
FastFix Platform User Manual

Authors:
Dennis Pagano, Tobias Roehm, Emitzá Guzmán,
Sergio Zamarripa, João García, Benoit Gaudin, Javier
Cano, Christophe Joubert, Walid Maalej

Project co-founded by the European Commission
under the Seventh Framework Programme

© S2, TUM, LERO, INESC ID, TXT, PRODEVELOP

Abstract: This document describes the final version of the FastFix platform. It is
a supplement to the source code, which can be accessed on the FastFix open source
project repository at SourceForge. It gives a conceptual overview of the platform as
a whole, and describes how the FastFix platform is typically deployed, set up, and
used by end-users and developers.

This document has been produced in the context of the FastFix Project. The FastFix
project is part of the European Community’s Seventh Framework Program for research and
development and is as such funded by the European Commission. All information in this
document is provided "as is" and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk
and liability. For the avoidance of all doubts, the European Commission has no liability
is respect of this document, which is merely representing the authors view.

Contents

1 Introduction 5

2 Platform Overview 7
2.1 eu.fastfix.client . 7
2.2 eu.fastfix.common . 8
2.3 eu.fastfix.targetapplication . 8
2.4 eu.fastfix.server . 9
2.5 eu.fastfix.dependencies . 9
2.6 Summary . 10

3 User Manual 11
3.1 Deployment and Setup . 11

3.1.1 FastFix Configuration . 12
3.1.2 FastFix Client Setup . 24
3.1.3 FastFix Server Setup . 25
3.1.4 FastFix Sensors Setup . 26

3.2 Platform Usage . 29
3.2.1 Context Observation . 29
3.2.2 Event Correlation . 30
3.2.3 Pattern Mining . 33
3.2.4 Error Reporting . 36
3.2.5 Fault Replication . 37
3.2.6 Patch Generation and Self-Healing 38

4 Developer Manual 40
4.1 Configuration Extensions . 40
4.2 Feature Extensions . 40

4.2.1 Context Observation . 40
4.2.2 Event Correlation . 42
4.2.3 Pattern Mining . 42
4.2.4 Error Reporting . 43
4.2.5 Fault Replication . 44
4.2.6 Patch Generation and Self-Healing 44

5 Summary 45

Bibliography 46

Page 3 of 47

List of Figures

2.1 Conceptual overview of the FastFix platform. 7
2.2 FastFix client platform UI. 8
2.3 FastFix server platform UI. 9

3.1 Deployment of FastFix Platform. 11
3.2 Configuration of Application Bridge . 12
3.3 Sensor Configuration . 13
3.4 Datastore Configuration . 13
3.5 Event correlation configuration element 15
3.6 Pattern mining configuration element . 17
3.7 Ontology configuration element . 18
3.8 Communication configuration element . 18
3.9 Issue tracker configuration element . 19
3.10 Ticket browser configuration element . 21
3.11 FastFixSH configuration attributes . 22
3.12 Sample Expert File . 23
3.13 FastFixSH configuration within FastFix Client. 24
3.14 Starting registered sensors via the FastFix client UI. 25
3.15 Event Correlation Menu . 30
3.16 General Information Tab . 31
3.17 Symptoms Tab . 32
3.18 Cause Tab . 32
3.19 List of existing patterns of error . 33
3.20 Pattern Mining menu . 34
3.21 Detail of a mined pattern . 35
3.22 Dialog showing a new mined pattern . 35
3.23 Validating error patterns . 36
3.24 Viewing an error report . 37
3.25 GUIAnon usage instructions . 38
3.26 FastFix Self-Healing plugin menu . 39

Page 4 of 47

1 Introduction

This document describes the final version of the FastFix platform. It is a supplement to
the FastFix source code, which can be accessed in the FastFix source code repository on
SourceForge1. The document first gives a general conceptual overview of the platform as
a whole and summarizes current source code metrics. Then, it describes how FastFix can
be used from the point of view of two actors. First, the FastFix users, i.e. maintenance
engineers who want to remotely maintain their software with FastFix, and need to deploy
and setup the FastFix platform. Second, developers, who want to develop for and extend
FastFix, for instance by writing additional sensors, adding rules, or adding possibilities
to configure the platform.

For more details on specific aspects and functions of the FastFix platform, we refer the
reader to the corresponding deliverables, as summarized in the following list:

• First Prototype of Context Observer [9]

• First Prototype of the User Profiler [13]

• First Prototype of the Error Reporting System [2]

• Refined and Integrated Version of Context Observer, User Profiler and Error Re-
porting [12]

• First Prototype of the Event Processor [1]

• First Prototype of the Pattern Mining Module [15]

• Second refined prototype of the event correlation component [14]

• First and Second Prototype of the Execution Recorder and Replayer [3, 4]

• First, Second, Third, and Fourth Prototype of the Self-Healing and Patch Genera-
tion Component [7, 6, 5, 8]

This document does not describe in detail how to set up a development environment in
order to build the FastFix platform from source code. FastFix is a relatively big system,
and the project utilizes specialized technologies for the build process. Therefore, in this
document we concentrate on giving additional, conceptual information on the source code,
and illustrate deployment and usage scenarios. For information on how to start developing
for FastFix, we refer the reader to [10] and to the project’s Wiki documentation234.

In Section 2, we give a conceptual overview of the final FastFix platform. We illustrate
how and why bundles are distributed among different namespaces and give details using

1https://svn.code.sf.net/p/fastfixrsm/code/trunk
2http://fastfixproject.eu/wiki/Howto:_Set_up_development_infrastructure
3http://fastfixproject.eu/wiki/Howto:_Main_development_use_cases
4http://fastfixproject.eu/wiki/Howto:_Start_FastFix_from_Eclipse

Page 5 of 47

https://svn.code.sf.net/p/fastfixrsm/code/trunk
http://fastfixproject.eu/wiki/Howto:_Set_up_development_infrastructure
http://fastfixproject.eu/wiki/Howto:_Main_development_use_cases
http://fastfixproject.eu/wiki/Howto:_Start_FastFix_from_Eclipse

FastFix Platform User Manual

code metrics. In Section 3, we describe how the FastFix platform can be deployed, set up,
and used for remote maintenance. In Section 4, we describe, how developers can config-
ure, extend, and change the FastFix functionality, in order to be able to provide remote
maintenance services tailored to their customers’ requirements. Section 5 summarizes and
concludes this document.

Page 6 of 47

2 Platform Overview

FastFix is a remote software maintenance platform. As Figure 2.1 illustrates, its compo-
nents are distributed among two environments. First, the environment where the target
application is running, and second the maintenance environment where development,
maintenance, and testing tools are installed. Consequently, the FastFix system consists
of two main components: the FastFix client and the FastFix server. Both server and
client communicate and exchange data with each other.

Eu
ro

pe
an

 C
om

m
is

si
on

In
fo

rm
at

io
n

 S
o

ci
et

y
an

d
 M

ed
ia

_
M

on
ito

ri
ng

 so
ft

w
ar

e
ex

ec
ut

io
n

W
e

w
ill

 d
ev

el
op

 a
nd

 s
et

 u
p

m
ec

ha
ni

sm
s

to
 a

cq
ui

re

al
l

th
e

ne
ce

ss
ar

y
in

fo
rm

at
io

n
ab

ou
t

an

ap
pl

ic
at

io
n’s

ex

ec
ut

io
n

in
cl

ud
in

g
er

ro
rs

, c
on

te
xt

 a
nd

 u
se

r
be

ha
vi

ou
r.

Th
es

e
m

ec
ha

ni
sm

s
w

ill
 b

e
ap

pl
ic

ab
le

 t
o

bo
th

 n
ew

 a
nd

ex

ist
in

g
ap

pl
ic

at
io

ns
. T

he
 m

on
ito

rin
g

w
ill

 a
lso

 b
e

no
n-

in

tru
siv

e
an

d
im

po
se

 a
 m

in
or

,
ac

ce
pt

ab
le

 b
ur

de
n

on

pe
rfo

rm
an

ce
.

So
ftw

ar
e

Ap
pl

ic
at

io
n

Ru
nt

im
e

En
vi

ro
n.

se
ns

or
s

se
ns

or
s

se
ns

or
s

O
pe

ra
tin

g
Sy

st
em

Co
nt

ex
t

O
bs

er
ve

r

Re
po

rt
in

g
In

te
rf

ac
e

Us
er

 P
ro
!l

e

Co
m

m
un

ic
at

io
n

In
fra

st
ru

ct
ur

e

Fa
st

FI
X

Cl
ie

nt

Runtime

Pa
tc

h
G

en
er

at
or

Co
m

m
un

ic
at

io
n

In
fra

st
ru

ct
ur

e
Fa

st
FI

X
Se

rv
er

Fa
ul

t
Re

pl
ic

at
or

Ev
en

t
Co

rr
el

at
or

Fa
st

FI
X

co
m

po
ne

nt
Ex

te
rn

al
 c

om
po

ne
nt

Te
st

 E
nv

iro
nm

en
t

D
ev

el
op

m
en

t E
nv

iro
nm

en
t

Maintenance Platform

in
te

rn
et

Th
e

ga
th

er
ed

 in
fo

rm
at

io
n

w
ill

 b
e

se
nt

 in
 r

ea
l t

im
e

to
 a

su

pp
or

t
ce

nt
re

w

hi
le

pr

ot
ec

tin
g

us
er

‘s
pr

iv
ac

y.
O

nc
e

th
is

in
fo

rm
at

io
n

is
av

ai
la

bl
e

in
 t

he
 s

up
po

rt
 c

en
tre

, i
t

w
ill

be

 u
se

d
to

 r
ep

lic
at

e
er

ro
rs

, t
ak

in
g

in
to

 a
cc

ou
nt

 a
ll

th
e

ga
th

er
ed

co

nt
ex

t
in

fo
rm

at
io

n
an

d,

us
in

g
co

rre
la

tio
n

te
ch

ni
qu

es
 a

nd
 e

rro
r o

nt
ol

og
ie

s.

Fa
st

FI
X

pl
at

fo
rm

w

ill

th
en

id

en
tif

y
be

ha
vi

ou
r

pa
tte

rn
s a

nd
 p

os
sib

le
 c

au
se

s o
f e

rro
r.

_
Se

lf-
he

al
in

g
In

 s
om

e
ca

se
s,

th
e

pl
at

fo
rm

 w
ill

 b
e

ab
le

 t
o

au
to

m
at

ic
al

ly

ge
ne

ra
te

 p
at

ch
es

 f
or

 e
rro

rs
. T

he
se

 p
at

ch
es

 w
ill

 c
on

sis
t

of

ap
pl

ic
at

io
n

m
od

i!
ca

tio
ns

,
ch

an
ge

s
in

sy

st
em

co

n!
gu

ra
tio

n,

pa
ra

m
et

er
iza

tio
n,

or

ev

en

fu
nc

tio
na

lit
y

lim
ita

tio
n

in

or
de

r
to

av

oi
d

sy
st

em

or

ap
pl

ic
at

io
n

cr
as

he
s.

Pa
tc

he
s

w
ill

 b
e

se
nt

 b
ac

k
to

 t
he

 a
pp

lic
at

io
n’s

ex

ec
ut

io
n

en
vi

ro
nm

en
t

an
d

w
ill

be

ap

pl
ie

d
au

to
m

at
ic

al
ly,

re

su
lti

ng

in

a
se

lf-
he

al
in

g
so

ftw
ar

e
ap

pl
ic

at
io

n.

_
Re

se
ar

ch
 li

ne
s

Fa
st

FI
X’

s
in

no
va

tio
n

is
ce

nt
er

ed
 o

n
fo

ur
 f

un
-d

am
en

ta
l

re
se

ar
ch

 a
ct

iv
iti

es
:

Co
nt

ex
t

el
ic

ita
tio

n
an

d
us

er
 m

od
el

in
g:

de

te
rm

in
es

ex

ac
tly

 w
hi

ch
 a

nd
 h

ow
 i

nf
or

m
at

io
n

on
 a

n
ap

pl
ic

at
io

n’s

ex
ec

ut
io

n
an

d
us

er
 in

te
ra

ct
io

n
is

go
in

g
to

 b
e

ga
th

er
ed

 a
nd

pr

e-
pr

oc
es

se
d

in
de

pe
nd

en
tly

 fr
om

 th
e

ap
pl

ic
at

io
n

an
d

its

en
vi

ro
nm

en
t.

Ev
en

t
co

rr
el

at
io

n:

de
te

rm
in

es

ho
w

th

e
ga

th
er

ed

in
fo

rm
at

io
n

is
us

ed
 t

o
dr

aw
 c

on
cl

us
io

ns
 a

bo
ut

 t
he

 k
in

d
of

 p
ro

bl
em

s
th

e
ap

pl
ic

at
io

n
is

fa
ci

ng
 a

nd
 w

ha
t

th
e

po
ss

ib
le

 c
au

se
s

ar
e.

 E
ve

nt
 c

or
re

la
tio

n
ha

s
be

en
 w

id
el

y
ap

pl
ie

d
to

 IT
C

pr
oc

es
se

s a
nd

 B
us

in
es

s A
ct

iv
ity

 M
on

ito
rin

g,

bu
t

sig
ni
!c

an
t

re
se

ar
ch

 i
s

ne
ed

ed
 o

n
its

 a
pp

lic
at

io
n

to

so
ftw

ar
e

m
ai

nt
en

an
ce

.

Fa
ul

t
re

pl
ic

at
io

n:
 p

ro
vi

de
s

a
pl

at
fo

rm
 t

ha
t

al
lo

w
s

th
e

re
pl

ic
at

io
n

of
 e

rro
rs

 i
n

as
 c

lo
se

 t
o

th
e

re
al

 c
on

te
xt

 a
s

po
ss

ib
le

.

Pa
tc

h
ge

ne
ra

tio
n

an
d

se
lf-

he
al

in
g:

 d
et

er
m

in
es

 w
hi

ch

pa
tc

he
s

ar
e

go
in

g
to

be

ge

ne
ra

te
d,

an

d
ho

w

th
ey

w

ill
 b

e
de

pl
oy

ed
 t

o
th

e
ap

pl
ic

at
io

n
in

 t
he

 e
xe

cu
tio

n
en

vi
ro

nm
en

t.

_
Im

pa
ct

 o
n

so
ft

w
ar

e
m

ar
ke

t
Fa

st
FI

X
w

ill

pr
ov

id
e

a
pl

at
fo

rm

fo
r

so
ftw

ar
e

m
ai

nt
en

an
ce

an

d
su

pp
or

t,
w

hi
ch

w

ill

be

ap
pl

ic
ab

le

to
 s

of
tw

ar
e

ap
pl

ic
at

io
n,

 r
eg

ar
dl

es
s

of
 t

he
ir

ex
ec

ut
io

n
en

vi
ro

nm
en

t.
U

sin
g

Fa
st

FI
X

w
ill

 s
ig

ni
!c

an
tly

 r
ed

uc
e

tim
e

fo
r

fa
ilu

re
 c

au
se

 i
de

nt
i!

ca
tio

n,
 p

at
ch

 g
en

er
at

io
n,

 a
nd

pa

tc
h

de
pl

oy
m

en
t.

Ev
en

w

he
n

Fa
st

FI
X

w
ill

no

t
be

ab

le

to

au
to

-
m

at
ic

al
ly

id

en
tif

y
ca

us
es

or

ge

ne
ra

te

pa
tc

he
s,

it
w

ill

pr
ov

id
e

va
lu

ab
le

,
se

m
an

tic
 c

on
te

xt
 i

nf
or

m
at

io
n,

 a
bo

ut

bo
th

 t
he

 e
xe

cu
tio

n
en

vi
ro

nm
en

t
an

d
us

er
 i

nt
er

ac
tio

n.

Th
is

w
ill

 s
ig

ni
!c

an
tly

 f
ac

ili
ta

te
 m

ai
nt

en
an

ce
 t

as
ks

 o
f

th
e

so
ftw

ar
e

en
gi

ne
er

s.

Fa
st

FI
X:

 M
on

ito
rin

g
Co

nt
ro

l f
or

 R
em

ot
e

So
ft

w
ar

e
M

ai
nt

en
an

ce
.

Pr
oj

ec
t f

ac
ts

he
et

 F
AS

TF
IX

/2
58

10
9

Th
e F

as
tF

ix
pr

oj
ec

t i
s p

ar
t o

f t
he

 Eu
ro

pe
an

 C
om

m
un

ity
’s S

ev
en

th
 Fr

am
ew

or
k P

ro
gr

am
 fo

r r
es

ea
rc

h
an

d
de

ve
lo

pm
en

t a
nd

 is
 a

s s
uc

h
fu

nd
ed

 b
y t

he
 Eu

ro
pe

an

Co
m

m
iss

io
n

un
de

r G
ra

nt
 A

gr
ee

m
en

t 2
58

10
9

Figure 2.1: Conceptual overview of the FastFix platform.

As described in [11], FastFix components are structured into namespaces according to
their responsibility in the platform. The namespace of each code bundle can be identified
from the bundle name. Currently, the integrated platform contains 79 bundles1 belonging
to 5 different namespaces. In the following, we briefly explain all five namespaces and
give additional details in terms of code metrics. Details on the source code in terms of
interfaces and packages can be found in [11] as well as in the source code documentation2

(JavaDoc).

2.1 eu.fastfix.client

The client namespace contains bundles constituting the FastFix client component. The
FastFix client runs in the environment of the target application (i.e. in the application

1Including bundles needed to group other bundles (“parent bundles”)
2The project source code is available at SourceForge: https://svn.code.sf.net/p/fastfixrsm/code/trunk

Page 7 of 47

https://svn.code.sf.net/p/fastfixrsm/code/trunk

FastFix Platform User Manual

usage environment). Its main purposes are (a) to collect context information monitored
by sensors, (b) to perform data pre-processing tasks before sending information to the
maintenance site (for security and performance), (c) to access supervisor mechanisms in
the target application (for self-healing), and (d) to provide a user interface to allow users
to regulate the FastFix functionality (e.g. start and stop sensors).

The client namespaces currently contains 100 classes with 504 methods in 37 packages
(10 bundles), with a total of 4,632 lines of code in 110 files. Figure 2.2 shows a screenshot
of the FastFix client UI including three registered sensors.

Figure 2.2: FastFix client platform UI.

2.2 eu.fastfix.common

The common namespace contains bundles which are needed by both the FastFix client
and server. In the current state of the system, the FastFix common namespace includes
bundles from nine different areas of concern, including context observation, persistency,
error reporting, fault replication, and communication between client and server. More
details can be found in [11].

The common namespaces currently contains 340 classes with 2,113 methods in 56 pack-
ages (12 bundles), with a total of 17,894 lines of code in 343 files.

2.3 eu.fastfix.targetapplication

The targetapplication namespace contains bundles that are supposed to run in the runtime
environment of the target application. Typically such components are sensors (or actua-
tors). Bundles in this namespace communicate with the FastFix client via the interfaces
of the application bridge (cf. [11]).

The targetapplication namespaces currently contains 117 classes with 824 methods in
32 packages (11 bundles), with a total of 9,267 lines of code in 114 files.

Page 8 of 47

FastFix Platform User Manual

2.4 eu.fastfix.server

The server namespace contains bundles constituting the FastFix server component. The
FastFix server runs in the maintenance environment (or in the application engineering
environment). Its main purposes are (a) to collect information sent by FastFix client,
(b) to investigate this information and detect performance degradation trends, errors,
and possible causes, (c) to create and update user profiles, (d) to provide access to issue
trackers, (e) to allow maintenance engineers to replay errors, (f) to create patches and
send these patches to clients to self-heal them, and (g) to provide a user interface to
allow maintenance engineers to access the FastFix functionality (e.g. error replay and
patch generation). Figure 2.3 shows a screenshot of the FastFix server UI, which mainly
consists of a log and specific FastFix menus.

The server namespaces currently contains 415 classes with 2,826 methods in 115 pack-
ages (21 bundles), with a total of 40,164 lines of code in 410 files.

Figure 2.3: FastFix server platform UI.

2.5 eu.fastfix.dependencies

The dependencies namespace contains third-party libraries which we have wrapped in
OSGi bundles. This process is sometimes necessary to be able to use specific libraries in
an OSGi context. We created OSGi wrappers for the following 9 third party components:

• eu.fastfix.dependencies.apache.http – wrapping org.apache.http

• eu.fastfix.dependencies.axis – wrapping org.apache.axis

• eu.fastfix.dependencies.drools – wrapping org.drools

• eu.fastfix.dependencies.flexjson – wrapping net.sf.flexjson

• eu.fastfix.dependencies.javassist – wrapping javassist

• eu.fastfix.dependencies.jena2 – wrapping com.hp.hpl.jena

• eu.fastfix.dependencies.jpf – wrapping Java PathFinder

• eu.fastfix.dependencies.mysql – wrapping mysql jdbc connector

• eu.fastfix.dependencies.soot – wrapping soot, polyglot, and jasmin

Page 9 of 47

FastFix Platform User Manual

2.6 Summary

Table 2.1 summarizes the code metrics of the FastFix open source remote maintenance
platform.

Table 2.1: Code Metrics of Integrated FastFix Platform.
bundles # packages # classes # methods # LOC # files

eu.fastfix.client 10 37 100 504 4,632 110
eu.fastfix.common 12 56 340 2,113 17,894 343
eu.fastfix.targetapplication 11 32 117 824 9,267 114
eu.fastfix.server 21 115 415 2,826 40,164 410
eu.fastfix.dependencies 9 - - - - -

sum 63 240 972 6,267 71,957 977

Page 10 of 47

3 User Manual

In this section, we provide a user manual for FastFix, i.e. we describe how the FastFix
platform is typically deployed, which steps are necessary to set the platform up, and how
it can be used for remote maintenance.

3.1 Deployment and Setup

!"#$%&'()*+,$&%-(

./&&$&0(!"#$%&'
())*+,"-./'

./&&$&0(0"1&0+2'3*+%/&'
./&&$&0(0"1&0+2(4%/1.#1'

!1%23%2()*+,$&%-(

./&&$&0(0"1&0+2'4%#5%#'

!42*+5%2()*+,$&%-(

./&&$&0(6117%'!#",8%#'

Figure 3.1: Deployment of FastFix Platform.

Figure 3.1 illustrates how FastFix is deployed in a typical remote maintenance scenario
(components, machines, and connections needed for FastFix are shown in blue). The
“Client Machine”1 refers to any machine hosting parts of the target application. In the
case of a simple desktop application, this might just be a standard desktop client. In the
case of a three tier application, it might refer to the presentation tier (desktop clients),
logic tier (server hosting business logic), and data tier (server hosting database) machines
respectively. For FastFix, a “Client Machine” refers to any machine where data about
the application, runtime environment, or user can and shall be monitored. To this end,
the FastFix client and sensors are deployed onto these “Client Machines”. The “Server
Machine” is a (logical) additional machine added to the application deployment scenario,
which hosts the FastFix server application. This machine (and the FastFix server) is
connected to the clients via internet2. The “Tracker Machine” denotes the machine where
the issue tracker is running (typically a stand-alone server). The FastFix server connects
at runtime to this server in order to access the issue tracker.

The following sections describe on a high level how the FastFix client, server, and
sensors have to be installed. Depending on the specific platform and target application
the details of these steps may vary, and additional steps may be required.

1We put the term “Client Machine” in quotation marks to indicate that these machines are not necessarily
clients in terms of the target application language, but in terms of FastFix.

2Note that the FastFix Server application might in theory also be installed on the “Tracker machine”
or the “Client machine”.

Page 11 of 47

FastFix Platform User Manual

In Section 3.1.1, we show how to configure the FastFix platform components. In the
following two sections, we describe how to obtain and run the FastFix client (Section
3.1.2) and server (Section 3.1.3). Finally, in Section 3.1.4 we illustrate how to set up and
connect FastFix sensors.

3.1.1 FastFix Configuration

Both FastFix server and client should be configured with a configuration file in the Fast-
Fix home directory3. The configuration file allows maintenance engineers to specify the
behavior of the following components4:

3.1.1.1 Context Observation

Communication between sensors and FastFix client The application bridge is the
component of the FastFix client to which the sensors communicate. The configuration
parameters shown in Figure 3.2 are used both by the FastFix client and the sensors to
communicate. In the following we briefly describe each configuration parameter.

• sensorsAutoStart (boolean):
Determines if sensors are started automatically when they are registered or if this
has to be done manually by the user via the FastFix client.

• RMIBridge active (boolean):
Determines whether the RMI bridge, i.e. the component of the FastFix client used
for communication via RMI, is available or not.

• RMIBridge host (Hostname), port (Port), and name (String):
Setup for the RMI connection. This is used by the FastFix client to provide services
via RMI and the sensors to connect to FastFix client and consume the services.

• HTTPBridge active (boolean):
Determines whether the HTTP bridge, i.e. the component of the FastFix client used
for communication via HTTP, is available or not.

• HTTPBridge host (Hostname), and port (Port):
Setup for the HTTP connection.

Figure 3.2: Configuration of Application Bridge

3The FastFix home directory is (a) the folder specified by the Java environment property “fastfix.home”
or (b) the folder “fastfix” in the user’s home directory. FastFix expects read and write permissions in
all the FastFix home directory and subdirectories and files.

4More information can be found in the project wiki under
http://fastfixproject.eu/wiki/Configuration_file_structure

Page 12 of 47

http://fastfixproject.eu/wiki/Configuration_file_structure

FastFix Platform User Manual

Sensor Behavior The behavior of sensors can be configured using the following param-
eters. An example configuration is shown in Figure 3.3.

• heartbeatInterval (int):
The time interval (in milliseconds) in which sensors send heartbeat commands to
the FastFix client to indicate that they are still alive and to receiveinstructions.
Used by sensors that are implemented in own threads and not as listeners.

• registerSensorsOnAppStart (boolean):
Determines whether sensors should be registered automatically on application start
or by explicit trigger of the user.

Figure 3.3: Sensor Configuration

Datastore Monitored events are stored in the datastore, i.e. a MySQL database holding
event data. The following parameters can be used to configure the database access for
FastFix client and FastFix server. An example configuration is shown in Figure 3.4.

• driver (String):
The database driver that should be loaded and used (in Java).

• url (String):
The url under which the database can be accessed.

• db (String):
The name of the database in the MySQL server instance.

• user (String), password (String):
Credentials for MySQL server.

• cache (int):
The size of the event cache for database access, i.e. the number of events that are
cashed by FastFix client and FastFix server and written to database together.

Figure 3.4: Datastore Configuration

Page 13 of 47

FastFix Platform User Manual

3.1.1.2 Event Correlation and Pattern Mining

Event correlation component FastFix event correlation system will automatically de-
tect an error pattern during the application’s operation, generating automatic tickets and
gathering all the information that can be useful for further analysis. In order to prop-
erly configure the event correlation components, we need to define the file system folders
where the required files are located. This configuration is defined by specifying several
file paths, which are located under the FastFix home directory. Event correlation con-
figuration allow the developer to disconnect the module from both the context and the
report system.

• DRL (String): Both items, path and url, must point to the same resource: mainte-
nance-rules.drl. This file contains the rules which are used to detect patterns of
error, and it’s an internal, i.e. it is not recommended to change the default value,
since it must be in the classpath of FastFix. It is used by different classes, which use
different methods to load the file. So, it is necessary to use two different parameters.

• Changeset (String): The item path points to the folder to be scanned in order
update the rule engine with changes in the rules. It’s also an internal file, so it is
not recommended to change the value.

• ContextSystem:

• plugged (boolean): This field is used for development purposes. If its value is
true, the event correlation module will be fed with real context events. How-
ever, sometimes simulating the events is useful, specially for testing new event
correlation features, in this case, false is the appropiate value. The correct
value for production environments is true.

• nonAnonymousEvents (String): It refers to the context event types that contain
information about the user who create it. For example: http://www.fastfixpro-
ject.eu/ontologies/MonitoringOntology.owl#TextInput+http://www.fastfixpro-
ject.eu/ontologies/MonitoringOntology.owl#HttpRequestOnServerSide

• UserReportingSystem

• plugged (boolean): This field is used for development purposes. If its value
is true, the event correlation module inserts a ticket in the issue tracker (if a
fault is detected). However, in development phase, it’s recommended change
the value to false, in order to not flood the tracking system. The correct value
for production environments is true.

• post (boolean): It refers to the granularity of the information shown in reports,
i.e.: if its value is true, the module includes extra information about some
context events.

• CorrelationData

• path (String): It refers to the folder where the collected results are going to be
stored, in other words, the location of the file containing information about the
error being detected, as well as the client name and other configurable fields
described in the configurable fields described in generalConf and rdfConf.

Page 14 of 47

FastFix Platform User Manual

• generalConf (String): It is the folder of the properties file describing the
general fields to be retrieved from the events associated to the current detected
error. The general fields consist of a group of default fields (OntologyId,
ClientName, UID) and a list of configurable fields, defined inside the properties
file. The properties file is a list of name-value pairs, where the name represents
the column in the generated csv file, while the value represents the event data
property to be retrieved from the FastFix events.

• rdfConf (String): It refers to the folder of the properties file describing the
rdf fields to be retrieved from the server datastore, corresponding to previous
events that might be associated with the current situation of error. Again,
this properties file represents several name-value pairs, where the first element
describes the name of the column in the resulting csv file, while the second is
the event data property to be retrieved.

The following figure represents an example of the event correlation configuration
element of the FastFix configuration file:

Figure 3.5: Event correlation configuration element

Pattern mining component Apart from the predefined patterns of error of FastFix,
correlation system provides a pattern mining module to suggest unknown patterns. The
process to mine them is made by two sub-processes: the learning and mining procedures.
Pattern mining configuration is key for having good results. In this section, the meaning
of each field is explained, and some tips to correctly configure them are explained in
section 3.2.3.

• EventStream: Pattern mining procedures use context event streams as input data .
This configuration element concerns the parameters of the set of context events to
be analyzed by pattern mining module.

• eventTimeWindow (long): It refers to the value, in milliseconds, of the time
window of the event stream, i.e. if maintenance engineers team want analyze
the context events occurred in last 4 hours, the value of this field would be
14400000 milliseconds.

• mac (String): The MAC address of the user whose events would be analized
by the module. If no MAC address is specified, all the events are taken into
account.

• pluggedServerDataStore (boolean): This field is used for development pur-
poses. If its value is true, the pattern mining module will be fed with real

Page 15 of 47

FastFix Platform User Manual

context events, provided by the server data store component. However, some-
times simulating the events is useful, specially for testing new pattern mining
features, in this case, false is the appropiate value. The correct value for pro-
duction environments is true.

• Algorithm: This configuration element refers to the parameters used by the learning
and mining procedures.

• chosenAlgorithm (String): It refers to the algorithm used in the learning
phase. Possible values are “PrefixSpan” and “CSPADE”

• support (long): The value of this field represents the minimum number of
occurrences (in percent) of a sequence of context events to be considered as
frequent.

• minimumSequenceSize (int): It refers to the minimum number of context
events needed to become a sequence.

• sequenceTimeWindow (long): It refers to the value, in milliseconds, of the time
window of a sequence.

• itemSetTimeWindow (long): It refers to the value, in milliseconds, of the time
window of a itemSet. A sequence consists of one or more item sets, so the value
of sequenceTimeWindow must be higher than itemSetTimeWindow.

• converterOutput (String): The stream of events provided by the server data
store must be serialized using a concrete format, in order to be processed later
by learning process. This field contains the path of the file used for this purpose.

• sessionOutput (String): Once the events have been formated and serialized,
the context events are grouped into sequences. The result of this process is
stored in a file, which will be read later by the chosen algorithm. This field
contains the path of this file.

• preprocessedOutput (String): This field means the same than converterOut-
put, but for the mining process.

• machineLearning (String): It refers to the path where the executable jar for
learning process is located. This jar contains PrefisSpan and CSPADE algo-
rithms.

• LaunchProcess: Learning and mining process can be launched in two modes: on
demand or using a task scheduler. This configuration element is used for this pur-
pose.

• automatic (boolean): If the value of this parameter is true, both procedures
will be performed according to the cron expression specified in learningSchedule
andminingSchedule. If the value is false, both process should be launched using
the FastFix server interface, as it is detailed in section 3.2.3.

• learningSchedule (String): This field contains the cron expression used to
launch the learning process in automatic mode.

• miningSchedule (String): This field contains the cron expression used to
launch the mining process in automatic mode.

Page 16 of 47

FastFix Platform User Manual

• Results

• normalBehaviorPatterns (String): It refers to the path of the file where the
results of the learning process are stored, i.e. the sequences of events (patterns)
which represents the normal behavior of the target application.

• minedPatterns (String): It refers to the path of the file where the results of the
mining process are stored. i.e. the patterns of error identified. Maintenance
team can view them using FastFix interface, as it’s detail in section 3.2.3.

Figure 3.6: Pattern mining configuration element

• Known ontologies

Focusing on the ontology configuration, FastFix currently supports two ontologies, one
representing the monitoring events and other representing all the concepts associated to
software errors, the maintenance ontology. In order to properly configure the ontologies
location, FastFix unified configuration uses the “Ontologies” element to describe the
location and main properties of these ontologies:

Page 17 of 47

FastFix Platform User Manual

Figure 3.7: Ontology configuration element

3.1.1.3 Error Reporting and Fault Replication

Communication Configuring the FastFix communication subsystem is critical to a cor-
rect operation of FastFix. This component manages all connections between FastFix
clients and servers. Figure 3.8 highlights the element in the FastFix XML configuration
which control the communication system. The server’s host and port must be the same
on the client FastFix configuration and on the server’s. The port choice depends only
on the server’s administrative restrictions. The client host and port are only used on
the FastFix client and are freely chosen barring any administrative restrictions. Finally,
SSL can be used for securing the communication channel between client and server. To
use SSL, the active property must be set to true (keypath and keyvalue are unused).
The remaining properties configure the usual SSL parameters. For the FastFix server,
the trustStore and trustStorePassword configure the location and password to access
the list of the trusted clients. And, for the client, the keystore and keyStorePassword
configure the location and password to access the file with the client’s own SSL certificate.
Obviously, each FastFix client must have its certificate added to the keystore file and the
FastFix server must add each client’s certificate to its truststore file.

Figure 3.8: Communication configuration element

Issue Tracker FastFix uses an issue tracker to store any error reports that it generates.
Therefore, the server uses the FastFix configuration to configure the connection to the

Page 18 of 47

FastFix Platform User Manual

issue tracker. Figure 3.9 highlights the element in the FastFix XML configuration which
configures the issues tracker connection on the FastFix server. The Ticket element has
the attachmentMaxSize parameter to limit the size of error report attachments. The
TracConnector element configures the remaining parts of the issue tracker configura-
tion (current parameters are used for the TRAC issue tracker but could be used with
alternative meanings with other issue trackers):

• The trac_server_main_uri, trac_login_uri and new_ticket_uri parameters
reference the URIs of the three issue tracker webpages, respectively, the entry page,
the login page and the ticket insertion page.

• The username and password are the credentials to login into the issue tracker.

• The trac_get_login parameters informs FastFix whether the issue tracker login
page requires an HTTP GET or PUT call.

• The useEmbeddedTruststoreFile identifies if set to false that an external file
is used as a truststore to obtain the certificate of the issue tracker server. The
truststore parameter points to the locatio of the truststore, the trac_autho-
rization_domain identifies the domain of the issue tracker certificate and the
trac_truststore_password is the password to open the truststore.

• Finally, the TicketBrowser element has as its only parameter the TicketURLPrefix
which is the URL used to access the page describing a particular ticket in the issue
tracker. It assumes that if a ticket number is appended to this string, this will result
in a valid page describing that ticket.

Figure 3.9: Issue tracker configuration element

Fault Replication The last configuration in terms of fault replication is the configura-
tion of the fault replication component contained in the FastFix configuration file as well
and shown below in Figure 3.10.

Page 19 of 47

FastFix Platform User Manual

The LogStore element configures (for the FastFix client) the connection to the machine
where any auxiliary logs of the error reports are to be stored. This is the machine where
error reports are to be replayed, normally the FastFix Server. This connection is defined
by the host and port of the machine. In order to store the logs, a username (user),
password and location for storage of these files is provided.
The TargetApplications element configures needed at the client about the applica-

tions using FastFix fault replication. Its parameters are:

• AwtInstrumentedClassesSubdir: The folder containing the instrumented versions
of AWT applications used with fault replication at this client.

• ModelSubdir: The folder containing the GUI model description of AWT applica-
tions used with fault replication at this client.

• InstructionsFile: The instructions file.

• EnableAWTAnonymizer: Indicates whether GUI anonimization should be used. If
set to true, the error reports of AWT applications are reduced to a minimum.

Each sub-element of TargetApplications represents an application using FastFix (in the
sample file in the image, Moskitt, myJPass and Robot). This part of the configuration
is used by the server. Each application has a version and a type, either SWT or AWT.
If it’s SWT, the location parameter indicates where, at the FastFix server, the code for
that particular version of that application is located. If it is AWT, the mainClassPath
contains the path to the main class of the application and the mainClassName contains
the name of the application’s main class’ name.

The SwtRecorder element is used to contain the SwtRecordedEventsPath which points
to the location at the client where events logged by FastFix-enabled SWT applications
can be logged. The AwtRecorder element is used to contain the AwtRecordedEventsPath
which points to the location at the client where events logged by FastFix-enabled SWT
applications can be logged. The FilePrefix element designates the prefix usaed to name
these logs.

Finally, the Reap configuration element configures the anonymization of user input text:
reap_dir points to the location, at the client, of the anonymization bundle eu.fastfix.tar-
getapplication.sensor.reap and workspace_dir should point to a folder on the client that
can be used by the anonymizer to store temporary files.

Page 20 of 47

FastFix Platform User Manual

Figure 3.10: Ticket browser configuration element

3.1.1.4 Patch Generation and Self-Healing

Several configuration parameters can help tune the Patch Generation and Self-Healing
component. These parameters are illustrated in Figure 3.11 for the server side, as they
appear in the FastFix maintenance environment extension for Eclipse. The Parameters
and Attributes option decides on whether models should take method parameters and
attributes into account. When not selected, the supervisor is less accurate but more
efficient at runtime. This option can be useful whenever the runtime overhead is expected
to be high. Automatic Entry Point and ExpertFile Entry Point both relate to the selection
of the methods to be instrumented and for which models are extracted. The automated
option computes entry points automatically, performing static analysis of the source code.
The ExpertFile option allows developers to describe relevant methods to be instrumented.
Expert files are xml files as presented in Figure 3.12.

Page 21 of 47

FastFix Platform User Manual

Figure 3.11: FastFixSH configuration attributes

Expert files describe sets of method declarations. Method name, declaring class name,
declaring parent class name and declaring package name is the information that can be
used in the file. Each set of methods is described within the <method></method> tag.
<methodName></methodName> is a sub-tag that can contain a regular expression that
relevant methods name must fulfill. <class></class> tag contains information about
the declaring class of the relevant methods. It is possible to enter a regular expression
in the <className></className> tag in order to filter the declaring classes according to
their names.

Page 22 of 47

FastFix Platform User Manual

Figure 3.12: Sample Expert File

It is also possible to use the <parentClassName></parentClassName> to enter a regular
expression that one of the parent classes or interfaces name must fulfill. Finally the
<packageName></packageName> tag contains a regular expression that the package in
which the method is declared must fulfill. All these tags work in conjunction, i.e. only
methods that fulfill all the conditions are selected. However if tag values are left empty,
then they have no impact in the filtering process. This is useful for instance for methods
declared in anonymous class. In this case the <className></className> tag should
remain empty. Finally, several sets of methods can be described in an expert file, using
several <method></method> tags.

Finally, configuration parameters are also available on the client side and can be set
through the FastFix client (Figure 3.13). Activate Controller allows to disable monitoring
for self-healing, and consequently any action that this component could make. This is
only useful in case runtime overhead becomes an issue, in order to disable any of the
behavior brought through code instrumentation. Supervisor Buffer Size represents how

Page 23 of 47

FastFix Platform User Manual

many method calls are kept in memory at most. Therefore it also represents the size of
the trace logged when an exception is raised and caught by the self-healing component.
Request Period represents the frequency at which the FastFix client sends a request to
the server for new patches. Finally, Testing Mode for Trace Collection modifies the
behaviors of the self-healing component at runtime. In this mode, every method calls
that is instrumented is logged in a file. This is useful to collect sample of traces. This
traces can for example be generate when the application is under test and therefore
represent a set of good behaviors of the system (corresponding to traces collected from
passing tests). These traces can later be used for patch validation.

Figure 3.13: FastFixSH configuration within FastFix Client.

3.1.2 FastFix Client Setup

The FastFix client is implemented as an Eclipse RCP (Java) application. It can also
be run in console mode for systems where no graphical user interface is available. The
latest binary version of the FastFix client can be accessed in the FastFix repository at
SourceForge 5. To run the FastFix client, the following steps have to be accomplished:

5https://sourceforge.net/projects/fastfixrsm/files/client/

Page 24 of 47

https://sourceforge.net/projects/fastfixrsm/files/client/

FastFix Platform User Manual

1. Download the latest build of the FastFix client and unzip into a folder on the client
machine.

2. Configure the FastFix client (see Section 3.1.1).

3. Start the client (usually by double-clicking).

The FastFix client is now ready and waits for sensors to register67. As soon as sensors
register at the FastFix client, they show up in the client UI. Sensors are started automat-
ically once registered, unless the FastFix client is not configured to a manual start mode.
In the latter case, sensors can be started from the client UI, as illustrated in Figure 3.14.

Figure 3.14: Starting registered sensors via the FastFix client UI.

3.1.3 FastFix Server Setup

The FastFix server is implemented as an Eclipse RCP (Java) application, similar to the
FastFix client. It can also be run in console mode for systems where no graphical user
interface is available. The latest binary version of the FastFix server can be accessed in
the FastFix repository at SourceForge 8. To run the FastFix server, the following steps
have to be accomplished:

1. Download the latest build of the FastFix server and unzip into a folder on the server
machine.

2. Configure the FastFix server (see Section 3.1.1).

3. Start the server (usually by double-clicking).

After the last step, the FastFix server is ready and waits to receive information from
FastFix clients.

6For details on the sensor lifecycle, we refer the reader to [11]
7For more details on current FastFix sensors, we refer the reader to [12]
8https://sourceforge.net/projects/fastfixrsm/files/server/

Page 25 of 47

https://sourceforge.net/projects/fastfixrsm/files/server/

FastFix Platform User Manual

3.1.4 FastFix Sensors Setup

FastFix is an open source project and as such provides a generic, extensible maintenance
platform. The extensibility of the context observation system is a main enabler for the
applicability of FastFix in different scenarios. To this end, the FastFix platform is designed
to work with arbitrary sensors, as long as these sensors implement the FastFix sensor
protocol called “sensor lifecycle” [12]. The setup procedures for sensors depend on the
particular sensor at hand. In general, sensors are first installed, and then register at the
FastFix client. From there they can be controlled via the user interface as described in
3.1.2.

During the FastFix project, several sensors were developed. The general configura-
tion applicable to all sensors is described above in Section 3.1.1.1. The setup of sensors
developed during FastFix is described in detail in this section.

3.1.4.1 Eclipse RCP Sensor Setup

Technology and Framework Dependencies The FastFix RCP sensor9 monitors user
actions and exceptions of RCP applications. Hence, it can be used for all applications
based on Eclipse and RCP. In the following, we use MOSkitt as an exemplary Eclipse
RCP application.

Requirements The following is required to deploy the FastFix RCP sensor on a machine:

• Java 1.5 installed

• MOSKitt installed

Sensor Installation The following steps are necessary to install the RCP sensor. Overall,
the RCP sensor is installed using the RCP/ Eclipse update mechanism.

1. Download the update site of the latest build of the RCP sensor.

2. Unzip the downloaded file into a directory “moskittsensors”.

3. Start MOSKitt.

4. Navigate to “Help -> Install new Software” in the main menu. Make the the down-
loaded update site known by clicking on “Add. . . ”, then clicking on “Local. . . ”, and
selecting the “moskittsensors” folder. Specify “FastFix MOSKitt Sensor” as name
of the update site and acknowledge with “Ok”.

5. Select the new entry “FastFix Moskitt Sensor” in the list of potential software up-
dates and click Next and Finish, accepting the license agreement.

6. Close MOSKitt.

7. Configure the application bridge and the general sensor settings (see Section 3.1.1.1).

The RCP sensor is now installed. If sensors are configured to start automatically upon
application startup, it will start when MOSKitt is started. Otherwise the sensor has to
be started manually via the FastFix menu added to the MOSKitt main menu.

9Formerly called “MOSKitt sensor”

Page 26 of 47

FastFix Platform User Manual

3.1.4.2 Struts Sensor Setup

Technology and Framework Dependencies The FastFix Struts sensor monitors HTTP
requests and corresponding actions defined by Struts web application framework. Hence,
it can be used for all applications hosted in Tomcat that are using Struts. In the following,
we use Espigon as an exemplary web application based on Struts and hosted in Tomcat.

Requirements The following is required to deploy the FastFix Tomcat sensor on a
machine:

• Local Tomcat server instance with Espigon web application installed

• PostgreSQL Server 8.1 or higher installed

• Java 1.5 installed

Sensor Installation The following steps are necessary to install the FastFix Struts sen-
sor. The Struts sensor is installed by copying downloaded libraries into certain /lib folders
and modifying configuration files of a Tomcat web application.

1. Download the latest build of the Struts sensor.

2. Unzip the downloaded file into a directory “espigonsensors”

3. Stop Tomcat

4. Copy the following jars from “espigonsensors” in the ”webapps/EspigonValencia/WEB-
INF/lib’ folder of the Espigon web application:
eu.fastfix.targetapplication.sensor.tomcat.struts*.jar
eu.fastfix.common.applicationbrige*.jar
eu.fastfix.common.configuration*.jar
eu.fastfix.common.logging*.jar
flexjson-2.1.jar

5. Modify the ’webapps/EspigonValencia/WEB-INF/struts-config-valencia.xml’ file:
In a clean Espigon install it contains the value:
<controller processorClass="org.apache.struts.tiles.TilesRequestProcessor"/>
That value has to be changed to:
<!– FastFix Struts sensor hook –> <controller processorClass="eu.fastfix. targe-
tapplication.sensor.tomcat.struts.processor.FastFixTilesProcessor"/>

6. Modify the ’webapps/EspigonValencia/WEB-INF/web.xml’ file:
Add the following tag within the <web-app></web-app> root XML element:
<!– FastFix StartStop Listener Definition –> <listener> <listener-class>eu.fastfix.
targetapplication.sensor.tomcat.struts.processor.ApplicationStartStopListener </listener-
class> </listener>

7. Configure the application bridge and the general sensor settings (see Section 3.1.1.1).

The Struts sensor is now installed. It will be activated the next time Tomcat server
is started and if sensors are configure to start automatically upon application startup.
Please note that there is no way to start the Struts sensor manually.

Page 27 of 47

FastFix Platform User Manual

3.1.4.3 Log Sensor

Technology and Framework Dependencies The FastFix Log sensor monitors log files
and new log entries appended to them. Hence, it can be used for all applications writing
log files. It can be directly used for applications writing log entries using the same
pattern as PostgreSQL or MySQL error messages and has to be adapted for other log
entry patterns. In the following, we use Espigon as an exemplary application writing
information about errors to a log file.

Requirements The following is required to deploy the FastFix Log sensor on a machine:

• Java 1.5 (Runtime Environment) installed

Sensor Installation The following steps are necessary to install the FastFix Log sensor.
The the FastFix Log sensor is installed by copying the binary and running it from console.

1. Download the latest build of the Log sensor.

2. Move the downloaded jar into the “espigon/tomcat/logs” folder of the Espigon ap-
plication hosted within a Tomcat server.

3. Configure the application bridge and the general sensor settings (see Section 3.1.1.1).

The Log sensor is now installed. Perform the following steps to run it:

1. Open the folder “espigon/tomcat/logs” in a console window.

2. Run the Log sensor by entering the command “java -jar logsensor.jar –f catalina.out
–p PostgreSQL” from this console.

3. Do not close the console window.

The Log sensor is now running.

3.1.4.4 WCF Sensor Setup

The WCF sensor10 monitors the content of WCF messages. Hence, it can be used for all
applications developed in .NET that are using WCF. In the following, we use TXTExecute
as an example of a .NET application whose WCF messages are monitored.

Requirements The following is required to deploy the WCF sensor on a machine:

• Windows operating system

10Formerly called “TXT Execute sensor”

Page 28 of 47

FastFix Platform User Manual

Sensor Installation The following steps are necessary to install the WCF sensor.

1. Download the latest microsoft installation file (.msi extension) of the WCF sensor.

2. Run the installer by double clicking on the file and choose the desired location for
the installation of the sensor.

3. Open the IIS Manager and select the “ExecuteService” site. Then, on the right side,
double click “Modules”.

4. Click on “Add Managed Module” on the upper right, and insert the following into
the resulting dialog box:

a) Name: FastFixHttpModule

b) Type: FastFix.FastFixHttpModule, FastFixHttpModule, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=6fead1b590d37761

Sensor Configuration In order for the sensor to run with the start of the TXT client
application. The Web.config file from the TXT service needs too be modified. To do so,
the following steps are necessary:

1. Open the execute_service folder (where the ExecuteService is deployed), and add
the following under the <configuration> tag of the Web.config file:

<appSettings>
<add key="sensorBridgeURL" value="http://localhost:9999" />
<add key="callTimeoutMS" value="3000" />
<add key="filterURL" value="/service" />
<add key="logEnabled" value="true" />
<add key="logfile" value="fastfixsensor.txt" />
</appSettings>

2. Save and close the file the Web.config file.

3. Restart the ExecuteService Web Site in the IIS Manager.

3.2 Platform Usage

The following sections describe typical use cases of the FastFix platform features in detail,
specifying current requirements and configuration possibilities.

3.2.1 Context Observation

The main use case of FastFix sensors is context monitoring, i.e. collecting data that is
used by other components such as event correlation, fault replication and self-healing.
However, manual interaction by the maintenance engineer is required only for installing
and configuring sensors. How to setup FastFix sensors is described in Section 3.1.4.

Page 29 of 47

FastFix Platform User Manual

3.2.2 Event Correlation

The pattern of an error is the key piece of the FastFix event correlation system. So,
the use cases for maintenance engineers are related with its management: create and
edit patterns of error. Each member of the maintenance team can access both features
through the FastFix Server menu.

Figure 3.15: Event Correlation Menu

3.2.2.1 Create a pattern of error

FastFix includes several error patterns by default, but the maintenance team can add
more, based on their expertise in the target application. The steps to create a pattern of
error are the following:

1. Access to the creation pattern interface, selecting the menu option Pattern Manage-
ment / Event Correlation / Add new error pattern. This interface consists of three
tabs: General Information, Symptoms and Cause.

2. Fill general information fields. All of them are mandatory (Figure 3.16).

• Pattern Name: Represents the name of the pattern. It will be used to identify
the pattern.

• Subject: This field represents the subject of the report associated with this
new pattern. This report will be inserted in issue tracker (Jira, Eventum or
Trac) when current pattern of error occurs.

• Summary: In the same way that Subject, this field must content the summary
of the report associated with this new pattern.

3. Add symptoms. This step is the most important, since the symptoms contains the
conditions to be matched to detect a pattern. For each symptom, some fields must
be inserted. The following are the most important but all of them are explained in
detail in D4.6. (Figure 3.17)

• Event Type: This field represents the context event type associated with a
symptom. To choose one, a selection dialog is provided. Mandatory.

• Symptom Name: It represents the name of the symptom. It will be used to
identify the symptom, hence, it must be unique. Mandatory.

Page 30 of 47

FastFix Platform User Manual

• Operator: This field is a combo-box which represents the action to be per-
formed over the next field Value, to detect if an event, with a concrete event
type, is a symptom of a pattern. Possible values are: matches, < , > , = ,
other. Optional, but mandatory, if Value field has been inserted.

• Value: This field represents the metadata associated to the symptom, that
will be evaluated by using the last field Operator. Optional, but mandatory if
Operator field has been inserted.

• Criterion: This field is a combo-box which represents if it is necessary or not
that all the declared symptoms must occur to detect a pattern. Possible values
are: all and any. Mandatory.

4. Identify the cause. In this tab maintenance team can associate a cause to the
current pattern. Associate a cause to a pattern it is not necessary, but all the fields
are mandatory in such case. (Figure 3.18)

• Cause Type: It represents the type of this cause. To choose one, a selection
dialog is provided.

• Cause Name: This field represents the name of the cause. It will be used to
identify the cause so it must be unique.

• Info: The information inserted in this field must explain in a general way, what
this cause means.

5. Save the new pattern. If any mandatory field is empty, a message is shown warning
the engineer that must review the tabs and complete all the required information.

Once a pattern is created, it’s added automatically to the FastFix correlation system, i.e.
it is not necessary to restart the FastFix server to detect this new error.

Figure 3.16: General Information Tab

Page 31 of 47

FastFix Platform User Manual

Figure 3.17: Symptoms Tab

Figure 3.18: Cause Tab

3.2.2.2 View and edit pattern of error

Using this feature, each member of the maintenance team can view all the existing patterns
and edit them. The steps to view and edit a pattern are the following:

1. Access to the edition pattern interface, selecting the menu option Pattern Manage-
ment / Event Correlation / View error pattern (Figure 3.15).

2. Select one error pattern from the list, and press “Edit” (Figure 3.19). The resulting
interface is the same as the last use case, with the information of the selected pattern.

3. Edit general information (the name of the pattern is not editable).

Page 32 of 47

FastFix Platform User Manual

4. Edit symptoms (add and delete operations are also supported)

5. Edit cause information.

6. Save changes. If any mandatory field is empty, a message is shown noticing the
engineer that must review the tabs and complete all the required information.

Once a pattern is edited, changes are automatically applied in the FastFix correlation
system, i.e. restarting the FastFix server is not needed.

Figure 3.19: List of existing patterns of error

3.2.3 Pattern Mining

Apart from the predefined error patterns and ones added by the maintenance team, Fast-
Fix correlation system provides a pattern mining module to suggest unknown patterns.
The process to mine them consists of sub-processes: the learning and mining procedures
and can be launched in two modes: on demand or automatically, i.e. using a cron expres-
sion. To use this feature automatically, see section 3.1.1.2

First two use cases are related with these sub-processes, in case on demand launching.
The third one is validate the discovered pattern, i.e. once a pattern is discovered, a
member of the maintenance team must validate it in order to add it to the correlation
module. By the other hand, if engineers consider the new pattern as a false positive, they
can discard it. As others FastFix correlation system use cases, maintenance team can
access them through the FastFix Server menu.

Page 33 of 47

FastFix Platform User Manual

Figure 3.20: Pattern Mining menu

Learn application behavior patterns

Not many steps are required for launching the learning process, just select the menu
option Pattern Management / Pattern Mining / Launch learning process. The purpose
of this process is to detect sequences of events that represents the normal behavior of the
target application. This sequences or patterns are stored in a file, which is specified in
configuration.xml file (see section 3.1.1.2). If no normal behavior patterns are detected
after launching the process with default configuration values, the maintenance team can
tune some parameter values, like the time window of the sequence and the support. The
smaller is the time window of a sequence (or support parameter value), the big the number
of sequences that will be detected. However, the number of false positives could be also
higher.

Mine new error patterns

Launch mining process is easy, just select the menu option Pattern Management / Pattern
Mining / Launch mining process. This procedure will analyze a stream of events and will
compare them against the normal behavior patterns obtained in the last process. The
maintenance team can view the mined patterns using the menu option Pattern Manage-
ment / Pattern Mining / New mined error patterns. A dialog will present the list of new
patterns (Figure 3.22), and engineers can look at the details of the pattern. An example
is illustrated in Figure 3.21

Page 34 of 47

FastFix Platform User Manual

Figure 3.21: Detail of a mined pattern

Discard error patterns

Maintenance team users can validate or discard mined patterns. Both features are acces-
sible in the interface where the mined patterns are listed via buttons. In case that the
maintenance team member considers that the pattern is a false positive or a duplicate,
they can discard the pattern using the button Discard Pattern. Once a pattern is dis-
carded, it is automatically deleted in the FastFix correlation system, so it is not necessary
to restart the FastFix server.

Figure 3.22: Dialog showing a new mined pattern

Validate error patterns

If the engineer consider the mined pattern is not a false positive, he can validate it. The
process to validate a pattern is the same than creating a new one (see section 3.2.2.1).

Page 35 of 47

FastFix Platform User Manual

The difference is that some information about the symptoms are pre-inserted. Once a
mined pattern is validated it is automatically inserted in the FastFix correlation system,
so it is not necessary to restart the FastFix server.

Figure 3.23: Validating error patterns

3.2.4 Error Reporting

Error reporting in FastFix is triggered by FastFix sensors that trigger the error reporting
mechanism. Use of FastFix error reporting is mainly an issue of connecting the correct
sensors to the FastFix-enabled application as described above in section 3.1.4. If the
installed sensors detect a fault, they will request an error report which is sent to the
FastFix server and inserted into an issue tracker.

Once the error report is inserted in the issue tracker, it can be viewed by the mainte-
nance engineers. The mode of presentation of a particular error report depends on the
specific issue tracker being used. More commonly, the TRAC issue tracker has been used
in FastFix. An example of the display of an error can be seen in Figure 3.24. If fault
replication is being used, the error report number can be used for fault replay (see next
section).

Page 36 of 47

FastFix Platform User Manual

Figure 3.24: Viewing an error report

3.2.5 Fault Replication

Fault replication, the ability to see the replay of a client fault at a maintenance server,
is available for Java console, AWT and SWT applications. Configuring fault replication
requires preparing the application (instrumentation in most cases) and configuring the
FastFix client and server.

3.2.5.1 Preparing Applications: Instrumentation

3.2.5.1.1 SWT Applications Setting up SWT applications for FastFix error record/re-
play requires no previous instrumentation. This is due to the fact that the FastFix SWT
fault replication sensor records all the necessary event for SWT replay. The only require-
ment is that the runtime configuration of the FastFixed application includes the following
FastFix OSGi bundles: eu.fastfix.client.faultReplication.guiRecorder, eu.fastfix.client.fault-
Replication.sensing, eu.fastfix.client.faultReplication and eu.fastfix.common.faultReplica-
tion.gui.

3.2.5.1.2 Console Applications In the case of console applications, the compiled ap-
plication needs to be instrumented in order to support FastFix record/replay. Assuming

Page 37 of 47

FastFix Platform User Manual

that the main class of the console application is called MainClass. We must run: java -cp
.:<path-to-FastFix_server>/plugins/eu.fastfix.targetapplication.sensor.reap edu.hkust.leap.
transformer.LEAPTransform -Xmx2g MainClass This creates a version of the application
for running at the client in a subfolder called instrumentResult. Both the original and
the instrumented Java class files of the application need to be copied, by the deploy-
ment process, to the client using them. In order to deploy the application, it must be
connected to the sensor that will monitor potential application crashes (unhandled ex-
ceptions). The shortcut to start the application should point to the sensor’s main class
eu.fastfix.targetapplication.sensor.reap.StartSensor.

3.2.5.1.3 AWT Applications In the case of AWT, the machine where applications are
instrumented must have the GUIAnon.jar which comes from generating an executable
jar of eu.fastfix.targetapplication.sensor.javaapplication and contains all utilities for GUI
anonymization. If you run: $java -jar GUIAnon.jar , you’ll be provided with all available
options of GUIAnon (see Figure 3.2.5.1.3 below).

Usage Help : java -jar GUIAnon.jar -h
Launch app : java -jar GUIAnon.jar -launch MainClass
Instrument : java -jar GUIAnon.jar -instrument MainClass
Rip Graphical Interface : java -jar GUIAnon.jar -rip MainClass
Record Events : java -jar GUIAnon.jar -recevents MainClass
Record Listeners : java -jar GUIAnon.jar -reclisteners MainClass
Convert Tracefile : java -jar GUIAnon.jar -convertl2e guistructure tracefile
Generate anonymized : java -jar GUIAnon.jar -anonymize guistructure tracefile
MainClass

Generate anonymized : java -jar GUIAnon.jar -smartanonymize guistructure
tracefile MainClass

Figure 3.25: GUIAnon usage instructions

To instrument the application (assuming a main in MainClass), we must run: $java -jar
GUIAnon.jar -instrument MainClass , which generates an instrumented version of the ap-
plication in a folder placed in the same parent folder as the main class and which is called
instrument_result. Then, we must extract the graphical model of the AWT application by
running: $java -jar GUIAnon.jar -rip MainClass Select all options available in the appli-
cation’s GUI (click every button, open every menu, etc.. . .). Then close the application,
which generates a file called model.txt. Just as in the case of console applications, in order
to deploy the application, it must be connected to the sensor that will monitor potential
application crashes (unhandled exceptions). The shortcut to start the application should
point to the sensor’s main class eu.fastfix.targetapplication.sensor.javaapplication.Start-
JavaApplicationSensor.

3.2.6 Patch Generation and Self-Healing

In its current state, the FastFix Self-Healing component applies to applications written
in Java and for which the source code is available. A typical use case for self-healing and
patch generation follows the steps below:

Page 38 of 47

FastFix Platform User Manual

1. Instrumenting source code and generate application models.

2. Collecting a set of traces representing desired behaviors. This can be done by
executing passing tests again on the instrumented application. The Testing Model
for Trace Collection option in Figure 3.13 should be enabled for this.

3. Extracting patterns. This is achieved using the traces collected in Point 2. This
results in more application models that will be loaded at runtime with the ones
extracted in Point 1. Point 1,2 and 3 are performed just before the application is
deployed.

4. Performing patch generation. This is done once the application is deployed and new
files are received on the server side.

5. Patch merging and deployment. Once a new patch has been generated, it can be
merged with the currently applied one and the outcome can be deployed.

These different steps are also illustrated in menu of the FastFix Self-Healing component
(Figure 3.26).

Figure 3.26: FastFix Self-Healing plugin menu

This menu matches the different steps describe above, except for Point 2, that is per-
formed on the running application and is therefore controlled by parameters in the FastFix
client (Testing Mode for Trace Collection in this case). It is worthwhile noting Point 2
and 3 are actually optional. When Point 2 is performed, it allows for more relevant patch
validation. When Point 3 is also performed, it allows for an alternative patching strategy.

Page 39 of 47

4 Developer Manual

In this section we describe, how developers can configure, extend, and change the FastFix
functionality, in order to be able to provide remote maintenance services tailored to their
customers’ requirements.

4.1 Configuration Extensions

The FastFix platform consists of several components running on two distributed systems.
These components provide specialized services to other components, which can be config-
ured in order to set the components up for a specific runtime environment. For instance,
the FastFix client listens for sensor calls on a specific port. However, since the default
port might be reserved on some machines, FastFix allows users to change such parameters
using a mechanism called unified configuration (see also Section 3.1.1). All components
can be configured in a single place, namely a configuration file in XML format. The
FastFix project wiki describes in detail how this configuration file is structured1.
To guarantee the extensibility of FastFix, the configuration parameters for all compo-

nents can be extended. In addition, new elements can be created for newly developed
FastFix components. Details on the steps required to extend the configuration mechanism
are described in the FastFix project wiki2.

4.2 Feature Extensions

The following sections show how to extend the existing FastFix functionality to work
with additional applications and technologies, for instance to satisfy additional monitoring
needs and detect additional errors.

4.2.1 Context Observation

4.2.1.1 Implementation and Integration of New Sensors

Every application can be instrumented and integrated into the FastFix framework. The
instrumentation can be done on source code or byte code level. On source code level,
additional statements are added in the programming language used that log the occur-
rence of certain events as specified by the developer of the application. In a scenario
where a virtual machine is used to execute a software application monitoring instructions
can be added on byte code level without having access to source code of the application.
Instrumentation can be done manually by developers or semi-automatically. The instru-
mentation approach implemented for the FastFix self-healing feature is an example for a

1http://fastfixproject.eu/wiki/Configuration_file_structure
2http://fastfixproject.eu/wiki/Unified_configuration

Page 40 of 47

http://fastfixproject.eu/wiki/Configuration_file_structure
http://fastfixproject.eu/wiki/Unified_configuration

FastFix Platform User Manual

semi-automatic instrumentation because the methods to instrument are specified in an
expert file and the actual instrumentation is done automatically. It can be reused and
extended for other instrumentation approaches.

In order to integrate a self-implemented sensor into the FastFix framework, two things
have to be done. First, the sensor implementation has to use the lifecycle described in
Deliverable D3.6 [12]. The sensor lifecycle allows the FastFix client to control sensors, e.g.
switch them on or off. Second, the sensors have to communicate to the FastFix client via
RMI or HTTP as described in Deliverable D2.4 [11]. This allows self-implemented sensors
to send monitored events to the FastFix platform and use FastFix functionality like event
storage or event correlation. As HTTP is available on almost all devices and it usually
can transmit through firewalls, this consitutes a general communication mechanism that is
available in most environments. Also, existing instrumentation solutions can be integrated
into the FastFix framework in this way.

4.2.1.2 Extension of Existing Sensors by Adding Monitoring Code

Existing FastFix sensors can be extended to monitor additional types of events or addi-
tional properties. This extension has to be done by adding additional monitoring code,
recompiling the sensor, and redeploying it. For example, the RCP sensor can be extended
to monitor SWT events currently not being sensed by registering it as a listener to these
SWT events and creating events representing the occurrence of those events by calling
the event creation routines. Similarly, the expert file within the FastFix self-healing fea-
ture can be extended by additional methods to be sensed and then re-instrumenting the
application code with the extended expert file.

4.2.1.3 Extension of Existing Sensors by Configuration

The TXT sensor is implemented so that the addition of new sensed fields in the WCF
message can be added easily. In order to add a new field to sense from the WCF message
the following needs to be added in the appSettings tag of the Web.config file of the
ExecuteService:

1. A key-value pair that with a key named XPath_WCF_Rule and a value that that
denotes the position in the WCF message where the new field is located in the form
of an XPath rule.

2. A key-value pair with a key named WCF_child_list and a value that denotes the
name of the field to sense.

3. Save and close the file the Web.config file.

4. Restart the ExecuteService Web Site in the IIS Manager.

The new sensed fields are then added as data to the corresponding event. An example of
steps 1 and 2 can be seen below:

<appSettings>
. . .
<add key="XPath_WCF/_Rule" value="/Envelope/Body/EntitiesRequest/
request/*|/Envelope/Body/LoginRequest/request/*" />

Page 41 of 47

FastFix Platform User Manual

<add key="WCF_child_list" value="SessionSequence,ClientLastView,
WCFException,ClientProgRequest,UserCode" />

</appSettings>

In this example there are two XPath rules that denote the location of the new fields that we
want the sensor to monitor. They are under the XPaths: /Envelope/Body/EntitiesRequest
/request/* and /Envelope/Body/LoginRequest/request/* the names of the WCF
fields that we want to monitor are: SessionSequence, ClientLastView, WCFException,
ClientProgRequest and UserCode.

4.2.2 Event Correlation

Event correlation component is a key point for extension since it is the FastFix compo-
nent where complex faults are detected. Each fault or error is represented by a pattern.
Patterns of error are stored in the maintenance ontology. Hence, this ontology must be
modified to add or update error patterns. Hence, it will extend the error type coverage
of FastFix when the system is applied to monitor new applications.

Developers can edit ontologies by using ontology edition tools, such as Protege. How-
ever, because this is a very common use case of FastFix, we developed a user interface to
facilitate the corresponding task. Using this approach, the extension of error patterns can
be performed by engineers without any knowledge about ontologies, such as the main-
tenance team. The corresponding use case is explained in detail in Section 3.2.2.1. The
interface consist of three tabs: General Information (Figure 3.16), Symptoms (Figure
3.17) and Cause (Figure 3.18). Via these tabs, users can enter the required informa-
tion to create a pattern of error. The symptom tab is the most important one, since
the symptoms contains the conditions to be matched by context events to infer the error
emergence. The more different types of events are detected by sensors, the greater the
coverage of errors, since the system can use a bigger variety of symptoms to conform a
greater variety of patterns. Thus, to extend the error type coverage of FastFix when the
system is applied to monitor new applications, developers must take into account also
how to implement and extend sensors, which it is explained in section 4.2.1.

4.2.3 Pattern Mining

From a developer’s perspective, pattern mining is an extension mechanism, since it dis-
covers new patterns of unexpected behavior by analyzing and processing the executed
event sequences associated to the application environment.

Because of its connection with the event correlation component, it might be consid-
ered as the main method to extend FastFix to support error detection for additional
applications, technologies and especially, error types.

Nevertheless, there are some considerations that should be taken into account, in order
to conveniently mine new patterns, depending on application specific properties, i.e. when
it comes to average time delays between events, event generation rates (also associated
with the sensors and which events are monitored), as well as minimum support, in order
to consider certain event types as frequent.

Hence, there is a group of parameters that can be tuned or modified in order to achieve
a better effectiveness while mining new patterns. This group of parameters are located

Page 42 of 47

FastFix Platform User Manual

in the unified configuration file (configuration.xml), which are represented on figure 3.6.
Among the main parameters that can be tuned, the main one is the pattern mining
algorithm that will be executed in order to look for normal behavior patterns, in our case,
we have selected the PrefixSpan algorithm, but any developer can develop and select
the algorithm that would better fit for mining normal behavior (and, then in the mining
phase, it will detect any event sequence that is different from the normal sequences).

Additionally, other parameters can be tuned, depending on the temporal properties
and differences that any application can be characterized by. Thus, the developer can
configure the following parameters, as explained in section 3.1.1.2:

• support (long): The value of this field represents the minimum number of occur-
rences (in percent) of a sequence of context events to be considered as frequent.

• minimumSequenceSize (int): It refers to the minimum number of context events
needed to become a sequence.

• sequenceTimeWindow (long): It refers to the value, in milliseconds, of the time
window of a sequence.

• itemSetTimeWindow (long): It refers to the value, in milliseconds, of the time win-
dow of a itemSet. A sequence is composed by one or more itemSets, so the value of
sequenceTimeWindow must be higher than itemSetTimeWindow.

As a summary, depending on the application temporal properties, the developer can
specify what should be considered as frequent (support), what number of events will be
considered as a sequence, what is the time window of each sequence, as well as the period
of time to consider events as part of a different item set.

4.2.4 Error Reporting

Extending the development of FastFix in terms of error reporting can proceed along two
main lines: adding additional sensors that trigger the generation of error reports and
supporting additional issue trackers.

Different type of applications and error types may require the design of new sen-
sors. Sensor design is described in Section 4.2.1. The connection of sensors to error
reporting is done by the fact that an error reporting sensor sends events of type ER-
ROR_REPORT_EVENT , e.g. eu.fastfix.targetapplication.sensor.javaapplication.inter-
nal.JavaExceptionSensor (the sensor class for unhandled exceptions in Java AWT applica-
tions). Sensors who issue the same type of event will trigger the emission of an error report.
These events are processed by the FastFix’s client fault replication component. See the
handleContext of the eu.fastfix.client.faultReplication.internal.ContextListenerImpl class
for which of the event’s fields are used in the creation of an error report. The only
mandatory fields is the summary. If additional auxiliary files need to be sent to the
server, their absolute paths (at the client) should be included as event fields and the
processing of the fields at eu.fastfix.client.faultReplication.internal.ContextListenerImpl
correspondingly extended.

Extending the number of supported issue trackers can be done by implementing the ser-
vices described in the eu.fastfix.server.error.reporting.abstractions.service classes as done
in the eu.fastfix.server.error.reporting.trac and eu.fastfix.server.error.reporting.eventum

Page 43 of 47

FastFix Platform User Manual

examples. The only restriction is that the insertion of a ticket in the issue tracker should
return an unique integer identifier because this identifier is used to name the folder on
the server where any auxiliary logs are stored. As long as this is ensured, FastFix will
behave correctly with any issue tracker.

4.2.5 Fault Replication

There are basically two approaches to additional development of FastFix fault replication:
extending current record-replay components or creating new ones.

The extension of current record-replay depends on the the component being extended.
In the case of the current console and AWT sensors, applications are being monitored by
using bytecode instrumentation that resorts to the SOOT tool (http://www.sable.mcgill.
ca/soot/). For SWT applications are monitored using system graphical events. The logs
generated by the record procedure are transferred with the error reports to the FastFix
server. If any changes are made to the recorder, the replayer must be updated to reflect
the changes in recording instrumentation and to inject into the replayed application the
additional information being recorded.

Creating new record-replay components involves basically two steps: develloping a
sensor (see Section 4.2.1) that detects the events that are relevant to the record and replay
you want to perform (and which sends the FastFix client an ERROR_REPORT_EVENT
event) and update the replay mechanism in the ticket browser (seemakeActions method in
the eu.fastfix.server.maintenance.ticketbrowser.views.FastFixTicketBrowser class) so that
the result of the record procedure can be replayed. The ticket browser uses tags embedded
in the error report summary to decide on the replay method.

4.2.6 Patch Generation and Self-Healing

The FastFix patch generation and self-healing component tackles any Java application.
In order to be applied, the source code of the application must be available and imported
into Eclipse. The main features of the self-healing component are indeed accessed through
an Eclipse plugin (see Figure 3.26).

A fully automated approach can be taken where no expertise on the application is
used. This corresponds to the selection of the Automatic Entry Point option in Figure
3.11. Alternatively, some expertise on the application can be taken into account through
the use of the expert file (Section 3.1.1.4). This allows for improved selection of the
methods to be instrumented. Therefore this improves on the runtime overhead and the
relevance of the extracted models and collected traces. Models and collected traces play
themselves an important role in the relevance of the generated patches.

With the use of an expert file, for a new application to be self-healed using the FastFix
platform, users must import the source code in Eclipse and define an expert file such as the
one in Figure 3.12. This file contains a description of sets of methods of the application
that are relevant for monitoring and control (i.e. prevention at runtime). Methods whose
calls is triggered by user interactions or any other application entry points correspond to
such method. For instance, typical sets of methods are the ones that handle graphical
events, e.g. actionPerformed methods of the SWING library, etc.

Page 44 of 47

5 Summary

This document gives a conceptual overview of the FastFix platform, describes how to
deploy, set up, and use the FastFix platform for remote maintenance, and explains how
to extend it for further applicability. The document is a supplement to the FastFix source
code, which can be accessed in the FastFix source code repository on SourceForge1 and
complements the detailed Javadoc documentation of the FastFix source code as well as
the project Wiki2.

1https://svn.code.sf.net/p/fastfixrsm/code/trunk
2http://fastfixproject.eu/wiki/Main_Page

Page 45 of 47

https://svn.code.sf.net/p/fastfixrsm/code/trunk
http://fastfixproject.eu/wiki/Main_Page

Bibliography

[1] M. del Carmen Calle and S. Zamarripa López. FastFix Deliverable D4.4: First
iteration prototype of the Event Processor. Technical report, 2012.

[2] J. Garcia, P. Romano, L. Rodrigues, N. Coracao, N. Machado, and J. Matos. FastFix
Deliverable D3.5: 1st Prototype of the Error Reporting. Technical report, 2011.

[3] J. Garcia, P. Romano, L. Rodrigues, N. Coracao, N. Machado, and J. a. Matos. Fast-
Fix Deliverable D5.3: 1st prototype of the execution recorder/replayer tool. Technical
report, 2011.

[4] J. a. Garcia, P. Romano, L. Rodrigues, J. a. Matos, J. a. Nuno Silva, J. a. Barreto, and
T. Röhm. FastFix Deliverable D5.4: 2nd prototype of the execution recorder/replayer
tool. Technical report, 2012.

[5] B. Gaudin, Z. Cui, P. Monjallon, and M. Hinchey. 3rd Prototype of the Self-Healing
and Patch Generation Component. Technical report, 2012.

[6] B. Gaudin, M. Hinchey, P. Nixon, and N. Al Haider. FastFix Deliverable D6.4:
2nd Prototype of the Self-Healing and Patch Generation Component: FastFixSH.
Technical report, 2012.

[7] B. Gaudin, M. Hinchey, P. Nixon, R. Ali, and N. Al Haider. FastFix Deliverable D6.3:
1st Prototype of the Self-Healing and Patch Generation Component: FastFixSH.
Technical report, 2011.

[8] B. Gaudin, R. Yates, and M. Hinchey. FastFix Deliverable D6.6: 4th Prototype of
the Self-Healing and Patch Generation Component. Technical report, 2013.

[9] E. Guzmán, A. Mahmuzic, J. Garcia, and W. Maalej. FastFix Deliverable D3.3: 1st
Prototype of the Context Observer. Technical report, 2011.

[10] D. Pagano, E. Guzmán, J. Cano, N. Narayan, A. Mahmuzic, A. Waldmann, S. Za-
marripa López, D. De los Reyes, J. Garcia, and W. Maalej. FastFix Deliverable
D2.2e: Integration Plan and Technical Project Guidelines - extended version. Tech-
nical report, 2012.

[11] D. Pagano, T. Roehm, E. Guzmán, S. Zamarripa López, J. Garcia, B. Gaudin,
J. Cano, andW. Maalej. FastFix Deliverable D2.4: Architecture Changes and Change
Rationales. Technical report, 2012.

[12] T. Roehm, J. Garcia, and D. Pagano. FastFix Deliverable D3.6: Refined and Inte-
grated Version of Context Observer, User Profiler and Error Reporting. Technical
report, 2012.

Page 46 of 47

FastFix Platform User Manual

[13] T. Roehm, D. Pagano, S. Zamarripa López, and M. del Carmen Calle. FastFix
Deliverable D3.4: 1st Prototype of the User Profiler. Technical report, 2012.

[14] S. Zamarripa López and M. del Carmen Calle. FastFix Deliverable D4.6: Second
refined prototype of the event correlation component. Technical report, 2012.

[15] S. Zamarripa López, M. del Carmen Calle, E. Guzmán, T. Roehm, D. Pagano, and
W. Maalej. FastFix Deliverable D4.5: 1st iteration prototype of the pattern mining
module. Technical report, 2012.

Page 47 of 47

	1 Introduction
	2 Platform Overview
	2.1 eu.fastfix.client
	2.2 eu.fastfix.common
	2.3 eu.fastfix.targetapplication
	2.4 eu.fastfix.server
	2.5 eu.fastfix.dependencies
	2.6 Summary

	3 User Manual
	3.1 Deployment and Setup
	3.1.1 FastFix Configuration
	3.1.2 FastFix Client Setup
	3.1.3 FastFix Server Setup
	3.1.4 FastFix Sensors Setup

	3.2 Platform Usage
	3.2.1 Context Observation
	3.2.2 Event Correlation
	3.2.3 Pattern Mining
	3.2.4 Error Reporting
	3.2.5 Fault Replication
	3.2.6 Patch Generation and Self-Healing

	4 Developer Manual
	4.1 Configuration Extensions
	4.2 Feature Extensions
	4.2.1 Context Observation
	4.2.2 Event Correlation
	4.2.3 Pattern Mining
	4.2.4 Error Reporting
	4.2.5 Fault Replication
	4.2.6 Patch Generation and Self-Healing

	5 Summary
	Bibliography

