
Model 2001 Quick Reference SCPI Guide Roger Chaplin

 June 4, 1993

Introduction

The Model 2001 DMM is the most flexible and capable instrument ever

produced by Keithley. The user has direct access to many control

settings in the Model 2001 which are hidden from his reach in older

instruments. This increased capability does, however, produce increased

complexity. To help accommodate this increased complexity, the Model

2001 incorporates the SCPI command set.

Because the Model 2001 presents many more control points to the user,

it generally requires more commands than its older counterparts to

perform comparable tasks. Also, since the command set in Model 2001 is

much larger than that of an older instrument, finding the right

commands to do the job is more difficult. Finally, SCPI command names

are longer than command names in our older instruments, sometimes by a

great deal.

This paper is a quick introduction to SCPI in the Model 2001. Its goal

is threefold:

1. Describe the syntax of SCPI commands, and their documentation

in the User Manual. Included are descriptions of short forms and

default nodes, which can help you reduce the amount of data you have to

send to the instrument, thereby improving the performance of your test

system.

2. Provide some small simple programs which cause the Model 2001

to perform some simple, commonly-used tasks. These are:

 * Change function and range

 * Do one-shot triggering

 * Do continuous triggering

 * Generate SRQ on buffer full

 * Store readings in the buffer and then read them out

 * Take readings using the scanner

3. Describe the SCPI commands used in the example programs

sufficiently that you can extend or otherwise modify the programs to

suit your needs.

SCPI Command Syntax

Tree Structure

SCPI commands are organized in a tree structure, similar to disk

directories in most modern computer operating systems. Each level in

the hierarchy is called a subsystem. For example, here is the Model

2001 SENSe1 subsystem (which controls the acquisition of readings - the

SENSe2 subsystem is the rear panel digital input):

 [SENSe[1]]

 :DATA?

 :FUNCtion "<name>"

 :VOLTage

 :DC

 :RANGe

 [:UPPer] <n>

 :AUTO <Boolean> | ONCE

 :REFerence <n>

 :STATe <Boolean>

 :ACQuire

The command summary table is the usual way of documenting SCPI

commands, but it does not show the complete command names. The complete

command name is formed by joining together the components of the name.

For example, the complete name of the :STATe command is

SENSe1:VOLTage:DC:REFerence:STATe. (The square brackets are not part of

the command names. Rather, they indicate optional parts of the command

names - more on that later.)

This hierarchical approach permits the same command names to be re-used

many times. For example, many subsystems contain a :STATe command, but

each one is unique because the complete command name is unique. This is

analogous to having a file named, for example, INDEX.TXT in each

directory of your computer's disk. Although all the files have the same

name, they are unique because they are each in a different directory.

Long and Short Form Command Names

The command names shown above are written with mixed capitalization.

Every SCPI command name has a short form, and most also have a long

form. The notation used in documentation is to show the short form in

upper case, with the remainder of the name which creates the long form

shown in lower case. There are no intermediate forms of the command

name - you must send the exact short or long form. However, you do not

have to use the mixed capitalization - the Model 2001 accepts commands

in any combination of upper and lower case. For example, all of the

following are valid forms of the SENSe1:VOLTage:DC:REFerence command:

 sense1:voltage:dc:reference:state

 sens1:volt:dc:ref:stat

 SENS1:volt:DC:rEfErEnCe:STat

The varieties are almost endless. Wherever command names are used in

descriptive text in this paper, the SCPI mixed case notation is used.

All of the example programs use the short forms, and send them in lower

case.

Query Commands

With few exceptions, every SCPI command has a corresponding query. The

command is used to set a control point in the instrument; the query is

used to determine the present setting of the control point. The query

is simply the command name with a `?' attached.

Some commands are actions rather than control point settings. These

commands have no query form. For example, the

SENSe1:VOLTage:DC:REFerence:ACQuire command is an action, not a

setting, and so has no query form.

There are also some queries which have no corresponding command. For

example, SENSe1:DATA? causes the instrument to return its latest

reading. There is no corresponding command, because it would be silly

to try to `jam' a reading value into the instrument.

Default Nodes

SCPI utilizes the concept of default nodes. Consider the example

command tree shown above in Tree Structure. What's within square

brackets is not necessary to send to the instrument, but the instrument

will accept it if you send it. Consider the :UPPer command, which sets

the measurement range. To set the Model 2001 to measure 15 volts DC,

any of the following commands would work. Note: these are shown all in

long form - short forms could also be used.

 SENSe1:VOLTage:DC:RANGe:UPPer 15

 SENSe:VOLTage:DC:RANGe:UPPer 15

 SENSe1:VOLTage:DC:RANGe 15

 VOLTage:DC:RANGe:UPPer 15

 VOLTage:DC:RANGe 15

There are, of course, many more combinations.

Command Syntax

Notice in the preceding examples that there is no colon character `:'

at the beginning of the commands. A leading colon instructs the Model

2001 to interpret the command starting at the root (highest level) of

the command tree. Since the Model 2001 also starts at the root each

time you send it a new command, the leading colon is not required

(although the instrument will accept it if you send it). You can send

multiple commands to the Model 2001 in a single message. You separate

the commands with a semi-colon character `;'. When the Model 2001

encounters a command following a semi-colon, it attempts to interpret

the command starting at the level of the previous command, unless you

precede the second command with a colon. For example, either of the

following command strings programs the Model 2001 to the 20 volt range

for DC voltage measurements, and to use 5 volts as a rel value (the

REFerence commands):

 volt:dc:rang 20;ref 5;ref:stat on

 volt:dc:rang 20;:volt:dc:ref 5;:volt:dc:ref:stat on

The two command strings are treated identically by the Model 2001. In

the first string when the instrument encounters `;ref 5' it notices the

following: it is not the first command in the string; there is no

leading colon on the command; the previous command was at the

VOLTage:DC level. Therefore it interprets the command as though it were

also at the VOLTage:DC level.

Example Programs

All examples presume QuickBASIC version 4.5 or higher and a CEC IEEE

488 interface card with CEC driver version 2.11 or higher, with the

Model 2001 at address 16 on the IEEE 488 bus.

* Change function and range

Unlike our older DMMs, the Model 2001 has independent "controls" for

each of its measurement functions. This means, for example, that

autorange can be turned ON for DC volts while leaving it OFF for AC

volts. Therefore, each function has its own set of SCPI commands for

setting the "controls" specific to that function.

Another difference is in the parameter to the range command. In our

older instruments, a single number was used to denote each range. For

example, range 1 on a Model 194 is 320 mV full-scale, while range 1 on

a Model 182 is 3 mV full-scale. The parameter of the SCPI RANGe command

is given as `the maximum value I wish to measure'. The instrument

interprets this parameter and goes to the appropriate range. When you

query the range (RANGe?) the instrument sends back the full-scale value

the range it is presently on.

The following example program illustrates changing function and range.

It sets the range for several functions, then takes readings on each of

those functions.

---------------------------------begin program--------------------------------

'Program funcrng.bas

'Example 2001 program

'Demonstrates changing function and range, taking readings on

'various functions

'For QuickBASIC 4.5 and CEC PC488 interface card

'Roger Chaplin Tue May 25 09:46:42 EDT 1993

'Keithley Instruments, Inc.

'Edit the following line according to where the QuickBASIC

'libraries live on your machine

'$INCLUDE: 'c:\qb45\ieeeqb.bi'

'Initialize the CEC interface as address 21

CALL initialize(21, 0)

' Reset the SENSe1 subsystem settings, along with the trigger

' model -- each READ? will cause one trigger

CALL SEND(16, "*rst", status%)

' set range for each function we will measure

CALL SEND(16, "volt:dc:rang .1", status%)

CALL SEND(16, "volt:ac:rang 20", status%)

CALL SEND(16, "res:rang 10e3", status%)

' switch to DC volts and take reading

CALL SEND(16, "func 'volt:dc';:read?", status%)

reading$ = SPACE$(80)

CALL ENTER(reading$, length%, 16, status%)

PRINT reading$

' switch to AC volts and take reading

CALL SEND(16, "func 'volt:ac';:read?", status%)

reading$ = SPACE$(80)

CALL ENTER(reading$, length%, 16, status%)

PRINT reading$

' switch to 2-wire ohms and take reading

CALL SEND(16, "func 'res';:read?", status%)

reading$ = SPACE$(80)

CALL ENTER(reading$, length%, 16, status%)

PRINT reading$

----------------------------------end program---------------------------------

Be aware that the Model 2001 rounds the range parameter to an integer

before choosing the appropriate range. Sending VOLTage:DC:RANGe 20.45

will set the Model 2001 to its 20 volt range. This is probably not what

you want.

* Do one-shot triggering

Our older DMMs generally have two types of triggering: one-shot and

continuous. In one-shot, each activation of the selected trigger source

causes one reading. In continuous, the DMM is idle until the trigger

source is activated, at which time it begins taking readings at a

specified rate. Typical trigger sources are: IEEE 488 talk; IEEE 488

Group Execute Trigger (GET); `X' command; External (rear panel BNC).

The trigger controls in the Model 2001 are vastly different from those

in our older DMMs. Arming the instrument to respond to triggers is

implicit in the non-SCPI DMMs. Simply sending a command to a non-SCPI

DMM to change any of the trigger controls causes the instrument to arm

itself for triggers. The SCPI trigger model implemented in the Model

2001 gives you explicit control over the trigger source (the TRIGger

subsystem), a two-level control for arming the instrument for triggers

(the ARM:LAYer1 and ARM:LAYer2 subsystems), plus a way for completely

disabling triggers (the IDLE layer of the trigger model along with the

INITiate subsystem). Changing any of the settings in the TRIGger

subsystem does not automatically arm the Model 2001 for triggers.

The following example program sets up the Model 2001 to take one

reading each time it receives an external trigger pulse.

---------------------------------begin program--------------------------------

'Program sgltrig.bas

'Example 2001 program

'Demonstrates one-shot external triggering

'For QuickBASIC 4.5 and CEC PC488 interface card

'Roger Chaplin Tue May 25 09:45:54 EDT 1993

'Keithley Instruments, Inc.

'Edit the following line according to where the QuickBASIC

'libraries live on your machine

'$INCLUDE: 'c:\qb45\ieeeqb.bi'

'Initialize the CEC interface as address 21

CALL initialize(21, 0)

' Reset controls in INIT, ARM:LAY1, ARM:LAY2 and TRIG subsystems

' and put trigger model in IDLE state

CALL SEND(16, "*rst", status%)

CALL SEND(16, "trig:sour ext;coun inf", status%)

' start everything off and running

CALL SEND(16, "init", status%)

----------------------------------end program---------------------------------

After the Model 2001 receives the INITiate command, it stops in the

TRIGger layer of the trigger model, waiting for a pulse on the external

trigger jack. Each time a pulse arrives on the external trigger jack,

the Model 2001 takes one reading. Because TRIGger:COUNt has been set to

INFinity, the trigger model never exits from the TRIGger layer. You can

send the ABORt command to put the trigger model in the IDLE state,

disabling triggers until another INITiate command is sent.

* Do continuous triggering

See the introductory text under `Do one-shot triggering.' The

following example program sets up the Model 2001 to take readings as

fast as it can once it receives an external trigger. The actual reading

rate will depend upon other factors, such as A/D integration time,

auto-zero mode, autorange on/off, etc.

---------------------------------begin program--------------------------------

'Program contrig1.bas

'Example 2001 program

'Demonstrates continuous triggering as fast as the meter can

'For QuickBASIC 4.5 and CEC PC488 interface card

'Roger Chaplin Tue May 25 09:45:42 EDT 1993

'Keithley Instruments, Inc.

'Edit the following line according to where the QuickBASIC

'libraries live on your machine

'$INCLUDE: 'c:\qb45\ieeeqb.bi'

'Initialize the CEC interface as address 21

CALL initialize(21, 0)

' Reset controls in INIT, ARM:LAY1, ARM:LAY2 and TRIG subsystems

' and put trigger model in IDLE state

CALL SEND(16, "*rst", status%)

' *RST sets TRIG:SOUR to IMM

CALL SEND(16, "arm:lay2:sour ext", status%)

CALL SEND(16, "trig:coun inf", status%)

' start everything off and running

CALL SEND(16, "init", status%)

----------------------------------end program---------------------------------

After the Model 2001 receives the INITiate command, it stops in the

ARM:LAYer2 layer of the trigger model, waiting for a pulse on the

external trigger jack. After the external trigger signal occurs, the

2001 moves to the TRIGger layer. Since TRIGger:SOURce is set to

IMMediate, a reading is triggered immediately, with a subsequent

reading triggered as soon as the previous one is finished.

The following example program sets up the Model 2001 to take readings

continuously after an external trigger is received. The trigger rate

set to one reading every 50 milliseconds.

---------------------------------begin program--------------------------------

'Program contr1g2.bas

'Example 2001 program

'Demonstrates continuous triggering at a specified rate

'For QuickBASIC 4.5 and CEC PC488 interface card

'Roger Chaplin Tue May 25 09:46:31 EDT 1993

'Keithley Instruments, Inc.

'Edit the following line according to where the QuickBASIC

'libraries live on your machine

'$INCLUDE: 'c:\qb45\ieeeqb.bi'

'Initialize the CEC interface as address 21

CALL initialize(21, 0)

' Reset controls in INIT, ARM:LAY1, ARM:LAY2 and TRIG subsystems

' and put trigger model in IDLE state

CALL SEND(16, "*rst", status%)

CALL SEND(16, "arm:lay2:sour ext", status%)

CALL SEND(16, "trig:coun inf;sour tim;tim .05", status%)

' start everything off and running

CALL SEND(16, "init", status%)

----------------------------------end program---------------------------------

After the Model 2001 receives the INITiate command, it stops in the

ARM:LAYer2 layer of the trigger model, waiting for a pulse on the

external trigger jack. After the external trigger signal occurs, the

2001 moves to the TRIGger layer. Since TRIGger:SOURce is set to TIMer,

a reading is triggered immediately, with a subsequent reading triggered

every 50 milliseconds. Because TRIGger:COUNt has been set to infinity,

the trigger model never exits from the TRIGger layer.

* Generate SRQ on buffer full

In most cases when your program must wait until the Model 2001 has

completed an operation, it is most efficient to program the 2001 to

assert the IEEE 488 SRQ line when it is finished, rather than

repeatedly serial polling the instrument. An IEEE 488 controller will

typically address the instrument to talk, then unaddress it, each time

it performs a serial poll. Each time the Model 2001 is addressed and

unaddressed, it must devote some of its internal computer resources to

the IEEE 488 bus, which `steals' time away from actually taking

readings. Repeatedly serial polling the Model 2001 will generally

reduce its overall reading throughput. Therefore, use the srq%()

function call.

The Model 2001 provides a status bit for nearly every operation it can

perform. It can be programmed to assert the IEEE 488 SRQ line whenever

any of these status bits becomes TRUE or FALSE. The IEEE 488 controller

(your computer) can examine the state of the SRQ line without

performing a serial poll, thereby detecting when the 2001 has completed

its task without interrupting it in the process.

The following example program segment sets up the Model 2001 to assert

SRQ when the reading buffer has completely filled, then arms the

reading buffer, initiates readings, and waits for the Model 2001 to

indicate that the buffer is full. This is not a complete program. Not

shown are the commands to configure the trigger model and the reading

buffer - a complete example, showing the use of SRQ and programming the

Model 2001 reading buffer and trigger model, is given in the next

section. The example shown here can be modified for any event in the

Model 2001 status reporting system.

---------------------------------begin program--------------------------------

' Reset STATus subsystem (not affected by *RST)

CALL SEND(16, "stat:pres;*cls", status%)

CALL SEND(16, "stat:meas:enab 512", status%) 'enable BFL

CALL SEND(16, "*sre 1", status%) 'enable MSB

CALL SEND(16, "trac:feed:cont next", status%)

' start everything off and running

CALL SEND(16, "init", status%)

WaitSRQ:

IF (NOT(srq%()) THEN GOTO WaitSRQ

CALL SPOLL(16, poll%, status%)

IF (poll% AND 64)=0 THEN GOTO WaitSRQ

----------------------------------end program---------------------------------

Notice that after the program has detected an asserted SRQ line, it

serial polls the Model 2001 to determine if it is the device requesting

service. This is necessary for two reasons:

1. Serial polling the Model 2001 causes it to quit asserting the

SRQ line.

2. In test systems which have more than one IEEE 488 instrument

programmed to assert SRQ, your program must determine which instrument

is actually requesting service.

Once an event register has caused a service request, it cannot cause

another service request until you clear it by reading it (in this case

using STATus:MEASurement[:EVENt]?) or by sending the *CLS command.

* Store readings in the buffer and then read them out

The reading buffer in the Model 2001 is very flexible and capable. This

also makes its controls a little more complex. The reading buffer has

basically four controls, found in the TRACe subsystem. There are

commands to control:

1. The size of the buffer (in readings).

 TRACe:POINts <NRf>

2. Whether or not `extra' data is stored with each reading (e.g.

channel number, time stamp). Storing the extra data reduces the maximum

size of the buffer.

 TRACe:EGRoup FULL include extra data

 TRACe:EGRoup COMPact don't include extra data

3. Where the is data coming from (before or after the CALCulate1

math post-processing).

 TRACe:FEED SENSe1 store unprocessed readings

 TRACe:FEED CALCulate1 store math processed readings

4. What event turns the `spigot' into the buffer on and off.

 TRACe:FEED:CONTrol NEVer immediately stop storing readings

 TRACe:FEED:CONTrol NEXT start now, stop when buffer is full

 TRACe:FEED:CONTrol ALWays start now, never stop

 TRACe:FEED:CONTrol PRETrigger start now, stop when pretrigger

 is satisfied

The following example program sets up the Model 2001 to take 20

readings as fast as it can into the buffer, then reads the data back

after the buffer has filled. The readings will be stored with

timestamp, etc., but the program reads back only the reading values

and timestamp. This program uses the techniques described in `Do

continuous triggering' and `Generate SRQ on buffer full'.

---------------------------------begin program--------------------------------

'Program buffer.bas

'Example 2001 program

'Demonstrates the reading buffer

'For QuickBASIC 4.5 and CEC PC488 interface card

'Roger Chaplin Tue May 25 09:46:54 EDT 1993

'Keithley Instruments, Inc.

'Edit the following line according to where the QuickBASIC

'libraries live on your machine

'$INCLUDE: 'c:\qb45\ieeeqb.bi'

'Initialize the CEC interface as address 21

CALL initialize(21, 0)

' Reset controls in INIT, ARM:LAY1, ARM:LAY2 and TRIG subsystems

' and put trigger model in IDLE state

CALL SEND(16, "*rst", status%)

' Reset STATus subsystem (not affected by *RST)

CALL SEND(16, "stat:pres;*cls", status%)

CALL SEND(16, "stat:meas:enab 512", status%) 'enable BFL

CALL SEND(16, "*sre 1", status%) 'enable MSB

CALL SEND(16, "trig:coun 20", status%)

' TRACe subsystem is not affected by *RST!!!

CALL SEND(16, "trac:poin 20;egr full", status%)

CALL SEND(16, "trac:feed sens1;feed:cont next", status%)

' start everything off and running

CALL SEND(16, "init", status%)

' initialize reading$ while the 2001 is busy taking readings

reading$ = SPACE$(4000)

WaitSRQ:

IF (NOT(srq%) THEN GOTO WaitSRQ

CALL SPOLL(16, poll%, status%)

IF (poll% AND 64)=0 THEN GOTO WaitSRQ

CALL SEND(16, "form:elem read,time", status%)

CALL SEND(16, "trac:data?", status%)

CALL ENTER(reading$, length%, 16, status%)

PRINT reading$

----------------------------------end program---------------------------------

* Take readings using the scanner

The Model 2001's optional 10-channel scanner is a simple multiplexor.

Only one channel can be closed at a time. If you close a channel while

another one is already closed, the first one opens automatically, with

break-before-make operation guaranteed.

You can use the Model 2001's scanner two ways. One is to simply issue a

command to close a particular channel before sending other commands to

take readings. The other way is to program the scan list, and let the

meter take care of closing the a channel before taking a reading. There

is a fundamental difference in the Model 2001's behavior in these two

approaches. In the scan list, a measurement function is bound to each

channel, so that when the next channel in the list closes, the meter

switches to the associated function. Simply sending a `channel close'

command, however, does NOT change the measurement function. While using

the scan list, the meter responds to a trigger by first going to the

next channel in the list, switching to the function bound to that

channel, before taking a reading.

The following example program simply measures DC volts channel 1, AC

volts on channel 2 and two-wire resistance on channel 3, using the

ROUTe:CLOSe command.

---------------------------------begin program--------------------------------

'Program chanrdgs.bas

'Example 2001 program

'Demonstrates taking readings on different scanner channels

'For QuickBASIC 4.5 and CEC PC488 interface card

'Roger Chaplin Tue May 25 09:46:19 EDT 1993

'Keithley Instruments, Inc.

'Edit the following line according to where the QuickBASIC

'libraries live on your machine

'$INCLUDE: 'c:\qb45\ieeeqb.bi'

'Initialize the CEC interface as address 21

CALL initialize(21, 0)

' Reset controls in INIT, ARM:LAY1, ARM:LAY2 and TRIG subsystems

' and put trigger model in IDLE state, set function to VOLT:DC

CALL SEND(16, "*rst", status%)

' close channel 1, take DC volts reading

CALL SEND(16, "rout:clos (@1);:read?", status%)

reading$ = SPACE$(80)

CALL ENTER(reading$, length%, 16, status%)

PRINT reading$

' close channel 2, take AC volts reading

CALL SEND(16, "func 'volt:ac'", status%)

CALL SEND(16, "rout:clos (@2);:read?", status%)

reading$ = SPACE$(80)

CALL ENTER(reading$, length%, 16, status%)

PRINT reading$

' close channel 3, take ohms reading

CALL SEND(16, "func 'res'", status%)

CALL SEND(16, "rout:clos (@3);:read?", status%)

reading$ = SPACE$(80)

CALL ENTER(reading$, length%, 16, status%)

PRINT reading$

----------------------------------end program---------------------------------

The following example program sets the Model 2001 up use the scan list

to measure DC volts on channel 1, AC volts on channel 2, and two-wire

resistance on channel 3. The meter takes 10 sets of readings, with each

set spaced 15 seconds apart, and each of the three readings in each

group taken as quickly as possible. The Model 2001 stores the readings

in the buffer, and asserts SRQ when the buffer is full. The program

waits for the SRQ, then reads the readings from the buffer.

---------------------------------begin program--------------------------------

'Program scanlist.bas

'Example 2001 program

'Demonstrates using the scan list

'For QuickBASIC 4.5 and CEC PC488 interface card

'Roger Chaplin Tue May 25 09:46:07 EDT 1993

'Keithley Instruments, Inc.

'Edit the following line according to where the QuickBASIC

'libraries live on your machine

'$INCLUDE: 'c:\qb45\ieeeqb.bi'

'Initialize the CEC interface as address 21

CALL initialize(21, 0)

' Reset controls in INIT, ARM:LAY1, ARM:LAY2 and TRIG subsystems

' and put trigger model in IDLE state

CALL SEND(16, "*rst", status%)

' Reset STATus subsystem (not affected by *RST)

CALL SEND(16, "stat:pres;*cls", status%)

CALL SEND(16, "stat:meas:enab 512", status%) 'enable BFL

CALL SEND(16, "*sre 1", status%) 'enable MSB

' *RST sets TRIG:SOUR to IMM

CALL SEND(16, "trig:coun 3", status%)

CALL SEND(16, "arm:lay2:sour tim;tim 15", status%)

CALL SEND(16, "arm:lay2:coun 10", status%)

' TRACe subsystem is not affected by *RST!!!

CALL SEND(16, "trac:poin 30;egr full", status%)

CALL SEND(16, "trac:feed sens1;feed:cont next", status%)

' now the buffer is armed

CALL SEND(16, "rout:scan (@1:3)", status%)

CALL SEND(16, "rout:scan:func (@1), 'volt:dc'", status%)

CALL SEND(16, "rout:scan:func (@2), 'volt:ac'", status%)

CALL SEND(16, "rout:scan:func (@3), 'res'", status%)

CALL SEND(16, "rout:lsel int", status%)

' start everything off and running

CALL SEND(16, "init", status%)

' initialize reading$ while the 2001 is busy taking readings

reading$ = SPACE$(2500)

WaitSRQ:

IF (NOT(srq%()) THEN GOTO WaitSRQ

CALL SPOLL(16, poll%, status%)

IF (poll% AND 64)=0 THEN GOTO WaitSRQ

CALL SEND(16, "form:elem read,time,chan", status%)

CALL SEND(16, "trac:data?", status%)

CALL ENTER(reading$, length%, 16, status%)

PRINT reading$

----------------------------------end program---------------------------------

	Model 2001 Quick Reference SCPI Guide
	Introduction
	SCPI Command Syntax
	Long And Short Form Command Names
	Query Commands
	Default Modes
	Command Syntax
	Example Programs

