
Do compiler

Lassi Kortela

lassi@lassikortela.net

Ohjelmoinnin harjoitustyö

2010-04-22

Helsingin yliopisto

Avoin yliopisto

Kai Korpimies

Abstract

This document describes a Forth-derived programming language, Do, and a compiler that

transforms it into Java source files and class files.

Table of contents

Do compiler .. 1

Abstract ... 2

Table of contents... 3

Do compiler user manual .. 5

Overview... 5

Installation... 5

Usage... 5

Do programming language specification .. 5

Overview... 5

Data types.. 5

The stack ... 6

The flag ... 6

Names ... 6

Definitions... 6

Variable definitions... 7

Function definitions .. 7

Operations ... 7

Syntax ... 7

Tokens... 7

Constructs ... 8

Primitives .. 8

Special primitives.. 8

Data primitives.. 9

Comparison primitives.. 9

Arithmetic primitives .. 10

Sequence primitives .. 10

I/O primitives .. 11

Example programs .. 12

Do to Java translation notes .. 12

Limitations .. 12

Name mangling... 12

Data types.. 13

Support file.. 13

Program file .. 13

As Java source code .. 13

As JVM bytecode.. 14

Do compiler implementation notes... 15

Command classes.. 15

Compiler data classes.. 15

Compiler behavior classes .. 16

Runtime support classes.. 16

Utility classes .. 16

Testing report .. 17

Limitations .. 17

Development diary.. 18

Changes from the planning document .. 19

Do compiler user manual

Overview

The program is a compiler for the Do programming language. The language is described

in more detail in the Overview section of the Do programming language specification

included in this document.

The compiler currently outputs Java source files or equivalent binary class files for a Java

Virtual Machine, henceforth JVM. It has been designed such that new backends for other

output formats are easy to add.

Installation

The compiler runs on a JVM with read/write access to a file system. It is itself compiled

by a Java compiler into Java class files that can be run by a JVM.

Usage

The compiler is invoked by one of the following command line commands.

Command Input file name Output file name Output file format

do2java file file.do file.java Java source file

do2class file file.do file.class JVM class file

If the compiler encounters an error, it writes a message to the standard error stream and

exits with status 1. If successful, it is silent and exits with status 0.

Due to time constraints during development, the error messages are extremely

rudimentary: useful to a programmer familiar with the internals of the compiler, but fairly

useless to others.

Do programming language specification

Overview

Do is a strictly and dynamically typed, garbage collected, stack-based, concatenative,

imperative high-level programming language in the Forth language family.

Data types

none — Represents no object. Equivalent to the nil, null or none types in many languages.

boolean — Represents one of the two boolean truth values, true and false.

integer — Represents an integer, possibly negative.

string — Represents a string of Unicode characters.

vector — Represents a resizable vector containing a sequence of zero or more arbitrary

objects.

The stack

One of the defining features of the Forth language family is the extensive use of stacks.

A stack is a collection of objects that supports insertion and removal of single objects.

The insertion and removal operations are often called push and pop, respectively. The

stack keeps track of the order in which the objects it contains were pushed. At any time

only the last pushed object, termed the top of the stack, can be popped. This implies that

items are popped in reverse order compared to the order in which they were pushed.

Do has a global stack that stores data objects that are manipulated by programs written in

the programming language and is often used where local variables, function arguments or

return values would be used in conventional languages. This stack is called "the stack".

Classic Forth also exposes another global stack, the return stack which tracks the function

call hierarchy and enables user-visible continuations. Do currently doesn't expose its

return stack.

The flag

A central invention in Do that is lacking from classic Forth is the flag, which is a global

boolean variable that controls the behavior of conditional statements. The conditional

statements in Do are & and | which return from the enclosing function if the flag has a

particular value. We say that the flag is set when it has the value true and clear when it

has the value false. Setting and clearing the flag mean assinging it that value.

Names

Like classic Forth, Do has a hyperstatic global environment. Hyperstatic global

environment is the most hilariously baffling computer science term since metacircular

interpreter. It simply means that the same name can be defined multiple times. Each

reference to a name refers to the latest definition given before the reference. This is a

good feature because often one can reuse a short name instead of being forced to invent

unique names for similar operations. For example, if an algorithm has two nested loops,

each can be called loop instead of one being loop1 and the other being loop2.

Definitions

A Do program is a sequence of definitions. There are two kinds of definitions: variable

definitions and function definitions. Definitions cannot be nested.

Variable definitions

A variable definition consists of nothing but the name of the variable. It declares a global

variable that is implicitly initialized to the value none at the beginning of the program.

For a variable named var, the pseudo-functions var and var! are defined to get and set the

value of the variable, respectively. The getter pushes the value onto the stack. The setter

pops a value off the stack and assigns it to the variable.

Function definitions

A function definition consists of the name of the function followed by zero or more

operations. When the function is called, the operations are carried out in sequence. The

function returns to its caller when there are no more operations, or when a special

primitive operation causes the function to return.

Operations

The following kinds of operations exist internally. All the calls and variable accesses look

the same in source code; the behavior depends on the definition of the name in question.

• Call special primitive

• Call non-special primitive

• Call function

• Push literal integer

• Push literal string

• Get value of variable

• Set value of variable

Syntax

Tokens

Do has a simple character-level syntax: source code is a sequence of zero or more

whitespace-delimited tokens. A token is a string, an integer, a symbol or a semicolon.

Strings are delimited by double quotes. In addition, there are comments. Comments run

from a

character until the end of the line. Semicolons stand by themselves. All other characters

constitute bare tokens. If a bare token parses as an integer, it represents an integer.

Otherwise it represents a symbol.

Some examlple tokens follow.

Token Stands for

"foo" the 3-letter string foo

"“" a zero-length string

0 the number 0

10 the number 10

-10 the number -10

0xa the number 10 in hex

foo the 3-letter symbol foo

/mod the 4-character symbol /mod

0= the 2-character symbol 0=

Constructs

Token sequences are assembled into language constructs. There are only two kinds of

language constructs recognized at the top level of nesting in the source file: let statements

and function definitions.

A let statement begins with the symbol let. Zero or more symbols follow, each giving the

name of a variable to be defined. The statement is terminated by a semicolon.

A function definition begins with any symbol besides let. Zero or more tokens follow,

each giving an operation. An operation can be an integer, string or symbol token. An

integer or string establishes itself as a literal that will be pushed to the stack by the

operation. A symbol triggers one of the other operations listed in the Operations section.

Primitives

The following sections specify the primitive operations provided by a Do implementation.

The format of a primitive specification is as follows.

name inputs — outputs ?

Written description

Where inputs and outputs are space-separated lists of zero or more objects on the stack.

The inputs are expected to be on the stack when the primitive is called. The outputs will

be on the stack when it returns. Objects whose names are in [brackets] may or may not be

there; see the written description. A question mark after the outputs means that the

primitive may alter the flag.

Special primitives

... —

Causes execution to continue at the beginning of the enclosing function.

& —

Returns from the enclosing function if the flag is clear.

| —

Returns from the enclosing function if the flag is set.

Data primitives

? obj — ?

Clears the flag if obj is none or false. Sets the flag otherwise.

not — ?

Toggles the flag.

drop obj —

Discards the top of the stack.

none — none

Pushes the object none.

true — true

Pushes the object true.

false — false

Pushes the object false.

Comparison primitives

= a b — a ?

Makes the flag indicate whether a is equal to b.

<> a b — a ?

Makes the flag indicate whether a is inequal to b.

<= a b — a ?

Makes the flag indicate whether a is less than or equal to b.

< a b — a ?

Makes the flag indicate whether a is less than b.

>= a b — a ?

Makes the flag indicate whether a is greater than or equal to b.

> a b — a ?

Makes the flag indicate whether a is greater than b.

Arithmetic primitives

+ a b — r

Pushes the sum of the numbers a and b.

- a b — r

Pushes the difference of the numbers a and b.

* a b — r

Pushes the product of the numbers a and b.

/mod a b — q r

Pushes the quotient and the remainder of a divided by b.

Sequence primitives

vector n — vec

Pushes a new vector whose initial items are n none-values.

count seq — n

Pushes the number of items in the sequence seq.

find subseq seq — [i] ?

If subseq occurs at leats once in seq, pushes the index of the first item of the first

occurrence of subseq in seq and sets the flag. Otherwise clears the flag. Currently works

on strings only.

push obj seq —

Inserts the object obj at the end of the sequence seq. Currently works on vectors only.

item i seq — i val

Pushes the i'th item of the sequence seq. If seq is a string, the result is a one-character

substring.

item! i val seq — i

Replaces the i'th item of the sequence seq with the value val. Currently works on vectors

only.

I/O primitives

readline — [str] ?

If standard input has reached its end, clears the flag. Otherwise reads the next line of

input, pushes it as a string and sets the flag. The string does not contain a terminating

newline, but any such newline is nevertheless consumed from the stream.

newline —

Writes a newline to and flushes standard output.

write obj —

Writes the object obj to and flushes standard output.

The written representation depends on the data type.

The values none, true and false are represented by those names.

An integer is represented in decimal notation.

A string is represented by itself.

A vector is represented by a left bracket, followed by the representations of the objects in

it delimited by spaces, followed by a right bracket.

showstack —

Write a text representation of the current state of the stack to standard output.

die str —

Causes the program to write the given string to standard error and exit with status 1.

Example programs

Example Do programs are provided in the Do source code section in the appendix.

Do to Java translation notes

Limitations

Translation from Do to Java is not very efficient. The JVM internally uses an operand

stack, but we can't really utilize that for the Do stack since it's not sharable across

function call boundaries. It's apparently also not type safe. We resort to an ArrayList. As

it stands, there is large method call overhead for simple things like pushing and popping

the stack.

Name mangling

Identifiers in Do source code can contain almost any characters. In contrast, the range of

characters allowed in Java identifiers is severely limited. Additionally, Do has a

hyperstatic global environment whereas Java requires all global names to be unique.

Consequently we have to make up a unique Java identifier for each Do identifier.

A Java identifier begins with an underscore, which is an easy way to make sure it doesn't

conflict with any of the names defined in the Do runtime support code. The Do name is

then appended with an underscore substituted for each non-alphanumeric character.

Finally, an autoincrementing nonnegative integer is appended to make sure the name is

unique.

A sample run of the name mangler follows.

Do name Java name

foo _foo0

foo _foo1

/mod __mod0

+mod __mod1

+mod1 __mod10

+ __0

Data types

The Do data types map to Java data types as follows.

Do type Java type

none null

boolean Boolean

integer Integer

string String

vector ArrayList

Support file

The class files generated by the compiler do not stand alone. They need to be

accompanied by a support file containing Java code that implements the Do runtime

environment and non-special primitives. The following items appear in the support file.

The Do flag is a Java boolean variable.

The Do stack is a Java ArrayList.

Each non-special Do primitive is a hand-written Java function.

There are a few stack utilities used by the primitives: peek, drop, push, droppush, pop.

Program file

A single Do source file is translated into one public class within a single Java class file.

Each Do variable becomes a public static Java field of type Object.

Each Do function becomes a public static void Java method that throws Exception. The

methods don't take any arguments, except for the main method, which takes the String[]

argument that is mandated by Java.

As Java source code

The special Java primitives cause special control transfer code to be generated by the

compiler. The body of each method representing a Do function is wrapped in an infinite

for-loop. The & and | primitives are implemented as conditional Java break statements

that test the Do flag and exit the infinite loop. The ... primitive is implemented as a Java

continue statement that causes a control transfer to the beginning of the infinite loop. If

no ... primitive appears in the function, a break statement is inserted as the last statement

within the infinite loop.

As JVM bytecode

Pseudocode for JVM bytecode sequences representing the different kinds of Do

operations follows. Check the source code and the instruction set section of the JVM

specification for details.

...

goto funstart

&

getstatic DoPrim.flag Z

ifne x

return

x:

|

getstatic DoPrim.flag Z

ifeq x

return

x:

Call non-special primitive

invokestatic DoPrim.foo ()V

Call function

invokestatic DoProgram.foo ()V

Push literal integer

ldc_w idx

invokestatic DoPrim.push (I)V

Push literal string

ldc_w idx

invokestatic DoPrim.push (Ljava/lang/Object;)V

Get value of variable

getstatic DoProgram.varid Ljava/lang/Object;

invokestatic DoPrim.push (Ljava/lang/Object;)V

Set value of variable

invokestatic DoPrim.pop ()Ljava/lang/Object;

putstatic DoProgram.varid Ljava/lang/Object;

End of function

return

Do compiler implementation notes

Command classes

These classes implement the do2java and do2class commands, respectively, by chaining

together a bunch of stream instances to create a pipeline that does the job. The classes

consist of very straightforward glue code. The streams are chained in the following

sequences.

To turn a Do source file into a do program definition:

• FileReader

• (PushbackReader)

• (CondReader)

• TokReader

• ConsReader

• ProgReader

To turn a Do program definition into a Java source file:

• JavaWriter

• FileWriter

To turn a Do program definition into a JVM class file:

• ClassWriter

• FileOutputStream

Compiler data classes

The data structures used by the compiler have been isolated into their own classes

because they are used by multiple behavioral units, each of which is also in its own class.

The data structure classes are tiny and very straightforward. It should be mentioned that

some of them have methods for equality testing and writing out debugging information.

Classes in the Tok* hierarchy represent Do source code tokens.

Classes in the Cons* hierarchy represent Do source code constructs.

Classes in the Prog* hierarchy represent parts of a Do program definition.

The SyntaxError class represents a syntax error encountered by TokReader or

ConsReader.

Compiler behavior classes

TokReader assembles Do source code tokens from characters supplied by a character

stream. Each type of token has its own reading algorithm. The user of the class may also

read tokens conditionally; for example, it may read the next token if and only if it is a

symbol.

ConsReader assembles Do source code constructs from Do source code tokens supplied

by a TokReader.

ProgReader assembles a Do program definition from Do source code constructs supplied

by a ConsReader. It does name mangling and differentiates source constructs denoting

operations within functions into their final forms.

JavaWriter writes out a Java source code file based on a Do program definition. This is a

very straightforward undertaking.

ClassWriter writes out a JVM class file based on a Do program definition. The intricacy

here arises mainly from the constant pool which needs to go at the beginning of the

resulting class file but is referenced in parts of the file that follow it. This means that we

have to write the parts that follow into a buffer in memory and assemble the actual file

from the buffers when we're done. The code that writes out Java methods corresponding

to Do functions is also intricate. Explaining it to people who don't have grounding in how

the JVM works is outside the scope of this document.

Runtime support classes

The DoPrimID class is not actually part of the runtime environment, but is used by the

compiler to translate the names of Do primitives into their Java IDs. The class is basically

a simple table. See the discussion on name mangling for details.

The DoPrim class contains the runtime support common to all Do programs. See the

discussion on Do to Java translation for details.

The DoPrimMIDlet class contains additional primitives used by Java ME programs on

cell phones. It has never been tested because I didn't have enough time to wrestle with the

mobile Java development tools.

Utility classes

The CmdLineProg class supports writing entry points to Java programs designed to be

run as command line commands. The commmand will take one required argument, which

is a file name. This is the source file name, and a corresponding destination file name is

derived from it. The source and destination files must both have a particular file name

extension determined by the caller. On the command line, the source file name extension

may be omitted, in which case it is filled in.

The CondReader class is a character stream wrapper that conditionally reads characters if

they match the given character class. A character class is represented as an integer

predicate; see the explanation of the IntP class for details. Characters are actually ints, not

chars, since we need to be able to represent the special values EOF and NOMATCH,

which are negative so they don't conflict with char values.

The IntP class is a wrapper for an integer predicate — that is, a method that takes an

integer argument and returns a boolean indicating whether that argument satisfies some

condition. In the compiler, integer predicates are used to determine whether a particular

character belongs to a particular character class; characters are represented as integers

because we need to deal with pseudo-characters such as end-of-file. The IntP class has

the static functions oneOf and notOneOf returning integer predicates that test whether a

given integer is or is not part of the integers given to them as arguments. Each character

class is encoded by a oneOf or notOneOf expression listing the characters that are

included in or excluded from the class. These character classes drive the lexical analyzer.

The StrTab class is a pretty trivial string table. One gives it a string; it gives back the

index of the string within the table. One can request the index of an old string that is

already in the table, or a new string that is inserted into the table. One can also get the

index of an old or new string; a new one is inserted only if there isn't an old one. The

strings method returns the strings in the table as an array. In the compiler, StrTab is used

to populate the string and primitive tables that are part of a program definition.

Testing report

The compiler was tested by writing the example programs and checking that they behave

as expected when run. Additionally, a few intentionally invalid Do programs were written

and it was checked that the compiler error-exited when told to compile them. With the

finished compiler, all of the programs worked as expected.

One can test the compiler by the following method:

• Run javac *.java in the src/java directory

• Copy DoPrim.class into the src/do directory

• Open a Windows command prompt in the src/do directory

• For each .do program foo.do, type test foo to compile and run it

Limitations

JVM fixnums are not automatically promoted to bignums when their magnitude becomes

too large to be represented as a fixnum. Instead, they silently wrap around, which is the

same problem C has. The compiler doesn't insert code to work around the problem.

The error messages are lousy; the compiler basically says that a syntax error happened

and leaves it at that. The Java backtraces are useful to compiler developers but not to

ordinary users.

There is no no Do debugger, and no profiler. I didn't investigate the use of Java tools for

this purpose.

Literal strings don't have an escape syntax.

The JVM class file backend emits tons of redundant constant pool entries because it

doesn't keep a cache to remember which constants already have entries in the pool.

The JVM class file backend allocates all integer literals in the constant pool, even if they

would fit into shorts and could therefore be inlined in the bytecode instruction stream.

This bloats up the file and slows down execution.

The JVM class file backend doesn't try to emit opcode forms that are space-optimized. It

usually uses the widest available form.

There are no compiler optimizations. I have a few in mind.

The Java compiler warns about dealing with ArrayLists that are not specialized to a

subclass of Object, though such ArrayLists are useful and work perfectly well. It seems

there is currently no way to fix the problem properly, but the cause is harmless and the

resulting warnings can be ignored.

javac -Xlint:unchecked *.java

DoPrim.java:19: warning: [unchecked] unchecked call to add(E)

 as a member of the raw type java.util.ArrayList

 stack.add(x); }

Development diary

The development work was done in long stretches each spanning almost an entire day,

with absolutely no development work done in between. Contrary to established time

management wisdom, this is an extremely effective way to work.

Requirement gathering, design, implementation and testing were interspersed quite freely

because the nature of non-trivial projects such as this implies that the phases cannot be

completed in order. For example, one needs to write example programs to determine

what primitives are needed in the programming language and whether they are natural to

use. Then one needs to codify the primitives into a specification and implement the

resulting programming language to make sure the example programs work and there have

been no oversights. Using the waterfall model for such a project is simply an inefficient

use of time, if not beyond one's patience and mental capacity.

By the time the planning document was done, the parser was working and the language

was solid enough that example programs had been written but not tested. As I write this

document, the whole package is finished and works.

Changes from the planning document

A more thorough description of the Do programming language and the internals of the

compiler were written. Information regarding translation of Do to Java and the JVM was

added.

