Pogamut - Manual

Pogamut - Manual

Table of Contents

O [gL oo (0 1o o R PP PPPPTI 1
2. REQUITEIMENTS ...ttt et et e et e et et e e e et eeeeba s 2
Pogamut platform software requirements (for All-In-One installer version):cccooceeeeennnnes 2
Pogamut platform hardware reqQUIremMENtSooeuuuerieiiieieii e e 2
Unreal Tournament 2004 reqUITEMENTSuuniiiitieeeiii et e e et e e ene e eenans 2
Recommended WOrKplate SELUDiiiiiieiiii e 3
I =T= o [10] 01 SO PPTTOUPT TR 4
3. QUICK INSEAIl QUITE ... 6
Pogamut: Quick install USING iNSAIIEYccouuiiiiii e 6
INEFOTUCTION ...ttt ettt e et e e e et eeees 6

PrEPAIELION .. .ceietiie e 6

INSEBITALTION ...t 6

WWNEE NEXE? ettt e et 7

4. Working with NetBeans IDE (SIMple MOTE)c.uuiiiiiiiiieiiiiie e 8
Fg117oTo (¥ oi (oo RO PP OPPPTTRSPPPN 8
Before you start USING POGAIMULcuuuiiiiiieeiiiii ettt e e e eeni e e 8
OPENING @ NEW PIOJECT ..oevvueeeiii ettt e e ettt ettt e et e et e e e e e et e e e ena e e eeaans 8
Controls of the SIMPIE MOUEuuniiiii e 8
Switching between Simple and Advanced MOdEccoouviiiiiiiiieiii e 9

5. AdditiONal FESOUICESceviiieiiii ettt e e s 10
[AOVANCEO USEY ...ttt ettt ettt e et e e e et e e e et e e e et s 11
6. USING the SVIN VEISION ...t ettt e ea e eees 15
INEFOTUCTION ...ttt et e e e e et e e e e 15
PrEPAIELIION ... ceeee et 15
INSEBITALTION ... ettt 15

7. INStAliNG UT2004ottt e ettt e e e e e e e e et b e e e e e aaeenenaes 16
WhBEE 1S UT2004 ...ttt e ettt e e e e e e e e aabb e e e e e e aaeennees 16
Installing retail version of UT2004coouuiiiiiiiiieeiii e 16
Installing standalone dediCated SEIVErccouviiiiiiiiiiie e 16
What is UT2004 dediCated SEIVEr 2coeuuuiiiiiiiiieteii e 16

Getting UT2004 dediCated SEIVESuuuieiiiiiieeeiii ettt e 17

Installing UT2004 dediCated SEIVEYcoouvunieiiiiiieieiie e 17

INstalling GamEDOLS 2004coouuneiiiiie ettt 17
What iS GameDOLS 2004coeerinieeieiie et 18

Getting GameDOotS 2004ueiiiiiieee e 18

Installing GamebOtS 2004coouuieiiiiii e 18
CONCIUSION .ttt e et et e e et e e e aaa s 18

8. Configuring and rUNNING SEIVETc.uuiieiiiii et e e et eera s 19
011 o PP 19
RUNNING ..ttt e et e ettt e e e e et e e e enba e eeees 19
USING IMUEBLOIS ...ttt ettt e e e e e e e e 19

SELiNG UP the SEIVED ..o 20

9. Working with NetBeans IDE (Advanced MOdE)coouuuieiiiiiieiiii e 22
(Fg11goTo (¥ oi (oo H PP P PP PPPRTN 22
Creating @ NEW PIrOJECTvuueiiiti ettt ettt ettt e et e ettt e e e et e e e e et e e e eene e eeens 22
WOrKing With FIlESie e 23
ConNECEiNg 0 UT2004 ...ttt e et e 24
CONTIOI SEIVEY ..ttt e e e e e eenaas 25
Build, RUN 8N DEDUQ ...ttt e e e e 26
RemMOte CONIol PANEL et 27
[0 LS TP PP 28

Pogamut - Manual

T g1 07 7= ox 1 o 1 PN 29
O o) (= 10 = PSP 30
[T g1 18 o [o PSP 30
GaMEDOLS 2004ot 30
= PSP PT 31
RO P ST ... eeiii it 31

[0z I o 31
L= o = o G PP 31
L o | O PP 31
I SO SPPPTTSPPPN 32
T = PP 33
[T g1 [0 o [o OSSP 33
R MNIO P ST ..ttt 33
USING REMOLE PAISEr ...uuiivieiiiieiii e e et e e et e e e e e e e et e e st e s e e aneees 33

[0 Tor= I 0= £ P 33
USING LOCAl PaIrSEr ..uiiiiciii et e e e e e e e e e e e ean s 34

A O 1T 0| 0o - o < PP 35
[T g1 070 [0 o [o PSP 35
AGENE ClBSS ..oitiiiii e e 35
AGENBOAY ClaSSvuiiiiiici e 36
Initialization, Configuration and RESPAWNccuuveiiiieiiiiieii e e e 36
MESSAGE [ISEENEN'S ..ot e 37
MOVEMENt COMMANGSuiiieieie ettt e e e et e et eeaee s 38

Path searches and Reach checkSoovvvviiiiiiii i, 39
TraceS @nG AULOTTACES ..uuuiiiiiii et e et e et e et e e e e e e e e eeeans 40
ShOOtiNG AN WEAPONSiiiieiiieee e e e e e e e e e e e e e e e e eaaaeee 40
1= 0 0 PP 41
IN=gAIME MESSAOES .. euivtititeie ettt et ettt e e e e e e et e e e e e e e aaenns 41

[S w0 (0 1 0o 42
SYSEEM COMIMANGSvuiiiiiieii e e e e e e e e e e e et e e e e eaneees 42
AGENIMEMOTY ClaSS ...uiiiiii e e e e e 42
ez 1L 0] o = | P 42
ZONE ChANGES ... e e 43
SeNSOrY INFOMMBEIONuuiii i e e e e e e et e e et e eeanaees 43
L= < PP UPTPTPPR 45

S Lol 1= 1 T 101100 Y/ P 45
LONG-TEIM MEIMOIY ettt e e e e ea e eens 46
Fa\V7= 01 o] VAT 010 117 1 Lo o 46
SCOME .ttt ans 47

KIS e e aae 47
GAMEMEBP ClBSS ...uuiiiieii et e e e e e e e e e e e 47
NN E= Y7o = (o o 47

= =S PP 48
PSP 48
GBEPALN ... e 48
RUNAIONG the Pathccee e 49

L@ 101 £ PP 49

13. Three Kinds Of @QENESciuiiiii e e e e e e e e aaaas 50
[T g1 070 [0 o [o S SPPR 50
JAVA BOL ..o 50
v 10100 1 = o PN 50
What scripting [anguages Can | USE?ccuviiiiiiiiii e e 50
POSH B0t ..ttt et e e e e e e aaa e aaae 50
14, HOW 10 Creale @n G0BNT .. ouveiiieie et e e e e e e et e e e en 52

Pogamut - Manual

[T g1 oo [0 o [o PSP 52
ChooSiNG @aMOCElc.uniiiii e 52
What Kind Of @n agent 2iiiiiiiie e 53
S 1o = W o) ()= A 53
Looking around, MOVING aroUndcouuiiiiieiii e e e e e e e e e e 53
KNOW WHEIE YOU @€ QOING ...cevuieiiieeiieeiieeeie e et eeesteeete e st s e et esaneesteesanaeesneens 55
WEGPONS ADIAZING .. cvveiiii e 56
[0] 241 1o I o (R PP 58
Listeners: reacting to ENVIFONMENTccuuiiiiiiiii e e e e e e e 60
L OGS @NA MESSAGESuuuiiiieiiieiii et e e e e e e e e e e e e et e et e e e e e et e e et e e eaens 60
T g1 07 7= ox 1 o 1 PN 62
T e o o) = P 63
[T g1 070 [0 o [o PSP 63
First decisions: agent type and Modelc..ooiiiiiiiiiii e, 63
What should agent O 2coueiiii e e e 63
doLogic method - heart of the agentooviiiiii i, 64
WEBPON SEIECHION ...uiii i e e e e e e e e aens 65
ENgaging the ENEMYoiii e 66
CEASE TN FIT e 68
When shot at, tUIM @rOUNGoveeiie e 68
Chasing the ENEIMYoeeii e e e eaes 69
EVAdE ODSLACIES ... i 69
TaKe WHEL YOU SBE ...t e e e e e e e e e e e eaen 70
Seek healing When Woundedcoouiiiiiiiii e 72
L0001 o Q] (< 1 LSRRI 72
Introspection and playing the virtual PUPPELEErccvvviiiiiiiiii e, 73
1000 Tox 1= Lo o [P 74
T o o= 11101 1 £ 75
[T g1 [0 o [o PSP 75
Principle of the Drools (greatly smplified)ccooooiiiiiiiii e, 75
DIO0IS FIllE e 75
RUIES ..ottt e et e et e et e et e aaaaaaa 75
ThingSto dO iNthE FUIESiie e 76
Automatically iNSerted fattSccuiiiiii i 77
MISCEIANEOUS INFO .oiivieiie e 77

Vi

List of Figures

4.1, SIMPIE MOTE PANEL ...ttt 9
9.1. POJaAMUL PIrOJECE TYPES ...eeetiieeeitt e ettt e ettt e et ettt e e et et e e et et e e e eab e e e enbe e e eenta e eeene 22
0.2, PrOJECES 11 ..ttt 23
0.3, FHIES 8D e e 23
9.4. Runtime tah, With SErVEr PrOPEITIEScoevue it 24
9.5. Server CONLrOl WINAOWciiieieieiii ettt e et e s 25
9.6. REMOLE CONLIOI WINTOW cieeii ettt ettt et e et e e e e e eeaans 27
L A o B 1 1] o PP PPTTPPPPTTRUPPIN 28
0.8, INETOSPECLION ...e.vteeeeit ettt ettt ettt ettt e e et et e ettt e et e et r e e e e et neeeentaaaeeee 29
10.1. ArChITECIUINE OVEIVIEW ...coevuiiiiii ettt et e e et e e e e e eeeans 30

Vii

List of Examples

14.1.
14.2.
14.3.
14.4.
14.5.
14.6.
14.7.
14.8.
14.9.
16.1.

Example: Choosing @ MOE!oiiiiiiiiii e 53
Make agent follow anyOne NE SEEScuuiiiiii e 54
Running towards a NavPoint, not necessarily reachableccoooeiiiiiiiii 56
Selecting the best weapon and Shooting targetvvvveiiiieiiii e 57
KNowing he iSBEING SNOLiiiii e 58
Agent initialization using getKNOWNWEBPDONScvveuiiieiiiie et 58
Run and evade walls - USING GULOTIBCEuuiieiii ittt et e e e e e 60
Sending messages to communiCation ChaNNEluiiiiiiiiiiiii e 61
Receiving the MeSSages, FEPIYINGc.uuu it e e enees 61
Droo0lS FUIE EXBMPIE ... et 76

viii

Chapter 1. Introduction

Pogamut is a project aimed at prototyping virtual beings (caled agents). It is a platform designed to
facilitate creation and debugging of these beings. The principa part is IDE. It is a NetBeans plugin
that enables user to code a logic of the agent and then debug it and run it in the virtual environment.
Pogamut is using Unreal Tournament 2004 [http://en.wikipedia.org/wiki/Unreal_Tournament_2004] as
an environment for agents. IDE creates agent in the environment, controls it and enables on-the-fly
debug, parameter view and modification. User can also confirm agent's behaviour visualy or enter the
environment with his avatar and interact with agents.

This document is a user manual for Pogamut.
First chaptersisthisintroduction, and list of platform requirements.

Therest of the book is divided into two parts: Beginner part explains the basics - installation, opening and
running of sample projects. Advanced user part contains description of all the features of the platform,
instructions how to use them, and examples. It is intended for users with more in-depth interest in agent
programming.

Beginnersection contain following chapters. Chapter 3, Quick install guide contains brief guide on
platform installation. Chapter 4, Working with NetBeans IDE (Smple mode) describes simple mode, best
suitable for beginners. Final chapter contains tips and links to other useful resources.

The Advanced user section makes the rest of the book:

First three chapters deal with installation of the platform and getting it to work. Chapter 6, Using the SVN
version explains how to get, compile and run a source code from the SVN repository. Those users who
need more detailed instructions on UT2004 should consult Chapter 7, Installing UT2004 (installation of
UT2004)and Chapter 8, Configuring and running server (configuration of UT2004).

Following chapter describe the IDE and instruct user on how to work with it. Chapter 9, Working with
NetBeans | DE (Advanced mode) detail full spectre of Pogamut features.

Some details on workings of the platform are given. Chapter 10, Architecture offers a short overview of
the platform architecture, while Chapter 11, Parser detailsone of the parts- the parser. Users seeking more
detailed information on workings of the platform are advised to look in the programmer documentation.

Chaptersthat follow help usersto build their own agents. Chapter 13, Three kinds of agents explains what
kinds of agents can be built using the platform and what differences are between them. Chapter 12, Client
package contains the list of functions and methods offered by the Client package and how to use them.
Chapter 14, How to create an agent focuses on different parts of agent creation and offers advice and
examples. Chapter 15, Exampleistutorial of the usual kind - description of building the agent, accompanied
by the commented pieces of code.

Chapter 16, Experiments describes the module Experiment - platform's connection to Drools 4 engine. It
enables to design rule-driven experiments.

http://en.wikipedia.org/wiki/Unreal_Tournament_2004
http://en.wikipedia.org/wiki/Unreal_Tournament_2004

Chapter 2. Requirements

Pogamut platform software requirements (for
All-In-One installer version):

Minimal:

* WindowsXP SP2 (theoretically any operating system capable of running Java Virtual Machine 1.6)
» TCP/IP accessto Unreal Tournament 2004 game server

Recommended:

* WindowsXP SP2

¢ Unrea Tournament 2004

Pogamut platform hardware requirements
Minimal:
* 1GHz CPU
« 512MB RAM
* 500MB HDD space REQUIRED
Recommended:
e 2GHz CPU
* 2GB RAM
« 500MB HDD space REQUIRED

e Internet access

Unreal Tournament 2004 requirements

OS: Windows 98/Me/2000/XP

Processor: Pentium 111 or AMD Athlon 1.0 GHz processor (Pentium® or AMD 1.2GHz or greater
recommended)

Memory: 128MB RAM (256MB RAM or greater recommended)
Harddisk: 5.5GB HDD space REQUIRED
Sound Card: Windows® compatible sound card

Graphicscard: 32 MB video card required (64 MB NVIDIA or ATI hardware T&L card recommended)

Requirements

Recommended workplace setup

One PC with Unreal Tournament 2004 and dedicated server. This PC provides virtual world for agents
(dedicated server) as well as visualisation of this world for a developer (UT2004). Second PC with
Netbeans IDE and Pogamut plugin could be used for development of agents. Both computers must be
linked with TCP/IP connection.

Part |. Beginner

Table of Contents

3. QUICK INSEAIl QUITE ...ttt e e 6
Pogamut: Quick install USING iNStAllEruiiiiiiiee e 6
Fg117oTo (8 oi (oo R TP U PP UPPPTTRSPPPN 6

PrEPAIELIONeeiete et 6

INSEBITALTION ...t e 6

WNEE NEXE? ettt e e e et e e e 7

4. Working with NetBeans IDE (SIMple MOGE)oiiiiiiiiiiiiii e 8
Fg11 oo (¥ oi (oo H TP OP PP PPPPPTPRPPPIN 8
Before you start USING POJAIMULuuuiiiiiieieiii ettt e e e eeeens 8
OPENING @ NEW PIOJECE .. e.vueeieii ettt ettt e ettt e ettt e e et e et et e e e e e e et eeb e e e eaba e eeenanns 8
Controls of the SIMPIE MOUEuuiiiiiii e 8
Switching between Simple and Advanced MOUEuiiiiiiiiiiiiii e 9

5. AdTItiONal FESOUICESceviieiiiit ettt ettt e et e e e e e s 10

Chapter 3. Quick install guide

Pogamut: Quick install using installer

Introduction

Following instructions will guide you trough installation and configuration of Pogamut. The guide is
made in simplest form possible, making some instructions rather sketchy. If you think you need more
detailed instructions on any of steps, consult appropriate chapter of Pogamut: Install tutorial. [http://
artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=How-+to]

Preparation

Y ou will need these:
e Unreal Tournament 2004 - commercially available at a game retail store

* NetBeans|DE + JAVA 1.6 - can be downloaded from NetBeans webpage [http://www.netbeans.info/
downloads/index.php]

Note

full (L60MB) version of installer includes installation of NetBeans and Java 1.6.

* Pogamut installer - see section Download [http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?
page=Download] on project webpage [http://artemis.ms.mff.cuni.cz/pogamut] .

Installation

Please follow these steps:
 Install Unreal Tournament 2004
Follow installation instructions. In case of any difficulties, consult UT2004 manual .

Note that UT2004 will try to connect to the internet. That is a normal behaviour. However, it is not
necessary for operation, so if you aren't connected to the internet, it won't prevent you from running
uT2004.

* |nstall NetBeans | DE

Warning

If you aready have JDK 1.5 installed, It may be necessary to manually set NetBeans to use
1.6. To do so, start NetBeans and open Tools/Java Platform Manager. If 1.5 is selected, select
1.6 instead.

* Install Pogamut

Setup will lead you through installation. Installer will automaticaly install plug-in into NetBeans,
Gamebots into UT2004, shortcuts (like .bat file for running dedicated server) and will create required
directory structure for projects.

http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=How+to
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=How+to
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=How+to
http://www.netbeans.info/downloads/index.php
http://www.netbeans.info/downloads/index.php
http://www.netbeans.info/downloads/index.php
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=Download
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=Download
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=Download
http://artemis.ms.mff.cuni.cz/pogamut
http://artemis.ms.mff.cuni.cz/pogamut

Quick install guide

Plug-in will be installed during next run of NetBeans?.

That's all, Pogamut is now installed and ready.

What next?

Y ou will probably want to try running some example bots and get afeel of the environment. Instructions
to do so can be found in following chapters, or on the project webpage [http://artemis.ms.mff.cuni.cz/
pogamut/tiki-index.php?page=How-+to].

http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=How+to
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=How+to
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=How+to

Chapter 4. Working with NetBeans IDE
(Simple mode)

Introduction

In this chapter the Simple mode of Pogamut platform will be described. Simple mode doesn't offer many
features, but it isvery easy to master and enables the use of Pogamut platform even for absol ute beginners.

Before you start using Pogamut

First you must start a UT2004 server. Simplest way to do so is the icon, added by the installer into the
Windows Start menu. Select" St ar t / Pr ogr ans/ Poganut / St art UT2004 server".If youdo
not do this, you won't be able to launch any agents.

Opening a new project

To start anew project, select" Fi | e / New Pr oj ect " fromthe menu. For the start, t you are probably
interested in samle Pogamut agents. Therefore select " Sanpl e / Pogarut " category from the list
of categories.

On the next page, select a name of your project. You may also specify where the project folder will be
located, if the default location is not appropriate.

Thereis a checkbox, labeled "Open project in the simple mode (advisable for beginners)". Be sure to
check it.

Click " Fi ni sh".

Controls of the simple mode

Controlsof thesimplemode arevery basic. Most of the IDE windows and panelsare hidden. Only Proj ects
panel, Pogamut simple view panel and edit window are visible

Projects panel islaced in the top left corner of the IDE. It enables you to browse your opened projects.
Double-clicking on any part of the project will open it for editation (in the edit window, on the right).

All theremaining control s of the simple mode are placed on the Pogamut simpleview panel. SeeFigure4.1,
“Simple mode panel”.

First you need to fill in the server URI. That is the address of the UT2004 server you will be using. If the
server URI isnot set or the server isn't running, you cannot start any bots.

Note

If you run the server on the same computer as the IDE, use "ut : / /| ocal host " (without
quotation marks) as the URI.

Working with NetBeans
IDE (Simple mode)

Figure4.1. Simple mode panel

: Pogamut simple view i x
General

Start bok

Server URI: E[not set]

l Switch ko advanced wiew

Bok control

Pa

i
i M N
- 7 &)

Pause logic

Start bot and terminate bot buttons are self-explanatory.

Buttons on the lower part of the panedl (arrows, Run and Walk) are used to control the bot directly. Bot
can't be controlled unlessit is running.

Pause logic disables the code used to drive the bot. The bot effectively stops taking actions. Most useful
if you want to control the bot manually and the logic would interfere with it. Another click on the button
reactivates the bot's logic.

Switch to advanced view does just that - terminates Smple mode and opens the windows of Advanced
mode. More on that in the next section.

Switching between Simple and Advanced
mode

When you want to enable the more advanced features of IDE, you can switch to the Advanced mode. To
toso, simply click the" Swi t ch t o advanced vi ew' button on the Pogamut simple view panel.

If you later want to return back to the Simple mode, open the W ndow menu of NetBeans and selecting
"Switch to the sinple node" option (marked by smiling face icon).

Chapter 5. Additional resources

Project Pogamut maintain the website http://artemis.ms.mff.cuni.cz/pogamut/. There you can find more
tutorials, video guides, documentation, forum and links to other things of interest. It is also the place to
ask questions or report bugs.

10

http://artemis.ms.mff.cuni.cz/pogamut/

Part Il. Advanced user

Table of Contents

6. USING the SVIN VEISION ...t ettt e e e e e et eeena e eeees 15
Fg11geTo (¥ oi (oo R PP PP TR TPPPRTR 15
PrEPAIELIION ... ettt 15
FgES = = o] o PP PP TPPPPT 15

7. INSEAIING UT2004 ...ttt ettt ettt e e et et e et e e e naa e e ennas 16
WHaL IS UT2004 ...t e e et e e et e e e e aa e 16
Installing retail version of UT2004coouuuiiiiiieieii et 16
Installing standalone dediCated SEIVEYcoouuiiiiiiii e 16

What is UT2004 dediCated SEIVEr 2oouiieiiiiiieeeii et 16
Getting UT2004 dediCatetd SEIVESiiieeiieeeeii ettt eeeens 17
Installing UT2004 dediCated SEIVEYccuuuiiiiiiiiieeieii et 17
INStalling GamEDOLS 2004ovuneiiiii ettt ettt et e e e eaaas 17
What iS GamMEDOLS 2004coereneiiiite ettt ettt 18
Getting GameDOtS 2004oiieiie et 18
INstalling GamEDOLS 2004oouuuieieiiie et 18
1600] 9 Tox U= [0 o ISP SPPPTT 18

8. Configuring and FUNNING SEIVESuuu ittt e et e et e e e et e e ettt e e e e et e e eeet e eeentaaaaees 19
011 o PP PPTI 19
RUNNING .ot e ettt e ettt e e et et e e e e ab e e e ent e aeens 19

USING IMUEBLOTS ...ttt ettt e e e et e e e e e e e eba e 19
SELING UP The SEIVEY ..ottt e e e e e et e eees 20

9. Working with NetBeans IDE (Advanced MOE)ccuuuiiiiiiieiiiiiieeeii e 22
Fg11geTo (¥ oi (oo RO UP PP RPPPPRTT 22
Creating @ NEW PIOJECTuueieeti ettt ettt e ettt ettt e et et e et e et e et e e e e e eb e e e enaa e eeenees 22
WOrKing With TIlESoeee e 23
ConNECHING 10 UT2004ottt e e e e aa s 24
CONTIOI SEIVEY ...ttt ettt e e et et e e e e e eanans 25
BUild, RUN 8N DEDUQ -...neeeeeeiieeeie et e e e e et e e e eanns 26
RemMOtE CONLIOl PANELot 27
[0 LS PPN 28
INEFOSPECTION ...ttt et e et e ettt e et et e et eab e reeeent e eeeee 29

L0, ATCIITECTUNE ... ettt ettt e et e et e e e eba s 30
Fg11geTo (¥ oi (oo RO UP PP RPPPPRTT 30
GAMEDOLS 2004ot 30
s = S PP P PP SPPRTRP 31

REMOLE PAISEN ... eetiieit et ettt et 31
oo 7= T TSP PP 31
L= s = (o PP TP PPT O PPPPTI 31
LG o | PO PO PP TPPPTT 31
T TSP R UPPPPTRSPPPIN 32

T = PSPPSR SPPPTTR 33
Fg11geTo (¥ oi [l H PSPPI POPPRT 33
REMOLE PAISEN ... ettt ettt et et 33

USING REMOLE PAISESiiieiii ettt ettt ettt ettt e et e e e e e b 33
(oo I 7= T TP P PP TPPPPT 33
USING LOCAI PAISEY ...ttt ettt e et e e e e s 34

12, ClHENE PACKBGE ... eeeeti ettt ettt ettt ettt e ettt e e et et e e et et e e e e et e e e eeba e eeee 35
Fg11geTo (¥ oi [l H PSPPI POPPRT 35
AGENE ClBSS ...ttt ettt 35
AGENIBOOY CIASS ...ttt ettt et e e aaas 36

Initialization, Configuration and RESPAWNcccuvuiiiiiiiiiiiiii e 36

12

Advanced user

MESSAGE [ISIENEYS ..ovuiiiii e e e 37
MOVEMENE COMMANGSuiiieiii ettt ettt e e e e e e e et e e e e atn e e e eaan s 38

Path searches and Reach CheckSooouvviiiiiiiii 39
TraceS @NU AULOTTACESueiiiii ettt e e et e e et e e et eeeeat e e e eannns 40
ShOOtING AN WEAPDOMNSciviciii i e e e e e e e e e e e et e e e e e e e et e e ean e aenees 40
1= 0 0 PP 41
IN=gAIME MESSAOES ... eutuii ettt ettt ettt e e e et e e et e e e e e e e e e e e e ans 41

[S w0 (0 1 0T 42
SYSEEM COMIMANGSvuiiiieii e e e e e e e e e e e e e e et e e et e e e an e e e st e eannnas 42
AGENIMEMOIY ClaSS ..uuiiiiiiiii e e e e e e e e e e e et e et e e aaeeeeas 42
Sz 1= 0] =0 = | 42
ZONE ChBNJESuiiiici e e 43
SENSOrY INFOMMIBEIONuuiiit e e e e e e e e e e e e e et e e et e e aaeeeees 43
1= < PP UPTP PRI 45

S Lol (= 1 T 11100 Y/ 45

L ONG-TEIM MEBIMOIY ettt e e e e e e e e e e e e aas 46
Fa\Y 7= 01 (o) VAT 010 117 1 Lo o I 46
o0 TP 47

11 PSPPSR 47
GAMEM AP ClBSS ..vuiiiiieiii e et e et e e e et e e e e e et e et e et e e et e e e aaen 47
AN E= Y7o = 1o o PPN 47

[N = == PP 48
TP 48
LT 1 1 o PRSP 48
RUNAIONG the Path ... 49

L@ 10 £ PP 49

13. Three Kinds Of @QENESiviinieii e e e e e e e e e e e e et e e et e e aan e eeas 50
F g1 7o [0 o [o PSP 50
JAVA BOL ... 50
o 1010 o 1 = o P 50
What scripting [anguages Can | USE?uiiiiiiiiiiieiie e e e e e e 50
POSH B0t ..iitiiieiiii ittt et e e et e e et e ettt e ettt e e et e e e et aaeaes 50
o o [o A (o e (= L= g =T [| PR 52
F g1 [0 o [o PSP 52
ChooSING @ MOGEDc.uniii i e 52
What Kind Of @n a0ENt 2oniiiiiii e 53
S 1 To = W o) (0] = AP 53
Looking around, MOVING @rOUNGcoouuiiiiiiiii e e e e e e e e e e e e e e e eaneees 53
KNOW WHEIE YOU @€ QOING «.evvueirneiiietitieeee et e e s e e et e st e e et e e st e e st eeanaeeaaaeenneasanaaes 55
ViY== oo g S o) 4 1 o 56
[0 T0] 241 1o 1 o (RSP 58
Listeners: reacting to ENVIFONMENTiiiiiiiii i e e e e e e e e e e een 60
L OGS N0 MESSAGESuueiiineiiieiii e et ee et e e e et e e e e et e e et e et e e et e e et e e et e e et eeaneeanaeeen 60
F 107 ox 1 o 1 PP 62
T e 1 o) = 63
F g1 [0 ot [o PP 63
First decisions: agent type and MOAElcoooviiiiiiii i 63
What should agent O 2ceveii e e 63
doLogic method - heart of the agentccoviiiii i 64
WEBPON SEIECHION ...uiitiiii e e e et e e e e e e e e e e e ee 65
ENQgaging the ENEMY ... 66
CEASE TN FIT ettt 68
When shot at, tUMM @rOUNGcooiiiiieci e e e e s 68
Chasing the ENEIMYciiii e e e e e e et e e e ean s 69

13

Advanced user

EVAOE ODSLACIES ... e 69
I G0z 001U 1K= == P 70
Seek healing When Wounded ... 72
L000] 1= o] (< 1 LSRRI 72
Introspection and playing the virtual PUPPELEETccevniiiiiieiie e e 73
100 Tox 11 Lo o [P TPPT 74
T o o= 10101 £ 75
F g1 [0 ot [o R PSP 75
Principle of the Drools (greatly simplified)cccoiiiiiiiiiii e 75
(D) oT0] E=30 1 = RSP 75
1 =S 75
ThingSto dO INthE TUIES ... e e 76
Automatically iNSErted fattSo.viiii i 77
MISCEIBNEOUS INFO .oiiviiieii e e e e e e e e et 77

14

Chapter 6. Using the SVN version

Introduction

This chapter explains, how to obtain, compile and run the latest version of Pogamut from the project
repository. If

Please note that, despite our best efforts, this version may not be stable. In some cases, it may not even
compile. If you want aversion working without problems, please usetheinstaller with latest stable release.

Familiarity with SVN is presumed. If you lack this knowledge, tutorials are easy to find on the internet.

Preparation

Y ou will need these:
* SVN Client
* Unreal Tournament 2004 with Gamebots 2004
* NetBeansIDE + JAVA 1.6
Instruction how to install these are at the start of the beginner section.

» Pogamut source code - can be downloaded from SVN repository [svn://artemis.ms.mff.cuni.cz/
pogamuit].

When you have all these, proceed to next section.

Installation

Please follow these steps:
» Check out Pogamut code
 Build the platform

With NetBeans, first open the project PogamutCore prom PogamutNBPIluginSuite directory. Perform
abuild.

Then open and build PogamutNBPluginSuite project from the root directory of the SVN.
* Runtheplatform

Now run the compiled project. Another instance of NetBeans is started, this one with newest version
of Pogamut plugin.

That's all, Pogamut is now installed and ready.

15

svn://artemis.ms.mff.cuni.cz/pogamut
svn://artemis.ms.mff.cuni.cz/pogamut
svn://artemis.ms.mff.cuni.cz/pogamut

Chapter 7. Installing UT2004
What is UT2004

Unreal Tournament 2004 is a FPS (First-person Shooter) game. But thanks to some of its features, it
can also be used as a environment for virtual agents, providing necessary rules, physics and graphical
representation. At the present time it is the only environment supported by Pogamut project.

UT2004 comesin two versions. retail and standalone dedicated server.

Retail version is commercia distribution, containing both client and server.
Standalone dedicated server contains server only. Thisversionisfree.

While Pogamut can work with any of the versions, there are some difficultiesin working with server only.
Main problem isthat you are unableto look at the environment. Without visual feedback, your possibilities
will be severely limited.

Following two sections contain instructions for installing the two versions. Y ou only need one of them.

Installing retail version of UT2004

Follow standard installation procedure. If you encounter any difficulties, consult UT2004 manual.

Note

UT2004 will try to connect to the internet. That is normal behaviour. If you do not want it to
connect, you have to make a small change in the configuration:

Find section [pDrv. Mast er Server Upli nk] in the configuration file UT2004/
Syst em’ UT2004. i ni (intheinstallation directory of UT2004).

Vaue DoUpl i nk changeto False
Vaue Upl i nkToGanespy changeto False
Vaue SendSt at s change to False

Installing standalone dedicated server
What is UT2004 dedicated server ?

Dedicated server isan application used to run UT2004 server, usually on computer that doesn't have normal
UT2004 installation. Main reason is that UT2004 needs a lot of system resources - running server and
client on one computer may prove difficult.

You can use Pogamut with dedicated server only, but you will not be able to visually monitor the
environment - your only feedback would be status messages from your bots.

Note

If you aready have installed retail version of UT2004, it is pointless to install dedicated server
- your software already has all capabilities you need.

16

Installing UT2004

Getting UT2004 dedicated server

Dedicated server package is free to download. Check one of following addresses:
* http://downl oads.unreal admin.org/UT2004/Server/
* http://www.3dgamers.com/games/unrealtourn2k4/downl oads/

» Google [http://www.googl e.cz/search?g=ut2004+dedicated+server+download] for: "ut2004 dedicated
server download" and go on from there

New versions appear from timeto time - just pick the latest.

Installing UT2004 dedicated server

Installing files

UT2004 dedicated server distribution fileisa.zip archive. Just unpack the contentsinto desired folder. Be
sure to preserve subfolder structure (thisis usually automatic).

Obtaining dedicated server CD-Key
If you have aretail version of UT2004, CD-Key comeswith it. In that case, use the one you aready have.

Otherwise, visit the following page: http://unreal .epicgames.com/ut2004server/cdkey.php and follow
instructions there.

Warning

If you are using a Windows computer and you already have aCD-Key, DO NOT attempt to install
anew one. It would overwrite the old one, forcing you to reinstall UT2004.

This service may be unreliable or experience temporary downtime. If you are unable to obtain CD-Key, it

is possibleto setup your server to run without it. The only lost functionality is connection to Unreal Master
server (that is not necessary for Pogamut).

If you don't have CD-Key

To setup your server to run without CD-Key, open file / Syst enf UT2004. i ni (found where you
unpacked your server files). Perform following changes:

Find section[| pDr v. Mast er Ser ver Upl i nk]
Value DoUpl i nk changeto False

Value Upl i nkToGanmespy changeto False
Value SendSt at s change to False

After this, your server should run without need for CD-Key.

Installing Gamebots 2004

If you installed Pogamut using the installer, your Gamebots2004 is already installed.

17

http://downloads.unrealadmin.org/UT2004/Server/
http://www.3dgamers.com/games/unrealtourn2k4/downloads/
http://www.google.cz/search?q=ut2004+dedicated+server+download
http://www.google.cz/search?q=ut2004+dedicated+server+download
http://unreal.epicgames.com/ut2004server/cdkey.php

Installing UT2004

If you used the SVN version, or need to install Gamebots2004 manually for some other reason, here are
theinstructions.

What is Gamebots 2004

It is a utility that allows bots in UT2004 to be controlled by outside application. It is inspired by old
Gamebots project [http://www.planetunreal .com/gamebots/]. For more information about the version used
by Pogamut, look at corresponding chapter of this tutorial.

Getting Gamebots 2004

Download file Gamebots2004.zip [http://artemis.ms.mff.cuni.cz/pogamut/files’Gamebots-070816.zip]
from Pogamut webpage [http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=Downl oad)].

Installing Gamebots 2004
Extract the contents of root level of Gamebots2004.zip into directory " UT2004/ syst ent' (only thefiles

in top level. Contents of the directories are source code, not necessary for the platform). Exact location of
the directory depend on where you installed UT2004 in one of previous steps.

Conclusion

Following instructions in this chapter, you now have UT2004 with Gamebots 2004 installed.

In the next chapter, we will see how to setup and run UT2004 server.

18

http://www.planetunreal.com/gamebots/
http://www.planetunreal.com/gamebots/
http://artemis.ms.mff.cuni.cz/pogamut/files/Gamebots-070816.zip
http://artemis.ms.mff.cuni.cz/pogamut/files/Gamebots-070816.zip
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=Download
http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=Download

Chapter 8. Configuring and running
server

Intro

Following instructions in previous chapter, you should have a UT2004 server with correct Gamebots
version.

In this chapter there are instructions to run it and change its configuration.

Running

UT2004 server with Gamebots needs to be run from the console. We will use the ucc utility that can be
found inthe/ Syst eni subdirectory of your UT2004 installation.

Torunthe server, start consoleand cd into the UT2004/ Syst eni directory. Then usefollowing syntax:
ucc server mapnanme?ganme=Bot APl . ganmet ype

MapName Name of the map you want to run. It's the same as name of the map file, without the . ut 2
suffix. You can see all the map filesin UT2004/ Maps/ directory.

GameType Type of the game started. Select one of the following:

BotDeathMatch
BotTeamGame
BotCTFGame
BotDoubleDomGame
BotBombingRunGame

For example, to start the server with game BotDeathMatch on the map DM -Junkyard, the command will
look like this:

ucc server DM Junkyar d?ganme=Bot API . Bot Deat hivat ch

Using mutators

Mutators are program segmentsthat modify somedetailsof the game. If you want to useamutator, first you
must have it installed. Then just add ?nut at or =Package. Mut at or Nare to the starting command,
replacing MutatorName with actual name of the mutator and Package with name of the package. If you
want to use more than one mutator, write all the Package.M utatorName pairs, separated by commas.

Pogamut has two mutators you might find useful. Oneis named Pat hVar ker and it marks waypointson
the map, so you can see them. Another is GBHUD mutator and it makes UT2004 display additional useful
information. This information can be very useful when debugging the bot.

Example: when starting the server (same game and map asin previous example) with PathMarker mutator
added, use following command:

ucc server DM Junkyar d?ganme=Bot API . Bot Deat hivat ch?nut at or =Bot API . Pat hMar ker

19

Configuring and running server

Setting up the server

Pogamut will work with default server settings. If that isnot an option, here are someinstructions on server
configuration. They are limited on settings most relevant to running Pogamut and its specific game types,
as configuration of UT2004 server can be very complex and beyond scope of this manual.

Server settings can be changed by editing one of the configuration files. For purposes of using Pogamut, the
only important oneisBotAPI.ini, where settingsfor Pogamut gametypesare. If you want moreinformation
on UT2004 server configuration, look up http://www.ruination.eclipse.co.uk/unrealtech/serverguide.htm
or Google.

Some settings influence any game, some only a specific game type. Globa settings can be
found in section [Engi ne. Ganel nf o] of the BotAPl.ini , game-specific settings are in sections

[Bot API . ganet ype] (for list of the game types, see previous section).

Here are explanations of some of the options. Not all of them are available for every game type.

MaxLives The maximum lives aplayer hason thelevel. (O meansthereisnot limit).

TimeLimit How long in minutes each game will last. If set to O, gameis not limited
by time.

Goal Score The amount of goals to be scored before a winner is automatically
declared. 0 goals = goes to time limit before awinner is declared.

bPlayersMustBeReady If set to True, players must confirm ready for game to start.

bForceRespawn If set to True, player respawns instantly

bWeaponStay If set to True, makes any weapons on the map always there and able to
be picked up.

NetWait time to wait for players in netgames with bNetReady (typically team
games)

bAdjustSkill If set to true, skill level of native UT bots (not the Pogamut-controlled
ones) will adjust according the skills of the players.

bAllowTrans If set to False, use of Tranglocator is disabled.

SpawnProtectionTime

bAllowWeaponThrowing

How long in seconds a player who joins the game either from start or
from reinforcement they get of being completely protected from taking
damage.

If set to True, weapons can be thrown (discarded).

ResetTimeDelay Delay between rounds.

FriendlyFireScale How much damage a shot will do to ateam matein terms0 = 0% and 1.0
= 100% or full damage for the weapon type.

MaxTeamSize Maximal size of the team.

bAllowNonTeamChat

TimeToScore

If set to False, communication between teams is disabled.

How long in seconds the domination points must be held for before a
point iswon.

20

http://www.ruination.eclipse.co.uk/unrealtech/serverguide.htm

Configuring and running server

TimeDisabled How long in seconds the domination points are disabled after a point is
scored.

If youwant to return to the default configuration, simply re-downl oad Gamebots2004 pack and use original
Bot APl .ini.

21

Chapter 9. Working with NetBeans IDE
(Advanced mode)

Introduction

Inthis chapter you can find instructionsfor various operations with NetBeans | DE with Pogamut plugin, in
the advanced mode. This means full range of features will be available to the user. Although we presume
the user isfamiliar with some programming environment, even very basic operations are covered (briefly).

For users already familiar with NetBeans, some parts of this chapter may seem trivial. Such person should

focus on sections describing features added by Pogamut plugin. This means mainly sections 4, 5, 7, 8 and
9, although operations described in section 6 may differ from their usual meaning.

Creating a new project

To start anew project, select "Fil e / New Proj ect" from the menu. NetBeans offers you many
project templates, but you are probably interested in Pogamut projects. Therefore select " Poganut "
category from the list of categories.

Figure 9.1. Pogamut project types

& New Project
Steps Choose Project
1. Choose Project Cateqgaries: Projects:
20 . i Po i
) I:l 4 gamut Experiment
) General 4y Pogamut Java Bob
Wweb Pogamut Java SPOSH Bot

"L Pogamut Python POSH Bot

| Enterprise)
- Pogamut Script Bat

| MetBeans Plug-in Modules
+) Samples

Description:

Experiment defined by set of rules,

Cancel | | Help

There are four project templates. Three kinds of agents (as described in corresponding chapter) and
experiment template. Thelast one enablesyou to design experiments using the Pogamut platform (achapter
describing these follows).

On the next page, select a name of your project. You may also specify where the project folder will be
located, if the default location is not appropriate. Click " Fi ni sh™ .

22

Working with NetBeans

IDE (Advanced mode)
Working with files
Figure 9.2. Projectstab
Projects 10 x - Files Runtime
= ix 03 -Prey
- Source Packages
- javaprey
- Main
+ Fields
+ Construckars
+ Methods
+[2] Bean Patterns
+ Test Packages
+ Libraties
+ Test Libraries
Figure9.3. Filestab
Projects Files 1 % Runtime
- 03 - Prey
- build
- classes
- javaprey
+ Main. class
+ dist
+ nbproject
- src
- javaprey
+ P‘:"Main.java
+ best
+ build, xml
ranifest, mf

Working with projects and files is exactly the same as in the basic NetBeans.
Towork with afilein the opened project, double-click onitsicon. It will be opened in the editor window.

There are two tabs displaying the project's structure, both located on the upper left of the IDE. Projects
tab displays project's logical structure - organized in packages, classes, etc. Files tab displays project's
directory and files. Y ou can use both to access the project'sfiles.

When creating the agent, you will be working mainly with its class file. To access it, either open
Proj ect Nanme/ Source package/ Proj ect Nane/ Mai n. j ava under Projects tab or open
Pr oj ect Nane/ src/ Proj ect Nare/ Mai n. j ava under Files tab. In either case, replace both
instances of ProjectName with actual name of your project.

23

Working with NetBeans
IDE (Advanced mode)

Apart from organization of filesinto projects and syntax highlight, IDE can be used like normal text editor.

Connecting to UT2004

Figure 9.4. Runtimetab, with server properties

Projects Files Runtime a0 =
+ Servers
- { Unreal Tournament Servers

- UT Server (ut://localhost)

+ =y SampleProject_0 {BOT_RUNNING)
Mew server ... ()

+--§3 Processes
+-f=1 Databases

{F- HTTP Server
+-2% DTD and =ML Schema Catalogs

r 3

UT Server {ut:/ /localhost) - Properties A0
-/Properties
Mame T Server IZI
Server URI uk: fflocalbost
Remote parser LRI [not sek]

Is alive check
Auko reconneck

UT Sserver (ut://localhost)
Server is UP and running.

To run agents, you need to establish connection to UT 2004 server. IDE will connect agents for you, but
server data must be entered first.

To enter a new server or change its properties, open the Runtimetab. It is usually located in the top-left
corner of the IDE. Alternatively, you can open it by selecting command " W ndow/ Runt i ne" fromtop
menu bar or pressing” Ct r | +5" .

On the Runtime tab there is a list of various items, one of them being " Unreal Tour nanent
Server s". By right-clicking it and selecting " Add server", you can add new server to IDE's list.
All of the serversin the list are shown below thisicon.

The server'sicon shows its status. Green arrow indicates the server isrunning and IDE is connected to it.
Y ellow warning mark indicates the connection could not be established - the server is either down, or its
URI was entered incorrectly (or not at all). Red circle indicates the server is paused.

By right-clicking any server in thelist, amenu is shown offering you various operations. First you should
set server " Pr operti es”; mostimportantly, itsURL. If you are running the server on the same machine
as IDE and your GameBots have default configuration, the URL will be following:

ut:/ /1 ocal host: 3000

24

Working with NetBeans
IDE (Advanced mode)

Note

If you are running server on a different machine, replace localhost with its URL.

If your Gamebots are set to run on different port, replace 3000 with number of the port you are
using.

You can aso delete server from the list or disconnect all bots (agents) currently on this server.

Note that one of the serversin the list is printed in bold. This is main server and IDE will connect all
newly run bots to it. To select other server as main, right-click it and select " Set Mai n Server"
from the menu.

Once some bots are running, their icons appears below the server they are connected to. By right-clicking
it, you can open their menu and issue some commands. They are explained in sections 8 and 9.

Control server

Figure9.5. Server control window

School server - ut:ffartemis.ms.mff.cuni.cz %

| Pause game | pause only bats i
L) AT
| changemap | DM-DE-Ironic [SELECTED]
| Record game | filename of recarding
Set speed of game
Bok options
Selected bot Prey_3 - DM-DE-IRONIC. RemoteBiok4 | wick |
Autotrace Invulnerable Manual spawn
Show debug Show Focal point Draw trace lines
| Change name | Prey_3
| Respawn | DM-DE-IRONIC, InventorySpok 108 - -189,0,-128.0,,.
| Add item | AdrenalinePickup

XPickups.AdrenalinePickup
ADRENALINE_PACK

The UT2004 server has many parameters and variables. Most of them are setinits. i ni fileand loaded
at start-up. Some, like current game map or list of currently running agents are set at the runtime. While
some tools are available for this purpose (see Unreal manual), |DE provides you with one for comfort.

The controls of the server are located on the ServerControl Window. It can be opened by " Open
Server Control W ndow' command from menu " W ndow" . Its default position is on the left side
of the screen.

The currently selected main server is receiving the commands (you can find details on servers in this
section). To issue commands to another one, select it as main in the server list.

Following controls are available:

Pause game makes the server pause or unpause the game (if the button is pressed, gameis paused). In the
checkbox on the side you can specify if al entities are paused or bots (agents) only.

25

Working with NetBeans
IDE (Advanced mode)

Changemap ispretty self-explanatory. Before clicking the button, select one of the maps from thelistbox.
Note that changing map makes server restart, so it can take some time. The new map is ready when the
I DE finishes reconnecting (the look of thiswindow changes until it is done).
Record game enables you to make arecord of happenings on the server. The record will be saved to file
of specified name. First click starts the recording. Y ou can see the button is pressed and you no longer can
change name of the file. Second click stops recording and performs the save.

Speed of game dia control corresponding parameter of the server. For details, see chapter on server
configuration.

Therest of controls affects only one agent at time.

Chosen bot list contains al the agents on the server. Select the one you want to control.

AutoTrace, Invulnerable Manual spawn, Show debug, Show focal pointsand Draw tracelinesenable
or disable their respective properties on target agent. For details of those properties, see documentation
of the Client package.

Respawn makes agent respawn on the selected spot of the map.

Add item givesitem of the specified name to the selected agent.

Kick disconnects selected agent from the server.

Build, Run and Debug

Y ou can Build agent by right-clicking its project name on Projectstab and selecting” Bui | d proj ect .
Y ou can Run agent by right-clicking its project name on Projects tab and selecting " Run pr oj ect ".
Alternatively, currently selected main project can be run by clicking the Run Main Project icon (green

arrow with yellow pages) or pressing F6. Project can be selected as main by right-clicking it and selecting
appropriate command.

Warning

In the context menu for projects, there are commands " Debug proj ect" and " Test
proj ect". These commands do not work when used on pogamut agent projects. Please, do
not usethem.

26

Working with NetBeans
IDE (Advanced mode)

Remote control panel

Figure 9.6. Remote control window

Remote Control a0 =

| Pause logic |
| Send command |
Pogamut agents can be controlled manually. The agent to be controlled must already be running.

Only the currently selected agent can be controlled this way. On the list of agents, the one selected is
printed in bold. To select another one, right-click it and choose” Set as Defaul t bot".

Remote control window can be opened by " Open Renot eControl W ndow' command from menu
"W ndow" . Its default position is on the left side of the screen.

Commands on the remote control window are self-explanatory:

 arrows turn the agent

* "Wal k" makesit walk forward

* "Run" makesit run forward

» "Pause | ogi c" turnsoff the agent'slogic, so it doesn't interfere with user commands.

* "Send conmand" sends contents of the field next to it to the agent as a command

27

Working with NetBeans

IDE (Advanced mode)
Logs
Figure9.7. Log listing
Projects Files Runtime a X SampleProject_0 - Platform log >
+ Servers Time Level Message

=€ Unreal Tournamenk Servers 1141 :23.375 INFO Switching to ¢
= . UT Server {ut:/ /localhost) 1141 22,734 INFO Switching ko ¢
-/ SampleProject_0 {BOT_RUNNING) 11041 22,109 IHFC Switching ko
- Logs 1141 21,359 IHFC Switching £o ¢
User log 1141 20,359 IHFC Switching £o ¢
l:l 11041 19,8343 IMFO Switching o ¢
1141 19,718 IMFO Switching o ¢

Quk log o
1141 17,953 IMFO Switching o ¢
Inlag 11: 41 16,437 THFC SWITCHING -
Introspection - Main 1141 : 16.437 SEWERE rURAlongP Atk
New server ... () 1141 14.46 INFO Switching ko ¢
+ €3 Processes 1141 12,251 IMFO Switching ko
+ = Databases 11141 11,250 IMFC Switching o ¢
& HTTP Server 11141 9.359 IHFC Switching £o ¢
; g"; DTD and XML Schema Catalogs 1141 7,593 IMFO Switching o ¢
11415718 IMFO SWITCHIMG -
11:41:5.718 SEWERE runAlongPatk
11415718 IMFO Switching o ¢
Platform log - Properties A% 1141 3.453 INFO Switching ko ¢
- Properties 1141 2,375 IMFO Switching o ¢
Log lewel ALL 11041 0,234 IMFO Switchirig ko

Loqg recard detail

rundlongPath FAILED ar FINISHED. PATH:

Platform log dm-Fluxz PathModez6; dm-Fluxz Pathioded3; dm-Flux
dm-Fluxz PathModed6; dm-Fluxz Pathhode0; dm-Flux
dm-Flux2, Inventory Spokds;

The communication of the agent with IDE and the working of the platform is logged. These logs can be
used for debugging, monitoring agent status and similar tasks.

Y ou canaccessloglistingsfromthe” Runt i ne" tab. For each agent currently running, thereisa™ Logs™
icon printed beneath it (you may need to expand the listing by clicking the " +" icon beside the agent's
name). Under it, there are icons for different kinds of logs. Double-clicking any of them will open the
corresponding log.

There are four logs for each agent.

User log Contains al log messages sent by user command (see this section of guide for
explanation of corresponding commands). They can be filtered by their level
(parameter set when sending the message).

Platform log Operations of the Pogamut platform are stored in this log. Events such as
communication with the server, various stages of initializing and running the agent,
these can be viewed on thislisting. Can be filtered by message level.

Out log This log contains all the commands sent from the IDE to the agent. Can be filtered
by command type.

Inlog Thislog contains all the messages agent received from the server. Can be filtered by
message type.

To change the messages filter, open the Properties window (by selecting " W ndow / Properti es”
from the menu bar or pressing "Ctrl +Shi ft +7"). Click on the button by the line " Message

28

Working with NetBeans
IDE (Advanced mode)

filter". Thefiltering window for selected log will appear; from there you can select message types
and levels you want to display.

Introspection

Figure 9.8. Introspection

Projects Files Runtime a0 =
+ Servers
- { Unreal Tournament Servers
- UT Server (ut://localhost)
== SampleProject_0 {BOT_RUNNING)
+ Logs
| |
Mew server ... ()
+--§3 Processes
+-f=1 Databases
{F- HTTP Server
" DTD and ¥ML Schema Cakalogs

r 3

+

Introspection - Main - Properties i x
-/Properties
logicFrequency 3.0

Introspection - Main

Pogamut enables you to inspect and change some properties of the agent at aruntime. Thisfeatureiscalled
the Introspection.

Tointrospect an agent, you first have to declare the properties as accessible trough introspection. To do so,
you mark them as " publ i ¢ @PogPr op" . For example, you want to have property healthy of integer
type, initialized at zero. Y ou need to add following line to your agent's code:

public @PogProp int healthy = O;

To view agent's properties, look at the Runtime tab. Under the agent's icon, there is one called
"I ntrospection". After you click on it, agent's properties appear in the Properties window (more
on Properties window in previous section). There you can view and edit them.

29

Chapter 10. Architecture

Introduction

This chapter presents the overview of the Pogamut platform architecture. Pogamut is divided into a few
parts and documentation is available for each of them so this document contains only the overview of the
platform and covers the basics of interaction between its components.

Figure 10.1. Architecture overview

Unreal
Tour
2004

= |

Agent, Java libraries

Pogamut consists of afew parts (see picture above):
» GameBots2004 (GB2004)

* Parser —remote and local

» Client

« IDE

Basically GB2004 are making the UT2004 environment available for third partieswhile Client consists of
libraries and APIsfor the user of the platform (programmer of the bot).

Asyou can seein the picture communication between GB2004 and Client is based on TCP/IP. We assume
that user may need to run the bot which requires a lot of system resources. Because the UT2004 is not
very keen to system resources and GB2004 produces alot of traffic, we've decided to create the Client as
light-weighted asit can be. Hence we've created a middleware Parser which is parsing GB2004 messages,
tranglates them into Java objects and sending them to Client. With this kind of approach the user may
run the UT2004 and Parser on a different machine then the one on which is he or she programming and
running the bot.

Of course the user may run everything on one computer (using local parser), but he or she will soon find
out that multi-core processor is not so stupid to have.

Gamebots 2004

Pogamut isusing Unreal Tournament 2004 (UT2004) asthe environment for virtual beings (bots). UT2004
provides an Unreal Script as an interface to Unreal Engine which runs the whole environment. Therefore
first part of the platform is programmed in Unreal Script and is named GameBots2004 (GB2004).

GB2004 actsasserver (over TCP/IP). It definesatext protocol which client must implement to successfully
run the bot in the UT2004 environment. This protocol consists of commands (sent from Client to GB2004)
and messages (sent from GB2004 to Client). Commands are used to control each of the bots or the whole

30

Architecture

server. Messages serve to acknowledge the command, transmit information about events (asynchronous
messages) or about state of the game (synchronous messages - these are sent periodically in batches).

When client connects to the GB2004 it immediately sends 'HELLO' to the client. Client should reply
with 'READY". GB2004 sends information about the game and the map which the UT2004 is running.
NavPoints and items which the map consists of is included as well. After that the GB2004 waits for
the clients' message 'INIT'. After receiving 'INIT' command from client, GB2004 spawns the bot inside
UT2004 and starts sending information messages about the vicinity of the bot. It also accepts commands
for the bot. For more details about the protocol see GameBots2004 API.

For informations about implementation of the GameBots2004 see GameBots2004 v0.1 documentation.

Parser

Package cz.cuni.pogamut.Parser

Parser stands between client (libraries and API for users of the platform). Its main purpose is to translate
text messages to Java objects and realize delta compression of the messages (to save the traffic).

Remote parser

GB2004 produces alot of data/sec (20kb/s on average) the parser is ableto cut down the traffic between it
and client with deltacompression (7kb/son average). Therefore parser is meant to run on the same machine
as UT2004 while the Client can be run on the different machine. In this case we talk about Remote Parser.

Remote parser creates two threads for each bot (Client). First thread handles the communication from
GB2004 to the Client (messages for the bot), second one handles the communication from the bot (Client)
to the GB2004 (commands to the bot in UT2004).

Local parser

Thereis an option to run the parser as alocal one (Local Parser). The Local Parser is used for trandating
the GB2004 messagesinto Java objectsin this case. Even though the parser isrun aslocal, it till produces
delta messages which wastes the time unnecessarily and will be changed in the future.

Asremote parser it also creates two threads to govern the communication between GB2004 and the Client.

Mediator

Mediator can be viewed glue between parser and client or as amessenger delivering messages from parser
to client and vice versa. It wraps threads that are waiting for the message from one side to be delivered to
the other side. It is used by the Client either for the Local Parser or Remote Parser (see chapter Parser).
The Mediator has also some knowledge about the GameBots2004 protocol. It recognizes the end of the
communication (when MapFinished or Disconnected message arrives) and correctly terminates itself at
theend.

Client

Package cz.cuni.pogamut.Client

Client consists of libraries and APIs which is used for development of the bots. The core responsibility
of Client isto take care about the communication between agent’slogic and the Unreal Tournament 2004

31

Architecture

IDE

server. That, concerning the Pogamut architecture, means to take care about the communication between
Parser and agent’s decision making algorithm. The Client also uses the received information to build a
world model for each agent, piecing together known game map, current inventory of the agent, and memory
of past events. These structures are updated with any new information from the environment that agent
receives. User programming the agent's logic can easily access information from these structures, without
need to sort trough received messages himself.

Client therefore provides services to agent’slogic, list of them follows:

» Communication with the Parser — receiving messages and sending commands

e Map representation — providing navigation information

» Agent’s memory — providing memory of past eventsto the agent’slogic

* Inventory — providing inventory handling — like switching to proper weapon in certain situation

» Accessfor logic — easy accessto all those services

NetBeans plugin.

For implementing IDE we've chosen the NetBeans platform. Aside from running the bots, IDE keeps
information about bot state and handles connection to the server, message logging and filtering. For more
details see IDE documentation.

32

Chapter 11. Parser

Introduction

Parser is a module of Pogamut. It is a middleware between GameBots 2004 and Client. Its purpose is to
simplify handling messages from GameBots and to lower network bandwidth. Simplification is done by
transating messages from ASCII format (sent by GameBots) to Java objects. The objects are then sent
to Client (another module of Pogamut2, where Al is). Parser is lowering bandwidth by transmitting only
informations that has changed (like position, visibility etc).

Parser comes in two variants: Remote and Local. As the names suggest, remote parser is an external
application, usually running on different machine than Client. Local parser is embedded in the Client.

Remote parser

UT2004 consumesalot of system resources. If your computer can't handle running UT2004, NetBeans and
all your bots' logic, you might consider splitting the load - running UT2004 server on different machine.
In that case, you will want to use Remote parser - GB2004 produces a lot of data/sec (20kb/s on average)
and the parser is able to cut down the traffic between itself and client with delta compression (7kb/s on
average). Therefore parser is meant to run on the same machine as UT2004 while the Client can be run
on the different machine.

Remote parser creates two threads for each bot (Client). First thread handles the communication from
GB2004 to the Client (messages for the bot), second one handles the communication from the bot (Client)
to the GB2004 (commands to the bot in UT2004).

Using Remote parser

If Parser is aready running as standalone program, use
Agent . connect ToRenot ePar ser (URl uri)

uri isaddressand port of standalone Parser (by default, Parser listen at port 4321). Standalone Parser can be
launched using parser.bat with compulsory parameter of address of UT2004 server (GameBots included)
and optional parameter of port, where parser will wait for connections from Client. Address of UT server
doesn't have to include port, in such case port 3000 will be used. If Parser port is omitted, port 4321 will
be used.

parser.bat ut://artem s.ms.nff.cuni.cz 4321

The command abovewill run Parser that will listen to connectionsfrom Client at port 4321 and will connect
to UT2004 at artemis.ms.mff.cuni.cz, port 3000.

Local parser

If you are running server on the same machine as Client, it is easier for you to use Parser embedded in
the Client. Thisvariant iscalled Local parser. Even though the parser isrun aslocal, it still produces delta
messages which wastes the time unnecessarily and will be changed in the future. As remote parser it also
creates two threads to govern the communication between GB2004 and the Client.

33

Using Local parser

If you want to use parser embedded in Client, use function
Agent . connect ToLocal Parser (URl uri)

which will run parser as separate thread and take care of everything. Uri is address and port of GameBots
running in Unreal Tournament 2004 server - GameBots run by default at port 3000. Example of uri of
GameBots:

ut://artems.ns.nff.cuni.cz:3000

Chapter 12. Client package

Introduction

This chapter describes the Client package.

You as the user will be using the Client package for two purposes. managing connection and
communication with the server, and controlling your agent behaviour. Thefirst part is of no concern, since
Client and IDE perform these automatically. If you are interested in technical details, read architecture
overview and programmer's documentation.

On the other hand, the rest is something you need to master. This chapter is intended to help you with
this. It contains description of the Agent class and its various components you will use to gain information
from the environment and to control your agent.

Agent class

Thisis basic class that wraps Client package interface.

When you create a new agent, you create it as a descendant of the Agent class. In addition to whatever
data and logic you want to add, you also need to redefine some of following methods. They are called at
various stages of the agent's life cycle (as described below).

prePrepareAgent() This method is run when starting the agent, before connecting to the server.
Best suited for initializing logic, setting agent's parameters, hooking message
listeners (see bellow) etc.

postPrepareAgent() This method is run after connecting to the server. At the time of running,
information regarding game type, map and such is available. If agent's
strategy is dependent upon these (or agent may not be supposed to run under
certain circumstances), decisions are to be made in this method.

doLogic() Agent'smain method. It is called repeatedly during the run of the agent. The
entire agent'slogic, decision-making and everything el se concerning agent's
run should be placed here. Whileit is not mandatory to redefine any of these
methods, agent with original (empty) doL ogic makes a very little sense.

Note

Although this method may contain a command loop (running
indefinitely on single call), this is not recommended. Certain
operations take place between cals of doLogic and while
they aren't absolutely vital, some functions (e.g. remote agent
termination) are dependent on them and may not work. Therefore,
unless you know what you are doing, do not make doL ogic an
infiniteloop and rely on periodic recall of the method by the engine.

shutDownAgent() Called after the agent is shut down (not when the agent is killed - that may
happen many times during the run of the agent). Best suited for cleanup
routines or sending final reports (if such thing is necessary - agent may send
data during its run).

Following sections describe components of the Agent class.

35

Client package

AgentBody contains commands sent to agent, as well astools to react to incoming messages.
AgentMemory manages information received, enables access to agent's state, memory and perceptions of
the environment.

GameMap provides simple navigation information and pathfinding.

AgentBody class

AgentBody iswrapping up communication with parser and execution of commands it receives messages;
some of them are compressed and AgentBody provides their completion according to recent messages
stored in KnownObjects. Commands are available using methods of AgentBody like RunTo(navPoint).
AgentBody is also hiding difference between Remote and Local Parser.

Usage: The methods of this class will be used from within methods of the parent Agent class (mainly
doL ogic). You can useitsfield body to accessit. For example, if you want to make agent jump, you will
use following line:

this. body. junp();

The methods are explained below.

Initialization, Configuration and Respawn

There are some parameters of the agent that need to be set and some features that may or may not be
enabled. While some are self-explanatory, others may need a bit of details. See the following list:

autoTrace - Start / stop autoTracing.

invulnerable - Makes agent invulnerable from any threat.

manual Spawn - Start / stop automatic spawn of agent after death - when enabled, you must spawn agent
manually.

name - Name of the agent - could be changed to express some additional info about agent (e.g. state, role
in the team, mood etc.). Facilitates visual observation, debugging and presentation.

visionTime - A frequency of synchronous batches. May range from 0.1 to 2, meaning from 10 per second

to 1 per two seconds.

Init methods are called at the beginning. A few variants exist, different in what parameters they set.
Depending on the variant, you can specify agent's name and team, location and orientation on respawn,
and whether it will respawn automatically. If manual respawn is desirable, you can use so-called function.

Configure methods enable or disable various features (described in the list above) during the run of the
agent. Depending on the variant, you can set them one by one or all at once.

init(java.lang.String name)
Parameterized init - sets name of the agent.

init(java.lang.String name, Triplelocation)
Parameterized init - sets name and location where the agent will spawn.

init(java.lang.String name, int team, Triple location)
Parameterized init - sets name, agent's team and location where it will spawn.

init(java.lang.String name, int team, boolean manual Spawn, Triplelocation, Triple rotation)
Parameterized init - sets name, team, location and rotation where the bot will spawn.

configure(boolean autoTrace, boolean manual Spawn, java.lang.String name, boolean invulner able,
doublevisionTime)

36

Client package

Configure agent.

configureAutoTrace(boolean autoTrace)
Enable/ disable autoTrace.

configureAutoTrace(boolean autoTrace)
Enable/ disable autoTrace.

configur el nvulnerable(boolean invulner able)
Enable/ disable invulnerable.

configur eM anual Spawn(boolean manual Spawn)
Enable/ disable manual Spawn.

configureName(java.lang.String name)
Set agent’'s name.

configureVisionTime(double visionTime)
Configure visionTime.

respawn(Triplelocation, Triplerotation)
Respawn the agent on a specified place with specified rotation.

Message listeners

Listeners are afeature of Pogamut that enable agent logic to react to incoming messages in asynchronous
manner. They represent a piece of code that is executed every time a message is received by the client.

Note

If you are familiar with the concept of events and event handlers, you can see that Listeners are
Pogamut equivalent of this concept.

Pogamut enables you to register listeners for all received messages or for certain type of messages (see
programmer documentation for list of message types). Y ou can also register alistener for sent commands.

addRcvM sgListener (RevM sgListener listener)
Adds listener for all messages received by AgentBody from the Parser.

addRcvM sgListener (RecvM sgListener listener, java.util.Collection<M essageT ype> types)
Takes a collection of types (collection must be filled by Integers) and adds alistener to all specified types.

addSendCmdL istener (SendCmdL istener listener)
Adds listener for all commands sent by AgentBody.

addTypedRcvM sgListener (RecvM sglListener listener, M essageT ype type)
Adds alistener to the specified type of message. Common use: when you want to listen for messages of
certain type only(for instance BOT_KILLED messages).

removeRcvM sgListener (RcvM sglistener listener)
Removes alistener for received messages.

removeSendCmdL istener (SendCmdListener listener)
Removes alistener for sent commands.

removeTypedRcvM sgListener (RevM sglistener listener, int type)

37

Client package

Removes listener for received messages of specified type (note, type is not a part of listener and must be
specified separately).

A listener is any class implementing RcvMsgListener or SendCmdListener interface. Both consist of
one method: receiveM essage. This method is started whenever corresponding message or command is
received. To get message data from the parameter, use e.getM essage() method.

receiveM essage(RcvM sgEvent €) Method of alistener for incoming messages.

receiveMessage(SendCmdEvent €) Method of alistener for sent commands.

Movement commands

This set of methods is related to agent movement - walking, running, jumping etc.

contM ove(float speed)
Continuously move agent in the direction he is faced. Similar to moveContinuous(), except the speed
can be specified.

jump()
Makes agent jump. Useful as areflex action when hitting the wall; sometimes agent encounters obstacles
which could be jumped over (like girders etc.)

move(double speed, Triplelocationl, Triplelocation2)

Makes the agent move between two locations. It should result in smoother move when following the path.
The recommended use is: when the agent follows some path (to the item for instance), do not move him
by runTo but use this method and supply it with the next two locations.

moveAlongNavPoints(double speed, NavPoint navl, NavPoint nav2)

Makes the agent move between two NavPoints. It should result in smoother move when following the
path. The recommended use is: when the agent follows some path (to the item for instance), do not move
him by runT o but use this method and supply it with the next two NavPoints.

moveContinuous()
Continuously move agent in the direction heis faced.

movel nch()
Sends INCH command to the agent, which makes it move forward alittle bit. May be useful when stuck
(or similar situations).

runToL ocation(Triplelocation)
Makes agent run to the specified location.

runToNavPoint(NavPoint target)
Makes agent run to the specified NavPoint.

runToTarget(Item target)
Makes agent run to the specified Item.

runToT ar get(M essageObj ect tar get)
Makes agent run to the specified target, which could be anything with Unreal ID

runToTarget(Player target)
Makes agent run to the specified Player.

generalRunToL ocation(Triplelocation)

38

Client package

Makes agent run to specified location. Sets his speed to 800 and his acceleration to 600.

setCrouch(boolean crouch)
Makes agent crouched (if parameter is True) or uncrouched (if parameter is False).

setRun()
Makes agent run when moving.

setWalk()
Makes agent walk when moving (being slower)

stop()
Stops the movement of the agent.

strafeT oL ocation(Triple whereT oGo, Triple whereT oStrafeT o)
Makes the agent move towards a destination while facing another point/object. Parameter whereToGo is
location the agent is running to, whereToStrafeTo is the location agent should be facing.

strafeT oT ar get(M essageObj ect target, Triple whereT 0Go)
Makes the agent move towards a destination while facing another point/object. Parameter whereToGo is
location the agent is running to, tTarget is the object agent should be facing.

turn(int pitch, int yaw, int roll)
Changes agent's heading in three specified directions: pitch, yaw and roll.

turnHorizontal (int amount)
Changes agent's pitch.

turnToL ocation(Triplelocation)
Makes the agent turn to specified location.

turnToT ar get(M essageObj ect tar get)
Makes the agent face specified target (e.g. another actor - player).

turnVertical (int amount)
Changes agent's yaw.

Path searches and Reach checks

Pogamut provides access to Unreal's pathfinding engine. Use following methods to request a search for a
path or check whether certain location or object can be reached. These queries are identified by ID. Their
results may be obtained trough corresponding methods of GameMap.

getPath(Triplelocation, int 1D)
Requests a path from agent's location to specified location.

getPathToL ocation(int 1D, Triple location)
Requests a path from agent's location to specified location.

getPathToNavPaint(int I D, NavPoint navPoint)
Requests a path from agent's location to specified NavPoint.

requestReachcheckL ocation(int ID, Tripleto, Triple from)
Requests a check whether location specified in parameter to is reachable from location from.

requestReachcheckTargetFrom(int I D, M essageObj ect target, Triple from)
Requests a check whether target object is reachable from specified location.

39

Client package

Traces and AutoTraces

Traces are one of the means agent can use to obtain information from the environment (others can be
accessed viaAgentMemory class). A trace can be described asasimulated ray casted from certain location
(usually agent's position) in specified direction. Agent then receives information describing what has the
ray hit and its properties. It has many possibilities of use; for example, to know if certain Player can be
shot at, if certain object isvisible, what isin front of the agent, etc.

Two kinds of tracing are available: regular trace returns what was hit by the trace ray. Fast Trace doesn't
have this possibility - it only tells whether the ray hit anything. On the other side, it isfaster.

Aside from manually invoked traces, it is also possible to "attach” rays to agent's body. These rays have
fixed length and their orientation isrelativeto agent'sheading. Trace of theseraysis performed periodically
and the Client is updated on the results. Thisfeatureis called AutoTrace.

Following methods are used to initiate manual traces and setup AutoTracing. Results can be obtained by
methodsin Trace section of AgentMemory. Remember to set each ray |D unique - otherwise you will have
problems discerning which rays produce different results.

addRayToAutoTrace(int 1D, Triple direction, java.lang.Double length, boolean fastTrace, boolean
traceActors)

Addsray to AutoTrace. Direction isrelative to agent's orientation: (1,0,0) is straight ahead, (0,1,0) is left
and (0,0,1) is up. If you want to change the settings of the ray, just add it again with the same ID. The
original ray will be replaced.

fastTrace(int id, Tripleto)
Emits ray from agent's position directed to a specified location. Returns a boolean telling if something
was hit.

fastTrace(int id, Triplefrom, Tripleto)
Emitsray directed to a specified location. Returns a boolean telling if something was hit.

removeAllRaysFromAutoTrace()
Removes all autoTrace rays from the agent.

removeRayFromAutoTrace(int 1D)
Removes the ray of specified id from the array of auto trace rays.

restartAutoT raceRays()
Removes al AutoTrace rays and replaces them with default set: one straight ahead (length 250) and one
45° to either side (Iength 200).

trace(int id, Tripleto, boolean traceActors)

Emits ray from agent's position directed to a specified location. Returns a message containing the first
actor it hits in that direction. TraceActors should be true if we want to take players into account (Only
level geometry istaken into account otherwise).

trace(int id, Triplefrom, Tripleto, boolean traceActors)

Emitsray from specified place directed to a specified | ocation. Returns amessage containing the first actor
it hits in that direction. TraceActors should be true if we want to take players into account (Only level
geometry is taken into account otherwise).

Shooting and weapons

Following methods are used to use and handle agent's weapons.

40

Client package

changeT oBestWeapon()
Changes agent's weapon to the best one he has.

changeWeapon(AddW eapon new\Weapon)
Changes agent's weapon to specified one. Note that the method doesn't check whether he has it so it is
recommended to be used with the Agentlnventory methods

shoot(Player target)
Agent starts to shoot at specified Player. Target is optional, if it is provided the server provides aim
correction.

shoot(Triplelocation)
Agent starts to shoot at specified location. This method is without aim correction

shootAlter nate(Player target)
Agent startsto shoot at specified Player using alternate fire mode. Target isoptional, if it isprovided server
provides aim correction.

shootAlternate(Triple location)
Agent startsto shoot at specified location using alternate fire mode. This method iswithout aim correction

stopShoot()
Agent stops shooting.

throwWeapon()
Throws away the weapon the agent is currently carrying. Could be used for an exchange of weapons
between agents, as well as for trade and other applications.

ltems

These methods serve to add items to agent's inventory and to handle Item objects.

addlnventory(java.lang.String inventor yClass)
Adds item of specified inventoryClassto agent'sinventory. Example of class: 'xWeapons.FlakCannon'.

processAddltem(Addltem newM essage)

Parses the name of theitem from class, then exploits information from database stored in ItemCathegories
and uses those to create proper Item object. New message is then returned and fired as an event, so you
can register listener for ADD_WEAPON, etc.

processl tem(ltem newM essage)

Parses the name of theitem from class, then exploits information from database stored in ItemCathegories
and uses those to create proper Item object. New message is then returned and fired as an event, so you
can register listener for WEAPON, etc.

In-game messages

Agents can "speak” with other entities in the environment, by sending text messages. Some of them can
be perceived by all, some are limited only to agent's team-mates.

sendGlobal M essage(java.lang.String text)
Sends message to the game global communication channel.

sendPrivateM essage(java.lang.String text)
Sends message to the game team communication channel.

41

Client package

Recording

Unreal is able to make recording of the game. Pogamut enables you to access this function by following
methods.

startRecording(java.lang.String fileName)

Start the recording. It will be saved to the file with specified name. The file will be located at the same
machine as the server of the game. If using remote server, you will have to use FTP or similar service
to obtain the record.

stopRecor ding()
Stop the current recording.

System commands

Various system commands that don't fit anywhere else.

pauseTheGame()
Pauses the game. All agents are paused, spectators and human players are not.

ping()
Sends a ping (connection test) to the server.

unpauseT heGame()
Unpauses the game.

AgentMemory class

Thisclassisused to gather information about state of the agent and surrounding environment, both current
and remembered. Y ou can use its methods to learn many parameters of the agent (health and armor are
examples of these), interpret sensory information from surroundings, access agent's short-term and long-
term memory or browse its inventory.

Usage: as with AgentBody, methods of this class will be used from within methods of the agent class.
You can use its field memory to access it. For example, if you want to know agent's health, you will use
following line:

this. menory. get Heal t h();
The methods are explained below.

State of agent

These methods retrieve information about state of the agent.

getAgentAmmo() How much ammo for the current weapon agent has.
getAgentArmor() Current armor value of the agent.

getAgentHealth() Current health value of the agent.

getAgentlD() Agent's unreal ID number.

getAgentlsMoving() Trueif Agent is moving; false otherwise.

42

Client package

getAgentL ocation() Location of the agent.
getAgentName() Name of the agent.
getAgentRotation() Rotation of the agent.
getAgentTeam() Number of the team the agent is on.
getAgentUnreal1D() Agent's unreal ID string.
getAgentVe ocity() Vector of agent velocity.
getCurrentWeapon() Weapon currently in use.
getlsBeingDamaged() Trueif the agent is being damaged.

getlsBumpingToAnotherActor() Trueif the agent is bumping to another object.

getlsColliding() Trueif the agent is colliding with the wall.
getlsFaling() Trueif the agent isfalling.

getlsFlagStolen() Trueif theteam'sflag is stolen.
getlsHoldingFlag() Trueif the agent is holding the flag.
getlsMoving() Trueif the agent is moving.

getl sProjectileComming() Trueif there is a projectile coming at the agent.
getlsShooting() Trueif the agent is shooting.

Zone changes

When agent moves from one zone to another, message is sent to the Client. By using following methods,
you can learn of this happening or access the information contained in the message.

getBotZoneChanged() Returns message with information that agent changed zone. Contains
ID of the new terrain.

getlsBotChangedZone() Trueif agent has changed zone.

Sensory information

Following methods enable you to access sensory information from the agent, enabling you to learn what
agent sees and hears.

Thereisalarge number of methods regarding what the agent sees. Most of them are variants of few basic
types. Thereforeitisfutileto list them all - only the basic types are listed, with notes on different variants.

getHearNoise() Trueif agent hears a noise.
getHearPickUp() Trueif agent hears a sound of item pickup.
getSeeAmmo() Returns the first ammo pack the agent sees.

43

Client package

getSeeAmmos()

getSeeAnyAmmo()

getSeeAnyReachableAmmo()

getSeeReachableAmmo()

getSeeReachableAmmos()

getSeeltem(int itemI D)

Variants (return afirst seen object of corresponding type):

getSeeArmor (), getSeeDomPoint(), getSeeEnemy(), getSeeExtra(),
getSeeFriend(), getSeeHealth(), getSeeltem(), getSeeMover(),
getSeeNavPoint(), getSeePlayer (), getSee\Weapon()

Returns alist of all ammo packs agent sees.
Variants (return alist of all objects seen of corresponding type):

getSeeArmors(), getSeebExtras(), getSeeHealths(), getSeeltems(),
getSeeMovers(), getSeeNavPoints(), getSeePlayers(),
getSee\Weapons()

Trueif agent sees any ammo.
Variants (true if agent sees any object of corresponding type):

getSeeAnyArmor(), getSeeAnyDomPoint(), getSeeAnyEnemy(),
getSeeAnyExtra(), getSeeAnyFriend(), getSeeAnyHealth(),
getSeeAnyltem(), getSeeAnyMover(), getSeeAnyNavPoint(),
getSeeAnyPlayer (), getSeeAnyWeapon(),

Trueif agent sees any ammo reachable from his position.

Variants (true if agent sees any object of corresponding type,
reachable from his position):

getSeeAnyReachableArmor (), getSeeAnyReachableExtra(),
getSeeAnyReachableHealth(), getSeeAnyReachableltem(),
getSeeAnyReachableNavPoint(), getSeeAnyReachableWeapon(),

Returns the first ammo pack the agent sees, reachable from his
position.

Variants (return afirst seen object of corresponding type, reachable
from agent's position):

getSeeReachableArmor (), getSeeReachableHealth(),
getSeeReachableNavPoint(), getSeeReachableWeapon()

Returns a list of al ammo packs agent sees, reachable from his
position.

Variants (return a list of al objects seen of corresponding type,
reachable from agent's position):

getSeeReachableNavPoints(), getSeeReachabl eWeapons(),
Returnsitem of specified ID if the agent seesit.

Variants (return object of corresponding type and specified ID, if
the agent sees it):

getSeeMover(int moverID), getSeeNavPoint(int navPointlD),
getSeePlayer (int player1D)

Client package

Tip
Confused by the lot of getSee... functions? They are many but there is a system. You have to

know what are you looking for.

There are following object types to look for: Armor, DomPoint, Enemy, Extra, Friend, Health,
Item, Mover, NavPoint, Player, Weapon. If you do not know what they are, check out programmer
documentation. In following schema, | will use [Object] to denote object type of your choosing.

Areyou interested in the first object agent sees? Use get See[Obj ect] () method.
Areyou interested in all seen objects of the type? Use getSee[Obj ect]s() method.
Areyou interested to know if agent seesany such object at all? Use get SeeAny[Obj ect] () method.

Y ou may be interested only in objects that can be reached from agent's position. In that case use
Reachable]Object] instead of [Object].

If you know 1D of the abject you arelooking for, you can use get Seel tem(I D), get SeeM over (1 D),
getSeeNavPoint(I D) or getSeePlayer (1D).

Exanpl e:
You want to know if agent sees any health pack he can reach.
We will use nethod get SeeAnyReachabl eHeal t h()

Not all variants of getSee... function make sense. Those that do not are not implemented. L ook
at the list aboveto seeif any given variant exists.

Traces

Information on what traces are and how to perform them are in this section. Following methods enable
you to get trace results.

getFastTraceResult(int id) Returns result of FastTrace with given ID.
getAutoTraceByID(int ID) Returns data from auto trace with specified ID.
getAutoTracel DS() Returns IDs of all auto traces assigned to the agent.
getAutoTraces() Returns all auto trace resultsin current batch.
getTraceResult(int id) Returns result of Trace with given ID.

Short-term memory

The agent has a short-term memory, remembering all objects he has seen in the past two seconds (they
aren't forgotten then - see the next section). Using the following methods, you can obtain list of any class
of objects that the agent has seen. The parameter specify how many message batches into the past you
want to look (number of batches per second depends on Gamebots configuration).

seenAmmos(int time) Returns list of seen ammo packages.
seenArmors(int time) Returns list of seen armor packages.
seenHealths(int time) Returns list of seen health packages.

45

Client package

seenltems(int time)
seenMovers(int time)
seenNavPoints(int time)
seenPlayers(int time)

seenWespons(int time)

Long-term memory

Returns list of seen items.
Returns list of seen movers.
Returns list of seen navpoints.
Returnslist of seen players.

Returns list of seen weapons.

Agent also hasalong-term memory, which enablesit to remember position of items, playersand navpoints.
Following methods give access to such information. Y ou can useiit, for example, to determine a position
of desired weapon and make agent go pick it up.

getKnownAmmos()
getKnownArmors()
getKnownHealths()
getk nownSpecials()
getk nownWeapons()
knownNavPoints()
knownPlayers()

lastPlayerPosition(int ID)

Inventory information

Returns alist of known ammo packs.
Returns alist of known armor packs.
Returns alist of known health packs.
Returns alist of known special items.
Returns alist of known weapons.
Returns alist of known navpoaints.
Returns alist of known players.

Returns last known position of player with specified ID.

Agent may accumulate anumber of items, mostly weapons. Following methods enable you not only know
what the agent has, but also quickly assesswhat of itsweapons are functional and select weapon according

to situation.
getAllWeapons()
getAnyWeapon()

getBetterWeapon(Triple from,
Tripleto)

getCopyOfAllWeapons()

getM el eeWeapon()
getRangedWeapon()
hasAnyL oadedWeapon()

hasL cadedWeapon()

Returns alist of all weapons agent possess.
Returns first loaded weapon in the inventory.

Of al weapons agent has, method returns the most suitable one for
distance between specified points.

Returns copy of all weapons from inventory - both loaded and
unloaded.

Returns amelee weapon. If there is not a single one, returns null.
Returns aranged weapon. If thereis not asingle one, returns null.
Trueif agent has any weapon with corresponding ammo.

Trueif agent has ammo for the weapon he has currently in hand.

46

Client package

Score

Kills

hasWeaponOf Type(ltemTypetype) Trueif agent has a weapon of specified type.

iSAmmoSuitable(Ammo ammo) Trueif specified ammo is suitable for any of agent's weapons.
numberOf L oadedWeapons() How many weapons with corresponding ammo agent has.
numberOf\Weapons() How many weapons agent has.

Scores of al players are accessible by following methods (the actual score value may have different
interpretation depending on the game type). Not all of them make sense in every game type (for example,
TeamScores are not present in games that don't have teams).

getAgentScore() Score of the agent.

getAgentTeamScore() Score of the agent's team.

allPlayersScores() Scores of al players, in HashMap indexed by ID
getOpposingTeamScore() Score of the opposing team.

opposingTeamScores() Scores of opposing teams, in HashMap indexed by ID
getPlayerScore(int ID) Score of the player with given ID

When one agent kills another, a message is sent to both of them. By these methods, you can learn its
contents.

getWasKilledBy() Returns ID of the bot that killed the agent. O if it's unknown.

getWhoAgentKilled() Returns ID of the bot killed by the agent.

GameMap class

Navig

GameM ap class provides simple navigation information: nearest navigation point, path to specified object,
etc. It aso integrates A Star algorithm and uses it to answer requests for path. Thisoptionisvalid only for
paths to NavPoints and Items, paths to players are solved using Gamebots API.

Usage: as with AgentBody, methods of this class will be used from within methods of the agent class.
You can use its field gameM ap to access it. For example, if you want to know nearest NavPoint, you
will use following line:

t hi s. gameMap. near est NavPoi nt (from ;

The methods are explained below.

ation

safeRunToL ocation(Triple location)
Safely navigates the agent to the chosen location (could be anywhere).

47

Client package

safeRunToPlayer (Player plr)
Safely navigates the agent to the player (could be anywhere).

Nearest

These methods allow you to find nearest health pack, item or navigation point. They use repeated calling
of AStar algorithm with restricted iterations, so they can be inefficient and may find nothing.

near estHealth(int strength, int number OfHealths)
Returnslist of closest health packs of specified strength (or greater). In number OfHealths state how many
closest health packs are to be found.

near estltems(M essageT ype type, int number Ofltems)
Returnslist of closest health packs of specified type. In number Ofltems state how many closest items are
to be found.

near estNavPoint(Triple from)
Returns NavPoint nearest from specified point.

near estNavPoint(Triple from, int minDistance)
Returns NavPoint nearest from specified point, counting only those exceeding minimum distance.

A*
These methods control use of the AStar algorithm. They find path from agent's current position to specified
NavPoint.
getNavPointsAStar (AStar Result result)
This auxiliary method converts AStarResult to ArrayList of NavPoints which is then used as path in
runAlongltemsinTheMap.
getPathAStar (NavPoint towhat)
Returns path from agent's current position to the ‘towWhat' or null if path doesn't exist.
getPathAStar (NavPoint toWhat, int maxNumOflter ations)
Returns path from agent's current position to the ‘toWhat' or null if path isn't found in specified humber
of iterations.
GetPath

These methods provide accessto UT2004 server's pathfinding algorithm. They enable you to send request
for pathfinding and means to obtain resulting information.

getPathOfI D(int 1D)
Method for obtaining the path returned by GB due to the GETPATH request sent through
sendGetPath(navPoint, pathl D).

sendGetPathToL ocation(int 1D, Triple toWhat)
Thismethod sends GETPATH query to GameBots. Y ou have to provide Pathl D under which the path will
be returned by GB and stored in GameMap instance.

sendGetPathToNavPoint(NavPoint towhat)
This method sends GETPATH query to GameBots. The PathlD under which the path will be returned by
GB isthe same asthe ID of the NavPoint.

48

Client package

RunAlong the path

Following methods enable you to make agent run along a path - that is, list of NavPoints. Such path is
mostly obtained as a result of pathfinding algorithm (see previous two sections).

Pathsthe agent has are stored in path manager. It takes care of storage, initializing, preparing and restarting
of the path data structures for runAlongPath.

The segquence of calls is following: first you need to obtain the path (by any of getPathToL ocation
method), then you call checkPath() to know whether the path isready - e.g. properly initialized. If not, call
preparePath() (that will initialize the path) and after that, you can call runAlongPath with no problems.

pathmanager.checkPath(PathTypestype, java.lang.Object tar get)
Returnstrueif the Path isinitialized.

pathmanager .prepar ePath(PathTypes type, java.lang.Object tar get, boolean useAStar)
Initializes the path according to the PathType and according to useA Star

pathmanager .getPathToL ocation(Triple location)
Obtains path to specified location. Keeps returning nul | until path is received.

runAlongPath()
Makes agent smoothly follow initialized path. Returns true if running OK, false if finished or unable to
reach next NavPoint.

runAroundltemslnTheMap(java.util. ArrayList<Item> itemsT oRunAround, boolean AStar)
This method periodically visits locations of specified items. If at any time agent cannot reach currently
chased Item, next oneis selected from the list.

Others

restartMap()
Method which restarts GameMap instance - reinitializes necessary variables.

stuckCheck()
Check if bot is stuck - if it is attempting too many times to reach some location and is not progressing.

49

Chapter 13. Three kinds of agents

Introduction

Pogamut platform can accommodate three kinds of agents: Java Bot, Scripted Bot and POSH Bot. All of
them look exactly the same on the game server; only difference is what language and tools are used to
write agent'slogic.

Java Bot

Thisisabasicvariant. Theagent and all itslogic arewrittenin Javaand included in aJavaclass (descendant
of Agent class). Functions of the Pogamut platform are accessed trough Client package - mostly Agent
class and its various components.

Thanks to the fact all the agent's code is in Java, standard debugging tools present in NetBeans IDE can
be used on this type of agent.

Scripted Bot

Pogamut platform can run agents written in some scripting languages. While the agent itself is still aJava
class, al the important methods (e.g. doL ogic(), prePrepareAgent and postPrepar eAgent; see Agent
class description) are imported from a script file. The script has access to the functions of the Pogamut
platform, as corresponding objects are exported trough Java Scripting API.

Following objects are exported to the scripting environment: agent, body (reference to Agent.Body),
memory (Agent.Memory), map (Agent.GameMap) and log (Agent.Log).

While NetBeans IDE offers no support for scripting languages by itself, there are plugins available for
some of them. Pogamut platform includes a syntax highlighting plugin for Python.

What scripting languages can | use?

In theory, any scripting language accessible trough Java scripting API. Additional requirements are the
ability to work with objects (to be able to use exported Client package) and procedures (because Pogamut
uses procedures defined in the script). Also note you must have corresponding Scripting Engine installed
on your machine.

However, the only scripting language that is supported "out of the box" is Python. It has been tested,
examples are provided and its Scripting Engine is part of the Installation package. Other languages may
require some fine-tuning of the environment to work correctly. Also some features (e.g. Introspection)
need to be dlightly modified to work with any particular language.

POSH Bot

Thistype of agent uses some external tool for logic processing - mostly some kind of Al language.

At the present time, the only language supported thisway is SPOSH, astrict implementation of POSH. Itis
alanguage to define reactive behaviour of an agent, using BOD (Behaviour-Oriented Design) philosophy.
You can find more on POSH webpage [http://www.cs.bath.ac.uk/~jjb/web/posh.html], or on the page
describing SPOSH implementation [http://www.cs.bath.ac.uk/~jjb/web/BOD/sposh.html].

50

http://www.cs.bath.ac.uk/~jjb/web/posh.html
http://www.cs.bath.ac.uk/~jjb/web/posh.html
http://www.cs.bath.ac.uk/~jjb/web/BOD/sposh.html
http://www.cs.bath.ac.uk/~jjb/web/BOD/sposh.html

Three kinds of agents

Agents can be programmed using SPOSH plan and SPOSH actions and sensory primitives are defined
using Javaor script code. Exampl e of thiskind of setup are JavaSPOSH bot and PogamutPoshBot projects
(the later has primitives written in Python).

51

Chapter 14. How to create an agent

Introduction

In this chapter, we will present detailed instructions on creating an agent. Guide starts with simplest
concepts and gradually shows new features of Pogamut platform.

The guide will present general concepts as well as use of various features, and examples will be provided
for each part. Due to this fact, most examples are only pieces of code, not complete agents or methods.
Although it should be easy to integrate them in your agent, they can't be run alone. Also, examples may
at times be inconsistent with each other. For more focused (and extensive) example, see the next chapter.
There you can find code of the complete agent, with commentaries and explanations.

Choosing a model

The first question you have to ask yourself when creating an agent is: "What should my agent do?" Of
course, you may toy with the engine and try out its various functions, but it will be much easier with a
clear goal in mind. Unfortunately, it is one of the problems this guide can't help you with.

Whether you have answer to the previous question or not, there is another: "How?". Thisoneis just as
important, and you can do nothing without answering it. There are many models that can be used for
agent's decision making: if-then rules, finite-state machines, neural networks, and many, many more. Even
short summary of these is beyond the scope of this guide. Furthermore, it is not necessary. The features
of Pogamut platform are used the same way, regardless of employed model. And if you are familiar with
your chosen decision-making algorithm (or have its code in Java available), you should have no problem
implementing it to drive your agent.

We will make one exception and present details of the finite-state model of the agent. It's because all of
the examplesin this guide were made using this model (some reasons for that are written in the following
example).

Finite-state agent (agent using the finite-state model) can be in several states. You can imagine
these as modes of operation - in each of them, agent behaves differently and reacts differently. The
behaviour, defined for each state, usually contains conditions when agent should switch to another
state. For example, agent in state " Pursuit” chases enemy and attempts to shoot it. When agent find
himself without ammunition, he switches state to "Resupply", which makes him run around, picking
up items.

Usually the agent is designed so the behaviour associated with each stateis very simple and complex
behaviour is gained by designing states and elaborate switching conditions.

In our examples, amethod is assigned to each state. Naming convention is simple: method for state
XY isstateXY(). The agent's primary method, doL ogic, contains if-then rules that run appropriate
state... method. Current state of the agent is usually determined from agent's conditions (whether it
sees enemy, isshooting, isbeing hit, etc.). The state... methods either contain commands describing
behaviour in the state, if-then rules to select another state, or combination thereof.

52

How to create an agent

Example 14.1. Example: Choosing a model

Our example bot have a very simple purpose: to show off most of the features of Pogamut platform. It
will have many functions, most of them fairly useless or illogical. Their purpose is to show how such a
thing can be done.

For a decision-making model, we will select a finite-state machine. Why? It's very simple to implement,
the code is mostly self-explanatory and adding new functions isn't too difficult.

What kind of an agent ?

The three kinds of agents were described in previous chapter in detail. Basically you have to decide what
language you want to write your agent in. You can use Java, some scripting languages or POSH. For
purposes of this guide, we will assume you are using Java. If you are familiar with your chosen language,
there should be no problem getting the same results as following the guide.

The basic variant of agent written in Javais called Pogamut Java Bot.

Starting a project

After starting NetBeans, select Fi | e / New Pr oj ect . From the selection of project templates, choose
the" Pogamut Java Bot" template from" Pogamut " category. On the next page, select a name of
your project. Click " Fi ni sh".

That'sall, project started. If you want, you can start aserver and try running the agent. It won't do anything,
of course. But you can connect to the server and see that it has joined the game and is standing there. Not
so useful now, but later you can watch your agent's actions this way.

Looking around, moving around

Let's try adding some functionality to our agent. We will start with vision. There is a lot of methods for
gathering sensory information, but they can be easily summarized. Y ou can ask if you see certain object,
get first seen object of certain kind or get all seen objects of certain kind. Alternately, you can look for a
specific object (if you know itsID). These objects can be players, enemy agents, weapons, itemsand others.

Agent not only perceives the environment, it also has plenty of information about itself. The list of
methods can be found in corresponding section of Client package documentation. For now, the only ones
of interest are getAgentL ocation, getAgentRotation, getl sM oving and getl sColliding. Their names are
self-explanatory.

Next is movement. A summary of commands concerning agent's movement can be found here(There are
also others, but leave that to the next section).

Agent can turn, run forward, crouch and jump. It can also turn towards something and run to something.
(Running to places that can't be accessed directly and/or are out of sight is handled differently. More on
that in next section).

What can we do with this limited array of functions? Quite alot. We can, for example:

53

How to create an agent

Example 14.2. M ake agent follow anyone he sees

protected void doLogic() {
try {
Thr ead. sl eep(200);
} catch (InterruptedException e) {
this.log.severe("Agent was ruthlessly interrupted when sleeping!");
e.printStackTrace();

}
if (!'this.nmenmory. hasSelf()) {return;}

/1 Deci sion-maki ng RULES:

/1 1) are you standing next to anyone? -> stop and turn towards him
if (this.menory. getl sBunpi ngToAnot her Act or ())
{ this.stateWatch(); return; }

/1 2) do you see anyone? -> follow him (go to his |ocation)
if (this.getSeeAnyPlayer()){ this.stateFollow(); return; }

/1 3) else, turn around
thi s. stateTurnAround();

}

/1 follow ng procedures are behaviours for the states.

protected void stateWatch() {
thi s. body. stop();
this. body.turnToTarget (this. menory. get SeePl ayer());

}

protected void stateFoll ow) ({
t hi s. body. runToTar get (get SeePl ayer());

}

protected void stateTurnAround() {
t hi s. body. turnHori zontal (80);
/! sleep a bit nmore than usually so the turn can be finished
try {
Thr ead. sl eep(250);
} catch (InterruptedException e) {
this.log.severe("Agent was ruthlessly interrupted when sleeping!");
e.printStackTrace();
}
}

As we can see, the code is really smple (maybe except the waiting part at the beginning of doL ogic
method, but that is already present in newly created Agent). Few rules are added to the doL ogic method,
each switching to one of the state... methods under certain condition. Note that with mere seven lines
of code (not counting commentaries and function headers) we made some useful behaviour - with small
modification, this could be used to pursue enemies!

How to create an agent

Know where you are going

In previous section we have shown you how to move and reach objects in the immediate vicinity. That
will probably not be enough. In this section we will explain finer points of navigation.

First, there are two methods that can be used to easily navigate around the map, without need to consider
anything else. safeRunToL ocation will guide agent to the specified location, while safeRunToPlayer
makes the agent chase target player. Both take care of pathfinding, obstacles and everything else.

If you want to do some navigation yourself, the thing that needs to be explained is NavPoint, short for
navigation point. These are marks placed throughout the entire level. Agents can see them, while players
usually cannot (if you want to see them, start server with PathMarker mutator). Each neighbouring two
can be easily reached from each other. Therefore, series of NavPoints where each two consecutive are
neighbouring denotes a path the agent can walk with ease.

Y ou can use NavPoints for simple navigation, looking for onesin right direction and running to them (by
methods shown in previous section). However, NavPoints are more useful in pathfinding. Y ou can request
apath to any known object or location with methods of GameMap class. Y our request will be sent to server
and answered later. That is the reason you should save ID of request, so you can pair it with the correct
answer. Alternately, you can use A* methods that compute path on the IDE. Either way, you will be given
the path to the target as a series of NavPaints.

When you receive the path, you can make the agent walk along it. That can be done manually by taking
path's points one by one and using runToNavPoaint (or better yet, moveAlongNavPoints). But thereisa
simpler solution. GameMap class offers you methods that take list of navpoints as a parameter and make
agent walk along so defined path.

The sequence of calls is following: first you need to obtain the path (by any of getPathT oL ocation
method), then you call checkPath() to know whether the path isready - e.g. properly initialized. If not, call
preparePath() (that will initialize the path) and after that, you can call runAlongPath with no problems.

Remember that these commands only initiate the run-along behaviour. It will take the agent some time
before he reaches his destination. Meanwhile, his logic is running and he may make other decisions.
Command runAlongThePath should be used periodically while agent is en route. While it is on its way,
runAlongThePath returns true. It returns fal se when finished or next NavPoint isinaccessible.

55

How to create an agent

Example 14.3. Running towar ds a NavPoint, not necessarily reachable

protected doLogic() {
/1 some commands are already present

if (this.menory.getlsMving()) this.ganmeMp.runAl ongPat h();

/1 nore commands

}

prot ect ed bool ean get There(NavPoi nt n) {
Pat h nyPath = get Pat hAStar(n);

if (myPath == null) return false;

i nitializeRunAl ongPat h(nyPat h);
Bool ean result = runAl ongPat h();

return result;

}

protected void get ThereAgain() {
restart Pat hToRunAl ong();
r unAl ongPat h() ;

}

In this example there are two methods. The first, getThere, takes NavPoint as a parameter. It calculates
path to the NavPoint and makes agent run along this path. Trueisreturned if al goeswell. Otherwise, false
isreturned and agent does nothing. The other method, getTher eAgain, would be used if agent's path were
interrupted. The linein doL ogic method ensures the agent continues along the path if heisfollowing one
(we presume that agent in this example doesn't move except when following path. In more complicated
agent, the condition should be revised).

Weapons ablazing

The environment inhabited by Pogamut agents is a shooting game. It is no surprise that shooting each
other and being hit makes significant part of agent'sinteractions. In this section you can find how to make
your agent combat-capable.

First thing you need is a weapon. Every agent is equipped with some at the start and can find more in
the environment. The Inventory section of AgentMemory documentation contains methods that give all
sorts of information regarding agent's current inventory. Particularly interesting is getBetter Weapon that
takes two points as a parameter and returns the best of agent's weapons for attacks from one to other. If
you want to change the weapon agent is holding, use changeWeapon or changeT oBestWeapon method
of AgentBody.

Next thing you need isatarget. If you aren't picky, it isbest to use some of the sensory functions mentioned
in previous sections. getSeeEnemy works especially well here.

When agent has usable weapon and target, the actual shooting isvery easy. Method shoot makes the agent
open fire on selected target (player or location).Y ou can use shootAlter nateinstead if you want the agent
to use secondary fire mode. Either way, agent will shoot until told to stop by stopShoot method.

When the bullets start flying, there are some things agent should keep in mind. Methods that give agent's
status contain information on its health and armor, as well as whether is it shooting or being shot at.

56

How to create an agent

Sometimes, agent isableto detect projectilebeforeishit. getl sProjectileComming() can beused to handle

this situation and try to dodge, for example.

When agent kills or is killed by another agent, you can obtain its ID by getWhoAgentKilled or
getWasKilledBy methods. This can be used for gloating, or for something useful (like keeping track of
what agents are most dangerous). Note that in some cases, identity of other party is unknown. Zero is

returned instead.

Example 14.4. Selecting the best weapon and shooting tar get

This example makes agent shoot enemy when it sees one, and stop shooting onceit vanishesfrom the sight.

protected void doLogic() {
/1 other conmands

/1 if shooting and see nothing, stop
if ((this.nmenmory.isShooting()) and (!this.nmenory. get SeeAnyEneny())
t hi s. body. st opShoot () ;

/1 if not shooting and see eneny, attack
if (('this.menory.isShooting()) and (this.nmenory. get SeeAnyEneny())
this.stateAttack();

/] other commands

}

protected void stateAttack() ({
Pl ayer target = this.nmenory. getSeeEneny();
if (target == null) return;

t hi s. body. changeToBest Weapon() ;
t hi s. body. shoot (target);

}

57

How to create an agent

Example 14.5. Knowing heis being shot

Thisexample makes agent report his health and armor whenever hit. It also reportsif it registersaprojectile
coming. (Commands for sending messages are explained later in this chapter)

protected void doLogic() {
/1 other commands

/1 report being hit
if (this.menory. getlsBei ngDamaged()) {
t hi s. body. sendd obal Message(" Quch! | have only "
+ this.nenory. get AgentHeal th() +
health and " + this.nenory.getAgentArnor() + " arnor left");

/1 report projectile
if (this.menory.getlsProjectileCommng()) {
t hi s. body. sendd obal Message("M ssile inconmng !'");

/1 other commands

}
Looking for ...

Besides the basic sensory primitives, the agent has other methods to orient in the environment.
First ismemory. Similar to real beings, agents poses two kinds of memory: short-term and long-term.

Agent's short-term memory is short indeed. It stores events no older than two seconds. But in the world
of virtual beings (and especially in the world of shooting games), two secondsis pretty long time. On the
other hand, long-term memory of the agent reaches to the point of agent's creation. Given enough time and
exploration, agent's long-term memory could encompass all the objects on the game map.

So what does the agent remember? Perceived objectsand their locations. Y ou can request alist of Ammos,
Weapons, Health packs, Playersand other objects. seen... methods reach to short-term memory (containing
last two seconds) and getK nown... methods do the same with long-term memory. For complete list, look
in short-term memory and long-term memory sections of the Client documentation. One of the methods
deserves a special mention: lastPlayer Position returns last known position of certain player. Thisisvery
useful when agent is following another player and doesn't want to lose him whenever its target walks
around the corner.

Example 14.6. Agent initialization using getK nownWeapons

protected voi d postPrepareAgent () throws Pogamut Exception {
this.itemsToRunAround = new ArraylList<ltens();
for (Itemitem: this. menory. get KnownWeapons())
this.itemsToRunAround. add(item;

}

This code snippet is used in the AdvancedBot example to initialize bot. It is a nice demonstration of
getK nownW eapons method. All the known weapon positionsare placed infield i t ens ToRunAr ound
and then the agent seek these places whenever it needs a weapon. Note that the code is in
postPrepar eAgent method, so it isrun as soon as the agent connects to the server.

58

How to create an agent

Aside from memory, the agent has one more sensory capability. It isthe ability to cast tracerays. These are
simulated rays that are cast from specified position and return information on what they hit, be it object,
player or part of the level geometry.

Trace rays can be cast by calling amethod, or agent can be set to cast afew rays automatically. Manually
started raysare cast using trace or fast Tr ace methods. Y ou must specify target location. If starting location
is not given, agent's position is supplied by default. Y ou must also supply Id, that will be used to match
results with your query. Choose it so you don't confuse results of different traces. For trace method, you
can specify that you want to ignore actors and trace only level geometry. fastTrace is faster, but more
limited trace method - it tells the ray has hit something, but can't tell you what it was. For complete list of
the methods and their parameters, see trace section of AgentBody (under Client documentation).

Result of traces are obtained by getTraceResult or getFast TraceResult methods of AgentMemory. You
need to provide Id of thetrace you want the result for. More detailsin corresponding section of the manual.
Methods for obtaining results of AutoTrace (see next paragraph) are also there.

The ability of agents to have a few "permanent” trace rays is called AutoTrace. If agent has AutoTrace
enabled (see configuration methods), it will cast assigned rays periodically and provide the results.
You can add rays with addRayToAutoTrace, remove them with removeRayFromAutoTrace or
removeAllRaysFromAutoTrace. When changing parameters of the ray, just add the new one, with same
Id. The old ray will be rewritten.

When adding a new ray, you need to specify ray Id, length and direction. Direction is relative to agent
((1,0,0) is straight ahead, (0,1,0) isright and (0,0,1) isup). You also specify whenever to use FastTrace
and if you want to ignore actors.

Thereis also a default set of AutoTrace rays. onein front of the agent, ant two at the angle of 45° to the
left and right. Y ou can assign them to the agent by using restartAutoTraceRays.

Results of the AutoTrace commands are obtained by getAutoTrace... methods. Details are in previously
mentioned section.

Note that trace rays are computationally expensive and extensive use of this feature may tax server
resources.

59

How to create an agent

Example 14.7. Run and evade walls - using autoTrace

protected void doLogic() {
traceRun = fal se;
traces = this.nenory. get AutoTraces();
for (AutoTraceRay trace : traces) {
if (trace.result) {

t hi s. body. runToLocati on(Tri pl e. add(
thi s. menory. get Agent Locati on(),
Triple.multiplyByNunber(trace. hitNormal, 100.0)));

traceRun = true,

}

}

if (!traceRun) { // no hit fromauto traces
body. noveCont i nuous() ;

}
}

Thiswasthe code used in previousversions of Kheperal ike example. Agent runsforward. When one of the
trace rays hit something, agent moves away from that (it runsin the direction of hitNormal - perpendicular
to the abject hit by the traceRay, in the location of the hit. For more elegant and reliable solution to the
same problem, see the actual version of the Kheperal ike example (code is much nicer, but also longer).

Listeners: reacting to environment

The information gained from the agent can be prompted by sensory and state methods. However, you
may want to react to new information asynchronously. That means installing a piece of code that is run
whenever certain conditions arise, regardless of state of the agent's main program.

Note

Listeners are advanced feature, requiring certain knowledge of Java. If you do not know what
interfaceis or what does mean when aclassimplementsinterface, do not waste your timereading
this section. Y ou can get similar results by using techniques detailed earlier.

For this purpose Pogamut contain listeners. Listener is a class that implements
either RcvMsgListener [http://artemis.ms.mff.cuni.cz/pogamut/files/javadoc/cz/cuni/pogamut/Client/
RevMsgListener.ntml] or SendCmdListener [http://artemis.ms.mff.cuni.cz/pogamut/files/javadoc/cz/
cuni/pogamut/Client/SendCmdL istener.html] interface. Once you have such aclass, you need to register it
asalistener by addRcvM sgL istener or addSendCmdL istener, depending on whether you want to react
to received messages (information from environment) or sent commands (agent actions).

Listeners can be unregistered by removeRcvM sgListener or removeSendCmdListener method. Details
of methods can be found in Listeners section of Client documentation.

Asidefrom normal listeners, there are also Typed listeners, that react to only specified message type. They
are handled by addTyped ... and removeT yped... methods - details in previously mentioned section.

Logs and Messages

Whileit isnot vital, the ability to send information to the IDE and other players may come handy. In this
section, we will show you how to do both.

60

http://artemis.ms.mff.cuni.cz/pogamut/files/javadoc/cz/cuni/pogamut/Client/RcvMsgListener.html
http://artemis.ms.mff.cuni.cz/pogamut/files/javadoc/cz/cuni/pogamut/Client/RcvMsgListener.html
http://artemis.ms.mff.cuni.cz/pogamut/files/javadoc/cz/cuni/pogamut/Client/RcvMsgListener.html
http://artemis.ms.mff.cuni.cz/pogamut/files/javadoc/cz/cuni/pogamut/Client/SendCmdListener.html
http://artemis.ms.mff.cuni.cz/pogamut/files/javadoc/cz/cuni/pogamut/Client/SendCmdListener.html
http://artemis.ms.mff.cuni.cz/pogamut/files/javadoc/cz/cuni/pogamut/Client/SendCmdListener.html

How to create an agent

In UT2004, players can communicate with each other by sending text messages. Some of them can
be perceived by al, some are limited only to agent's team-mates. These messages can be sent by
using sendGlobalM essage and sendPrivateM essage methods. Following example demonstrates their
use nicely. To receive the messages, register a listener for message types GLOBAL_CHAT and
TEAM_CHAT.

Example 14.8. Sending messages to communication channel

t hi s. body. sendd obal Message("Everyone will receive this nessage");
t hi s. body. sendPri vat eMessage("Only teanmates can receive this nessage.");

Example 14.9. Receiving the messages, replying

This example is very simple. When agent receives a message on global channel, alog entry is produced
containing text of the message (logs are explained next).

/1 this line is needed to initialize the listener
body. addTypedRcvMsgLi st ener (Chat Li st ener, MessageType. GLOBAL_CHAT) ;

/1 this class could handl e the nessages.
/1 1t should be contained in Agent class
protected class ChatListener inplenments RcvMsgLi st ener{

public void recei veMessage(RcvMsgEvent e) {
MessageObj ect tenp = e. get Message();
this.log.info("He said that "+((d obal Chat) tenp).toString);
}
}

The ability to send information to user is even more useful. Agents can send log messages to the IDE.
These messages contain a line of text and have indication of level - how severe they are. The message
levels are listed below:

« SEVERE (highest value)
« WARNING
« INFO

CONFIG

* FINE

* FINER

* FINEST (lowest value)

For each of the levels, there exists a method that send a message of corresponding level to the IDE, where
it is logged. These methods take text of the message (string) as a parameter and each is named the same
asthelevel. For example, if you want to send message with level WARNING, use following:

this.log.warning("This is |l og nessage with [evel WARNI NG bei ng sent");
For instructions on viewing and browsing log messages, see corresponding section of chapter on IDE.

Class Logger offers many more possihilities. If you want to know more about them, read documentation
on class Logger (available on the internet [http://java.sun.com/j2se/1.4.2/docs/api/javalutil/logging/
Logger.html]).

61

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

How to create an agent

Introspection

Pogamut enablesyou to inspect and change some properties of the agent at aruntime. Thisfeatureiscalled
the Introspection.

To mark the property asintrospectable, it must be public. Y ou also have to add @PogProp after the public
tag. Any property can be marked so.

For example, you want to have property healthy of integer type, initialized at zero. You need to add
following line to your agent's code:

public @PogProp int healthy = O;

For instructions on viewing and editing introspected properties, see corresponding section of chapter on
IDE.

62

Chapter 15. Example

Introduction

This chapter contains extensive example of agent creation. It describes making of the most advanced
of the example agent - the Hunter. From the starting idea to the final line of code, all the steps are
shown and explained. Many techniques from the previous chapter are demonstrated in practice. The text
is accompanied by code snippets and commentaries to illustrate issue at hand.

As stated earlier, you can see the complete agent as example 04 - Hunter. To open it, start NetBeans IDE
and select "New Project ..." fromthe"Fi |l e" menu of the NetBeans (or press Ctrl+Shift+N).
Then from the folder " Sanpl es/ Poganut " choose" 04 - Hunter™.

First decisions: agent type and model

Before creating an agent, we need to decide what type of the agent we want (see Chapter 13, Three kinds
of agents to learn about different agent types). We chose to make a JavaBot agent, because it is the base
variant and therefore the best one to demonstrate capabilities of the platform.

For the same reason we adopted a finite-state model. There is also another reason - the behavioursin the
individual states are mostly independent, so even half-made agent can be run and will exhibit some sort
of action (the code needs to be grammatically correct for the agent to compile. When some parts of the
agent are done, | will tell you what is needed to run it).

What should agent do ?

With basics decided, it istime to start thinking what we want the agent to do. Let's say, for example, that
we want our agent to:

* chase enemies and shoot them

* return fire when shot at

* rearm according to the situation

* takeitemsit sees

* seek healthpacks when hurt

* collect items around map when it has nothing better to do

Looks easy enough, but when presenting these behaviours to computer, we encounter some difficulties.
For example, there is priority: when the agent can do more things at once, which of them he should
select? According to the state model, each situation has one correct answer, so we must somehow establish
priorities. Also, we must specify the situations in terms of sensory primitives that Pogamut understands
(tutorial on sensory and move commands isin previous chapter). We do not need to specify actions just
yet - most probably each will contain many commands, so we just create a name for the action (and for
the state agent will be) and leaveit for later.

After some thought, we come up with foll owing description:
1. if you see enemy, rearm to the best suited weapon and engage it.

2. if you are being shot at, return fire

63

Example

3. if the enemy isrunning, chase it

4. if you see item, take it

5. if you are hurt, go take health pack
6. collect items

Priority is given by the order - once agent select an action, no more states will be tested. So no test is
necessary for action 6, asif agent had anything better to do, program would never reach that point.

We could try to build agent using these rules, but after afew tries we would find some more problems. For
exampl e, agent would shoot even when the enemy isalready dead , his attention span woul d be nonexistent
and heis prone to chasing enemy even when unarmed. To solve these, more rules would be added. Also,
some rules are redundant: if agent is shot at, we only need to turn towards the enemy, as its normal
behaviour (e.g. see enemy -> attack) will take over. So after more thinking, we arrive at this set of rules:

1. if you see enemy and have better weapon, rearm
. if you see enemy and have aloaded weapon, engage him
. if you are shooting, stop it

. if you are shot at, look around

2
3
4
5. if you have enemy to pursue and a loaded weapon, go to his last known position
6. if you are going somewhere and bump into something, evade the obstacle

7. if you see any useful item you can reach, go take it

8. if your health islow, go take a health pack

9. collect items

You can see we use the implicit priority: rule 3 may look nonsensical, before we take into account that
it comes into action when the agent is shooting AND he doesn't see any enemy (else the rule 2 would
take over).

you can a so seethe rule 5 need some kind of variable storage, to remember the enemy (rule 6 doesn't need
it, because agent is always going somewhere). We will add following lines to the agent's class:

/** last enenmy which di sappeared from agent's view */
private Player |astEneny = null;

doLogic method - heart of the agent

Now we are prepared to write some actual code. The doL ogic method of the agent is called whenever the
agent should take an action. We will place our rules here. First list each rule as a comment, then place a
code bellow it. Look at the following code:

protected void doLogic() {
/1 1 F-THEN RULES:

/1 1) see eneny and has better weapon? -> switch to better weapon
if (this.menory. get SeeAnyEneny() && this. hasBetterWapon())
{ this.stateChangeToBetterWapon(); return; }

Example

/1 2) do you see eneny? -> go to PURSUE (start shooti ng)

if (this.menory. get SeeAnyEneny() && this. nmenory. hasAnyLoadedWapon())
{ this.stateEngage(); return; }

this.eneny = null;

/1 3) are you shooting? -> go to STOP_SHOOTI NG
/1 (stop shooting, you' ve |ost your target)
if (this.menmory.isShooting()) { this.stateStopShooting(); return; }

/1 4) are you being shot? -> turn around - try to find your eneny
if (this.menory.isBeingDamaged()) { this.stateH t(); return; }

/1 5) have you got enemy to pursue? -> go to the |ast eneny position
if ((this.lastEneny !'= null) && (this. nmenory. hasAnyLoadedWapon()))
{ this.stateCGoAtLast EnenmyPosition(); return; }

/1 6) are you wal ki ng? -> go to WALKI NG (check WAL)
if (this.menmory.isColliding()) { this.stateWalking(); return; }

/1 7) do you see iten® -> go to GRAB | TEM
/1 (pick the nost suitable itemand run for)
if (this.seeAnyReachabl eltemAndWant it ())

{ this.stateSeelten(); return; }

/1 8) are you hurt? -> get yourself some nedKit
if (this.menory. get AgentHealth() < this. healthLevel &&
t hi s. canRunAl ongMedKi t ())
{ this.stateMedKit(); return; }

/1 9) run around itens
this.stateRunAroundltens(); return;

}

If you have read the previous chapters, you should recognize the sensory methods (like getSeeAnyEnemy).
The methods in bold are new they represent actions we want our bot to take or conditions he could be in.
Pogamut platform doesn't offer these functions, so we need to build them from available methods.

Alsonoticethe" r et ur n; " command after each rule. It isthere to stop the program after it has selected
one rule, to enforce priority. Without it, all the rules would we evaluated.

Now we have the doL ogic method done, we need to declare and define all the methods in bold. We can
start where we want, so let's start from the top.

Weapon selection

First rule needs two methods: hasBetter Weapon and stateChangeT oBetter Weapon. Let's first think of
what we need each to do.

The hasBetter Weapon method should decide whether the agent has better weapon available. Because
Pogamut has a getBetter Weapon method built in, this should be easy. Note that which weapon is better is
dependent on enemy location - certain weapons are best suited for long ranges, while other work at close.

prot ect ed bool ean hasBetterWapon() {
if (menory. get Agent Location()==null || nenory.get SeeEneny()==null ||

65

Example

menory. get SeeEneny() .l ocati on==nul |')
return fal se;
AddWeapon weapon = nenory. get Bett er Weapon(nenory. get Agent Locati on(),
menory. get SeeEneny() .l ocati on);

if (weapon == null)
return fal se;

el se

return true;

}

First line is checking if all needed to call getBetterWeapon isin place. As you can see, the method is
really simple - only checking if getBetter Weapon returns anything.

Note

All the newly declared methods are protected. They are always called from within the agent's
class, therefore they do not need to be public. Y ou should always make the methods accessible
only where they need to be.

The other method should change to the better weapon. Wewill aso send alog message to notify user what
we have decided. The codeisalso very smple:

protected voi d stateChangeToBetter Wapon() {
this.log.log(Level.INFO "Decision is: CHANGE WEAPON');
AddWeapon weapon = nenory. get Bett er Weapon(nenory. get Agent Locati on(),
nmenory. get SeeEneny() .l ocation);
body. changeWeapon(weapon) ;
}

Engaging the enemy

The deceptively simple name stateEngage hides avery complex behaviour. It isso because there are many
things that could happen when engaging the enemy and we need to watch them al. For this purpose, the
code of this method will be divided in afew parts with explanations inserted between them.

First problem is, there may be many enemies present. We have to select one of them, else the agent would
be paralysed with indecision. Y ou may remember we declared variable lastEnemy earlier. Now we will
declare another one:

/** the eneny we're fixed at. If null no eneny is engaged. */
private Pl ayer eneny = null;

Why do we need two? The variable enemy holds the enemy we are currently fighting. When no one is
in sight, enemy = null. Meanwhile, lastEnemy holds info about the enemy we have lost, for the purposes
of pursuit.

So how do we handle the enemy selection? Bit by bit. First of all, if we have selected the enemy earlier
and agent still seesit, we will stick to it. Agent should renew itsinformation and keep its target. If it sees
its target no more, it should stop shooting and save the target aslost (into lastEnemy variable).

protected voi d stateEngage() ({
this.log.log(Level.INFQ "Decision is: ENGAGE");
/1 1) if have enenylD - checks whether the same eneny is visible
/1 if not, drop ID (and stop shooti ng)

66

Example

if (this.eneny I'= null){
/1 refresh information about the eneny
this.eneny = this. menory. get SeePl| ayer (t his.eneny.1D);

if (this.eneny == null){
if (this.menory.isShooting())
/1 stop shooting, we've |ost target
t hi s. body. st opShoot () ;
return;
}
if (!'this.nmenory. get SeeAnyEneny()) {
this.last Enenmy = eneny;
this.eneny = null;
return;

}
}

If we haven't selected the target (or lost it in previous code snippet), let's select another. Stop shooting
if noneisavailable.

/1 2) if doesn't have eneny - pick one of the eneny for pursuing
if (this.eneny == null){
this.eneny = this.nmenory. get SeeEneny();
if (this.eneny == null){
t hi s. body. stop();
t hi s. body. st opShoot () ;
return,
}
}

If agent runs out of bullets, it should switch to another weapon. The hasL oadedW eapon method returns
false when the agent ran out of ammo. If the agent has no loaded weapon, it won't rearm, of course.
No specia consideration is necessary, however. In the next iteration of the program, agent simply won't
engage the enemy.

Extratest isthere to eliminate the possibility of agent selecting another weapon that uses the same ammo.
Such weapon would be, of course, useless.

AddWeapon weapon = nul | ;
/1 3) if out of anmp - switch to another weapon
if ((!'this.nmenory. hasLoadedWeapon()) &&
t hi s. nenory. hasAnyLoadedWapon()) {
weapon = this. menory. get AnyWeapon();
if ((weapon !'= null) && ((menory. get CurrentWapon() == null) ||
((menory. get Current Weapon() !'= null) &&
(!'weapon. weaponType. equal s(
menory. get Cur r ent Weapon() . weaponType))))) {
t hi s. body. changeWapon(weapon) ;

}
}

If the enemy isin the range of the weapon, agent should start shooting at it. It should aso turn to face the
enemy. If it didn't do that, the enemy should just hide behind the agent.

/1 4) if not shooting at enenylD - start shooting
doubl e di stance=(Tri pl e. di stancel nSpace(this. menory. get Agent Locati on(),

67

Example

this. eneny. | ocation));
if (this.menory. getCurrentWapon() !'= null &&
this. menory. get Current Weapon() . maxDi st > di stance) ({
platforniog.info("Wuld |like to shoot at eneny!!!");
if (!'this.nmenory.isShooting())
t hi s. body. shoot (t hi s. eneny);
el se
thi s. body.turnToTarget (this.eneny);
/]l to turn to enemy - shoot will not turn to enemny during shooting

}

Just to spice things up alittle, we will make the agent run closer to the enemy if it "feels’ the enemy is
too far. Being too far is decided by a random number.

/1 5) if eneny is far - run to him
i nt decentDi stance = Math.round(this.random next Fl oat () * 800) + 200;

if (this.menory. get AgentlLocation() !'= null && this.eneny = null &&
this.eneny.location !'= null &&
Tri pl e. di stancel nSpace(thi s. menory. get Agent Locati on(),
this.eneny. |l ocation) < decentDi stance){
if (this.menmory.isMving()){
thi s. body. stop();
}
} else {
t hi s. body. runToTar get (eneny);
this.junmped = fal se;
}
}

Asyou see, thereisalot of things to consider when you make agent engage the enemy. On the other side,
we require highly complex and robust behaviour. If you were less thorough, you could get some results
with lot less code. But preparing against every eventuality may be difficult, hence the complex code.

Cease the fire

If there is no enemy present and the agent is shooting, he should stop wasting the ammo. As a courtesy to
the user, message about this decision should also be sent. The code is downright trivial:

protected void stateStopShooting() {
this.log.log(Level .INFO "Decision is: STOP_SHOOTI NG');

t hi s. body. st opShoot () ;
}

When shot at, turn around

If the agent ishit by enemy fire, it should turn around to faceitsfoe. We have opted for asimpler variant: the
agent starts turning around, hoping the enemy comesin sight eventually. The number in the method isthe
turning angle. Greater angle means faster turning, but it cannot be too big, or the agent could missthe foe.

protected void stateH t() ({
this.log.log(Level .INFOQ "Decision is: HT");
thi s. body. turnHori zontal (55);

}

68

Example

Chasing the enemy

If agent has chosen the enemy but can't see it, pursuit is in order. That is the aim of the
stateGoAtL astEnemyPosition method. The enemy probably just walked around the corner, so walking
to itslast known location should bring it in the sight again.

protected void stateCGoAtLast EnenyPosition() {

this.log.log(Level.INFQ "Decision is: PURSUE");

i f(!'this.gameMap. saf eRunToLocati on(l ast Eneny. | ocation)) {
/1 unable to reach the choosen item
l og.info("Ended at the eneny possition or failed");
previ ousChoosenltem = choosenltem
| ast Eneny = nul | ;

}

return;

}

safeRunToL ocation is used to reach last enemy known location. The line marked in bold may not make
sense now, but you will understand when you read the section about collecting items.

Evade obstacles

When the agent is walking, he may hit an obstacle or another player. These situations should be detected
and solved somehow. For that purpose we have created the stateWalking.

Many obstacles are low, so agent should try to jump over them. However, it should jump only when
standing on the ground and when heis still colliding with the obstacle - otherwise the results would ook
silly. To do so, agent needs to remember if he isjumping. We add this variable:

[** prevent bot from continuous junping - he will junp only once */
private bool ean junped;

When the agent collides with another actor, we will just stop him. Either the other actor moves away, or
it isthe enemy - in which case another behaviour takes over in the next iteration.

The agent can aso fall. There is not much we can do, but to demonstrate corresponding functions, we let
the agent send some messages into the communication channel.

protected void stateWal king() {
this.log.log(Level .INFO "Decision is: WALKING');

if (this.menmory.isColliding())
if (!'this.junped){
t hi s. body. doubl eJunp();
this.junmped = true;
} else {
thi s. body. stop();
this.junmped = fal se;
}
if (this.menmory.isFalling()){
t hi s. body. sendd obal Message("l amflying like a bird:D");
this.log.info("l"'mflying like an angel to the sky ... ");

}
if (this.menory.isBunpi ngToAnot her Actor()){

69

Example

thi s. body. stop();
}

Take what you see

We have decided the agent should pick up any item it can see and reach, if another behaviour doesn't
prevent it. Now we need to define following methods:

Method seeAnyReachablel temAndWantlt looksif there are any reachableitems. If so, we need to select
the best one. We will make choosel tem to do that - see below. Note that we need two variables to keep
necessary information. We keep the last item bot was trying to get but couldn't, so it doesn't try to get it
again. It would get stuck otherwise.

/** choosen itemfor the state seeltem */
protected Item choosenltem = null;

/**

* Stores |ast unreachable item
* This setting should prevent bot from stucks.
*/

protected Item previ ousChoosenltem = nul | ;

private bool ean seeAnyReachabl el t emAndWant 1t () {
if (this.menory. get SeeAnyReachabl eltem()){
choosenltem = chooseltem();
if (choosenltem!= null) {
this.log.info("NEWITEM CHOSEN: " + choosenltem;
this.log.info("LAST CHOOSEN | TEM " + previ ousChoosenlten;
}
} else {
choosenltem = nul | ;
}
if ((choosenltem =null) && (!choosenltem equal s(previ ousChoosenltem))
return true;
el se
return false;

}

We decided to make agent select itemsvery carefully. Wewill giveit prioritiesfor variousitems, asdefined
in the choosel tem method. First it should take weapons, then armor if no weapon is available. Health is
taken only if the agent is wounded and ammo is the lowest priority (and only for the weapons agent has).

Some health items are boostable, i.e. can be taken to raise health above maximum. Agent will take these
even when not wounded.

private Item chooselten() ({
/1 1) choose weapon - choose the type he is |acking (nel ee/ranged)
if (this.menory. get SeeAnyReachabl eWeapon())
return chooseWapon();
/1 2) choose arnor
if (this.menory. get SeeAnyReachabl eArnor())
return this. menory. get SeeReachabl eArnor () ;
/1 3) choose health - if the health is bellow normal nmaximm

70

Example

if (this.menory. get SeeAnyReachabl eHeal th()) {
Heal th health = this. nmenory. get SeeReachabl eHeal t h() ;
if (this.menory. get Agent Heal th() < 100)
return health;
if (health.boostable) // if the health itemis boostable, grab it
return health;
}
/1 4) choose ammp - if it is suitable for possessed weapons
if ((this.nmenory. get SeeAnyReachabl eAmmo()) &&
(this.menory.i sAmoSui t abl e(t hi s. nenory. get SeeReachabl eAmo())))
return this. menory. get SeeReachabl eAmo() ;
/1 5) ignhore the item
return null;

}

As you can see, agent tries to choose its weapons too. If it is unarmed, it takes anything. Otherwise is
takes the typesit islacking.

private Weapon chooseWapon() {
ArraylLi st <\WWeapon> weapons = nenory. get SeeReachabl eWapons() ;
for (Weapon weapon: weapons) ({
/1 0) has no weapon in hands
if (this.menory. get Current\Wapon() == null)
return weapon;
/1 1) weapon is ranged, bot has nel ee
if ((this.nmenory. getCurrentWapon(). nel ee) && !weapon.isMlee() &&
I't hi s. menory. hasWeaponOf Type(weapon. weaponType)) {
return weapon;
}
/1 2) weapon is nelee, bot has ranged
if (!'this.nmenory. getCurrentWapon(). nel ee & weapon.ishelee() &&
I't hi s. menory. hasWeaponOf Type(weapon. weaponType)) {
return weapon;
}
}

Weapon chosen = this. nenory. get SeeReachabl eWeapon();
if (!this.nmenory. hasWeaponO Type(chosen. weaponType)) {
return chosen;

}

return nul | ;

}

When suitable item is selected, stateSeeltem is called and bot runs for its prize. When unable to reach
it (as determined by the safeRunT oL ocation method), the item is stored to not seek it again and the run
for the item is stopped. If the bot would hit an obstacle on its way to the item, it would try to jJump over
it. Wewill stop hisjumping, just in case.

protected void stateSeelten() {
i f(!'this.gameMap. saf eRunToLocati on(choosenltem | ocation)) ({
/1 unable to reach the choosen item
| og.info("unable to REACH t he choosen iteni);
previ ousChoosenltem = choosenltem
choosenltem = nul | ;

}
this.junmped = fal se;

71

Example

}
Seek healing when wounded

First we need to decide when the agent is consi dered wounded. For this purpose, we add following variable.
If agent's health drops below stated value, he is considered wounded and will try to find health.

/** how | ow the health |l evel should be to start collecting health */
public int healthLevel = 90;

When the agent seeks the health packs (medkits), it needs to determine whether there are any available
and make alist of them. getNear estHealth takes care of that, but some special cases need to be taken care
of. If no health packs are available, the search is aborted (so the agent doesn't obtain empty list of health
packs). Also is a health pack istoo close, it should be ignored - if it can be reached, other behaviour will
pick it up; otherwise it would only make agent stuck.

prot ected bool ean canRunAl ongMedKit () {

if (this.choosenMedKits == null) {

t hi s. choosenMedKi ts = this.ganeMap. nearest Heal th(4, 8);
return false;

}

/1 no medkits to run to around the agent - see nearestHealth
if (choosenMedKits.isEnmpty() || choosenMedKits.size() > 2)
return false;

/1 bot is too close to the object - possibly standing at the only one
if (Triple.distancel nSpace(choosenMedKits. get(0).location
menory. get Agent Location()) < 40) {

/1 there are many - renpve the first one - seeltem has hi ghest
/1 priority, so bot should pick up the item anyway and ot herw se
/1 will not get stucked at the inventory spot of the item

i f (choosenMedKits.size() > 2)

choosenMedKi ts. renove(0);

el se

t his. choosenltem = null;

return false;

}

return true;

}

When the available hedlth packs (medkits) are decided, bot will use standard method
runAroundltemslnTheMap to collect them:

protected void stateMedKit() ({
this.log.log(Level .INFQ "Decision is: RUN MED KITS");
t hi s. gameMap. r unAroundl t ensl nTheMap(choosenMedKits, this.useAStar);

}
Collect items

When agent has nothing better to do, it should collect items on the map. If such situation arises,
stateRunAroundlitemsis called. We will use standard method runArounditemsinTheM ap to perform
the collecting.

72

Example

protected void stateRunAroundltens() ({
this.log.log(Level.INFQ "Decision is:
t hi s. gameMap. r unAroundl t ensl nTheMap(i t ensToRunAr ound,

}

However, we need to establish the list of items to collect somehow. It needs to be established only once,
so we add a variable and initialize it when the agent joins the game. To do so, we place the code in the
postPrepar eAgent method:

RUN_ARCUND | TEMS") ;
useASt ar);

/** is used to store shuffled Ilist of weapons bot runs around */

private ArraylList<ltens itenmsToRunAround nul | ;

protected voi d post PrepareAgent () {

this.itemsToRunAr ound

for (Itemitem: this.
this.itemsToRunAr ound.
for (Itemitem: this.

this.itemsToRunAr ound.

new Arraylist<ltens();
menory. get KnownWeapons())
add(iten);

menory. get KnownAr nor s())
add(iten);

Col I ections. shuffl e(itensToRunAround);

}

Asyou can see, the method simply takeslist of all known Weapons and Armors and add it to one list, that
is shuffled afterwards. We shuffle it so the agent collects the items at random and not in order.

Introspection and playing the virtual puppeteer

All the behaviours are finished, but we will add one more feature to the agent. We want to be able to use
Introspection to control agent's behaviour and change it at the run-time. To do so, we define following

variables:

@ogProp public bool ean useAStar = fal se;

@PogProp public bool ean shoul dEngage = true;
@ogProp public bool ean shoul dPursue = true;
@ogProp public bool ean shoul dRearm = true;
@ogProp public bool ean shoul dCol |l ectltens = true;
@ogProp public bool ean shoul dCol | ect Heal th = true;
@PogProp public int healthLevel = 90;

The @ogPr op indicates variables accessible by theintrospection. Now we can (trough Introspection) set
whether the agent uses built-in A* algorithm and how much damage will make it seek health (remember,
we used this variable earlier). But how about more control of the behaviour? The other variables will do
that. We can use them to switch agent's behaviours on and off. To do so, we need to modify doL ogic, so
that agent will (for example) engage enemy only if the variable shouldEngageis set to true. When all these
switches are built in, the doL ogic will look like this:

protected void doLogic() {
/1 1 F-THEN RULES:

/1 1) see eneny and has better weapon? -> switch to better weapon
if (this.shoul dRearm && this. menory. get SeeAnyEneny() &&

this. hasBetterWapon()) { this.stateChangeToBetterWapon(); return; }
/1 2) do you see eneny? -> go to PURSUE (start shooti ng)
if (this.shoul dEngage && this. menory. get SeeAnyEneny() &&

73

Example

this. menory. hasAnyLoadedWeapon()) { this.stateEngage(); return;
this.eneny = null;

/1 3) are you shooting? -> go to STOP_SHOOTI NG
/1 (stop shooting, you've |ost your target)
if (this.menmory.isShooting()) { this.stateStopShooting(); return; }

/1 4) are you being shot? -> turn around - try to find your eneny
if (this.menory.isBeingDamaged()) { this.stateH t(); return; }

/1 5) have you got enemy to pursue? -> go to the |ast eneny position
if ((this.lastEneny !'= null) && (this.shoul dPursue) &&
(this. menory. hasAnyLoadedWapon()))
{ this.stateCGoAtLast EnenmyPosition(); return; }

/1 6) are you wal ki ng? -> go to WALKI NG (check WAL)
if (this.menmory.isColliding()) { this.stateWalking(); return; }

/1 7) do you see iten® -> go to GRAB | TEM

/1 (pick the nost suitable itemand run for)

if (this.shouldCollectltems && this.seeAnyReachabl el temAndWantit())
{ this.stateSeelten(); return; }

/1 8) are you hurt? -> get yourself some nedKit
if (this.menory. get AgentHealth() < this. healthLevel &&
t hi s. canRunAl ongMedKi t ())
{ this.stateMedKit(); return; }

/1 9) run around itens
this.stateRunAroundltens(); return;

}
Conclusion

That concludes the tutorial. Agent has all the behaviours we wanted it to have and is ready to run.

You can see the complete code in the example 04 - Hunter. To open it, start NetBeans IDE and select
"New Project ..." fromthe"File" menu of the NetBeans (or press Ctrl+ Shift+N). Then from
thefolder " Sanpl es/ Poganut " choose" 04 - Hunter".

74

}

Chapter 16. Experiments

Introduction

Pogamut platform enables you to design Experiments - scripts in Drools language that are used to control
the run of the platform. It can be used to design scenarios and run them automatically, for example to
perform atest series without need of human overview.

This chapter is not meant as a tutorial of the Drools language, that is beyond scope of this book. It is
meant to give a very basic introduction and focus on the "points of contact” between the platform and
the Drools engine.

Thoseinterested in extensive use of thisfeature are recommended to seek out afull-fledged Drool stutorial.

Principle of the Drools (greatly simplified)

Drools engineisrule-based: each scenario (called Experiment) is defined by afew rules. These are pieces
of code that arerun in certain situations, as areaction to certain events, etc.

The engine keeps alist of facts, things that are considered true at the moment. These facts can be objects
of any type. The rules can add or remove facts from the list, by using insert and remove methods (see
below). Some facts are established automatically.

Each rule has a section, listing facts that it needs to run. All the rules are periodically matched against the

list of facts; thosethat match aretriggered and their code run. Notethat thereisno guaranteewhich rulewill
be triggered first. If you need such precision, read about parameter saliance in the Drools documentation.

Drools file

The Experiment project consists of two files. Y ou can see them both on the Pr oj ects tab.

Droolsfile, the one with suffix .dr | , contains a description of the experiment. It begins with imports and
declarations of global variables (do not edit any of these; you may need to add your own, bu leave the
original alone). Therest of the file are rule descriptions. Note that you are required to mark thisfileasa
'‘Main file' (context menu, Set Main) to run the project.

The other file contains parameters that are imported into Drools as facts.

Rules

The main part of the experiment consists of various rules. All the rules have the same syntax. See the
following example:

75

Experiments

Example 16.1. Droolsrule example

rule "Hello World"
no-1 oop true
when
m : Message(status == Message. HELLO)
t hen
| og. i nfo(nmessage);
m set Message(" Goodbye cruel world");
m set St at us(Message. GOODBYE) ;
update(m);
end

Ruledefinition startswith name, followed by parameters (optional). In thiscase, only parameter isno-loop.
When set to true, the rule will be triggered only once and not again, until the triggering conditions change.

Next part isthe block introduced by when. It containsalist of the factsthat need to be present to trigger the
rule. Each fact hasatype, and in the parentheses are further conditionsit must fulfill. In the example above,
the rule will only be triggered when there is afact of type Message, whose status is Message.HEL L O.

Note

There is one special rule, called startup rule. It is triggered at the beginning of the experiment
and may contain initialization instructions and such. Such arule contains following in the when-
section

experimentStartup : ExperimentStartup (startup == true)

The last part is the actual code of the rule. It isintroduced by then and closed with end, marking the end
of the rule. Inside are the commands to perform when the rule is triggered. These are normal Java code,
with some special features described in following sections.

Things to do in the rules

As stated before, the code in the rules is written in Java. There are, however, some commands and some
objects of specia interest.

You may want to change the list of known facts. Insert(fact) method adds a new fact, remove(fact)
removes it from the list. update(fact) inserts any changes made to an object into the fact list, updating
its data.

You will certainly want to start agents in the experiment, in the initialization or later. You need to do
following things:

» Agent project has to be in the Pogamut folder (it is the default place to save projects)

» Agent code must have been built (doneif you tried to run it and it didn't fail)

» Agent class hasto be included. Write line asthisin the imports section of the. dr | file.
i mport hunter. Min;
Of course, replace hunter with the package name of your bot (seen in the Proj ects tab)

e To actually start abot, you have to create the object and then use utWorld.Connect.

76

Experiments

Agent hunter = new hunter. Min();
String joeNane = utWrl d. connect Bot (hunter, "Joe");

As before, hunter isthe package name. "Joe" is name given to the bot. Note that you would like to store
the return value of utWorld.connectBot() asit returns you area name of the bot (a suffix '_num’) will
be added to the desired name.

The experiment has its own log, accessible from IDE. To send messages to this log, use the log object.
Its methods are the same as for Javalogger:

l og.info("Log nmessage is sent");

When you want the experiment to stop itself, use experiment.experimentEnd() method.

Automatically inserted facts

There are some facts that are inserted to the Drools engine automatically.

* AgentMemory - Whenever the bot is connected to the UT2004 environment through
utWorld.connectBot() as shown in previous section, the AgentMemory class of the bot is inserted to
the Drools engine as a fact, allowing you to create rules that matches it's attributes (location of the bot
and such)

o Parameter - every parameter as specified in 'Important files - Parameters' are added as facts

» ExperimentStartup - this fact will help you to create rule that can set up the UT2004 environment

Miscellaneous info

Look at the example Experiment. Many things are more evident in the code than in the explanation. The
example experiment is also heavily documented and it explains the structure of thefile.

Error messagesthe Drools gives are abit confusing. To know what iswrong, read only thefir st one. Most
of it won't make sense, but you will be able to discern which rule contains error, and the description of
the error (at the end) will tell you what it is.

The Experiment locks the server it runs on, preventing another agents to be run. Occasionally when the
experiment isincorrectly terminated, thislock may stay on the server. In such case, delete the server from
thelist and add it anew.

77

