

E8 Emulator

Additional Document for User's Manual R0E000080KCE00EP3

Renesas Microcomputer Development Environment System M16C Family / M16C/Tiny Series Notes on Connecting the M16C/26, M16C/26A, M16C/28, and M16C/29

Rev.2.00 Jun. 23, 2005

RenesasTechnology www.renesas.com

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Contents

Section 1	Specifications of the E8 Emulator	.1
Section 2	Connecting the Emulator with the User System	.3
Section 3	Pin Assignments of the E8 Connector	.5
Section 4	Example of E8 Connection	.7
Section 5	Differences between the MCUs and the Emulator	11
Section 6	Applicable Tool Chain and Partner Tools	17

Section 1 Specifications of the E8 Emulator

Table 1.1 shows the specifications of the M16C/Tiny Series E8 Emulator.

Table 1.1	Specifications of the	M16C/Tiny	Series E8 Emulator
-----------	-----------------------	-----------	--------------------

Target MCU	M16C/ Family M16C/Tiny Series			
	M16C/26, M16C/26A, M16C/28 and M16C/29 Groups			
Usable MCU mode	Single-chip mode			
Break function	- Address-match break, 6 points			
	- PC break (up to 255 points)			
	- Forcible break			
Trace function	Not available			
Flash memory programming function	Available			
User interface	Clock-synchronized serial (commu	inicating via P64/P65/P66/P67)		
Program for the E8 Emulator	ROM size: 2 KB, RAM size: 128 by	ROM size: 2 KB, RAM size: 128 bytes		
Emulator power supply	Unnecessary (USB bus powered, power supplied from the PC)			
Interface with host machine	USB (USB 1.1, full speed)			
	* Also connectable to host comput	ers that support USB 2.0		
Power supply function	Can supply 3.3 V or 5.0 V to the target board (300 mA, max)			
Power voltage	M16C/26	3.05.5 V (f(BCLK)=20MHz)		
	M16C/26A	2.75.5 V (f(BCLK)=10MHz)		
	M16C/28 (Normal version)			
	M16C/29 (Normal version)			
	M16C/26T (T version)	3.05.5 V		
	M16C/28 (T version)			
	M16C/29 (T version)			
	M16C/26T (V version)	4.25.5 V		
	M16C/28 (V version)			
	M16C/29 (V version)			

Section 2 Connecting the Emulator with the User System

Before connecting an E8 emulator (hereafter referred to as emulator) with the user system, a connector must be installed in the user system so that a user system interface cable can be connected. When designing the user system, refer to Figure 3.1, Pin Assignments of the E8 Connector, and Figure 4.1, Example of E8 Connection, shown in this manual.

Before designing the user system, be sure to read the E8 emulator user's manual and the hardware manual for related MCUs.

Table 2.1 shows the recommended connector for the emulator.

Table 2.1 Recommended Connector

Type Number	Manufacturer	Specifications
2514-6002	3M Limited	14-pin straight type

Connect pins 2, 6, 10, 12, and 14 of the user system connector to GND firmly on the PCB. These pins are used as electrical GND and to monitor the connection of the user system connector. Note the pin assignments of the user system connector.

Figure 2.1 Connecting the User System Interface Cable to the User System

- Notes: 1. Do not place any components within 3 mm of the connector.
 - 2. When the emulator is used in the writer mode, connect the emulator similarly to the user system.

Section 3 Pin Assignments of the E8 Connector

Figure 3.1 shows the pin assignments of the connector.

Section 4 Example of E8 Connection

Figure 4.1 shows the connecting example.

Figure 4.1 Example of E8 Connection

In the 'Writing Flash memory' mode, where the user program is simply written to the flash memory, the specification of connection between the E8 and the MCU is the same as that shown in Figure 4.1.

Figure 4.2 Connection of E8 Emulator and MCU

- 2. The E8 emulator uses the P86 or P85, and P16 pins for the MCU control. Connect the E8 emulator to the MCU pins.
 - * If the P86 and CE pins are connected, the sub-clock function cannot be used.
 - * If the P85 and EPM pins and the P16 and CE pins are connected, respectively, NMI cannot be used.

Figure 4.3.1 Connection of E8 Emulator and P86 Pin

Figure 4.3.2 Connection of E8 Emulator and P85 and P16 Pins

3. The E8 emulator uses the CNVss pin for the MCU control. Connect the E8 emulator to the MCU pins through pull-down.

Figure 4.4 Connection of E8 Emulator and CNVss Pin

4. The RESET pin is used by the E8 emulator. Create the following circuit by connecting the open-collector output buffer so that reset input can be accepted from the E8 emulator.

Figure 4.5 Example of a Reset Circuit

- 5. Connect Vss and Vcc with the Vss and Vcc of the MCU, respectively.
- 6. Connect nothing with N.C.
- 7. The amount of voltage permitted to input to Vcc must be within the guaranteed range of the microcomputer.

8. Figure 4.6 shows the interface circuit in the E8 emulator. Use this figure as a reference when determining the pull-up resistance value.

Section 5 Differences between the MCUs and the Emulator

1. Program area for the E8 emulator

Table 5.1 lists the program area for the E8 emulator.

Do not change this area, otherwise the E8 emulator will not operate normally. In this case, restart the Highperformance Embedded Workshop with the 'Download emulator firmware' mode.

	Turpo	ROM S	ize		Program	Area for E8 Emula	ator
Group	Number	Number Programming Data Are	Data Area	RAM Size	Vector Area	ROM Area	RAM Area
	M30262F3	24KB		1KB			
M16C/26	M30262F4	32KB		1KB			
W10C/20	M30262F6	48KB		2KB			
	M30262F8	64KB		2KB			
	M30260F3A	24KB		1KB			
	M30260F6A	48KB		2KB			
	M30260F8A	64KB		2KB			
	M30260F3	24KB		1KB			
M16C/26A	M30260F6	48KB		2KB			
	M30260F8	64KB		2KB	FFFE4hFFFE7h,		
	M30263F3A	24KB		1KB	FFFE8hFFFEBh,	2 KB of the	128 bytes
	M30263F6A	48KB	4 KB	2KB	FFFEChFFFEFh, FFFF4hFFFF7h,	area [*1]	[*1] [*2]
	M30263F8A	64KB		2KB			
M16C/28	M30280F6	48KB		4KB	FFFFChFFFFFh		
	M30280F8	64KB		4KB			
	M30280FA	96KB		8KB			
	M30281F6	48KB	-	4KB			
	M30281F8	64KB		4KB			
	M30281FA	96KB		8KB			
M400/00	M30290FA	96KB		8KB			
	M30290FC	128KB		12KB			
11100/29	M30291FA	96KB		8KB			
	M30291FC	128KB		12KB			

Table 5.1 Program Area for the E8 Emulator

*1: When the High-performance Embedded Workshop is used in 'Download emulator firmware' mode, the dialog box shown in Figure 5.1 is displayed. Specify an area which is not used in the user system.

When the High-performance Embedded workshop is started in 'Does not download emulator firmware' mode, program area for the E8 emulator cannot be changed because the previous setting remains effective. When you change the program area for the E8 emulator, restart the High-performance Embedded Workshop in 'Download emulator firmware' mode.

Firmware Location & WDT
Firmware location. Program -800h Byte Use- FF0 00 (MIN : F0000 - MAX : FF700) Work RAM -80h Byte Use- 40 0 (MIN : 0400 - MAX : 1380)
Debugging of program that uses WDT.

Figure 5.1 [Firmware Location & WDT] Dialog Box

- *2: RAM area used by the M16C E8 emulator debugger V.1.01.00 or later is 128 bytes. The former versions of emulator debuggers use 256 bytes.
- 2. Debugging of the watchdog timer

When debugging the user program using the watchdog timer, select the [Debugging of program that uses WDT] check box in the [Firmware Location & WDT] dialog box. By selecting this box, the watchdog timer is being refreshed during the operation of the program for the E8 emulator. Note that if a memory is accessed the memory reference or modification, the watchdog timer will be refreshed by the program for the E8 emulator.

Firmware Location & WDT
Firmware location. Program -800h Byte Use- FF0 00 (MIN : F0000 - MAX : FF700) Work RAM -80h Byte Use- 40 0 (MIN : 0400 - MAX : 1380)
Debugging of program that uses WDT

Figure 5.2 [Firmware Location & WDT] Dialog Box

Note: When the High-performance Embedded workshop is started in 'Does not download emulator firmware' mode, the setting of the check box shown above cannot be changed because the previous setting remains effective. When you change the setting of the check box of the [Debugging of program that uses WDT], restart the High-performance Embedded Workshop in 'Download emulator firmware' mode.

3. ID code of flash memory

Address	Description
FFFDFh	First byte of ID code
FFFE3h	Second byte of ID code
FFFEBh	Third byte of ID code
FFFEFh	Fourth byte of ID code
FFFF3h	Fifth byte of ID code
FFFF7h	Sixth byte of ID code
FFFFBh	Seventh byte of ID code

Table 5.2 ID Code Storage Area of M16C/Tiny

ID Gode verification	
Please input ID Code	
01020304050607	
Cancel	

Figure 5.3 [ID Code verification] Dialog Box

[Note on Writing Flash memory mode]

When the ID code is specified by the -ID option of the lmc30, download the MOT file or HEX file. When the X30 file is downloaded, the ID code is not effective. When downloading the X30 file, specify the ID code using an assembler directive command such as ".BYTE". The file to which the ID code specified by the assembler directive command ".ID" is output varies depending on the version of the assembler. For details, refer to the user's manual of the assembler.

4. When the emulator system is initiated, it initializes the general registers and part of the control registers as shown in Table 5.3.

Status	Register	Initial Value
Emulator	PC	Reset vector value in the vector address table
Power-On	R0 to R3 (bank 0, 1)	0000h
	A0, A1 (bank 0, 1)	0000h
	FB (bank 0, 1)	0000h
	INTB	0000h
	USP	0000h
	ISP	Work RAM Address for the E8 emulator + 80h *
	SB	0000h
	FLG	0000h

Table 5.3 Register Initial Values at Emulator Power-On

- Note: The Work RAM address for the E8 emulator is specified in [Firmware Location & WDT] dialog box when the Highperformance Embedded Workshop starts up in "Download emulator firmware" mode.
- 5. Operation clock while the user program remains idle While the user program remains idle, the E8 emulator program changes the main clock divide-by-N value as it runs.
- 6. Reset

The reset vector is used by the E8 emulator program. If the MCU is reset while executing the user program, control is transferred to the E8 emulator program and the user program is made to stop.

7. Memory access during emulation execution

When referring or modifying the memory contents, the user program is temporarily halted. For this reason, realtime emulation cannot be performed.

- 8. The emulator controls the MCUs by using the P64, P65, P66, P67, RESET, CNVss pins, and P86 or P85 and P16 pins.
- 9. The power consumed by the MCU increases by several mA or over 10 mA. This is because the user power supply drives one 74LVC125A to make the communication signal level match the user-system power-supply voltage.
- 10. The emulator uses up to 14-byte stack pointer when a user program breaks. Accordingly, reserve the 14-byte addresses for the stack area.
- 11. When debugging, the flash memory is frequently re-written by the E8 emulator. Therefore, do not use an MCU that has been used for debugging.Also, as the program for the E8 emulator is written into the MCU while debugging, do not save the contents of the

Also, as the program for the E8 emulator is written into the MCU while debugging, do not save the contents of the MCU's flash memory that have been used for debugging or use them as the ROM data for products.

12. SFR used by the program for the E8 emulator

As the SFR listed in Table 5.4 is used by the program for the E8 emulator, do not change a value. Otherwise, the E8 emulator cannot be controlled. And they are not initialized by selecting [Debug] -> [Reset CPU] or with the RESET command. If their contents are referred to, a value that has been set in the program for the E8 emulator will be read.

	-	-		
Address	Register	Symbol	Bit	Notes on using the E8 emulator
03A8h	UART1 transmit/receive mode register	U1MR	All bits	[*1]
03AAh, 03ABh	UART1 transmit buffer register	U1TB	All bits	[*1]
03ACh	UART1 transmit/receive control register 0	U1C0	All bits	[*1]
03ADh	UART1 transmit/receive control register 1	U1C1	All bits	[*1]
03AEh, 03AFh	UART1 receive buffer register	U1RB	All bits	[*1]
03B0h	UART transmit/receive control register 2	UCON	Bits 1, 3, 4, 5 and 6	[*2]
03ECh	Port P6 register	P6	Bits 4, 5, 6 and 7	[*2]
03EEh	Port P6 direction register	PD6	Bits 4, 5, 6 and 7	[*2]
025Dh	Pin Assignment Control Register [*3]	PACR	Bit 7	[*2]

Table 5.4 SFR Used by Program for E8 Emulator

*1 Do not change the value of the register.

*2 Do not change the value of the bits listed above. When operating this register, change it by a bit operating instruction, etc.

*3 Not included in the M16C/26 group.

13. Interrupts used by the E8 emulator program

The BRK instruction interrupt, address match interrupt, single-step interrupt, and DBC interrupt are used by the E8 emulator program. Therefore, make sure the user program does not use these interrupts.

14. NMI interrupt

If NMI interrupts are to be used, be sure to take the necessary measures before executing the user program by, for example, disabling automatic updates of the watch window and freezing the display of the memory window in order to ensure that no memory accesses will occur during user program execution.

If an NMI interrupt occurs while the user program remains idle or when memory contents are referenced or changed during user program execution, device operation becomes uncontrollable by the E8 emulator.

15. Reserved area

The addresses not specified in the Hardware Manual for M16C/26, M16C/26A, M16C/28, and M16C/29 Groups are reserved area. Do not change the contents. Otherwise, the E8 emulator cannot be controlled.

16. Debugging in the stop mode or wait mode

When using the stop mode or wait mode on a user program, firstly disable the automatic update in the watch window or fix the display in the memory window so that the memory access will not occur during execution. In addition, do not operate the window until the program stops at the breakpoint by setting the breakpoint at the processing unit where the stop mode or wait mode is cancelled.

17. Peripheral I/Os during a break

During a break, although interrupts are not accepted, peripheral I/Os continue to be operated. For example, a timer interrupt is not accepted although counting a timer is continued when a user program is stopped by a break after operating a timer.

18. Exceptional step operation

a) Software-interrupt instruction

STEP operation cannot be performed by continuously executing the internal processing of instructions (undefined, overflow, BRK, and INT) which generates a software interrupt.

<example> INT instruction</example>	
NOP	
NOP	
INT#3	
NOP	Passes through if the STEP operation is carried out
JMP MAIN	rasses unough it the STEP operation is carried out.
INT_3:	
NOP	- The address at which the program should be stopped.
NOP	
NOP	
REIT	

b) INT instruction

Debugging of the program using the INT instruction should be used with the GO command by setting a software break for the internal processing of the INT instruction.

<Example>

19. "Run to cursor" function

The "Run to cursor" function is realized by using an address match break. Therefore, when you execute the "Run to cursor" command, all the address match breaks you set become invalid, while all the PC breaks remain valid.

20. Note on PC break point

When downloading a user program after changing it, the address setting of a PC break may not be corrected normally depending on the changes. After downloading a user program, please check the setting of a PC break by event point window and reset it.

21. Note on debugging in CPU rewrite mode

When debugging in CPU rewrite mode, do not rewrite the CPU's block 0 area (addresses FE000h – FFFFFh) and block containing the program for the E8 emulator. If these areas are rewritten, the E8 emulator will run out of control.

Do not halt the user program after setting the CPU rewrite mode until releasing it. If you do so, the E8 emulator may run out of control. Cancel the automatic renewal in the watch window in advance and select fixing display in the memory window to prevent a memory access from occurring while executing the user program.

To check the data after executing the CPU rewrite mode, halt the program after releasing the CPU rewrite mode and see the memory window etc.

Section 6 Applicable Tool Chain and Partner Tools

With the M16C/Tiny Series E8 emulator, you can debug a module created by the inhouse tool chain and third-party products listed in Table 6.1 below.

Table 6.1 Applicable Tool Chain and Partner Tool	able 6.1	Applicable	Tool	Chain	and	Partner	Tool
--	----------	------------	------	-------	-----	---------	------

Tool chain	M3T-NC30WA V.5.20 Release 1 or later
Partner tools	TASKING M16C C/C++/EC++ Compiler V.2.3r1 or later
	IAR EWM16C V.2.12 or later

[Precautions on debugging the load modules created in ELF/DWARF2 format]

If the load module was created in ELF/DWARF2 format using TASKING M16C C/C++/EC++ compiler V3.0r1, the precaution described below must be observed when displaying member variables of the base class in the watch window. <Precaution>

If any class object that has a base class is defined, the following problems may occur:

Case 1: Member variables of the base class cannot directly be referenced from the class object (*1).

Case 2: If the PC value resides in any member function of a derived class, member variables of the base class cannot directly be referenced (*4).

<Solution>

If member variables of the base class need to be referenced in the watch window, follow either method described below.

Case 1: Use indirect references from the class object to refer to member variables of the base class (*2) (*3). Case 2: Use indirect references from "this" pointer to refer to member variables of the base class (*5) (*6).

<Example program statement>

```
*.h
    class BaseClass
    {
    public:
         int m_iBase;
    public:
         BaseClass() {
              m_iBase = 0;
         }
         void BaseFunc(void);
    };
    class DerivedClass : public BaseClass
    {
    public:
         int m_iDerive;
    public:
         DerivedClass() {
              m_iDerive = 0;
         }
         void DerivedFunc(void);
```

```
};
```

```
*.cpp
   main()
    {
       class DerivedClass ClassObj;
       ClassObj.DerivedFunc();
       return;
    }
   void BaseClass::BaseFunc(void)
    {
       m_iBase = 0x1234;
    }
    void DerivedClass::DerivedFunc(void)
    {
       BaseFunc();
       m_iDerive = 0x1234;
    }
```

```
Case 2: If the PC value resides in the DerivedClass::DerivedFunc() function
(1)"m_iBase"
                             : Cannot be referenced (*4)
(2)"this->__b_BaseClass.m_iBase" : Can be referenced (*5)
(3)"__b_BaseClass.m_iBase"
                            : Can be referenced (*5)
(4)"this"
      _"*"
        -"__b_BaseClass"
            -"m_iBase"
                                    : Can be referenced (*6)
      -"m_iDerive"
(5)"_b_BaseClass"
                             : Can be referenced (*6)
        -"m_iBase"
```

E8 Emulator							
Additional Document for User's Manual							
Notes on Connecting the M16C/26, M16C/26A, M16C/28, and M16C/29							
Publication Date:	Apr. 1, 2005	Rev.1.00					
	Jun. 23, 2005	Rev.2.00					
Published by:	Sales Strategic Planning Div. Renesas Technology Corp.						
Edited by:	Microcomputer Tool Development Department Renesas Solutions Corp.						

© 2005. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

E8 Emulator Additional Document for User's Manual

RenesasTechnologyCorp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan