
Fortran Library Reference

FORTRAN 77 5.0 — Fortran 90
2.0

901 San Antonio Road
Palo Alto, , CA 94303-4900

USA 650 960-1300 fax 650 969-9131

Part No: 805-4942
Revision A, February 1999

Copyright Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.
Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD system,
licensed from the University of California. UNIX is a registered trademark in the United States and in other countries and is exclusively
licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by copyright and licensed
from Sun’s suppliers. RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
Sun, Sun Microsystems, the Sun logo, SunDocs, SunExpress, Solaris, Sun Performance Library, Sun Performance WorkShop Fortran, Sun
Visual WorkShop C++, Sun WorkShop, and Sun WorkShop Professional are trademarks or registered trademarks of Sun Microsystems, Inc.
in the United States and in other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the United States and in other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.
The OPEN LOOK® and Sun

TM

Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox Corporation in researching and developing the concept of visual or graphical user interfaces
for the computer industry. Sun holds a nonexclusive license from Xerox to the Xerox Graphical User Interface, which license also covers
Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
f90 is derived from Cray CF90

TM

, a product of Silicon Graphics, Inc.
THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.
Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303-4900 U.S.A. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie et la
décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.
Des parties de ce produit pourront être derivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD licencié par
l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et licenciée exclusivement par X/Open
Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.
Sun, Sun Microsystems, le logo Sun, SunDocs, SunExpress, Solaris, Sun Performance Library, Sun Performance WorkShop Fortran, Sun
Visual WorkShop C++, Sun WorkShop, et Sun WorkShop Professional sont des marques déposées ou enregistrées de Sun Microsystems,
Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de
SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.
Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun

TM

ont été développés de Sun Microsystems, Inc. pour ses utilisateurs et
licenciés. Sun reconnaît les efforts de pionniers de Xerox Corporation pour la recherche et le développement du concept des interfaces
d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface
d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place les utilisateurs d’interfaces graphiques OPEN
LOOK et qui en outre se conforment aux licences écrites de Sun.
f90 est derivé de CRAY CF90

TM

, un produit de Silicon Graphics, Inc.
CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y COMPRIS,
ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DES
PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE SOIENT PAS CONTREFAISANTS DE
PRODUITS DE TIERS.

Please
Recycle

Contents

Preface ix

1. FORTRAN Library Routines 1

Data Type Considerations 1

64-Bit Environments 2

abort : Terminate and Write Core File 4

access : Check File Permissions or Existence 4

alarm : Call Subroutine After a Specified Time 5

bit : Bit Functions: and , or , …, bit , setbit , … 6

Usage: and , or , xor , not , rshift , lshift 8

Usage: bic , bis , bit , setbit 9

chdir : Change Default Directory 9

chmod: Change the Mode of a File 10

date : Get Current Date as a Character String 11

date_and_time : Get Date and Time 12

dtime , etime : Elapsed Execution Time 14

dtime : Elapsed Time Since the Last dtime Call 14

etime : Elapsed Time Since Start of Execution 15

exit : Terminate a Process and Set the Status 16

fdate : Return Date and Time in an ASCII String 17

Contents iii

flush : Flush Output to a Logical Unit 18

fork : Create a Copy of the Current Process 19

free : Deallocate Memory Allocated by Malloc 20

fseek , ftell : Determine Position and Reposition a File 20

fseek : Reposition a File on a Logical Unit 20

ftell : Return Current Position of File 22

fseeko64 , ftello64 : Determine Position and Reposition a Large File 23

fseeko64 : Reposition a File on a Logical Unit 23

ftello64 : Return Current Position of File 24

getarg , iargc : Get Command-line Arguments 24

getarg : Get a Command-Line Argument 24

iargc : Get the Number of Command-Line Arguments 25

getc , fgetc : Get Next Character 26

getc : Get Next Character from stdin 26

fgetc : Get Next Character from Specified Logical Unit 27

getcwd : Get Path of Current Working Directory 28

getenv : Get Value of Environment Variables 29

getfd : Get File Descriptor for External Unit Number 29

getfilep : Get File Pointer for External Unit Number 30

getlog : Get User’s Login Name 32

getpid : Get Process ID 32

getuid , getgid : Get User or Group ID of Process 33

getuid : Get User ID of the Process 33

getgid : Get Group ID of the Process 33

hostnm : Get Name of Current Host 34

idate : Return Current Date 34

ieee_flags,ieee_handler, sigfpe : IEEE Arithmetic 36

f77_floatingpoint.h : FORTRAN IEEE Definitions 39

iv Fortran Library Reference ♦ Revision A, February 1999

index,rindex,lnblnk : Index or Length of Substring 41

index : First Occurrence of a Substring in a String 41

rindex : Last Occurrence of a Substring in a String 42

lnblnk : Last Nonblank in a String 42

inmax : Return Maximum Positive Integer 43

ioinit : Initialize I/O Properties 44

Persistence of File I/O Properties 44

Internal Flags 44

Source Code 44

Usage: ioinit 45

Restrictions 45

Description of Arguments 45

itime : Current Time 48

kill : Send a Signal to a Process 48

libm Math Functions 49

libm Intrinsic Functions 49

libm_double : Double-Precision Functions 50

libm_quadruple : Quad-Precision Functions 56

libm_single : Single-Precision Functions 59

link , symlnk : Make a Link to an Existing File 64

link: Create a Link to an Existing File 64

symlnk: Create a Symbolic Link to an Existing File 65

loc : Return the Address of an Object 65

long , short : Integer Object Conversion 66

long : Convert a Short Integer to a Long Integer 66

short : Convert a Long Integer to a Short Integer 66

longjmp , isetjmp : Return to Location Set by isetjmp 67

isetjmp : Set the Location for longjmp 67

Contents v

longjmp : Return to the location set by isetjmp 68

Description 68

Restrictions 69

malloc, malloc64 : Allocate Memory and Get Address 69

mvbits : Move a Bit Field 71

perror , gerror , ierrno : Get System Error Messages 72

perror : Print Message to Logical Unit 0, stderr 72

gerror : Get Message for Last Detected System Error 73

ierrno : Get Number for Last Detected System Error 73

putc , fputc : Write a Character to a Logical Unit 74

putc : Write to Logical Unit 6 74

fputc : Write to Specified Logical Unit 75

qsort,qsort64 : Sort the Elements of a One-dimensional Array 76

ran : Generate a Random Number between 0 and 1 78

rand , drand , irand : Return Random Values 79

rename : Rename a File 80

secnds : Get System Time in Seconds, Minus Argument 81

sh : Fast Execution of an sh Command 82

signal : Change the Action for a Signal 83

sleep : Suspend Execution for an Interval 84

stat , lstat , fstat : Get File Status 85

stat : Get Status for File, by File Name 85

fstat : Get Status for File, by Logical Unit 86

lstat : Get Status for File, by File Name 87

Detail of Status Array for Files 87

stat64 , lstat64 , fstat64 : Get File Status 88

system : Execute a System Command 88

time , ctime , ltime , gmtime : Get System Time 90

vi Fortran Library Reference ♦ Revision A, February 1999

time : Get System Time 90

ctime : Convert System Time to Character 91

ltime : Split System Time to Month, Day,… (Local) 92

gmtime : Split System Time to Month, Day, … (GMT) 93

ctime64, gmtime64, ltime64: System Time Routines for 64-bit
Environments 94

topen , tclose , tread ,…, tstate : Tape I/O 94

topen : Associate a Device with a Tape Logical Unit 95

tclose : Write EOF, Close Tape Channel, Disconnect tlu 96

twrite : Write Next Physical Record to Tape 97

tread : Read Next Physical Record from Tape 98

trewin : Rewind Tape to Beginning of First Data File 98

tskipf : Skip Files and Records; Reset EoF Status 100

tstate : Get Logical State of Tape I/O Channel 100

ttynam , isatty : Get Name of a Terminal Port 103

ttynam : Get Name of a Terminal Port 103

isatty : Is this Unit a Terminal? 104

unlink : Remove a File 105

wait : Wait for a Process to Terminate 105

Index 107

Contents vii

viii Fortran Library Reference ♦ Revision A, February 1999

Preface

This guide describes the routines in the SunTM FORTRAN 77 version 5.0 and
Fortran 90 version 2.0 runtime libraries.

Who Should Use This Book
This is a reference manual intended for programmers with a working knowledge of
the Fortran language and some understanding of the Solaris

TM

operating environment
and UNIX commands.

Multi-Platform Release
Note - The name of the latest Solaris operating environment release is Solaris 7 but
some documentation and path or package path names may still use Solaris 2.7 or
SunOS 5.7.

The SunTM WorkShopTM documentation applies to Solaris 2.5.1, Solaris 2.6, and
Solaris 7 operating environments.

FORTRAN 77 5.0 is released for:

� The SPARC
TM

platform

Preface ix

� The x86 platform, where x86 refers to the Intel® implementation of one of the
following: Intel 80386TM , Intel 80486TM , PentiumTM , or the equivalent

Fortran 90 2.0 is released for:

� Solaris 2.5.1, 2.6, and Solaris 7 environments on SPARC processors only.

Note - The term “x86” refers to the Intel 8086 family of microprocessor chips,
including the Pentium, Pentium Pro, and Pentium II processors and compatible
microprocessor chips made by AMD and Cyrix. In this document, the term “x86”
refers to the overall platform architecture. Features described in this book that are
particular to a specific platform are differentiated by the terms “SPARC” and “x86”
in the text.

Related Books
The following books augment this manual and provide essential information:

� Fortran User’s Guide—provides information on command line options and how to
use the compilers.

� Fortran Programming Guide—discusses issues relating to input/output, libraries,
program analysis, debugging, performance, and so on.

� FORTRAN 77 Language Reference—gives details on the language.

� Sun Performance WorkShop Fortran Overview gives a high-level outline of the
Fortran package suite.

Other Programming Books
� C User’s Guide—describes compiler options, pragmas, and more.

� Numerical Computation Guide—details floating-point computation and numerical
accuracy issues.

� Sun WorkShop Performance Library Reference-discusses the library of subroutines
and functions to perform useful operations in computational linear algebra and
Fourier transforms.

Other Sun WorkShop Books
� Sun WorkShop Quick Install-provides installation instructions.

� Sun WorkShop Installation Reference-provides supporting installation and licensing
information.

x Fortran Library Reference ♦ Revision A, February 1999

� Sun Visual WorkShop C++ Overview-gives a high-level outline of the C++
package suite.

� Using Sun WorkShop—gives information on performing development operations
through Sun WorkShop.

� Debugging a Program With dbx—provides information on using dbx commands
to debug a program.

� Analyzing Program Performance with Sun WorkShop—describes the profiling tools;
LoopTool, LoopReport, LockLint utilities; and the Sampling Analyzer to enhance
program performance.

� Sun WorkShop TeamWare User’s Guide—describes how to use the Sun WorkShop
TeamWare code management tools.

Solaris Books
The following Solaris manuals and guides provide additional useful information:

� The Solaris Linker and Libraries Guide—gives information on linking and libraries.

� The Solaris Programming Utilities Guide—provides information for developers
about the special built-in programming tools available in the SunOS system.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the
SunExpressTM Internet site at http://www.sun.com/sunexpress .

Accessing Sun Documents Online
Sun WorkShop documentation is available online from several sources:

� The docs.sun.com Web site

� AnswerBook2TM collections

� HTML documents

� Online help and release notes

xi

Using the docs.sun.com Web site
The docs.sun.com Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com .

Accessing AnswerBook2 Collections
The Sun WorkShop documentation is also available using AnswerBook2 software. To
access the AnswerBook2 collections, your system administrator must have installed
the AnswerBook2 documents during the installation process (if the documents are
not installed, see your system administrator or Chapter 3 of Sun WorkShop Quick
Install for installation instructions). For information about accessing AnswerBook2
documents, see Chapter 6 of Sun WorkShop Quick Install, Solaris installation
documentation, or your system administrator.

Note - To access AnswerBook2 documents, Solaris 2.5.1 users must first download
AnswerBook2 documentation server software from a Sun Web page. For more
information, see Chapter 6 of Sun WorkShop Quick Install.

Accessing HTML Documents
The following Sun Workshop documents are available online only in HTML format:

� Tools.h++ Class Library Reference

� Tools.h++ User’s Guide

� Numerical Computation Guide

� Standard C++ Library User’s Guide

� Standard C++ Class Library Reference

� Sun WorkShop Performance Library Reference Manual

� Sun WorkShop Visual User’s Guide

� Sun WorkShop Memory Monitor User’s Manual

To access these HTML documents:

1. Open the following file through your HTML browser:

install-directory/SUNWspro/DOC5.0/lib/locale/C/html/index.html

xii Fortran Library Reference ♦ Revision A, February 1999

Replace install-directory with the name of the directory where your Sun WorkShop
software is installed (the default is /opt).

The browser displays an index of the HTML documents for the Sun WorkShop
products that are installed.

2. Open a document in the index by clicking the document’s title.

Accessing Sun WorkShop Online Help and
Release Notes
This release of Sun WorkShop includes an online help system as well as online
manuals. To find out more see:

� Online Help. A help system containing extensive task-oriented, context-sensitive
help. To access the help, choose Help Help Contents. Help menus are available in
all Sun WorkShop windows.

� Release Notes. The Release Notes contain general information about Sun
WorkShop and specific information about software limitations and bugs. To access
the Release Notes, choose Help Release Notes.

� You can view the latest release information regarding the FORTRAN 77 and
Fortran 90 compilers, by running these commands at any shell prompt:

% f77 -xhelp=readme -or-

% f90 -xhelp=readme

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

xiii

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms, or
words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

xiv Fortran Library Reference ♦ Revision A, February 1999

Other Conventions Used in This Book
The following conventions appear in the text of this book:

� Examples use the csh shell and demo%as the system prompt, or the sh shell and
demo$ as the prompt.

� Code listings and examples appear in boxes:

WRITE(*, *) "Hello world"

� The symbol “¤” stands in for a blank space where a blank is significant:

¤¤36.001

� FORTRAN 77 examples appear in tab format, while Fortran 90 examples appear in
free format. Examples common to both FORTRAN 77 and Fortran 90 use tab
format except where indicated.

� Uppercase characters are generally used to show Fortran keywords and intrinsics
(PRINT), and lowercase or mixed case is used for variables (TbarX).

� The Sun FORTRAN compilers are referred to by their command names, either
f77 or f90 . "f77 /f90 " indicates information that is common to both the
FORTRAN 77 and Fortran 90 compilers.

� References to online man pages appear with the topic name and section number.
For example, a reference to GETENV will appear as getenv(3F), implying that the
man command to access this page would be: man -s 3F getenv

� System Administrators can install the Sun Fortran compilers and supporting
material at: <install_point>/SUNWspro/SC5.0/ where <install_point> is usually
/opt for a standard install. This is the location assumed in this book.

� The FORTRAN 77 standard uses an older convention of spelling the name
"FORTRAN" capitalized. Sun documentation uses both FORTRAN and Fortran.
The current convention is to use lower case: "Fortran 95".

xv

xvi Fortran Library Reference ♦ Revision A, February 1999

CHAPTER 1

FORTRAN Library Routines

This chapter describes the Fortran library routines alphabetically. See the FORTRAN
77 Language Reference for details on Fortran 77 and VMS intrinsic functions. All the
routines described in this chapter have corresponding man pages in section 3F of the
man library. For example, man -s 3F access will display the man page entry for
the library routine access .

Data Type Considerations
Unless otherwise indicated, the function routines listed here are not intrinsics. That
means that the type of data a function returns may conflict with the implicit typing
of the function name, and require explicit type declaration by the user. For example,
getpid() returns INTEGER*4 and would require an INTEGER*4 getpid
declaration to ensure proper handling of the result. (Without explicit typing, a REAL
result would be assumed by default because the function name starts with g.) As a
reminder, explicit type statements appear in the function summaries for these
routines.

Be aware that IMPLICIT statements and the -r8 , -i2 , -dbl and -xtypemap
compiler options also alter the data typing of arguments and the treatment of return
values. A mismatch between the expected and actual data types in calls to these
library routines could cause unexpected behavior. Options -r8 and -dbl promote
the data type of INTEGERfunctions to INTEGER*8, REAL functions to REAL*8, and
DOUBLEfunctions to REAL*16 . To protect against these problems, function names
and variables appearing in library calls should be explicitly typed with their
expected sizes, as in:

integer*4 seed, getuid
real*4 ran
...

1

seed = 70198
val = getuid() + ran(seed)
...

Explicit typing in the example protects the library calls from any data type
promotion when the -r8 and -dbl compiler options are used. Without explicit
typing, these options could produce unexpected results. See the Fortran User’s Guide
and the f77(1) and f90(1) man pages for details on these options.

The more flexible -xtypemap compiler option is recommended over the obsolete
-i2, -r8, and -dbl options and should be used instead.

You can catch many issues related to type mismatches over library calls by using the
Fortran compilers’ global program checking option, -Xlist . Global program
checking by the f77 and f90 compilers is described in the Fortran User’s Guide, the
Fortran Programming Guide, and the f77(1) and f90(1) man pages.

64-Bit Environments
Compiling a program to run in a 64-bit operating environment (that is, compiling
with -xarch=v9 or v9a and running the executable on a SPARC platform running
the 64-bit enabled Solaris 7 operating environment) changes the return values of
certain functions. These are usually functions that interface standard system-level
routines, such as malloc() (see “malloc, malloc64 : Allocate Memory and Get
Address” on page 69), and may take or return 32-bit or 64-bit values depending on
the environment. To provide portability of code between 32-bit and 64-bit
environments, 64-bit versions of these routines have been provided that always take
and/or return 64-bit values. The following table identifies library routine provided
for use in 64-bit environments:

2 Fortran Library Reference ♦ Revision A, February 1999

TABLE 1–1 Library Routines for 64-bit Environments

Library
Routines

malloc64 Allocate memory and return a pointer “malloc,
malloc64 :
Allocate
Memory and
Get Address”
on page 69

fseeko64 Reposition a large file “fseeko64 ,
ftello64 :
Determine
Position and
Reposition a
Large File ” on
page 23

ftello64 Determine position of a large file “fseeko64 ,
ftello64 :
Determine
Position and
Reposition a
Large File ” on
page 23

stat64, fstat64,
lstat64

Determine status of a file “stat64 ,
lstat64 ,
fstat64 : Get
File Status ” on
page 88

time64, ctime64,
gmtime64,
ltime64

Get system time, convert to character or dissected “time , ctime ,
ltime , gmtime :
Get System
Time” on page
90

qsort64 Sort the elements of an array “qsort,qsort64 :
Sort the
Elements of a
One-dimensional
Array ” on page
76

FORTRAN Library Routines 3

TABLE 1–1 Library Routines for 64-bit Environments (continued)

abort : Terminate and Write Core File
The subroutine is called by:

call abort

abort flushes the I/O buffers and then aborts the process, possibly producing a
core file memory dump in the current directory. See limit(1) about limiting or
suppressing core dumps.

access : Check File Permissions or
Existence
The function is called by:

INTEGER*4 access

status = access (name, mode)

name character Input File name

mode character Input Permissions

Return value INTEGER*4 Output status=0: OK status>0: Error code

access determines if you can access the file name with the permissions specified by
mode. access returns zero if the access specified by mode would be successful. See also
gerror(3F) to interpret error codes.

Set mode to one or more of r , w, or x, in any order or combination, where r , w, x
have the following meanings:

4 Fortran Library Reference ♦ Revision A, February 1999

r Test for read permission

w Test for write permission

x Test for execute permission

blank Test for existence of the file

Example 1: Test for read/write permission:

INTEGER*4 access, status
status = access ("taccess.data", "rw")
if (status .eq. 0) write(*,*) "ok"
if (status .ne. 0) write(*,*) "cannot read/write", status

Example 2: Test for existence:

INTEGER*4 access, status
status = access ("taccess.data", " ") ! blank mode
if (status .eq. 0) write(*,*) "file exists"
if (status .ne. 0) write(*,*) "no such file", status

alarm : Call Subroutine After a
Specified Time
The function is called by:

INTEGER*4 alarm

n = alarm (time, sbrtn)

time INTEGER*4 Input Number of seconds to wait (0=do
not call)

sbrtn Routine name Input Subprogram to execute must be
listed in an external statement.

Return value INTEGER*4 Output Time remaining on the last alarm

FORTRAN Library Routines 5

Example: alarm —wait 9 seconds then call sbrtn :

integer*4 alarm, time / 1 /
common / alarmcom / i
external sbrtn
i = 9
write(*,*) i
nseconds = alarm (time, sbrtn)
do n = 1,100000 ! Wait until alarm activates sbrtn.

r = n ! (any calculations that take enough time)
x=sqrt(r)

end do
write(*,*) i
end
subroutine sbrtn
common / alarmcom / i
i = 3 ! Do no I/O in this routine.
return
end

See also: alarm(3C), sleep(3F), and signal(3F). Note the following restrictions:

� A subroutine cannot pass its own name to alarm .

� The alarm routine generates signals that could interfere with any I/O. The called
subroutine, sbrtn, must not do any I/O itself.

� Calling alarm() from a parallelized or multi-threaded FORTRAN program may
have unpredictable results.

bit : Bit Functions: and , or , …, bit ,
setbit , …
The definitions are:

and(word1, word2) Computes bitwise and of its arguments.

or(word1, word2) Computes bitwise inclusive or of its arguments.

xor(word1, word2) Computes bitwise exclusive or of its arguments.

not(word) Returns bitwise complement of its argument.

lshift(word, nbits) Logical left shift with no end around carry.

6 Fortran Library Reference ♦ Revision A, February 1999

rshift(word, nbits) Arithmetic right shift with sign extension.

call bis(bitnum, word) Sets bit bitnum in word to 1.

call bic(bitnum, word) Clears bit bitnum in word to 0.

bit(bitnum, word) Tests bit bitnum in word and returns .true. if the bit
is 1, .false. if it is 0.

call setbit(bitnum, word, state) Sets bit bitnum in word to 1 if state is nonzero, and
clears it otherwise.

The alternate external versions for MIL-STD-1753 are:

iand(m, n) Computes the bitwise and of its arguments.

ior(m, n) Computes the bitwise inclusive or of its arguments.

ieor(m, n) Computes the bitwise exclusive or of its arguments.

ishft(m, k) Is a logical shift with no end around carry (left if k>0, right if k<0).

ishftc(m, k,
ic)

Circular shift: right-most ic bits of m are left-shifted circularly k places.

ibits(m, i,
len)

Extracts bits: from m, starting at bit i, extracts len bits.

ibset(m, i) Sets bit: return value is equal to word m with bit number i set to 1.

ibclr(m, i) Clears bit: return value is equal to word m with bit number i set to 0.

btest(m, i) Tests bit i in m; returns .true. if the bit is 1, and .false. if it is 0.

See also “mvbits : Move a Bit Field ” on page 71, and the chapter on Intrinsic
Functions in the FORTRAN 77 Reference Manual.

FORTRAN Library Routines 7

Usage: and , or , xor , not , rshift , lshift
For the intrinsic functions:

x = and(word1, word2)

x = or(word1, word2)

x = xor(word1, word2)

x = not(word)

x = rshift(word, nbits)

x = lshift(word, nbits)

word, word1, word2, nbits are integer input arguments. These are intrinsic functions
expanded inline by the compiler. The data type returned is that of the first argument.

No test is made for a reasonable value of nbits.

Example: and, or, xor, not :

demo% cat tandornot.f
print 1, and(7,4), or(7,4), xor(7,4), not(4)

1 format(4x "and(7,4)", 5x "or(7,4)", 4x "xor(7,4)",
& 6x "not(4)"/4o12.11)

end
demo% f77 -silent tandornot.f
demo% a.out

and(7,4) or(7,4) xor(7,4) not(4)
00000000004 00000000007 00000000003 37777777773

demo%

Example: lshift , rshift :

integer*4 lshift, rshift
print 1, lshift(7,1), rshift(4,1)

1 format(1x "lshift(7,1)", 1x "rshift(4,1)"/2o12.11)
end

demo% f77 -silent tlrshift.f
demo% a.out

lshift(7,1) rshift(4,1)
00000000016 00000000002

demo%

8 Fortran Library Reference ♦ Revision A, February 1999

Usage: bic , bis , bit , setbit

call bic(bitnum, word)

call bis(bitnum, word)

call setbit(bitnum, word, state)

LOGICAL bit x = bit(bitnum, word)

bitnum, state, and word are INTEGER*4 input arguments. Function bit() returns a
logical value.

Bits are numbered so that bit 0 is the least significant bit, and bit 31 is the most
significant.

bic , bis , and setbit are external subroutines. bit is an external function.

Example 3: bic , bis , setbit , bit :

integer*4 bitnum/2/, state/0/, word/7/
logical bit
print 1, word

1 format(13x "word", o12.11)
call bic(bitnum, word)
print 2, word

2 format("after bic(2,word)", o12.11)
call bis(bitnum, word)
print 3, word

3 format("after bis(2,word)", o12.11)
call setbit(bitnum, word, state)
print 4, word

4 format("after setbit(2,word,0)", o12.11)
print 5, bit(bitnum, word)

5 format("bit(2,word)", L)
end

<output>
word 00000000007

after bic(2,word) 00000000003
after bis(2,word) 00000000007
after setbit(2,word,0) 00000000003
bit(2,word) F

chdir : Change Default Directory
The function is called by:

FORTRAN Library Routines 9

INTEGER*4 chdir

n = chdir(dirname)

dirname character Input Directory name

Return value INTEGER*4 Output n=0: OK, n>0: Error code

Example: chdir —change cwd to MyDir :

INTEGER*4 chdir, n
n = chdir ("MyDir")
if (n .ne. 0) stop "chdir: error"
end

See also: chdir(2), cd(1), and gerror(3F) to interpret error codes.

Path names can be no longer than MAXPATHLENas defined in <sys/param.h> .
They can be relative or absolute paths.

Use of this function can cause inquire by unit to fail.

Certain FORTRAN file operations reopen files by name. Using chdir while doing I/
O can cause the runtime system to lose track of files created with relative path
names. including the files that are created by open statements without file names.

chmod: Change the Mode of a File
The function is called by:

10 Fortran Library Reference ♦ Revision A, February 1999

INTEGER*4 chmod

n = chmod(name, mode)

name character Input Path name

mode character Input Anything recognized by chmod(1),

such as o-w , 444 , etc.

Return value INTEGER*4 Output n = 0: OK; n>0: System error
number

Example: chmod—add write permissions to MyFile :

character*18 name, mode
INTEGER*4 chmod, n
name = "MyFile"
mode = "+w"
n = chmod(name, mode)
if (n .ne. 0) stop ’chmod: error’
end

See also: chmod(1), and gerror(3F) to interpret error codes.

Path names cannot be longer than MAXPATHLENas defined in <sys/param.h> .
They can be relative or absolute paths.

date : Get Current Date as a Character
String
Note - This routine is not “Year 2000 Safe” because it returns only a two-digit value
for the year. Programs that compute differences between dates using the output of
this routine may not work properly after 31 December, 1999. Programs using this
date() routine will see a runtime warning message the first time the routine is
called to alert the user. See date_and_time() as a possible alternate routine.

The subroutine is called by:

FORTRAN Library Routines 11

call date(c)

c
CHARACTER*9

Output Variable, array, array element, or character substring

The form of the returned string c is dd-mmm-yy, where dd is the day of the month as
a 2-digit number, mmm is the month as a 3-letter abbreviation, and yy is the year as a
2-digit number (and is not year 2000 safe!).

Example: date :

demo% cat dat1.f
* dat1.f -- Get the date as a character string.

character c*9
call date (c)
write(*,"(" The date today is: ", A9)") c
end

demo% f77 -silent dat1.f
"dat.f", line 2: Warning: Subroutine "date" is not safe after

year 2000; use "date_and_time" instead
demo% a.out
Computing time differences using the 2 digit year from subroutine

date is not safe after year 2000.
The date today is: 9-Jul-98

demo%

See also idate() and date_and_time() .

date_and_time : Get Date and Time
This is a FORTRAN 77 version of the Fortran 90 intrinsic routine, and is Year 2000
safe.

The date_and_time subroutine returns data from the real-time clock and the date.
Local time is returned, as well as the difference between local time and Universal
Coordinated Time (UTC) (also known as Greenwich Mean Time, GMT).

The date_and_time () subroutine is called by:

12 Fortran Library Reference ♦ Revision A, February 1999

call date_and_time(date, time, zone, values)

date CHARACTER*8 Output Date, in form CCYYMMDD,
where CCYY is the four-digit
year, MM the two-digit
month, and DD the two-digit
day of the month. For
example: 19980709

time CHARACTER*10 Output The current time, in the form
hhmmss.sss, where hh is the
hour, mm minutes, and ss.sss
seconds and milliseconds.

zone CHARACTER*5 Output The time difference with
respect to UTC, expressed in
hours and minutes, in the
form hhmm

values INTEGER*4 VALUES(8) Output An integer array of 8
elements described below.

The eight values returned in the INTEGER*4 values array are

VALUES(1) The year, as a 4-digit integer. For example, 1998.

VALUES(2) The month, as an integer from 1 to 12.

VALUES(3) The day of the month, as an integer from 1 to 31.

VALUES(4) The time difference, in minutes, with respect to UTC.

VALUES(5) The hour of the day, as an integer from 1 to 23.

VALUES(6) The minutes of the hour, as an integer from 1 to 59.

VALUES(7) The seconds of the minute, as an integer from 0 to 60.

VALUES(8) The milliseconds of the second, in range 0 to 999.

An example using date_and_time:

demo% cat dtm.f
integer date_time(8)

FORTRAN Library Routines 13

character*10 b(3)
call date_and_time(b(1), b(2), b(3), date_time)
print *,"date_time array values:"
print *,"year=",date_time(1)
print *,"month_of_year=",date_time(2)
print *,"day_of_month=",date_time(3)
print *,"time difference in minutes=",date_time(4)
print *,"hour of day=",date_time(5)
print *,"minutes of hour=",date_time(6)
print *,"seconds of minute=",date_time(7)
print *,"milliseconds of second=",date_time(8)
print *, "DATE=",b(1)
print *, "TIME=",b(2)
print *, "ZONE=",b(3)
end

When run on a computer in California, USA on July 9, 1998, it generated the
following output:

date_time array values:
year= 1998
month_of_year= 7
day_of_month= 9
time difference in minutes= -420
hour of day= 17
minutes of hour= 8
seconds of minute= 54
milliseconds of second= 587
DATE=19980709
TIME=170854.587
ZONE=-0700

dtime , etime : Elapsed Execution Time
Both functions have return values of elapsed time (or -1.0 as error indicator). The
time is in seconds. The resolution is to a nanosecond.

dtime : Elapsed Time Since the Last dtime Call
For dtime , the elapsed time is:

� First call: elapsed time since start of execution

� Subsequent calls: elapsed time since the last call to dtime

� Single processor: time used by the CPU

14 Fortran Library Reference ♦ Revision A, February 1999

� Multiple Processor: the sum of times for all the CPUs, which is not useful data;
use etime instead.

Note - Do not call dtime from within a parallelized loop.

The function is called by:

e = dtime(tarray)

tarray real(2) Output e= -1.0: Error: tarray values are undefined

e = -1.0: User time in tarray(1) if no error.
System time in tarray(2) if no error

Return value real Output e= -1.0: Error

e = -1.0: The sum of tarray(1) and tarray(2)

Example: dtime() , single processor:

real e, dtime, t(2)
print *, "elapsed:", e, ", user:", t(1), ", sys:", t(2)
do i = 1, 10000

k=k+1
end do
e = dtime(t)
print *, "elapsed:", e, ", user:", t(1), ", sys:", t(2)
end

demo% f77 -silent tdtime.f
demo% a.out
elapsed: 0., user: 0., sys: 0.
elapsed: 0.180000, user: 6.00000E-02, sys: 0.120000
demo%

etime : Elapsed Time Since Start of Execution
For etime , the elapsed time is:

� Single Processor-CPU time for the calling process

� Multiple Processors—wallclock time while processing your program

Here is how FORTRAN decides single processor or multiple processor:

For a parallelized FORTRAN program linked with libF77_mt , if the environment
variable PARALLEL is:

� Undefined, the current run is single processor.

FORTRAN Library Routines 15

� Defined and in the range 1, 2, 3, …, the current run is multiple processor.

� Defined, but some value other than 1, 2, 3, …, the results are unpredictable.

The function is called by:

e = etime(tarray)

tarray real(2) Output e= -1.0: Error: tarray values are undefined.

e = -1.0: Single Processor: User time in
tarray(1). System time in tarray(2)

Multiple Processor: Wall clock time in
tarray(1), 0.0 in tarray(2)

Return value real Output e= -1.0: Error

e = -1.0: The sum of tarray(1) and tarray(2)

Take note that the initial call to etime will be inaccurate. It merely enables the system
clock. Do not use the value returned by the initial call to etime.

Example: etime() , single processor:

real e, etime, t(2)
e = etime(t) ! Startup etime - do not use result
do i = 1, 10000

k=k+1
end do
e = etime(t)
print *, "elapsed:", e, ", user:", t(1), ‘, sys:", t(2)
end

demo% f77 -silent tetime.f
demo% a.out
elapsed: 0.190000, user: 6.00000E-02, sys: 0.130000
demo%

See also times(2), f77(1), and the Fortran Programming Guide.

exit : Terminate a Process and Set the
Status
The subroutine is called by:

16 Fortran Library Reference ♦ Revision A, February 1999

call exit(status)

status INTEGER*4 Input

Example: exit() :

...
if(dx .lt. 0.) call exit(0)
...
end

exit flushes and closes all the files in the process, and notifies the parent process if
it is executing a wait .

The low-order 8 bits of status are available to the parent process. These 8 bits are
shifted left 8 bits, and all other bits are zero. (Therefore, status should be in the range
of 256 - 65280). This call will never return.

The C function exit can cause cleanup actions before the final system "exit ".

Calling exit without an argument causes a compile-time warning message, and a
zero will be automatically provided as an argument. See also: exit(2), fork(2), fork(3F),
wait(2), wait(3F).

fdate : Return Date and Time in an
ASCII String
The subroutine or function is called by:

call fdate(string)

string character*24 Output

or:

FORTRAN Library Routines 17

CHARACTER fdate*24

string = fdate()

Return value character*24 Output

If used as a function, the calling
routine must define the type and
size of fdate .

Example 1: fdate as a subroutine:

character*24 string
call fdate(string)
write(*,*) string
end

Output:

Wed Aug 3 15:30:23 1994

Example 2: fdate as a function, same output:

character*24 fdate
write(*,*) fdate()
end

See also: ctime(3), time(3F), and idate(3F).

flush : Flush Output to a Logical Unit
The subroutine is called by:

call flush(lunit)

lunit INTEGER*4 Input Logical unit

The flush subroutine flushes the contents of the buffer for the logical unit, lunit ,
to the associated file. This is most useful for logical units 0 and 6 when they are both
associated with the console terminal.

See also fclose(3S).

18 Fortran Library Reference ♦ Revision A, February 1999

fork : Create a Copy of the Current
Process
The function is called by:

INTEGER*4 fork

n = fork()

Return value INTEGER*4 Output n>0: n=Process ID of copy

n<0, n=System error code

The fork function creates a copy of the calling process. The only distinction between
the two processes is that the value returned to one of them, referred to as the parent
process, will be the process ID of the copy. The copy is usually referred to as the child
process. The value returned to the child process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of
the contents of I/O buffers in the external files.

Example: fork() :

INTEGER*4 fork, pid
pid = fork()
if(pid.lt.0) stop "fork error"
if(pid.gt.0) then

print *, "I am the parent"
else

print *, "I am the child"
endif

A corresponding exec routine has not been provided because there is no satisfactory
way to retain open logical units across the exec routine. However, the usual
function of fork/exec can be performed using system(3F). See also: fork(2), wait(3F),
kill(3F), system(3F), and perror(3F).

FORTRAN Library Routines 19

free : Deallocate Memory Allocated by
Malloc
The subroutine is called by:

call free (ptr)

ptr pointer Input

free deallocates a region of memory previously allocated by malloc . The region of
memory is returned to the memory manager; it is no longer available to the user’s
program.

Example: free() :

real x
pointer (ptr, x)
ptr = malloc (10000)
call free (ptr)
end

See “malloc, malloc64 : Allocate Memory and Get Address” on page 69 for
details.

fseek , ftell : Determine Position and
Reposition a File
fseek and ftell are routines that permit repositioning of a file. ftell returns a
file’s current position as an offset of so many bytes from the beginning of the file. At
some later point in the program, fseek can use this saved offset value to reposition
the file to that same place for reading.

fseek : Reposition a File on a Logical Unit
The function is called by:

20 Fortran Library Reference ♦ Revision A, February 1999

INTEGER*4 fseek

n = fseek(lunit, offset, from)

lunit INTEGER*4 Input Open logical unit

INTEGER*4

or

INTEGER*8

Input Offset in bytes relative to position
specified by from

offset

An INTEGER*8 offset value is required when compiled for a 64-bit
environment, such as Solaris 7, with -xarch=v9 . If a literal constant is
supplied, it must be a 64-bit constant, for example: 100_8

from INTEGER*4 Input 0=Beginning of file

1=Current position

2=End of file

Return value INTEGER*4 Output n=0: OK; n>0: System error code

Note - On sequential files, following a call to fseek by an output operation (e.g.
WRITE) causes all data records following the fseek position to be deleted and
replaced by the new data record (and an end-of-file mark). Rewriting a record in
place can only be done with direct access files.

Example: fseek() —Reposition MyFile to two bytes from the beginning

INTEGER*4 fseek, lunit/1/, offset/2/, from/0/, n
open(UNIT=lunit, FILE="MyFile")
n = fseek(lunit, offset, from)
if (n .gt. 0) stop "fseek error"
end

:

Example: Same example in a 64-bit environment and compiled with -xarch=v9 :

INTEGER*4 fseek, lunit/1/, from/0/, n
INTEGER*8 offset/2/
open(UNIT=lunit, FILE="MyFile")
n = fseek(lunit, offset, from)
if (n .gt. 0) stop "fseek error"
end

FORTRAN Library Routines 21

ftell : Return Current Position of File
The function is called by:

INTEGER*4 ftell

n = ftell(lunit)

lunit INTEGER*4 Input Open logical unit

INTEGER*4

or

INTEGER*8

Output n>=0: n=Offset in bytes from start
of file

n<0: n=System error code

Return value

An INTEGER*8 offset value is returned when compiling for a 64-bit
environment, such as Solaris 7, with -xarch=v9 . ftell and variables
receiving this return value should be declared INTEGER*8.

Example: ftell() :

INTEGER*4 ftell, lunit/1/, n
open(UNIT=lunit, FILE="MyFile")
...
n = ftell(lunit)
if (n .lt. 0) stop "ftell error"
...

Example: Same example in a 64-bit environment and compiled with -xarch=v9 :

INTEGER*4 lunit/1/
INTEGER*8 ftell, n
open(UNIT=lunit, FILE="MyFile")
...
n = ftell(lunit)
if (n .lt. 0) stop "ftell error"
...

See also fseek(3S) and perror(3F); also fseeko64(3F) ftello64(3F).

22 Fortran Library Reference ♦ Revision A, February 1999

fseeko64 , ftello64 : Determine
Position and Reposition a Large File
fseeko64 and ftello64 are "large file" versions of fseek and ftell. They take and
return INTEGER*8 file position offsets on Solaris 2.6 and Solaris 7. (A "large file" is
larger than 2 Gigabytes and therefore a byte-position must be represented by a 64-bit
integer.) Use these versions to determine and/or reposition large files.

fseeko64 : Reposition a File on a Logical Unit
The function is called by:

INTEGER fseeko64

n = fseeko64(lunit, offset64, from)

lunit INTEGER*4 Input Open logical unit

offset64 INTEGER*8 Input 64-bit offset in bytes relative to
position specified by from

from INTEGER*4 Input 0=Beginning of file

1=Current position

2=End of file

Return value INTEGER*4 Output n=0: OK; n>0: System error code

Note - On sequential files, following a call to fseeko64 by an output operation (e.g.
WRITE) causes all data records following the fseek position to be deleted and
replaced by the new data record (and an end-of-file mark). Rewriting a record in
place can only be done with direct access files.

Example: fseeko64() —Reposition MyFile to two bytes from the beginning:

INTEGER fseeko64, lunit/1/, from/0/, n
INTEGER*8 offset/200/
open(UNIT=lunit, FILE="MyFile")
n = fseeko64(lunit, offset, from)
if (n .gt. 0) stop "fseek error"
end

FORTRAN Library Routines 23

ftello64 : Return Current Position of File
The function is called by:

INTEGER*8 ftello64

n = ftello64(lunit)

lunit INTEGER*4 Input Open logical unit

Return value INTEGER*8 Output n>=0: n=Offset in bytes from start
of file

n<0: n=System error code

Example: ftello64() :

INTEGER*8 ftello64, lunit/1/, n
open(UNIT=lunit, FILE="MyFile")
...
n = ftello64(lunit)
if (n .lt. 0) stop "ftell error"
...

getarg , iargc : Get Command-line
Arguments
getarg and iargc access arguments on the command line (after expansion by the
command-line preprocessor.

getarg : Get a Command-Line Argument
The subroutine is called by:

24 Fortran Library Reference ♦ Revision A, February 1999

call getarg(k, arg)

kINTEGER*4 Input Index of argument (0=first=command name)

argcharacter* n Output kth argument

nINTEGER*4 Size of arg Large enough to hold longest argument

iargc : Get the Number of Command-Line
Arguments
The function is called by:

m = iargc()

Return value INTEGER*4 Output Number of arguments on the
command line

Example: iargc and getarg , get argument count and each argument:

demo% cat yarg.f
character argv*10
INTEGER*4 i, iargc, n
n = iargc()
do 1 i = 1, n

call getarg(i, argv)
1 write(*, "(i2, 1x, a)") i, argv

end
demo% f77 -silent yarg.f
demo% a.out *.f
1 first.f
2 yarg.f

See also execve(2) and getenv(3F).

FORTRAN Library Routines 25

getc , fgetc : Get Next Character
getc and fgetc get the next character from the input stream.Do not mix calls to
these routines with normal Fortran I/O on the same logical unit.

getc : Get Next Character from stdin
The function is called by:

INTEGER*4 getc

status = getc(char)

char character Output Next character

Return value INTEGER*4 Output status=0: OK

status=-1: End of file

status>0: System error code or f77
I/O error code

Example: getc gets each character from the keyboard; note the Control-D (^D):

character char
INTEGER*4 getc, status
status = 0
do while (status .eq. 0)

status = getc(char)
write(*, "(i3, o4.3)") status, char

end do
end

After compiling, a sample run of the above source is:

demo% a.out
ab Program reads letters typed in
^D terminated by a CONTROL-D.
0 141 Program outputs status and octal value of the characters entered
0 142 141 represents ’a’, 142 is ’b’
0 012 012 represents the RETURN key
-1 012 Next attempt to read returns CONTROL-D
demo%

26 Fortran Library Reference ♦ Revision A, February 1999

For any logical unit, do not mix normal FORTRAN input with getc() .

fgetc : Get Next Character from Specified Logical
Unit
The function is called by:

INTEGER*4 fgetc

status = fgetc(lunit, char)

lunit INTEGER*4 Input Logical unit

char character Output Next character

Return value INTEGER*4 Output status=-1: End of File

status>0: System error code or f77
I/O error code

Example: fgetc gets each character from tfgetc.data ; note the linefeeds (Octal
012):

character char
INTEGER*4 fgetc, status
open(unit=1, file="tfgetc.data")
status = 0
do while (status .eq. 0)

status = fgetc(1, char)
write(*, "(i3, o4.3)") status, char

end do
end

After compiling, a sample run of the above source is:

demo% cat tfgetc.data
ab
yz
demo% a.out
0 141 ‘a’ read
0 142 ‘b’ read
0 012 linefeed read

FORTRAN Library Routines 27

0 171 ‘y’ read
0 172 ‘z’ read
0 012 linefeed read
-1 012 CONTROL-D read
demo%

For any logical unit, do not mix normal FORTRAN input with fgetc() .

See also: getc(3S), intro(2), and perror(3F).

getcwd : Get Path of Current Working
Directory
The function is called by:

INTEGER*4 getcwd

status = getcwd(dirname)

dirname character* n Output

The path of the current
directory is returned

Path name of the current
working directory. n must be
large enough for longest
path name

Return value INTEGER*4 Output status=0: OK

status>0: Error code

Example: getcwd :

INTEGER*4 getcwd, status
character*64 dirname
status = getcwd(dirname)
if (status .ne. 0) stop "getcwd: error"
write(*,*) dirname
end

See also: chdir(3F), perror(3F), and getwd(3).

Note: the path names cannot be longer than MAXPATHLENas defined in
<sys/param.h> .

28 Fortran Library Reference ♦ Revision A, February 1999

getenv : Get Value of Environment
Variables
The subroutine is called by:

call getenv(ename, evalue)

ename character* n Input Name of the environment variable sought

evalue character* n Output Value of the environment variable found;
blanks if not successful

The size of ename and evalue must be large enough to hold their respective character
strings.

The getenv subroutine searches the environment list for a string of the form
ename=evalue and returns the value in evalue if such a string is present; otherwise, it
fills evalue with blanks.

Example: Use getenv() to print the value of $SHELL:

character*18 evalue
call getenv("SHELL", evalue)
write(*,*) """, evalue, """
end

See also: execve(2) and environ(5).

getfd : Get File Descriptor for External
Unit Number
The function is called by:

FORTRAN Library Routines 29

INTEGER*4 getfd

fildes = getfd(unitn)

unitn INTEGER*4 Input External unit number

Return value INTEGER*4 -or-
INTEGER*8

Output File descriptor if file is connected;
-1 if file is not connected An
INTEGER*8 result is returned
when compiling for 64-bit
environments

Example: getfd() :

INTEGER*4 fildes, getfd, unitn/1/
open(unitn, file="tgetfd.data")
fildes = getfd(unitn)
if (fildes .eq. -1) stop "getfd: file not connected"
write(*,*) "file descriptor = ", fildes
end

See also open(2).

getfilep : Get File Pointer for External
Unit Number
The function is:

irtn = c_read(getfilep(unitn), inbyte, 1)

c_read C function Input User’s own C function. See
example.

unitn INTEGER*4 Input External unit number.

getfilep INTEGER*4 -or-
INTEGER*8

Return value File pointer if the file is connected;
-1 if the file is not connected. An
INTEGER*8 value is returned when
compiling for 64-bit environments

30 Fortran Library Reference ♦ Revision A, February 1999

This function is used for mixing standard FORTRAN I/O with C I/O. Such a mix is
nonportable, and is not guaranteed for subsequent releases of the operating system
or FORTRAN. Use of this function is not recommended, and no direct interface is
provided. You must create your own C routine to use the value returned by
getfilep . A sample C routine is shown below.

Example: FORTRAN uses getfilep by passing it to a C function:

tgetfilepF.f:

character*1 inbyte
integer*4 c_read, getfilep, unitn / 5 /
external getfilep
write(*,"(a,$)") "What is the digit? "

irtn = c_read(getfilep(unitn), inbyte, 1)

write(*,9) inbyte
9 format("The digit read by C is ", a)

end

Sample C function actually using getfilep :

tgetfilepC.c:

#include <stdio.h>
int c_read_ (fd, buf, nbytes, buf_len)
FILE **fd ;
char *buf ;
int *nbytes, buf_len ;
{

return fread(buf, 1, *nbytes, *fd) ;
}

A sample compile-build-run is:

demo 11% cc -c tgetfilepC.c
demo 12% f77 tgetfilepC.o tgetfilepF.f
tgetfileF.f:
MAIN:
demo 13% a.out
What is the digit? 3
The digit read by C is 3
demo 14%

For more information, read the chapter on the C-FORTRAN interface in the Fortran
Programming Guide. See also open(2).

FORTRAN Library Routines 31

getlog : Get User’s Login Name
The subroutine is called by:

call getlog(name)

name character* n Output User’s login name, or all blanks if the
process is running detached from a terminal.
n should be large enough to hold the longest
name.

Example: getlog :

character*18 name
call getlog(name)
write(*,*) """, name, """
end

See also getlogin(3).

getpid : Get Process ID
The function is called by:

INTEGER*4 getpid

pid = getpid()

Return value INTEGER*4 Output Process ID of the current process

Example: getpid :

INTEGER*4 getpid, pid
pid = getpid()
write(*,*) "process id = ", pid
end

32 Fortran Library Reference ♦ Revision A, February 1999

See also getpid(2).

getuid , getgid : Get User or Group ID
of Process
getuid and getgid get the user or group ID of the process, respectively.

getuid : Get User ID of the Process
The function is called by:

INTEGER*4 getuid

uid = getuid()

Return value INTEGER*4 Output User ID of the process

getgid : Get Group ID of the Process
The function is called by:

INTEGER*4 getgid

gid = getgid()

Return value INTEGER*4 Output Group ID of the process

Example: getuid() and getpid() :

INTEGER*4 getuid, getgid, gid, uid
uid = getuid()
gid = getgid()
write(*,*) uid, gid
end

FORTRAN Library Routines 33

See also: getuid(2).

hostnm : Get Name of Current Host
The function is called by:

INTEGER*4 hostnm

status = hostnm(name)

name character* n Output Name of current host system. n
must be large enough to hold the
host name.

Return value INTEGER*4 Output status=0: OK

status>0: Error

Example: hostnm() :

INTEGER*4 hostnm, status
character*8 name
status = hostnm(name)
write(*,*) "host name = "", name, """
end

See also gethostname(2).

idate : Return Current Date
idate has two versions:

� Standard—Put the current system date into an integer array: day, month, and year.

� VMS—Put the current system date into three integer variables: month, day, and
year. This version is not “Year 2000 Safe”.

34 Fortran Library Reference ♦ Revision A, February 1999

The -lV77 compiler option request the VMS library and links the VMS versions of
both time() and idate() ; otherwise, the linker accesses the standard versions.

The standard version puts the current system date into one integer array: day,
month, and year.

The subroutine is called by:

call idate(iarray) Standard Version

iarray INTEGER*4 Output array (3). Note the order: day, month, year.

Example: idate (standard version):

demo% cat tidate.f
INTEGER*4 iarray(3)
call idate(iarray)
write(*, "(" The date is: ",3i5)") iarray
end

demo% f77 -silent tidate.f
demo% a.out

The date is: 10 8 1998
demo%

The VMS idate() subroutine is called by:

call idate(m, d, y) VMS Version

mINTEGER*4 Output Month (1 - 12)

dINTEGER*4 Output Day (1 - 7)

yINTEGER*4 Output Year (1 - 99) Not year 2000 safe!

Using the VMS idate() routine will cause a warning message at link time and the
first time the routine is called in execution.

FORTRAN Library Routines 35

Note - The VMS version of the idate() routine is not “Year 2000 Safe” because it
returns only a two-digit value for the year. Programs that compute differences
between dates using the output of this routine may not work properly after 31
December, 1999. Programs using this idate() routine will see a runtime warning
message the first time the routine is called to alert the user. See date_and_time()
as a possible alternate.

Example: idate (VMS version):

demo% cat titime.f
INTEGER*4 m, d, y
call idate (m, d, y)
write (*, "(" The date is: ",3i5)") m, d, y
end

demo% f77 -silent tidateV.f -lV77
"titime.f", line 2: Warning: Subroutine "idate" is not safe after

year 2000; use "date_and_time" instead
demo% a.out
Computing time differences using the 2 digit year from subroutine

idate is not safe after year 2000.
The date is: 7 10 98

ieee_flags,ieee_handler, sigfpe :
IEEE Arithmetic
These subprograms provide modes and status required to fully exploit ANSI/IEEE
Std 754-1985 arithmetic in a FORTRAN program. They correspond closely to the
functions ieee_flags(3M), ieee_handler(3M), and sigfpe(3).

Here is a summary:

TABLE 1–2 IEEE Arithmetic Support Routines

ieeer = ieee_flags(action, mode, in, out)

ieeer = ieee_handler(action, exception, hdl)

ieeer = sigfpe(code, hdl)

action
character Input

code
sigfpe_code_type Input

36 Fortran Library Reference ♦ Revision A, February 1999

TABLE 1–2 IEEE Arithmetic Support Routines (continued)

mode
character Input

in
character Input

exception
character Input

hdl
sigfpe_handler_type Input

out
character Output

Return value INTEGER*4 Output

See the Sun Numerical Computation Guide for details on how these functions can be
used strategically.

If you use sigfpe , you must do your own setting of the corresponding
trap-enable-mask bits in the floating-point status register. The details are in the
SPARC architecture manual. The libm function ieee_handler sets these
trap-enable-mask bits for you.

The character keywords accepted for mode and exception depend on the value of action.

TABLE 1–3 ieee_flags(action,mode,in,out) Parameters and Actions

action = "clearall" mode, in, out, unused; returns 0

mode = "direction"

mode = "precision" (on x86 platforms only)
action = "clear"

clear mode, in

out is unused; returns 0
mode =
"exception"

in = "inexact" or "division" or
"underflow" or "overflow" or
"invalid" or "all" or "common"

mode =
"direction"

in = "nearest’ or "tozero’ or
"positive’ or "negative"

mode =
"precision" (on
x86 only)

in = "extended" or "double" or
"single"

action = "set"

set floating-point mode,in

out is unused; returns 0

mode =
"exception"

in = "inexact" or "division" or
"underflow" or "overflow" or
"invalid" or "all" or "common"

FORTRAN Library Routines 37

TABLE 1–3 ieee_flags(action,mode,in,out) Parameters and Actions (continued)

mode =
"direction"

out = "nearest’ or "tozero’ or
"positive’ or "negative"

mode =
"precision" (on
x86 only)

out = "extended" or "double"
or "single"

action = "get"

test mode settings

in, out may be blank or one of the
settings to test returns the current
setting depending on mode, or "not
available " The function returns
0 or the current exception flags if
mode = "exception "

mode =
"exception"

out = "inexact" or "division" or
"underflow" or "overflow" or
"invalid" or "all" or "common"

TABLE 1–4 ieee_handler(action,in,out) Parameters

action = "clear"clear user exception handing of in; out
is unused

in = "inexact" or "division" or
"underflow" or "overflow" or
"invalid" or "all" or "common"

action = "set" set user exception handing of in; out is
address of handler routine, or SIGFPE_DEFAULT, or
SIGFPE_ABORT, or SIGFPE_IGNOREdefined in f77/
f77_floating point.h

in = "inexact" or "division" or
"underflow" or "overflow" or
"invalid" or "all" or "common"

Example 1: Set rounding direction to round toward zero, unless the hardware does
not support directed rounding modes:

INTEGER*4 ieeer
character*1 mode, out, in
ieeer = ieee_flags("set", "direction", "tozero", out)

Example 2: Clear rounding direction to default (round toward nearest):

character*1 out, in
ieeer = ieee_flags("clear","direction", in, out)

Example 3: Clear all accrued exception-occurred bits:

character*18 out
ieeer = ieee_flags("clear", "exception", "all", out)

Example 4: Detect overflow exception as follows:

38 Fortran Library Reference ♦ Revision A, February 1999

character*18 out
ieeer = ieee_flags("get", "exception", "overflow", out)
if (out .eq. "overflow") stop "overflow"

The above code sets out to overflow and ieeer to 25 (this value is platform
dependent). Similar coding detects exceptions, such as invalid or inexact .

Example 5: hand1.f , write and use a signal handler (Solaris 2):

external hand
real r / 14.2 /, s / 0.0 /
i = ieee_handler("set", "division", hand)
t = r/s
end

INTEGER*4 function hand (sig, sip, uap)
INTEGER*4 sig, address
structure /fault/

INTEGER*4 address
end structure
structure /siginfo/

INTEGER*4 si_signo
INTEGER*4 si_code
INTEGER*4 si_errno
record /fault/ fault

end structure
record /siginfo/ sip
address = sip.fault.address
write (*,10) address

10 format("Exception at hex address ", z8)
end

See the Numerical Computation Guide. See also: floatingpoint(3), signal(3), sigfpe(3),
f77_floatingpoint(3F), ieee_flags(3M), and ieee_handler(3M).

f77_floatingpoint.h : FORTRAN IEEE
Definitions
The header file f77_floatingpoint.h defines constants and types used to
implement standard floating-point according to ANSI/IEEE Std 754-1985.

Include the file in a FORTRAN 77 source program as follows:

#include "f77_floatingpoint.h"

Use of this include file requires preprocessing prior to FORTRAN compilation.The
source file referencing this include file will automatically be preprocessed if the name
has a .F or .F90 extension.

FORTRAN Library Routines 39

Fortran 90 programs should include the file f90/floatingpoint.h instead.

IEEE Rounding Mode:

fp_direction_type The type of the IEEE rounding direction mode. The
order of enumeration varies according to hardware.

SIGFPE Handling:

sigfpe_code_type The type of a SIGFPE code.

sigfpe_handler_type The type of a user-definable SIGFPE exception
handler called to handle a particular SIGFPE code.

SIGFPE_DEFAULT A macro indicating default SIGFPE exception
handling: IEEE exceptions to continue with a default
result and to abort for other SIGFPE codes.

SIGFPE_IGNORE A macro indicating an alternate SIGFPE exception
handling, namely to ignore and continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception
handling, namely to abort with a core dump.

IEEE Exception Handling:

N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTIONexceptions. Each
exception is given a bit number.

fp_exception_field_type The type intended to hold at least
N_IEEE_EXCEPTIONbits corresponding to the IEEE
exceptions numbered by fp_exception_type . Thus,
fp_inexact corresponds to the least significant bit
and fp_invalid to the fifth least significant bit.
Some operations can set more than one exception.

IEEE Classification:

40 Fortran Library Reference ♦ Revision A, February 1999

fp_class_type A list of the classes of IEEE floating-point values and
symbols.

Refer to the Numerical Computation Guide. See also ieee_environment(3M) and
f77_ieee_environment(3F).

index,rindex,lnblnk : Index or
Length of Substring
These functions search through a character string:

index(a1, a2) Index of first occurrence of string a2 in string a1

rindex(a1, a2) Index of last occurrence of string a2 in string a1

lnblnk(a1) Index of last nonblank in string a1

index has the following forms:

index : First Occurrence of a Substring in a String
The index is an intrinsic function called by:

n = index(a1, a2)

a1 character Input Main string

a2 character Input Substring

Return value INTEGER Output n>0: Index of first occurrence of a2 in a1

n=0: a2 does not occur in a1.

FORTRAN Library Routines 41

If declared INTEGER*8, index() will return an INTEGER*8 value when compiled
for a 64-bit environment and character variable a1 is a very large character string
(greater than 2 Gigabytes).

rindex : Last Occurrence of a Substring in a String
The function is called by:

INTEGER*4 rindex

n = rindex(a1, a2)

a1 character Input Main string

a2 character Input Substring

Return value INTEGER*4
orINTEGER*8

Output n>0: Index of last occurrence of a2 in a1

n=0: a2 does not occur in a1INTEGER*8
returned in 64-bit environments

lnblnk : Last Nonblank in a String
The function is called by:

n = lnblnk(a1)

a1 character Input String

Return value INTEGER*4
orINTEGER*8

Output n>0: Index of last nonblank in a1

n=0: a1 is all nonblank INTEGER*8 returned
in 64-bit environments

Example: index() , rindex() , lnblnk() :

* 123456789012345678901
character s*24 / "abcPDQxyz...abcPDQxyz" /
INTEGER*4 declen, index, first, last, len, lnblnk, rindex

42 Fortran Library Reference ♦ Revision A, February 1999

declen = len(s)
first = index(s, "abc")
last = rindex(s, "abc")
lastnb = lnblnk(s)
write(*,*) declen, lastnb
write(*,*) first, last
end

demo% f77 -silent tindex.f
demo% a.out
24 21 <- declen is 24 because intrinsic len() returns the declared length of s
1 13

Note - Programs compiled to run in a 64-bit environment must declare
index, rindex and lnblnk (and their receiving variables) INTEGER*8 to handle
very large character strings.

inmax : Return Maximum Positive
Integer
The function is called by:

m = inmax()

Return value INTEGER*4 Output The maximum positive integer

Example: inmax :

INTEGER*4 inmax, m
m = inmax()
write(*,*) m
end

demo% f77 -silent tinmax.f
demo% a.out

2147483647
demo%

See also libm_single(3F) and libm_double(3F). See also the intrinsic function ephuge()
described in the FORTRAN 77 Language Reference Manual.

FORTRAN Library Routines 43

ioinit : Initialize I/O Properties
The IOINIT routine (FORTRAN 77 only) establishes properties of file I/O for files
opened after the call to IOINIT . The file I/O properties that IOINIT controls are as
follows:

� Carriage control: Recognize carriage control on any logical unit.

� Blanks/zeroes: Treat blanks in input data fields as blanks or zeroes.

� File position: Open files at beginning or at end-of-file.

� Prefix: Find and open files named prefixNN, 0 £ NN £ 19.

IOINIT does the following:

� Initializes global parameters specifying f77 file I/O properties

� Opens logical units 0 through 19 with the specified file I/O properties—attaches
externally defined files to logical units at runtime

Persistence of File I/O Properties
The file I/O properties apply as long as the connection exists. If you close the unit,
the properties no longer apply. The exception is the preassigned units 5 and 6, to
which carriage control and blanks/zeroes apply at any time.

Internal Flags
IOINIT uses labeled common to communicate with the runtime I/O system. It
stores internal flags in the equivalent of the following labeled common block:

INTEGER*2 IEOF, ICTL, IBZR
COMMON /_ _IOIFLG/ IEOF, ICTL, IBZR ! Not in user name space

In releases prior to SC 3.0.1, the labeled common block was named IOIFLG . The
name changed subsequently to _ _IOIFLG to prevent conflicts with any
user-defined common blocks.

Source Code
Some user needs are not satisfied with a generic version of IOINIT , so we provide
the source code. It is written in FORTRAN 77. The location is:

44 Fortran Library Reference ♦ Revision A, February 1999

<install>/SUNWspro/SC5.0/src/ioinit.f

where <install> is usually /opt for a standard installation of the Sun Fortran
software package.

Usage: ioinit
The ioinit subroutine is called by:

call ioinit (cctl, bzro, apnd, prefix, vrbose)

cctl logical Input True: Recognize carriage control, all
formatted output (except unit 0)

bzro logical Input True: Treat trailing and imbedded blanks as
zeroes.

apnd logical Input True: Open files at EoF. Append.

prefix character* n Input Nonblank: For unit NN, seek and open file
prefixNN

vrbose logical Input True: Report ioinit activity as it happens

See also getarg(3F) and getenv(3F).

Restrictions
Note the following restrictions:

� prefix can be no longer than 30 characters.

� A path name associated with an environment name can be no longer than 255
characters.

Description of Arguments
These are the arguments for ioinit .

FORTRAN Library Routines 45

cctl (Carriage Control)
By default, carriage control is not recognized on any logical unit. If cctl is .TRUE. ,
then carriage control is recognized on formatted output to all logical units, except
unit 0, the diagnostic channel. Otherwise, the default is restored.

bzro (Blanks)
By default, trailing and embedded blanks in input data fields are ignored. If bzro is
.TRUE. , then such blanks are treated as zeros. Otherwise, the default is restored.

apnd (Append)
By default, all files opened for sequential access are positioned at their beginning. It
is sometimes necessary or convenient to open at the end-of-file, so that a write will
append to the existing data. If apnd is .TRUE. , then files opened subsequently on
any logical unit are positioned at their end upon opening. A value of .FALSE.
restores the default behavior.

prefix (Automatic File Connection)
If the argument prefix is a nonblank string, then names of the form prefixNN are
sought in the program environment. The value associated with each such name
found is used to open the logical unit NN for formatted sequential access.

This search and connection is provided only for NN between 0 and 19, inclusive. For
NN > 19, nothing is done; see “Source Code” on page 44.

vrbose (IOINIT Activity)
If the argument vrbose is .TRUE. , then IOINIT reports on its own activity.

Example: The program myprogram has the following ioinit call:

call ioinit(.true., .false., .false., "FORT", .false.)

You can assign file name in at least two ways.

In sh :

demo$ FORT01=mydata
demo$ FORT12=myresults
demo$ export FORT01 FORT12
demo$ myprogram

46 Fortran Library Reference ♦ Revision A, February 1999

In csh :

demo% setenv FORT01 mydata
demo% setenv FORT12 myresults
demo% myprogram

With either shell, the ioinit call in the above example gives these results:

� Open logical unit 1 to the file, mydata .

� Open logical unit 12 to the file, myresults .

� Both files are positioned at their beginning.

� Any formatted output has column 1 removed and interpreted as carriage control.

� Embedded and trailing blanks are to be ignored on input.

Example: ioinit() —list and compile:

demo% cat tioinit.f
character*3 s
call ioinit(.true., .false., .false., "FORT", .false.)
do i = 1, 2

read(1, "(a3,i4)") s, n
write(12, 10) s, n

end do
10 format(a3,i4)

end
demo% cat tioinit.data
abc 123
PDQ 789
demo% f77 -silent tioinit.f
demo%

You can set environment variables as follows, using either sh or csh :

ioinit() —sh :

demo$ FORT01=tioinit.data
demo$ FORT12=tioinit.au
demo$ export FORT01 FORT12
demo$

ioinit() —csh :

demo% a.out
demo% cat tioinit.au
abc 123
PDQ 789

ioinit() —Run and test:

FORTRAN Library Routines 47

demo% a.out
demo% cat tioinit.au
abc 123
PDQ 789

itime : Current Time
itime puts the current system time into an integer array: hour, minute, and second.
The subroutine is called by:

call itime(iarray)

iarray INTEGER*4 Output 3-element array:

iarray(1) = hour

iarray(2) = minute

iarray(3) = second

Example: itime :

demo% cat titime.f
INTEGER*4 iarray(3)
call itime(iarray)
write (*, "(" The time is: ",3i5)") iarray
end

demo% f77 -silent titime.f
demo% a.out

The time is: 15 42 35

See also time(3F), ctime(3F), and fdate(3F).

kill : Send a Signal to a Process
The function is called by:

48 Fortran Library Reference ♦ Revision A, February 1999

status = kill(pid, signum)

pid INTEGER*4 Input Process ID of one of the user’s
processes

signum INTEGER*4 Input Valid signal number. See signal(3).

Return value INTEGER*4 Output status=0: OK

status>0: Error code

Example (fragment): Send a message using kill() :

INTEGER*4 kill, pid, signum
* …

status = kill(pid, signum)
if (status .ne. 0) stop "kill: error"
write(*,*) "Sent signal ", signum, " to process ", pid
end

The function sends signal signum, and integer signal number, to the process pid. Valid
signal numbers are listed in the C include file /usr/include/sys/signal.h

See also: kill(2), signal(3), signal(3F), fork(3F), and perror(3F).

libm Math Functions
The following functions and subroutines are part of the math library libm. Some
routines are intrinsics and return the same data type (single precision, double
precision, or quad precision) as their argument. The rest are non-intrinsics that take a
specific data type as an argument and return the same. These non-intrinsics do have
to be declared in the routine referencing them.

libm Intrinsic Functions
Here is a list of the intrinsic functions in libm . You need not put them in a type
statement. These functions take single, double, or quad precision data as arguments
and return the same.

FORTRAN Library Routines 49

sqrt(x) asin(x) cosd(x)

log(x) acos(x) asind(x)

log10(x) atan(x) acosd(x)

exp(x) atan2(x,y) atand(x)

x**y sinh(x) atan2d(x,y)

sin(x) cosh(x) aint(x)

cos(x) tanh(x) anint(x)

tan(x) sind(x) nint(x)

The
functions sind(x), cosd(x), asind(x), acosd(x), atand(x), atan2d(x,y)
are not considered intrinsics by the FORTRAN 77 standard.

libm_double : Double-Precision Functions
The following subprograms are double-precision libm functions and subroutines.

In general, these functions do not correspond to standard FORTRAN generic intrinsic
functions—data types are determined by the usual data typing rules.

Example: Subroutine and non-Intrinsic double-precision functions:

DOUBLE PRECISION c, d_acosh , d_hypot , d_infinity , s, x, y, z
...
z = d_acosh(x)
i = id_finite(x)
z = d_hypot(x, y)
z = d_infinity()
CALL d_sincos(x, s, c)

These DOUBLE PRECISIONfunctions need to appear in a DOUBLE PRECISION
statement.

Refer to the C library man pages for details: the man page for d_acos(x) is acos(3M)

50 Fortran Library Reference ♦ Revision A, February 1999

TABLE 1–5 Double Precision libm Functions

d_acos(x)

d_acosd(x)

d_acosh(x)

d_acosp(x)

d_acospi(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

Function

arc cosine

–

arc cosh

–

–

d_atan(x)

d_atand(x)

d_atanh(x)

d_atanp(x)

d_atanpi(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

Function

arc tangent

–

arc tanh

–

–

d_asin(x)

d_asind(x)

d_asinh(x)

d_asinp(x)

d_asinpi(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

Function

arc sine

–

arc sinh

–

–

FORTRAN Library Routines 51

TABLE 1–5 Double Precision libm Functions (continued)

d_atan2((y, x)

d_atan2d(y, x)

d_atan2pi(y, x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

arc tangent

–

–

d_cbrt(x)

d_ceil(x)

d_copysign(x, x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

cube root

ceiling

–

d_cos(x)

d_cosd(x)

d_cosh(x)

d_cosp(x)

d_cospi(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

Function

cosine

–

hyperb cos

–

–

d_erf(x)

d_erfc(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

error func

–

52 Fortran Library Reference ♦ Revision A, February 1999

TABLE 1–5 Double Precision libm Functions (continued)

d_expm1(x)

d_floor(x)

d_hypot(x, y)

d_infinity()

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

(e**x)-1

floor

hypotenuse

–

d_j0(x)

d_j1(x)

d_jn(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Bessel

–

–

id_finite(x)

id_fp_class(x)

id_ilogb(x)

id_irint(x)

id_isinf(x)

id_isnan(x)

id_isnormal(x)

id_issubnormal(x)

id_iszero(x)

id_signbit(x)

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

FORTRAN Library Routines 53

TABLE 1–5 Double Precision libm Functions (continued)

d_addran()

d_addrans(x, p, l, u)

d_lcran()

d_lcrans(x, p, l, u)

d_shufrans(x, p, l,u)

DOUBLE
PRECISION

n/a

DOUBLE
PRECISION

n/a

n/a

Function

Subroutine

Function

Subroutine

Subroutine

random
number
generators

d_lgamma(x)

d_logb(x)

d_log1p(x)

d_log2(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

log gamma

–

–

–

54 Fortran Library Reference ♦ Revision A, February 1999

TABLE 1–5 Double Precision libm Functions (continued)

d_max_normal()

d_max_subnormal()

d_min_normal()

d_min_subnormal()

d_nextafter(x, y)

d_quiet_nan(n)

d_remainder(x, y)

d_rint(x)

d_scalb(x, y)

d_scalbn(x, n)

d_signaling_nan(n)

d_significand(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

d_sin(x)

d_sind(x)

d_sinh(x)

d_sinp(x)

d_sinpi(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

Function

sine

–

hyperb sine

–

–

FORTRAN Library Routines 55

TABLE 1–5 Double Precision libm Functions (continued)

d_sincos(x, s, c)

d_sincosd(x, s, c)

d_sincosp(x, s, c)

d_sincospi(x, s, c)

n/a

n/a

n/a

n/a

Subroutine

Subroutine

Subroutine

Subroutine

sine and
cosine

–

–

d_tan(x)

d_tand(x)

d_tanh(x)

d_tanp(x)

d_tanpi(x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

Function

Function

tangent

–

hyperb tan

–

–

d_y0(x)

d_y1(x)

d_yn(n, x)

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

Function

Function

Function

bessel

–

–

� Variables c , l , p, s , u, x , and y are of type DOUBLE PRECISION.

� Explicitly type these functions on a DOUBLE PRECISIONstatement or with an
appropriate IMPLICIT statement).

� sind(x) , asind(x), … take degrees rather than radians.

See also: intro(3M) and the Numerical Computation Guide.

libm_quadruple : Quad-Precision Functions
These subprograms are quadruple -precision (REAL*16) libm functions and
subroutines (SPARC only).

56 Fortran Library Reference ♦ Revision A, February 1999

In general, these do not correspond to standard generic intrinsic functions; data types
are determined by the usual data typing rules.

Samples: Quadruple precision functions:

REAL*16 c, q_acosh , q_hypot , q_infinity , s, x, y, z
...
z = q_acosh(x)
i = iq_finite(x)
z = q_hypot(x, y)
z = q_infinity()
CALL q_sincos(x, s, c)

The quadruple precision functions must appear in a REAL*16 statement

FORTRAN Library Routines 57

TABLE 1–6 Quadruple-Precision libm Functions

q_copysign(x, y)

q_fabs(x)

q_fmod(x)

q_infinity()

REAL*16

REAL*16

REAL*16

REAL*16

Function

Function

Function

Function

iq_finite(x)

iq_fp_class(x)

iq_ilogb(x)

iq_isinf(x)

iq_isnan(x)

iq_isnormal(x)

iq_issubnormal(x)

iq_iszero(x)

iq_signbit(x)

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

Function

Function

Function

Function

Function

Function

Function

Function

Function

q_max_normal()

q_max_subnormal()

q_min_normal()

q_min_subnormal()

q_nextafter(x, y)

q_quiet_nan(n)

q_remainder(x, y)

q_scalbn(x, n)

q_signaling_nan(n)

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

Function

Function

Function

Function

Function

Function

Function

Function

Function

� The variables c , l , p, s , u, x , and y are of type quadruple precision.

� Explicitly type these functions with a REAL*16 statement or with an appropriate
IMPLICIT statement.

58 Fortran Library Reference ♦ Revision A, February 1999

� sind(x) , asind(x), … take degrees rather than radians.

If you need to use any other quadruple-precision libm function, you can call it using
$PRAGMA C(fcn) before the call. For details, see the chapter on the C–FORTRAN
interface in the Fortran Programming Guide.

libm_single : Single-Precision Functions
These subprograms are single-precision libm functions and subroutines.

In general, the functions below provide access to single-precision libm functions that
do not correspond to standard FORTRAN generic intrinsic functions—data types are
determined by the usual data typing rules.

Samples: Single-precision libm functions:

REAL c, s, x, y, z
..
z = r_acosh(x)
i = ir_finite(x)
z = r_hypot(x, y)
z = r_infinity()
CALL r_sincos(x, s, c)

These functions need not be explicitly typed with a REALstatement as long as default
typing holds. (Variables beginning with “r ” are REAL, with “i ” are INTEGER.)

For details on these routines, see the C math library man pages (3M). For example,
for r_acos(x) see the acos(3M) man page.

FORTRAN Library Routines 59

TABLE 1–7 Single-Precision libm functions

r_acos(x)

r_acosd(x)

r_acosh(x)

r_acosp(x)

r_acospi(x)

REAL

REAL

REAL

REAL

REAL

Function

Function

Function

Function

Function

arc cosine

–

arc cosh

–

–

r_atan(x)

r_atand(x)

r_atanh(x)

r_atanp(x)

r_atanpi(x)

REAL

REAL

REAL

REAL

REAL

Function

Function

Function

Function

Function

arc tangent

–

arc tanh

–

–

r_asin(x)

r_asind(x)

r_asinh(x)

r_asinp(x)

r_asinpi(x)

REAL

REAL

REAL

REAL

REAL

Function

Function

Function

Function

Function

arc sine

–

arc sinh

–

–

r_atan2((y, x)

r_atan2d(y, x)

r_atan2pi(y, x)

REAL

REAL

REAL

Function

Function

Function

arc tangent

–

–

r_cbrt(x)

r_ceil(x)

r_copysign(x, y)

REAL

REAL

REAL

Function

Function

Function

cube root

ceiling

–

60 Fortran Library Reference ♦ Revision A, February 1999

TABLE 1–7 Single-Precision libm functions (continued)

r_cos(x)

r_cosd(x)

r_cosh(x)

r_cosp(x)

r_cospi(x)

REAL

REAL

REAL

REAL

REAL

Function

Function

Function

Function

Function

cosine

–

hyperb cos

–

–

r_erf(x)

r_erfc(x)

REAL

REAL

Function

Function

err function

–

r_expm1(x)

r_floor(x)

r_hypot(x, y)

r_infinity()

r_j0(x)

r_j1(x)

r_jn(x)

REAL

REAL

REAL

REAL

REAL

REAL

REAL

Function

Function

Function

Function

Function

Function

Function

(e**x)-1

floor

hypotenuse

bessel

–

–

–

ir_finite(x)

ir_fp_class(x)

ir_ilogb(x)

ir_irint(x)

ir_isinf(x)

ir_isnan(x)

ir_isnormal(x)

ir_issubnormal(x)

ir_iszero(x)

ir_signbit(x)

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

–

–

–

–

–

–

–

–

–

–

FORTRAN Library Routines 61

TABLE 1–7 Single-Precision libm functions (continued)

r_addran()

r_addrans(x, p, l, u)

r_lcran()

r_lcrans(x, p, l, u)

r_shufrans(x, p, l, u)

REAl

n/a

REAL

n/a

n/a

Function

Subroutine

Function

Subroutine

Subroutine

random
number

–

–

–

–

r_lgamma(x)

r_logb(x)

r_log1p(x)

r_log2(x)

REAL

REAL

REAL

REAL

Function

Function

Function

Function

log gamma

–

–

–

r_max_normal()

r_max_subnormal()

r_min_normal()

r_min_subnormal()

r_nextafter(x, y)

r_quiet_nan(n)

r_remainder(x, y)

r_rint(x)

r_scalb(x, y)

r_scalbn(x, n)

r_signaling_nan(n)

r_significand(x)

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

62 Fortran Library Reference ♦ Revision A, February 1999

TABLE 1–7 Single-Precision libm functions (continued)

r_sin(x)

r_sind(x)

r_sinh(x)

r_sinp(x)

r_sinpi(x)

REAL

REAL

REAL

REAL

REAL

Function

Function

Function

Function

Function

sine

–

hyperb sin

–

–

r_sincos(x, s, c)

r_sincosd(x, s, c)

r_sincosp(x, s, c)

r_sincospi(x, s, c)

n/a

n/a

n/a

n/a

Subroutine

Subroutine

Subroutine

Subroutine

sine & cosine

–

–

–

r_tan(x)

r_tand(x)

r_tanh(x)

r_tanp(x)

r_tanpi(x)

REAL

REAL

REAL

REAL

REAL

Function

Function

Function

Function

Function

tangent

–

hyperb tan

–

–

r_y0(x)

r_y1(x)

r_yn(n, x)

REAL

REAL

REAL

Function

Function

Function

bessel

–

–

� Variables c , l , p, s , u, x , and y are of type REAL.

� Type these functions as explicitly REAL if an IMPLICIT statement is in effect that
types names starting with “r ” to some other date type.

� sind(x) , asind(x), … take degrees rather than radians.

See also: intro(3M) and the Numerical Computation Guide.

FORTRAN Library Routines 63

link , symlnk : Make a Link to an
Existing File
link creates a link to an existing file. symlink creates a symbolic link to an existing
file.

The functions are called by:

status = link(name1, name2)

INTEGER*4 symlnk

status = symlnk(name1, name2)

name1 character* n Input Path name of an existing file

name2 character* n Input Path name to be linked to the file,
name1.

name2 must not already exist.

Return value INTEGER*4 Output status=0: OK

status>0: System error code

link: Create a Link to an Existing File
Example 1: link : Create a link named data1 to the file, tlink.db.data.1 :

demo% cat tlink.f
character*34 name1/"tlink.db.data.1"/, name2/"data1"/
integer*4 link, status
status = link(name1, name2)
if (status .ne. 0) stop "link: error"
end

demo% f77 -silent tlink.f
demo% ls -l data1
data1 not found
demo% a.out
demo% ls -l data1
-rw-rw-r-- 2 generic 2 Aug 11 08:50 data1
demo%

64 Fortran Library Reference ♦ Revision A, February 1999

symlnk: Create a Symbolic Link to an Existing
File
Example 2: symlnk : Create a symbolic link named data1 to the file,
tlink.db.data.1 :

demo% cat tsymlnk.f
character*34 name1/"tlink.db.data.1"/, name2/"data1"/
INTEGER*4 status, symlnk
status = symlnk(name1, name2)
if (status .ne. 0) stop "symlnk: error"
end

demo% f77 -silent tsymlnk.f
demo% ls -l data1
data1 not found
demo% a.out
demo% ls -l data1
lrwxrwxrwx 1 generic 15 Aug 11 11:09 data1 -> tlink.db.data.1
demo%

See also: link(2), symlink(2), perror(3F), and unlink(3F).

Note: the path names cannot be longer than MAXPATHLENas defined in
<sys/param.h> .

loc : Return the Address of an Object
This intrinsic function is called by:

k = loc(arg)

arg Any type Input Variable or array

INTEGER*4 -or-

INTEGER*8

Output Address of argReturn value

Returns an INTEGER*8 pointer when compiled to run in a 64-bit
environment with -xarch=v9 . See Note below.

FORTRAN Library Routines 65

Example: loc :

INTEGER*4 k, loc
real arg / 9.0 /
k = loc(arg)
write(*,*) k
end

Note - Programs compiled to run in a 64-bit environment should declare
INTEGER*8 the variable receiving output from the loc() function.

long , short : Integer Object Conversion

long and short handle integer object conversions between INTEGER*4 and
INTEGER*2, and is especially useful in subprogram call lists.

long : Convert a Short Integer to a Long Integer
The function is called by:

call ExpecLong(long(int2))

int2 INTEGER*2 Input

Return value INTEGER*4 Output

short : Convert a Long Integer to a Short Integer
The function is:

66 Fortran Library Reference ♦ Revision A, February 1999

INTEGER*2 short

call ExpecShort(short(int4))

int4 INTEGER*4 Input

Return value INTEGER*2 Output

Example (fragment): long() and short() :

integer*4 int4/8/, long
integer*2 int2/8/, short
call ExpecLong(long(int2))
call ExpecShort(short(int4))
…
end

ExpecLong is some subroutine called by the user program that expects a
long (INTEGER*4) integer argument. Similarly, ExpecShort expects a short
(INTEGER*2) integer argument.

long is useful if constants are used in calls to library routines and the code is
compiled with the -i2 option.

short is useful in similar context when an otherwise long object must be passed as
a short integer. Passing an integer to short that is too large in magnitude does not
cause an error, but will result in unexpected behavior.

longjmp , isetjmp : Return to Location
Set by isetjmp
isetjmp sets a location for longjmp ; longjmp returns to that location.

isetjmp : Set the Location for longjmp
This intrinsic function is called by:

FORTRAN Library Routines 67

ival = isetjmp(env)

env INTEGER*4 Output env is a 12-element integer array. In
64-bit environments it must be
declared INTEGER*8

Return value INTEGER*4 Output ival = 0 if isetjmp is called
explicitly

ival = 0 if isetjmp is called
through longjmp

longjmp : Return to the location set by isetjmp
The subroutine is called by:

call longjmp(env, ival)

env INTEGER*4 Input env is the 12-word integer array
initialized by isetjmp . In 64-bit
environments it must be declared
INTEGER*8

ival INTEGER*4 Output ival = 0 if isetjmp is called
explicitly

ival = 0 if isetjmp is called
through longjmp

Description
The isetjmp and longjmp routines are used to deal with errors and interrupts
encountered in a low-level routine of a program. They are f77 intrinsics.

These routines should be used only as a last resort. They require discipline, and are
not portable. Read the man page, setjmp (3V), for bugs and other details.

isetjmp saves the stack environment in env. It also saves the register environment.

68 Fortran Library Reference ♦ Revision A, February 1999

longjmp restores the environment saved by the last call to isetjmp , and returns in
such a way that execution continues as if the call to isetjmp had just returned the
value ival.

The integer expression ival returned from isetjmp is zero if longjmp is not called,
and nonzero if longjmp is called.

Example: Code fragment using isetjmp and longjmp :

INTEGER*4 env(12)
common /jmpblk/ env
j = isetjmp(env)
if (j .eq. 0) then
call sbrtnA
else

call error_processor
end if
end
subroutine sbrtnA
INTEGER*4 env(12)
common /jmpblk/ env
call longjmp(env, ival)
return
end

Restrictions
� You must invoke isetjmp before calling longjmp .

� The env integer array argument to isetjmp and longjmp must be at least 12
elements long.

� You must pass the env variable from the routine that calls isetjmp to the routine
that calls longjmp , either by common or as an argument.

� longjmp attempts to clean up the stack. longjmp must be called from a lower
call-level than isetjmp .

� Passing isetjmp as an argument that is a procedure name does not work.

See setjmp(3V).

malloc, malloc64 : Allocate Memory
and Get Address
The malloc() function is called by:

FORTRAN Library Routines 69

k = malloc(n)

n INTEGER*4 Input Number of bytes of memory

INTEGER*4 or
INTEGER*8

Output k>0: k=address of the start of the
block of memory allocated

k=0: Error

Return value

An INTEGER*8 pointer value is returned when compiled for a 64-bit
environment with -xarch=v9 . See Note below.

Note - Programs compiled to run on 64-bit environments such as Solaris 7 must
declare the malloc() function and the variables receiving its output as INTEGER*8.
Portability issues can be solved by using malloc64() instead of malloc() in
programs that must run in both 32-bit or 64-bit environments.

The function malloc64() is provided to make programs portable between 32-bit
and 64-bit environments:

k = malloc64(n)

n INTEGER*8 Input Number of bytes of memory

Return value INTEGER*8 Output k>0: k=address of the start of the
block of memory allocated

k=0: Error

These functions allocate an area of memory and return the address of the start of that
area. (In a 64-bit environment, this returned byte address may be outside the
INTEGER*4 numerical range—the receiving variables must be declared INTEGER*8
to avoid truncation of the memory address.) The region of memory is not initialized
in any way, and it should not be assumed to be preset to anything, especially zero!

Example: Code fragment using malloc() :

parameter (NX=1000)
pointer (p1, X)
real*4 X(NX)
…
p1 = malloc(NX*4)
if (p1 .eq. 0) stop "malloc: cannot allocate"
do 11 i=1,NX

70 Fortran Library Reference ♦ Revision A, February 1999

11 X(i) = 0.
…
end

In the above example, we acquire 4,000 bytes of memory, pointed to by p1, and
initialize it to zero.

See also “free : Deallocate Memory Allocated by Malloc ” on page 20.

mvbits : Move a Bit Field
The subroutine is called by:

call mvbits(src, ini1, nbits, des, ini2)

src INTEGER*4 Input Source

ini1 INTEGER*4 Input Initial bit position in the source

nbits INTEGER*4 Input Number of bits to move

des INTEGER*4 Output Destination

ini2 INTEGER*4 Input Initial bit position in the destination

Example: mvbits :

demo% cat mvb1.f
* mvb1.f -- From src, initial bit 0, move 3 bits to des, initial bit 3.
* src des
* 543210 543210 B¨ it numbers
* 000111 000001 V¨ alues before move
* 000111 111001 V¨ alues after move

INTEGER*4 src, ini1, nbits, des, ini2
data src, ini1, nbits, des, ini2

& / 7, 0, 3, 1, 3 /
call mvbits (src, ini1, nbits, des, ini2)
write (*,"(5o3)") src, ini1, nbits, des, ini2
end

demo% f77 -silent mvb1.f
demo% a.out

7 0 3 71 3
demo%

FORTRAN Library Routines 71

Note the following:

� Bits are numbered 0 to 31, from least significant to most significant.

� mvbits changes only bits ini2 through ini2+nbits-1 of the des location, and no bits
of the src location.

� The restrictions are:

� ini1 + nbits >= 32
� ini2 + nbits <= 32

perror , gerror , ierrno : Get System
Error Messages
These routines perform the following functions:

perror Print a message to FORTRAN logical unit 0, stderr .

gerror Get a system error message (of the last detected system error)

ierrno Get the error number of the last detected system error.

perror : Print Message to Logical Unit 0, stderr
The subroutine is called by:

call perror(string)

string character* n Input The message. It is written
preceding the standard error
message for the last detected
system error.

Example 1:

call perror("file is for formatted I/O")

72 Fortran Library Reference ♦ Revision A, February 1999

gerror : Get Message for Last Detected System
Error
The subroutine or function is called by:

call gerror(string)

string character* n Output Message for the last detected
system error

Example 2: gerror() as a subroutine:

character string*30
…
call gerror (string)
write(*,*) string

Example 3: gerror () as a function; string not used:

character gerror*30, z*30
…
z = gerror()
write(*,*) z

ierrno : Get Number for Last Detected System
Error
The function is called by:

n = ierrno()

Return value INTEGER*4 Output Number of last detected system
error

FORTRAN Library Routines 73

This number is updated only when an error actually occurs. Most routines and I/O
statements that might generate such errors return an error code after the call; that
value is a more reliable indicator of what caused the error condition.

Example 4: ierrno() :

INTEGER*4 ierrno, n
…
n = ierrno()
write(*,*) n

See also intro(2) and perror(3).

Note:

� string in the call to perror cannot be longer than 127 characters.

� The length of the string returned by gerror is determined by the calling program.

� Runtime I/O error codes for f77 and f90 are listed in the Fortran User’s Guide.

putc , fputc : Write a Character to a
Logical Unit
putc writes to logical unit 6, normally the control terminal output.

fputc writes to a logical unit.

These functions write a character to the file associated with a FORTRAN logical unit
bypassing normal FORTRAN I/O.

Do not mix normal FORTRAN output with output by these functions on the same
unit.

putc : Write to Logical Unit 6
The function is called by:

74 Fortran Library Reference ♦ Revision A, February 1999

INTEGER*4 putc

status = putc(char)

char character Input The character to write to the unit

Return value INTEGER*4 Output status=0: OK

status>0: System error code

Example: putc() :

character char, s*10 / "OK by putc" /
INTEGER*4 putc, status
do i = 1, 10

char = s(i:i)
status = putc(char)

end do
status = putc("\n")
end

demo% f77 -silent tputc.f
demo% a.out
OK by putc
demo%

fputc : Write to Specified Logical Unit
The function is called by:

INTEGER*4 fputc

status = fputc(lunit, char)

lunit INTEGER*4 Input The unit to write to

char character Input The character to write to the unit

Return value INTEGER*4 Output status=0: OK

status>0: System error code

FORTRAN Library Routines 75

Example: fputc() :

character char, s*11 / "OK by fputc" /
INTEGER*4 fputc, status
open(1, file="tfputc.data")
do i = 1, 11

char = s(i:i)
status = fputc(1, char)

end do
status = fputc(1, "\n")
end

demo% f77 -silent tfputc.f
demo% a.out
demo% cat tfputc.data
OK by fputc
demo%

See also putc(3S), intro(2), and perror(3F).

qsort,qsort64 : Sort the Elements of a
One-dimensional Array
The subroutine is called by:

call qsort(array, len, isize, compar)

call qsort64(array, len8, isize8, compar)

array array Input Contains the elements to be sorted

len
INTEGER*4 Input Number of elements in the array.

len8 INTEGER*8 Input Number of elements in the array

isize INTEGER*4 Input Size of an element, typically:

4 for integer or real

8 for double precision or complex

16 for double complex

Length of character object for character
arrays

76 Fortran Library Reference ♦ Revision A, February 1999

call qsort(array, len, isize, compar)

call qsort64(array, len8, isize8, compar)

isize8 INTEGER*8 Input Size of an element, typically:

4_8 for integer or real

8_8 for double precision or complex

16_8 for double complex

Length of character object for character
arrays

compar function
name

Input Name of a user-supplied INTEGER*2
function.

Determines sorting order: compar(arg1,arg2)

Use qsort64 in 64-bit environments with arrays larger than 2 Gbytes. Be sure to
specify the array length, len8, and the element size, isize8, as INTEGER*8 data. Use
the Fortran 90 style constants to explicitly specify INTEGER*8 constants.

The compar(arg1, arg2) arguments are elements of array, returning:

Negative If arg1 is considered to precede arg2

Zero If arg1 is equivalent to arg2

Positive If arg1 is considered to follow arg2

For example:

demo% cat tqsort.f
external compar
integer*2 compar
INTEGER*4 array(10)/5,1,9,0,8,7,3,4,6,2/, len/10/, isize/4/
call qsort(array, len, isize, compar)
write(*,"(10i3)") array
end
integer*2 function compar(a, b)
INTEGER*4 a, b
if (a .lt. b) compar = -1
if (a .eq. b) compar = 0
if (a .gt. b) compar = 1
return
end

demo% f77 -silent tqsort.f
demo% a.out

0 1 2 3 4 5 6 7 8 9

FORTRAN Library Routines 77

ran : Generate a Random Number
between 0 and 1
Repeated calls to ran generate a sequence of random numbers with a uniform
distribution.

r = ran(i)

i INTEGER*4 Input Variable or array element

r REAL Output Variable or array element

See lcrans(3m).

Example: ran :

demo% cat ran1.f
* ran1.f -- Generate random numbers.

INTEGER*4 i, n
real r(10)
i = 760013
do n = 1, 10

r(n) = ran (i)
end do
write (*, "(5 f11.6)") r
end

demo% f77 -silent ran1.f
demo% a.out

0.222058 0.299851 0.390777 0.607055 0.653188
0.060174 0.149466 0.444353 0.002982 0.976519

demo%

Note the following:

� The range includes 0.0 and excludes 1.0.

� The algorithm is a multiplicative, congruential type, general random number
generator.

� In general, the value of i is set once during execution of the calling program.

� The initial value of i should be a large odd integer.

� Each call to RANgets the next random number in the sequence.

78 Fortran Library Reference ♦ Revision A, February 1999

� To get a different sequence of random numbers each time you run the program,
you must set the argument to a different initial value for each run.

� The argument is used by RANto store a value for the calculation of the next
random number according to the following algorithm:

SEED = 6909 * SEED + 1 (MOD 2**32)

� SEEDcontains a 32-bit number, and the high-order 24 bits are converted to floating
point, and that value is returned.

rand , drand , irand : Return Random
Values
rand returns real values in the range 0.0 through 1.0.

drand returns double precision values in the range 0.0 through 1.0.

irand returns positive integers in the range 0 through 2147483647.

These functions use random(3) to generate sequences of random numbers. The three
functions share the same 256 byte state array. The only advantage of these functions
is that they are widely available on UNIX systems. For better random number
generators, compare lcrans , addrans , and shufrans . See also random(3), and the
Numerical Computation Guide

i = irand(k)

r = rand(k)

d = drand(k)

k INTEGER*4 Input k=0: Get next random number in the
sequence

k=1: Restart sequence, return first number

k>0: Use as a seed for new sequence, return
first

number

rand REAL*4 Output

FORTRAN Library Routines 79

i = irand(k)

r = rand(k)

d = drand(k)

drand REAL*8 Output

irand INTEGER*4 Output

Example: irand() :

integer*4 v(5), iflag/0/
do i = 1, 5

v(i) = irand(iflag)
end do
write(*,*) v
end

demo% f77 -silent trand.f
demo% a.out

2078917053 143302914 1027100827 1953210302 755253631
demo%

rename : Rename a File
The function is called by:

INTEGER*4 rename

status = rename(from, to)

from character* n Input Path name of an existing file

to character* n Input New path name for the file

Return value INTEGER*4 Output status=0: OK

status>0: System error code

80 Fortran Library Reference ♦ Revision A, February 1999

If the file specified by to exists, then both from and to must be the same type of file,
and must reside on the same file system. If to exists, it is removed first.

Example: rename() —Rename file trename.old to trename.new

demo% cat trename.f
INTEGER*4 rename, status
character*18 from/"trename.old"/, to/"trename.new"/
status = rename(from, to)
if (status .ne. 0) stop "rename: error"
end

demo% f77 -silent trename.f
demo% ls trename*
trename.f trename.old
demo% a.out
demo% ls trename*
trename.f trename.new
demo%

See also rename(2) and perror(3F).

Note: the path names cannot be longer than MAXPATHLENas defined in
<sys/param.h> .

secnds : Get System Time in Seconds,
Minus Argument

t = secnds(t0)

t0 REAL Input Constant, variable, or array element

Return Value REAL Output Number of seconds since midnight, minus t0

Example: secnds :

demo% cat sec1.f
real elapsed, t0, t1, x, y
t0 = 0.0
t1 = secnds(t0)
y = 0.1
do i = 1, 1000

x = asin(y)
end do
elapsed = secnds(t1)
write (*, 1) elapsed

1 format (" 1000 arcsines: ", f12.6, " sec")
end

FORTRAN Library Routines 81

demo% f77 -silent sec1.f
demo% a.out

1000 arcsines: 6.699141 sec
demo%

Note that:

� The returned value from SECNDSis accurate to 0.01 second.

� The value is the system time, as the number of seconds from midnight, and it
correctly spans midnight.

� Some precision may be lost for small time intervals near the end of the day.

sh : Fast Execution of an sh Command
The function is called by:

INTEGER*4 sh

status = sh(string)

string character* n Input String containing command to do

Return value INTEGER*4 Output Exit status of the shell executed.
See wait(2) for an explanation of
this value.

Example: sh() :

character*18 string / "ls > MyOwnFile.names" /
INTEGER*4 status, sh
status = sh(string)
if (status .ne. 0) stop "sh: error"
...
end

The function sh passes string to the sh shell as input, as if the string had been typed
as a command.

The current process waits until the command terminates.

The forked process flushes all open files:

82 Fortran Library Reference ♦ Revision A, February 1999

� For output files, the buffer is flushed to the actual file.

� For input files, the position of the pointer is unpredictable.

The sh() function is not MT-safe. Do not call it from multithreaded or parallelized
programs.

See also: execve(2), wait(2), and system(3).

Note: string cannot be longer than 1,024 characters.

signal : Change the Action for a Signal
The function is called by:

INTEGER*4 signal or INTEGER*8 signal

n = signal(signum, proc, flag)

signum INTEGER*4 Input Signal number; see signal(3)

proc Routine
name

Input Name of user signal handling routine; must
be in an external statement

flag INTEGER*4 Input flag<0: Use proc as the signal handler

flag>=0: Ignore proc; pass flag as the action:

flag=0: Use the default action

flag=1: Ignore this signal

Return value INTEGER*4 Output n=-1: System error

n>0: Definition of previous action

n>1: n=Address of routine that would have
been called

n<-1: If signum is a valid signal number,
then: n=address of routine that would have
been called. If signum is a not a valid signal
number, then: n is an error number.

INTEGER*8 On 64-bit environments, signal and the
variables receiving its output must be
declared INTEGER*8

FORTRAN Library Routines 83

If proc is called, it is passed the signal number as an integer argument.

If a process incurs a signal, the default action is usually to clean up and abort. A
signal handling routine provides the capability of catching specific exceptions or
interrupts for special processing.

The returned value can be used in subsequent calls to signal to restore a previous
action definition.

You can get a negative return value even though there is no error. In fact, if you pass
a valid signal number to signal() , and you get a return value less than -1, then it is
OK.

f77 arranges to trap certain signals when a process is started. The only way to restore
the default f77 action is to save the returned value from the first call to signal .

f77_floatingpoint.h defines proc values SIGFPE_DEFAULT, SIGFPE_IGNORE,
and SIGFPE_ABORT. See “f77_floatingpoint.h : FORTRAN IEEE Definitions”
on page 39

In 64-bit environments, signal must be declared INTEGER*8, along with the
variables receiving its output, to avoid truncation of the address that may be
returned.

See also kill(1), signal(3), and kill(3F), and Numerical Computation Guide.

sleep : Suspend Execution for an
Interval
The subroutine is called by:

call sleep(itime)

itime INTEGER*4 Input Number of seconds to sleep

The actual time can be up to 1 second less than itime due to granularity in system
timekeeping.

Example: sleep() :

INTEGER*4 time / 5 /
write(*,*) "Start"
call sleep(time)
write(*,*) "End"
end

84 Fortran Library Reference ♦ Revision A, February 1999

See also sleep(3).

stat , lstat , fstat : Get File Status
These functions return the following information:

� device,

� inode number,

� protection,

� number of hard links,

� user ID,

� group ID,

� device type,

� size,

� access time,

� modify time,

� status change time,

� optimal blocksize,

� blocks allocated

Both stat and lstat query by file name. fstat queries by logical unit.

stat : Get Status for File, by File Name
The function is called by:

FORTRAN Library Routines 85

INTEGER*4 stat

ierr = stat (name, statb)

name character* n Input Name of the file

statb INTEGER*4 Output Status structure for the file,
13-element array

Return value INTEGER*4 Output ierr=0: OK

ierr>0: Error code

Example 1: stat() :

character name*18 /"MyFile"/
INTEGER*4 ierr, stat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = stat (name, statb)
if (ierr .ne. 0) stop "stat: error"
write(*,*)"UID of owner = ",statb(5),", blocks = ",statb(13)
end

fstat : Get Status for File, by Logical Unit
The function

INTEGER*4 fstat

ierr = fstat (lunit, statb)

lunit INTEGER*4 Input Logical unit number

statb INTEGER*4 Output Status for the file: 13-element array

Return value INTEGER*4 Output ierr=0: OK

ierr>0: Error code

86 Fortran Library Reference ♦ Revision A, February 1999

is called by:

Example 2: fstat() :

character name*18 /"MyFile"/
INTEGER*4 fstat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = fstat (lunit, statb)
if (ierr .ne. 0) stop "fstat: error"
write(*,*)"UID of owner = ",statb(5),", blocks = ",statb(13)
end

lstat : Get Status for File, by File Name
The function is called by:

ierr = lstat (name, statb)

name character* n Input File name

statb INTEGER*4 Output Status array of file, 13 elements

Return value INTEGER*4 Output ierr=0: OK

ierr>0: Error code

Example 3: lstat() :

character name*18 /"MyFile"/
INTEGER*4 lstat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = lstat (name, statb)
if (ierr .ne. 0) stop "lstat: error"
write(*,*)"UID of owner = ",statb(5),", blocks = ",statb(13)
end

Detail of Status Array for Files
The meaning of the information returned in the INTEGER*4 array statb is as
described for the structure stat under stat(2).

Spare values are not included. The order is shown in the following table:

FORTRAN Library Routines 87

statb (1)

statb (2)

statb (3)

statb (4)

statb (5)

statb (6)

statb (7)

statb (8)

statb (9)

statb (10)

statb (11)

statb (12)

statb (13)

Device inode resides on

This inode’s number

Protection

Number of hard links to the file

User ID of owner

Group ID of owner

Device type, for inode that is device

Total size of file

File last access time

File last modify time

File last status change time

Optimal blocksize for file system I/O ops

Actual number of blocks allocated

See also stat(2), access(3F), perror(3F), and time(3F).

Note: the path names can be no longer than MAXPATHLENas defined in
<sys/param.h> .

stat64 , lstat64 , fstat64 : Get File
Status
64-bit "long file" (Solaris 2.6 and Solaris 7) versions of stat, lstat, fstat. These routines
are identical to the non-64-bit routines, except that the 13-element array statb must be
declared INTEGER*8.

system : Execute a System Command
The function is called by:

88 Fortran Library Reference ♦ Revision A, February 1999

INTEGER*4 system

status = system(string)

string character* n Input String containing command to do

Return value INTEGER*4 Output Exit status of the shell executed.
See wait(2) for an explanation of
this value.

Example: system() :

character*8 string / "ls s*" /
INTEGER*4 status, system
status = system(string)
if (status .ne. 0) stop "system: error"
end

The function system passes string to your shell as input, as if the string had been
typed as a command. Note: string cannot be longer than 1024 characters.

If system can find the environment variable SHELL, then system uses the value of
SHELL as the command interpreter (shell); otherwise, it uses sh(1).

The current process waits until the command terminates.

Historically, cc and f77 developed with different assumptions:

� If cc calls system , the shell is always the Bourne shell.

� If f77 calls system , then which shell is called depends on the environment
variable SHELL.

The system function flushes all open files:

� For output files, the buffer is flushed to the actual file.

� For input files, the position of the pointer is unpredictable.

See also: execve(2), wait(2), and system(3).

The system() function is not MT-safe. Do not call it from multithreaded or
parallelized programs.

FORTRAN Library Routines 89

time , ctime , ltime , gmtime : Get
System Time
These routines have the following functions:

time Standard version: Get system time as integer (seconds since 0 GMT 1/1/
70)VMS Version: Get the system time as character (hh:mm:ss)

ctime Convert a system time to an ASCII string.

ltime Dissect a system time into month, day, and so forth, local time.

gmtime Dissect a system time into month, day, and so forth, GMT.

time : Get System Time
For time() , there are two versions, a standard version and a VMS version. If you
use the f77 command-line option -lV77 , then you get the VMS version for time()
and for idate() ; otherwise, you get the standard versions.

The standard function is called by:

INTEGER*4 time or INTEGER*8

n = time() Standard Version

INTEGER*4 Output Time, in seconds, since 0:0:0, GMT, 1/1/70Return value

INTEGER*8 Output In 64-bit environments, time returns an
INTEGER*8 value

The function time () returns an integer with the time since 00:00:00 GMT, January 1,
1970, measured in seconds. This is the value of the operating system clock.

Example: time() , version standard with the operating system:

INTEGER*4 n, time
n = time()
write(*,*) "Seconds since 0 1/1/70 GMT = ", n

90 Fortran Library Reference ♦ Revision A, February 1999

end
demo% f77 -silent ttime.f
demo% a.out

Seconds since 0 1/1/70 GMT = 913240205
demo%

The VMS version of time is a subroutine that gets the current system time as a
character string.

The VMS subroutine is called by:

call time(t) VMS Version

t character*8 Output Time, in the form hh:mm:ss hh, mm,
and ss are each two digits: hh is the
hour; mm is the minute; ss is the
second

Example: time(t) , VMS version, ctime —convert the system time to ASCII:

character t*8
call time(t)
write(*, "(" The current time is ", A8)") t
end

demo% f77 -silent ttimeV.f -lV77
demo% a.out

The current time is 08:14:13
demo%

ctime : Convert System Time to Character
The function ctim e converts a system time, stime, and returns it as a 24-character
ASCII string.

The function is called by:

FORTRAN Library Routines 91

CHARACTER ctime*24

string = ctime(stime)

stime INTEGER*4 Input System time from time()
(standard version)

Return value character*24 Output System time as character string.
Declare ctime and string as
character*24 .

The format of the ctime returned value is shown in the following example. It is
described in the man page ctime(3C).

Example: ctime() :

character*24 ctime, string
INTEGER*4 n, time
n = time()
string = ctime(n)
write(*,*) "ctime: ", string
end

demo% f77 -silent tctime.f
demo% a.out

ctime: Wed Dec 9 13:50:05 1998
demo%

ltime : Split System Time to Month, Day,… (Local)
This routine dissects a system time into month, day, and so forth, for the local time
zone.

The subroutine is called by:

call ltime(stime, tarray)

stime INTEGER*4 Input System time from time() (standard version)

tarray INTEGER*4(9) Output System time, local, as day, month, year, …

For the meaning of the elements in tarray , see the next section.

92 Fortran Library Reference ♦ Revision A, February 1999

Example: ltime() :

integer*4 stime, tarray(9), time
stime = time()
call ltime(stime, tarray)
write(*,*) "ltime: ", tarray
end

demo% f77 -silent tltime.f
demo% a.out

ltime: 25 49 10 12 7 91 1 223 1
demo%

gmtime : Split System Time to Month, Day, …
(GMT)
This routine dissects a system time into month, day, and so on, for GMT.

The subroutine is:

call gmtime(stime, tarray)

stime INTEGER*4 Input System time from time() (standard version)

tarray INTEGER*4(9) Output System time, GMT, as day, month, year, …

Example: gmtime :

integer*4 stime, tarray(9), time
stime = time()
call gmtime(stime, tarray)
write(*,*) "gmtime: ", tarray
end

demo% f77 -silent tgmtime.f
demo% a.out

gmtime: 12 44 19 18 5 94 6 168 0
demo%

Here are the tarray() values for ltime and gmtime : index, units, and range:

FORTRAN Library Routines 93

1

2

3

4

5

Seconds (0 - 61)

Minutes (0 - 59)

Hours (0 - 23)

Day of month (1 - 31)

Months since January (0 - 11)

6

7

8

9

Year - 1900

Day of week (Sunday = 0)

Day of year (0 - 365)

Daylight Saving Time, 1 if DST in effect

These values are defined by the C library routine ctime(3C), which explains why the
system may return a count of seconds greater than 59. See also: idate(3F), and fdate(3F).

ctime64, gmtime64, ltime64: System Time
Routines for 64-bit Environments
These are versions of the corresponding routines ctime , gmtime , and ltime , to
provide portability on 64-bit environments. They are identical to these routines
except that the input variable stime must be INTEGER*8.

When used in a 32-bit environment with an INTEGER*8 stime, if the value of stime is
beyond the INTEGER*4 range ctime64 returns all asterisks, while gmtime and
ltime fill the tarray array with -1.

topen , tclose , tread ,…, tstate :
Tape I/O
(FORTRAN 77 Only) These routines provide an alternative way to manipulate
magnetic tape:

topen Associate a device name with a tape logical unit.

tclose Write EOF, close tape device channel, and remove association with tlu.

tread Read next physical record from tape into buffer.

twrite Write the next physical record from buffer to tape.

trewin Rewind the tape to the beginning of the first data file.

94 Fortran Library Reference ♦ Revision A, February 1999

tskipf Skip forward over files and/or records, and reset EOF status.

tstate Determine the logical state of the tape I/O channel.

On any one unit, do not mix these functions with standard FORTRAN I/O.

You must first use topen () to open a tape logical unit, tlu, for the specified device.
Then you do all other operations on the specified tlu. tlu has no relationship at all to
any normal FORTRAN logical unit.

Before you use one of these functions, its name must be in an INTEGER*4 type
statement.

topen : Associate a Device with a Tape Logical
Unit
The function is called by:

INTEGER*4 topen

n = topen(tlu, devnam, islabeled)

tlu INTEGER*4 Input Tape logical unit, in the range 0 to 7.

devnam CHARACTER Input Device name; for example: ’/dev/rst0’

islabeled LOGICAL Input True=the tape is labeled

A label is the first file on the tape.

Return value INTEGER*4 Output n=0: OK

n<0: Error

This function does not move the tape. See perror(3F) for details.

Example: topen() —open a 1/4-inch tape file:

CHARACTER devnam*9 / "/dev/rst0" /
INTEGER*4 n / 0 /, tlu / 1 /, topen
LOGICAL islabeled / .false. /

FORTRAN Library Routines 95

n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
WRITE(*,"("topen ok:", 2I3, 1X, A10)") n, tlu, devnam
END

The output is:

topen ok: 0 1 /dev/rst0

tclose : Write EOF, Close Tape Channel,
Disconnect tlu
The function is called by:

INTEGER*4 tclose

n = tclose (tlu)

tlu INTEGER*4 Input Tape logical unit, in range 0 to 7

n INTEGER*4 Return value n=0: OK

n<0: Error

Caution - tclose() places an EOF marker immediately after the current location of
the unit pointer, and then closes the unit. So if you trewin() a unit before you
tclose() it, its contents are discarded.

Example: tclose() —close an opened 1/4-inch tape file:

CHARACTER devnam*9 / "/dev/rst0" /
INTEGER*4 n / 0 /, tlu / 1 /, tclose, topen
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = tclose(tlu)
IF (n .LT. 0) STOP "tclose: cannot close"
WRITE(*, "("tclose ok:", 2I3, 1X, A10)") n, tlu, devnam
END

The output is:

96 Fortran Library Reference ♦ Revision A, February 1999

tclose ok: 0 1 /dev/rst0

twrite : Write Next Physical Record to Tape
The function is called by:

INTEGER*4 twrite

n = twrite(tlu, buffer)

tlu INTEGER*4 Input Tape logical unit, in range 0 to 7

buffer character Input Must be sized at a multiple of 512

n INTEGER*4 Return value n>0: OK, and n = the number of bytes written

n=0: End of Tape

n<0: Error

The physical record length is the size of buffer .

Example: twrite() —write a 2-record file:

CHARACTER devnam*9 / "/dev/rst0" /, rec1*512 / "abcd" /,
& rec2*512 / "wxyz" /

INTEGER*4 n / 0 /, tlu / 1 /, tclose, topen, twrite
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
n = twrite(tlu, rec1)
IF (n .LT. 0) STOP "twrite: cannot write 1"
n = twrite(tlu, rec2)
IF (n .LT. 0) STOP "twrite: cannot write 2"
WRITE(*, "("twrite ok:", 2I4, 1X, A10)") n, tlu, devnam
END

The output is:

twrite ok: 512 1 /dev/rst0

FORTRAN Library Routines 97

tread : Read Next Physical Record from Tape
The function is called by:

INTEGER*4 tread

n = tread(tlu, buffer)

tlu INTEGER*4 Input Tape logical unit, in range 0 to 7.

buffer character Input Must be sized at a multiple of 512, and must
be large enough to hold the largest physical
record to be read.

n INTEGER*4 Return value n>0: OK, and n is the number of bytes read.

n<0: Error

n=0: EOF

If the tape is at EOF or EOT, then tread does a return; it does not read tapes.

Example: tread() —read the first record of the file written above:

CHARACTER devnam*9 / "/dev/rst0" /, onerec*512 / " " /
INTEGER*4 n / 0 /, tlu / 1 /, topen, tread
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
n = tread(tlu, onerec)
IF (n .LT. 0) STOP "tread: cannot read"
WRITE(*,"("tread ok:", 2I4, 1X, A10)") n, tlu, devnam
WRITE(*,"(A4)") onerec
END

The output is:

tread ok: 512 1 /dev/rst0
abcd

trewin : Rewind Tape to Beginning of First Data
File
The function is called by:

98 Fortran Library Reference ♦ Revision A, February 1999

INTEGER*4 trewin

n = trewin (tlu)

tluINTEGER*4 Input Tape logical unit, in range 0 to 7

nINTEGER*4 Return value n=0: OK

n<0: Error

If the tape is labeled, then the label is skipped over after rewinding.

Example 1: trewin() —typical fragment:

CHARACTER devnam*9 / "/dev/rst0" /
INTEGER*4 n /0/, tlu /1/, tclose, topen, tread, trewin
…
n = trewin(tlu)
IF (n .LT. 0) STOP "trewin: cannot rewind"
WRITE(*, "("trewin ok:", 2I4, 1X, A10)") n, tlu, devnam
…
END

Example 2: trewin() —in a two-record file, try to read three records, rewind, read
one record:

CHARACTER devnam*9 / "/dev/rst0" /, onerec*512 / " " /
INTEGER*4 n / 0 /, r, tlu / 1 /, topen, tread, trewin
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
DO r = 1, 3

n = tread(tlu, onerec)
WRITE(*,"(1X, I2, 1X, A4)") r, onerec

END DO
n = trewin(tlu)
IF (n .LT. 0) STOP "trewin: cannot rewind"
WRITE(*, "("trewin ok:" 2I4, 1X, A10)") n, tlu, devnam
n = tread(tlu, onerec)
IF (n .LT. 0) STOP "tread: cannot read after rewind"
WRITE(*,"(A4)") onerec
END

The output is:

1 abcd
2 wxyz
3 wxyz
trewin ok: 0 1 /dev/rst0
abcd

FORTRAN Library Routines 99

tskipf : Skip Files and Records; Reset EoF Status
The function is called by:

INTEGER*4 tskipf

n = tskipf(tlu, nf, nr)

tluINTEGER*4 Input Tape logical unit, in range 0 to 7

nfINTEGER*4 Input Number of end-of-file marks to skip over first

nrINTEGER*4 Input Number of physical records to skip over after
skipping files

nINTEGER*4 Return value n=0: OK

n<0: Error

This function does not skip backward.

First, the function skips forward over nf end-of-file marks. Then, it skips forward
over nr physical records. If the current file is at EOF, this counts as one file to skip.
This function also resets the EOF status.

Example: tskipf() —typical fragment: skip four files and then skip one record:

INTEGER*4 nfiles / 4 /, nrecords / 1 /, tskipf, tlu / 1 /
…
n = tskipf(tlu, nfiles, nrecords)
IF (n .LT. 0) STOP "tskipf: cannot skip"
…

Compare with tstate () .

tstate : Get Logical State of Tape I/O Channel
The function is called by:

100 Fortran Library Reference ♦ Revision A, February 1999

INTEGER*4 tstate

n = tstate(tlu, fileno, recno, errf, eoff, eotf, tcsr)

tlu INTEGER*4 Input Tape logical unit, in range 0 to 7

fileno INTEGER*4 Output Current file number

recno INTEGER*4 Output Current record number

errf LOGICAL Output True=an error occurred

eoff LOGICAL Output True=the current file is at EOF

eotf LOGICAL Output True=tape has reached logical end-of-tape

tcsr INTEGER*4 Output True=hardware errors on the device. It
contains the tape drive control status
register. If the error is software, then tcsr is
returned as zero. The values returned in this
status register vary grossly with the brand
and size of tape drive.

For details, see st(4s).

While eoff is true, you cannot read from that tlu. You can set this EOF status flag to
false by using tskipf() to skip one file and zero records:

n = tskipf(tlu, 1, 0).

Then you can read any valid record that follows.

End-of-tape (EOT) is indicated by an empty file, often referred to as a double EOF
mark. You cannot read past EOT, but you can write past it.

Example: Write three files of two records each:

CHARACTER devnam*10 / "/dev/nrst0" /,
& f0rec1*512 / "eins" /, f0rec2*512 / "zwei" /,
& f1rec1*512 / "ichi" /, f1rec2*512 / "ni__" /,
& f2rec1*512 / "un__" /, f2rec2*512 / "deux" /

INTEGER*4 n / 0 /, tlu / 1 /, tclose, topen, trewin, twrite
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = trewin(tlu)
n = twrite(tlu, f0rec1)
n = twrite(tlu, f0rec2)

FORTRAN Library Routines 101

n = tclose(tlu)
n = topen(tlu, devnam, islabeled)
n = twrite(tlu, f1rec1)
n = twrite(tlu, f1rec2)
n = tclose(tlu)
n = topen(tlu, devnam, islabeled)
n = twrite(tlu, f2rec1)
n = twrite(tlu, f2rec2)
n = tclose(tlu)
END

The next example uses tstate() to trap EOF and get at all files.

Example: Use tstate() in a loop that reads all records of the 3 files written in the
previous example:

CHARACTER devnam*10 / "/dev/nrst0" /, onerec*512 / " " /
INTEGER*4 f, n / 0 /, tlu / 1 /, tcsr, topen, tread,

& trewin, tskipf, tstate
LOGICAL errf, eoff, eotf, islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
WRITE(*,1) "open:", fn, rn, errf, eoff, eotf, tcsr

1 FORMAT(1X, A10, 2I2, 1X, 1L, 1X, 1L,1X, 1L, 1X, I2)
2 FORMAT(1X, A10,1X,A4,1X,2I2,1X,1L,1X,1L,1X,1L,1X,I2)

n = trewin(tlu)
n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
WRITE(*,1) "rewind:", fn, rn, errf, eoff, eotf, tcsr
DO f = 1, 3

eoff = .false.
DO WHILE (.NOT. eoff)

n = tread(tlu, onerec)
n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
IF (.NOT. eoff) WRITE(*,2) "read:", onerec,

& fn, rn, errf, eoff, eotf, tcsr
END DO
n = tskipf(tlu, 1, 0)
n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
WRITE(*,1) "tskip: ", fn, rn, errf, eoff, eotf, tcsr

END DO
END

The output is:

open: 0 0 F F F 0
rewind: 0 0 F F F 0
read: eins 0 1 F F F 0
read: zwei 0 2 F F F 0
tskip: 1 0 F F F 0
read: ichi 1 1 F F F 0
read: ni__ 1 2 F F F 0
tskip: 2 0 F F F 0
read: un__ 2 1 F F F 0
read: deux 2 2 F F F 0
tskip: 3 0 F F F 0

102 Fortran Library Reference ♦ Revision A, February 1999

A summary of EOF and EOT follows:

� If you are at either EOF or EOT, then:

� Any tread() just returns; it does not read the tape.

� A successful tskipf(tlu,1,0) resets the EOF status to false, and returns; it
does not advance the tape pointer.

� A successful twrite() resets the EOF and EOT status flags to false.

� A successful tclose() resets all those flags to false.

� tclose() truncates; it places an EOF marker immediately after the current
location of the unit pointer, and then closes the unit. So, if you use trewin() to
rewind a unit before you use tclose() to close it, its contents are discarded. This
behavior of tclose() is inherited from the Berkeley code.

See also: ioctl(2), mtio(4s), perror(3F), read(2), st(4s), and write(2).

ttynam , isatty : Get Name of a
Terminal Port
ttynam and isatty handle terminal port names.

ttynam : Get Name of a Terminal Port
The function ttynam returns a blank padded path name of the terminal device
associated with logical unit lunit.

The function is called by:

FORTRAN Library Routines 103

CHARACTER ttynam*24

name = ttynam(lunit)

lunit INTEGER*4 Input Logical unit

Return value character* n Output If nonblank returned: name=path name of
device on lunit. Size n must be large enough
for the longest path name.

If empty string (all blanks) returned: lunit is
not associated with a terminal device in the
directory, /dev

isatty : Is this Unit a Terminal?
The function

terminal = isatty(lunit)

lunit INTEGER*4 Input Logical unit

Return value LOGICAL*4 Output terminal=true: It is a terminal device

terminal=false: It is not a terminal
device

is called by:

Example: Determine if lunit is a tty:

character*12 name, ttynam
INTEGER*4 lunit /5/
logical*4 isatty, terminal
terminal = isatty(lunit)
name = ttynam(lunit)
write(*,*) "terminal = ", terminal, ", name = "", name, """
end

The output is:

104 Fortran Library Reference ♦ Revision A, February 1999

terminal = T, name = "/dev/ttyp1 "

unlink : Remove a File
The function is called by:

INTEGER*4 unlink

n = unlink (patnam)

patnam character* n Input File name

Return value INTEGER*4 Output n=0: OK

n>0: Error

The function unlink removes the file specified by path name patnam. If this is the
last link to the file, the contents of the file are lost.

Example: unlink() —Remove the tunlink.data file:

call unlink("tunlink.data")
end

demo% f77 -silent tunlink.f
demo% ls tunl*
tunlink.f tunlink.data
demo% a.out
demo% ls tunl*
tunlink.f
demo%

See also: unlink(2), link(3F), and perror(3F). Note: the path names cannot be longer
than MAXPATHLENas defined in <sys/param.h> .

wait : Wait for a Process to Terminate
The function is:

FORTRAN Library Routines 105

INTEGER*4 wait

n = wait(status)

status INTEGER*4 Output Termination status of the child
process

Return value INTEGER*4 Output n>0: Process ID of the child process

n<0: n=System error code; see
wait(2).

wait suspends the caller until a signal is received, or one of its child processes
terminates. If any child has terminated since the last wait , return is immediate. If
there are no children, return is immediate with an error code.

Example: Code fragment using wait() :

INTEGER*4 n, status, wait
…
n = wait(status)
if (n .lt. 0) stop ’wait: error’
…
end

See also: wait(2), signal(3F), kill(3F), and perror(3F).

106 Fortran Library Reference ♦ Revision A, February 1999

Index

Index-107

