
The Queen's University of Belfast

Dept. Electrical & Electronic Engineering

Programmable
Integrated
Controllers

from
Microchip

Written by :

Kieran McCormick and Mark Duncanson

(Electronics Workshop - Ashby Building)

Contents

1. Introduction

2. What is a PIC

3. Development Flowchart

4. Microprocessors & Microcontrollers

5. Pinout & Pin description

6. Commonly Used Commands

7. More Advanced Commands

8. Command List

• Byte-oriented instructions

• Bit-oriented instructions

• Variable/Control Operations

9. Development of a Simple program

10. From source code to Application

• MPASM (Microchip’s Assembler)

• MPSIM (Microchip’s Simulator)

• PROG84 (Software used to drive PIC programmer)

11. Appendices

• (A) Example Applications

• (B) Book List

Introduction

The information Contained in this document has been put together to

provide a basic beginners guide to the Microchip’s Programmable Integrated

Controllers.

This is an introduction only, so not all features will be included. In this

document, we have based our work on the PIC16C84, as it is an EEPROM

enabling easy re-programming. Programming and re-programming is made very

simple with as little external hardware as possible. Most commands are common

to all the PICs, although, you should refer to Microchips Databook for finer

details

This document should enable the reader to write and test a simple program

and then program the PIC16C84 to carry out this operation.

What is the PIC

PIC stands for Programmable Integrated Controller, a complete

microcontroller built into an integrated circuit. It can be used for numerous

applications, where control is required, whether it be automated or manual.

Examples include Traffic Light Controllers and Car Indicator Timers.

The PIC can be programmed, on computer, using assembly language and

assembled using MPASM, Arizona Microchip’s PIC Assembler. This is to be

used to encode the PIC with a programmer connected to your printer port on the

computer. When the PIC is programmed, it should be able to control operations

external to the computer or programmer, on it’s own, providing all hardware is

correctly set up.

A simulator program for PICs is also available, MPSIM, which allows you

to single step programs while examining the registers and counter, etc., on the

screen. This is a vital tool for debugging your program and ensuring that you are

satisfied with it’s performance. Some PICs are not easily erasable, so it is cost

effective to test your program before pre-programming the PIC.

Development Flowchart

Simulate
MPSIM

Test in Circuit

Program PIC
PIC Programmer

BUG FREE?

Assemble
software
MPASM

Software
Design

Hardware
Design

CONCEPT

PIC in circuit
emulator

YES

NO

Microprocessors and Microcontrollers

The microprocessor is made up of three section:-

Central Processing Unit Carries out all calculation and data

manipulation.

Input/Output Used to communicate with outside world.

Memory Stores the program information. It can be

RAM, ROM, EPROM or EEPROM, depending

on how permanent the program needs to be

stored.

A microcontroller is the complete control system. It houses a

microprocessor and other circuitry. It’s components are :-

Microprocessor Digital computer system as outlined above.

Oscillator Clock data and instruction into the

microprocessor.

Watchdog Timer Prevents system latchup.

Buffering Allows address and data busses to connect to

many chips without any deteriorating logic

levels.

Decode Logic Lets I/O or addressing select one of a few

circuits connected on the same data or address

bus.

Pinout and Pin Description

Pin Names Description

RA0 - RA3 - Lower 4 bits of Port A, Bi-directional (TTL input level)

RA4/TOCK1 5th bit of Port A Open Collector Input/Output (Also
clock I/P to TMR0)

RB0/INT Low bit of Port B, Bi-directional/Ext. Interrupt Input
(TTL input level)

RB1 - RB7 Upper 7 bits of Port B, Bi-directional (TTL input level)

MCLR/Vpp Master Clear(external reset). Must be kept HIGH for

normal operation

Vss Supply Voltage

Vdd Supply Ground

OSC1/CLKIN Clock Input/Oscillator Connection

OSC2/CLKOUT Oscillator Connection or Clock Out in RC mode (RC is
internal)

Commonly Used Commands

As with any programming language, you must learn commands and how to
use them properly. The full instruction set for PIC16C84 is on page 2-569 of
1994 Microchip Databook.

Each command line has it's Mnemonic, (the operation to be performed),
and in most cases operands, (which are the details of registers or data to be
processed.)

The standard commands allow you to manipulate data which may be from
memory locations, working register or literal data, (actual numbers in the
program). The ability to add and subtract, use logic (AND, OR and XOR), move
data between locations and call subroutines are all available.

First we will look at the registers and some of the operand types and what
they mean.

f - Register file address (0x00 to 0x7F).

'f' can be any of the memory address locations between 0x00 and 0x7F. It
can be given a tag or name by entering an equate line,

register name EQU register location

Then rather than having to use the location in commands you may quote the name
you have given the register.

W - Working register.

'W' is also known as the accumulator. It is an 8-bit register used for all
ALU operations. It is NOT part of the data memory.

k - Literal field, constant data or label.

'k' is used where a literal number is to be used in a command line. It also
represents the name of a label, which may be used in a subroutine. You can put a
label before a command line when typing it in, so it will then be in the left hand
side of the screen. It is good practice to use a TAB before each line, so that you
can easily see where labels are. You should also TAB your spaces in the Program
File Editor.

(Commonly Used Commands continued)

d - Destination select; If d=0, store result in W, d=1 store result in f.

'd' can only be '1' representing 'f' or '0' representing 'W'. After an operation
has been done, in most cases you have the option of storing the result in the 'W'
register or 'f' register, depending on where you want the result stored.

Ex. 1 - Adding the contents of W, the working register, with f, the address of a
memory register which is 07H, leaving the result in the working register.

Before instruction W = 0x08 f = 0x04

Command to use - ADDWF f,d Add W and f

Label Mnemonic Operand Data Comments

TOTALREG EQU 07H This gives location 07H a tag or name
"TOTALREG" (TOTALREG=07H)

ADDWF TOTALREG,0 Adds 'f' to 'W' and because of the '0' after the
comma the result is stored in 'W'

After instruction W = 0x0C f = 0x04

Ex. 2 - Calling a subroutine called DELAY from a different part of the program.

Command to use - CALL k Call subroutine
RETURN Return from subroutine

Label Mnemonic Operand Data Comments

COUNT EQU 08 Gives 08 the tag COUNT

CALL DELAY Looks for label DELAY anywhere in the program
 . .
 . .
 . .

DELAY MOVLW FF Puts FF into W register

MOVWF COUNT Puts contents of W into COUNT

LOOP DECFSZ COUNT,1 Decrements COUNT leaving result in COUNT (Skip
next line if result is Zero)

GOTO LOOP Loop back up to previous line LOOP

RETURN Return from subroutine to next instruction after CALL
DELAY

More Advanced Commands

Below there are some examples of the use of slightly more unusual
commands.

Ex.3 Use the AND command to identify common bits in two different memory registers 11H and
12H. The result is to be stored in memory register 13H.

The contents of one of the registers must be put in the W register so that the ANDWF
instruction can be used. Then use the destination for the result as '0' (W register), so as not to change
the original memory register. Assume the following contents of 11H and 12H.

Before Instructions 11H = A3 (10100011)
12H = 7C (01111100)

AND Result expected 13H = (00100000) or 20H

Label Mnemonic Operand Data Comments

REG1 EQU 11H Name Register 11H with REG1

REG2 EQU 12H Name
Register 12H with REG2

RESULT EQU 13H Name Register 13H with RESULT

MOVF REG1,0 Moves contents of REG1 (A3) into W
register

(dest. is W indicated by Zero after comma)

ANDWF REG2,0 Logic AND W reg. with REG2 (7C)
(dest. is W indicated by Zero after comma)

MOVWF RESULT Moves W
contents into RESULT or loc. 13H

After Instructions 11H = A3
12H = 7C
13H = 20H

Now let's look briefly at some other useful commands.

Instruction Description

RLF f,d Rotate left register f through carry to destination, d. To rotate within the
register f use the number 1 for d.

Example Before f = 11101101 carry = 0 After f = 11011010 carry = 1

RRF f,d Rotate right register f through carry to destination, d.

Example Before f = 11101101 carry = 0 After f = 01110110 carry = 1

SWAPF f,d Swaps halves of the 8 bit register f. Again d represents destination.

Example Before f = A7 After f = 7A

Byte-oriented Instructions

Instruction Syntax Description Status
Affected

Action Example

BCF BCF f,b Bit Clear f None Bit b in register f is reset to 0 BCF FLAG_REG, 7

Before Instruction
FLAG_REG = 0xC7

After Instruction
FLAG_REG = 0x47

BSF BSF f,b Bit Set f None Bit b in register f is reset to 1 BSF FLAG_REG, 7

Before Instruction
FLAG_REG = 0x0A

After Instruction
FLAG_REG = 0x8A

BTFSC BTFSC f,b Bit Test,
Skip if Clear

None If bit b in register f is 0 then the
next instruction is skipped.

If bit is 0 the next instruction,
fetched during current instruction
execution, is discarded and a NOP
is executed instead making this a
two cycle instruction

HERE BTFSC FLAG, 1
FALSE GOTO PROCESS_CODE
TRUE...

Before Instruction
PC = address HERE

After Instruction
if FLAG<1> =0, PC =address TRUE
if FLAG<1> =1, PC =address FALSE

BTFSS BTFSS f,b Bit Test,
skip if Set

None If bit b in register f is 1 then the
next instruction is skipped.

If bit is 1 the next instruction,
fetched during current instruction
execution, is discarded and a NOP
is executed instead making this a
two cycle instruction

HERE BTFSS FLAG, 1
FALSE GOTO PROCESS_CODE
TRUE...

Before Instruction
PC = address HERE

After Instruction
if FLAG<1> =1, PC =address TRUE
if FLAG<1> =0, PC =address FALSE

Bit-oriented Instructions

Instruction Syntax Description Status
Affected

Action Example

ADDWF ADDWF f,d Add w to f C, DC, Z Add the contents of the W register
to register f. If d is 0 the result is
stored in the W register. If d is 1
the result is stored band in register
f.

ADDWF FSR, 0

Before Instruction
W = 0x17
FSR = 0xC2

After Instruction
W = 0xD9
FSR = 0xC2

ANDLW ANDLW f,d AND Variable and W Z The contents of the W registers are
ANDed with the 8-bit variable k.
The result is placed in the W
register

ANDLW 0x5F

Before Instruction
W = 0xA3

After Instruction
W = 0x03

ANDWF ANDWF f,d AND W and f Z AND the W register with register f.
If d is 0 the result is stored in the
W register. If d is 1 the result is
stored back in register f.

ANDWF FSR, 1

Before Instruction
W = 0x17
FSR = 0xC2

After Instruction
W = 0x17
FSR = 0x02

CLRF CLRF f Clear f Z The contents of register f are
cleared and the Z bit is set

CLRF FLAG_REG

Before Instruction
FLAG_REG = 0x5A

After Instruction
FLAG_REG = 0x00
Z = 1

CLRW CLRW Clear W Register Z W register is cleared. Zero bit (Z)
is set.

CLRW

Before Instruction
W = 0x5A

After Instruction
W = 0x00
Z = 1

COMF COMF f,d Complement f Z The contents of register f are
complemented. If d is 0 the result
is stored in W. If d is 1 the result is
stored back in register f

COMF f.d

Before Instruction
REG1 = 0x13

After Instruction
REG1 = 0x13
W = 0xEC

DECF DECF f,d Decrement f Z Decrement register f. If d is 0 the
result is stored in the W register. If
d is 1 the result is stored back in
register f.

DECF f,d

Before Instruction
CNT = 0x01
Z = 0

After Instruction
CNT = 0x0o
Z = 1

DECFSZ DECFSZ Decrement f,
skip if 0

None The contents of register f are
decremented. If d is 0 the result is
placed in the W register. If d is 1
the result is placed back in register
f.

If result is 0, the next instruction,
which is already fetched, is
discarded. A NOP is executed
instead making it a two-cycle
instruction

HERE DECFSZ CNT, 1
GOTO LOOP
CONTINUE...

Before Instruction
PC = address HERE

After Instruction
if CNT = 0, PC = address CONTINUE
if CNT <> 0, PC = address HERE + 1

INCF INCF f,d Increment f Z The contents of register f are
incremented. If d is 0 the result is
placed in the W register. If d is 1
the result is placed back in the
register f.

INCF CNT,1

Before Instruction
CNT = 0xFF
Z = 0

After Instruction
CNT = 0x00
Z = 1

INCFSZ INCFSZ f,d Increment f,
skip if 0

None The contents of register f are
incremented. If d is 1 the result is
placed back in register f.

If the result is 0, the next
instruction, which is already
fetched is discarded. An NOP is
executed instead

HERE INCFSZ CNT, 1
GOTO LOOP
CONTINUE...

Before Instruction
PC = address HERE

After Instruction
CNT = CNT + 1
if CNT = 0, PC = address CONTINUE
if CNT <> 0, PC = address HERE + 1

IORWF IORWF f,d Inclusive OR W with
f

Z Inclusive OR the W register with
register f. If d is 0 the result is
stored in the W register. If d is 1
the result is stored back in register
f.

IORWF RESULT, 0

Before Instruction
RESULT = 0x13
W = 0x91

After Instruction
RESULT = 0x13
W = 0x93

MOVF MOVF f,d Move f Z The contents of register f is moved
to destination d. If d=0 destination
is W register. If d=1, the
destination is file register f itself.
d=1 is useful to test a file register
since status flag Z is affected.

MOVF f,d

After Instruction
W = value in FSR register

MOVWF MOVWF f Move W to f None Move data from W register to
register f.

MOVWF OPTION

Before Instruction
OPTION = 0xFF
W = 0x4F

After Instruction
OPTION = 0x4F
W = 0x4F

NOP NOP No Operation None No operation NOP

RLF RLF f,d Rotate Left f
through carry

C The contents of register f are
rotated 1-bit to the left through the
Carry Flag. If d is 0 the result is
placed in the W register. If d is 1
the result is stored back in register
f.

RLF REG1, 0

Before Instruction
REG1 = 11100110
C = 0

After Instruction
REG1 = 11100110
W = 11001100
C = 1

RRF RRF f,d Rotate Right f
through carry

C The contents of register f are
rotated 1-bit to the right through the
Carry Flag. If d is 0 the result is
placed in the W register. If d is 1
the result is stored back in register f

RRF REG1, 0

Before Instruction
REG1 = 11100110
C = 0

After Instruction
REG1 = 111001100
W = 01110011
C = 1

SUBLW SUBLW k Subtract W from
Variable

C, DC, Z The W register is subtracted (two’s
complement method) from the 8-
bit variable k. The result is placed
in the W register

SUBLW 0x02

Before Instruction
W = 1
C = ?

After Instruction
W = 1
C = 1; result is positive.

If result is negative C = 0
SUBWF SUBWF f,d Subtract W from f C, DC, Z Subtract (two’s complement

method) the W register from
register. If d is 1 the result is stored
back in register f.

SUBWF REG1, 1

Before Instruction
REG1 = 0
W = 1
C = 0; result is negative

After Instruction
REG1 = FF
W = 1
C = 0

SWAPF SWAPF f,d Swap f None The upper and lower nibbles of
register f are exchanged. if d is 0
the result is placed in W register. If
d is 1 the result is placed in register
f.

SWAPF REG, 0

Before Instruction
REG = 0xA5

After Instruction
REG = 0xA5
W = 0xA5

XORWF XORWF f,d Exclusive OR W
with f

Z Exclusive OR the contents of the
W register f. If d is 0 the result is
stored in the W register. If d is 0
the result is stored in the W
register. If d is 1 the result is stored
back in register f.

XORWF REG, 1

Before Instruction
REG = 0xAF
W = 0xB5

After Instruction
REG = 0x1A
W = 0xB5

Variable/Control Operations

Instruction Syntax Description Status
Affected

Action Example

ADDLW ADDLW k Add Variable to W C, DC, Z The contents of the W register are
added to the 8-bit variable k and
the result is placed in the W
register.

ADDLW 0x15

Before Instruction
W = 0x10

After Instruction
W = 0x25

CALL CALL k Subroutine call None Subroutine call. First, return
address (PC+1) is pushed on to the
stack. The 11-bit immediate
address is loaded into PC bits 0 to
10. The remaining upper bits of the
PC are loaded from PCLATH
(f03).

HERE CALL THERE

Before Instruction
PC = address HERE

After Instruction
PC = address THERE
TOS = address HERE

CLRWDT CLRWDT Clear Watchdog
Timer

TO, PD CLRWDT instruction resets
Watchdog Timer. It also resets the
prescaler of WDT. Status bits are
set

CLRWDT

Before Instruction
WDT counter = ?

After Instruction
WDT counter = 0x00
WDT prescaler = 0
TO = 0; PD = 0

GOTO GOTO k Branch None GOTO is an unconditional branch.
11-bit immediate value is loaded
into PC bits 0 to 10. Upper PC bits
are loaded from bits 3 and 4 of
PCLATH. GOTO is a two cycle
instruction

GOTO THERE

After Instruction
PC = address of THERE

IORLW IORLW k Inclusive OR
Variable with W

Z The contents of the W register are
OR’ed with the 8-bit variable k.
The result is placed in the W
register

IORLW 0x35

Before Instruction
W = 0x9A

After Instruction
W = 0xBF

MOVLW MOVLW k Move Variable to W None The 8-bit variable k is loaded into
the W register

MOVLW 0x5A
W = 0x5A

OPTION OPTION Load OPTION
register

None The contents of the W register is
loaded into the OPTION register.
This instruction is only supported
by the PIC16C84

OPTION

Before Instruction
OPTION = ?

After Instruction
OPTION = W

RETFIE RETFIE Return from Interrupt None Return from interrupt. Stack is
popped and Top Of Stack (TOS) is
loaded in PC. Interrupts are
enabled by setting the GIE bit
(INTCON register, bit 7). This is a
two cycle instruction

RETFIE

After Interrupt
PC = TOS
GIE = 1

RETLW RETLW k Return Variable to W None The W register is loaded with the
8-bit variable k. The PC is loaded
from the top of the stack - the
return address. This is a two cycle
instruction

RETLW

Before Instruction
W = ?; PC = ?

After Instruction
W = k; PC = return address

RETURN RETURN Return from
Subroutine

None Return from subroutine. The stack
is popped and the top of the stack
(TOS) is loaded into the program
counter. This is a two cycle
instruction.

RETURN

After Interrupt
PC = TOS

SLEEP SLEEP SLEEP Mode TO, PD SLEEP mode. Power down status
bit (PD) is cleared. Time-out status
bit (TO) is set. Watchdog Timer
and Prescaler are cleared. Processor
is put into SLEEP Mode with clock
stopped.

SLEEP

TRIS TRIS f Load TRIS register None The contents of the W register is
loaded into the control register f,
where f = 5,6 or 7. This Instruction
is only supported by the PIC16C84.

TRIS f

Before Instruction
f = ?

After Instruction
f = W

XORLW XORLW k Exclusive OR
variable with W

Z The contents of the W register are
XOR’ed with the 8-bit variable k.
The result is placed in the W
register

XORLW 0xAF

Before Instruction
W = 0xB5

After Instruction
W = 0x1A

Development of a Simple Program

Now you can see how to develop a program from an idea.

Example

Two alternately flashing LED's are required for this simple program. The
delay between them changing is to be noticeable but not slow.

What things are needed to do this?

1. Two separate Bits need to be assigned as outputs from the PIC.

2. A delay of less than 1 second but more than 0.1 seconds is needed.

3. LED A has to be HIGH and LED B has to be LOW, for one DELAY.

4. LED B has to be HIGH and LED A has to be LOW, for one DELAY.

5. Jump back to 3 and keep repeating.

What needs to be set up?

1. PortB bits 0 and 1 can be setup as LED A and LED B respectively.

2. The label PORTB can be put on Location 06H

3. Real Time Clock Counter Register (RTCC) is at 01H

4. Timer Counter, COUNT set to 00H

5. TIME set to 00H

Program Flowchart

DELAY

START

OFF LEDA / ON LEDB

CALL
DELAY

SET PORT B AS OUTPUT
AND CLEAR PORT

ON LEDA / OFF LEDB

SETUP VARIABLES

CALL
DELAY

Program

; Alternating LEDs routine - Filename: ledonoff.asm
; Stephen Waddington

;Set variables
PORTB EQU 06H ; PORTB is register 6
RTCC EQU 01H ; PIC RTCC timer register
COUNT EQU 00H ; Timer counter
TIME EQU 08H ; Timer period

; Initialisation routine
INIT ORG 00H ; Store program at location 00H

TRIS PORTB ; Set PORTB as outputs
CLRF PORTB ; Clear PORTB

; Main program
MAIN MOVLW B'00000001' ; Set LEDA on, LEDB off

MOVWF PORTB
CALL DELAY ; Hold LEDA on for .256ms
MOVLW B'00000010' ; Set LEDB on, LEDA off
MOVWF PORTB
CALL DELAY ; Hold LEDB on for .256ms
GOTO MAIN

; Delay routine
DELAY CLRWDT ; Clear Watchdog timer

MOVLW TIME
MOVWF COUNT
CLRF RTCC ; Clear RTCC register

LONG BTFSC RTCC,7 ; Test RTCC bit 7(128 x 256us = 32.768us)
GOTO JUMP ; If RTCC bit 7 set goto JUMP
GOTO LONG ; If RTCC bit 7 not set then loop until set

JUMP CLRF RTCC ; If RTCC bit 7 set then clear RTCC
DECFSZ COUNT,F ; Decrement COUNT by 1 until zero

; (32ms x 8 = 0.256s)
GOTO LONG ; Loop LONG if COUNT <> zero
RETURN ; Return to call location

RESET GOTO INIT ; On RESET goto INIT

END

From Source Code to Application

Once you have written the program code for your application it will need to be
tested and possibly debugged. This can be done in one of three ways

• In Circuit Emulator (ICE)
• Software Simulation
• Download to PIC

In Circuit Emulator (ICE)

This is a device which plugs into your target circuit and is controlled by the
computer and allows real-time testing of the program code. This method carries a
cost as in most cases a different ICE is needed for the different families of the
PIC and the ICEs start at about approx. £500

Example For An In Circuit Emulator

Software Simulation

MicroChip have produced MPSIM which enables PIC code to be emulated
by a PC and various program variables, interrupts, and ports to be monitored.

Download to PIC

The final method is to download the code to the PIC that is intended for
final use. This method is the most commonly used as you can try the code in the
target circuit in real-time without the expense of an ICE.

Assembling the Code

Before you can test the code it has to be assembled from its ASCII format
file to a hexadecimal format which can be simulated or downloaded. An In
Circuit Emulator may need hexadecimal code but some types will work with just
the ASCII format code.

There are various assemblers available. The most common is MPASM

which is provided by MicroChip, this is needed to create code for MPSIM and
various download software. Another assembler produced by MicroChip is
MPALC which is required by some download programs.

MPASM

MPASM is a DOS based program that accepts source code in a standard
ASCII format and allows the user to select the required output format on screen.
It also has a reasonable level of error reporting for when things inevitably don’t
go right first time. MPASM’s main screen looks as follows:

Use of MPASM
1. Enter the name of the source file (Code in ASCII Format) i.e. [ledonoff.asm]
2. Select type of processor i.e. PIC16C84
3. Select the Hex output format i.e. INHX8M (The assembler is able to create

four different Hex output formats, depending on the format required by the
PIC programmer.)

4. By default the assembler is set to output an Error file and Listing file so to
start the assembler simply press [F10]

The assembler returns a series of statistics relating to the length of the length of
the assembled code as well as the number of warning and error messages. If the
code contains any bugs it will not run when downloaded to the PIC. Errors
reported in either the List or Error files. The creates two other in addition to the
list and error files. These are as follows:

• <filename>.asm
Default source code file

• <filename>.lst
Default output extension for listing files generated from the assembler

• <filename>.err
Default output extension from MPASM for error details.

• <filename>.hex
Default output code for porting to target PIC

• <filename>.cod
Default output extension for the symbol and debug file.

In Circuit Emulator (ICE)

In circuit emulators operate differently depending on the make and model
but the basic use is the same:
1. A lead from the ICE is connected to the IC socket on the target circuit where

the PIC will be going once programmed.
2. The ICE is connected to the PC, in most cases this is done via the serial

communication port.
3. The ICE software is then run on the PC which takes your program code and

makes the ICE run like the programmed PIC in real time.

MPSIM

Like the MicroChip assembler MPASM, MPSIM is DOS based and as
such, is not very user friendly. It uses a set of proprietary instructions to both
initialise the simulator environment and run an actual simulation. It’s almost as if
you need to learn an additional software language before you can run a
simulation. For this reason, the majority of people tend to test software by
downloading it directly to the target PIC. The MPSIM main screen looks as
follows:

MPSIM is supplied with a comprehensive user manual in an ASCII format text
file.

Download to PIC

Whether for testing or for final production the last stage is to place the
program on to the PIC ready for use. There are a number of programming devices
available. The programming device consists of two elements, a software program
and a programming board. An example of a software program is shown below:

The software is used to drive the programming board which in most cases holds
the PIC for programming in a zero insertion force (ZIF) socket.
Programming a PIC is Very straightforward. Having load the programmer
application and connected the programming board the following information is
selected.
• Program source code. (i.e. ledonoff.hex)
• The file format that the source code is in (i.e. INHX8M)
• The type of oscillator being used on the target circuit
• The PICs software fuses that need to be set
Once this is complete, the target device is mounted on the programming board
and the code downloaded. It takes approximately 20 to 30 seconds to program a
PIC device. During this time the PC transfers the hex code and fuse selections to
the memory of the PIC, before verifying the contents of all EPROM or EEPROM
memory.

The PIC can now be removed from the programmer and placed in the target
circuit ready for use.

Example Of a PIC Programmer Board

Appendix (A)
Example Applications

Traffic Light Sequencer

This traffic light sequencer could be used as part of a model railway set or with
slight modification be scaled up for roadside use.

The basic unit steps through its sequence either manually or at a fixed speed. For
home use, the speed of 5 seconds between step is probably adequate. In the auto
mode, the lights continually sequence. The manual mode changes the lights from
one direction of traffic flow to the other enabling the standard ‘road work’
operation or a 4 way junction.

To enable the design to be used commercially, a variable time control could be
added to change the duration between changeover sequences. The design would
then run on a 16C71, 73 or 74 and the various time settings in an analog form
could be read and converted to actual times within the software.

The light sequence is set in the software and follows the standard “Red - Yellow
- Green - Green & Yellow - Red” pattern. Modification of the software for 3 way
junctions can easily made by increasing the number of blocks of light patterns
with their associated delays.

Traffic Light Sequencer (program flowchart)

DELAY
5S

DLY1

RETLW 0

AUTO
?

STEP
PRESS

STEP
RELEASED

DELAY

CALL
DLY1

YEL1=0
RED1=0
GRN1=1
RED2=1

CALL
DELAY

YEL1=1
GRN2=0
YEL2=1

RED1=0
GRN1=1

CALL
DLY1

YEL1=1
YEL2=0
RED2=0

GRN1=0
YEL1=1
YEL2=1

CALL
DLY1

CALL
DELAY

INITALISE
PORTS & RTCC

YES

NO

NO

YES

NO

YES

Traffic Light Sequencer (source code)

; WRITTEN BY NIGEL GARDNER
; COPYRIGHT BLUEBIRD ELECTRONICS
; DATE 21/2/95
; ITERATION 1.0
; FILE SAVED AS TRAF1.ASM
; FOR PIC16C54
; 4.00 MHz RESONATOR.
; INSTRUCTION CLOCK 1.00 MHz T= 1uS

; SOFTWARE WRITTEN FOR USE WITH PROJECT BOARD FROM BLUEBIRD
; ELECTRONICS.

; ***** EQUATES *****

RTCC EQU 1 ; COUNTER
PC EQU 2 ; PROGRAM COUNTER
STATUS EQU 3 ; STATUS REGISTER
CARRY EQU 0 ; CARRY BIT
DCARRY EQU 1 ; DIGIT CARRY BIT
PDOWN EQU 3 ; POWER DOWN BIT
WATDOG EQU 4 ; WATCHDOG TIMEOUT BIT
FSR EQU 4 ; FILE SELECT REGISTER
Z EQU 2

TIME EQU .156 ; 156 * 64mS = 10 SECONDS

PORTA EQU 5
AUTO EQU 0 ; MANUAL AUTO SWITCH
STEP EQU 1 ; SEQUENCE STEP SWITCH

PORTB EQU 6
RED1 EQU 0 ; SET A OF LIGHTS
YEL1 EQU 1
GREEN1 EQU 2
RED2 EQU 3 ; SET B OF LIGHTS
YEL2 EQU 4
GREEN2 EQU 5

COUNT EQU 0BH ; GENERAL PURPOSE COUNTER

ORG 00

; *********** INITALISE PORTS AND RTCC *************

INIT MOVLW 00H
TRIS PORTB ; PORT B AS OUTPUTS
CLRF PORTB
MOVLW 0FH
TRIS PORTA ; PORT A AS INPUTS
MOVLW B'00000111' ; RTCC PRE-SCALAR /256
OPTION ; 256uS PER COUNT INTERNAL CLOCK

; ********* PROGRAM BEGINS HERE **********************

MAIN BSF PORTB,RED1
BSF PORTB,GREEN2
MOVLW TIME ; DELAY TIME
CALL DELAY

BSF PORTB,YEL1
BCF PORTB,GREEN2
BSF PORTB,YEL2
MOVLW TIME ; DELAY TIME
CALL DELAY

BCF PORTB,YEL1
BCF PORTB,RED1
BSF PORTB,GREEN1
BSF PORTB,RED2
MOVLW TIME ; DELAY TIME
CALL DELAY

BCF PORTB,GREEN1
BSF PORTB,YEL1
BSF PORTB,YEL2
MOVLW TIME ; DELAY TIME
CALL DELAY

BCF PORTB,YEL1
BCF PORTB,YEL2
BCF PORTB,RED2
GOTO MAIN

; TEST HERE TO SEE IF MANUAL MODE OR DELAY IF AUTOMATIC

DELAY BTFSC PORTA,AUTO ; TEST FOR AUTO SWITCH ON
GOTO DLY1 ; AUTOMATIC MODE

LP1 BTFSC PORTA,STEP ; IF MANUAL MODE, THEN WAIT FOR
GOTO DELAY ; BUTTON PRESS BUT CHECK IF AUTO

LP2 BTFSS PORTA,STEP ; AND THEN RELEASE BEFORE CONTINUING
GOTO LP2 ; TO NEXT SEQUENCE
RETLW 0

; LONG DELAY 64mS * VALUE IN W REGISTER

DLY1 CLRF RTCC
MOVWF COUNT ; USE THIS REGISTER TEMPORARILY

LONG2 BTFSC RTCC,7 ; TEST RTCC BIT 7 64*256uS = 64mS
GOTO JMP1
GOTO LONG2 ; LOOP UNTIL BIT IS SET

JMP1 CLRF RTCC ; YES, SO CLEAR RTCC
DECFSZ COUNT,F ; DECREMENT, UNTIL ZERO
GOTO LONG2

 RETLW 0

ORG 1FFH ; RESET VECTOR FOR C54
GOTO INIT
END

Traffic Light Sequencer (circuit diagram)

Pedestrian Crossing Simulator

This code is similar to the traffic light sequencer in that it follows the sequence f
change from one set of lights to another. However, the addition of sound and
flash operation enables this design to become a fully working product with
minimal change.

The sounder shown in the diagram is a small loudspeaker. The warning tone
frequency is set within the software.

Modification to the design could be to include a delay between cycles to allow
sensible traffic flow or the provision of a vehicle sensor to allow faster response
times when no vehicles are present.

Pedestrian Crossing Simulator (program flowchart)

TRAF GREEN
ON

PED RED ON

FLASH
TRAF

AMBER
PED GREEN
FOR 7 SECS

BLEEP
5 SECS

DELAY
1.15 S

PED GREEN
ON

TRAF RED
ON

TRAF AMBER
ON

DELAY
1.47 S

INITALISE

PEDESTRIAN
WAITINGNO

YES

Pedestrian Crossing Simulator (source code)

; WRITTEN BY NIGEL GARDNER
; COPYRIGHT BLUEBIRD ELECTRONICS
; DATE 2/8/95
; ITERATION 1.0
; FILE SAVED AS PED1.ASM
; FOR PIC16C54
; 4.00 MHz RESONATOR.
; INSTRUCTION CLOCK 1.00 MHz T= 1uS

; Software will run with project board from Bluebird Electronics

; ***** equates *****

rtcc equ 1 ; counter
pc equ 2 ; program counter
status equ 3 ; status register
carry equ 0 ; carry bit
dcarry equ 1 ; digit carry bit
pdown equ 3 ; power down bit
watdog equ 4 ; watchdog timeout bit
fsr equ 4 ; file select register
z equ 2

time2 equ .200 ; 200*512us = 0.1024S

porta equ 5
#define go porta,0 ; start button

portb equ 6
#define red1 portb,0 ; traffic lights
#define yel1 portb,1
#define grn1 portb,2
#define red2 portb,3 ; pedestrian lights
#define grn2 portb,4
#define buzz portb,7 ; buzzer for warning

count equ 0ch ; general purpose counter
sound equ 0dh
flash equ 0eh

list p=16c54 ; processor type

org 00

; ******************* subroutines *************************

; ********* long delay 32ms * value in w register *********

delay1 clrf rtcc
movwf count ; use this register temporarily

long2 btfsc rtcc,7 ; test rtcc bit 7 (128*256us = 32.768ms)
goto jmp1
goto long2 ; loop until bit is set

jmp1 clrf rtcc ; yes, so clear rtcc
decfsz count,f ; decrement, until zero
goto long2
retlw 0

; ***** delay with sounder of 1.95KHz ************

delay2 movlw time2 ; load timer
dly2 clrf rtcc

movwf count ; use this register temporarily
bsf buzz

long3 btfsc rtcc,1 ; test rtcc bit 1 (2*256us = 512us)
goto jmp2
goto long3 ; loop until bit is set

jmp2 bcf buzz
clrf rtcc ; yes, so clear rtcc
decfsz count,f ; decrement, until zero
goto long3-1
retlw 0

; *********** initalise ports and rtcc *************

init clrf portb ; clear port
movlw 00h
tris portb ; port b as outputs
movlw 0fh
tris porta ; port a as inputs
movlw b'00000111' ; rtcc pre-scalar /256
option ; 256us per count internal clock

; ********* program begins here **********************

main bsf grn1 ; traffic on green
bcf red1
bsf red2 ; pedestrian on red
bcf grn2
btfsc go
goto $-1 ; loop for start button
bcf grn1
bsf yel1 ; traffic on amber
movlw .45 ; delay time (1.47S)
call delay1
bsf red1 ; traffic on red - wait for them to stop
bcf yel1
movlw .35 ; delay time (1.15S)
call delay1
bcf red2
bsf grn2 ; pedestrian on green
movlw .30 ; tone bursts approx 5 secs
movwf sound

bleep movfw sound ; reload for next bleep
call delay2 ; 0.1S tone burst
movlw 2 ; delay time
call delay1 ; 65mS quiet period
decfsz sound,f ; count down time
goto bleep ; make sound again

movlw .9 ; flash for approx 7 secs
movwf flash

get_off movfw flash ; reload for next time
movlw .12 ; 0.393S off
call delay1
bcf red1 ; turn off traffic red
bcf yel1
bcf grn2
movlw .12 ; 0.39S on
call delay1
bsf yel1 ; flash traffic amber
bsf grn2 ; flash pedestrian green

decfsz flash,f ; count down
goto get_off ; get off xing
bcf yel1 ; turn off traffic amber
goto main ; go again

org 1ffh ; reset vector for c54
goto init

end

Pedestrian Crossing Simulator (circuit diagram)

Book List

MicroChip DataBooks available from Electronics Store Rm. 10.4 (PIC Related)

• A Beginners Guide to the Microchip PIC (Nigel Gardner)

• PIC Cookbook - Vol. 1 (Nigel Gardner + Peter Birnie)

• PIC16/17 Microcontroller Databook

• Embedded Control Databook 1994/95

