firstly disable the automatic update in the watch

window or fix the display in the memory window so that the memory access will not occur during execution. In
addition, do not operate the window until the program stops at the breakpoint by setting the breakpoint at the
processing unit where the stop mode or wait mode is cancelled.

17. Peripheral I/Os during a break
 During a break, although interrupts are not accepted, peripheral I/Os continue to be operated. For example, a timer

interrupt is not accepted although counting a timer is continued when a user program is stopped by a break after
operating a timer.

16

18. Exceptional step operation

a) Software-interrupt instruction
 STEP operation cannot be performed by continuously executing the internal processing of instructions

(undefined, overflow, BRK, and INT) which generates a software interrupt.
 <Example> INT instruction

b) INT instruction
 Debugging of the program using the INT instruction should be used with the GO command by setting a software

break for the internal processing of the INT instruction.
 <Example>

19. “Run to cursor” function
 The "Run to cursor" function is realized by using an address match break. Therefore, when you execute the "Run to

cursor" command, all the address match breaks you set become invalid, while all the PC breaks remain valid.

20. Note on PC break point
 When downloading a user program after changing it, the address setting of a PC break may not be corrected

normally depending on the changes. After downloading a user program, please check the setting of a PC break by
event point window and reset it.

21. Note on debugging in CPU rewrite mode
 When debugging in CPU rewrite mode, do not rewrite the CPU’s block 0 area (addresses FE000h – FFFFFh) and

block containing the program for the E8 emulator. If these areas are rewritten, the E8 emulator will run out of
control.
Do not halt the user program after setting the CPU rewrite mode until releasing it. If you do so, the E8 emulator
may run out of control. Cancel the automatic renewal in the watch window in advance and select fixing display in
the memory window to prevent a memory access from occurring while executing the user program.

 To check the data after executing the CPU rewrite mode, halt the program after releasing the CPU rewrite mode and
see the memory window etc.

NOP
NOP
INT#3
NOP
JMP MAIN

INT_3:
 NOP
 NOP
 NOP
 REIT

The address at which the program should be stopped.

Passes through if the STEP operation is carried out.

NOP
INT #3
NOP
JMP MAIN

INT_3:
NOP Break
NOP
REIT

Execution with the GO command

17

Section 6 Applicable Tool Chain and Partner Tools

With the M16C/Tiny Series E8 emulator, you can debug a module created by the inhouse tool chain and third-party
products listed in Table 6.1 below.

Table 6.1 Applicable Tool Chain and Partner Tools

Tool chain M3T-NC30WA V.5.20 Release 1 or later
Partner tools TASKING M16C C/C++/EC++ Compiler V.2.3r1 or later

IAR EWM16C V.2.12 or later

[Precautions on debugging the load modules created in ELF/DWARF2 format]
If the load module was created in ELF/DWARF2 format using TASKING M16C C/C++/EC++ compiler V3.0r1, the
precaution described below must be observed when displaying member variables of the base class in the watch window.

<Precaution>
If any class object that has a base class is defined, the following problems may occur:
Case 1: Member variables of the base class cannot directly be referenced from the class object (*1).
Case 2: If the PC value resides in any member function of a derived class, member variables of the base class cannot

directly be referenced (*4).

<Solution>
If member variables of the base class need to be referenced in the watch window, follow either method described
below.
Case 1: Use indirect references from the class object to refer to member variables of the base class (*2) (*3).
Case 2: Use indirect references from “this” pointer to refer to member variables of the base class (*5) (*6).

<Example program statement>
///
*.h

class BaseClass
{
public:

int m_iBase;
public:

BaseClass() {
m_iBase = 0;

}
void BaseFunc(void);

};

class DerivedClass : public BaseClass
{
public:

int m_iDerive;
public:

DerivedClass() {
m_iDerive = 0;

}
void DerivedFunc(void);

18

};

*.cpp

main()
{

class DerivedClass ClassObj;
ClassObj.DerivedFunc();
return;

}

void BaseClass::BaseFunc(void)
{

m_iBase = 0x1234;
}

void DerivedClass::DerivedFunc(void)
{

BaseFunc();
m_iDerive = 0x1234;

}
///

<Example for registering in the watch window>
///
Case 1: If the PC value resides in the main() function
(1)"ClassObj.m_iBase" : Cannot be referenced (*1)
(2)"ClassObj.__b_BaseClass.m_iBase" : Can be referenced (*2)
(3)"ClassObj"

-"__b_BaseClass"
-"m_iBase" : Can be referenced (*3)

-"m_iDerive"
-: Expansion symbol

Case 2: If the PC value resides in the DerivedClass::DerivedFunc() function
(1)"m_iBase" : Cannot be referenced (*4)
(2)"this->__b_BaseClass.m_iBase" : Can be referenced (*5)
(3)"__b_BaseClass.m_iBase" : Can be referenced (*5)
(4)"this"

-"*"
-"__b_BaseClass"

-"m_iBase" : Can be referenced (*6)
-"m_iDerive"

(5)"__b_BaseClass"
-"m_iBase" : Can be referenced (*6)

///

E8 Emulator
Additional Document for User's Manual
Notes on Connecting the M16C/26, M16C/26A, M16C/28, and M16C/29

Publication Date: Apr. 1, 2005
Jun. 23, 2005

Rev.1.00
Rev.2.00

Published by:
Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Microcomputer Tool Development Department
Renesas Solutions Corp.

© 2005. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

E8 Emulator
Additional Document for User's Manual

	Contents
	Section 1 Specifications of the E8 Emulator
	Section 2 Connecting the Emulator with the User System
	Section 3 Pin Assignments of the E8 Connector
	Section 4 Example of E8 Connection
	Section 5 Differences between the MCUs and the Emulator
	Section 6 Applicable Tool Chain and Partner Tools

