

intgl.

8XC251SB

Embedded
Microcontroller
User’'s Manual

February 1995 Order Number 272617-001

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 2/26/96

intel.
CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL
1.1 MANUAL CONTENTS ... ettt ettt et it e et se e e bt sae et st ee e ebe e nneenne e 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGYc.cuieiiiriiiiiie et 1-3
1.3 RELATED DOCUMENTS ..ottt ettt et st et sa e et sae st st n e st nae e e
1.3.1 DAt SNEEL ..o e e
1.3.2 APPICALION NOLES ..ottt ettt ettt e e ettt e e et st eeee e et st eeee e et e e e e enneaeeenan
1.4 CUSTOMER SERVICE.......ccccocviniiiiiinnn
141 How to Use Intel's FaxBack Service
1.4.2 How to Use Intel's Application BBS
1.4.3 How to Find the Latest ApBUILDER Files and Hypertext Manuals and
Data Sheets 0N the BBS ..o e e s 1-9

CHAPTER 2
ARCHITECTURAL OVERVIEW

21 8XC251SB CORE........

211 CPU .
2.1.2 Clock and Reset Unit
213 ([1C=Tq U] o] o F= g To | =T TSP R TP
2.1.4 ON-Chip COUE MEMOIYuiiiiiittit e et et ettt ee et ae e et eeee e s ete e e asaeneaeeenan 2-6
2.1.5 ON-ChIP RAM oot et et eh e et bbb et e 2-7
2.2 ON-CHIP PERIPHERALS. ... oottt et ettt e et e sn e e 2-7
2.2.1 Timer/Counters and Watchdog TIMErccceuiiiiiiiiiiien e e 2-7
222 Programmable Counter Array (PCA) ..ottt 2-7
2.2.3 SErIAl O POI ..ottt et e et e e e e 2-8
CHAPTER 3
ADDRESS SPACES
3.1 ADDRESS SPACES FOR MCS® 251 MICROCONTROLLERScovvoieeisieceerenenn 3-1
3.1.1 Compatibility with the MCS® 51 ArCRItECIUIEvoveee oo, 3-2
3.2 THE 8XC251SB MEMORY SPACE.......ccct ittt ettt 3-5
3.21 On-chip General-purpose Data RAM ... 3-6
3.2.2 On-chip Code Memory (87C251SB/83C251SB)cccciiuiiriiiiii e e 3-6
3.221 Accessing On-chip Code Memory in Region 00:cccccveeieeiiiiiieeeeciieieen. . 3-6
3.2.3 EXTEINAl MEIMOTY ...cii ittt e ettt e ettt e et e ee e e e emn e e e e emnaeaeeen s
3.3 THE 8XC251SB REGISTER FILE ..ottt e
3.3.1 Byte, Word, and Dword Registers
3.3.2 Dedicated REGISLEISttt ettt e ere e e e aan

CONTENTS Intel®

3.3.21 Accumulator and B ReQISLErc.oiiiiiiiiie e 3-10
3.3.2.2 Extended Data POINtEr, DPX ...ttt et ee e e s e 3-10
3.3.2.3 Extended Stack POINLEI, SPX ...ttt e ee e e e e 3-11
3.4 SPECIAL FUNCTION REGISTERS (SFRS) ...eoviiiiiiee e e 3-12
CHAPTER 4
PROGRAMMING
4.1 BINARY MODE AND SOURCE MODE CONFIGURATIONS .
41.1 Selecting Binary Mode or SOUIrce MOUEcooiuiiiiriiiie e
4.2 PROGRAMMING FEATURES OF THE MCS® 251 ARCHITECTURE 4-4
421 (D 1= B Y o[PP PPPPPRPPPPPPPUPN 4-4
422 [RTETo TS (=T gl N\ o] = LT] o PSPPSRI 4-4
4.2.3 AJAress NOTAIONcuiiiiiiiiiie ittt et e ee e et e e et e e e e sae e e e enee e 4-5
S Y N [0 [=TT To T 1Y oo [RSP TRS 4-5
4.3 DATA INSTRUCTIONS ...ttt ettt et e e e e e ee e e e e e 4-6
43.1 Data AAAressing MOGESccouiiiiii et et et 4-6
43.11 RegiSter AArESSINGuvueiieiieiii ettt et e et e s ene e ee s 4-8
43.1.2 Immediate
43.1.3 Direct
43.14 Indirectcccceeveniiieenns
4.3.15 Displacement
4.3.2 Arithmetic INSIIUCHIONS ..ot et et ee e e 4-10
4.3.3 LOGICAl INSIFUCLIONS ...ttt ettt e ettt et sh e e e sae e e e sae e eas 4-11
43.4 Data Transfer INSIIUCLIONSueuii i e 4-11
4.4 BIT INSTRUCTIONS ...ttt nn e ene e sn e e 4-12
441 Bit AQArESSING ..ttt ettt ettt et e et e e e et e e e e s 4-12
4.5 CONTROL INSTRUCTIONS ...ttt e e e e e 4-14
45.1 Addressing Modes for Control INStFUCIONSuvuvviiiieiiie e e 4-14
45.2 CoNItIONAl JUMPS ...ttt ettt ettt e et e e s et e ae e e 4-15
45.3 UNCONAITIONAL JUMPS ..uviieiei et eee e e s e s e s e e e ettt n e e aeeaeaeeaaaaean 4-16
45.4 Calls AN REIUIMNS ...t ettt b e e e ee e e 4-16
4.6 PROGRAM STATUS WORDSottt et e e 4-17
CHAPTER 5
INTERRUPT SYSTEM
5.1 OVERVIEW .ot e e er e e nre e

5.2 8XC251SB INTERRUPT SOURCES
5.2.1 External Interrupts
5.2.2 LI =T L0 (T g (VT o] £ S SRPR

5.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

5.4 SERIAL PORT INTERRUPT

5.5 INTERRUPT ENABLE

5.6 INTERRUPT PRIORITIEScoi ittt ettt et st

Intel® CONTENTS

5.7 INTERRUPT PROGCESSING ..ottt et e e e e e
571 Minimum Fixed INterrupt TIMEoooiuiiiii et
5.7.2 Variable Interrupt Parametersttt e e

5721 Response Time Variables ... e e
5.7.2.2 Computation of Worst-case Latency With Variables
5.7.2.3 Latency CalCUulatiOnscoooiiiiiiiioiiii e e
5.7.24 Blocking CONItIONSeeiiiioieie e
5.7.2.5 INtErruUpt VECIOr CYCIE ... e e e
5.7.3 ISRS IN PIOCESS ..ottt ettt ar e e e nr e e e

CHAPTER 6
INPUT/OUTPUT PORTS

6.1 INPUT/OUTPUT PORT OVERVIEW ...ttt et e
6.2 I/O CONFIGURATIONS.ottt ittt et e n e en e e e e e
6.3 PORT L AND PORT 3 ..o e e et et e e e e e
6.4 PORT OAND PORT 2 ...

6.5 READ-MODIFY-WRITE INSTRUCTIONS
6.6 QUASI-BIDIRECTIONAL PORT OPERATION ...t 6-5
6.7 PORT LOADING.ot

6.8 EXTERNAL MEMORY ACCESS

CHAPTER 7
TIMER/COUNTERS AND WATCHDOG TIMER
7.1 TIMER/COUNTER OVERVIEW.ottt sttt ee et e see e e e e neeeeees 7-1
7.2 TIMER/COUNTER OPERATION.....cciiititiiie ettt ettt ettt e seae s ee e 7-1
7.3 TIMER Dttt et e ettt e et en e e ekt e e et e ae e e bt et te e en e ee et e en e e enreeenn 7-4
7.3.1 Mode O (L3-DIt TIMEI) weereieeie i e s e s e ettt bre e e e aeaeseneneanan 7-4
7.3.2 MOdE 1 (L6-DIt TIMEI) eereieeieiee e e e e e e et e e e reeaeaeseaeaeanan 7-5
7.3.3 Mode 2 (8-bit Timer With AUtO-reload)ccccvveviiiee e 7-5
7.3.4 Mode 3 (TWO 8-Dit TIMEIS) ..ceciiiieii it re e e e e e e e s eneneanas 7-5
7.4 TIMER L.ttt ettt et ee et ekt e e et e ae e e ettt et bt e en e e ettt en e e e eenn

7.4.1 Mode 0 (13-bit Timer)
7.4.2 Mode 1 (16-bit Timer)

7.4.3 Mode 2 (8-bit Timer with AUtO-reload)cccvvviiiiieiee e 7-9
7.4.4 MOAE 3 (HAIE) oottt et st ettt ebe e e e e e 7-9
7.5 TIMER O/1 APPLICATIONS.. ..ottt st et ettt ettt et ettt e ee e e eens 7-9
7.5.1 Auto-load Setup EXamPIE ...cccoiiiiiii i e 7-9
7.5.2 Pulse Width MeaSUIEMENLScccoiiiiiiiiiiieii e et ar e ae e e e s e e e e 7-10
7.6 TIMER 2. ittt e e e et bt e bt eh e et ettt en et ettt e en e 7-10
7.6.1 (OF=T o110 (=201, oo =SSP UPRP 7-11
7.6.2 AULO-TEI0AA MOOE ...oviiieie e e s e e eeee e e e e e e e e 7-12
7.6.2.1 Up Counter OPEerationcccccvvvueeieieieeieieresess s sienensesesessereeaesesesesesnansnenensnns (=12
7.6.2.2 Up/Down Counter OPErationceeueeirierererisiseiinsiieieiieisieeaeaeaeseses s senenenes 7-13

CONTENTS Intel®

7.6.3 Baud Rate Generator MOUEoooi ittt e 7-14
7.6.4 (@4 [oTed 2o 111 311, [To [PSPPSR 7-14
7.7 WATCHDOG TIMER ..ottt ettt e ettt e et se e et et e e s 7-16
7.7.1 D<ol) o] o JR USSP 7-16
7.7.2 USING the WDT ...ttt e ettt ettt et ee e e e ee e e e et e aee e e enn et e e sneneeeaan 7-18
7.7.3 WDT DUMNG [AI€ MO ..ottt et e e e 7-18
7.7.4 WDT DUFNG POWEIDOWNooiiiiitiiiiiaitiiie ettt sttt e ee e e e e e e e e ees 7-18

CHAPTER 8
PROGRAMMABLE COUNTER ARRAY

8.1 PCA DESCRIPTION ...ttt ittt ettt st e ekttt sttt st st e st e nneenie e 8-1

8.2 PCA TIMER/COUNTER. ...ttt ettt ettt e ettt ettt se e sttt sneenie e 8-2

8.3 PCA COMPARE/CAPTURE MODULES ..ottt ettt 8-5
8.3.1 16-Dit CAPLUrE MOUE ...ttt ettt ee e sbe e ee e eee e 8-5
8.3.2 COMPArE MOUES ...t et ettt e et e e e ean et e e nbeeeees e eee e 8-7
8.3.3 16-bit Software TiIMer MOAEcoouiiiiir e e 8-7
8.3.4 High-speed OULPUL MOEeuiiiii i e e et n 8-8
8.3.5 PCA Watchdog TImer MOGEc.cooiiiiiiiiaet ettt e 8-9
8.3.6 Pulse Width Modulation MOTEcceeiiiiiieie e 8-11

CHAPTER 9
SERIAL 1/0O PORT
9.1 OVERVIEW ...ttt ettt ettt et ettt e sttt te e st e e nae e ere e e sae e eneaeeanneeeenes
9.2 MODES OF OPERATIONcit ittt ettt ettt sttt et st et e st en s e et enee e en e
9.2.1 Synchronous Mode (MOUE 0) .ouvuiieiieiiiieier et e e e e e e s s s e e e n e e e e s
9.2.1.1 Transmission (MOUE 0)cooeiiiiii e e e r e e aeae s e e aaean s
9.2.1.2 ReCeption (MOAE 0) ...cooiiiiiieie ettt ettt eae e s
9.2.2 Asynchronous Modes (Modes 1, 2, and 3)
9.2.2.1 Transmission (Modes 1, 2, 3)
9.2.2.2 Reception (Modes 1, 2, 3) .o
9.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3).............
9.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)
9.5 AUTOMATIC ADDRESS RECOGNITIONcciituiiiiiinieie et et
951 GIVEN AQAIESS .ttt ettt ettt e ettt e e et et ee e nbe e ee e e ne e
9.5.2 BroadCast AQAIESScvueiie it et ettt et
9.5.3 RESEE AGQAIESSES ...ttt ettt e ettt e e et ee e e e ean
9.6 BAUD RATES ...t ittttitit ittt sttt sttt et e sttt es nae e steee ettt ene e et bt en s e e et e e ntbe s enne e
9.6.1 Baud Rate for Mode O
9.6.2 Baud Rates for Mode 2ccccceeeiiiinnnn.
9.6.3 Baud Rates for Modes 1 and 3ccooiiiiiiiiiiein e
9.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)
9.6.3.2 Selecting Timer 1 as the Baud Rate Generatorccoevvvvvvviiiiiiieieienenenns
9.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)ccocevevvniviiviiiiieieienenennn
9.6.3.4 Selecting Timer 2 as the Baud Rate Generatorccoevvvvvvviiiiiiieieienenenns

Vi

Intel® CONTENTS

CHAPTER 10
MINIMUM HARDWARE SETUP
10.1 MINIMUM HARDWARE SETUP ...ttt ettt ettt 10-1
10.2 ELECTRICAL ENVIRONMENT ..ottt ittt sttt sttt et e e e s 10-2
10.2.1 Power and GroUNd PINS ...ttt sttt ee e e ee e e e ene e e eas 10-2
10.2.2 UNUSEA PINS ...ttt ettt e ettt ee et et e e et ettt e e et e e e e e sre e e s e snnaeeeean 10-2
10.2.3 NOISE CONSIAEIALIONSeeiie ettt ee ettt ettt ee e ekt ee e e ettt e e e ee e e e e e sbe e ees e saeaeeeean 10-2
10.3 CLOCK SOURCES......ci ittt ettt ettt e e e e e e e ettt e e s et e e e e e e saebeee e e sanae e s 10-3
10.3.1 On-chip OSCIllator (CryStal)cueeoi oot e 10-3
10.3.2 On-chip Oscillator (Ceramic RESONALOr)ccceiiiiiiiiieriiie e e 10-4
10.3.3 EXIEINAI CIOCKeviiiiiiiiie ittt e ettt et e et e e sbe e ee e saeaeeeean 10-4
O] PSP 10-5
10.4.1 Externally Initiated RESELScuiiiiiiiiiiiii ittt e e e 10-6
10.4.2 WDT INItIALEA RESELSeeeiie ittt ettt ettt e et e e e sbe e ee e saeaeeeean 10-6
10.4.3 RESEL OPEIALION ...coiiiiiiiiiiie ettt ettt e ettt et e ee ekttt e e et e e e e e sbe e ee s e saeaeeeaan 10-6
10.4.4 POWEI-0N RESEL ...ooiiiiiiiiiiie ittt e e et e e e e e e e aeaenen e e 10-7
CHAPTER 11
SPECIAL OPERATING MODES
111 GENERAL....ecee e ettt ettt et et e ae e en e es 11-1
11.2 POWER CONTROL REGISTERcotiiiiiiiiiia ittt 11-1
11.2.1 Serial I/O CONrOl BitScuoiiiiiiiitier ettt et ettt e s ee e ean 11-1
11.2.2 POWEE Off FIAQ .vuvuiiiiiiiie e ies ittt ettt e e e et s e e e ettt e e e e aeeaeaesae e e e e e
11.3 IDLE MODE...................
11.3.1 ENering 1Al€ MOUE ...ooviiiiiie e et s ettt aae e aeeaeaeseaaaean
11.3.2 EXItiNG 1AI€ MOAEcovviiieiieie et s et ae e e e aeaeaea e
11.4 POWERDOWN MODE
11.4.1 Entering POWErdown MOUEccoieiiiiiiiiiiie et et es e e s et eaeaeaeaea e ean 11-6
11.4.2 EXiting POWErdown MOGEccoiiiiiiiiiiiiir et s et re e aaeaeaenen e 11-6
11.5 ON-CIRCUIT EMULATION (ONCE) MODEcuttiiiiiiiieeie e e 11-7
11.5.1 ENtering ONCE MOUE ..ociviiiiiiiiiiiii ettt ettt e e e e st st e e e e e aae e aeeaeaesenenean 11-7
11.5.2 EXItiINg ONCE MOUEouiiiiiiiiieie ettt et ettt st e e san e ee s 11-7
CHAPTER 12
EXTERNAL MEMORY INTERFACE
12.1 EXTERNAL MEMORY INTERFACE SIGNALS.......coiiiiiiititiie et e
12.2 CONFIGURING THE EXTERNAL MEMORY INTERFACE
12.2.1 Page Mode and Nonpage Mode (PAGE Bit)ccccccciviiiiiiiiii i

12.2.2 RD#, PSEN#, and the Number of External Address Pins (Bits RD1:0)12-3
12.2.2.1 Sixteen External Address Bits and a Single Read Signal

(RD1 =1, RDO = 0) teeteiiiieiiieee ettt eeeie st ee st ettt e e e sttt ere e et en 12-4
12.2.2.2 Seventeen External Address Bits and a Single Read Signal
(RD1 =0, RDO = 1) iiieiiiii ettt st et ettt e ettt ere e et e 12-4

Vii

CONTENTS Intel®

12.2.2.3 Sixteen External Address Bits and Two Read Signals

(RDL =1, RDO = 1) cocuiiiitiieiin ettt et ettt e ettt bt nn s et enes 12-5
12.2.3 Wait States (WSA, WSB, XALE)couuiiiiieiii ittt ettt e et e e e 12-6
12.2.4 Mapping On-chip Code Memory to Data Memory (87C251SB/83C251SB)12-7
12.3 EXTERNAL BUS CYCLESottt ettt sttt ettt et sttt e enee 12-7
12.3.1 Inactive EXIErNal BUSc.ooii oottt ettt et et s ee e sae e ean 12-7
12.3.2 BUS Cycle DEfiNItiONSc.ooii it e e et e e e 12-8
12.3.3 Nonpage Mode BUS CYCIESouioiiiiiie ettt et 12-8
12.3.4 Page Mode BUS CYCIESccoi ittt et e e e 12-10
12,4 WAIT STATES ... oottt ettt et ettt et bt re e et an e e eae e eh e e b ne s 12-13
12.4.1 Extending PSEN#/RD#/WR# 12-13
12.4.2 EXIENAING ALE ... oottt ettt et 12-14
125 PORT O AND PORT 2 STATUS ... ottt ittt ettt et e sn e 12-15
12.5.1 Port 0 and Port 2 Pin Status in Nonpage Modecccooooiiiiniiiiiinnienee e, 12-15
12.5.2 Port 0 and Port 2 Pin Status in Page Modecccooiiiiiiiniiiiieen e 12-16
12.6 EXTERNAL MEMORY DESIGN EXAMPLES.........ccccecoiiiiiiiinie e 12-16
12.6.1 Nonpage Mode, 64 Kbytes External EPROM, 64 Kbytes External RAM 12-16
12.6.1.1 An Application Requiring Fast Access to the Stackcccccviiiieiienines 12-16
12.6.1.2 An Application Requiring Fast AcCess to Dataccceeevieieiriiiiiee e 12-17
12.6.2 Nonpage Mode, 128 Kbytes External RAMcccociiiiiiieiiion e e 12-19
12.6.3 Page Mode, 128 Kbytes External Flashccccociviiiiiieiiniies e 12-21
12.6.4 Page Mode, 64 Kbytes External EPROM, 64 Kbytes External RAM 12-21
12.6.5 Page Mode, 64 Kbytes External Flash, 32 Kbytes External RAMcccccueeee. 12-22
12.7 EXTERNAL BUS AC TIMING SPECIFICATIONSccoiiiiiiiniie st 12-24
12.7.1 Explanation of AC SYMDBOIScooiiiiiir e 12-28
12.7.2 AC TimiNg DEfiNItIONS ..ouiiiiiiiieiiie e e e e ae e e 12-28
CHAPTER 13
PROGRAMMING AND VERIFYING
NONVOLATILE MEMORY
L13.1 GENERAL ...ttt ettt ettt et et et 13-1
13.2 PROGRAMMING AND VERIFYING MODES.........ccciiotiiiiiiinie et 13-2
13.3 GENERAL SETUPottt ettt ettt ettt et nn e sttt e en e en e eae e aree 13-3
13.4 OTPROM PROGRAMMING ALGORITHM.ccitiitiiiiiiinii e e 13-4
13.5 VERIFY ALGORITHM....coiiiiiiiitieit ittt sttt e e s 13-5
13.6 PROGRAMMABLE FUNCTIONSccoititiiiii ettt ettt et 13-5
13.6.1 ON-Chip COAE MEIMOIY ..eiiiiiieici ettt e e e e e e e e et e eee e ee e e eeaeseeees e e e 13-5
13.6.2 CoNfIQUrAtION BYLIES ...iviiiiiiiiiiie ettt et et e e s e e e ettt teteeee e s aeaen e e e 13-6
13.6.3 LOCK BIt SYSIEIM ..uviiiiiiitiiiie e ee ettt e e s e e e s ettt aee e beeaeaeseeenean 13-9
13.6.4 ENCIYPLON AITAY .oteitiiiititiie e iee s s ees e es s sttt ee e aeeaeaesesas e e s st st sbs s e bt e beeeeeeeeaeas 13-10
13.6.5 SIGNAIUIE BYLES ...uviiiiiiiiiiiie e iesis sttt ee e s ae e e e e e st s sttt be e bee e beeaeaeneaeas 13-10
13.7 VERIFYING THE 83C251SB (ROM)cciiiiiiciiiiiiie ettt ettt sttt ene e 13-10
13.8 VERIFYING THE 80C251SB (ROMLESS)coiiiiiiiiiiiiiie ettt 13-11

viii

Intel® CONTENTS

APPENDIX A

INSTRUCTION SET REFERENCE
Al NOTATION FOR INSTRUCTION OPERANDS ... A-2
A2 OPCODE MAP AND SUPPORTING TABLES ... A-4
A3 INSTRUCTION SET SUMMARY ..o e A-11

A3.1 Execution Times for Instructions that Access the Port SFRs
A.3.2 Instruction Summariesccccceceeeeeennnnn.
A.4 INSTRUCTION DESCRIPTIONS

APPENDIX B
SIGNAL DESCRIPTIONS

APPENDIX C
REGISTERS

GLOSSARY

INDEX

CONTENTS Intel®

FIGURES
Figure
2-1 Functional Block Diagram of the 8XC251SB........cccoiiiiiiiiiiiie e
2-2 TRE CPU ..ot et b e bt e s e bt e b ekt b et e he e e et
2-3 BXC25LSB THMNG ..ttt ittt ettt et et etttk et e ae e ek e e en et eb e e e s e aneene e ane s
3-1 Address Spaces for MCS® 251 Microcontrollers..............
3-2 Address Spaces for the MCS® 51 ArChItECIUIE ... ov oo

3-3 Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture...............3-4
3-4 8XC251SB Memory Space

3-5 The REGISIEE Fl@ ... e et
3-6 Dedicated Registers in the Register File and their Corresponding SFRs................... 3-11
4-1 Binary Mode OpPCOUE IMAP .. ccciaiuueieiie ettt ettt e et ettt e et e ee e et ee e e e e e e e enne e een s
4-2 Source Mode OPCOUE MAPoeiiiiieii ettt ee ettt e e e et e e te e ee e sre e e e e e e
4-3 Program Status Word Register......................

4-4 Program Status Word 1 Register...................

5-1 Interrupt Control Systemccccccoeeeennenenn.
5-2 Interrupt ENabIe REGISIENcoooiiieiee et e e et e
5-3 Interrupt Priority High REGISTENcooi ittt
5-4 Interrupt Priority Low Register....

5-5 The Interrupt Process.................

5-6 Response Time Example #1

5-7 Response Time EXamPpPle #2 ... e
6-1 POrt 1 and POrt 3 STIUCTUIEcoiiiiii et
6-2 Port O Structurecccceene

6-3 POI 2 STIUCTUE ...t
6-4 Internal Pullup ConfiQUIatioNScooi ittt e
7-1 Basic Logic of the Timer/Counters

7-2 Timer 0/1 in Mode 0 and Mode 1

7-3 Timer 0/1 in Mode 2, Auto-Reload.................
7-4 Timer 0 in Mode 3, TWO 8-Dit TIMEIS......ccuuiiiiii e et re e e
7-5 TMOD: Timer/Counter Mode COoNntrol REQISLENciiiiiiiiiiei et
7-6 TCON: Timer/Counter Control Registercccccoovueeenne

7-7 Timer 2: Capture Modecoccevveeniiienneenne

7-8 Timer 2: Auto Reload Mode (DCEN = 0)
7-9 Timer 2: Auto Reload Mode (DCEN =1)
7-10 Timer 2: ClOCK OUL MOTE......ccoiiiiiiie ittt et e
7-11 T2MOD: Timer 2 Mode Control Register..........cccccvvvvveenn.n.

7-12 T2CON: Timer 2 Control Register
8-1 Programmable Counter Array..........c.cccceeue
8-2 PCA 16-bit Capture MOUEvvie e e e et e s e e ee e eeeee s
8-3 PCA Software Timer and High-speed Output Modes
8-4 PCA Watchdog Timer Mode

8-5 PCA 8-DIt PWM MOE ..ottt ettt e st e e s e e e e e
8-6 PWM Variable DULY CYCIEuuiiiiiiiie e ettt ee e e e e e e e e e e e
8-7 CMOD: PCA Timer/Counter Mode Register..............cco....
8-8 CCON: PCA Timer/Counter Control REQISIEN........uuueieieeiie et ee e e e

Intel® CONTENTS

Figure

8-9
9-1
9-2
9-3
9-4
9-5
10-1
10-2
10-3
10-4
10-5
11-1
11-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10

12-11
12-12

12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21

12-22
12-23
13-1
13-2
13-3
13-4
13-5

FIGURES

CCAPMx: PCA Compare/Capture Module Mode RegiSters..........ccccovevieeraiieieeenannne 8-16
Serial Port BIOCK DIGQIAIMueii it ettt ettt e e e ae e e e e eeeenae
Serial Port Special Function Register
Mode O TimMiNg....ccouveereeeie e

Data Frame (Modes 1, 2, @Nnd 3)eeii i et eenae e s
Timer 2 in Baud Rate Generator Mode
MINiMuUM Setupcceeeeiie e
CHMOS On-chip Oscillator.........
External Clock Connection............cccccoevuuene.

External Clock Drive WavefOormS..........c.ueuie it
ReSet TIMING SEOUENCEoiiiitiiie it ettt ettt et e e e e ere bt e e eenae e aan
Power Control (PCON) Register..........ccuc.....

Idle and Powerdown Clock Control

Internal and External Memory Spaces for RD1 =1, RDO = 0......ccoveiiriiiiienieenienen. 12-4
Internal and External Memory Spaces for RD1 =0, RDO = 1.......cccccoeiiiniieninennenen. 12-5
Internal and External Memory Spaces for RD1 =1, RDO = 1.......ccccciiiiniieninennenen. 12-6
External Code Fetch or Data Read Bus Cycle (Nonpage Mode)ccceveeereinennen. 12-9
External Write Bus Cycle (Nonpage Mode).........cccceoevieieeiieiieieeen e

Bus Structure in Nonpage Mode and Page Mode

External Code Fetch Bus Cycle (Page MOde).......c.cooiuvieriiiiirie et
External Data Read Bus Cycle (Page Mode)cooiuieiiiriiiiiiene e e
External Write Bus Cycle (Page MOdE)coouuiiiiiiiiiiiii et e
External Code Fetch or Data Read Bus Cycle with One PSEN#/RD#

Wait State (NONPAGE MOAE)oeiiiiiie ettt et 12-13
External Write Bus Cycle with One WR# Wait State (Nonpage Mode)................... 12-14
External Code Fetch or Data Read Bus Cycle with One ALE Wait State

[N o] T o= e L= TN, o T 1=) PP 12-14

80C251SB in Nonpage Mode with External EPROM and RAM...........ccccccvvvveeen . 12-17
The Memory Space for the Systems of Figure 12-13 and Figure 12-1812-18
87C251SB/83C251SB in Nonpage Mode with 128 Kbytes of External RAM........... 12-19
The Memory Space for the System of Figure 12-15
80C251SB in Page Mode with External Flash...

80C251SB in Page Mode with External EPROM and RAM 12-22
80C251SB in Page Mode with External Flash and RAM............ccocoviviiiiiiviie e, 12-23
The Memory Space for the System of Figure 12-19..........cccovviiiiiieeie e 12-24
External Bus Cycles for Data/Instruction Read and Data Write in

N[0 g o 2= o 1=, o o L= USSP 12-25
External Bus Cycles for Data Read and Data Write in Page Mode..............ccccvvee. 12-26
External Bus Cycles for Instruction Read in Page Mode

Setup for Programming and Verifyingccccccccceeiiiiiiieis

OTPROM Programming WavefOrmMScouiiiiirii i et te e e e s s e ann s snenenee

Configuration Byte 0
Configuration Byte 1...................
OTPROM TIMINQG e tttiitiii ittt e e eeeaeae e e e s s st be e e bee e eeeaeaesesesens sssrsnsnbenenes

Xi

CONTENTS Intel®

TABLES
Table Page
2-1 Summary Of 8XC251SB FEATUIEScoi ittt et ee e e en 2-4
3-1 P aXe (o [f XIS Y F= T o 11 o < O PEPRTRUPRPRUN
3-2 Register Bank Selection
3-3 Dedicated Registers in the Register File and their Corresponding SFRs................... 3-12
3-4 8XC251SB SFR Map and Reset VAlUESccuuiiiiiiieieiie e e
3-5 Core SFRS.....coieii e
3-6 I/O Port SFRs..........
3-7 Serial I/0 SFRs

3-8 Timer/Counter and Watchdog Timer SFRSo e
3-9 Programmable Counter Array (PCA) SFRS......c.uiuiiiiie e e
4-1 Examples of Opcodes in Binary and Source Modes

4-2 DAt TYPES - oottt e et a e e e e

4-3 Notation for Byte Registers, Word Registers, and Dword Registers

4-4 Addressing Modes for Data Instructions in the MCS® 51 Architecture

4-5 Addressing Modes for Data Instructions in the MCS® 251 Architecture 4-7
4-6 Bit-addressable LOCAtIONScooiiiiiie et e e
4-7 Addressing TWO Sample BitS.........coui i et
4-8 Addressing Modes for Bit INStIUCHONScooi e e
4-9 Addressing Modes for Control INStIUCLIONS............oiaiiiiiiir e e
4-10 Compare-conditional JUMP INSTFUCLIONSoeiiiiiiiiie et
4-11 The Effects of Instructions on the PSW and PSW1 Flags....................

5-1 Interrupt System Pin SIGNAISueiii e e e et
5-2 Interrupt System Special Function Registers

5-3 Interrupt Control MatriX..........cooooveeeeireniee e

5-4 Level of Priority.......cccccceevvieeenns

5-5 Interrupt Priority Within Level

5-6 Interrupt Latency Variables ...t e
5-7 Actual vs. Predicted Latency CalCulations............oooieeiiiiiiiie e e
6-1 Input/Output Port Pin Descriptions................

6-2 Instructions for External Data Moves.............

7-1 Timer/Counter and Watchdog Timer SFRs...

7-2 EXTEINAl SIGNAISot e ettt ettt e e e ae s
7-3 Timer 2 Modes Of OPEIatioN..........coo ittt eee e
8-1 PCA Special Function Registers (SFRS)ccccceeivennen.

8-2 EXTEINAl SIGNAIS ...t ettt e e et et ae s
8-3 PCA MOGUIE MOES ...t e e e e e e
9-1 Serial POrt SINAIS e e e
9-2 Serial Port Special FUNCION REJISIEISuiiiiiieie et
9-3 Summary of Baud Rates

9-4 Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3............cooovvvieiieeeenennnn.

9-5 Selecting the Baud Rate Generator(s)

9-6 Timer 2 Generated Baud Rates

11-1 Pin Conditions in Various Modes...................

12-1 External Memory Interface SignalS...........cooviviviiiiiiiic e e

Xii

Intel® CONTENTS

Table

12-2
12-3
12-4
12-5
12-6
12-7
12-8
13-1
13-2
13-3
13-4
13-5
A-1
A-2
A-3
A-4
A-5
A-6
A-7

A-9

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
B-1

B-2

C-1

TABLES

Page

Configuration BitS RDL:0cuieri i e et ee ettt et e e sae e ee e e et ee e e eeeas 12-3
WAt STALE SEIECHIONeiivieii et e sr e e s

Bus Cycle Definitions (No Wait States)c.ccccveeereennn.
Port 0 and Port 2 Pin Status In Normal Operating Mode
AC Timing Symbol DefinitioNScoo i
AC Timing Definitions for Specifications on the 8XC251SB.................

AC Timing Definitions for Specifications on the Memory System
Programming and Verifying Modesccccoiiiiiieiniiiiiie e
Configuration Byte Values for 80C251SB and 80C251SB-16.........cccccueeeeeiivieeenenene
LOCK Bit FUNCHON ... ettt et et e e e n e e
Contents of the Signature Bytes....................

OTPROM Timing Definitionscccccocueee.

Notation for Register Operands..
Notation for DIreCt AQUIESSES.cueei et
Notation for Immediate AdAreSSINGcueeii ittt
Notation for Bit Addressing
Notation for Destinations in Control INStrUCIONScccviviieeeiiiir e
Instructions for MCS® 51 MiCroCONIOlErSo.oveeeereeeeeeeereeee e eees s ereee e,
New Instructions for the MCS® 251 ArChItECtUIEoc.oveveeeereeeeeeeeeereeeeeeeeereeeeen.
DAta INSIFUCTIONSeiceeie ettt e er e e e er e e nr e e e e nre e e s
High Nibble, Byte 0 of Data Instructions........
BIt INSITUCTIONS ...ttt e et en e e e e an e e re e enees
Byte 1 (High Nibble) for Bit INStrUCHIONS.ooiiiiiiie et
PUSH/POP INStructionsccccevvveeeenecnnn
Control Instructions
Displacement/Extended MOVS......................
INCIDEC ottt ettt et ettt et bt e ettt e et bt e es et ene e en e
ENcoding fOr INC/DECot et ettt e e e ee
ShIftS oo
State Times to Access the Port SFRs...........
Summary of Add and Subtract Instructions.......................
Summary of Compare INStIUCHIONScoiiiiiiiie e e e e
Summary of Increment and Decrement INStrUCHIONScocviiiiiirien i
Summary of Multiply, Divide, and Decimal-adjust Instructions
Summary of Logical INSIIUCHIONScuiiiiiiiiii ettt
Summary Of MOVE INSITUCHIONSueuiiii ittt et
Summary of Exchange, Push, and Pop INStruCtionSceoveiiiiiiineiiieie e
Summary Of Bit INSEIUCHIONS.coc ettt e e
Summary of Control Instructions....................
FIag SYMDBOIS.....ceeee e e ettt e
Signals Arranged by Functional Categoriesccuuaiuiiieireiiiiieiee e e e
Description of Columns of Table B-3.............
Signal DeSCHPLIONSc.coiiiiiiie e
8XC251SB Special Function Registers (SFRs)

CONTENTS Intel®

TABLES

Table Page

Xiv I

intel.
1

Guide to This Manual

intel.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8XC251SB embedded microcontroller which is the first member of the
MCS® 251 microcontroller family. It is intended for use by both software and hardware designers
familiar with the principles of microcontrollers.

1.1 MANUAL CONTENTS

This manual contains 13 chapters and 3 appendixes. This chapter, Chapter 1, provides an over-
view of the manual. This section summarizes the contents of the remaining chaptgpeand a
dixes. The remainder of this chapter describes notational conventions and terminology used
throughout the manual and provides references to related documentation.

Chapter 2 — Architectural Overview — provides an overview of device hardware. It covers
core functions (pipelined CPU, clock and reset unit,@mdhip memory) and on-chip peripher-
als (timer/counters, watchdog timer, programmable counter arrayegatl& port.)

Chapter 3 — Address Spaces— describes the three address spaces of the MCS 251 microcon-
troller: memory address space, special function register (SFR) space, and the register file. It also
provides a map of the SFR space showing the location of the SFRs and their reset values and ex-
plains the mapping of the address spaces of the@®BlISrchitecture into the address spaces of

the MCS 251 architecture.

Chapter 4 — Programming— provides an overview of the instruction set. It describes each in-
struction type (control, arithmetic, and logical, etc.) and lists the instructions in tabular form. This
chapter also discusses the binary mode and source mode configurations, addressing modes, bit
instructions, and the program status words. For additional information about the instruction set,
see Appendix A.

Chapter 5 — Interrupts — describes the 8XC251SB interrupt circuitry which provides a TRAP
instruction interrupt and seven maskable interrupts: two external interrupts, three timer interrupts,
a PCA interrupt, and a serial port interruphis chapter also discusses the interrupt priority
scheme, interrupt enable, interrupt processing, and interrupt response time.

Chapter 6— Input/Output Ports — describes the four 8-bit I/0O ports (ports 0-3) and explains
how to configure them for generplrpose I/O and alternatpexcial functions. It also describes
the use of ports 2 and 4 as the external address/data bus.

Chapter 7— Timer/Counters and WDT — describes the three on-chip timer/counters and

discusses their application. This chapter glsavides ingructions for using the hardware watch-
dog timer (WDT) and describéise operation of the WDT during the idle and powerdown modes.

I 1-1

GUIDE TO THIS MANUAL Int9|®

Chapter 8 — Programmable Counter Array (PCA) —describes the PCA on-chip peripheral
and explains how to configure it for general-purpose applications (timers and counters) and spe-
cial applications (programmable WDT and pulse-width modulator).

Chapter 9 — Serial I/O Port — describes the full-duplex serial 1/0 port and expldiog to
program it to communicate with external peripherals. This chapter also discusses baud rate gen-
eration, framing error detection, multiprocessor communications, and automatic address recog-
nition.

Chapter 10 — Minimum Hardware Considerations —describes the basic requirements for
operating the 8XC251SB in a system. It also discusses on-chip and external clock sources and
describes device resets, including power-on reset.

Chapter 11 — Special Operating Modes —provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describbes to enter and exit each mode. This chapter

also describes the (PCON) register and lists the status of the device pins during the special modes
and reset (Table 11-1).

Chapter 12 — External Memory Interface — discusses the options available for cgufing

the external memory interface for a variety of applications. These options include pagéomode
accelerated external code fetches), the number of external address bits (16 or 17), the number of
external wait states, the regions of memory for strobing PSEN# and RD#, and making a portion
of the on-chip code memory accessible as data. This chapter also discusses external memory sig-
nals, control registers, and external bus cycles and their timingravides several examples of
external memory designs.

Chapter 13 — Programming and Verifying Nonvolatile Memory —provides instructions for
programming and verifying on-chip code memory, configuration bytes,tsigniaytes, lock bits
and the encryption array. This chapter provides the bit definitions of the configuration bytes.

Appendix A — Instruction Set Reference —provides reference information for the instruction

set. It describes each instruction; defines the bits in the program statdsegisters (PSW,
PSW1); shows the relationships between instructions and PSW flags; and lists hexadecimal op-
codes, instruction lengths, and execution times. For additional information about the instruction
set, see Chapter 4, “Programming.”

Appendix B — Signal Descriptions —describes the function(s) of each device pin. Descrip-
tions are listed alphabetically by signal name. This appendix also provides a list of the signals
grouped by functional category.

Appendix C — Registers —provides for convenient reference a copy of the register definition
figures that appeartbughout the manual.

1-2 I

Int9|® GUIDE TO THIS MANUAL

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used in an instruction, the symbol prefixes
an immediate value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x andy, wherex represents the first variable agdrepresents the
second variable. For example, in registecyPx represents the
variable [1-4] that dentifies the specific port, andrepresents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or ifignt
signals.

XXXX Uppercase X (no italics) represents an unknown value or a “don't
care” state or condition. The value may be either binary or
hexadecimal, depending on the context. For example, 2XAFH (hex)
indicates that bits 11:8 aranknown; 10XX in binary context
indicates that the two LSBs are unknown.

Assert and Deassert ~ The termsassertand deassertrefer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated bymoundsymbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Instructions Instruction mnemonics are shown in upper case to avoid confusion.
You may use either upper case or lower case.

Logic O (Low) An input voltage level equal to or less than the maximum value of
V,. or an output voltage level equal to or less than the maximum
value of \,, . See data sheet for values.

Logic 1 (High) An input voltage level equal to or greater than the minimum value of
V4 or an output voltage level equal to or greater than the minimum
value of \,,, . See data sheet for values.

1-3

GUIDE TO THIS MANUAL

Numbers

Register Bits

Register Names

Reserved Bits

Set and Clear

Signal Names

Units of Measure

1-4

intel.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the charactét. Decimal and binary numbers are
represented by their customary notations. (That is, 255 is a decimal
number and 1111111 is a biary number. In some cases, the leBer

is added for clarity.)

Bit locations are indexed by 7:0 for byte registers, 15:0wford
registers, ands 31:0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is bit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power off flag.

Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase

character, it represents more than one register. For example,

CCAPMx represents the five registers: CCAPMO through CCAPM4.

Some registers contameservedbits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is indeter-
minate.

The termssetandclear refer to the value of a bit or the act of giving
it a value. If a bit iset its value is “1”;settinga bit gives it a “1”
value. If a bit isclear, its value is “0”;clearing a bit gives it a “0”
value.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the port abbrevi-
ation, a period, and the pin numberg(e.P0.0, P0.1). A qund
symbol (#) appended to a signal name identifies an active-low signal.

The following abbreviations are used to represent units of measure:
A amps, amperes

DCV direct current volts

Kbyte kilobytes

KQ kilo-ohms

mA milliamps, milliamperes

Mbyte megabytes

MHz megahertz

ms
mwW
ns
pF
W
\%
HA
HF
us
HW

1.3 RELATED DOCUMENTS

GUIDE TO THIS MANUAL

milliseconds

milliwatts

nanoseconds

picofarads

watts

volts

microamps, microamperes
microfarads

microseconds

microwatts

The following documents contain additional information that is useful in designing systems that
incorporate the 8XC251SB microcontroller. To order documents, please call Intel Literature Ful-
fillment (1-800-548-4725 in the U.8nd Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers
Embedded Processors
Embedded Applications

Packaging

Order Number 270646

Order Number 272396

Order Number 270648

Order Number 240800

1-5

GUIDE TO THIS MANUAL Int9|®

1.3.1 Data Sheet
The data sheet is includedEmbedded Microcontrollerand is also available individually.

8XC251SB CHMOS Single-Chip 8-bit Microcontroller Order Number 272459
(Commercial/Express)

1.3.2 Application Notes
The following application notes apply to the MCS 251 microcontroller.

AP-125, Designing Microcontroller Systems Order Number 210313
for Electrically Noisy Envisnments

AP-155, Oscillatordor Microcontrollers Order Number P859

AP-709, Maximizing Performnce Using MCS 251 Microcontroller Order Numbe2@71
-Programming the 8XC251SB

The following MCS 51 microcontroller application notes also apply to the MCS 251 microcon-
troller.

AP70, Using the Intel MCS 51 Boolean Processing Capabilities ~ Order Number 203830

AP-223,8051Based CRT Terminal Controller Order Number 270032
AP-252,Designing With the 80C51BH Order Number 270068
AP-425 Small DC Motor Control Order Number 270622
AP-410,Enhanced Serial Port on the 83C51FA Order Number 270490
AP-415,83C51FA/FB PCA Cookbook Order Number 270609
AP-476, How to Implemen®C Serial Communication Order Number 272319

Using Intel MCS 51 Microcontrollers

1-6 I

Int9|® GUIDE TO THIS MANUAL

1.4 CUSTOMER SERVICE

This section provides telephone numbers and describes various customer services.
¢ Customer Support (U.S. and Canada) 808-8236
¢ Customer Training (U.S. and Canada) 80@-3806

¢ Literature Fulfillment
— 800-468-8118 (U.sand Canada)
— +44(0)793-431155 (Europe)
* FaxBack* Service
— 800-628-2283 (U.S. and Canada)
— +44(0)793-496646 (Europe)
— 916-356-3105 (worldwide)
¢ Application Bulletin Board System
— 800-897-2536 (U.S. and Canada)
— 916-356-3600 (worldvde, up to 14-Kbaud Ine)
— 916-356-7209 (worldvde, dedicated 2400-baud line)
— +44(0)793-496340 (Europe)

Intel provide24-hour automated technical support throughfaxBack service and our central-

ized Intel Application Bulletin Board System (BBS). The FaxBack service is a simple-to-use in-
formation system that lets you order technical documents by phone for immediate delivery to
your fax machine. The BBS is a centralized computer bulletin board system that provides updated
application-specific information about Intel products.

1.4.1 How to Use Intel's FaxBack Service

Think of the FaxBack service as a library of technical documents that you can accegsuwith
phone. Just dial the telephone number (see page 1-7) and respond to the system prompts. After
you select a document, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. First-time users

should order the appropriate subject catalogs to get a complete listing of document order num-
bers.

I 1-7

GUIDE TO THIS MANUAL Int9|®

The following catalogs and information packets are available:
1. Microcontroller, Flash, and iPLD catalog

Development Tools Handbook

System catalog

DVI and multimedia catalog

BBS catalog

Microprocessor and peripheral catalog

Quality and reliability catalog

® N o oA W N

Technical questionnaire

1.4.2 How to Use Intel's Application BBS

The Application Bulletin Board System (BBS) provides centralized access to information, soft-
ware drivers, firmware upgrades, and revised software. Any user with a modem and computer can
access the BBS. Use the following modem settings.

* 14400, N, 8,1

If your modem does not support 14.4K baud, the system provides auto configuration support for
1200- through 14.4K-baud modems.

To access the BBS, just dial the telephone number (see page 1-7xpaddréo thesystem
prompts. During your first session, the system gsksto register with the system operator by
entering your name and location. The system operator will then getmpcess account within

24 hours. At that time, you can access the files on the BBS. For a listing of files, call the FaxBack
service and order catalog #6 (the BBS catalog).

If you encounter any difficulty accessing our high-speed modem, try our dedicated 2400-baud
modem (see page 1-7). Use the following modem settings.

e 2400 baud, N, 8, 1

1-8 I

Int9|® GUIDE TO THIS MANUAL

1.4.3 Howto Find the Latest ApBUILDER Files and Hypertext Manuals and Data
Sheets on the BBS

The latestApBUILDER files and hypertext manuals and data sheets are available first from the
BBS. To access the files:
1. Select [F] from the BBS Main menu.

Select [L] from the Intel Apps Files menu.

Select [25] to chooghe ApPBUILDER / Hypertext area.

Area level 25 hafour subkvels: (1) General, (2096 Files, (3) 186 Files, and (8D51
Files.

2
3. The BBS displays the list of all area levels and prompts for the area number.
4
5

6. Select [1] to find the late®tpBUILDER files or the number of the appropriate product-
family sublevel to find the hypertext manuals and data sheets.

7. Enter the file number to tag the files you wish to download. The BBS displays tlo-app
imate download time for tagged files.

I 1-9

GUIDE TO THIS MANUAL

1-10

intel.

Architectural
Overview

intel.

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 8XC251SB is the first microcontroller in Intel's family of MES51 microcontrollers. This
family of 8-bit microcontrollers extends the features and performance of the widely-used MCS 51
microcontrollers, whilg@roviding binary-ode compatibility. Pin compatible with the 8XC51FX,
the 8XC251SB provides a high-performance upgrade with minimal impact on existing hardware
and software. Typical control applications for the 8XC251SB include copiers, scanners, and CD
ROM and tape drives. It is also well suited for communications applications, spbbrses ter-
minals, business/feature phones, and phone switching and transmission systems.
All MCS 251 microcontrollers share a set of common features:

* 24-bit linear addressing and up to 16 Mbytes of memory

* aregister-based CPU with registers accessible as bytes, wordnude words.

* a page mode for accelerating external instruction fetches

* an instruction pipeline

* an enriched instruction set, including 16-4iithmetic and logic instructions

* a 64-Kbyte extended stack space

* a minimum instruction-execution time of two clocks (vs. 12 clocks for MCS 51 microcon-
trollers)

* binary-code compatibility with MCS 51 microcontrollers

Several benefits are derived from these features:
¢ preservation of code written for MCS 51 microcontrollers

* asignificant increase in core execution speed in cosgrasvith MCS51 microcontrollers
at the same clock rate

¢ supportfor larger programs and more data

* increased efficiency for code written in C
Figure 2-1 is a functional block diagram of the 8XC251SB. The core, which is common to all
MCS 251 microcontrollers, is described in “8XC251SB Core” on page 2-4. A specific microcon-

troller in the family has its own on-chip peripherals, I/O ports, external system bus, size of on-
chip RAM, and type and size of on-chip program memory.

I 2-1

ARCHITECTURAL OVERVIEW

System Bus & I/O Ports

PO P2
8 8
Code - -
System Bus OTPROM/ROM < >| DataRAM
1/0 Ports (16 Kbytes) (1 Kbyte)
\ \
Memory Data 16,
7
4 / Memory Address 16,
7
¢ ¢ » \‘ “| Peripheral Peripherals
Bus Interface o > Interface [j=——— |
\
Code Bus [16 24| Code Address | Watchdog
1 ~ Timer
Instruction Sequencer > | Interrupt | o o |)
Handler
* | Timer/
SRC1 8, = 7| Counters
4
SRC2 * 8, . 8y A2 8}] 1
. Data Data 1B ! '
Y Bus Address Bus
\/ > PCA
Register Data <>
ALU Igile Memory | |
Interface >
A T Clock [et
DSTY 16, Reset
7 ~/ .
1 1
MCS® 251 Microcontroller Core
8 8
P1 P3
Clock & Reset Peripheral Signals
& I/0 Ports
A4109-01

Figure 2-1. Functional Block Diagram of the 8XC251SB

Int9|® ARCHITECTURAL OVERVIEW

The 8XC251SB peripherals include a dedicated watchdog timer, a timer/counter unit, a program-
mable counter array (PCA), and a serial I/0 unit. The 8XC251SBhe8-bit I/O ports, PO-P4.

Each port pin can be individualprogrammed as@eneral 1/0 signal or a special-function signal

that supports the external bus or one of the on-chip peripherals. Ports PO and P2 comprise the ex-
ternal bus, which has 16 lines that are multiplexed fb8-hit addresand 8-bit data. (You can

also configure the 8XC251SB to have dhlgxternal address bit. See Chapter 12, “External
Memory Interface.”) Ports P1 and P3 comprise bus-control and peripheral signals.

The 8XC251SB has two power-saving modes. In idle mode, the CPU clock is stopped, while
clocks to the peripherals continue to run. In powerdown mode, the on-chip oscillator is stopped,
and the chip enters a static state. An enabled interrupt or a hardware reset can bring the chip back
to its normal operating mode from idle or powerdown. See Chapter 11, “Special Operating
Modes” for details on the power-saving modes.

MCS 251 microcontrollers use an instruction set that has been expanded to include new opera-
tions, addressing modes, and operands. Many instructions can operate on 8-, 16-, or 32-bit oper-
ands, providing easier and more efficient programming in high-level languages such as C.
Additional new features include the TRAP instruction, a new displacement addressing mode, and
several conditional jump instructions. Chapter Brdgramming,” describethe instruction set

and compares it with the instruction set for MCS 51 microcontrollers.

You can configure the 8XC251SB to runbmary modeor source modeln either mode, the
8XC251SB can execute all instructions in the MCS 51 architecture and theMC&chitec-

ture. However, source mode is more efficient for MCS 251 architecture instructions, and binary
mode is more efficierfor MCS 51 architecture instructions. In binary mode, object code for an
MCS 51 microcontroller can run on the 8XC251SB without recompiling.

If a system was originally developed using an MCS 51 microcontroller, and if the new
8XC251SB-based system will run code written for the MCS 51 microcontrolléorpence will

be better with the 8XC251SB runningbmary mode. Object code written for the MCS 51 mi-
crocontroller runs faster on the 8XC251SB.

However, if most of the code is rewritten using the new instruction set, performance will be better
with the 8XC251SB running in source mode. In this case the 8XC251S&iraignificantly

faster than the MCS 51 microcontroller. See Chapter 4, “Programming” for a discussioargf bi
mode and source mode.

MCS 251 microcontrollers store both code and data in a single, linear 16-Mbyte memory space.
The 8XC251SB can address up to 128 Kbytes of external memorgp€&bial function registers

(SFRs) and the register file have separate address spaces. See Chapter 3, “Address Spaces” for
description of the address spaces.

I 2-3

ARCHITECTURAL OVERVIEW Int9I®

Table 2-1 summarizes some features of the 8XC251SB.

Table 2-1. Summary of 8XC251SB Features

Address | Register Data 1/0 External Interrupt
Space File Code Memory RAM | Lines Bus Sources
256 83C251SB: 16 Kbytes ROM Multiplexed:
Kbvtes 40 bytes | 87C251SB: 16 Kbytes OTPROM | 1 Kbyte 32 16/17 Address Bits 1
wt 80C251SB: 0 Kbytes 8 Data Bits

2.1 8XC251SB CORE

The 8XC251SB core architecture contains the clock and reset unit, the interrupt handler, the bus
interface, the peripheral interface, and the CPU. The CPU contains the instruction sequencer,
ALU, register file, and data memory interface.

211 CPU

Figure 2-2 is a functional block diagram of the CPU (central processor unitBX®251SB
fetches instructions from on-chip code memory two bytes at a time or from external memory in
single bytes. The instructions are sent over the 16-bit code bus to the execution unit. & can
figure the 8XC251SB to operate filage moddor accelerated instruction fetches from external
memory. In page mode, if an instruction fetch is to the same 256-byte “patfeg psevious
fetch, the fetch requires one state (two clocks) rather than two states (four clocks).

The 8XC251SB register file has forty registers, which can be accessed as bytes, watds; and

ble words. As in the MCS 51 architecture, registers 0—7 consist of four banks of eight registers
each, where the active bank is selected bytbgram status word (PSW) for fasintext switch-

es.

The 8XC251SB is a single-pipeline machine. When the pipeline is full and code is executing from
on-chip code mmory, an ingruction is completed every state time. When the pipeline is full and
code is executing from external memory (with no wait states and no extension of the ALE signal)
an instruction is completed every two state times.

2-4

Int9|® ARCHITECTURAL OVERVIEW

Code Bus ile 24$ Code Address

Instruction Sequencer <
Interrupt
¢ Handler
SRC1 T 8
SRC2 * 8, Y
\/ i T l V 8 Data Bus
Register Data
ALU I?ile Memory 24
Interface [
Data Address

DST 16, T T
7

Figure 2-2. The CPU

2.1.2 Clock and Reset Unit

The timing source for the 8XC251SB can be an external oscillator or an internal oscillator with
an external crystal/resonator (see Chapter 10, “Minimum Hardware Setup”). The basic unit of
time in MCS 251 microcontrollers is tsgate timgor statg, which is two oscillator periods (see
Figure 2-3). The state time is divided iqgbase landphase 2

The 8XC251SB peripherals operate goesipheral cyclewhich is six state times. (This periph-

eral cycle is particular to the 8XC251SB and not a characteristic of the MCS 251 architecture.)
A one-clock interval in a peripheral cycle is denoted by its state and phase. For example, the PCA
timer is incremented once each peripheral cycle in phase 2 of state 5 (denoted as S5P2).

The reset unit places the 8XC251SB into a known state. A chip reset is initiated by asserting the
RST pin or allowing the watchdog timer to time out (see Chapter 10, “Minimum Hardware Set-

up”).

I 2-5

ARCHITECTURAL OVERVIEW Int9I®

| P1 | P2 |

XTAL1 |

l<—>|
Tosc

< b
- >

2 Tosc = State Time

| State 1 | State 2 | State 3 | State 4 | State 5 | State 6 |

PLIP2 | PLIP2 | PLIP2 |P1L|P2|PL|P2]|PL]|P2
I: Peripheral Cycle >|

A2604-01

Figure 2-3. 8XC251SB Timing

2.1.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven sources: seven maskable sources
and the TRAP instruction. When the interrupt handler grants an interrupt request, the CPU dis-
continues the normal flow of instructions and branches to a routine that services the source that
requested the interrupt. You can enable or disable the interrupts individually (except for TRAP)
and you can assign one of four priority levels to each interrupt. See Chapter 5, “Interrupt System”
for a detailed description.

2.1.4 On-chip Code Memory

For the 83C251SB and the 87C251SB ey locations FF:0000H-FF:3FFFH are implement-
ed with 16-Kbytes of on-chip code memory (ROM in the 83C251SB and EPROM in the
87C251SB). Following a reset, the first instruction is fetched from location FF:0000H. For the
80C251SB location FF:0000H is always in externaimogy.

2-6 I

Int9|® ARCHITECTURAL OVERVIEW

2.1.5 On-chip RAM

The 8XC251SB has 1-Kbyte of on-chip data RAM (locations 20H—41FH) which canéssadc

with direct, indirect, and displacement addressing. Ninety-six of these locations (20H-7FH) are
bit addressable. An additional 32 bytes of on-chip R®OH—-1FH) provide storage for tleur

banks of registers RO-R7.

2.2 ON-CHIP PERIPHERALS

The on-chip peripherals, which lie outside the core, perform specialized functions. Software ac-

cesses the peripherals via their special function registers (SFRs). The 8XC251SB has four periph-
erals: the watchdog timer, the timer/counters, the programmable counter array (PCA), and the
serial 1/0O port.

2.2.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the ogédfatorer
operation) or by an external inp{fibr counter operation). You can set up an 8-b#:bit, or 16-
bit timer/counter, and you can program them for special applications, such as capturing the time
of an event on an external pin, outputting a programmable clock signal on an external pin, or gen-
erating a baud rate for the serial I/O port. Timer/counter events can generate interrupt requests.

The wathdog timer is a circuit that automaticatlysets the 8X€51SB in the event of a hard-

ware or software upset. When enabled by software, the watchdog timer begins running, and un-
less software intervenes, the timer reaches a maximum count and initiates a chip reset. In normal
operation, software periodically clears the timer register to prevent the reset. If an upset occurs
and software fails to clear the timer, the resulting chip reset disables the timer and resyss the

tem to a known state. The watchdog and the timer/counters are described in Chapter 7, “Tim-
er/Counters and WatchDog Timer.”

2.2.2 Programmable Counter Array (PCA)

Theprogrammableounter array (PCA) has its own timer and five capture/compackiles that
perform several functions: capturing (storing) the timer valuesipaese to a transition on an in-

put pin; generating an interrupt request when the timer matches a stored value; toggling an output
pin when the timer matches a stored value; generating a programmable PWM (pulse width mod-
ulator) signal on an output pin; and serving as a software watchdog timer. Chapter 8, “Program-
mable Counter Array” describes this peripheral in detail.

I 2-7

ARCHITECTURAL OVERVIEW Int9I®

2.2.3 Serial I/O Port

The serial 1/0 port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-dupthe: serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul-
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stopaitidrhe

rate is generated by overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11 bits: a
start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be used
for parity checking or to specify that the frame contains an address and data. In mode 2, you can
use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the overflow
from timer 1 or timer 2 to determine the baud rate.

In its synchronous modes (modes 1-3)ghkgal port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to anothe
slave.

2-8

intel.

Address Spaces

intel.

MCS®P 251 microcontrollers have three address spaces: a memory space, a special function reg-
ister (SFR) space, and a register file. This chapter describes these address spaces as they apply t
all MCS 251 microcontrollers and to the 8XC251SB in particular. It also discusses the compati-
bility of the MCS 251 architecture and the MCS 51 architecture in terms of their address spaces.

CHAPTER 3
ADDRESS SPACES

3.1 ADDRESS SPACES FOR MCS® 251 MICROCONTROLLERS

Figure 3-1 shows the memaospace, the SFR space, and the register file for MCS 251 microcon-
trollers. (The address spaces are depicted as being eight bytes wide with addresses increasing

from left to right.)

Memory Address Space
16 Mbytes

FF:FFFFH

00:0000H 00:0007H

SFR Space
512 Bytes
S:1FFH
S:000H S:007H
Register File
64 Bytes
63
0 7

A4100-01

Figure 3-1. Address Spaces for MCS ® 251 Microcontrollers

31

ADDRESS SPACES InUaa

Itis convenient to view the unsegmented, 16-Mbyte mempage as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE
The memory space in the MCS 251 architecture is unsegmented. The 64-
Kbyte “regions” 00:, 01:, ..., FF: are introduced only as a convenience for

discussions. Addressing in the MCS 251 architecture is linear; then® are
segment registers.

MCS 251 microcontrollers can have up to 64 Kbytes of on-chip code memory in region FF:. On-
chip data RAM begins at location 00:0000H. The first 32 bytes (00:0000H-00:001FH) provide
storage for a part of the register file. On-chip, genpuabose data RAMegins at 00:0020H.
The sizes of the on-chip code memory and on-chip RAM depend on the particular device.

The register file has its own address space (Figure 3-1). The 64 locations in the register file are
numbered decimally from O to 63. Locations 0—7 represent diogpBwitdhable register banks,

each having 8 registers (see “The 8XC251SB Register File” on page 3-8). The 32 bytes required
for these banks occupy locations 00:0000H—00:001FtHérmemory space. Register file loca-
tions 8—63 do not appear in the memory space.

The SFR space can accommodate up to 512 8-bit special function registers with addresses
S:000H-S:1FFH. Some of these locations may be unimplemented in a particular device. In the
MCS 251 architecture, the prefix “S:” is used with SFR addresses to distinguish them addresses
from the memory space addresses 00:0000H-00:01FFH.

3.1.1 Compatibility with the MCS ® 51 Architecture

The address spaces in the MCS 51 architecture are mapped into the address spaces in the MCS
251 architecture. This mapping allows code written for MCS 51 microcontrolleus ttn MCS

251 microcontrollers. (Chapter &£fogramming,” discusses the compatibility of the tasiruc-

tion sets.)

Figure 3-2 shows the address spaces for the MCS 51 archite¢hteznal data memory loca-

tions 0OH—7FH can be addised directly and indirectly. Internal data locations 80H—FFH can
only be addressed indirectly. Directly addressing these locations accesses the Special Function
Registers (SFRs).

The register file (registers RO—R7) comprises four, switchable register banks, each having 8 reg-
isters. The 32 bytes required for the four banks occupy locations 00H-1tREl am-chip data
memory.

T MCSP51 Microcontroller Family User's ManuglOrder Number: 272383)

3-2 I

Int9|® ADDRESS SPACES

The 64-Kbyte code memory has a separate memory space. Data in the code memory can be ac-
cessed only with the MOVC instruction. Similarly, the 64-Kbyte external data memory can be
accessed only with the MOVX instruction.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the address space:
in the MCS 251 architecture; details are listed in Table 3-1.

FFFFH
Code
(MOVC)
0000H
FFFFH RO Register File R7
External Data
(MOVX)
0000H
FFH FFH
Internal Data SFRs
(indirect) (direct)
80H 80H
7FH
Internal Data
(direct, indirect)
JOOH
A4139-01

Figure 3-2. Address Spaces for the MCS ® 51 Architecture

3-3

ADDRESS SPACES

Memory Address Space

16 Mbytes
FFFFH
McsU 51 Architecture
Code Memory
FF:0000H] 0000H
02:0000H
FFFFH
MCS 51 Architecture
External Data Memory
01:0000H | 0000H
MCS 51 Architecture FFH
00-0000H | ooH Internal Data Memory

S:100H

S:000H

SFR Space
512 Bytes
S:1FFH
FFH
MCS 51 Architecture
80H SFRs
S:07FH
Register File
64 Bytes
63

0 MCS51 Architecture R.F. 7

A4133-01

Figure 3-3. Address Space Mappings MCS ® 51 Architecture to MCS ® 251 Architecture

Table 3-1. Address Mappings

MCS® 51 Architecture MCS ® 251 Architecture
Memory Type
Size Location Data_ Location
Addressing
Indirect using . .
Code 64 Kbytes 0000H-FFFFH MOVG instr. FF:0000H-FF:FFFFH
Indirect using . .
External Data 64 Kbytes 0000H-FFFFH MOVX instr. 01:0000H-01:FFFFH
128 bytes 00H-7FH Direct, Indirect | 00:0000H-00:007FH
Internal Data
128 bytes 80H-FFH Indirect 00:0080H-00:00FFH
SFRs 128 bytes S:80H-S:FFH Direct S:080H-S:0FFH
Register File 8 bytes RO-R7 Register RO-R7

34

Int9|® ADDRESS SPACES

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of thenmne

space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps theinpt vectors taegion FF:. This mapping is trans-
parent to the user; code executes just as before without modification.

The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into theryne
region specified by bits6—23 of the data point®PX, i.e., DPXL, which is accessible as register

file location 57 and also as the SFR at S:084H (see “Dedicated Registers” on page 3-10). The re-
set value of DPXL is 01H, which maps the external memory to region 01: as shown in Figure 3-3.
You can change this mapping by writing a different value to DPXL. A mapping of the MCS 51
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 archi-
tecture provides complete run-time compatibility because the lower 16 address bits are identical
in the two address spaces.

The on-chip data memory for MCS 51 microcontrollers is mapped to region 00: to ensure com-
plete run-time compatibility. From location OOH to 7FH, the internal data memory is the same in
the two architectures. In the MCS 251 architecture, the data memory extends beyond these 128
bytes to allow enhanced data and stack access using new instructions.

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR space of
the MCS 251 echitecture starting at address S:080H, as shown in Figure 3-3rbhides com-

plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit ad-
dressing). The SFR addresses are unchanged in the new architecture. In the MCS 251
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in
the register file for high performance. However, to maintain compatibility, they are also mapped
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 THE 8XC251SB MEMORY SPACE

The logical memory space for the 8XC251SB microcontroller is shown in Figure 3-4. The arrows
on the left side indicate the addressing modes that apply to the partitions of the memory space.
(Chapter 4, “Programming,” discusses addressing modes.) The right side of the figure shows the
hardware implementation of the different areas of the memory space. For the 8XC251SB, the us-
able memoryspace consists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Code can execute
from all four regions. Regions 02:—FD: are reserved. Reading a location in the reseavest a

turns an unspecified value. Software can execute a write to the reserved area, but nothing is ac-
tually written.

I 3-5

ADDRESS SPACES InUaa

3.2.1 On-chip General-purpose Data RAM

Memory locations 00:0020H-00:041FH are implemented as 1 Kbyte of on-chip RAM, which can
be used for general data storage. Instructions cannot execute from on-chip data RAM. The data
is accessible by direct, indirect, and displacement addressing.dre86:0020H-00:007FH are

also bit addressable.

3.2.2 On-chip Code Memory (87C251SB/83C251SB)

The 87C251SB/83C251SB has 16-Kbytes of on-chip OTPROM/ROM at location80eHO
FF:3FFFH. This memory is intended primarily for code storagieoagih its contets can also be
read as data with the indirect and displacement addressing modes. Following a chipaeset,
gram execution begins at FF:0000H. Chapter 13, “Programming and Veriongolatile
Memory,” describes programming and verification of the OTPROM/ROM.

NOTE

Beware of executing code from the upper eight bytes of the on-chip
OTPROM/ROM (FF:3FFF8H-FF:3FFFFH). The 8XC251SB may attempt to
prefetch code from external memory (at an address above FF:3FFFH) and
thereby disrupt I/0 ports 0 and 2. Fetching code emtstfrom these eight
bytes does not affect ports 0 and 2.

A code fetch in the range FF:0@8-FF:3FFFH acesses the on-chip OTPROM/ROM only if
EA# = 1. For EA# = 0, a code fetch in this address range accesses extenuaynide value of
EA# is latched when the chip leaves the reset state.

3.221 Accessing On-chip Code Memory in Region 00:

The 87C251SB/83C251SB can be configured so that the upper 8 Kbytes of the on-chip code
memory can be read as data in region 00: (see “Configuration Bytes” on page 13-6). This is useful
for accessing code constants stored in OTPROM/ROM. Specifically, the upper 8 Kbytes of code
memory are mapped to locations 00:EO00H—00:FFFFH (as well as to locations FF:E000H-
FF:FFFFH) if the following three conditions hold:

* The 87C251SB/83C251SB is configured with EMAP = 0 in the CONFIG1 register
(Chapter 13, “Programimg and Verifying Nonvolatile Meaory”).

e EA#=1.

* The access is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to locations 00:EO00H-00:FFFFH are
referred to external memory.

3-6 I

ADDRESS SPACES

Memory Address Space

Implementation

A FRFFFFH External Memory
FE:4000H-FF:FFFFH
16-Kbyte
On-chip OTPROM/ROM
FF:0000H FF:0000H-FF:3FFFH
FE:FFFFH
External Memory
FE:0000H-FE:FFFFH
FE:0000H
Indirect and
Displacement Pages 02:—FD:
Addressing are Reserved
(16 Mbytes)
01:FFFFH
External Memory
01:0000H-01:FFFFH
01:0000H
. 00 FFFFH
Direct
Addressing External Memory
(64 Kbytes) 00:0420H-00:FFFFH
- | |-~ mm === 1-Kbyte On-chip RAM
Address'n 00:007FH oo:o%tZOH-oo:oFluFH
(96 Bytes) 00:0020H
""""""" 00:001FH | 77T Redister File |
agse §y Y (oo -
Addressing 00:0000H : :
(32 Bytes)
A4101-01
Figure 3-4. 8XC251SB Memory Space

ADDRESS SPACES InUaa

3.2.3 External Memory

Regions 01: and FE: and portions of regions 00: and FF: of the memory space are implemented
as external memory (Figure 3-4). External memory is described in Chapter 12, “ExtenmaiyMe
Interface.”

3.3 THE 8XC251SB REGISTER FILE

The 8XC251SB register file consists of 40 locatidhks31 and56—63, as shown in Figure 3-5.
Locations 0—7 are in the on-chip RAM. The other locations are in the CPU.

Registers 0—7 agally consist of four switchable bks of eight registers each. These 32 bytes are
stored in locations 00:0000H—00:001FH in the menspace and are implemented in the on-chip
RAM. However, because these locations are dedicated to the register file, they are not considered
a part of the general-purpose, 1-Kbyte on-chip RAM (locations 00:0020H—-00:041FH).

Bits RS1 and RSO in the PSW register select one dbtireregister banks to be active, i.e., to
currently serve as register file locations 0-7, as shown in Table 3-2. (The PSW is described in
“Program Status Words” on page 4-17hj§bank selection can be used for fast ernswitches.

The inactive banks are inaccessible via the register file; however, registers in both the active and
inactive banks can be addressed as locations in the memory space.

Register file locations 32-55 are reserved and cannot be accessed.

Table 3-2. Register Bank Selection

PSW Selection Bits
Bank Address Range

RS1 RSO

Bank 0 00H-07H 0
Bank 1 08H-OFH 0
1
1

Bank 2 10H-17H
Bank 3 18H-1FH

0
1
0
1

3.3.1 Byte, Word, and Dword Registers

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a
dword, as shown in the right side of Figure 3-5. A register is named for its least-significant byte.
For example:

R4 is the byte register consisting of location 4.
WRA4 is the word register consisting of registers 4 and 5.
DR4 is the dword register consisting of registers 4—7.

3-8 I

Int9|® ADDRESS SPACES

Locations RO-R15 are addressable as bytes, words, or dwords. Locations 16—31 are addressable
only as words or dwords. LocatioB$—63 areaddressable only as dwords. Registers are ad-
dressed only by the names shown in Figure 3-5 — except for the 32 registers that comprise the
four banks of registers RO—R7, which can also be accessed as 1068t@d30H—-00:001FH in

the memory space.

Byte Registers

Note: R10 =B
R11=ACC

R8 | R9 |[R10|R11|R12[{R13|R14|R15
RO|JR1|R2|R3|R4[R5|R6|R7

Register File Word Registers
56 | 57 [58 [59 | 60 | 61 [62] 63

Locations 32-55 are Reserved

24 12512627128 (29)30|31 WR24 | WR26 | WR28 | WR30
16 |17 118119120 | 21|22 23 WR16 | WR18 | WR20 | WR22
819 |10]|11|12]|13 |14 |15 WR8 WR10 | WR12 | WR14
O|1|2]|3|4]|]5]|6]|7 WRO WR2 WR4 WR6

Dword Registers

T T T T T T DR56 = DPX DR60 = SPX
| 1 1 1 1 1 1 1
[o]1]2][3]4a]s5]6]7

Banks 0-3
DR24 DR28
DR16 DR20
DR8 DR12
DRO DR4

A4099-01

Figure 3-5. The Register File

ADDRESS SPACES InUaa

3.3.2 Dedicated Registers

The register file has four dedicated registers:
¢ R10 is the B-register
¢ R11 is the accumulator (ACC)
* DR56 is the extended data pointer, DPX
* DR60 is the extended stack pointer, SPX

These registers are located in the register file; however, R10, R11, and some bytes of DR56 and
DR60 are also accessible as SFRs. The bytes of DPX and SPX can be accessed in the register file
only by addressing the dword registeThe dedicated registers in the register file and their cor-
responding SFRs are illustrated in Figure 3-6 and listed in Table 3-3 on page 3-12.

3321 Accumulator and B Register

The 8-bitaccumulator(ACC) is byte register R11, which is also accessible in the SFR space as
ACC at S:0EOH (Figure 3-6). TH® register used in multiplies and divides, is register R10,
which is also accessible in the SFR space as B at S:0FOH. Accessing ACC or B as a register is
one state faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register for data
moves and calculations. However,tlre MCS251 achitecture, any of registers R1-R15 can
serve for these tasksAs a result, the accumulator does not play the central role that it has in MCS
51 microcontrollers.

3.3.2.2 Extended Data Pointer, DPX

Dword register DR56 is thextended data pointeDPX (Figure 3-6). The lower three bytes of

DPX (DPL, DPH, and DPXL) are accessible as SFRs. DPL and DPH comprisé-Hiedata
pointerDPTR. While instructions in the MCS 51 architecture always use DPTR as the data point-
er, instructions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 58, specifies the region of memory (00:—FF:) that maps into the 64-
Kbyte external data memory space in the MCS 51 architecture. Invetihds, the MOVX in-
struction addresses the region specified by DPXL when it moves data to and from external mem-
ory. The reset value of DPXL is 01H.

T Bits in the PSW and PSW1 registers reflect the status ottheralator. There are no equivaletatus indicators for
the other registers.

3-10 I

Int9|® ADDRESS SPACES

3.3.2.3 Extended Stack Pointer, SPX

Dword rggister DR60 is thstack pointerSPX (Figure 3-6). The low byte (location 60) is the 8-

bit stack pointer, SP, in the MCS 51 architecture. The byte at location 6statkeointer high

SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack p@uotenoutine calls (ACALL,
ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve the
stack, do not use DR60 as a general-purpagistes.

Register File SFRs

4) 4)

Stack Pointer, High

>| SPH | S:0BDH

IStack Pointer > El S:081H
| | [s | sp |

60 61 62 63
DR60 = Extended Stack Pointer, SPX

Data Pointer Extended, Low :l

: > DPXL | S:84H

Data Pointer, High :l .
>| DPH | S:83H

Data Pointer, Low - .
['I DPL IS.82H

| [opx | ope | ope |
56 57 58 59

DR56 = Extended Data Pointer, DPX

;I B IS:OFOH
[:I ACC IS:OEOH

IB IACCI

R10, B Register R11, Accumulator, ACC

N RN J

A4152-01

Figure 3-6. Dedicated Registers in the Register File and their Corresponding SFRs

3-11

ADDRESS SPACES InUaa

Table 3-3. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs
Name Mnemonic |Reg. |Location Mnemonic Address
— — 60 — —
Stack _ — 61 — —
Pointer - - DR60
(SPX) | Stack Pointer, High SPH 62 SPH S:BDH
Stack Pointer, Low SP 63 SP S:81H
Data Pointer, Extended High — 56 — —
Data Data Pointer, Extended Low DPXL 57 DPXL S:84H
PO Data Poi High DPH DRS6 58 DPH S:83H
ata Pointer, Hig :
(BPX) DPTR -
Data Pointer, Low DPL 59 DPL S:82H
Accumulator (A Register) A R11 1 ACC S:EOH
B Register B R10 10 B S:FOH

3.4 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in the their associated on-chip peripherals or in the
core. Table 3-4 shows the SFR address space with the SFR mnemonics and reset values. SFR ad
dresses are preceded by “S:” to differentiate them from addresses in the memoryspece-

pied locations in the SFR space (the shaded locations in Table 3-4) are unimplemented, i.e., ho
register exists. If an instruction attempts to write to an unimplemented SFR location, the instruc-
tion executes, but nothing is actually written. If an unimplemented SFR location is read, it returns
an unspecified value.

NOTE

SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

3-12

Int9|® ADDRESS SPACES

Table 3-4. 8XC251SB SFR Map and Reset Values

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF
F8 CH CCAPOH | CCAP1H | CCAP2H | CCAP3H | CCAP4H -
00000000 | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX
B
FO F7
00000000
Es CL CCAPOL | CCAPIL | CCAP2L | CCAP3L | CCAP4L EF
00000000 | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX
ACC
EO E7
00000000
D8 CCON CMOD CCAPMO | CCAPM1 | CCAPM2 | CCAPM3 | CCAPM4 DF
00x00000 | 00xxx000 | xO000000 | x0000000 | XO000000 | x0000000 | x0000000
PSW PSwW1
DO D7
00000000 | 00000000
c8 T2CON T2MOD RCAP2L | RCAP2H TL2 TH2 CF
00000000 | xxxxxx00 | 00000000 | 00000000 | 00000000 | 00000000
co C7
IPLO SADEN SPH
B8 BF
x0000000 | 00000000 00000000
P3 IPHO
BO B7
11111111 x0000000
IEO SADDR
A8 AF
00000000 | 00000000
P2 WDTRST
AO0 A7
11111111 XXXXXXXX
SCON SBUF
98 9F
00000000 | XXXXXXXX
P1
90 97
11111111
88 TCON TMOD TLO TL1 THO TH1 oF
00000000 | 00000000 | 00000000 | 00000000 | 00000000 | 00000000
80 PO SP DPL DPH DPXL PCON 87
11111111 | 00000111 | 00000000 | 00000000 | 00000001 00xx0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF

NOTE: Shaded areas represent unimplemented SFR locations. Locations S:000H-S:07FH and
S:100H-S:1FFH are also unimplemented.

3-13

ADDRESS SPACES

The

3-14

intel.

following tables list the mnemonics, names, and addresses of the SFRs:
Table 3-5 on page 3-14 — Core SFRs

Table 3-6 on page 3-14 — I/O Port SFRs

Table 3-7 on page 3-15 — Serial I/O SFRs

Table 3-8 on page 3-15 — Timer/Counter and Watchdog SFRs

Table 3-9 on page 3-15 — Programmable CountesyA(PCA) SFRs

Table 3-5. Core SFRs

Mnemonic Name Address
ACCt Accumulator S:EOH
Bf B register S:FOH
PSW Program Status Word S:DOH
PSwt Program Status Word 1 S:D1H
SP* Stack Pointer — LSB of SPX S:81H
SPH? Stack Pointer High — MSB of SPX S:BDH
DPTRt Data Pointer (2 bytes) —
DPL? Low Byte of DPTR S:82H
DPH? High Byte of DPTR S:83H
DPXLt Data Pointer, Extended Low S:84H
PCON Power Control S:87H
IEO Interrupt Enable Control 0 S:A8H
IPHO Interrupt Priority Control High 0 S:B7H
IPLO Interrupt Priority Control Low 0O S:B8H

tThese SFRs can also be accessed by their corresponding registers in the

register file (see Table 3-3).

Table 3-6. I/O Port SFRs
Mnemonic Name Address
PO Port 0 S:80H
P1 Port 1 S:90H
P2 Port 2 S:AOH
P3 Port 3 S:BOH

intel.

ADDRESS SPACES

Table 3-7. Serial I/0 SFRs

Mnemonic Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H
Table 3-8. Timer/Counter and Watchdog Timer SFRs
Mnemonic Name Address
TLO Timer/Counter O Low Byte S:8AH
THO Timer/Counter 0 High Byte S:8CH
TL1 Timer/Counter 1 Low Byte S:8BH
TH1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:C9H
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H

Table 3-9. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH

3-15

ADDRESS SPACES

3-16

Table 3-9. Programmable Counter Array (PCA) SFRs (Continued)

intel.

Mnemonic Name Address
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:F9H
CCAPOL PCA Compare/Capture Module O Low Byte S:EAH
CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAPA4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

intel.

Programming

intel.

CHAPTER 4
PROGRAMMING

The instruction set for the M@&S251 architecture is a superset of thstruction set for the

MCS 51 architecture. This chapter describes the addressing modes and summarizes the instruc-
tion set, which is divided into data instructions, bit instructions, and control instruct\mper{(-

dix A, “Instruction Set Reference” contains an opcode map and a detailed description of each
instruction.) The program statumrds PSW and PSWAre also described (pade€l7). The chap-

ter begins with a discussion of the binary-mode and source-mode encodings of the instruction set.

NOTE
The instruction execution times given in Appendix A are for code executing
from on-chip code memory and for data that is read from and written to on-
chip RAM. Execution times are increased by executing code from external
memory, accessing peripheral SFRs, adogs$ata in external memory, using
a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRsx £ 1-3, increases the
execution time. These cases are noted individually in the tables in Appendix A.

4.1 BINARY MODE AND SOURCE MODE CONFIGURATIONS

Binary modeandsource modeefer to two ways of assigning opcodes to the instruction set for

the MCS 251 architecture. One of these modes must be selected when the chip is configured. De-
pending on the application, binary mode or source modepmaduce more efficient code. This
section describes the binary and source modes and provides some guidelines for selecting the
mode for your application.

The MCS 251 architecture has two types of instructions:
* instructions that originate in the MCS 51 architecture

* instructions that are unique to the MCS 251 architecture

Figure 4-1 shows the opcode map for binary mode. On the left (areas | and Il) is the opcode map
for the instructions that originate in the MCS 51 architecture. Every opcoHek68l), is used

for an instruction except A5H, which is reserved. On the right (area Ill) is the opcode map for the
instructions that are unique to the MCS 251 architecture. (Some of these opcodes are reserved for
future instructions.) Note that the opcode values for areas Il and Il are identical (06H-FFH). To
distinguish between the two areas, the opcodes in area Il are given the prefix ASH. The area lll
opcodes are then AS06A5FFH.

I 4-1

PROGRAMMING Int9I®

Figure 4-2 shows the opcode map for source mode. Areas Il and Il have switched places (com-
pare Figure 4-1). The instructions that are unique to the MCS 251 architecture now have opcodes
without the A5H prefix. The instructions from area Il of the MCS 51 architecture use the escape
prefix A5H.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-1 shows
the opcode assignments for three sample instructions.

Table 4-1. Examples of Opcodes in Binary and Source Modes

Opcode
Instruction

Binary Mode Source Mode

DEC A 14H 14H
SUBB A,R4 9CH A59CH
SUB R4,R4 A59CH 9CH

4.1.1 Selecting Binary Mode or Source Mode

If you have code that was written for an MCS 51 microcontroller and you want to run it unmod-
ified on an MCS 51 microcontroller, choose binary mode. You can use the object code without
reassembling the source code. You can also assemble the source code with an assembler for the
MCS 251 architecture and have it produce object code that is binary-compatible with MCS 51
microcontrollers. The remainder of this section discusses the selection of binary mode or source
mode for code that may contain instructions from both architectures.

An instruction with a prefixed opcode requires one more byte for code storage, and if an addition-
al fetch is required for the extra byte, the execution time is increased by one state. This means that
using fewer prefixed opcodes produces more efficient code.

If a program uses only instructions from the MCS 51 architecture, the binary-mode code is more
efficient because it uses no prefixes. On the other hand, if a program uses many more new instruc-
tions than instructions from the MCS 51 architecture, source mode is liketgdace more ef-

ficient code. For a program whetlee choice is not clear, the better mode carfooed by
experimenting with a simulator.

4-2

PROGRAMMING

A5H Prefix
OH 5H 6H FH 6H FH
OH | OH
| : I Il
FH ; FH
MCS® 51 MCS 51 MCS 251
Architecture Architecture Architecture
A4131-01
Figure 4-1. Binary Mode Opcode Map
A5H Prefix
OH 5H 6H FH 6H FH
OH | OH
| : Il [
FH ; FH
MCS® 51 MCS 251 MCS 51
Architecture Architecture Architecture
A4130-01

Figure 4-2. Source Mode Opcode Map

PROGRAMMING Int9I®

4.2 PROGRAMMING FEATURES OF THE MCS® 251 ARCHITECTURE

The instruction set for MC351 microcontrollers provides the user with riestructions that ex-

ploit the features of the architecture while maintaining compatibility with the instruction set for
MCS 51 microcontrollers. Many of the new instructions can operate on either 8-bit, 16-bit, or 32-
bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are accessed with
fewer addressing modes.) This capability increases the ease and efficiency of programming MCS
251 microcontrollers in a high-level language such as C.

The instruction set is divided into “Data Instructions”(page 4-6), “Bit Instructions” (page 4-12),
and “Control Instructions” (page 4-14). Data instructions process 8-bit, 16-bit, and 32-bit data;
bit instructions manipulate bits; and control instructions manage program flow.

4.2.1 Data Types

Table 4-2 lists the data types that are addressed by the instruction set. A vat@ double
word) in memory can have its least significant byte at any address; alignmestt-byite or four-
byte boundaries is not required.

Table 4-2. Data Types

Data Type Number of Bits
Bit
Byte 8
Word 16
Dword (Double Word) 32

4.2.2 Register Notation

In register-addressing instructions , specific indices denote the registers that can be used in that
instruction. For example, the instruction ADD A,Rn uses “Rn” to denote any one of RO, R1, ...,
R7; i.e., the range of n is 0—7. The instruction ADD Rm,#data uses “Rm” to denote RO, R1, ...,
R15; i.e., the range of m is 0-15. Table 4-3 summarizes the notation used for the register indices.
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first index
“d” denotes “destination” and the second index “s” denotes “source.”

4-4 I

intel.

PROGRAMMING

Table 4-3. Notation for Byte Registers, Word Registers, and Dword Registers
Register Register Destination Source Register Range
Type Symbol Register Register 9 9
Ri — — RO, R1
Byte Rn — — RO-R7
Rm Rmd Rms RO-R15
Word WRj WRjd WRjs WRO0, WR2, WR4, ..., WR30
Dword DRk DRkd DRks DRO, DR4, DRS, ..., DR28, DR56, DR60
4.2.3 Address Notation

Inthe MCS 251 architecture, memory addresses include a region number (00:, 01:, ..., FF:) (Fig-
ure 3-1 on page 3-1). SFR addresses have a prefix “S:” (S:000H-S:1FFH). The distinction be-
tween memory addresses and SFR addresses is hecessary, because memory loca@ioks-00:0
00:01FFH and SFR locations S:000H-S:1FFH can both be directly addressed in an instruction.

Instructions in the MCS 51 architecture use 80H-FFH as addresses for both memory locations
and SFRs, because memory locations are addressed only indirectly and SFR locations are ad-
dressed only directly. For compatibility, software tools for MCS 251 controllers recognize this
notation for instructions in the MCS 51 architecture. No change is necessary in any code written
for MCS 51 controllers.

For new instructions in the MC&1 architecture, the meory region prefixes (00, 01, ..., FF:)

and the SFR prefix (S:) are required. Also, software tools for the MCSr2bitemture permit

00: to be used for memory addresses 00H—FFH and permit the prefix S: to be used for SFR ad-
dresses in instructions in the MCS 51 architecture.

4.2.4 Addressing Modes

The MCS 251 architecture supports the following addressing modes:
* register addressing: The instruction specifies the register that contains the operand.
¢ immediate addressing: The instruction contains the operand.
¢ direct addressing: The instruction contains the operand address.
* indirect addressing: The instruction specifies the register that contains the operand address.

¢ displacement addressing: The instruction specifies a register and an offset. Tdred ope
address is the sum of the register contents (the base address) and the offset.

I 4-5

PROGRAMMING Int9I®

¢ relative addressing: The instruction contains the signed offset from the next instruction to
the target address (the address for transfer of control, e.g., the jump address).

¢ bit addressing: The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in “Data Addressing Modes” on
page 4-6, “BitAddressing” ompage4-12, and “Addressing Modes f@ontrol Instructions” on
page 4-14.

4.3 DATAINSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit, and
32-bit data. This section describes the data addressing modes and the set of data instructions.

4.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Table 4-5
for the instructions that are native to the MCS 51 architecture, and Table 4-5 for the new data in-
structions in the MCS 251 architecture.

NOTE

References to registers RO—R7, WR0-WR6, DRO, and DR2 always refer to the
register bank that is currently selected by the PSW and PSW1 registers (see
“Program Status \Wfds” on page 4-17). Registers in all banks (active and
inactive) can be accessed as memory locations in the range OOH-1FH.

Table 4-4. Addressing Modes for Data Instructions in the MCS ~ ® 51 Architecture

Address Range of Assembly Language
Mode Operand Reference Comments
. RO-R7
Register OOH—1FH (Bank selected by PSW)
Immediate Operand in Instruction | #data = #00H—#FFH
00H-7FH dir8 = 00H—7FH On-chip RAM
Direct g —
SFRs dirg = 80H—+FH . SFR address
or SFR mnemonic.
Accesses on-chip RAM or the
O0H-FFH @RO, @R1 lowest 256 bytes of external
data memory (MOVX).
Indirect Accesses external data
0000H-FFFFH @DPTR, @A+DPTR memory (MOVX).
Accesses region FF: of code
0000H-FFFFH @A+DPTR, @A+PC memory (MOVC).

4-6

PROGRAMMING

Table 4-5. Addressing Modes for Data Instructions in the MCS ® 251 Architecture
Address Range of Assembly Language
Mode Operand Notation Comments
00:0000H—00:001FH RO—R7, WR0O-WR6, DRO, and
Register R0—R15, WR0—WR30, DR2 are in the register bank
9 (RO-R7, WRO-WRS3, | pro—DR28, DR56, DR60 currently selected by the
DRO, DR2) (1) PSW and PSW1.
Immediate, N.A. (Operand is in the _ Used only in increment and
2 bits instruction) #short =1, 2, or 4 decrement instructions.
Immediate, N.A. (_Operan_d is in the #datas = #O0OH—#EFH
8 bits instruction)
Immediate, N-A. (Operandisinthe | .16 = #0000H—#FFEFH
16 bits instruction)
DI 00:0000H—-00:007FH dir8 = 00:0000H-00:007FH On-chip RAM
irect,

8 address bits

SFRs

dir8 = S:080H—S:1FFH (2)
or SFR mnemonic

SFR address

Direct,
16 address bits

00:0000H-00:FFFFH

dirl6 = 00:0000H-00:FFFFH

Indirect,
16 address bits

00:0000H-00:FFFFH

@WR0O-@WR30

Indirect,
24 address bits

00:0000H-FF:FFFFH

@DRO-@DR30, @DR56,
@DR60

Upper 8 bits of DRk must be
00H.

Displacement,
16 address bits

00:0000H-00:FFFFH

@WRj + dis16 =

@WRO + OH through
@WR30 + FFFFH

Offset is signed; address
wraps around in region 00:.

Displacement,
24 address bits

00:0000H—FF:FFFFH

@DRKk + dis24 =
@DRO + OH-through
@DR28 + FFFFH,
@DR56 + (OH-FFFFH),
@DR60 + (OH-FFFFH)

Offset is signed, upper 8 bits
of DRk must be 00H.

NOTES:

1. These registers are accessible in the memory space as well as in the register file (see “The
8XC251SB Register File” on page 3-8).
2. The MCS 251 architecture supports SFRs in locations S:000H-S:1FFH; however, in the 8XC251SB,
all SFRs are in the range S:080H-S:0FFH.

NOTE

Instructions from the MCS 51 architecture access external mehroygh the
region of memory specified by byte DPXL in the extended data pointer
register, DPX (DR56). Following reset, DPXL contains 01H, which maps the
external memory to region 01:. You can specify a different region by writing to
DR56 or the DPXL SFR. (See “Dedicated Registers” on page 3-10.).

4-7

PROGRAMMING Int9I®

43.11 Register Addressing

Both architectures address registers directly.

* MCS 251 architecture. Ithe register addressing mode, the operand(s) in a data instruction
are in byte registers (R0O—R15), word registers (WR0, WR2, ..., WR30), or dword registers
(DRO, DR4, ..., DR28, DR56, DR60).

* MCS 51 architecture. Instructions address registers RO—R7 only.

43.1.2 Immediate

Both architectures use immediate addressing.

* MCS 251 architecture. In the imadiate addressing mode, the instruction contains the data
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-bit
immediate data (#datal6). Dword operations use 16-bit imnmediate data in thevionder
and either zeros in the upper word (denoted by #0datal6) or ones in thewgpder
(denoted by #1datal6). MOV instructions that place 16-bit immediate data dwora
register (DRK), place the data either into the upperd while leavingthe lowerword
unchanged, or into the lowaord with a sign exdnsion or a zero extension.

The increment and decrement instructions contain immediate data (#short = 1, 2, or 4),
which specifies the aount of the increment/deement.

* MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

4.3.1.3 Direct

* MCS 251 architecture. In the direct addressing mtigeinstruction contains the address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 60080
00:007FH) as both bytes and words, and addresses the SFRs (d080H-SS:1FFH) as
bytes only. (See the note below Table 4-5 on page 4-7 regarding SFRs in the MCS 251
architecture.) The 16-bit direct mode addresses both bytes and words in memory (dirlé =
00:0000H—00:FFFFH).

* MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 =
00H-7FH) as bytes only and the SFRs (dir8 = 80H-FFH) as bytes only.

4-8 I

Int9|® PROGRAMMING

43.1.4 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is always a
byte, and the destination is either the accumulator or a byte register (R0O—R15). The source address
is a byte, word, odword. The two architectures do indirectdressing via different registers:

* MCS 251 architecture. Memory is indirectly addressed via worddamad registers:

— Word register (@WRj, j = 0, 2, 4, ..., 30). The 16-bit address in WRj can access
locations 00:0000H-00:FFFFH.

— Dword ragister (@DRk, k=0, 4, 8, ..., 28, 56, and 60). The 24 least significant bits can
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0. (If
you use DR60 as a general data pointer, be aware that DR60 is the extended stack
pointer register DPX.)

* MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, code
memory, and external data RAM. (See the Note on page 4-7 regarding the regi@nrafl ext
data RAM that is addressed by instructions in the MCS 51 architecture.)

— Byte register (@RI, i = 1, 2). Registers RO and R1 indirectly address on-chiprgne
locations 00H—FFH and the lowest 256 bytes of external data RAM.

— 16-bit data pointer (@DPTR or @A+DPTR). The MOVC and MOVX instructions use
these indirect modes to access code memory and external data RAM.

— 16-bit programcounter (@A+PC). The MOVC instruction uses this indirect mode to
access code memory.

4.3.15 Displacement

Several move instructions use displacement addressing to move bytes or words from a source to
a destination. Sixteen-bit displacement addressing (@ WRj+dis16) accesses indirectly the lowest
64 Kbytes in memory. The base address can be in any word register WR]. The instruction contains
a 16-bitsigned offset which is added to the base address. Only the lowest 16 bits of the sum are
used to compute the operand address. If the sum of the base address and a positive offset exceed
FFFFH, the computed address wraps around within region 00: (e.g. FOOOH + 2005H becomes
1005H). Similarly, if the sum of the base address and a negative offset is less than zero, the com-
puted address wraps around the top of region 0§:, @005H + FOOOH becomes 1005H).

Twenty-four-bit displacement addressing (@ DRk+dis24) accesses indirectly the entire 16-Mbyte
address space. The base address must be in DRO, DR4, ..., DR24, DR28, DR56, or DR60. The
upper byte in the dword register must be zero. The instruction contaiBia signed dbet

which is added to the base address.

I 4-9

PROGRAMMING Int9I®

4.3.2 Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The ADD and
SUB instructions (Tabl&-19 on page A-14pperate on byte and word data that is accessed in
several ways:

¢ as the contents of the accumulator, a byte register (Rn), or a word register (WR})
* in the instruction itself (immediate data)

* in memory via direct or indirect addressing

The ADDC and SUBB instructions (Tab#e19 on page A-14) are the same as those for MCS 51
microcontrollers.

The CMP (compare) instruction (Table A-20 on pAge5) calculates the ddrence of two bytes

or words and then writes to flags CY, OV, AC, N, and Z in the PSW and PSW1 registers. The
difference is not stored. The operands can be addressed in a variety of modes. The most frequent
use of CMP is to compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-16 lists the INC (increment) and DEC (decrement) instructions. The in-
structions for MCS 51 microcontrollers are supplemented by instructions that can address byte,
word, and dword registers and incremb or decrement them by 1, 2, or 4 (denoted by #short).
These instructions are supplied primarily for register-based address pointers acoliotsys.

The MCS 251 architecture providde MUL (multiply) and DIV (divide) instructions for un-
signed 8-bit and 16-bit data (Table A-22 on pAg&6). Signed multiply andlivide are left for
the user to manage through a conversiongsecThe following operations are implemented:

¢ eight-bit multiplication: 8 bits< 8 bits » 16 bits

* sixteen-bit multiplication: 16 bitg 16 bits . 32 bits

* eight-bit division: 8 bits- 8 bits - 16 bits (8-bit quotient, 8-bit remainder)

¢ sixteen-bit division: 16 bits 16 bits » 32 bits (16-bit quotient, 16-bit remainder)
These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WR;js), or
the accumulator and B register (A,B). For 8-bit register multiplies, the result is storeaviorthe
register that contains the first operand register. For exampleyrsigeict from aninstruction
MUL R3,R8 is stored in WR2. Similarly, fdr6-bit multiplies, the result is stored in thievord

register that contains the first operand register. For exampl@rdigdeict from thenstruction
MUL WR6,WR18 is stored in DR4.

4-10 I

Int9|® PROGRAMMING

For 8-bit divides, the operands are byte registers. The result is storeaviorthesgister that con-

tains the first operand register. The quotient is stored in the lower byte, and the remainder is stored
in the higher byte. A6-bit divide is similar. The fst operand is a word register, and the result is
stored in the double word register that containswatl register. If the second operand (the di-
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSW1 are meaningless.

4.3.3 Logical Instructions

The MCS 251 architecture provides a setnstructions that perform logical operations. The
ANL, ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate

on bytes and words that are accessed via several addressing modes (Table A-238ehDage

A byte register, word register, or the accumulator can be logically combined with a register, im-
mediate data, or data that is addressed directly or indirectly. These instructions affect the Z and N
flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that
operate on the accumulator, MCS 251 microcontrollers have three shift commands for byte and
word registers:

e SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0.
¢ SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with O.
* SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged.

4.3.4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These in-
structions include the move instructions (Table A-24 on page A-19) and the exchange, push, and
pop instructions (Table A-24 on pagel9). Instructions that move onlysingle bit are listed

with the other bit instructions in Table A-26 on page A-23.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the
MCS 251 architecture. MOV can transfer a byterd, or dword beteen any two registers or
between a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from externatmgy to the accumulator
or from the accumulator to memory. The external memory is in the region specified by DPXL,
whose reset value is 01H. (See “Dedicated Registers” on3a&ge

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accu-
mulator.

I 4-11

PROGRAMMING Int9I®

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sign bit
(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit immedi-
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble of the
accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the imme-
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack to a reg-
ister or to memory.

4.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in a memory location or SFR. There are four categories
of bit instructions:

* SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set, clear
or complement any addressable bit.

¢ ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or
Logical Complement)These instructions allow ANDing and ORing of any addressable bit
or its complement with the CY flag.

* MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

¢ Bit-conditional jump instructions execute a jump if the bit has a specified state. The bit-
conditional jump instructions areadsified with the control instructions and are described
in “Conditional Jumps” on page 4-15.

4.4.1 Bit Addressing
The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 4-6). The

bit instructions that are unique to the M2&L architecture can address a wider range of bits than
the instructions from the MCS 51 architecture.

4-12 I

Int9|® PROGRAMMING

Table 4-6. Bit-addressable Locations

Bit-addressable Locations
Architecture

On-chip RAM SFRs

MCS 251® Architecture 20H-7FH All defined SFRs

SFRs with addresses ending in OH
MCS 51 Architecture 20H-2FH or 8H:
80H, 88H, 90H, 98H, ..., F8H

There are some differences in the way the instructions from the two architectures address bits. In
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location within

a certain register, or it can be specified by a bit address in the range 00H-7FH. The MCS 251
architecture does not have bit addresses as such. A bit can be addressed by name or by its locatior
within a certain register, but not by a bit address.

Table 4-7 illustrates bit addressing in the two architectures by using two sample bits:

* RAMBIT is bit 5 in RAMREG, which is location 23H. (‘“RAMBIT” and “RAMREG” are
assumed to be defined in user code.)

e |T1lis bit 2 in TCON, which is an SFR at location 88H.

Table 4-7. Addressing Two Sample Bits

Location Addressing MCS® 51 MCS 251
Mode Architecture Architecture
Register Name RAMREG.5 RAMREG.5
) Register Address 23H.5 23H.5
On-chip RAM
Bit Name RAMBIT RAMBIT
Bit Address 1DH NA
Register Name TCON.2 TCON.2
Register Address 88.2H S:88.2H
SFR
Bit Name IT1 IT1
Bit Address 8A NA

Table 4-8 lists the addressing modes for bit instructions, and Aabteon page A-23umma-

rizes the bit instructions. “bit” denotes a bit that is addressed by a new instruction in the MCS 251
architecture, and “bit51” denotes a bit that is addressed by an instruction in the MCS 51 architec-
ture.

4-13

PROGRAMMING Int9I®

Table 4-8. Addressing Modes for Bit Instructions

Architecture |Mariants |Bit Address Memory/SFR Address Comments
MCS® 251 Memory | NA 20H.0—7FH.7
Architecture -
(bit) SFR NA All defined SFRs
Memory | O0OH-7FH 20H.0—7FH.7
Mo SFR defined
Architecture _ s are not define
(bit51) SFR [gon-FgH | AXHO-XXH.7 where XX =80, atal bitaddressable
T T e ocations.

4.5 CONTROL INSTRUCTIONS

Control instructions—instructions that change program flow—include calls, returns, and condi-
tional and unconditional jumps (see Table A-27 on page A-24). Instead of executing the next in-
struction in the queue, the processor executes a target instruction.

4.5.1 Addressing Modes for Control Instructions

A control instruction provides the address of a target instruction. The instruction can specify the
target address implicitly, as in a return from a subroutine, or explicitly, in the form of a relative,
direct, or indirect address:

* Relative addressing: The control instruction provides the target address as an 8-bit signed
offset (rel) from the address of the next instruction.

¢ Direct addressing: The control instruction provides a target address, which can have 11 bits

(addr11), 16 bits (addr16), or 24 bits (addr24). The target address is written to the PC.

— addrll: Only the lower 11 bits of the PC are changed,; i.e., the target address must be in
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

— addrl6: Only the lower 16 bits of the R@ changed; i.e., the target address must be in
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the next
instruction).

— addr24: The target address can be anywhere in the 16-Mbyte address space.

* Indirect addressing: There are two types of indirect addressing for control instructions:

— For the instructions LCALL @WRj and LIMP @WRj, the target address is in the
current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits of the
PC. The upper eight bits of the PC remain unchanged from the address of the next
instruction.

— For the instruction IMP @A+DPTR, the sum of the accumulator and DPTR is placed in
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restricts
the target address to the code memory space of the MCS 51 architecture.

4-14 I

Int9|® PROGRAMMING

Table 4-9 lists the addressing modes for the control instructions.

Table 4-9. Addressing Modes for Control Instruct ions

Description Adlgrr(;e\z(sjféts Address Range
Relative, 8-bit relative address (rel) 8 -128 to +127 from first byte of next instruction
Direct, 11-bit target address (addrl1l) 1 Current 2 Kbytes
Direct, 16-bit target address (addr16) 16 Current 64 Kbytes
Direct, 24-bit target address (addr24)t 24 00:0000H-FF:FFFFH
Indirect (@WRj)t 16 Current 64 Kbytes
Indirect (@A+DPTR) 16 S:I-Llébitg:{agion specified by DPXL (reset

tThese modes are not used by instructions in the MCS® 51 architecture.

4.5.2 Conditional Jumps

The MCS 251 architecture supports bit-conditional jumps, compare-conditional jumps, and
jumps based on the value of the accumulator. A bit-conditional jump is based on the state of a bit.
In a compare-conditional jump, the jump is based on a comparison of two operands. All condi-
tional jumps are relative, and the target address (rel) must be in the @&6éebyteblock of
code.
The instruction set includes three kinds of bit-conditional jumps:

¢ JB (Jump on Bit): Jump if the bit is set.

¢ JNB (Jump on Not Bit): Jump if the bit is clear.

¢ JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.

“Bit Addressing” on page 4-12 describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction that is
assumed to precede the jump instruction. The jump instruction examines the PSW and PSW1 reg-
isters and interprets their flags asulgh they were set or cleared by a compare (CMP) instruction.
Actually, the state of each flag is determined by the last instruction that could have affected that
flag.
The condition flags are used to test one of the following six relations between the operands:

¢ equal (=), not equak

* greater than (>), less than (<)

¢ greater than or equat), less than or equak)

4-15

PROGRAMMING Int9I®

For each relation there are two instructions, one for signed operands and one for wységned
ands (Tablet-10).

Table 4-10. Compare-conditional Jump Instructions

Operand Relation
Type - Z > < > <
Unsigned JG JL JGE JLE
JE JINE
Signed JSG JSL JSGE JSLE

4.5.3 Unconditional Jumps

There are five unconditional jumps. NOP and SIJMP jump to addresses relative to the program
counter. AJMP, LIMP, and EJMP jump to direct or indirect addresses.

* NOP (No Operation) is an unconditional jump to the next instruction.
e SJMP (Short Jump) jumps &my instruction within -128 to 127 of the next instruction.

¢ AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the
current 2-Kbyte block of mmory. The address can be direct or indirect.

¢ LIMP (Long Jump) changes the lowest 16 bitshef PC to jump anywhere within the
current 64-Kbyte region.

¢ EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte
address space. The address can be direct or indirect.

45.4 Calls and Returns
The MCS 251 architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instruction.
The call is to an address that is in the s@aiébyte block of memory as the address of ibat
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and
then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The
call is to an address in the same 64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then

changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call is to an
address anywhere in the 16-Mbyte memory space.

4-16 I

Int9|® PROGRAMMING

RET (Return) pops the top two bytes from the stack to return to the instruction followirg a
routine call. The return address must be in the same 64-Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address follow-
ing a subroutine call. The return address can be anywhere in the 16-Mbyte address space.

RETI (Return from Inteupt) provides a return from an interrupt service routine. The operation
of RETI depends on the INTR configuration bit in the CONFIGL register:

¢ ForINTR =0, an interrupt causes the two lower bytes of the PC to be pushed onto the stack.
The RETI instruction pops these two bytes and uses them as the 16-bit return address in
region FF:. RETI also restores the interrupt logic to accept additional interrupts at the same
priority level as the one just processed.

* For INTR =1, an interrupt causes four bytes to be pushed onto the stack: the three bytes of
the PC plus the PSW1 register. The RETI instruction pops thaséytes and then returns
to the specified 24-bit address, which can be anywhere in the 16-Mbyte address space.
RETI also clears the interrupt request line.

The TRAP instruction is useful for the development of emulations of an MCS 251 microcontrol-
ler.

46 PROGRAM STATUS WORDS
The Program Status Word (PSW) register and the Program Status Word 1 (P§¥td) centain
four types of bits (Figure 4-3 on page 4-19 and Figure 4-4 on page 4-20):
* CY,AC, OV, N, and Z are flags set by hardware to indicate the result of an operation.
* The P bit indicates the parity of the accumulator.

¢ Bits RSO and RS1 arprogrammed bysoftware to select the active register bank for
registers RO-R7.

* FO0 and UD are available to the user as general-purpose flags.

The PSW and PSWL1 registers are read/write registers; however, the parity bit in the PSW is not
affected by a write. Individual bits can be addressed with the bit instructions (“Bit Instructions”
on page 4-12). The PSW and PSW1 bits are used implicitly in the conditional jump instructions
(“Conditional Jumps” on page 4-15).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1 regis-
ter exists only in MCS 251 microcontrollers. Bits CY, ARS0, RS1, and OV in PSW1 adeh-

tical to the corresponding bits in PSW, i.e., the same bit can be accessed in either register. Table
4-11 lists the instructions that affect the CY, AC, OV, N, and Z bits.

I 4-17

PROGRAMMING

Table 4-11. The Effects of Instructions on the PSW and PSW1 Flags

Flags Affected (1)
Instruction Type Instruction
CcYy OV | AC(2) N
ADD, ADDC, SUB, X X X X X
SUBB, CMP
Arithmetic INC, DEC X X
MUL, DIV (3) 0 X X X
DA X X
ANL, ORL, XRL, CLR A, X X
) CPL A, RL, RR, SWAP
Logical
RLC, RRC, SRL, SLL, X X
SRA (4)
CJINE X X
Program Control
DJINE X

NOTES:
1. X =the flag can be affected by the instruction.
0 = the flag is cleared by the instruction.
2. The AC flag is affected only by operations on 8-bit operands.
3. Ifthe divisor is zero, the OV flag is set, and the other bits are meaningless.
4. For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.

4-18

Int9|® PROGRAMMING

PSW Address: S:DOH
Reset State: 0000 0000B
7 0
cy AC FO RS1 ‘ ‘ RSO oV uD P
Bit Bit Function
Number Mnemonic
7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by some rotate and shift instructions, logical bit instructions and bit move
instructions, and the multiply (MUL) and decimal adjust (DA) instructions
(see Table 4-11 on page 4-18).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise it is cleared. This flag is useful for BCD
arithmetic (see Table 4-11 on page 4-18).

5 FO Flag O:
This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).

RS1 RSO Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH
2 oV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ubD User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all instruc-
tions update the parity bit.

Figure 4-3. Program Status Word Register

4-19

PROGRAMMING

intel.

PSW1 Address: S:D1H
Reset State: 0000 0000B
7 0
cy AC N RS1 || RSO ov z —
Bit Bit : Function
Number Mnemonic
7 CY Carry Flag:
Identical to the CY bit in the PSW register (Figure 4-3 on page 4-19.)
6 AC Auxiliary Carry Flag:
Identical to the AC bit in the PSW register (Figure 4-3 on page 4-19.)
5 N Negative Flag:
This bit is set if the result of the last logical or arithmetic operation was
negative. Otherwise it is cleared.
4-3 RS1:0 Register Bank Select Bits 0 and 1:
Identical to the RS1:0 bits in the PSW register (Figure 4-3 on page 4-19).
2 oV Overflow Flag:
Identical to the OV bit in the PSW register (Figure 4-3 on page 4-19.)
1 z Zero Flag:
This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.
0 — Reserved:
The value read from this bit is indeterminate. Do not write a “1” to this bit.

4-20

Figure 4-4. Program Status Word 1 Register

intel.

Interrupt System

CHAPTER 5
INTERRUPT SYSTEM

5.1 OVERVIEW

The 8XC251SB, like other control-oriented computer architectures, empprggi@m interrupt

method. This operation branches to a subroutine and performsseomiee in response to the
interrupt. When the subroutine completes, execution resumes at the point where the interrupt oc-
curred. Interrupts may occur as a result of internal 8XC251SB activity (e.g., timer overflow) or

at the initiation of electrical signals external to the microcontroller (e.g., serial port communica-
tion). In all cases, interrupt operation is programmed bgyseem designer, who determines pri-

ority of interrupt service relative to normal code execution and other interrupt service routines.
Seven of the eight interrupts are enabled or disabled by the system designer and may be manipu-
lated dynamically.

A typical interrupt event chain occurs as follows. An internal or external device initiates an inter-
rupt-request signal. This signal, connected to an input pin (see Table 5-1, Interrupt System Pin
Signals) and periodically sampled by the 8XC251SB, latches the event into a flag buffer. The pri-
ority of the flag (see Table 5-2, Interrupt System Special Function Registers) is compared to the
priority of other interupts by the interruptandler. A high priority causes the handler to set an
interrupt flag. This signals the instruction execution unit to execute a context switch. This context
switch breaks the current flow of instruction sequences. The execution unit completes the current
instruction prior to a save of thgogram counter (PC) and reloads the PC with the start address
of a software service routine. The software service routine executes assigned tasks and as a final
activity performs a RETI (return from interrupt) instruction. This instruction signals completion

of the interrupt, resets the interrupt-in-progress priority, and reloads the program counter. Pro-
gram operation then continues from the original point of interruption.

Table 5-1. Interrupt System Pin Signals

Signal . Multiplexed
Name Type Description With
INT1:0# | External Interrupts 0 and 1 . These inputs set bits IE1:0 in the P3.3:2

TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INTO#. If bits
INT1:0# are clear, bits IE1:0 are controlled by a low level trigger on
INT1:0#.

NOTE: Other pin signals are defined in their respective chapters and in Appendix B, “Signal Descrip-
tions.”

5-1

INTERRUPT SYSTEM

intel.

0
INTO# ITO

1 T__

Timer 0

0
INT1# IT1

1 T__

> TFO

IE1

Timer 1
PCA 0
o e cor
Overflow 1
0
PCA
Match or ECCFx

Capture 1

Receive = | RI

Timer 2 ——— > TF2

T2EX [F——>{Exr2

5
Transmit ——————— TI j>_) ES

1
1
1
1
g i e
ET1

Interrupt Enable

Priority Enable

Highest
Priority
Interrupt

Interrupt Polling Sequence

Y

I* Lowest

Priority
Interrupt

A4149-01

Figure 5-1. Interrupt Control System

5-2

Int9|® INTERRUPT SYSTEM

Table 5-2. Interrupt System Special Function Registers

Mnemonic Description Address

IEO Interrupt Enable Register . Used to enable and disable programmable S:A8H
interrupts. The reset value of this register is zero (interrupts disabled).

IPLO Interrupt Priority Low Register . Establishes relative four-level priority for S:B8H
programmable interrupts. Used in conjunction with IPHO.

IPHO Interrupt Priority High Register . Establishes relative four-level priority for S:B7H
programmable interrupts. Used in conjunction with IPLO.

NOTE: Other Special Function Registers are described in their respective chapters.

5.2 8XC251SB INTERRUPT SOURCES

Figure 5-1 on page 5-2 illustrates the interrupt control system. The 8XC251SB has eight interrupt
sources; seven maskable sources and the TRstRuction (always enabled). The maskable
sources include two eattnal interupts (INTO# and INT1#), three timer ertupts (timers 0, 1,

and 2), one programmable counter array (PCA) interrupt, and one serial port interrupt. Each in-
terrupt (except TRAP) has an interrupt request flag, which can be set by software as well as by
hardware (see Table 5-3 on page 5-4). For some interrupts, hardware clears the request flag when
it grants an interrupt. Software can clear any request flag to cancel an impending interrupt.

5.2.1 External Interrupts

External interrupts INTO# and INT1# (IN#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependepbn bits ITO andT1 in the TCON register (see Figure 7-6

on page 7-8). If IX= 0, INTx#is triggered by a detected low at the pin. K H1, INTx#is neg-
ative-edge triggered. External interrupts are enabled with bits EX0 and EX]i(EKe IEO reg-

ister (see Figure 5-2 on page 5-6). Events on the external interrupt pins set the interrupt request
flags IExin TCON. These request bits are cleared by hardware vectors to service routines only if
the interrupt is negative-edge triggered. If the interrupt is level-triggered, the interrupt service
routine must clear the request bit. External hardware must deassert INTx# before themervice

tine completes, or an additional interrupt is requed&ternal inerrupt pins must be deasted

for at least four state times prior to a request.

External interrupt pins are sampled once eveuy state times (a framength of 666.4 ns at 12
MHz). A level-triggered interrupt pin held low or high for any five-state time period guarantees
detection. Edge-triggered external interrupts must hold the request pin low for at least five state
times. This ensures edge recognition and sets interrupt requestbil BEXCPU clears BExXau-
tomatically during service routine fetch cycles for edge-triggered interrupts.

5-3

INTERRUPT SYSTEM
Table 5-3. Interrupt Control Matrix
Global Timer Serial Timer Timer

Interrupt Name Enable PCA 2 Port 1 INT1# 0 INTO#
Bit Name in Interrupt
Enable Register EA EC ET2 ES ET1 EX1 ETO EXO
@S:A8H
Interrupt Priority-
Within-Level
(7 = Low Priority, NA 7 6 5 4 3 2 1
1 = High Priority)
Bit Name in Interrupt
Priority Low @S:B8H Reserved | IPL0.6 | IPLO.5 | IPLO.4 | IPLO.3 IPLO.2 IPLO.1 IPLO.0
Bit Name in Interrupt
Priority High Reserved | IPH0.6 | IPHO.5 | IPHO.4 | IPHO0.3 | IPHO0.2 | IPHO.1 | IPHO0.0
@S:B7H
Programmable for
Negative-edge
Triggered or Level- NA Edge No No No Yes No Yes
triggered Detect?

CF, TF2,
Request Flag NA CCEX | EXF2 RI, TI TF1 IE1 TFO IEO
Request Flag Edge Edge
Cleared by No No No No Yes Yes, YES Yes,
Hardware? Level No Level No
ISR Vector Address NA FF: FF: FF: FF: FF: FF: FF:
0033H | 002BH | 0023H | 001BH | 0013H 000BH 0003H

5.2.2 Timer Interrupts

Two timer-interrupt request bits TFO and TF1 (see TCON register, Figure 7-6 on page 7-8) are set
by timer overflow (the exception is Timer O in Mode 3, see Figure 7-4 on page 7-6). When a timer
interrupt is generated, the bit is cleared by an on-chip-hardware vector to an interruptsarvice
tine. Timer interrupts are enabled by bits ETO, ET1, and ET2 in the IEO register (see Figure 5-2

on page 5-6).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON (see
Figure 7-12 on pagé-17). Neiher flag is cleared by a hardware vector to a service routine. In
fact, the interrupt service routine must determine if TF2 or EXF2 generated the interrupt, and then

clear the bit. Timer 2 interrupt is enabled by ET2 in register IEO.

Int9|® INTERRUPT SYSTEM

5.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) intigt is generated by logical OR of fiveent flags
(CCK) and the PCA timer overflow flag (CF) in the CCON register (see Figure 8-8 on page
8-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hardware vec-
tors to service routines. Normally, interrupt service irms resolve interrupt requests and clear
flag bits. This allows the user to define the relative priorities of the five PCA interrupts.

The PCA interrupt is enabled by bit EC in the IEQ register (see Figure 5-1 on page 5-2. In addi-
tion, the CF flag and each of the OCffags must also be individually enabled by bits ECF and
ECCFx in registers CMOD and CCAPMespectively for the flag to generate an interrupt (see
Figure 8-8 on page 8-14 and Figure 8-9 on page 8-16).

NOTE

CCFxrefers to 5 separate bits, one for each PCA module (CCF0, CCF1, CCF2,
CCF3, CCF4).

CCAPMx refers to 5 separate registers, one for each PCA module (CCAPMO,
CCAPM1, CCAPM2, CCAPM3, CCAPM4).

5.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits Rl and Tl in the SCON register (see
Figure 9-2 on page 9-3). Neither flag is cleared by a hardware vector to the service routine. The
service routine resolves Rl or Tl interrupt generation and cleasetia port request flag. The

serial port interrupt is enabled by bit ES in the IEO register (see Figure 5-2 on page 5-6).

5.5 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disabled by
the appropriate interrupt enable bit in the IEO register at S:A8H (see Figure 5-2 on page 5-6). Note
IEO also contains a global disable bit (EA). If EA is set, interrupts are individually enabled or dis-
abled by bits in IEQ. If EA is clear, all interrupts are disabled.

I 5-5

intel.

INTERRUPT SYSTEM
IEO Address: S:A8H
Reset State: 0000 0000B
7 0
EA EC ET2 Es || Em EX1 ETO EXO
Bit Bit . Function
Number Mnemonic
7 EA Global Interrupt Enable:
Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.
6 EC PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.
5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.
4 ES Serial /0O Port Interrupt Enable:
Setting this bit enables the serial I/O port interrupt.
3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.
2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.
1 ETO Timer O Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.
0 EXO0 External Interrupt O Enable:
Setting this bit enables external interrupt 0.

Figure 5-2. Interrupt Enable Register

5.6 INTERRUPT PRIORITIES

Each of the seven interrupt sources on the 8XC251SB may be individually programmed to one
of four priority levels. This is accomplished by a bit in the interrupt priority low and high registers
(IPHOX/IPLO X, see Figure 5-3 and Figure 5-4 on page 5-8). The IPHO register has the same bit
map as the IPLO register. This gives each interrupt source two priority-level select bits (see Table
5-4). The MSB of the priority select bits is in the IPHO register, and the LSB is in the IPLO

register.

Int9|® INTERRUPT SYSTEM

Table 5-4. Level of Priority

IPHO.X (MSB) IPLO. X (LSB) Priority Level
0 0 0 Lowest Priority
0 1 1
1 0 2
1 1 3 Highest Priority

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in-
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other in-
terrupt source. Higher priority interrupts arendgced before lower priority interrupts. The
response to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same
four state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table
5-5).

Table 5-5. Interrupt Priority Within Level

Priority Number Interrupt Name
1(Highest Priority) INTO#
2 Timer O
3 INT1#
4 Timer 1
5 Serial Port
6 Timer 2
7(Lowest Priority) PCA
NOTE

The 8XC251SB interrupt priority-within-level table (Table 5-5) differs from
MCS® 51 microcontrollers. Other MC3%51 microcontrollers may have unique
interrupt priority-within-level tables.

5-7

INTERRUPT SYSTEM Int9I®

IPHO Address: S:B7H
Reset State: 0000 0000B

7 0
— IPHO.6 IPHO.5 IPHO.4 ‘ ‘ IPHO.3 IPHO.2 IPHO.1 IPHO.0
Bit Bit . Function

Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Do not write a
“1" to this bit.

6 IPHO.6 PCA Interrupt Priority Bit High

5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPHO0.4 Serial /0 Port Interrupt Priority Bit High

3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPHO.2 External Interrupt 1 Priority Bit High

1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPHO.0 External Interrupt O Priority Bit High

Figure 5-3. Interrupt Priority High Register

IPLO Address: S:B8H
Reset State: 0000 0000B

7 0
— IPLO.6 IPLO.5 IPLO.4 ‘ ‘ IPLO.3 IPLO.2 IPLO.1 IPLO.O
Bit Bit . Function

Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Do not write a
“1" to this bit.

6 IPLO.6 PCA Interrupt Priority Bit Low

5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPLO.4 Serial I/O Port Interrupt Priority Bit Low

3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPLO.2 External Interrupt Priority Bit Low

1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPLO.O External Interrupt O Priority Bit Low

Figure 5-4. Interrupt Priority Low Register

5-8

Int9|® INTERRUPT SYSTEM

5.7 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Figure 5-5).
Response timis the amount of time between the interrupt request and the resulting break in the
current instruction streanhatencyis the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time.

Response Time
osc MAARARARLLAAARA AR AR ALAAAAAR AR
Siave oy U U UUULUUULn
Time !
External E
Interrupt B\ ///

Request

S Ending Instructions Push PC || Call ISR ‘ ISR

Latency -

A4153-01

Figure 5-5. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page-
mode operation, and branch pointer length.

NOTE

In the following discussion external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (i.e., less than one state
time). Signals must meetWand M. specifications prior to any state time

under discussion. This setup state time is not included in examples or calcula-
tions for either response or latency.

5-9

INTERRUPT SYSTEM Int9I®

5.7.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state times (see Figure 5-5 on page 5-9). Two of
eight interrupts are latched and polled per state time within any fverstate time window.

One additional state time is required for a context switch request. For code branches to jump lo-
cations in the current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the
context switch time is 11 states. Therefore, the minimum fixed poll and request time is 16 states
(4 poll states + 1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

* The source request is an internal interrupt with high enough priority to take precedence over
other potential interrupts,

* The request is coincident with internal execution and needs no instruction completion time,
* The program uses an internal stack location, and
* The ISR is in on-chip OTPROM/ROM.

5.7.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini-
tion, it is often difficult to predict exact timing calculations for real-time requests. One large vari-
able is the completion time of an instruction cycle coincident with the occurrence of an interrupt
request. Worst-case predictions typically use the longest-executing instruction in an architecture’s
code set. In the case of the 8XC251SB, the longestuéirng instruction is a 16-bit divide (DIV).
However, even this 21- state instruction may have only 1 or 2 remaining states to complete before
the interrupt system injects a context switch. This uncertainty affects tspibnge time and la-

tency.

5721 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an interrupt
and lasts until a break in the current instruction execution stream occurs (see Figure 5-5 on page
5-9). Response time (and therefore latency) is affected by two primary factors: the incidence of
the request relative to the four-state-time sample window and the campiete of instructions

in the response period (i.e., shorter instructions complete earlier than longer instructions).

NOTE

External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interruptsThe sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and poll/request portion of the minimum fixed response and latency

5-10

Int9|® INTERRUPT SYSTEM

time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample is taken and the interrupt request is recognized, the
interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a 10-state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the 10-state
instruction (see Figure 5-6).

Response Time = 6

-

osc

State Time

INTO#

Sample INTO# LT || | LT ||
Request LI T
l
Y
Ten State
Instruction S Push PC I S

A4155-01

Figure 5-6. Response Time Example #1

Conversely, if the external interrupt requests service in the state just prior to the next sample, re-
sponse is much quicker. One state gsd@e request, one state samples, and one state requests
the context switch. If at that point the same instruction conditions exist, one additional state time
is needed to complete the 10-state instruction prior to the context switch (see Figure 5-7 on page
5-12). The total response time in this case is four state times. The programmer ruase alia
pertinent conditions for accurate predictability.

5-11

INTERRUPT SYSTEM Int9I®

Response Time =4

0osC

State Time

INTO#

Sample INTO# LT LT
Request L

Ten State S

Instruction Push PC S

A4154-01

Figure 5-7. Response Time Example #2

5.7.2.2 Computation of Worst-case Latency With Variables

Worst-case latency calculations assume that the longest 8XC251SB instruction usgatan the
gram must fully execute prior to a context switch. The instruction execution time is reduced by
one state with the assumption the instruction state overlaps the request state (therefore, 16-bit
DIV is 21 state times - 1 = 20 states for latency calculations). The calculations add fixed and vari-
able interrupt times (see Table 5-6 on page 5-13) to this instruction time to predict latency. The
worst-case latency (both fixed and variable times included) is expressed by a pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

5-12

intel.

INTERRUPT SYSTEM

Table 5-6. Interrupt Latency Variables
INTO#, | External Page >64K External External External External
Variable INT 1%, Execution | Mode | Jump to M(_emory Stack Stack S_tack
ISR (1) | Wait State <64K (1) >64K (1) | Wait State
T2EX
Number
of 1 per 1 per
States 1 2 1 8 bus cycle 4 8 bus cycle
Added
NOTES:

1. <64K/>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

— A 2-byte instruction is the first ISR byte.
— <64K jump to ISR
— Internal peripheral interrupt

57.2.3

Assume the use of a zero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INTO# requests service. Also assume INTO# has made the request one
state prior to the sample state (as in Figure 5-7 on page 5-12). Unlike in Figure 5-7, the response
time for this assumption is three state times as the current instruction completes in time for the
branch to occur. Latency calculations begin with the minimum fixed latency of 16 states. From
Table 5-6, one state is added for an INTO# request from external hardware; two states are added
for external execution; and four states for an external stack in the current 64-Kbyte region. Final-
ly, three states are added for the current instruction to complete. The actual latency is 26 states.
Worst-case latency calculations predict 43 states for this example due to inclusion of total DIV

Latency Calculations

instruction time (less one state).

Table 5-7. Actual vs. Predicted Latency Calculations

— Internal execution

— Internal stack

Latency Factors Actual Predicted
Base Case Minimum Fixed Time 16 16
INTO# External Request 1
External Execution
<64K Byte Stack Location
Execution Time for Current DIV Instruction | 3 20
TOTAL 26 43

5-13

INTERRUPT SYSTEM Int9I®

5724 Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt request at a
time generates a vector cycle to an interrupt service routine (see CALL instruappesidix A,
“Instruction Set Reference”). There are three causes of blocking conditions with hardware-gen-
erated vectors:

1. An interrupt of equal or higher priority level is already in progress (defined as any point
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

3. The instruction irprogress is RETI or any write to the IEO, IPHO, or IPLO registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures the in-
struction inprogress ompletes before the system vectors to the ISR. Condition three ensures at
least one more instruction executes before the system vectors to additiemabpistif the in-
struction in progress is a RETI or any write to IEO, IPHO, or IPLO. The complete polling cycle is
repeated each four state times.

5.7.25 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU break@gteuction stream sequence, re-
solves all instruction pipeline decisions, and pushes mufiipigram countefPC) bytes onto the

stack. The CPU then reloads the PC with a start address for the appropriate ISR. The number of
bytes pushed to the stack dependsn theNTR bit in the CONFIG1 configuration register (see
Figure 13-4 on page 13-8). The complete sample, poll, request and comiiekt vector se-
quence is illustrated in the interrupt latency timing diagram (see Figure 5-5 on page 5-9

NOTE

If the interrupt flagfor a level-triggered external imeipt is setbut denied for

one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked interrupt
requests are not buffered for retention.

5-14

Int9|® INTERRUPT SYSTEM

5.7.3 ISRs in Process

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs
the processor the interrupt routine is completed. The RETI instructtba I8Rpops PC address

bytes off the stack (as well as PSW1 for INTR = 1), and execution resumes at the suspended in-
struction stream.

NOTE
A simple RET instruction also returns execution to the interrymtegram. In
previous implementations this inappropriately allowed the system to operate as
though an interrupt service routine is still in progress. The 8XC251SB allows
use of both RETI and RET instructions for imtgot completion. However, for
code expected to run properly on both MCS 51 microcontrollers and
8XC251SB products, only the execution of a RETI instruction is considered
proper completion of the interrupperation.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (IEO and TFO, for example, or TFO and IE1), the
first interrupt routine (if more than seven bytes long) must execute a jump to some atf@yme
location. This prevents overlap of the start address of the following interruterout

5-15

INTERRUPT SYSTEM

5-16

intel.

Input/Output Ports

intel.

CHAPTER 6
INPUT/OUTPUT PORTS

6.1 INPUT/OUTPUT PORT OVERVIEW

The 8XC251SB uses input/output (I/O) ports to exchange data with external devices. In addition
to performing general-purpose I/O, some ports are capable of extermaryneperationgsee

Chapter 12, “External Memory Interface”); others allow for alternate functions.fodil
8XC251SB /0O ports are bidirectional. Each port contains a latch, an output driver, and an input
buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory operations.
Port 0 drives the lower address byte onto the parallel address bus, and port 2 drives the upper ad-
dress byte (16 or 17) onto the bus. In nonpagee, the data is multiplexed with the lower ad-
dress byte on port 0. In page mode, the data is multiplexed with the upper address byte on port 2.
All port 1 and port 3 pins serve for both general-purpose 1/0 and alternate functions (see Table
6-1).

Table 6-1. Input/Output Port Pin Descriptions

Nzirrr]1e Type Iéilrzelr\lnaarl;ee Alternate Description Alt%cgzte
P0.7:0 | /O |AD7:0 Address/Data Lines (Nonpage Mode), Address Lines (Page Mode) /0
P1.0 /O T2 Timer 2 Clock Input/Output /0
P11 /10 | T2EX Timer 2 External Input |
P1.2 /O |ECI PCA External Clock Input |
P1.3 /0 | CEXO PCA Module 0 I/0 /0
P14 /0 |CEX1 PCA Module 1 1/0 /0
P15 /0 | CEX2 PCA Module 2 1/0 /0
P1.6 /0 | CEX3 PCA Module 3 1/0 /0
P17 /0 | CEX4 PCA Module 4 1/0 /0
P2.7:0 | 1/0 |A15:8 Address Lines (Nonpage Mode), Address/Data Lines (Page Mode) I/0
P3.0 /0 |RXD Serial Port Receive Data Input | (I10)
P3.1 /0 | TXD Serial Port Transmit Data Output O (O)
P3.2 /O | INTO# External Interrupt O |
P3.3 /0 | INT1# External Interrupt 1 |
P3.4 /O | TO Timer O Input |
P3.5 /O | T1 Timer 1 Input |
P3.6 /0 | WR# Write Signal to External Memory O
P3.7 /O | RD#/A16 |Read Signal to External Memory or 17th Address Bit O

6-1

INPUT/OUTPUT PORTS Int9|®

6.2 1/O0 CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 6-1 for ports 1 and 3. A CPU
“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “read
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” signal
transfers the logical level of the port pin. Some port data instructions activate the “read latch” sig-
nal while others activate the “read pin” signal. Latch instructions are referred talasoddy-

write instructions (see “Read-Modify-Write Instructions” on page 6-5). Each I/O line may be in-
dependently programmed as input or output.

6.3 PORT 1 AND PORT 3

Figure 6-1 shows the structure of ports 1 and 3, which have internal pullups. An external source
can pull the pin low. Each port pin can be configured either for general-purpose I/O or for its al-
ternate input or output function (Table 6-1).

To use a pin for general-purpose output, set or clear the corresponding bit xréugsier x =
1, 3). To use a pin for general-purpose input, set the bit inthegister. This turns off the output
driver FET.

To configure a pin for its alternate function, set the bit in theeBister. When the latch is set, the
“alternate output function” signal controls the output level (Figure 6-1). The operation of ports 1
and 3 is discussed further in “Quasi-bidirectional Port Operation” on page 6-5.

6.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, showr
in Figure 6-2, differs from the other ports in not having internal pullups. Figure 6-3 on page 6-4
shows the structure of port 2. An exteraalrce can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit xréggsier X =

0, 2). To use a pin for general-purpose input set the bit inxthredgdster to turn off the output
driver FET.

6-2 I

INPUT/OUTPUT PORTS

Vee
Alternate |
Read Output Inte”rna
Latch I/I Function Pullup
N | P3.x
Internal 0
Bus P3.x
: Latch
Write to
Latch CL Q#
1 . -1
) Lo
ReF?d Alternate
in
Input
Function
A2239-01
Figure 6-1. Port 1 and Port 3 Structure
Address/
Read Data Control Vee
Latch LI
;; PO.x
Internal Q _D
Bus PO.x N\
_ Latch 1
Write to 0
Latch CL Q#
1
Read l\l
Pin

A2238-01

Figure 6-2. Port 0 Structure

INPUT/OUTPUT PORTS

intel.

Read
Latch

Internal
Bus

Write to
Latch

Read
Pin

Lx—

CL

P2.x
Latch

Q#

Address Vee
| Control
Internal
Pullup
N P2.x
1

N
Y
—

T

A2240-01

Figure 6-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, an internal control signal switches
the output-driver input from the latch output to the internal address/data line. “Extemnmalrivie
Access” on page 6-7 discusses the operation of port 0 and port 2 as the external address/data bus

NOTE

Port 0 and port 2 are precluded from use as general purpose I/O ports when

used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port 0 outputs are

open drain.

6-4

Int9|® INPUT/OUTPUT PORTS

6.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructions read
the data, modify the data, and then rewrite the latch. These are called “read-modify-write” in-
structions. Below is a complete list of these special instructions. When the destination operand is
a port, or a port bit, these instructions read the latch rather than the pin:

ANL (logical AND, e.g., ANL P1, A)

ORL (logical OR, e.g., ORL P2, A)

XRL (logical EX-OR, e.g., XRL P3, A)

JBC (jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL)
CPL (complement bit, e.g., CPL P3.0)

INC (increment, e.g., INC P2)

DEC (decrement, e.g., DEC P2)

DJINZ (decrement and jump if not zero, e.g., DINZ P3, LABEL)

MOV PX.Y, C (move carry bit to bit Y of port X)
CLR PX.Y (clear bit Y of port X)
SETB PX.Y (sethitY of port x)

It is not obvious the last three instructions in this list are readfyaadite instructions. These
instructions read the port (all 8 bits), modify the specifically addressed bit, and write the new byte
back to the latch. These read-modify-write instructions are directed to the latch rather than the pin
in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at the pin. For
example, a port bit used to drive the base of an external transistor appears to provide incorrect
information. When logic one is written to the bit, the external base-emitter transistor junction sat-
urates. Due to Kirchoff's Law of Series Circuits and the chargstics of transistor base-emitter
saturation, the voltage measurement on the transistor base is low (hglawthve CPU attempts

to read the port at the pin, the base voltage of the external transistor is incorrectly interpreted as
logic zero. A read of the latch rather than the pin returns the correct logic-one value.

6.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirectional”
ports. When configured as an input, the pin impedance appears as logic one and sources current
(see 8XC251SB datasheet) in response to an external logic-zero condition. Port 0 is a “true bidi-
rectional” pin. The pin floats when configured as input. Resets write logical one to all port latches.

If logical zero is subsequently written to a port latch, it can be returned to input conditions by a
logical one written to the latch. For additional electrical information, refer to the current
8XC251SB datasheet.

6-5

INPUT/OUTPUT PORTS Int9|®

NOTE
Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one trsitions in port 1, port 2, and port 3 utilize an additional pullup to aid this
logic transition (see Figure 6-4). This increases switch speed. The extra pullup briefly sources 100
times normal internal circuit current. The internal pullups are field-effect transistors rather than
linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on when the
gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for two
oscillator periods immediately after a zero-to-one transition in the port latch. A logic one at the
port pin turns on pFET #3 (a weak pulldpjough the inverter. Thigverter and pFET pair form

a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the associated
nFET is switched off. This is traditional CMOS switch convention. Current strengths are 1/10 that
of pFET #3.

2 Osc. Periods Vee Vee Vee

nHL L

Port

Q#
From I r

=]

Port | > L
Latch

Input Data < I Oﬂ :,4
Read Port Pin | >

A2242-01

Figure 6-4. Internal Pullup Configurations

6-6

Int9|® INPUT/OUTPUT PORTS

6.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zerq,(sgeevifica-

tions in the 8XC251SB data sheet). These port pins can be driven by open-collector and open-
drain devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a log-
ic-one condition (Figure 6-4 on page 6-6). A logic-zero input turns off pFEThi8 18aves only

pFET #2 weakly in support of the transition. In external bus mode, port 0 output buffers each sink
3.2 mA at logic zero (seep); in the 8XC251SB data sheet). However, the port 0 pins require
external pullups to drive external gate inputs. See the latest revision of t1258%B datasheet

for complete electrical design information. External circuits must be designed to limit current re-
quirements to these conditions.

6.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mode (used
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address byte and
the data are multiplexed on port 0. In page mode, the upper address byte and the data are multi-
plexed on port 2, while port 0 outputs the lower address byte.

The 8XC251SB CPU writes FFH to the PO register for all external memory bus cyclesvdiiis

writes previousnformafon in PO. In contrast, the P2 register is unmodified for external bus cy-
cles. When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on the
port 2 pins.

In nonpage mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte and the data. Port 0 is in a high-impedance
state for data input. In page mode, port 0 uses a strong internal pullup FET to output ones or a
strong internal pulldown FET to output zeros for the lower address byte or a strong internal pull-
down FET to output zeros for the upper address byte.

In nonpage mode, port 2 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the upper address byte. In page mode, port 2 uses a strong internal
pullup FET to output ones or ashg inernal pulldown FET to output zeros for the upper address
byte and data. Port 2 is in a high-impedance state for data input.

NOTE
In external bus mode port 0 outputs do not require external pullups.

I 6-7

INPUT/OUTPUT PORTS Int9|®

There are two types of external memory accesses: external program memory and external data
memory (see Chapter 12, “External Memory Interface”). External program memories utilize sig-
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to strobe
memory for data accesses. Depending on its RD1:0 configuration bits, the 8XC251SB uses
PSEN# or RD# for data reads (“RD#, PSEN#, and the Number of External Address Pins (Bits
RD1:0)" on page 12-3).

During instruction fetches, external program memory can transfer instructions with 16-bit ad-
dresses for binary-compatible code or with 17-bit addresses for extended memory operations.

External data memory transfers use an 8-, 16-, or 17-bit address bus, depending on the instruction.
Table 6-2 lists the instructions that can be used for the three bus widths.

Table 6-2. Instructions for External Data Moves

Bus Width Instructions
8 MOVX @Ri; MOV @Rm; MOV dir8
16 MOVX @DPTR; MOV @WRj; MOV @WRj+dis; MOV dirl6
17 MOV @DRk; MOV @DRk+dis
NOTE

Avoid MOV PO instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drives,V. For write cycles, valid data is written to port O just prior

to the write (WR#) pin asserting,V Data remains valid until WR# is undriven. For read cycles,
data returned from external memory must appear at port 0 before the read (RD#) pin is undriven
(refer to the 8XC251SB datasheet for exact specifications). Wait states, by definition, affect bus-
timing.

6-8

intel.

v

Timer/Counters and
Watchdog Timer

intel.

CHAPTER 7
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as peripherals
on the 8XC251SB. When operating as a timer, a timer/counter runs for a prograsmgtbdolf

time, then issues an interrupt request. When operating as a counter, a timer/counter counts nega-
tive transitions on an external pin. After a presehber of counts, the counter issues an interrupt
request. Timer/counters are covered in sections 7.1 through 7.6.

The watch dog timeprovides a way to monitor system operation. It causes a system reset if a
software malfunction allows it to expire. The watchdog timer is covered in “Watchdog Timer” on
page 7-16.

7.1 TIMER/COUNTER OVERVIEW

The 8XC251SB contains three general-purpose, 16-bit timer/counters. Although they are identi-
fied as timer O, timer 1, and timer 2, you can independently configure each to operate in a variety
of modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, used
separately or in cascade, to maintain the count. The timer registers and associated control and cap-
ture registers are implemented as addressable special function registers (SFRs). Table 7-1 briefly
describes the SFRs referred to in this chapter. Four of the @B6®de programmableontrol of

the timers as follows:

¢ Timer/counter mode control register (TMD) and timer/counter control register (TCON)
control timer O and timer 1.

¢ Timer/counter 2 mode control register (T@®) and timer/counter 2 control register
(T2CON) control timer 2

For a map of the SFR address space, see Table 3-4 on page 3-13. Table 7-2 describes the externe
signals referred to in this chapter.

7.2 TIMER/COUNTER OPERATION

The block diagram in Figure 7-1 depicts the basic logic of the timers. Here timer registers TH
and Tlx (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Settingitheontrol bit

(TRx) turns the timer on by allowing the selected input to incrememrt When TLx overflows

it increments TH; when THk overflows it sets the timer overflow flag (XFin the TCON or

T2CON register. Setting the run control bit does not clear theaftd TLx timer registers. The

timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by external pin ¥4To facilitate pulse width measurements.

I 7-1

TIMER/COUNTERS AND WATCHDOG TIMER

Table 7-1. Timer/Counter and Watchdog Timer SFRs

intel.

Mnemonic Description Address
TLO Timer O Timer Registers. Used separately as 8-bit counters or in cascade | S:8AH
THO as a 16-bit counter. Counts an internal clock signal with frequency Fogc/12 | S:8CH
(timer operation) or an external input (event counter operation)
TL1 Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade | S:8BH
TH1 as a 16-bit counter. Counts an internal clock signal with frequency Fos./12 | S:8DH
(timer operation) or an external input (event counter operation)
TL2 Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a S:CCH
TH2 16-bit counter. Counts an internal clock signal with frequency Fgq./12 S:CDH
(timer operation) or an external input (event counter operation)
TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags, | S:88H
interrupt flags, and interrupt-type control bits for timer 0 and timer 1.
TMOD Timer 0/1 Mode Control Register. Contains the mode select bits, S:89H
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.
T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and | S:C8H
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.
T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and S:C9H
down count enable bits.
RCAP2L Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H) . Provide values | S:CAH
RCAP2H to and receive values from the timer registers (TL2,TH2.) S:CBH
WDTRST | Watchdog Timer Reset Register (WDTRST). Used to reset and enable S:A6H
the WDT.
XTALL [}—>= =12
Interrupt
> THx : TLx |overflow Request
(8 Bits) 1 (8 Bits) TFx
!
Tx D
CITx#
x=0,1,0r2 TRx
A4121-02

7-2

Figure 7-1. Basic Logic of the Timer/Counters

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

The C\Tx# control bit selects timer operation or counter operation by selecting the ddaded
system clock or external pinkBas the source for the counted signal.

For timer operation (CA# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle, i.e. once every six states (see “Clock
and Reset Unit” on page 2-3jince six states equals 12 clock cycles, the timer clock rate is
Fosd12. Exceptions are the timer 2 baud rate and clock-out modes, where the timer register is
incremented by the system clock divided by two.

For counter operation (CX# = 1), the timer register counts the negative transitions orxth&-T

ternal input pin. The external input is sampled during every S5P2 state. (“Clock and Reset Unit”
on page 2-5 describes the notation for the states in a peripheral cycle.) When the sample is high
in one cycle and low in the next, the counter is incremented. The new count value appears in the
register during the next S3P1 staféer the transition was detected. Since it takes 12 states (24
oscillator periods) to recognize a negative transition, the maximum count rate is 1/24 of the os-
cillator frequency. There are no restrictions on the duty cycle of the external input signal, but to
ensure that a given level is sampled at least once before it changes, it should be held for at least
one full peripheral cycle.

Table 7-2. External Signals

Signal e Multiplexed
Name Type Description With
T2 I/O | Timer 2 Clock Input/Output . This signal is the external clock input P1.0
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.
T2EX | Timer 2 External Input . In timer 2 capture mode, a falling edge P11
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.
INT1:0# | External Interrupts 1:0 . These inputs set the IE1:0 interrupt flags in | P3.3:2

the TCON register. TCON bits IT1:0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-low);

IT1:0 = O selects level-triggered (active low).

INT1:0# also serves as external run control for timer 1:0, when
selected by TCON bits GATEL:0#.

T1:0 | Timer 1:0 External Clock Inputs . When timer 1:0 operates as a P3.5:4
counter, a falling edge on the T1:0 pin increments the count.

TIMER/COUNTERS AND WATCHDOG TIMER Int9|®

7.3 TIMERO

Timer O functions as either a timer or event counter in four modes of operation. Figures 7-2, 7-3,
and 7-4 show the logical configuration of each mode.

Timer 0 is controlled by the four low-order bits of the TMODister (Figure 7-5) and bits 5, 4,

1, and 0 of the TCON register (Figure 7-6). The TMOD register selects the method of timer gating
(GATEO), timer or counter operation (T/C0#), and mode of operation (M10 and MO0Q). The
TCON register provides timer 0 control functions: overflow flag (TF0), run control (TRO), inter-
rupt flag (IEO), and interrupt type control (ITO).

For normal timer operation (GATEO = 0), setting TRO allows TLO to be incremented by the se-
lected input. Setting GATEO and TRO allows external pin INTO# to control timer operation. This
setup can be used to make pulse width measurements. See “Pulse Width Measurements” on page
7-10.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets the TFO flag generating an interrupt
request.

7.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as an 13-bit timer which is set up as an 8-bit timer (THO register) with
a modulo 32 prescaler implemented with the lower five bits of the TLO register (Figure 7-2). The
upper three bits of the TLO register are ignored. Prescaler overflow increments the THO register.

XTALL [}—>= =12
Interrupt
! Request
THx |, TLx |Overflow q
> (8 Bits) | (8 Bits) TFx >
l
Tx D
ClTx#
TR
X Mode 0: 13-bit Timer/Counter
Mode 1: 16-bit Timer/Counter
GATEx x=0orl
INTx#
A4110-02

Figure 7-2. Timer 0/1 in Mode 0 and Mode 1

7-4 I

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

7.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer O as a 16-bit timer with THO and TLO connected in cascade (Figure 7-2).
The selected input increments TLO.

7.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer O as an 8-bit timer (TLO register) that automatically reloads from the
THO register (Figure 7-3). TLO overflow sets the timer overflow flag (TFO) in the TCON register
and reloads TLO with the contents of THO, which is preset by software. When the interrupt re-
quest is serviced, hardware clears TFO. The reload leaves THO unchanged. See “Auto-load Setup
Example” on page 7-9

XTALL [} =12
Interrupt
TLx Overflow Request
> (8 Bits) TFx p———>
™3 2\
CITx# /\
Reload
TRx
THx
GATEx e o)
INTx# x=0orl

A4111-02

Figure 7-3. Timer 0/1 in Mode 2, Auto-Reload

7.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TLO and THO operate as separate 8-bit timers (Fig-
ure 7-4). This mode iprovided for applications requiring an additional 8-bit timer or counter.
TLO uses the timer 0 control bits C/TO# and GATEO in TMOD, and TRO and TFO in TCON in the
normal manner. THO is locked into a timer function (countigg-F1L2) and takes over use of the
timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of timer 1 is restricted when
timer 0 is in mode 3. See “Timer 1” on page 7-6 and “Mode 3 (Halt)” on page 7-9.

I 7-5

TIMER/COUNTERS AND WATCHDOG TIMER Int9|®

7.4 TIMER 1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 7-2 and
7-3 show the logical configuration for modes 0, 1, and 2. Timer 1's mode 3 is a hold count mode.

Timer 1 is controlled by the four high-order bits of the TMOD register (Figure 7-5) and bits 7, 6,
3, and 2 of the TCON register (Figure 7-6). The TMOD register selects the method of timer gating
(GATE1), timer or counter operation (T/C1#), and mode of operation (M11 and MO1). The
TCON register provides timer 1 control functions: overflow flag (TF1), run control (TR1), inter-
rupt flag (IE1), and interrupt type control (IT1).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the baud rate
generator for the serial port. Mode 2 is best suited for this purpose.

For normal timer operation (GATE1 = 0), setting TR1 allows timer register TL1 to be increment-
ed by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control timer op-
eration. This setup can be used to make pulse width measurements. See “Pulse Width
Measurements” on page 7-10.

Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag generating an interrupt
request.

XTALL [} +12 112 Foge
Interrupt
0 N TLO Overflow Request)
10 (3 !1) (8 Bits) TFO
C/TO#
TRO
GATEO
Interrupt
112 F, THo [Overflow Request
osc L
INTO# : IT o 1
TR1
A4112-02

Figure 7-4. Timer 0 in Mode 3, Two 8-bit Timers

7-6 I

intel.

TIMER/COUNTERS AND WATCHDOG TIMER
TMOD Address: S:89H
Reset State: 0000 0000B
7 0
GATE1 CIT1# M11 Mo01 ‘ ‘ GATEO C/TO# M10 MO0
Bit Bit Function
Number Mnemonic
7 GATE1 Timer 1 Gate:
When GATEL1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATEL =1 and TR1 = 1, external signal INT1 gates the
timer input.
6 CIT1# Timer 1 Counter/Timer Select:
C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.
54 M11, MO1 Timer 1 Mode Select:
M11 MO1
0 O Mode 0: 8-bit timer/counter (TH1) with 5-bit prescaler (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.
3 GATEO Timer 0 Gate:
When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO =1 and TRO = 1, external signal INTO gates the
timer input.
2 C/TO# Timer 0 Counter/Timer Select:
C/TO# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.
1,0 M10, MOO Timer 0 Mode Select:
M10 MOO
0 O Mode 0: 8-bit timer/counter (THO) with 5-bit prescaler (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow
1 1 Mode 3: TLO is 8-bit timer/counter. THO is 8-bit timer only
using timer 1 TR1 and TF1 bits.

Figure 7-5. TMOD: Timer/Counter Mode Control Register

7-7

TIMER/COUNTERS AND WATCHDOG TIMER

intel.

TCON Address: S:88H
Reset State: 0000 0000B
7 0
TF1 TR1 TFO TRO || IE1 IT1 IEO ITO
Bit Bit Function
Number Mnemonic

7 TF1 Timer 1 Overflow Flag:
Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.

5 TFO Timer 0 Overflow Flag:
Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 1 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:
Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:
Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active-low).

1 IEO Interrupt 1 Flag:
Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active-low).

7-8

Figure 7-6. TCON: Timer/Counter Control Register

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

When timer 0 is in mode 3, it uses timer 1's overflow flag (TF1) and run control bit (TR1). For
this situation, use timer 1 only for applications that do not require an interrupt (such as a baud rate
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off and on.

7.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bit timer (TH1 register) with
a modulo-32 prescaler implemented with the lower 5 bits of the TL1 register (Figure 7-2). The
upper 3 bits of the TL1 register are ignored. Prescaler overflow increments the TH1 register.

7.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with TH1 and TL1 connected in cascade (Figure 7-2).
The selected input increments TL1.

7.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TL1 register) with automatic reload from the TH1
register on overflow (Figure 7-3). Overflow from TL1 sets overflow flag TF1 in the TCON reg-
ister and reloads TL1 with the contents of TH1, which is preset by software. The reload leaves
TH1 unchanged. See “Auto-load Setup Example” on page 7-9

7.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt timer 1
when the TR1 run control bit is not available, i.e. when timer 0 is in mode 3. See the final para-
graph of “Timer 1” on page 7-6.

7.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purposestis that can be used in a variety of ways. The timer
applications presented in this section are intended to deratmimer setup, and do not repre-

sent the only arrangement nor necessarily the best arrangement for a given task. These examples
employ timer 0, but timer 1 can be set up in the same manner using the appropriate registers.

7.5.1 Auto-load Setup Example

Timer O can be configured as an eight-bit timer (TLO) with automatic reload as follows:

1. Program the four low-order bits of the TMQ&gister (Figure 7-5) to specify: mode 2 for
timer 0, C/TO# = 0 to select,E/12 as the timer input, and GATEO = 0 to select TRO as
the timer run control.

I 7-9

TIMER/COUNTERS AND WATCHDOG TIMER Int9|®

2. Enter an eight-bit initial value ghin timer register TLO, so that the timer overflows after
the desired number of peripheral cycles.

3. Enter an eight-bit reload valueg)nin register THO. This can be the same gson
different, depending on the application.

4. Setthe TRO bit in the TCON register (Figure 7-6) to start the timer. Timer overflow occurs
after FFH + 1 - g peripheral cycles, setting the TFO flag and loadipdgnto TLO from
THO. When the interrupt is serviced, hardware clears TFO.

5. The timer continues to overflow and generate interrupt requests every FFH % 1 - n
peripheral cycles.

6. To halt the timer, clear the TRO bit.

7.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GAXEnd TR allows an external waveform at pin INf to
turn the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin IN¥#. Pulse width measurements using timer 0 in mode 1 can be made as follows:

1. Program the four low-order bits of the TMQ@&gister (Figure 7-5) to specify: mode 1 for
timer 0, C/TO# = 0O to select,E/12 as the timer input, and GATEO = 1 to select INTO as
timer run control.

2. Enter an initial value of all zeros in the 16-bit timer register THO/TLO, or read and store
the current contents of the register.

Set the TRO bit in the TCON register (Figure 7-6) to enable INTO.

Apply the pulse to be measured to pin INTO. The timer runs when the waveform is high.
Clear the TRO bit to disable INTO.

Read timer register THO/TLO to obtain the new value.

Calculate pulse width = 12,J- x (new value - initial value).

® N o 0 A~ w

Example: Bsc= 16 MHz and 12J5.= 750 ns. If the new value = 10,0Q@&nd the initial
value = 0, the pulse width = 750 ns x 10,000 = 7.5 ms.

7.6 TIMER 2

Timer 2 is a 16-bit timer/counter. The count is maintained by two eight-bit timer registers, TH2
and TL2, connected in cascade. The timmuhter 2 mode control register (T2MOD) (Figure
7-11 on page 7-16) and the timer/counter 2 control register (T2CON) (Figure 7-12 on page 7-17)
control the operation of timer 2.

7-10 I

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

Timer 2 provides the following operating modes: capture modesraload mode, baud rate gen-
erator mode, angrogramnable clock-out mode. Select the operating mode with T2MOD and
TCON register bits as shown in Table 7-3 on pad&. Auto-reload is the default mode. Setting
RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selegis/E2 (timer operation) or
external pin T2 (counter operation) as the timer register input. Setting TF2 allows TL2 to be in-
cremented by the selected input.

The operating modes are described in the following paragraphs. Block diagrams in Figure 7-7
through Figure 7-10 show the timer 2 configuration for each mode.

7.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 7-7). An overflow con-
dition sets bit TF2, which you can use to request an interrupt. Sétgngxternal enable bit
EXEN2 allows the RCAP2H and RCAP2L registers to capture the current value in timer registers
TH2 and TL2 in response to a 1-to-0 transition at external input T2EX. The transition at T2EX
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

! Overflow
TH2 ' TL2
(8 Bits) | (8 Bits) > TR2
1
M M
Capture Interrupt
N/ / Request
RCAP2H|RCAP2L
T2EX D—)\
> EXF2 |
EXEN2
A4113-02

Figure 7-7. Timer 2: Capture Mode

I 7-11

TIMER/COUNTERS AND WATCHDOG TIMER Int9|®

7.6.2 Auto-reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload.
The timer operates an as an up counter or as an up/down counter, as deterntireatbiwn
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

7.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 7-8). The external enable bit EXEN2
in the T2CON register provides two options (Figure 7-12). If EXEN2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re-
load/capture registers (RCAP2H, RR2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by saite.

If EXEN2 = 1, the timer registers are reloaded by either a timer overflow or a high-to- low tran-
sition at external input T2EX. This transition also sets the EXF2 bit in the T2CON register. Either
TF2 or EXF2 bit can generate a timer 2 interrupt request.

xTALL [} +12 0 NG TH2 TL2 | Overflow

(8 Bits)

1 I/I (8 Bits)
T2 D TR2
CiT2#
Reload

I
RCAPZH: RCAP2L

L TF2

EXF2

Interrupt
Request

T2EX []—)\

EXEN2

A4115-02

Figure 7-8. Timer 2: Auto Reload Mode (DCEN = 0)

7-12 I

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

7.6.2.2 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 7-9). External pin T2EX con-
trols the direction of the count (Table 7-2 on page 7-3). When T2EX is high, timer 2 counts up.
The timer overflow occurs at FFFFH which sets the timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be load-
ed into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored inAREH and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This bit can
be used to provide 17-bit resolution.

(Down Counting Reload Value)
T
|
FFH | FFH
l
Toggle
XTALL - +12 vav ><— EXF2
\/ . \/ Interrupt
—0 TH2 : TL2 [Overflow TE> Request
X : —
_ 11 (8 Bits) 1 (8 Bits)
l
T2 D TR2 /\
CiT2# /\ Count
A Direction
1=Up
0 = Down
T
|
RCAPZH: RCAP2L D
I T2EX
(Up Counting Reload Value)
A4114-01

Figure 7-9. Timer 2: Auto Reload Mode (DCEN =1)

I 7-13

TIMER/COUNTERS AND WATCHDOG TIMER Int9|®

7.6.3 Baud Rate Generator Mode

This mode configures timer 2 as a baud rate generator for use with the serial port. Select this mode
by setting the RCLK and/or TCLK bits in T2CON. See Table 7-3 on page 7-15. For details re-
garding this mode of operation, refer to “Baud Rates” on page 9-10.

7.6.4 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (Figure
7-10). The input clock increments TLO at frequengyJ2. The timer repeatedly counts to over-

flow from a preloaded value. At overflow, the contents of the RCAP2H and RCAP2L registers
are loaded into TH2/TL2. In this mode, timer 2 overflows do not generate interrupts. The formula
gives the clock-out frequency as a function of the system oscillator frequency and the value in the
RCAP2H and RCAP2L registers:

I:OSC
4 x (65535 - RCAP2H, RCAP2L)

Clock-out Frequency =

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz to 4 MHz.
The generated clock signal is brought out to the T2 pin.
Timer 2 is programmed for the clock-out mode as follows:

1. Setthe T20E bit in T2MOD. This gates the timer register overflow to the +2 counter.

2. Clearthe C/T2# bitin T2CON to sele¢iH2 as the timer input signal. This also gates the
output of the +2 counter to pin T2.

3. Determine the 16-bit reload value from formula and enter in the RCAP2H/RCAP2L
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the reload
value or different depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.
Operation is similar to timer 2 operation as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates

and clock frequencies are not independent since both functions use the values iIABRHRC
and RCAP2L registers.

7-14 I

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

XTALL(}—>= + 2 0 N - i _
1) (8 Bits) | (8 Bits)
7 [J—=e AN
TR2 /\4—0

|
RCAPZH: RCAP2L

C/TZ#T !
. d

S

T20E
Interrupt
Request
T2EX [} \ I/II\ EXF2 >
EXEN2
A4116-02
Figure 7-10. Timer 2: Clock Out Mode
Table 7-3. Timer 2 Modes of Operation
Mode RCLK OR TCLK CP/RL2# T20E
(in T2CON) (in T2CON) | (in T2MOD)
Auto-reload Mode 0 0 0
Capture Mode 0 1 0
Baud Rate Generator Mode 1 X X
Programmable Clock-Out X 0 1

7-15

TIMER/COUNTERS AND WATCHDOG TIMER Int9|®

T2MOD Address: S:C9H
Reset State: XXXX XX00B
7 0
— — — - || - — T20E DCEN
Bit Bit Function
Number Mnemonic
7:2 — Reserved:
The values read from these bits are indeterminate. Do not write a “1” to
these bits.
1 T20E Timer 2 Output Enable Bit:
In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.
0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

Figure 7-11. T2MOD: Timer 2 Mode Control Register

7.7 WATCHDOG TIMER

The peripheral section of the 8XC251SB contains a dedicated, hardware watchdog timer (WDT)
that automatically resets the chip if it is allowed to time out. The WDT provides a means of re-
covering from routines that do not complete successfully due to software malfunctions. The WDT
described in this section is not associated with the PCA watchdog timer, which is implemented
in software.

7.7.1 Description

The WDT is al4-bitcounter that counts peripheral cycles, i.e. the system clock divided by twelve
(Fosd12). The WDTRST special function register at address S:A6H provides control access to
the WDT. Two operations control the WDT:

* Device reset clears and disables the WDT (see “Reset” on page 10-5).

¢ Writing a specificwvo-byte sequence the WDTRST register clears and enables the WDT.
If it is not cleared, the WDT overflows on count 3FFFH + 1. Wigh.= 16 MHz, a peripheral
cycle is 750 ns and the WDT overflows in 750 x 16384 282 ms.The WDTRST is a write-

only register. Attempts to read it return FFH. The WDT itself is not read or write accessible. The
WDT doesnot drive the external RESET pin.

7-16

Int9|® TIMER/COUNTERS AND WATCHDOG TIMER

T2CON Address: S:C8H
Reset State: 0000 0000B
7 0
TF2 EXF2 RCLK TCLK ‘ ‘ EXEN2 TR2 CIT2# CP/RL2#
Bit Bit Function
Number Mnemonic
7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK=1o0r TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN =1)

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.
3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.
1 CIT2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

Figure 7-12. T2CON: Timer 2 Control Register

7-17

TIMER/COUNTERS AND WATCHDOG TIMER Int9|®

7.7.2 Using the WDT

To use the WDT to recover from software malfunctions, the user program should control the
WDT as follows:

1. Following device reset, write thed-byte sequence 1EH-E1H to the WDTR&gister to
enable the WDT. The WDT begins counting from O.

2. Repeatedly for the duration of program execution, writewieehyte sequence 1EH-E1H
to the WDTRST register to clear and enable the WDT before it overflows. The WDT
starts over at 0.

If the WDT overflows, it initiates a device reset (see “Reset” on p8ge). Device reset clears
the WDT and disables it.

7.7.3 WDT During Idle Mode

Operation of the WDT during the power reduction modes deserves special attention. The WDT

continues to count while the microcontroller is in idle mode. This means the user must service the
WDT during idle. One approach is to use a peripheral timer to generate an interrupt request when
the timer overflows. The interrupt service routine then clears the WDT, reloads the peripheral

timer for the next service period, and puts the microcontroller back into idle.

7.7.4 WDT During PowerDown

The powerdown mode stops all phase clocks. This causes the WDT to stop counting and to hold
its count. The WDT resumes counting from where it left off if the powerdown mode is terminated
by INTO/INT1. To ensure that the WDT does not overflow shortly &kéing thepowerdown

mode, clear the WDT just before entering powerdown. The WDT is cleared and disabled if the
powerdown mode is terminated by a reset.

7-18 I

intel.

Programmable
Counter Array

intel.

CHAPTER 8
PROGRAMMABLE COUNTER ARRAY

This chapter describes tiprogrammable counter arrayQR), an on-chip peripheral of the
8XC251SB that performs a variety of timing and counting operations, including pulse width
modulation (PWM). The PCA provides the capability for a software watchdog timer (WDT).

8.1 PCA DESCRIPTION

The programmable counter array (PCA) consists of a 16-bit timer/counter and five 16-bit com-
pare/capture modules. The timer/counter serves as a common time base and event counter for the
compare/capture modules, distributing the current count to the modules by means of a 16-bit bus.
A special function register (SFR) pair, CH/CL, maintains the count in the timer/counter, while
five SFR pairs, CCARH/CCAPXL, store values for the modules (see Figure 8-1). Additional
SFRs provide control and mode select functions as follows:

* The PCA timer/counter mode register (CMOD) and the PCA timer/counter control register
(CCON) control the operation of the timer/counter. See Figures 8-7 and 8-8 beginning on
page 8-13.

* Five PCA module mode registers (CCARMspecify the operating modes of the
compare/capture modules. See Figure 8-9 on page 8-16.

For a list of SFRs associated with the PCA, see Table 8-1. For an SFR address map, see Table 3-4
on page 3-13. Port 1 provides external 1/O for the PCA on a shared basis with other functions.
Table 8-2 identifies the port pins associated with the timer/counter and compare/capture modules.
When not used for PCA 1/O, these pins can be used for standard 1/O functions.

The operating modes of the five compare/capture modules determine the functions performed by
the PCA. Each module can be independently programmed to provide input capture, output com-
pare, or pulse width modulation. Module 4 only also has ahdatg-timer mode.

The PCA timer/counter and the five compare/capture modules share a single interrupt vector. The
EC bit in the |IE special function register is a global interrupt enable for the PCA. Capture events,
compare events in some modes, and PCA timer/counter overflow set flags in the CCON register.
Setting the overflow flag (CF) generates a PCA interrupt request if the PCA timer/counter inter-
rupt enable bit (ECF) in the CMOD register is set (Figure 8-1). Setting a compare/capture flag
(CCK) generates a PCA interrupt request if the ELDEerrupt enable bit in the corresponding
CCAPMXx register is set (Figures 8-2 and 8-3). For a description of the 8XC251SB interrupt sys-
tem see Chapter 5, “Interrupt System.”

I 8-1

PROGRAMMABLE COUNTER ARRAY Int9|®

8.2 PCA TIMER/COUNTER

Figure 8-1 depicts the basic logic of the timer/counter portion of the PCA. The CH/CL special
function register pair operates as a 16-bit timer/counter. The selected input increments the CL
(low byte) register. When CL overflows, the CH (high byte) register increments after two oscil-
lator periods; when CH overflows it sets the PCA overflow flag (CF in the CCON register) gen-
erating a PCA interrupt request if the ECF bit in the CMOD register is set.

The CPS1 and CPSO0 bits in the CMOD register select one of four signals as the input to the
timer/counter (Figure 8-7 on page 8-13).

* Fosd12. Provides an clock pulse at S5P2 of every peripheral cycle. With=F16 MHz,
the time/counter increments every 750 nanoses.

* Fosd4. Provides clock pulses at S1P2, S3P2, and S5P2 of every peripheral cycle. With
Fosc= 16 MHz, the time/counter increments every 250 nanoseconds.

¢ Timer O overflow. The CL register is incremented at S5P2 of the peripheral cycle when
timer 0 overflows. This selection provides the PCA with a programmable frequency input.

¢ External signal on P1.2/ECI. The CPU samples the ECI pin at S1P2, S3P2, and S5P2 of
every peripheral cycle. The first clock pul&lP2, S3P2, or S5Pf#jat occurs following a
high-to-low transition at the ECI pin increments the CL register. The maximum input
frequency for this input selection ig /8.

For a description of peripheral cycle timing, see “Clock and Reset Unit” on page 2-5.

Setting the run control bit (CR in the CCON register) turns the PCA timer/counter on, if the out-
put of the NAND gate (Figure 8-1) equals logic 1. The PCA timer/counter continues to operate
during idle mode unless the CIDL bit of the CMOD register is set. The CPU can read the contents
of the CH and CL registers at any time. However, writing to them is inhibited while they are
counting i.e., when the CR bit is set.

8-2 I

PROGRAMMABLE COUNTER ARRAY

Compare/Capture
Modules

Module 0 [P1.3/CEX0
Module 1 [] P1.4/iCEX1
o | Module2 |
Bus Module 2 [] P15/CEX2
Module 3 [] P1.6/CEX3
Module 4 [] P1.7/ICEX4
00 (16 Bits)
Fosc /12 Interrupt
01 ,
Fosc /4 CH | cL o Request
Timer 0 Overflow 10 (8 Bits) : (8 Bits) I:: >
p1.2/ECI [F—i PCA CCON.7
Timer/Counter Overflow

[cps1 | cpso | cioL |
CMOD.2 CMOD1 CMOD.7

PCON.O CCON.6
Idle Mode Run Control

ECF

CMOD.0
Enable

A4162-01

Figure 8-1. Programmable Counter Array

PROGRAMMABLE COUNTER ARRAY

Table 8-1. PCA Special Function Registers (SFRs)

intel.

Mnemonic Description Address
CL PCA Timer/Counter. These registers serve as a common 16-bit timer or S:E9H
CH event counter for the five compare/capture modules. Counts Fogc/12, S:F9H
Fosc/4, timer O overflow, or the external signal on P1.2/ECI, as selected by
CMOD. In PWM mode CL operates as an 8-bit timer.

CCON PCA Timer/Counter Control Register. Contains the run control bit and S:D8H
the overflow flag for the PCA timer/counter, and interrupt flags for the five
compare/capture modules.

CMOD PCA Timer/Counter Mode Register. Contains bits for disabling the PCA S:D9H
timer/counter during idle mode, enabling the PCA watchdog timer (module
4), selecting the timer/counter input, and enabling the PCA timer/counter
overflow interrupt.

CCAPOH PCA Module 0 Compare/Capture Registers . This register pair stores the S:FAH

CCAPOL comparison value or the captured value. In the PWM mode, the low-byte S:EAH
register controls the duty cycle of the output waveform.

CCAP1H PCA Module 1 Compare/Capture Registers . This register pair stores the S:FBH

CCAPILL comparison value or the captured value. In the PWM mode, the low-byte S:EBH
register controls the duty cycle of the output waveform.

CCAP2H PCA Module 2 Compare/Capture Registers . This register pair stores the S:FCH

CCAP2L comparison value or the captured value. In the PWM mode, the low-byte S:ECH
register controls the duty cycle of the output waveform.

CCAP3H PCA Module 3 Compare/Capture Registers . This register pair stores the S:FDH

CCAP3L comparison value or the captured value. In the PWM mode, the low-byte S:EDH
register controls the duty cycle of the output waveform.

CCAP4H PCA Module 4 Compare/Capture Registers . This register pair stores the S:FEH

CCAPAL comparison value or the captured value. In the PWM mode, the low-byte S:EEH
register controls the duty cycle of the output waveform.

CCAPMO PCA Compare/Capture Module Mode Registers. Contain bits for S:DAH

CCAPM1 | selecting the operating mode of the compare/capture modules and S:DBH

CCAPM2 | enabling the compare/capture flag. See Table 8-3 on page 8-15 for mode S:DCH

CCAPM3 | select bit combinations. S:DDH

CCAPM4 S:DEH

Table 8-2. External Signals

Signal o Multiplexed

Name Type Description With
ECI | PCA Timer/counter External Input . This signal is the external clock P1.2

input for the PCA timer/counter.

CEXO0 /O | Compare/Capture Module External I/O. Each compare/capture P1.3
CEX1 module connects to a Port 1 pin for external I/O. When not used by P14
CEX2 the PCA, these pins can handle standard 1/O. P15
CEX3 P1.6
CEX4 P17

8-4

Int9|® PROGRAMMABLE COUNTER ARRAY

8.3 PCA COMPARE/CAPTURE MODULES

Each compare/capture module is made up of a compare/capture register pair
(CCAPXH/CCAPXxL), a 16-bit comparator, and various logic gates and signal transition selectors.
The registers store the time or count at which an external event occurred (capture) or at which an
action should occur (comparison). In the PWM mode, diacbyteregister controls the duty cy-

cle of the output waveform.

The logical configuration of a compare/capture module depends on its mode of operation
(Figures 8-2 through 8-5). Each module can be independently programmed for operation in any
of the following modes:

¢ 16-bit capture mode with triggering on the positive edge, negative edge, or either edge.

* Compare modes: 16-bit software timer, 16-bit high-speed output, 16-bit {Widdule 4
only), or 8-bit pulse width modulation.

* No operation.

Bit combinations programmed into a compare/capture module’s mgid¢er(CCAPMK) deter-

mine the operating mode. Figure 8-9 on page 8-16 provides bit definitions and Table 8-3 on page
8-15 lists the bit combinations of the available modes. Other bit combinations are invgid-and
duce undefined results.

The compare/capture modules perform their programmed functions when their common time
base, the PCA timer/counter, runs. The timer/counter is turned on and off with the CR bit in the
CCON register. To disable any given module, program itfemo operation mode. Theaoe-

rence of a capture, software timer, or high-speed output event in a compare/capture module sets
the module’s compare/capture flag (CCk the CCON register and generates a PCA interrupt
request if the corresponding enable bit in the CCARfister is set.

The CPU can read or write the COAPand CCARL registers at any time.

8.3.1 16-bit Capture Mode

The capture mode (Figure 8-2) provides the PCA with the ability to measure periods, pulse

widths, duty cycles, and phase differences at up to five separate inputs. External I/O pins CEX0
through CEX4 are sampled for signal transitions (positive and/or negative as specified). When a
compare/capture module programmed for the capture mode detects the specified transition, it
captures the PCA timer/counter value. This records the time at which an external event is detect-
ed, with a resolution equal to the timer/counter clock period.

I 8-5

PROGRAMMABLE COUNTER ARRAY Int9|®

To program a compare/capture module for the 16-bit capture mode, program the &#PP
CAPNX bits in the module’'s CCAPMIregister as follows:

¢ To trigger the capture on a positive transition, set CA&HR clear CAPX.
¢ To trigger the capture on a negative transition, set CA&d clear CAPR
* To trigger the capture on a positive or negative transition, set both CAPP>A&idixC

Table 8-3 on page 8-15tk the bit combinations for selecting module modes. For modules in the
capture mode, detection of a valid signal transition at the I/O pin {c&Uses hardware to load
the current PCA timer/counter value into the compare/capture registers (EEFEPAPXL) and

to set the module’s compare/capture flag (€dR the CCON register. If the cosponding in-
terrupt enable bit (ECG¥ in the CCAPMK register is set (Figure 8-9 on pagd 6), a the PCA
sends an interrupt request to the interrupt handler.

Since hardware does not clear the event flag when the interrupt is processed, the user must clear
the flag in software. A subsequent capture by the same module overwrites the existing captured
value. To preserve a captured value, save it in RAM with the interrupt service routine before the
next capture event occurs.

PCA Timer/Counter
T

Count CH ! CL
Input > (8 Bits) | (8 Bits)
1

Capture -\ \
M M

N \/

CEXx
External I/O

—I/Ix_

e
~

|
CCAPxH : CCAPxL

x=0,1,230r4
Y

X =Don't Care Interrupt

Request
CCFx N d >

CCON Register l/I Enable

X o CAPPx | CAPNx o o e} ECCFx
CCAPMx Mode Register 0

A4163-02

Figure 8-2. PCA 16-bit Capture Mode

8-6

Int9|® PROGRAMMABLE COUNTER ARRAY

8.3.2 Compare Modes

The compare functioprovides the apability for operatinghe five modules as timers, event
counters, or pulse width modulators. Four modes employ the compare function: 16-bit software
timer mode, high-speed output mode, WDT mode, and PWM mode. In the first three of these, the
compare/capture module continuously compares the 16-bit PCA timer/counter value with the 16-
bit value pre-loaded into the module’'s CCAPxH/CCAPXL register pair. In the PWM mode, the
module continuously compares the value in the low-byte PCA timer/counter register (CL) with
an 8-bit value in the CCAPxL module register. Comparisons are made three times per peripheral
cycle to match the fastest PCA timer/counter clocking raje/#). For a description of periph-

eral cycle timing, see “Clock and Reset Unit” on page 2-5.

Setting the ECOM bit in a module’s mode register (CCAPMX) selects the compare function for
that module (Figure 8-9 on pagel6). To use the modules in the comparedes, observe the
following general procedure:

1. Select the module’s mode of operation.

Select the input signal for the PCA timer/counter.

2
3. Load the comparison value into the module’'s compare/capture register pair.
4. Setthe PCA timer/counter run control bit.

5

After a match causes an interrupt, clear the module’s compare/capture flag.

8.3.3 16-bit Software Timer Mode

To program a compare/capture module for thebit software timer mode (Figure 8-3), set the
ECOMx and MATX bits in the module’s CCAPMregister. Table 8-3 on page 8-15 lists the bit
combinations for selecting module modes.

A match between the PCA timer/counter and the compare/capture registers¢@CERPxL)

sets the module’s compare/capture flag (€ @Fthe CCON register). This generates an interrupt
request if the corresponding interrupt enable bit (ECIDRhe CCAPM register) is set. Since
hardware does not clear the compare/capture flag when the interrupt is processed, the user must
clear the flag in software. During the interrupt routine, a new 16-bit compare value can be written
to the compare/capture registers (CGAFCCAPXL).

NOTE

To prevent an invalid match while updating these registers, user software
should write to CCAPXL first, then CCAPxH. A write to CCAPclears the
ECOMKx bit disabling the compare function, while a write to CGARets the
ECOMKX bit re-enabling the compare function.

I 8-7

PROGRAMMABLE COUNTER ARRAY Int9|®

Compare/Capture
PCA Timer/Counter Module
Count ; .
Input CH ! cCL CCAPxH ! CCAPXL
— > 8Bits) | (8Bits) | | (8Bits) | (8 Bits)
l l
{} Toggle
16-Bit Match NG
—> Comparator % —{Jcexx
Interrupt
Enable Request
CCFx
CCON Enable
X ECOMx 0 0 MATx | TOGx 0 ECCFx
A CCAPMx Mode Register 0
Reset
Write to
CCAPxL X = Don't Care
o x=0,1,2,3,4
For software timer mode, set ECOMx and MATX.
Write to CCAPxH For high speed output mode, set ECOMx, MATx, and TOGx.
A4164-01

Figure 8-3. PCA Software Timer and High-speed Output Modes

8.3.4 High-speed Output Mode

The high-speed output mode (Figure 8-3) generates an output signal by toggling the module’s I/O
pin (CEXx) when a match occurs. This provides greater accuracy than toggling pins in software
because the toggle occursforethe interrupt request is sereit. Thus, interrupt sponse time

does not affect the accuracy of the output.

To program a compare/capture module for the high-speed output mode, set the, NCAIY,

TOGx bits in the module’s CCAPKIregister. Table 8-3 on page 8-15 lists the bit combinations

for selecting module modes. A match between the PCA timer/counter and the compare/capture
registers (CCARH/CCAPXL) toggles the CEX pin and sets the module’s compare/capture flag
(CCFx in the CCON register). By setting or clearing the GE¥ in software, the user selects
whether the match toggles the pin from low to high or vice versa.

8-8

Int9|® PROGRAMMABLE COUNTER ARRAY

The user also has the option of generating an interrupt request when the match occurs by setting
the corresponding interrupt enable bit (EG@the CCAPM register). Since hardware does not

clear the compare/capture flag when the interrupt is processed, the user mtis¢ dlagrin soft-

ware.

If the user does not change the compare/capture registers in the interrupt routine, the next toggle
occurs after the PCA timer/counter rolls over and the count again matches the comparison value.
During the interrupt routine, a new 16-bit compare value can be written to the compare/capture
registers (CCARH/CCAPXL).

NOTE

To prevent an invalid match while updating these registers, user software
should write to CCAPXL first, then CCAPxH. A write to CCAPclears the
ECOMKx bit disabling the compare function, while a write to CGARets the
ECOMKX bit re-enabling the compare function.

8.3.5 PCA Watchdog Timer Mode

A watchdog timer (WDT) prowdes the means to recover from routines that do not complete suc-
cessfully. A WDT automatically invokes a device reset if it does not regularly receive hold-off
signals. WDTs are used in applications that are subject to electrical noise, power glitches, elec-
trostatic discharges, etc., or where high reliability is required.

In addition to the 8XC251SB'$4-bit hardware WDT, the PCA provides a programmable-fre-
guency 16-bit WDT as a mode option on compare/capture module 4. This mode generates a de-
vice reset when the count in the PCA timer/counter matches the value storedriodhie 4
compare/capture registers. A PCA WDT reset has the same effect as an external reset. Module 4
is the only PCA module that has the WDT mode. When not programmed as a WDT, it can be used
in the other modes.

To program module 4 for the PCA WDT mode (Figure 8-4), set the ECOM4 and MAT4 bits in
the CCAPMA4 register and the WDTE bit in the CMOD register. Table 8-3 on&&gdists the

bit combinations for selecting module modes. Also select the desired input for the PCA tim-
er/counter by programming the CPS0 and CPS1 bits in the CMOD register (see Figure 8-7 on
page 8-13). Enter al6-bit wmparison value in the compare/capture registers
(CCAP4H/CCAPAL). Enter a 16-bit initial value in the PCA timer/counter (CH/CL) or use the
reset value (0000H). The difference between these values multiplied by the PCA input pulse rate
determines theunning time to &xpiration.” Set the timer/counter run control bit (CR in the
CCON register) to start the PCA WDT.

I 8-9

PROGRAMMABLE COUNTER ARRAY Int9|®

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT reset,
the user has three options:

¢ periodically change the comparison value in CCAP4H/CCAPA4L so a match never occurs

¢ periodically change the PCA timer/counter value so a match never occurs

¢ disable the module 4 reset output signal by clearing the WDTE bit before a match occurs,
then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third option.
The second option is not recommended if other PCA modules are in use, since the five modules
share a common time base. Thus, in most applications the first option is the best one.

Compare/Capture
PCA Timer/Counter Module
Count T .
Input CH ! cCL CCAP4H! CCAPAL
— > 8Bits) | (8Bits) | | (8Bits) | (8 Bits)
l l
:'I> 16-Bit Match N
Comparator I/I > PCA WDT Reset
Enable| WDTE
CMOD.6
X ECOM4 0 0 1 X 0 X
CCAPM4 Mode Register
Reset
Write to
CCAPAL uqn E X =Don't Care
Write to CCAP4H
A4165-01

Figure 8-4. PCA Watchdog Timer Mode

8-10

Int9|® PROGRAMMABLE COUNTER ARRAY

8.3.6 Pulse Width Modulation Mode

The five PCA comparator/capture modules can be independently programmed to function as
pulse width modulators (Figure 8-5). The modulated output, which has a pulse width resolution
of eight bits, is available at the CkX}in. The PWM output can be used to convert digital data to

an analog signal with simple external circuitry.

In this mode the value in the low byte of the PCA timer/counter (CL) is continuously compared
with the value in the low byte of the compare/capture register (QCAWhen CL < CCARL,

the output waveform (Figure 8-6) is low. When a match occurs (CL = GDAe output wave-

form goes high and remains high until CL rolls over from FFH to 00H, ending the period. At roll-
over the output returns to a low, the value in CQARs loaded into CCAR., and a new period
begins.

CCAPxH
CL rollover from FFH to O0H loads
CCAPxH contents into CCAPxL
X = Don't Care CCAPxL
x=0,1,2,3,4.
8
ngr
8 <
CI.‘ 8-Bit CL < CCAPxL cEx
(8 Bits) Comparator X
CL = CCAPxL
Enable | "
[[
X ECOMx 0 0 0 0 PWMx 0
CCAPMx Mode Register 0
A4166-01

Figure 8-5. PCA 8-bit PWM Mode

8-11

PROGRAMMABLE COUNTER ARRAY Int9|®

The value in CCARL determines the duty cycle of the current period. The value in GBAlE-
termines the duty cycle of the following period. Changing the value in GCAfPer time mod-
ulates the pulse width. As depicted in Figure 8-6, the 8-bit value in QICA# vary from 0
(100% duty cycle) to 255 (0.4% duty cycle).

NOTE
To change the value in CCAP without glitches, write the new value to the
high byte register (CCAB). This value is shifted by hardware into CCAP
when CL rolls over from FFH to OOH.

The frequency of the PWM output equals the frequency of the PCA timer/counter input signal
divided by 256. The highest frequency occurs when ghg#input is selected for the PCA tim-
er/counter. For F5.= 16 MHz, this is 15.6 KHz.

To program a compare/capture module for the PWM mode, set the E@EIMPWNM bits in

the module’s CCAPM register. Tabl&-3 on page 8-15 lists the bit cbinations for selecting
module modes. Also select the desired input for the PCA timer/counter by programming the
CPSO0 and CPS1 bits in the CMOD register (see Figut®n page 8-13). Enter an 8-bit value in
CCAPXL to specify the duty cycle of the first period of the PWM output waveform. Enter an 8-
bit value in CCARH to specify the duty cycle of the second period. Set the thmanter run con-

trol bit (CR in the CCON register) to start the PCA timer/counter.

Duty
CCAPxL Cycle Output Waveform
255 0.4% ;l | | |
1
230 10%] I I I
1
2 s ML L1
1
25 90% 0'|_|]] |
0 100% (1)
A4161-01

Figure 8-6. PWM Variable Duty Cycle

8-12 I

PROGRAMMABLE COUNTER ARRAY

CMOD Address: S:D9H
Reset State: 00XX X000B
7 0
cIDL WDTE — - || - cps1 CPS0 ECF
Bit Bit Function
Number Mnemonic
7 CIDL Counter Idle Control:
CIDL =1 disables the PCA timer/counter during idle mode. CIDL =0
allows the PCA timer/counter to run during idle mode.
6 WDTE Watchdog Timer Enable:
WDTE =1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.
5:3 — Reserved:
The values read from these bits are indeterminate. Do not write “1”s to
these bits.
2:1 CPS1:0 PCA Timer/Counter Input Select:
CPS1 CPSO
0 0 Fosc/12
0 1 Fosc/4
1 0 Timer O overflow
1 1 External clock at ECI pin (maximum rate = Fo4./8)
0 ECF PCA Timer/Counter Interrupt Enable:
ECF =1 enables the CF bit in the CCON register to generate an interrupt
request.

Figure 8-7. CMOD: PCA Timer/Counter Mode Register

8-13

PROGRAMMABLE COUNTER ARRAY Int9|®

CCON Address: S:D8H
Reset State: ~ 00X0 0000B
7 0
CF CR — ccr4 || ccFs CCF2 CCF1 CCFO
Bit Bit Function
Number Mnemonic
7 CF PCA Timer/Counter Overflow Flag:
Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.
6 CR PCA Timer/Counter Run Control Bit:
Set and cleared by software to turn the PCA timer/counter on and off.
5 — Reserved:
The value read from this bit is indeterminate. Do not write a “1” to this bit.
4:0 CCF4 PCA Module Compare/Capture Flags:
CCF3 Set by hardware when a match or capture occurs. This generates a PCA
CCF2 interrupt request if the ECCFx interrupt enable bit in the corresponding
ggié CCAPMXx register is set. Must be cleared by software.

8-14

Figure 8-8. CCON: PCA Timer/Counter Control Register

PROGRAMMABLE COUNTER ARRAY

Table 8-3. PCA Module Modes

ECOMx | CAPPx | CAPNx | MATx | TOGx | PWMx | ECCFx Module Mode
0 0 0 0 0 0 0 No operation
X 1 0 0 0 0 X 16-bit capture on positive-edge
trigger at CEXX
X 0 1 0 0 0 X 16-bit capture on negative-edge
trigger at CEXX
X 1 1 0 0 0 X 16-bit capture on positive- or
negative-edge trigger at CEXx
1 0 0 1 0 0 X Compare: software timer
1 0 0 1 1 0 X Compare: high-speed output
1 0 0 0 0 1 0 Compare: 8-bit PWM
1 0 0 1 X 0 X Compare: PCAWDT
(CCAPMA4 only) (Note 3)
NOTES:

1. This table shows the CCAPMx register bit combinations for selecting the operating modes of the PCA
compare/capture modules. Other bit combinations are invalid. See Figure 8-9 for bit definitions.

2. X=0-4, X=Don'tcare.

3. For PCA WDT mode, also set the WDTE hit in the CMOD register to enable the reset output signal.

8-15

PROGRAMMABLE COUNTER ARRAY Int9|®

CCAPMX (x = 0—4)

Address: CCAPMO S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: X000 0000B

7 0
— ECOMx | CAPPx | CAPNx || MATx TOGxX PWMx | ECCFx
Bit Bit .
Number Mnemonic Function

7 — Reserved:
The value read from this bit is indeterminate. Do not write a “1” to this bit.

6 ECOMx Compare Modes:
ECOMXx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):
CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):
CAPNx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MAT x Match:
Set ECOMx and MAT x to implement the software timer mode. When
MATXx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGXx Toggle:
Set ECOMXx, MATXx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:
PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:
Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

8-16

Figure 8-9. CCAPM x: PCA Compare/Capture Module Mode Registers

intel.

Serial I/0O Port

intel.

CHAPTER 9
SERIAL I/O PORT

The serial input/output port supports communication with modems and other external peripheral
devices. This chapter provides instructions on programming the serial port and generating the se-
rial I/O baud rates with timer 1 and timer 2.

9.1 OVERVIEW

The serial 1/0 port provides both synchronous and asynchronous communication modes. It oper-
ates as a universalsynchronous receiver and transmitter (UART) in three full-duplex modes
(modes 1, 2, and 3). Asynchronous transmission and reception can occur simultaneously and at
different baud rates. The UART supports framing-bit error dietecinultiprocessor communi-

cation, and automatic address recognition. The serial port also operates in a singlensyrsch

mode (mode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operatdsat two
rates. Modes 1 and 3 operate over a wide range of baud rates, which are generated by timer 1 and
timer 2. Baud rates are detailed in .“Baud Rates” on page 9-10.

The serial port signals are defined in Table 9-1, and the serial port special function registers are
described in Table 9-2. Figure 9-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on the RXD
pin. For the synchronous mode (mode 0), the UART outputs a clock sigtia @ixXD pin and

sends and receives messages on the RXD pin (Figure 9-1). The SBUF register, which holds re-
ceived bytes and bytes to be transmitted, actually consists of two physically different registers.
To send, software writes a byte to SBUF; to receive, software reads SBUF. The receive shift reg-
ister allows reception of a second byte before the first byte has been read from SBUF. However,
if software has not read the first byte by the time the second byte is received, the second byte will
overwrite the first. The UART sets interrupt bits Tl and RI on trassion and reception, respec-
tively. These two bits share a single interrupt request and interrupt vector.

Table 9-1. Serial Port Signals

Function - Multiplexed
Name Type Description With
TXD O Transmit Data. In mode 0, TXD transmits the clock signal. In P3.1

modes 1, 2, and 3, TXD transmits serial data.

RXD 110 Receive Data. In mode 0, RXD transmits and receives serial P3.0
data. In modes 1, 2, and 3, RXD receives serial data.

9-1

SERIAL 1/O PORT Int9I®

Table 9-2. Serial Port Special Function Registers

Mnemonic Description Address
SBUF Serial Buffer. Two separate registers comprise the SBUF register. Writing 99H
to SBUF loads the transmit buffer; reading SBUF accesses the receive
buffer.
SCON Serial Port Control . Selects the serial port operating mode. SCON enables 98H

and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port interrupt

bits.
SADDR Serial Address. Defines the individual address for a slave device. A8H
SADEN Serial Address Enable. Specifies the mask byte that is used to define the B8H

given address for a slave device.

IB Bus

Write SBUF Read SBUF

™0 [J== SBUF SBUF

(Transmit) (Receive)
Mode 0 A
Y Transmit Load SBUF
Receive
RxD D |V Shift Register
AN -« Interrupt
" Request
RI TI
Serial I/0 SCON
Control
A4123-01

Figure 9-1. Serial Port Block Diagram

9-2

Int9|® SERIAL I/O PORT

The serial port control (SCON) register (Figure 9-2) configures and controls the serial port.

SCON Address: 98H
Reset State: 0000 0000B
7 0
FE/SMO sSM1 SM2 REN ‘ ‘ TBS RBS TI RI
Bit Bit Function
Number Mnemonic
7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software.

Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate

SMO

0 0 0 Shift register Fosc/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fosc/32F or Fog/64t
1 1 3 9-bit UART Variable

tSelect by programming the SMOD bit in the PCON register (see “Baud
Rates” on page 9-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To enable transmission, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the 9th data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:
Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the 9th
bit received.

Figure 9-2. Serial Port Special Function Register

9-3

SERIAL 1/O PORT Int9I®

1 TI Transmit Interrupt Flag Bit:
Set by the transmitter after the last data bit is transmitted. Cleared by
software.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

Figure 9-2. Serial Port Special Function Register (Continued)

9.2 MODES OF OPERATION

The serial /O port can operate in one synchronous and three asynchronous modes.

9.2.1 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/O capabil-
ities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock puls-
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are
transmitted and received least-significant bit (LSB) first. Shifts occur in the last phase (S6P2) of
every peripheral cycle, which corresponds to a baud ratg,gfl2. Figure 9-3 shows the timing

for transmission and reception in mode 0.

9.21.1 Transmission (Mode 0)

Follow these steps to begin a transmission:
1. Write to the SCON register, clearing bits SMO, SM1, and REN.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of
the following cycle, hardware shifts the L$B0) onto the RXDpin. At S3P1 of the next cycle,

the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In
the ninth cycle after the write to SBUF, the MSB (D7) is on the RXD pin. At the beginning of the
tenth cycle, hardware drives the RXD pin high and asserts RI to indicate the end of the transmis-
sion.

9-4 I

Int9|® SERIAL I/O PORT

Transmit

I N e P T e B
S3P1 S6P1
e T

|
it 2 I | I

S6P2 S6P2 S6P2 S6P2
RO | \ D0 X o1 Xez)EX >/
S6P2 S6P2) |_
Tl 5
|
Receive o
XD | | | | |_HJ L L
S3P1 S6P1
Write t
S”C%l(\jl II | Set REN, Clear RI (¢
S6P2
Shift " " $—H "
S6P2 S6P2 S6pP2 S6P2
P% ?% D6 ?%
RxD I | M| u 5$[} =
S6P2 S6P2 [

S5P2 -
R .

S5P2

A4124-01

Figure 9-3. Mode 0 Timing

9.21.2 Reception (Mode 0)

To start a reception in mode 0, write to the SCON register. Clear bits SM0, SM1, and Rl and set
the REN bit.

Hardware executes the write to SCON in the last phase (S6P2) of a peripheral cycle (Figure 9-3).
In the second peripheral cycle following the write to SCON, TXD goes low at S3P1 for the first
clock-signal pulse, and the LSB (DO0) is sampled on the RXD pin at S5P2. The DO bit is then shift-
ed into the shift register. After eight shifts at S6P2 of every peripheral cycle, the LSB (D7) is shift-
ed into the shift register, and hardware asserts Rl to indicate a completed reception. Software can
then read the received byte from SBUF.

I 9-5

SERIAL 1/O PORT Int9I®

9.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The serial port has three asynchronous modes of operation.

* Mode 1.Mode 1 is a fulduplex, asynchronousade. The data frame (Figure 9-4) consists
of 10 bits: one start bit, eight data bits, and one stop bit. Serial data is transmitted on the
TXD pin and received on the RXD pin. When a message is received, the stop bit is read in
the RB8 bit in the SCON register. The baud rate is generated by overflow of timer 1 or timer
2 (see “Baud Rates” on page 9-10).

* Modes 2 and 3.Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 9-4) consists of 11 bits: one start bit, eight data bits (transmitted and received LSB
first), oneprogrammableninth data bit, and one stop bit. Serial data is transmitted on the
TXD pin and received on the RXD pin. On receive, the ninth bit is read from the RB8 bit in
the SCON register. On transmit, the ninth data bit is written to the TB8 bit in the SCON
register. (Alternatively, you can use the ninth bit as a command/data flag.)

— In mode 2, the baud rate is programmable to 1/32 or 1/64 of the oscillator frequency.
— In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

\ /°><><2><3><><><6><D7><8>/
T(Data Byte
Start Bit Ninth Data Bit (Modes 2 and 3 only)

Stop Bit

A2261-01

Figure 9-4. Data Frame (Modes 1, 2, and 3)

9.2.2.1 Transmission (Modes 1, 2, 3)

Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SMO and SM1 bits, and clear the
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

9.2.2.2 Reception (Modes 1, 2, 3)

To prepare for a reception, ske REN bit in the SCON register. The actual reception is then ini-
tiated by a detected high-to-low transition on the RXD pin.

9-6 I

Int9|® SERIAL I/O PORT

9.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the framing
bit error detection feature, set the SMODO bit in the PCON register (see Figure 11-1 on page
11-2). When this feature is enabled, the receiver checks each incoming data frame for a valid stop
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission
by two CPUs. If a valid stop bit is nfdund, thesoftware sets the FE bit in the SCON register
(see Figure 9-2 on page 9-3).

Software may examine the FE bit after each reception to check for data errors. Once set, only soft-
ware or a reset can clear the FE bit. Subsequently received frames with valid stop bits cannot clear
the FE bit.

9.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable
this feature, set the SM2 bit in the SCON register (see Figure 9-2 on page 9-3). When the multi-
processor communication feature is enabled, the serial port can differentiate between data frames
(ninth bit clear) and address frames (ninth bit set). This allows the microcontroller to function as

a slave processor in an environment where multiple slave processors share a single serial line.

When the multiprocessor communication feature is enabled, the receiver ignores frames with the
ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the
received address matches the slave’s address, the receiver hardware sets the RB8 bit and the R
bit in the SCON register, generating an interrupt.

NOTE

The ES bit must be set in the IE register to allow the RI bit to generate an
interrupt. The IE register is described in Chapter 8, Interrupts.

The addressed slave’s software then clears the SM2 bit in the SCON register and prepares to re-

ceive the data bytes. The other slaves are unaffected by these data bytes because they are waitin
to respond taheir own addresses.

9.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor communication
feature is enabled (the SM2 bit is set in the SCON register).

I 9-7

SERIAL 1/O PORT Int9I®

Implemented in hardware, automatic address recognition enhances the multiprocessor communi-
cation feature by allowing the serial port to examine the address of each incoming command
frame. Only when the serial port recognizes its own address does the receiver set the RI bit in the
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configu-
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the received
command frame address matches the device’s address and is terminated by a valid stop bit.

NOTE
The multiprocessor communication and automatic address recognition features

cannot be enabled in mode O (i.e.,isgtthe SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identifiedjlweaaddress and laroad-
castaddress.

9.5.1 Given Address

Each device has @ndividual address that is specified in the SADDR registerSABEN reg-

ister is a mask byte that contains don't-care bits (defined by zeros) to form the dgveres-

dress. These don't-care bpovide the flexibility to addressne or more slaves at a time. The
following example illustrates how a given address is formed. (To address a device by its individ-
ual address, the SADEN mask byte musib&l 1111.)

SADDR = 0101 0110
SADEN = 1111 1100
Given = 0101 01XX

The following is an example of how to use given addresses to address different slaves:

Slave A: SADDR = 1111 0001 Slave C: SADDR = 1111 0010
SADEN = 11111010 SADEN = 1111 1101
Given = 1111 0X0X Given = 1111 00X1
Slave B: SADDR = 11110011
SADEN = 11111001
Given = 1111 0XX1

9-8

Int9|® SERIAL I/O PORT

The SADEN byte is selected #uat each slave may be addressed separately. For Slave A, bit O
(the LSB) is a don't-care bit; for Slaves B and C, bit 0 is a 1. To communicate with Slave A only,
the master must send an address where bit 0 is clearl(el§§0000).

For Slave A, bit 1 is a O; for Slaves B and C, bit 1 is a don't care bit. To communicate with Slaves
B and C, but not Slave A, the master must send an address with bits 0 and 1 both set (e.g.,
1111 0011).

For Slaves A and B, bit 2 isdon’t care bit; for Slave C, bit 2 is a 0. To communicate with Slaves
A and B, but not Slave C, the master must send an address with bit O set, bit 1 clear, and bit 2 set
(e.g.,11110101).

To communicate with Slaves A, B, and C, the master must send an address with bit O set, bit 1
clear, and bit 2 clear (e.d.1110001).

9.5.2 Broadcast Address

A broadcastaddress is formed from the logical OR of the SADDR and SADEN registers with
zeros defined as don't-care hits, e.g.:

SADDR 0101 0110
SADEN 1111 1100
(SADDR) OR (SADEN) = 1111 111X

The use of don't-care bitsovides flibility in defining the broadcast address, however, in most
applications, a broadcast address is OFFH.

The following is an example of using broadcast addresses:

Slave A: SADDR = 1111 0001 Slave C: SADDR = 1111 0010
SADEN = 1111 1010 SADEN = 1111 1101
Broadcast = 1111 1X11 Broadcast = 1111 1111
Slave B: SADDR = 1111 0011
SADEN = 1111 1001

Broadcast = 1111 1X11

For Slaves A and B, bit 2 is a don’t care bit; for Slave C, bit 2 is set. To communicate with all of
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address FBH.

I 9-9

SERIAL 1/O PORT Int9I®

9.5.3 Reset Addresses

On reset, the SADDR arBlADEN registers are initialized to O0H, i.e., the given and broadcast
addresses are XXXX XXXX (all dottare bits). This ensures that the serial port is backwards
compatible with MC® 51 microcontrollers that do not support automatic address recognition.

9.6 BAUD RATES

You must select the baud rate for the serial port transmitter and receiver when operating in modes
1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can
transmit and receive simultaneously. Depending on the mode, the transmission and reception
rates can be the same or different. Table 9-3 summarizes the baud rates that can be used for the
four serial /O modes.

Table 9-3. Summary of Baud Rates

Mode No. of Send and Receive Sen(_j and Receive
Baud Rates | atthe Same Rate | at Different Rates
0 1 N/A N/A
1 Many* Yes Yes
2 2 Yes
3 Many* Yes Yes

tBaud rates are determined by overflow of timer 1 and/or timer 2.

9.6.1 Baud Rate for Mode 0

The baud rate for mode 0 is fixed gjsF12.

9.6.2 Baud Rates for Mode 2

Mode 2 has two baud rates, which are selected by tHe[EMbit in the PCON register (Figure
11-1 on page 11-2). The following expression defines the baud rate:

SMOD1 x I:OSC

Serial /0 Mode 2 Baud Rate = 2 64

9.6.3 Baud Rates for Modes 1 and 3
In modes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You

may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv-
er.

9-10

Int9|® SERIAL 1/O PORT

9.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1 and 3.
The baud rate is determined by the timer 1 overflow rate and the value of SMOD, as shown in the
following formula:

SMOD1 Timer 1 Overflow Rate

Serial I/0 Modes 1 and 3 Baud Rate = 2 3

9.6.3.2 Selecting Timer 1 as the Baud Rate Generator

To select timer 1 as the baud rate generator:

¢ Disable the timer interrupt by clearing the ETI bit in the IEO register (Figt&eon page
5-6).

¢ Configure timer 1 as a timer or an event counter (set or clear the C/T# bit in the TMOD
register). The TMOD register is described in Chapter 7, Timers/Counters.

* Select timer mode 0-3 by programming the M1, MO bits in the TMOD register.

In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TMOD
= 0010B). The resulting baud rate is defined by the following expression:

SMOD1 FOSC

Serial /0 Modes 1 and 3 Baud Rate = 2 RV E [256 —(TH1)]

Timer 1 can generate very low baud rates with the following setup:
* Enable the timer 1 interrupt by setting the ET1 bit in the IE register.
* Configure timer 1 to run as a 16-bit timer (high nibble of TMOD = 0001B).

* Use the timer 1 interrupt to initiate a 16-bit software reload.

Table 9-4 lists commonly used baud rates and shows how they are generated by timer 1.

I 9-11

SERIAL 1/O PORT

Table 9-4. Timer 1 Generated Baud Rates for

Serial I/O Modes 1 and 3

intel.

Baud Oscillator Timer 1
Rate Frequency SMOD1 Reload
(Fosc) CIT# | Mode Value
62.5 Kbaud (Max) 12.0 MHz 1 0 2 FFH
19.2 Kbaud 11.059 MHz 1 0 2 FDH
9.6 Kbaud 11.059 MHz 0 0 2 FDH
4.8 Kbaud 11.059 MHz 0 0 2 FAH
2.4 Kbaud 11.059 MHz 0 0 2 F4H
1.2 Kbaud 11.059 MHz 0 0 2 E8H
137.5 Baud 11.986 MHz 0 0 2 1DH
110.0 Baud 6.0 MHz 0 0 2 72H
110.0 Baud 12.0 MHz 0 0 1 FEEBH

9.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure 9-5
on page 9-13). The timer 2 baud rate generator mode is similar to the auto-reload mode. A roll-
over in the TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers
RCAP2H and RCAP2L, which are preset by software.

The timer 2 baud rate is expressed by the following formula:

Timer 2 Overflow Rate

Serial /0 Modes 1 and 3 Baud Rate = 16

9.6.34 Selecting Timer 2 as the Baud Rate Generator

NOTE

Turn the timer off (clear the TR2 bit in the T2CON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the
RCLCK and TCLCK bits in the T2CON registersdswn in Table 9-5. (You may select different
baud rates fothe transmitter and receiver.) Setting RCLK and/or TCLK puts timer 2 inbaiitd

rate generator mode(Figure 9-5). In this mode, a rollover in the TH2 register does not set the TF2
bit in the T2CON register. Also, a high-to-low transition at the T2EX pin sets the EXF2 bit in the
T2CON register but does not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). You can
use the T2EX pin as an additional external interrupt by setiem&XEN2 bit in T2CON.

9-12

Int9|® SERIAL 1/O PORT

You may configure timer 2 as a timer or a counter. In most applications, it is configured for timer
operation (i.e., the C/T2# bit is clear in the T2CON register).

Table 9-5. Selecting the Baud Rate Generator(s)

RCLCK | TCLCK Receiver Transmitter
Bit Bit Baud Rate Generator | Baud Rate Generator
0 0 Timer 1 Timer 1
0 1 Timer 1 Timer 2
1 0 Timer 2 Timer 1
1 1 Timer 2 Timer 2

Note:
Oscillator frequency

Timer 1

is divided by 2, not 12. Overflow
SMOD1
XTALL[> =2
TH2 | TL2 A
(8 Bits) | (8 Bits) +16 [RX
| 0 Clock
T2
CIT2# e
1
) >
+16 >
: 0 Clock
RCAP2H!RCAP2L
| TCLCK

N Interrupt
T2EX | I—)\ e ExF2 [fTE
EXEN2
Note availability of additional external interrupt.

A4120-01

Figure 9-5. Timer 2 in Baud Rate Generator Mode

9-13

SERIAL 1/O PORT Int9I®

Note that timer 2 increments every state time,(2Twhen it is in the baud rate generator mode.
In the baud rate formula that follows, “RCAP2H, RCAP2L" denotes the contents APRT
and RCAP2L taken as a 16-bit unsigned integer:

I:OSC
37 x[553 — (RCAP2H, RCAP2L)]

Serial I/0 Modes 1 and 3 Baud Rates =

NOTE

When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reloeat®

Table 9-6 lists commonly used baud rates and shows how they are generated by timer 2.

Table 9-6. Timer 2 Generated Baud Rates

Oscillator
Baud Rate Frequency RCAP2H | RCAP2L
(Fosc)

375.0 Kbaud 12 MHz FFH FFH
9.6 Kbaud 12 MHz FFH D9H
4.8 Kbaud 12 MHz FFH B2H
2.4 Kbaud 12 MHz FFH 64H
1.2 Kbaud 12 MHz FEH C8H

300.0 baud 12 MHz FBH 1EH

110.0 baud 12 MHz F2H AFH

300.0 baud 6 MHz FDH 8FH

110.0 baud 6 MHz FOH 57H

9-14

intel.

10

Minimum Hardware
Setup

intel.

CHAPTER 10
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements of tHe 26 Snicrocontroller and de-
scribes a minimum hardware setup. Topics covered ingader, groad, clock source, and de-
vice reset. For parameter values, refer to the device data sheet.

10.1 MINIMUM HARDWARE SETUP

Figure 10-1 shows a minimum hardware setup that employs the on-chip oscillator for the system
clock and provides power-on reset. Control signals and Ports 0, 1, 2, and 3 are not shown. See
“Clock Sources” on page 10-3 and “Power-on Reset” on page 10-7.

V,
8XC251SB —=<

VCC2
+
—_—— 1yF

XTALL RST _—I_

0O
=

ml
.._|8|_r|

XTAL2

VSSl

VSSZ

Note:

Vcco is asecondary power pin that reduces power supply noise. Vg, and Vgg, are
secondary ground pins that reduce ground bounce and improve power supply by-passing.
Connections to these pins are not required for proper device operation.

A4141-01

Figure 10-1. Minimum Setup

10-1

MINIMUM HARDWARE SETUP Int9I®

10.2 ELECTRICAL ENVIRONMENT

The 8XC251SB is a high-speed CHMOS device. To achieve satisfactory performance, its oper-
ating environment should accommodate the device signal waveforms without introducing distor-
tion or noise. Design considerations relating to device performance are discussed in this section.
See the device data sheet for voltage and current requirements, operating frequency, and wave-
form timing.

10.2.1 Power and Ground Pins

Power the 8XC251SB from a well-regulated power supply designed for high-speed digital loads.
Use short, low impedance connections to the powgg éd V.-) and ground (Vg Vg, and

Vso) pins.

V2 is a secondary power pin that reduces power supply nojse awd Vo are secondary
ground pinsthat reduceground bounce and improve power supply bypassiihg. secondary
power and ground pins are not substitutes fgr &hd Vo They are not required f@roper de-

vice operation; thus, the 8XC251SB is compatible with designs that do not provide connections
to these pins.

10.2.2 Unused Pins

To provide stable, predictable performance, connect unused input pigg @ V... Untermi-
nated input pins can float to a mid-voltage level and draw excessive current. Unterminated inter-
rupt inputs may generate spurious interrupts.

10.2.3 Noise Considerations

The fast rise and fall times of high-speed CHMOS logic may produce noise spikes on the power
supply lines and signal outputs. To minimize noise and waveform distortion follow tyaod

layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise
within acceptable limits. Connect 0.01 puF bypass capacitors betwgemdf each Y pin. Place

the capacitors close to the device to minimize path lengths.

Multilayer printed circuit boards with separatgMand ground @ines help minimize noise. For

additional information on noise reduction, see Application Md?el125, “Designing Microcon-
troller Systems for Noisy Environments.”

10-2 I

Int9|® MINIMUM HARDWARE SETUP

10.3 CLOCK SOURCES

The 8XC251SB can obtain the system clock signal from an external clock source (Figure 10-3)
or it can generate the clock signal using the on-chip oscillator amplifier and external capacitors
and resonator (Figure 10-2).

10.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTAL1 to XTAL2 as the fre-
qguency-determining element (Figure 10-2). The crystal operates in its fundamental mode as an
inductive reactance in parallel resonance with capacitance external to the crystal. Oscillator de-
sign considerations include crystal specifications, operating temperature range, and parasitic
board capacitance. Consult the crystal manufacturer’s data sheet for parameter values. With high
quality components, C1 = C2 = 30 pF is adequate for this application.

Pins XTAL1 and XTALZ2 are protected by on-chip electrostatic discharge (ESD) devices, D1 and
D2, which are diodes parasitic to the IRETs. They serve as clamps tg\and V4 Feedback
resistor R in the inverter circuit, formed from paralleled n- and p- channel FETs, permits the PD
bit in the PCON register (Figure 11-1 on page 11-2) to disable the clock during powerdown.

Noise spikes at XTAL1 and XTAL2 can disrupt microcontroller timing. To minimize coupling
between other digital circuits and the oscillator, locate the crystal and the capacitors near the chip
and connect to XTAL1, XTAL2, and) with short, direct traces. To further reduce the effects of
noise, place guard rings around the oscillator circuitry aodrgl the metal crystal case.

To Internal

'm - -
.8 Timing Circuit
e

QR Vee

'O

X

100

Quartz Crystal ! D
or Ceramic Resonator 'XTALL D1 :>O—
. r ANA o
\ L 4
C1

—

L =

Re

T

O
N

' XTAL2

—
--01

A4143-01

Figure 10-2. CHMOS On-chip Oscillator

I 10-3

MINIMUM HARDWARE SETUP Int9I®

For a more in-depth discussion of crystal specifications, ceramic resonators, and the selection of
C1 and C2 see Applications Note AP-155, “Oscillators for Microcontrollers” in the Embedded
Applications handbook.

10.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. Ceramic
resonator applications may require slightly different capacitor values and circuit configuration.
Consult the manufacturer’s data sheet for specific information.

10.3.3 External Clock

To operate the CHMOS 8XC251SB from an external clednnect the clock source to the
XTAL1 pin as shown in Figure 10-3. hee the XTAL2 pin floating. The external clock driver
can be a CMOS gate. If the clock driver is a TTL device, its output must be connectgd to V
through a 4.7 ® pullup resister.

—
8XC251SB

External
Clock _[>O_ XTALL
CMOS
Clock Driver

N/C ——] XTAL2

| VSS

Note: If TTL clock driver is used, connect a 4.7kQ pull up resistor from driver output to Ve

A4142-01

Figure 10-3. External Clock Connection

10-4

Int9|® MINIMUM HARDWARE SETUP

For external clock drive requirements, see the device data sheet. Figdrehows the clock
drive waveform. The external clock source must meet the minimum high and low tignes (T
and T, cy) and the maximum rise and fall times.(J,, and) to minimize the effect of ex-
ternal noise on the clock generator circuit. Long rise and fall tim@ease the chance that ex-
ternal noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTAL1 due to the
Miller effect of the internal inverter as the clock waveform builds up in amplitude following
power on. Once the input waveform requirements are met, the input capacitance remains under
20 pF.

TeLen —» Tenex
Vee—05-——-
ce 0.7 Ve
<<— Teoicx —>
0.45 V 0.2Vge-0.1 K
Tehel = TeloL >|

A4119-01

Figure 10-4. External Clock Drive Waveforms

10.4 RESET

A device reset initializes the 8XC251SB and vectors the CPU to address FF:0000H. A reset is
required after applying power at turn-on. A reset is a means of exiting the idle and powerdown
modes or recovering from software malfunctions.

To achieve a valid reset,.¥ must be within its normal operating range (see device data sheet)
and the reset signal must be maintained for 64 clock cycles {g4iter the oscillator has sta-
bilized.
Device reset is initiated in two ways:

¢ externally, by asserting the RST pin

¢ internally, if the hardware WDT or the PCA WDT expires

10-5

MINIMUM HARDWARE SETUP Int9I®

The power off flag (POF) in the PCON register indicates whether a reset is a warm start or a cold
start. A cold start reset (POF = 1) is a reset that occurs after power has beengfhas Yallen

below 3V, so the contents of volatile memory are indeterminate. POF is set by hardware when
V. rises from less than 3V to its normal operating level. See “Power Off Flag” on page 11-1. A
warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for exam-
ple, a reset initiated by a WDT overflow or an external reset used to terminate the idle or power-
down modes.

10.4.1 Externally Initiated Resets

To reset the 8XC251SB, hottle RST pin at a logic higtor at least 64 clock cycles (645

while the oscillator is running. Reset can be accomplished automatically at the time power is ap-
plied by capacitively coupling RST to. (see Figure 10-1 and “Power-on Reset” on f&i&).

The RST pin has a Schmitt trigger input and agmiinresistor.

10.4.2 WODT Initiated Resets

Expiration of the hardware WDT (overflow) or the PCA WDT (comparison match) generates a
reset signal. WDT initiated resets have the same effect as an external reset. See “Watchdog Tim-
er” on page 7-16 and “PCA Watchdog Timer Mode” on page 8-9.

10.4.3 Reset Operation

When a reset is initiated, whether externally or by a WDT, the port pins are immediately forced
to their reset condition as a fail-safe precaution, whether the clock is running or not.

The external reset signal and the WDT initiated reset signals are combined internally. For an ex-
ternal reset the voltage on the RST pin must be held high fgg§490r WDT initiated resets, a
5-bit counter in the reset logic maintains the signal for the requiregk84T

The CPU checks for the presence of the combined reset signal eyggy\@hen a reset is de-
tected, the CPU responds by triggering the internal reset routine. The reset routine loads the SFR’s
with their reset values (see Table 3-4 on page 3-13). Reset does not affect on-chip data RAM or
the register file. (However following a cold start reset, these are indeterminate begahses V

fallen too low or has been off.) Following a synchronizing operation and the configuration fetch,
the CPU vectors to address FF:0000. Figure 10-5 shows the reset timing sequence.

10-6 I

Int9|® MINIMUM HARDWARE SETUP

While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. The first ALE
occurs 32T after the reset signal goes low. For this reason, other devices can not be synchro-
nized to the internal timings of the 8XC251SB.

NOTE

Externally driving the ALE and/or PSEN# pins to O during the reset routine
may cause the device to go into an indeterminate state.

Powering up the 8XC251SB without a reset may improperly initialize the
program counteand SFRs and cause the CPU to execute instructions from an
undetermined memory location.

10.4.4 Power-on Reset

To automatically generate a reset on power up, connect the RST pin tg.thia Yhrough a 1-pF
capacitor as shown in Figure 10-1.

When V. is applied, the RST pin rises tqg.\/ then decays exponentially as the capacitor charg-
es. The time constant must be such that RST remains high (abaventtéf threshold of the
Schmitt trigger) long enough for the oscillator to start and stabilize, plug;648t power up,

V¢ should rise within approximately 10 ms. Oscillator start-up time is a function the crystal fre-
qguency; typical start-up times are 1 ms for a 10 MHz crystal and 10 ms for a 1 Mhz crystal.

During power up, the port pins are in a random state until forced to their reset state by the asyn-
chronous logic.

Reducing V.. quickly to 0 causes the RST pin voltage to momentarily fall below 0 V. This volt-
age is internally limited and does not harm the device.

I 10-7

MINIMUM HARDWARE SETUP Int9I®

RST

XTAL

Internal Reset
Routine

PSEN#

ALE

First ALE j

A4103-01

10-8

Figure 10-5. Reset Timing Sequence

intel.

11

Special Operating
Modes

intel.

CHAPTER 11
SPECIAL OPERATING MODES

This chapter describes the power control (PCON) register and three special operating modes: idle,
powerdown, and on-circuit emulation (ONCE).

11.1 GENERAL

The idle and powerdown modes are power reduction modes for use in applications where power
consumption is a concern. User instructions activate these modes by setting bits in the PCON reg-
ister. Program execution halts, but resumes when the mode is exited by an interrupt. While in idle
or power-down, the ¥ pin is the input for backup power.

ONCE is a test mode that electrically isolates the 83XSB from the system in which it oper-
ates.

11.2 POWER CONTROL REGISTER

The PCON special function register (Figure 11-1) provides two control bits foetizd BO
function, bits for selecting the idle and powerdown modes, the poweiagfféghd two general
purpose flags.

11.2.1 Serial /O Control Bits

The SMODL1 bit in the PCON register is a factor in determining the serial /0O baud rate. See Fig-
ure 11-1 and “Baud Rates” on page 9-10.

The SMODO bit in the PCON register determines whether bit 7 of the SCON register provides
read/write access to the framing error (FE) bit (SMODO = 1) or to SMO, a serial /O mode select
bit (SMODO = 0). See Figure 11-1 and Figure 9-2, “Serial Port Special Function Register” on
page 9-3.

11.2.2 Power Off Flag

Hardware sets the Power Off Flag (POF) in PCON whggriges from < 3 Vto > 3 V to indicate

that on-chip volatile memory is indeterminate, e.g., at power on. The POF can be set or cleared
by software. In general after a reset, check the status of this bit to determine whether a cold start
reset or a warm start reset occurred (see “Reset” onliage After a cold start, user software
should clear the POF. If POF =1 is detected at other times, do a reset to reinitialidp, thiace

for Vo < 3 V data may have been lost or some logic may have malfunctioned.

I 11-1

SPECIAL OPERATING MODES Int9I®

PCON

7

Address: S:87H
Reset State: 00xx 0000B

0

SMOD1

SMODO

— POF H GF1 GFO PD IDL

Bit
Number

Bit
Mnemonic

Function

7

SMOD1

Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 9-10.

SMODO

SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See Figure 9-2 on page 9-3.

Reserved:
The value read from this bit is indeterminate. Do not write a “1” to this bit.

POF

Power Off Flag:

Set by hardware as V¢ rises above 3 V to indicate that power has been
off or V¢ had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

GF1

General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

GFO

General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

PD

Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

IDL

Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

11-2

Figure 11-1. Power Control (PCON) Register

intel.

SPECIAL OPERATING MODES

Table 11-1. Pin Conditions in Various Modes
Mode Program ALE PSEN# Port 0 Port 1 Port 2 Port 3
Memory Pin Pin Pins Pins Pins Pins
Reset Don't Care | Weak High | Weak High | Floating Weak High | Weak High | Weak High
Idle Internal 1 1 Data Data Data Data
Idle External 1 1 Floating Data Data Data
Powerdown | Internal 0 0 Data Data Data Data
Powerdown | External 0 0 Floating Data Data Data
ONCE Don’t Care | Floating Floating Floating Weak High | Weak High | Weak High
r:1)(TAL1
»> ® Interrupt.
))
| L Cc1 ' DO— %sz Serial Port,
= I__L : 0sc Timer Block
C2 = |XTAL2
| T - A cPU
® @] |_
: PD# IDL#

A4160-01

Figure 11-2. Idle and Powerdown Clock Control

11-3

SPECIAL OPERATING MODES Int9I®

11.3 IDLE MODE

Idle mode is a power reduction mode that reduces power consumption to about 40% of normal.
In this mode, program execution halts. Idle mode freezes the cloths @PU at kown states

while the peripherals continue to be clocked (Figure 11-2). The CPU status before entering idle
mode is preserved, i.e., theogram counter, program status weedister, and register file retain

their data for the duration of idle mode. The contents of the SFRs and RAM are also retained. The
status of the port pins depends upon the location of the program memory:

¢ Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1, 2,
and 3 pins are reading data (Table 11-1).

¢ External program memory: the ALE and PSEN# pins are pulled high; the port O pins are
floating; and the pins of ports 1, 2, and 3 are reading data (Table 11-1).

NOTE

If desired, the PCA may be instructed to pause during idle mode by setting the
CIDL bit in the CMOD register (Figure 8-7 on page 8-13).

11.3.1 Entering Idle Mode

To enter idle mode, set the PCON register IDL bit. The 83%XSB enters idle mode upon exe-
cution of the instruction that sets the IDL bit. The instruction that sets the IDL bit is the last in-

struction executed.

CAUTION

If the IDL bit and the PD bit are set simultaneously, the 8XC251SB enters
powerdown mode

11-4 I

Int9|® SPECIAL OPERATING MODES

11.3.2 Exiting Idle Mode

There are two ways to exit idle mode:

* Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores
the clocks to the CPU. Execution resumes with the interrupt servigine. Upon
completion of the interrupt service routinepgram exeution resumes with the instruction
immediately following the instruction that activated idi®de. The general purpose flags
(GF1 and GFO0 in the PCON register) may be used to indicate whether an interrupt occurred
during normal operation or during idle mode. When idle mode is exited by an interrupt, the
interrupt service routine may examine GF1 and GFO.

* Reset the chip. See “Reset” on page 10-5. A logic high on the RST pin clears the IDL bit in
the PCON register directly and asynchronously. This restores the clocks to the CPU.
Program execution momentarily resumes with itieruction immediately following the
instruction that activated the idle mode and may continue faunaber of clock cycles
before the internal reset algorithm takes control. Reset initialize8Xl@251SB and
vectors the CPU to address:B600H.

NOTE
During the time that execution resumes, the internal RAM cannot be accessed,;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not write to a port pin or to the external RAM.

11.4 POWERDOWN MODE

The powerdown mode places the 8XC251SB in a very low power state. Powerdown mode stops
the oscillator and freezes all clocks at known states (Figure 11-2). The CPU status prior to enter-
ing powerdown mode is preserved, i.e., the program counter, program status word register, and
register file retain their data for the duratiorpofverdown mode. In addition, the SFRs and RAM
contents are preserved. The status of the port pins depends on the location of the program mem-

ory:
* Internal program memory: the ALE and PSEN# pins are pulled low and the ports 0, 1, 2,
and 3 pins are reading data (Table 11-1).

¢ External program memory: the ALE and PSEN# pins are pulled low; the port 0 pins are
floating; and the pins of ports 1, 2, and 3 are reading data (Table 11-1).

NOTE

Vc may be reduced to as low as 2 V during powerdown to further reduce
power dissipation. Take care, however, thgt ¥ not reduced until power-
down is invoked.

I 11-5

SPECIAL OPERATING MODES Int9I®

11.4.1 Entering Powerdown Mode

To enter powerdown mode, set the PCON register PD bit. The 8XC251SB enpmwéredown
mode upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is
the last instruction executed.

11.4.2 Exiting Powerdown Mode

CAUTION

If V. was reduced during the powerdown mode, do not exit powerdown until
Vcis restored to the normal operating level.

There are two ways to exit the powerdown mode:

* Generate an enabled external interrupt. Hardware clears the PD bit in the PCON register
which starts the oscillator and restores the clocks to the CPU and peripherals. Execution
resumes with the interrupt service routine. Upon completion of the interrupt service routine,
program execution resumes witke instruction immediately following the instruction that
activated powerdown mode.

NOTE
To enable an external interrupt, set the IE register EX0 and/or EX1 bit[s]. The
external interrupt used to exit powerdown mode must be configured as level
sensitive and must be assigned the highest priority. In addition, the duration of
the interrupt must be of sufficient length to allow the oscillator to stabilize.

* Generate a reset. See “Reset” on page 10-5. A logic high on the RST pin clears the PD bit in
the PCON register directly and asynchronously. This starts the oscillatoestodes the
clocks to the CPU and peripherals. Program execution momentarily resumes with the
instruction immediately following the instruction that activateowerdown and may
continue for a number of clock cycles before theernal reset algorithm takes control.
Reset initializes the 8XC251SB and vectors the CPU to address FF:0000H.

NOTE

During the time that execution resumes, the internal RAM cannot be accessed,;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated the powerdown mode should not write to a port pin or to the
external RAM.

11-6

Int9|® SPECIAL OPERATING MODES

11.5 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8XC251SB-
based systems without removing the chip from the circuit board. A clamp-on emulator or test
CPU is used in place of the 8XC251SB which is electrically isolated from the system.

11.5.1 Entering ONCE Mode

To enter the ONCE mode:

1. Assert RST to initiate a device reset. See “Externally Initiated Resets” on page 10-6 and
the reset waveforms in Figure 10-5 on page 10-8.

2. While holding RST asserted, apply and hold logic levels to I/O pins as follows: PSEN# =
low, P0.7:5 = low, P0.4 = high, P0.3:0 = low (i.e., port 0 = 10H).

3. Deassert RST, then remove the logic levels from PSEN# and port 0.
These actions cause the 8XC251SB to enter the ONCE mode. Port 1, 2, and 3 pins are weakly
pulled high and port 0, ALE, and PSEN# pins are floating (Table 11-1). Thus the device is elec-

trically isolated from the remainder of the system which can then be tested by an emulator or test
CPU. Note that in the ONCE mode the device oscillator remains active.

11.5.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.

I 11-7

SPECIAL OPERATING MODES

11-8

intel.

12

External Memory
Interface

intel.

CHAPTER 12
EXTERNAL MEMORY INTERFACE

The external memory interface comprises the external bus (ports 0 and 2) and the bus control sig-
nals. Chip configuration bytes determine several interface options: page mode or nonpage mode
for external code fetches, the number of external address bits (16 or 17), the address ranges for
PSEN# and RD#, and external wait states. You can use these options to tailor the intgoface to
application. This chapter describes the external memory interface, its configuration, and the ex-
ternal bus cycles. Examples illustrate several types of external memory designs.

12.1 EXTERNAL MEMORY INTERFACE SIGNALS

Table 12-1 dewibes the external memory interface signals. The address and data signals (AD7:0
on port 0 and A15:8 on port 2) are defined for nonpage mode. Address bits A7:0 are multiplexed
with the data (D7:0) on port 0, and address bits A15:8 are on port 2. In page mode, address bits
A7:0 are on port 0, and address bits A15:8 are multiplexed with the data (D7:0) on port 2 (see
“Page Mode Bus Cycles” on page 12-10).

Table 12-1. External Memory Interface Signals

Signal - Multiplexed
Name Type Description With
Al6 (0] Address Line 16 . See RD#. N.A.
Al15:8t O Address Lines . Upper address lines for the external bus. P2.7:0
AD7:0t I/O | Address/Data Lines . Multiplexed lower address lines and data lines P0.7:0
for the external bus.
ALE O Address Latch Enable . ALE signals the start of an external bus cycle | PROG#
and indicates that valid address information is available on lines A15:8
and AD7:0. An external latch can use ALE to demultiplex the address
from the address/data bus.
EA# | External Access . Directs program memory accesses to on-chip or off- | Vpp
chip code memory. For EA# strapped to ground, all program memory
accesses are off-chip. For EA# = strapped to V., an access is to on-
chip OTPROM/ROM if the address is within the range of the on-chip
OTPROM/ROM; otherwise the access is off-chip. The value of EA# is
latched at reset. For a ROMless part, EA# must be strapped to ground.

fThe descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration
(compatible with 44-pin PLCC MCS® 51 microcontrollers). If the chip is configured for page-mode
operation, port O carries the lower address bits (A7:0), and port 2 carries the upper address bits (A15:8) and
the data (D7:0).

12-1

EXTERNAL MEMORY INTERFACE Int9|®

Table 12-1. External Memory Interface Signals (Continued)

Signal - Multiplexed
Name Type Description With
PSEN# O Program Store Enable . Read signal output. This output is asserted —

for a memory address range that depends on bits RDO and RD1 in
configuration byte CONFIGL1 (see also RD#):

RD1 RDO Address Range for Assertion
0 0 Reserved
0 1 All addresses
1 0 All addresses
1 1 All addresses = 80:0000H

RD# (@) Read or 17th Address Bit (A16) . Read signal output to external data | P3.7
memory or 17th external address bit (A16), depending on the values of
bits RDO and RD1 in configuration byte CONFIGL1. (See also PSEN#):

RD1 RDO Function
0 0 Reserved
0 1 The pin functions as A16 only.
1 0 The pin functions as P3.7 only.
1 1 RD#: asserted for reads at all addresses £ 7F:FFFFH

WR# O Write . Write signal output to external memory. For configuration bits P3.6
RD1 = RDO = 1, WR# is strobed only for writes to locations 00 0000H—
01 FFFFH. For other values of RD1 and RDO, WR# is strobed for
writes to all memory locations.

tThe descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration
(compatible with 44-pin PLCC MCS® 51 microcontrollers). If the chip is configured for page-mode
operation, port O carries the lower address bits (A7:0), and port 2 carries the upper address bits (A15:8) and
the data (D7:0).

12.2 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory inte@ace. (“
figuration Bytes” on page 13-6 describes the configuration bytes.) The configuration bits de-
scribed here determine the following interface features:

* page mode or nonpage mode

¢ the number of external address pins (16 or 17)

* the memory regions assigned to the read signals RD# and PSEN#
* the external wait states

* mapping a portion of on-chip code memory to data memory

12-2

Int9|® EXTERNAL MEMORY INTERFACE

12.2.1 Page Mode and Nonpage Mode (PAGE Bit)

The PAGE bit (bit 1 in CONFIGO) selects page-mode or nonpage-mode code fetches and deter-
mines the structure of the external bus. See “Page Mode Bus Cycles” driPpHgéor a descrip-
tion of page mode and the bus structure.

* PAGE = 1. The 8XC251SB operates in nhonpage mode. The bus structure is the same as for
the MCS 51 architecture, and external code fetches require two state tiggs. (4T

* PAGE = 0. The 8XC251SB operates in page mode. The bus structure is different from the
bus structure in MCS 51 controllers, and under certain conditions, external code fetches
require only one state time (2.

12.2.2 RD#, PSEN#, and the Number of External Address Pins (Bits RD1:0)

The RD1:0 configuration bits (bits 2 and 3 in CONFIGO0) determine the number of external ad-
dress lines and the address ranges for strobing the read signals PSEN# and RDgeleese
tions offer different ways of addressing externalmuay.

A key to using the memory interface is the relationship between internal memory addresses and
external memory addresses. While the 8XC251SB has 24 internal address bits, it has only 16 ex-
ternal address pins, A15:0 on ports 0 and 2. Therefore, internal addresses that differ only in their
upper eight bits are indistinguishable at the external address pins. For example, if you write to

location 00:6000H and location 01:6000H, the same address (6000H)ys.ppéhe external ad-

dress pins. The 16 pins can address only 64 Kbytes of extermadmnd he options provided by

bits RD1:0, offer ways to expand the external memory space beyond 64 Kbytes.

Table 12-2 daxibes how RD# and PSEN# function for the values of RD1:0. RD# can function
as a read signal, as a general-purpose /O signal, or as the seventeenth external afldfess bit

PSEN# always functions as a read signal, and in two cases PSEN# is a read strobe for data mem-
ory as well as code memory. Fodesign that is compatible with MCS 51 microcontrollers,
select RD1 = 1 and RDO = 1.

Table 12-2. Configuration Bits RD1:0

External
RD1 RDO Address Bits RD# PSEN#
0 — Reserved
17 RD# is the 17t address bit (A16). PSEN# is strobed for all addresses.
1 0 16 RD# is a general-purpose I/O signal PSEN# is strobed for all addresses.
(P3.7).
1 1 16 RD# is strobed for locations PSEN# is strobed for locations
00:0000H-7F:FFFFH. 80:0000H-FF:FFFFH.

I 12-3

EXTERNAL MEMORY INTERFACE Int9|®

12.2.2.1 Sixteen External Address Bits and a Single Read Signal (RD1 = 1, RDO = 0)

For RD1 =1 and RDO = 0, PSEN# is strobed for all external reads, and pin RD#/P3.7 is devoted
exclusively to genetgurpose /0, i.e., it does not function as RD#. With this configuration you
can address the minimum amount of external memory (64 Kbytes), but you gain an extra I/O
channel (P3.7). Figure 12-1 illustrates the difference between the internal and extenoay me
spaces for these values of RD1:0. Regions 00:, 01:, FE:, and FF: of internal memory are mapped
into a single 64-Kbyteegion of external memory. This selection of RD1:0 can be used, for ex-
ample, in a design where the 87C251SB/83C251SB executes from on-chip code memory and ac-
cesses 64 Kbytes of external RAM.

Internal Space
(256 Kbytes)

FF:
PSEN# External Space
FE: (64 Kbytes)

\
/

01:
PSEN#

0o: 16 External Address Bits

A4171-01

Figure 12-1. Internal and External Memory Spaces for RD1 =1, RD0O =0

12.2.2.2 Seventeen External Address Bits and a Single Read Signal (RD1 =0, RD0O = 1)

For RD1 = 0 and RDO = 1, the RD# signal becomes the seventeenth external ad@fds) bit

and PSEN# is strobed for all external reads. The 17 external address bits can address 128 Kbytes
of external memory. As illustrated in Figul®-2, inernal memory regions 00: and FE: are
mapped into external memory region 0, and internal memory regions 01: and FF: are mapped into
external memory region 1. This option provides supports three basic designs:

¢ 128 Kbytes of external code memory (addressed as regions FE: and FF:)

¢ 128 Kbytes of external data memory (addressed as regions 00: and 01:)

* 64 Kbytes of external code memory (addressed as region FF:) and 64Kbytes of external
data memory (addressed as region 00:).

Sections 12.6.2 and 12.6.5 show examples of memory designs with this option.

12-4 I

Int9|® EXTERNAL MEMORY INTERFACE

Internal Space
(256 Kbytes)

FF: External Space
PSEN# \(128 Kbytes)
- ><I 1
01: 0
PSEN# /
00:
17 External Address Bits

A4172-01

Figure 12-2. Internal and External Memory Spaces for RD1 =0, RDO =1

12.2.2.3 Sixteen External Address Bits and Two Read Signals (RD1 = 1, RD0 = 1)

For RD1 =1 and RDO = 1, there are 16 external address bits; however, RD# is strobed for regions
00: and 01:, and PSEN# is strobed for regions FE: and FF:. As illustrated in Figure 12-3, regions
00: and 01: are mapped into 64 Kbytes of data memory (strobed by RD#), and regions FE: and
FF: are mapped into 64 Kbytes of code memory (strobed by PSEN#ksdlection is compatible

with MCS 51 microcontrollers arslipports designs that use both external code memory and ex-
ternal data memory.

For this selection of RD1:0, WR# is strobed for writes to regions 00: and 01:rmits&robed

for writes to regions FE: and FF:. This is compatible with MCS 51 microcontrollers, which can-
not write to external code memory. Sections 12.6.1 and 12.6.4 show examples of memory designs
with this option.

I 12-5

EXTERNAL MEMORY INTERFACE Int9|®

Internal Space
(256 Kbytes)

FF: External Space
PSEN# \(128 Kbytes)

FE: _—

01 /

RD# /
00:

16 External Address Bits

A4173-01

Figure 12-3. Internal and External Memory Spaces for RD1 =1, RDO =1

12.2.3 Wait States (WSA, WSB, XALE)

You can add wait states to external bus cycles by extending the PSEN#/RD#/WR#hdidse a
extending the ALE pulse:

* The WSA bit (bit 5 in COIFIG0) and the WSB bit (bit 3 in CONFIG1) specify the wait
states (0 or 1) added by extending the time that PSEN#/RD#/WR# is asserte¢ frdm T
3Tose This wait state accommodates slower external devices and allows the 8XC251SB to
directly replace the 8XC51FB in a system design. The combinations of WSA and WSB
select the memory regions to be accessed with one wait state (Table 12-3). The option of a
wait state for region 01: is for accessing a slow external device addressed in region 01:
without slowing down accesses to other external devices. “Extending PSEN#/RD#/WR#”
on page 12-13 shows bus cycles with PSEN#/RD# extended and WR# extended.

Table 12-3. Wait State Selection

WSB WSA Memory Regions with 1 Wait State

0 0 All regions (00:, 01:, FE:, FF:)

0 1 Region 01:
1 0 Regions 00:, FE:, FF:
1 1

None

* Clearing XALE (bit 4 in CONFIGO0) extends the time ALE is asserted frgga {® 3Tysc
This accommodates an address latch that is too slow for the normal ALE signahdiBgte
ALE” on page 12-14hows a bus cycle with ALE extended.

12-6 I

Int9|® EXTERNAL MEMORY INTERFACE

You can add two wait states by extending both ALE and the read/write signals (PSEN#, RD#,
WR#).

12.2.4 Mapping On-chip Code Memory to Data Memory (87C251SB/83C251SB)

For the 87C251SB/83C251SB, the EMAP bit (bit 0 in G@I1) provies the option of access-
ing the upper 8 Kbytes of on-chip code memory as data memory.

EMAP = 0. The upper 8 Kbytes of the on-chip code memory (FF:2000H—-FF:3FFFH) are mapped
to locations 00:E000H-00:FFFFH (in additionlécations FF:2000H-FF:3FFFH). This allows
code constants to be accessed as data in region 00:. See “On-chip Code Memory
(87C251SB/83C251SB)” on page 3-6 for the exact conditions required for this mapping to be ef-
fective.

EMAP = 1. Locations FF:2000H-FF:3FFFlare not mapped to region 00:. Locations
00:EO000H-00:FFFFH are implemted by external RAM.

12.3 EXTERNAL BUS CYCLES

The 8XC251SB executes external bus cycles to fetch code, read data, and write data in external
memory. This section uses bus waveforms with idealized timings to describe the external bus cy-
cles in nonpage mode and page mode. The bus cycles in this section have no wait states. (For bus
cycles with wait states, see “Wait States” on page 12-13.) Timing parameters for the bus cycles
are given in “External Bus AC Timing Specifications” on page24.

“Inactive External Bus” describes the situations where the bus is not executing external bus cy-
cles.

12.3.1 Inactive External Bus
The external bus is inactive (not executing external bus cycles) under any of these three condi-
tions:

* The chip is in normal operating mode but no external read or write cycles are executing (the
bus-idlecondition).

* The chipisin idle mode.

* The chipis in powerdown mode.

I 12-7

EXTERNAL MEMORY INTERFACE Int9|®

12.3.2 Bus Cycle Definitions

Table 12-4 summarizes the activity on the bus for bus cycleeripagemode and page mode

with no wait states. Nonpage mode has only two types of bus cycles: a code/data read cycle and
a write cycle. Page mode has four types of bus cycles: a code-read cycle for a page miss, a code-
read cycle for a page hit, a data-read cycle, and a write cycle. The data-read and write cycles are
the same for page mode and nonpage mode (except for the different signals on ports 0 and 2).

Table 12-4. Bus Cycle Definitions (No Wait States)

Bus Activity
Mode Bus Cycle
State 1 State 2 State 3

Code/Data Read ALE Strobe PSEN#/RD# Strobe 3)
Nonpage Mode - -

Write ALE Strobe WR# Strobe WR# High

Code Read (Page Miss) | ALE Strobe PSEN#/RD# Strobe

Code Read (Page Hit) PSEN# Strobe 4) 3)
Page Mode

Data Read (1) ALE Strobe PSEN#/RD# Strobe

Write (2) ALE Strobe WR# Strobe WR# high
NOTES:

1. The code/data read cycle in nonpage mode and the data-read cycle in page mode are the same,
except for the different signals on ports 0 and 2.

2. The write cycle is the same in page mode and nonpage mode, except for the difference in bus struc-
ture.

3. Only write cycles have a third state.

4. A page hit requires only one state.

12.3.3 Nonpage Mode Bus Cycles

In nonpage mode, the external bus structure is the same as for MCS 51 microcontrollers. The up-
per address bits (A15:8) are on port 2, and the lower address bits (A7:0) are multiplexed with the
data (D7:0) on port 0. External code fetches and data reads use the two-state bus cycle shown in
Figure 12-4. For the write cycle (Figure 12-5), a third state is appended to provide recovery time
for the bus. Note that the write signal WR# is strobed for all memory regions, except for the case
of RD1 =1 and RDO = 1, where WR# is strobed for regions 00: and Ohobfdr regions FE:

and FF..

12-8

EXTERNAL MEMORY INTERFACE

PSEN# or RD#

State

1 State 2

XTAL

e

/7

ALE

|

PO

|

A7:0

P2 k A158

A2807-02

Figure 12-4. External Code Fetch or Data

Read Bus Cycle (Nonpage Mode)

XTAL

ALE

WR#

PO

P2

State 1 State 2 State 3
VA VA WA W/ /N
1 s
i s
—i(AT:0 X D7:0 >—
{ Als:8 : : : X

A2808-02

Figure 12-5. External Write Bus Cycle (Nonpage Mode)

12-9

EXTERNAL MEMORY INTERFACE Int9|®

12.3.4 Page Mode Bus Cycles

Page mode increases performance by reducing the time for external code fetches. Under certain
conditions the controller fetches an instruction from external memory in one state time instead of
two. Page mode does not affect internal code fetches.

The first code fetch to a 256-byte “page” of memory always uses a two-state bus cycle. Subse-
quent successive code fetches to the same page hit$ require only a one-state bus cycle.
When a subsequent fetch is to a different pagmfge miskit again requires a two-state bus cy-

cle. The following external code fetches are always page-miss cycles:

* the first external code fetch after a page rolléver
¢ the first external code fetch after an external data bus cycle
¢ the first external code fetch after powewn or idle mode
¢ the first external code fetch after a branch, return, interrupt, etc.
In page mode, the 8XC251SB bus structure is different from the bus structure in MCS 51 control-

lers (Figure 12-6). The upper address bits A15:8 are multiplexed with the data D7:0 on port 2,
and the lower address bits (A7:0) are on port O.

8XC251SB RAM/ 8XC251SB RAM/
EPROM/ EPROM/
A15:8 . Flash Flash
P2 M A15:8 D7:0
v
AD7:0 A7:0
PO [Laten [A7 P2 Laton] atss
A15:8/D7:0 A15.8
N
D7:0 PO)l AT:0
AT:0 4
Nonpage Mode Page Mode
A4159-01

Figure 12-6. Bus Structure in Nonpage Mode and Page Mode

T A page rollover occurs when the address increments from the top ob6+i/2 page tthe bottom of the next (e.g.,
from FF:FAFFH to FF:FBOOH).

12-10

Int9|® EXTERNAL MEMORY INTERFACE

Figure 12-7 shows the two types of external bus cycles for code fetches in page m@dgerhe
misscycle is the same as a code fetch cycle in nonpage mode (except for the different signals on
ports 0 and 2). For thgage-hitcycle, the upper eight address bits are the same as for the preced-
ing cycle. Therefore, ALE is not strobed, and the values of A15:8 are retained in the address latch-
es. In a single state, the new values of A7:0 are placed on port 0, and memory places the
instruction byte on port 2. Notice that a page hit reduces the available address access time by one
state. Therefore, faster memories may be required to support page mode.

Cycle 1, Page-Miss Cycle 2, Page-Hit

.
-

< .
< >

A

State 1 State 2 State 3

XTAL_/$_/_/\:R/ /‘:1/

ALE /

H _

1
1
PSEN# :
1 1 1
1 1 1
PO K 1 A7:0 ! A7:0 !
1 1 1
1 1 1
p2 —— Al58 X__pro H{_pro_ |
1 1 1
1 1 1

A2809-02

Figure 12-7. External Code Fetch Bus Cycle (Page Mode)

Figure 12-8 and Figure 12-9 show the bus cycles for data reads and writes in page mode. These
cycles are identical to those for nonpage mode, except for the different signals on ports 0 and 2.

12-11

EXTERNAL MEMORY INTERFACE Int9|®

State 1 State 2

xTaL __/ M __/
AE |]

PSEN# or RD#

PO |

P2 b—— A158

D7:0

A2811-02

Figure 12-8. External Data Read Bus Cycle (Page Mode)

State 1 State 2 State 3

an |/ NV N

ALE /

WR#

S A7:0

P2 ——XK A15:8

D7.0

—]

A2810-02

Figure 12-9. External Write Bus Cycle (Page Mode)

12-12

Int9|® EXTERNAL MEMORY INTERFACE

12.4 WAIT STATES

The 8XC251SB can be configured to add an external wait state by extending the
RD#/PSEN#/WR# pulses or by extending the ALE pulse (see “Wait States (WSA, WSB,
XALE)” on pagel2-6). You can lgo configure the chip to use both types of wait states for a total

of two external wait states. Accesses to on-chip code and data memory always use zero wait
states.

12.4.1 Extending PSEN#/RD#/WR#

Figures 12-10 and 12-11 show bus cycles with an extended RD#/PSEN# wait state aeddxn ext
ed WR# wait state.

State 1 State 2 State 3

U 1 1

xtak __/ N/ / /
: : :
1 1 1
ALE if ' '
1 1 1
1 1 :
PSEN# ' \ !
or RD# 1 1 1
: \ '
PO —- A7:0) D7:0 !
: : ?
P2 | ' A15:8 ' '
= s s

A2812-02

Figure 12-10. External Code Fetch or Data Read Bus Cycle with One PSEN#/RD# Wait
State (Nonpage Mode)

I 12-13

EXTERNAL MEMORY INTERFACE Int€|®

State 1 State 2 State 3 State 4

ALE /

WR#

PO A7:0

P2 | A1538

i I P = E

A4174-01

Figure 12-11. External Write Bus Cycle with One WR# Wait State (Nonpage Mode)

12.4.2 Extending ALE

Figure 2-12shows a bus cycle for a code-fetch or a data-read with an extended ALE walit state.
The wait state extends the bus cycle from two states to three. For an external write, the extended
ALE extends the bus cycle from three states to four.

State 1 State 2 State 3
U 1 1
xtau /o _/ / /
s = s
ALE y ' '
: : :
PSEN# ’
or RD# ! ! E\—/-
1 1 1
PO 4i(ATO ! X D70
1 1 1
1 1 1
P2 [' A15:8 i '
1 1 1
1 1 1

A2813-02

Figure 12-12. External Code Fetch or Data Read Bus Cycle with One ALE Wait State
(Nonpage Mode)

12-14

Int9|® EXTERNAL MEMORY INTERFACE

12.5 PORT 0 AND PORT 2 STATUS

This section summarizes the status of the port 0 and port 2 pins when these ports are used as the
external bus. A more comprehensive description of the ports and their use is given in Chapter 6,
“Input/Output Ports.”

When port 0 and port 2 are used as the external memory bus, the signals on the port pins can orig-
inate from three sources:

¢ the 8XC251SB CPU (address bits, data bits)

¢ the port SFRs: PO and P2 (logic levels)

* an external device (data bits)
The port 0 pins (but not the port 2 pins) can also be held in a high-impedance staté23able

lists the status of the port 0 and port 2 pins when the chip in is the nhormal operating mode and the
external bus is idle or executing a bus cycle.

Table 12-5. Port 0 and Port 2 Pin Status In Normal Operating Mode

8-bit/16-bit Nonpage Mode Page Mode
Port Addressin
9 Bus Cycle Bus ldle Bus Cycle Bus Idle
Port 0 8 or 16 AD7:0 (1) High Impedance A7:0 (1) High Impedance
Port 2 8 P2 (2) P2 P2/D7:0 (2) High Impedance
ort
16 A15:8 P2 A15:8/D7:0 High Impedance
NOTES:

1. During external memory accesses, the CPU writes FFH to the PO register and the register con-
tents are lost.
2. The P2 register can be used to select 256-byte pages in external memory.

12.5.1 Port 0 and Port 2 Pin Status in Nonpage Mode

In nonpage mode theort pins have the same signals as those on the 8XC51FX. For an external
memory instruction using ¥6-bit address, the port pins carry addees$ data bits during the bus

cycle. However, if the instruction uses an 8-bit address (e.g., MOVX @RIi), the contents of P2 are
driven onto the pins. These pin signals can be used to select 256-bit pages in external memory.

During a bus cycle, the CPU always writes FFH to PO, and the former contents of PO are lost. A

bus cycle does not change the contents of P2. When the bus is idle, the port O pins are held at high
impedance, and the contents of P2 are driven onto the P2 pins.

12-15

EXTERNAL MEMORY INTERFACE Int9|®

12.5.2 Port 0 and Port 2 Pin Status in Page Mode

In a page-mode bus cycle, the data is multiplexed with the upper address byte on port 2. However,
if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are driven onto the
pins when data is not on the pins. These logic levels can be used to select 256-bit pages in external
memory. During bus idle, the port 0 and port 2 pins are held at high impedance.

(For port pin status when the chip in is idle mode, powerdown mode, or reset, see Chapter 11,
“Special Operating Modes.”)

12.6 EXTERNAL MEMORY DESIGN EXAMPLES

This section shows five examples of external mendesigns for 8XC251SB systems. The ex-
amples illustrate the design flexibility provided by the configuration options, especially for the
PSEN# and RD# signals. Many other designs are possible.

12.6.1 Nonpage Mode, 64 Kbytes External EPROM, 64 Kbytes External RAM

Figure 12-13 shows an 80C251SB in nonpage mode with 64 Kbytes of external EPROM and 64
Kbytes of external RAM. The 80C251SB is configured so that RD# strobes for addresses
< 7F:FFFFH and PSEN# strobes for addres<&®0000H (RD1 =1 and RDO = 1). Figur2-14

shows two ways to address the external memory in the internal memory space.

The lower 1056 bytes of the external RAM must be addressed in region 01:. Addressing the other
external RAM locations in either region 00: or region 01: produces the same address at the exter-
nal bus pins. However, if the external EPROM and the external RAM require diffenerhters

of wait states, the external RAM must be addressed entirely in region 01:. (Recall that regions
00:, FE:, and FF: always have the same number of wait states. See “Wait States (WSA, WSB,
XALE)” on page 12-6.)

The examples that follow illustrate two possibilities for addressing the external RAM.

12.6.1.1 An Application Requiring Fast Access to the Stack

If an application requires fast access to the stack, the stack can reside in the fast on-chip data
RAM (00:0020H-00:041FH) and, when necessary, roll out into the slower external RAM. In this
case, the external RAM can have a wait state only if the EPROM has a wait state. Otherwise, if
the stack rolls out above location 00:041FH, the external RAM would be accessed with no wait
state. Regions 00: and 01: on the left side of Fig@r&4lapply to thigxample.

12-16 I

intel.

EXTERNAL MEMORY INTERFACE

12.6.1.2 An Application Requiring Fast Access to Data

If fast access to a block of data is more important than fast access to the stack, the data can be
stored in the on-chip data RAM, and the stack can be located entirely in external memory. If the
external RAM has a wait state and the EPROM has no wait state, the external RAM must be ad-
dressed entirely in region 01:. Regions 00: and 01: on the right side of Figure 12-14 apply to this

example.
EPROM RAM
80C251SB (64 Kbytes) (64 Kbytes)
EA# :L E CE# |: CE#
A15:8 .
P2 | Atss :) A15:8
Code Data
A/D7:0 AT:0
PO Latch [N A70 ﬂ AT:0
D7:0 D7:0
WR# RD# PSEN# OE# OE# WE#

A4145-01

Figure 12-13. 80C251SB in Nonpage Mode with External EPROM and RAM

12-17

EXTERNAL MEMORY INTERFACE Int9|®

01:0000H

00:0420H
00:0000H

Memory Address Space

256 Kbytes
FFFFH | FF.FFFFH
64 Kbytes External EPROM
FF:0000H J0000H
FE:0000H
FFFFH) O1:FFFFH
64 Kbytes External RAM
041FH
lo000OH 0000H
FFFFH
64 Kbytes External RAM
0420H
1056 Bytes On-chip RAM 1056 Bytes On-chip RAM

A4175-01

Figure 12-14. The Memory Space for the Systems of Figure 12-13 and Figure 12-18

12-18

Int9|® EXTERNAL MEMORY INTERFACE

12.6.2 Nonpage Mode, 128 Kbytes External RAM

Figure 12-15 shows an 87C251SB/83C251SB in nonpage mode with 128 Kbytes of external
RAM. The 87C251SB/83C251SB is configured so that RD# functions as A16, and PSEN# is
strobed for all addresses (RD1 = 0, RDO = 1). Figure 12-16 shows how the external RAM is ad-
dressed in the internal memory space. The |d@8&6bytes of external RAM are unavailable be-
cause accesses to the lower 1056 bytes in region 00: are directed to on-chip RAM.

RAM
83C251SB/
87C251SB Vee (128 Kbytes)
EA#] I CE#
A16
Data
A15:8 .
P2 M A15:8
v
AD7:0 A7:0

PO Latch M A7:0

) p7o

WR# PSEN# OE# WE#

A4147-01

Figure 12-15. 87C251SB/83C251SB in Nonpage Mode with 128 Kbytes of External RAM

I 12-19

EXTERNAL MEMORY INTERFACE

FF:4000H

FF:0000H

FE:0000H

00:0420H
00:0000H

Memory Address Space
256 Kbytes

1FFFFH

00420H

00000H

FF:FFFFH

16 Kbytes On-chip
OTPROM/ROM

01:FFFFH

128 Kbytes External RAM
(1056 Bytes Unavailable)

1056 Bytes On-chip RAM

A4169-01

12-20

Figure 12-16. The Memory Space for the System of Figure 12-15

Int9|® EXTERNAL MEMORY INTERFACE

12.6.3 Page Mode, 128 Kbytes External Flash

Figure12-17 shows the 80C251SB frage mode with 128 Kbytes of external flash. Note that

port 2 carries both the upper address bits (A15:0) and the data (D7:0), while port O carries only

the lower address bits (A7:0). The 80C251SB is configured for 17 external address bits and a sin-
gle read signal (PSEN#). The 128 Kbytes of external flash are accessed in pages FE: and FF: in
the internal memorgpace.

80C251SB FLASH
(128 Kbytes)
L I R
Al6
Al6 Al6
Code
D7:0
P2 Latch :) A15:8
A15:8/D7:0 Al15:8
N
PO N A70
v
A7:0
WR# PSEN# OE# WE#
A4151-01

Figure 12-17. 80C251SB in Page Mode with External Flash

12.6.4 Page Mode, 64 Kbytes External EPROM, 64 Kbytes External RAM

Figure 12-18 shows an 80C251SB in page mode with 64 Kbytes of external EPROM and 64
Kbytes of external RAM. The 80C251SB is configured so that RD# strobes for addeesses
7F:FFFFH, and PSEN# strobes for addrezs&3:0000H (RD1 = 1 and RDO = 1).

This system is the same as the system in Figure 12-13 on page 12-17, except that this design op-

erates in page mode. Accordingly, the two systems have the same memory map (Figure 12-14 on
page 12-18), and the comments on addressing external RAM apply here also.

I 12-21

EXTERNAL MEMORY INTERFACE Int9|®

EPROM RAM
80C251SB (64 Kbytes) (64 Kbytes)
D7:0 D7:0
P2 <:> Latch j Al5:8 :' A58
A15:8/D7:0 Al15:8 Code Data
N
PO M a7:0 :} A7;0
A7:0 "
e [1 ce 1 =
wr# ro# psengl = OE# | oex wes
[

A4146-01

Figure 12-18. 80C251SB in Page Mode with External EPROM and RAM

12.6.5 Page Mode, 64 Kbytes External Flash, 32 Kbytes External RAM

Figure12-19 shows an 80C251SB in page mode with 64 Kbytes efreattflash memory for

code storage and 32 Kbytes of external RAM. The 80C251SB is configured so that PSEN# is
strobed for all reads, and RD# functions as A16 (RD1 = 0, RDO = 1). Figu?® shows how

the external flash and RAM are addressed in the internal memory space. The external RAM is
accessed for internal addres88s0420H—00:7FFFH. Thiérst 1056 bytes of external RAM are
unused because accesses to location®00H-00:041FH are directed to ohijg RAM.

12-22 I

EXTERNAL MEMORY INTERFACE

1
I
80C251SB CE# CE#
LR (FLASH
Kbyt 4K
AL6 (ytes) (ytes)
D7:0 D7:0
P2 <:> Latch q A15:8 Q A15:8
A15:8/D7:0 A15:8 Data Code
N
PO M a7:0 ﬂ AT0
v
A7:0
e i
WR# PSEN# OE# WE# OE# WE#
| |
A4148-01

Figure 12-19. 80C251SB in Page Mode w ith External Flash and RAM

12-23

EXTERNAL MEMORY INTERFACE

FF:0000H

FE:0000H

00:0420H
00:0000H

Memory Address Space
256 Kbytes

FFFFH

FF:FFFFH

64 Kbytes External Flash

0000H
01:FFFFH
7FFFHJ 00:7FFFH
31,712 bytes External RAM
0420H (32 Kbytes — 1056 bytes)
E—
1056 Bytes On-chip RAM

A4168-01

Figure 12-20. The Memory Space for the System of Figure 12-19

12.7 EXTERNAL BUS AC TIMING SPECIFICATIONS

This section defines the AC timing specifications for the external bus. Refer to the latest data
sheet to be sure that your system meets specifications. Figure 12-21 shows the bus waveforms for

instruction or data reads and data writes in nonpage mode. ERx22shows the bugaveforms

for data reads and data writes in page mode, and Figure 12-23 shows the bus waveforms for in-
struction fetches in page mode. Tab®6 on page 12-28efines the symbols used in the timing
diagrams. Tables 12-8 and 12-7ide the timing parameters.

12-24

intel.

EXTERNAL MEMORY INTERFACE

Data/Instruction Read Cycle (Nonpage Mode)

Tosc
< >
XTALL
/U U U AW
ALE _‘r\
— | TLHLL
- TLHRL - lRLRHL TRHLH _
—— el " <« |
PSEN#/RD#
TRLDV'
<>
TRLAZ >»
T
———TLHAX T
|<—>TAVLLT TLLAX TRHDX
PO —— AO - A7 YW 5007 Y)
< TavrL' Data/Inst. In
<—Tavovi'——>
< TAvDV2 ——]
P2 _< A8 — A15 >_<:
Write Cycle (Nonpage Mode) Tosc
4 -
[~ V.
XTALL
A A / [\ S
ALE ‘ e '
- - LWLWHL B .
WR# <—>{=< WHLH —— |
<—TngAxJr) .
T T < TQVWH
<5 LLAX " Tvagx
PO (AO— A7))—(DO - D7 4)—
|<—TAVWL1T—> Data Out
|<—TAVWL2T—> < TWHAX
P2 — A8 — A15 V<

T The value of this parameter depends on wait states. See the table of AC characteristics.

A4107-02

Figure 12-21. External Bus Cycles for Data/Instruction Read and Data Write in Nonpage

Mode

12-25

EXTERNAL MEMORY INTERFACE Int9|®

Data Read Cycle (Page Mode) Tosce

T\ / /LU
ALE T
<>

A
\

—+

+

TLHRL TRLRH TRHLH
- > 3 > >
PSEN#/RD#
TRLDVT
-
TRLAZ >»
(—TLHAXT

TRHDZ

+
P2 —(A8 — AL5))—{ po-b7)

< T AVRLT > Data In

< Tavpvi ——>
i: TavDv2 ——>
Po —{ A0 — A7 ol
Write Cycle (Page Mode) Tosc
A .
XTALL
v/ /S / [\ S
ALE T -
hn - ENLWHL N
WRi <> WHLH ———————|
T

<—T|;FHAX
TAVLL'| T_ ax *‘ ~<TQVWH
f<—> e TWHOX ——|
p2 — A8 — A15 — DO — D7) —

I«TAVWLlTa Data Out
|<—TAVWL2T—> [«—— TwHAX ——>=]
o — A0 — A7 <

T The value of this parameter depends on wait states. See the table of AC characteristics.

A4126-02

Figure 12-22. External Bus Cycles for Data Read and Data Write in Page Mode

12-26

intel.

EXTERNAL MEMORY INTERFACE

Instruction Read Cycle (Page Mode)

Tosc

S A N A W

A A W B W

ALE " \
| TiHLL
TeHre TRLRH'
. LHRL - IRLRH\
— AT _—
PSEN#/RD# \ /
TRLDVT
<>
TRLAZ >
T
«—— TLHAX TRHDZ
Tavie " T T
< > LLAX RHDX
P2 — A8 - AL5) —{ po-p7) —— Do-D7 E)—
(—TAVRLT Instruction In Instruction In
<—Tavovi ——> TAVDV3
| TAVDV2 ——> -
[
PO —(A0 - A7

had A0 — A7) Smm—

l(— Page MissTT—>|(— Page HitTT—)|

T The value of this parameter depends on wait states. See the table of AC characteristics.

Tt A page hit (i.e., a code fetch to the same 256-byte "page" as the previous code fetch) requires one
state (2Tpgc); @ page miss requires two states (4Tggc).

A4127-02

Figure 12-23. External Bus Cycles for Instruction Read in Page Mode

12-27

EXTERNAL MEMORY INTERFACE Int9|®

12.7.1 Explanation of AC Symbols

Each symbol consists of two pairs of letters prefixed by (féf time). The characters in a pair
indicate a signal and its condition, respectively. Symbols represent the time between the two sig-
nal/condition points. For example,,, is the time between signal L (ALE) condition H (high)

and R (RD#) condition L (Low). Table 12-6 defines the signal and condition codes

Table 12-6. AC Timing Symbol Definitions

Signals Conditions
A Address H High
D DATA L Low
L ALE \% Valid
Q Data Out X No Longer Valid
R RD#/PSEN# z Floating
w WR#

12.7.2 AC Timing Definitions

This section defines the timing parameters shown in Figures 1220, andl2-23. Tables 12-8
and12-7 list the dénitions of timing specifications on the memory system and the 8XC251SB.

12-28 I

intel.

Table 12-7. AC Timing Definitions for Specifications on the 8XC251SB

EXTERNAL MEMORY INTERFACE

THE 8XC251SB MEETS THESE SPECIFICATIONS

Symbol Definition Notes

Fosc Frequency on XTAL: Frequency of the signal input on the XTAL1 input.

Tosc 1/Fosc: Period of the signal on XTAL1/XTAL2: AC Timings are referenced to Togc.

T ALE Pulse Width: Length of time ALE is asserted. 2)

Tihre ALE High to RD# or PSEN# Low: Time after ALE goes high until RD# or PSEN# goes 2)
low.

Triru RD# or PSEN# Pulse Width: Length of time RD# or PSEN# is asserted. 3)

Truwn RD# High to ALE Asserted: Time after RD# goes high until the next ALE pulse goes 2)
high.

Triaz RD# Low to Address Float: Time after RD# goes low until the 8XC251SB stops driving
the address on the bus.

TaviL Address Valid to ALE Low. Length of time the lower byte of the address is valid (on port | (2)
0) before ALE goes low.

T ax ALE High to Address Hold. Length of time the 8XC251SB holds the lower byte of the 2)
address on the bus (port 0) after ALE goes high.

Tiiax Address Hold after ALE Low: Length of time the 8XC251SB holds the lower byte of the
address on the bus (port 0) after ALE goes low.

TavrL Address Valid to RD# or PSEN# Low: Length of time the lower byte of the address is (12)
valid on the bus (port 0) before RD# or PSEN# goes low.

Twiwn WR# Pulse Width: Length of time WR# is asserted. 3)

Twhin WR# High to ALE High: Time after WR# goes high until the next ALE pulse is goes high.

Tavwil Address (port 0) Valid to WR# Low: Length of time that the 8XC251SB drives the 2)
address onto the bus (port 0) before WR# goes low.

Tavwi2 Address (port 2) Valid to WR# Low: Length of time that the 8XC251SB drives the 2)
address onto the bus (port 2) before WR# goes low.

Twhax Address Hold after WR# High: Time the 8XC251SB holds the upper byte of the address
on the bus (port 2) after WR# goes high.

NOTES:

1. Specifications for PSEN# are identical to those for RD#.

2. Ifawait state is added by extending ALE, this time increases by 2T,qc.

3. Ifawait state is added by extending RD#/PSEN#/WR#, this time increases by 2T ..
4. If wait states are added as described in both Note 2 and Note 3, this time increases by a total of 4T4.

12-29

EXTERNAL MEMORY INTERFACE Int9|®

Table 12-8. AC Timing Definitions for Specifications on the Memory System

THE EXTERNAL MEMORY SYSTEM MUST MEET THESE SPECIFICATIONS

Symbol Definition Notes

Tribz Data/Instruction Float After RD# or PSEN# High: Time after RD# or PSEN# goes high
until memory system must float the bus. If this timing is not met, bus contention occurs.

—

1

Tribx Data/Instruction Hold After RD#/ PSEN# High: Length of time the memory system must | (1)
hold data on the bus after RD# or PSEN# goes high.

Trioy RD# Low to Input Data Valid: Time after RD# goes low until the memory system must 1,3)
output valid data/instruction.

Tovw Data Valid to WR# High: Length of time the memory system must output valid data
before WR# goes high.

Twhox Data Hold after WR# High: Length of time the memory system must hold data on the
bus after WR# goes high.

Tavovi Address (port 0) valid to Valid Data/Instruction In: Time after the 8XC251SB places a (2,3,4)
valid address on the bus (port 0) until the memory system must place valid data on the
bus (port 0).

Tavov2 Address (port 2) Valid to Valid Data/Instruction In: Time after the 8XC251SB places a (2,3,4)
valid address on the bus (port 2) until the memory system must place valid
data/instruction on the bus (port 0). If the bus cycle is an instruction fetch, this applies to
a page miss.

Tavov3 Address (port 2) Valid to Valid Instruction In: Time after the 8XC251SB places a valid
address on the bus (port 2) until the memory system must place a valid instruction on
the bus (port 0). This applies to a page hit.

NOTES:

1. Specifications for PSEN# are identical to those for RD#.

2. If await state is added by extending ALE, this time increases by 2Tqc.

3. If await state is added by extending RD#/PSEN#/WR#, this time increases by 2Tqc.

4. If wait states are added as described in both Note 2 and Note 3, this time increases by a total of 4T

12-30

intel.

13

Programming and
Verifying Nonvolatile
Memory

CHAPTER 13
PROGRAMMING AND VERIFYING
NONVOLATILE MEMORY

This chapter provides itrsictions for programming and verifying on-chipnvolatile memory

on the 8XC251SB. The programming instructions cover the entry of program code into on-chip
code memory and other categories of information maiovolatile memory ouide the menory
address space. The verify instructions permit reading these memory locations to verify their con-
tents. The operations covered in this chapter are:

¢ programming and verifying the on-chip code memory (16 Kbytes)

¢ programming and verifying the configuration bytes (4 bytes)
¢ programming and verifying the lock bits (3 bits)

* programming the encryption array (128 bytes)
¢ verifying the signature bytes (3 bytes)

The programming instructions apply to the oneetiprogrammable 87C251SB (OTPROM). The
verify instructions apply to the 87C251SB, the 83C251SB (ROM), and the configuration bytes
on the 80C251SB (ROMless). In the unprogrammed SDEEEROM contains all 1s.

13.1 GENERAL

The 87C251SB OTPROM device is programmed and verified in the same manner as the
87C51FX, using the same quick-pulse programming algorithm, vpihadrams at .= 12.75 V

using a series of five 100 us PROG# pulses per byte. Thitgén aprogramning time of ap-
proximately 16 seconds for the 16-Kbyte on-chip code memory.

Programming anderifying operations differ from normal controller operation. Memory accesses
are made one byte at a time, input/output ports are used in a different manner, and some pins
(EA#/V,, and ALE/PROG#) assume their alternatfpeogramming) functions. For a complete

list of signal descriptions, see Appendix B.

In some microcontroller applications, it is desirable that user program code be smounadu-
thorized access. The 8XC251SB offers two types of protection for program code stored in the on-
chip array.

* Program code in the on-chgmde memory is encrypted when read out for verification if the
encryption array is programmed.

¢ Athree-level lock bit system restricts external access to the on-chip coderyne

I 13-1

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY Int9I®

It is recommended that user program code be located starting at address FF:0100H. fisice the
instruction following device reset is fetched from FF:0000H, use a jump instruction to FF:0100H
to begin execution of the user program. For information on address spaces, see Chapter 3.

CAUTION

Execution of user code located in the top eight bytes of the on-chip user
memory (i.e., FF:3FF8H-FF:3FFFH) may cause prefetches from the next
higher addresses, which are in externahmogy. External memory fetches
make use of port 0 and port 3 and may disrupt program égadtithe
program uses ports 0 or 3 for a different purpose.

13.2 PROGRAMMING AND VERIFYING MODES

Table 13-1 defines therggramming and verifying modes apdovides details about the setup.

The modes correspond to the nonvolatile memory functions, i.e. on-chip cogerynencryp-

tion array, configuration bytes, etc. The configuration bytes, signature bytes, encryption array,
and lock bits reside in nonvolatile mery outsde the memory address space. The value applied

to port O (see Table 13-1) specifies program or verify and provides the base address for the func-
tion. Addresses in the Address column are with respect to the base address.

Table 13-1. Programming and Verifying Modes

Address
Mode RST | PSEN# Ve PROG# | Port | Port | Port 1 (high) Notes
0 2 Port 3 (low)
Program - On-chip Code High Low 5V, 5 Pulses | 68H | data | 0000H-3FFFH 1
Memory 12.75V
Verify - On-chip Code High Low 5V High 28H | data | 0000H-3FFFH
Memory
Program - Configuration High Low 5V, 5 Pulses | 69H | data | 0080H-0083H 1
Bytes 12.75V
Verify - Configuration Bytes | High Low 5V High 29H | data | 0080H-0083H
Program - Lock Bits High Low 5V, 25 Pulses | 6BH | data | 0001H-0003H 1,2
12.75V
Verify - Lock bits High Low 5V High 2BH | data 0000H 3
Program - Encryption Array | High Low 5V, 25 Pulses | 6CH | data | 0000H-007FH
12.75V
Verify - Signature Bytes High Low 5V High 29H | data | 0030H, 0031H,
0060H
NOTES:

1. Toprogram, raise Vp, t0 12.75 V and pulse the PROG# pin. See Figure 13-2 for waveforms.

2. No data input. Identify the lock bits with the address lines as follows: LB3 - 0003H, LB2 - 0002H,
LB1 - 0001H

3. The three lock bits are verified in a single operation. The states of the lock bits appear simultaneously
at port 2 as follows: LB3 - P2.3, LB2 - P2.2. LB1 - P2.1. High = programmed.

13-2

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

intel.
13.3 GENERAL SETUP

Figure 13-1 shows the general setup for programmingvarnfying the OTPROM areas on the
87C251SB. The figure also applies to verifying the 83C251SB and reading the configuration
bytes on the 80C251SB.

The controller must be running with an oscillator frequency of 4 MHz to 6 MHz. To program, set

up the controller as shown in Tall®-1 with themode of operation (program/verify and memory

area) specified on port 0, the address with respect to the starting address of the memory area ap-
plied to ports 1 and 3, and the data on port 2. Apply a logic high to the RST pin.and V
EA#/V,, ALE/PSEN#, normally an output pin, must be held low externally.

To perform the write operation, raisg Mo 12.75 V and pulse the PROG# pin per Tél8el.
Then return Vs to 5 V. Waveforms are shown in Figure 13-2.

CAUTION

The V,psource must be well regulated and free of glitches. The voltage on the
Vs, pin must not exceed the specified maximum, even under transient
conditions. See latest data sheet.

Verification is performed in a similar manner but without increasipg and without pulsing
PROG#. Figure 13-2 shows the OTPR@kbgramming and verifying waveforms. For wave-
form timing information, refer to Figure 13-5 and Table 13-5 at the erfuso$éction.

Yee
8XC251SB v,
A0 - A7 qP3 RST
Address 4
CIII0 R— Data
A8-Al5)P1 P2 (8 Bits)
EAH#IV,, €— Programming
Signals
_|__h XTALL ALE/PROG# fj€&——
4 MHz PSEN#
to 3 |_
6 MHz | T -
* XTAL2 PO Program/Verify Mode
Vee (8 Bits)
A4122-01

Figure 13-1. Setup for Programming and Verifying

13-3

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY Int9I®

Programming Cycle Verification Cycle

P1,P3 —(Address (16-Bit) >—< Address >—

P2 ——(Data In (8-Bit)

N

< Data Out —

PO :X Mode (8-Bit) X Mode X

A4129-01

Figure 13-2. OTPROM Programming Waveforms

13.4 OTPROM PROGRAMMING ALGORITHM

The procedure for programming the 87C251SB is as follows:
1. Set up the controller for operation in tygpropriate mode according to Table 13-1.
2. Input the 16-bit address on ports 1 and 3.
3. Input the data byte on port 2.
4. Raise the voltage on thgdpin from 5 V to 12.75 V.
5

Pulse the PROG# pin 5 times for the on-chip code memory and the configuration bytes,
and 25 times for the encryption array and the lock bits.

6. Reduce the voltage on the\pinto 5 V.

13-4 I

Int9|® PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

7. If the procedure iprogram/immediate-verify, go to “Verifflgorithm” on pagel3-5 and
perform steps 1 through 4 to verify the currently addressed byte. Make sure the voltage on
the EA#/\,, pin has been lowered to 5 V before performing the verifying procedure.

8. Repeat steps 1 through 7 until all memory locations are programmed.

13.5 VERIFY ALGORITHM

Use this procedure to verify user program code, signature bytes, configuration bytes and lock bits
stored in nonvolatile memory on the 8XC251SB. To preserve the secrecy of the encryption key
byte sequence, the encryption array can not be verified. Verification can be performed on bytes
as they are programmed, or on a block of bytes that have been previously programnped- The
cedure for verifying the 8XC251SB is as follows:

1. Set up the controller for operation in tg@propriate mode according to Table 13-1.
2. Input the 16-bit address on ports P1 and P3.

3. Wait for the data on port P2 to become valig,(jy = 48 clock cycles, Figure 13-5), then
compare the data with the expected value.

4. If the procedure isprogram/immediate-verify, return to step 8 of “OTPROM
Programning Algorithm” on page 13-4 to program the next byte.

5. Repeat steps 1 through 5 until all memory locations are verified.

13.6 PROGRAMMABLE FUNCTIONS

This section discusses factors relateprigrammingand verifying the variousonvolatile mem-
ory functions.

13.6.1 On-chip Code Memory

The 16-Kbyte on-chip code memory is located in the top region of the mespane starting at
address FF:0000H. At reset, the 87C251SB and 83C251SB devices vector to this address. See
Chapter 3 for detailechformaion on the 8XC251SB memory space.

To enter user program code and data in the on-chip code memory, perform the procedure de-
scribed in “OTPROMProgramming Algorithm” on pag&3-4 using the program on-chip code
memory mode (Table 13-1).

To verify that the on-chip code memory is correctly programmed, perform the procedure de-

scribed in “Verify Algorithm” on page 13-5 using the verify on-chip code memory mode (Table
13-1).

I 13-5

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY Int9I®

13.6.2 Configuration Bytes

The MC® 251 microcontroller contas four configuration bytes, CONFIGOtugh CONFIG3,
implemented in OTPROM. CONFIGO through CONFIG3 correspond to addr@S&89H

through 0083H in Table 13-1. The configuration bytes are located in nonvolatile mensidgout

the memory address space and are inaccessible by user code. CONFIGO and CONFIG1 specify
the following:

¢ WSA ,WSB. Wait states

* RDO, RD1. This two-bit code determines the address ranges for RD# and PSEN# and
selects a 16-bit or 17-bit exthal bus. RD# as 17th address bit (A16), P3.7 as general
purpose pin.

e XALE. Extends ALE pulse.

* SRC. Source code/ binary code

* EMAP. Maps upper 8 Kbytes of on-chip code memory to region O0H.

* PAGE. Page mode select, external bus structure

¢ INTR. Return from interrupt
CONFIG2 and CONFIG3 are reserved for future use. See Figs@and Figurel3-4 for
CONFIGO0 and CONFIGL1 bit assignments and definitions. These figis@giae the configura-

tion values for making the 8XC251SB pin compatible with the 8XC51FB and 8XC54.Ti&ale
lists the CONFIGO and CONFIG1 values for the 80C251SB.

To program the configuration bytes, perform the procedure described in “OTPROM Program-
ming Algorithm” on page 13-4 using the program configuration byte mode (Table 13-1).

To verify that the configuration bytes are correctly programmed, perform the procedure described
in “Verify Algorithm” on page 13-5 using the verify configuration byte mode (Table 13-1).

13-6 I

intel.

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

CONFIGO
7 0
— — WSA xAlE || RD1 RDO PAGE SRC
Bit Bit Function
Number Mnemonic
7:6 — Reserved:
Set these bits when writing to CONFIGO.
5 WSA Wait State A:
Clear this bit to generate one external wait state for memory regions 00:,
FE:, and FF:. Set this bit for no wait states for these regions.
4 XALE Extend ALE:
If this bit is set, the time of the ALE pulse is Tygc. Clearing this bit
extends the time of the ALE pulse from Tygc to 3T,sc, Which adds one
external wait state.
3:2 RD1, RDO RD# and PSEN# Function Select:
RD1 RDO RD# Range PSEN# Range Features
0 0 Reserved Reserved Reserved
0 1 RD# = Al6 All addresses 128-Kbyte External
Address Space
1 0 P3.7 only All addresses One additional port pin
1 1 <7F:FFFFH = 80:0000H Compatible with MCS 51
microcontrollers
1 PAGE Page Mode Select:
Clear this bit for page-mode (A15:8/D7:0 on P2, and A7:0 on PO0). Set
this bit for nonpage-mode (A15:8 on P2, and A7:0/D7:0 on PO
(compatible with 44-pin PLCC MCS 51 microcontrollers)).
0 SRC Source Mode/Binary Mode Select:
Set this bit for source mode. Clear this bit for binary mode (binary-code
compatible with MCS 51 microcontrollers).
NOTE: To make the 8XC251SB pin compatible with 44-pin PLCC MCS 51 microcontrollers, use the

following bit values in CONFIGO: 1101 1110B.

Figure 13-3. Configuration Byte O

13-7

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

CONFIG1
7 0
— — — INTR || wsB — — EMAP
Bit Bit Function
Number Mnemonic
75 — Reserved:
Set these bits when writing to CONFIG1.
4 INTR Interrupt Mode:
If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the
PC register and the PSW1 register). If this byte is clear, interrupts push 2
bytes onto the stack (the 2 lower bytes of the PC register).
3 WSB Wait State B:
Clear this bit to generate one external wait state for memory region 01:.
Set this bit for no wait states for region 01:.
2:1 Reserved:
Set these bits when writing to CONFIG1.
0 EMAP EPROM MAP:
Clearing this bit maps the upper 8 Kbytes of on-chip code memory
(FF:2000H-FF:3FFFH) to 00:E000H-00:FFFFH. If this bit is set, the
upper 8 Kbytes of on-chip code memory are mapped only to FF:2000H—
FF:3FFFH.
NOTE: To make the 8XC251SB pin compatible with 44-pin PLCC MCS 51 microcontrollers, use the

following bit values in CONFIG1: 1110 0111B.

13-8

Figure 13-4. Configuration Byte 1

Int9|® PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

Table 13-2. Configuration Byte Values for 80 C251SB and 80C251SB-16

Bit CONFIGO (1) CONFIGL1 (1)
Number Bit Mnemonic Value Bit Mnemonic Value
7 Reserved 1 Reserved 1
6 Reserved 1 Reserved 1
5 WSA 2) Reserved 1
4 XALE 1 INTR 0
3 RD1 1 WSB %)
2 RDO 1 Reserved 1
1 PAGE 1 Reserved 1
0 SRC 0 EMAP 1
NOTE:

1. In addition to the configuration given in the table, the 80C251SB and 80C251SB-16
are available in user-defined configurations.

2. The 80C251SB is available with no wait states (WSA = WSB = 1).
The 80C251SB-16 is available with one wait state (WSA = WSB = 0).

13.6.3 Lock Bit System

The 87C251SB provides a three-level lock system for protecting user program code stored in the
on-chip code memory from unauthorized access. On the 83C251SB, only LB1 protection is avail-
able. Table 13-3 describes the levels of protection.

To program the lock bits, perform the pedure described in “OTPROM Programming Algo-
rithm” on page 13-4 using the program lock bits mode (Table 13-1).

To verify that the lock bits are correctly programmed, perform the procedure described in “Verify
Algorithm” on page 13-5 using the verify lock bits modal{ie13-1).

Table 13-3. Lock Bit Function

Lock Bits Programmed Protection Type

LB3 LB2 LB1

Level 1 U U U No program lock features are enabled. On-chip user code is
encrypted when verified, if encryption array is programmed.

Level 2 U U P External code is prevented from fetching code bytes from on-
chip code memory. Further programming of the on-chip
OTPROM is disabled.

Level 3 U P P Same as level 2, plus on-chip code memory verify is disabled.

Level 4 P P P Same as level 3, plus external memory execution is disabled.

NOTE: Other combinations of the lock bits are not defined.

13-9

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY Int9I®

13.6.4 Encryption Array

The 87C251SB and 83C251SB controllers include a 128-byte encryption array located in
volatile memory outside the memory address space. During verification of the on-chip code
memory,the seven low-order address bits also address the encryption array. As the byte of the
code memory is read, it is exclusive-NOR’ed (XNOR) with the key byte from the encryption ar-
ray. If the encryption array is not programmed (still all 1s), the user program code is placed on
the data bus in its original, unencrypted form. If the encryption array is programmed with key
bytes, the user program code is encrypted and can't be used without know the key byte sequence.

CAUTION

If the encryption feature is implemented, the portion of the on-chip code
memory that does not contain program code should be filled with “random”
byte values other than FFH to prevent the encryption key sequence from being
revealed.

To program the encryption array, perform the procedure described in “OTHRG@i{BmMmMing
Algorithm” on page 13-4 using the program encryption array mode (Table 13-1).

To verify that the configuration bytes are correctly programmed, perform the procedure described
in “Verify Algorithm” on page 13-5 using the verify encryption array mode (TaBi4).

13.6.5 Signature Bytes

The 87C251SB and 83C251SB contain factory-programmedtsignaytes. These bytes are lo-
cated at 30H, 31H, and 60H in nonvolatile memory outside the memory address space. To read
the signature bytes, perform the procedure described in “Verify Algorithm” onJ&geusing

the verify signature mode (Table 13-1). Signature byte values are listed in Table 13-4.

Table 13-4. Contents of the Signature Bytes

Address
Device
30H 31H 60H
83C251SB 89H 40H 7BH
87C251SB 89H 40H FBH

13.7 VERIFYING THE 83C251SB (ROM)

Nonvolatile memory on the 83C251SB controller is factory programmed. The verifigation
cedure for the 83C251SB is exactly the same as for the 87C251SB OTPROM version. The setup
shown in Figure 13-applies as do the waveform and timing diagrams. Like the 87C251SB, the
83C251SB contains a 16-Kbyte on-chip code memory and a 128-byte encryption array.

13-10 I

Int9|® PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

For information on verifying the contents wénvolatile memory on the 83C251SB, see “Pro-
grammable Functions” on pa@8-5 for each function déred. Or more directly, perform the ver-
ification procedure described in “Verify Algorithm” on pa$8-5 using the appropriate verify
mode (Table 13-1).

13.8 VERIFYING THE 80C251SB (ROMLESS)

The configuration bytes stored monvolatile memory on the 80C251SB canréad using the
verify procedure presented in this chapter. For information regarding the configuration bytes see
“Configuration Bytes” on page 13-6.

Programming Cycle Verification Cycle

P1,P3 —(Address (16 Bits) >—< Address >—

‘ }(’)FAVQV
P2 —(Data In (8 Bits) > { DataOut y——
|<—> TbveL TGHDX <—>|
TGHAX

TAvGL
TGHGL

>

1| 2 3 4 5|t
TGLGH> l(GHSL

. -
— Vo
TSHGL
12.75V
EA#IVPP ¢ / \

PROG#

TELQV TEHQZ
>| |<TEHsH > < > =<
PO :X Mode (8 Bits) X Mode X

A4128-01

Figure 13-5. OTPROM Timing

I 13-11

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

Table 13-5. OTPROM Timing Definitions

Symbol Definition Symbol Definition

UTeo Oscillator Frequency T hax Address Hold after PROG#:
TaveL Address Setup to PROG# Low T Hox Data Hold after PROG#
Tavov Address to Data Valid TonsL Vpp Hold after PROG#

ToveL Data Setup to PROG# Low TenaL PROG# High to PROG# Low
Tensn ENABLE High to V,p Teren PROG# Width

Tenoz Data Float after ENABLE TsnoL Vpp Setup to PROG# Low:
Terov ENABLE Low to Data Valid

NOTE: A =Address, D = Data, E = Enable, G = PROG#, H = High, L = Low, Q = Data out,
S = Supply (Vpp), V = Valid, X = No longer valid, Z = Floating.

13-12

intel.

A

Instruction Set
Reference

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for the instructions in thé®\6S architecture. It
includes an opcode map, a summary of the instructions — with instruction lengths and execution
times — and a detailed description of each instruction. It contains the following tables:

* Tables A-1 through A-4 deribe the notation used for the instruction operands.

* Table A-6 on page A-4 and Table A-7 on page A-5 comprise the opcode map for the
instruction set.

* Table A-8 on page A-6 through Table A-17 on page A-10 contain supporting material for
the opcode map.

* Table A-18 on page A-12 lists extion times for a group of instructions that access the
port SFRs.

* The following tables list the instructions with their lengths in bytes and their execution
times:

Add and Subtract Instructions, Table A-19 on page A-14

Compare Instructions, Table A-20 on page A-15

Increment and Decrement Instructions, Table A-21 on page A-16

Multiply, Divide, and Decimal-adjust Instructions, Table A-22 on page A-16
Logical Instructions, Tabl&-23 on page A-17

Move Instructions, Tabl&-24 onpageA-19

Exchange, Push, and Pop Instructions, TabRl onpageA-19

Bit Instructions, Table A-26 on page A-23

Control Instructions, Tabla-27 on page A-24

“Instruction Descriptions” on page A-26 contains a detailed description of each instruction.

NOTE

The instruction execution times given in this appendix are for code executing
from on-chip code memory and for data that is read from and written to on-
chip RAM. Execution times are increased by executing code from external
memory, accessing peripheral SFRs, adogs$ata in external memory, using

a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRsx £ 0-3, increases the
execution time. These cases are listed in Table A-18 on page A-12 and are
noted in the instruction summary tables and the instruction descriptions.

I A-1

INSTRUCTION SET REFERENCE

A.1 NOTATION FOR INSTRUCTION OPERANDS

Table A-1. Notation for Register Operands

intel.

Register Notation MCA?fh_ZS:L MACr fh‘.r)l
@RI A memory location (OOH-FFH) addressed indirectly via byte register 0
RO or R1
Rn Byte register RO—R7 of the currently selected register bank
n Byte register index: n = 0-7 O
rrr Binary representation of n
Rm Byte register RO—R15 of the currently selected register file
Rmd Destination register
Rms Source register 0
m, md, ms Byte register index: m, md, ms = 0-15
SSsSs Binary representation of m or md
SSSS Binary representation of ms
WRj Word register WR0, WR2, ..., WR30 of the currently selected register
file
WRjd Destination register
WRjs Source register
@WR]j A memory location (00:0000H-00:FFFFH) addressed indirectly
through word register WR0-WR30 0
@WR]j Data RAM location (00:0000H-00:FFFFH) addressed indirectly
+dis16 through a word register (WR0-WR30) + displacement value
j,jd, js Word register index: j, jd, js = 0-30
tttt Binary representation of j or jd
TTTT Binary representation of js
DRk Dword register DRO, DR4, ..., DR28, DR56, DR60 of the currently
selected register file
DRkd Destination Register
DRks Source Register
@DRk A memory location (00:0000H-FF:FFFFH) addressed Indirectly
through dword register DRO-DR28, DR56, DR60 .
@DRk Data RAM location (00:0000H-FF:FFFFH) addressed indirectly
+dis24 through a dword register (DRO-DR28, DR56, DR60) + displacement
value
k, kd, ks Dword register index: k, kd, ks =0, 4, 8, ..., 28, 56, 60
uuuu Binary representation of k or kd
uuuu Binary representation of ks

A-2

intel.

INSTRUCTION SET REFERENCE

Table A-2. Notation for Direct Addresses

Direct Descrintion MCS® 251 | MCS 51
Address. P Arch. Arch.
dir8 An 8-bit direct address. This can be a memory address O 0

(00:0000H—00:00FFH) or an SFR address (S:00H - S:FFH).
dirlé A 16-bit memory address (00:0000H-00:FFFFH) used in direct O
addressing.
Table A-3. Notation for Immediate Addressing
Immediate _ MCSP 251 | MCS 51
Data Description Arch. Arch.
#data An 8-bit constant that is immediately addressed in an instruction. O O
#datal6 A 16-bit constant that is immediately addressed in an instruction. O
#0datal6 A 32-bit constant that is immediately addressed in an instruction. The 0
#1datal6 upper word is filled with zeros (#0datal6) or ones (#1datal6).
#short A constant, equal to 1, 2, or 4, that is immediately addressed in an
instruction. 0
\AY, Binary representation of #short.
Table A-4. Notation for Bit Addressing
Bit Description MCSP® 251 | MCS 51
Address bt Arch. Arch.
bit A directly addressed bit in memory locations 00:0020H-00:007FH or in
any defined SFR. O
yyy A binary representation of the bit number (0-7) within a byte.
bit51 A directly addressed bit (bit number = 00H-FFH) in memory or an SFR.
Bits 00H-7FH are the 128 bits in byte locations 20H-2FH in the on-chip 0
RAM. Bits 80H-FFH are the 128 bits in the 16 SFR’s with addresses
that end in OH or 8H: S:80H, S:88H, S:90H, . . ., S:FOH, S:F8H.
Table A-5. Notation for Destinations in Control Instructions
Destination Descrintion MCSP 251 | MCS 51

Address It Arch. Arch.

rel A signed (two's complement) 8-bit relative address. The destination is 0 0
-128 to +127 bytes relative to first byte of the next instruction.

addrll An 11-bit destination address. The destination is in the same 2-Kbyte 0 0
block of memory as the first byte of the next instruction.

addrl6 A 16-bit destination address. A destination can be anywhere within 0 0
the same 64-Kbyte region as the first byte of the next instruction.

addr24 A 24-bit destination address. A destination can be anywhere within 0

the 16-Mbyte address space.

A-3

INSTRUCTION SET REFERENCE

A.2 OPCODE MAP AND SUPPORTING TABLES

Table A-6. Instructions for MCS ® 51 Microcontrollers

Bin. 0 1 2 3 4 5 6-7 8-F
Src. 0 1 2 3 4 5 A5 x6-A5x7 | A5x8-A5xF
0 NOP AIMP LIMP RR INC INC INC INC
addrll | addrl6 A A dir8 @Ri Rn

1 JBC ACALL | LCALL RRC DEC DEC DEC DEC
bit,rel addrll | addrl6 A A dir8 @Ri Rn

2 JB AIMP RET RLA ADD ADD ADD ADD
bit,rel addrll A #data A,dir8 A @RI A,Rn

3 JNB ACALL | RETI RLCA ADDC ADDC ADDC ADDC
bit,rel addrll A #data A, dir8 A @RI A,Rn

4 JC AIMP ORL ORL ORL ORL ORL ORL
rel addrll | dir8,A dir8,#data A #data A,dir8 A @RI A,Rn

5 JINC ACALL | ANL ANL ANL ANL ANL ANL
rel addrll | dir8,A dir8,#data A #data A, dir8 A @RI A,Rn

6 Jz AIMP XRL XRL XRL XRL XRL XRL
rel addrll | dir8,A dir8,#data A #data A, dir8 A Q@RI ARnN

7 INZ ACALL | ORL JMP MOV MOV MOV MOV
rel addrll | CV,bit @A+DPTR A #data dir8 #data | @Ri,#data Rn,#data

8 SIMP AIMP ANL MOVC DIV MOV MOV MOV
rel addrll | CV,bit A@A+PC AB dir8,dir8 dir8, @Ri dir8,Rn

9 MOV ACALL | MOV MOVvC SUBB SUBB SUBB SUBB
DPTR,#datal6 | addrll | bit,CY A@A+DPTR A#data A dir8 A @RI A,Rn

A ORL AIMP MOV INC MUL ESC MOV MOV
CY,bit addrll | CY,bit DPTR AB @Ri,dir8 Rn,dir8

B ANL ACALL | CPL CPL CJINE CJINE CJINE CJINE
CY,bit addr1l | bit CY A #data,rel A,dir8,rel @Ri,#data,rel | Rn,#data,rel

C PUSH AIMP CLR CLR SWAP XCH XCH XCH
dir8 addrll | bit CY A A,dir8 A @RI A,Rn

D POP ACALL | SETB SETB DA DJINZ XCHD DJINZ
dir8 addrll | bit CY A dir8,rel A @RI Rn,rel

E MOVX AIMP MOVX CLR MOV MOV MOV
A,@DPTR addrll A @RI A A,dir8 A @RI ARN

F MOV ACALL MOVX CPL MOV MOV MOV
@DPTA addrll @Ri,A A dir8,A @Ri,A Rn,A

A4

intel.

INSTRUCTION SET REFERENCE

Table A-7. New Instructions for the MCS ® 251 Architecture
Bin. | A5 x8 A5x9 A5 XA A5 xB A5xC A5xD A5XE A5XF
Src. X8 X9 XA xB xC xD XE XxF
0 JSLE | MOV MOvVZz INC R,#short (1) SRA
rel Rm,@WRj+dis | WRj,Rm MOV reg,ind reg
1 JSG MOV MOVS DEC R/#short (1) SRL
rel @WRj+dis,Rm WRj,Rm MOV ind,reg reg
2 JLE MOV ADD ADD ADD ADD
rel Rm,@DRk+dis Rm,Rm WRj,WRj reg,0p2 (2) | DRk,DRk
3 JG MOV SLL
rel @DRk+dis,Rm reg
4 JSL MOV ORL ORL ORL
rel WRj,@WRj+dis Rm,Rm WRj,WRj | reg,0p2(2)
5 JSGE | MOV ANL ANL ANL
rel @WRj+dis,WRj Rm,Rm WRj,WRj reg,op2 (2)
6 JE MOV XRL XRL XRL
rel WRj, @DRk+dis Rm,Rm WRj,WRj | reg,0p2(2)
7 JNE MOV MOV MOV MOV MOV MOV
rel @DRk+dis,WRj | opl,reg (2) Rm,Rm WRj,WRj reg,0p2 (2) | DRk,DRk
8 LIMP @WRj EJMP DIV DIV
EJMP @DRk addr24 Rm,Rm WRj,WRj
9 LCALL@WRj ECALL SUB SuUB SuB SuB
ECALL @DRk addr24 Rm,Rm WRj,WRj reg,0p2 (2) | DRk,DRk
A Bit ERET MUL MUL
Instructions (3) Rm,Rm WRj,WR]j
B TRAP CMP CMP CMP CMP
Rm,Rm WRj,WRj reg,0p2 (2) | DRk,DRk
C PUSH op1 (4)
MOV DRk,PC
D POP
opl(4)
E
F
NOTES:
1. R =Rm/WRj/DRk.
2. opl, op2 are defined in Table A-8 on page A-6.
3. See Tables A-10 and A-11 on page A-7.
4. See Table A-12 on page A-8.

A-5

INSTRUCTION SET REFERENCE

Table A-8. Data Instructions

Instruction Byte O Byte 1 Byte 2 Byte 3

Oper Rmd,Rms x | C md ms

Oper WRjd,WRjs x | D jar2 jsi2

Oper DRkd,DRks x| F kd/4 ks/4

Oper Rm #data X | E m 0000 #data

Oper WRj,#datal6 X | E 2 0100 #data (high) #data (low)
Oper DRk, #datal6 x | E k/4 1100 #data (high) #data (low)
MOV DRk(h),#datal6 7 A k/4 1000 #data (high) #data (low)
MOV DRk,#1datal6 7| E

CMP DRk,#1datal6 B | E

Oper Rm,dir8 x | E m 0001 dir8 addr

Oper WRj,dir8 x | E 2 0101 dir8 addr

Oper DRK,dir8 x | E k/4 1101 dir8 addr

Oper Rm,dirl6 x | E m 0011 dir16 addr (high) dirl6 addr (low)
Oper WRj,dirl6 x | E jr2 0111 dirl6 addr (high) dirl6 addr (low)
Oper DRK,dir16 x | E k/4 1111 dir16 addr (high) dirl6 addr (low)
Oper Rm,@WR]j x | E jl2 1001 m 00

Oper Rm,@DRk x | E k/4 1011 m 00

Table A-9. High Nibble, Byte 0 of Data Instructions

X Operation Notes

2 ADD reg,op2

9 SUB reg,op2

B CMP reg,0p2

2 ORL reg,op? gljlpe’la%(:trsg.sm modes are
5 ANL reg,op2

6 XRL reg,op2

7 MOV reg,0p2

8 DIV reg,0p2 | Two modes only:

A MUL reg,op2 :23:82; z \I?Vrjrédvl\‘;’]rsns

intel.

All of the bit instructions in the MCS 251 architecture (Table A-7) have opcode A9, which serves
as an escape byte (similar to A5). The high nibble of byte 1 specifies the bit instruction, as given

in Table A-10.
Table A-10. Bit Instructions
Instruction Byte 0(x) Byte 1 Byte 2 Byte 3
1 | Bit Instr (dir8) A ‘ 9 XXXX ‘ 0 ‘ bit dir8 addr

Table A-11. Byte 1 (High Nibble) for Bit Instructions

XXXX Bit Instruction
0001 JBC hit
0010 JB bit

0011 JNB bit
0111 ORL CY,bit
1000 ANL CY,bit
1001 MOV bit,CY
1010 MOV CY,bit
1011 CPL bit
1100 CLR bit
1101 SETB hit
1110 ORL CY, /bit
1111 ANL CY, /bit

INSTRUCTION SET REFERENCE

A-7

INSTRUCTION SET REFERENCE Int9|®

Table A-12. PUSH/POP Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3
PUSH #data Cc A 0000 0010 #data
PUSH #datal6 C A 0000 | 0110 #datal6 (high) #data16 (low)
PUSH Rm C A m 1000
PUSH WRj C A 2 1001
PUSH DRk C A k/4 1011
MOV DRk,PC C A k/4 0001
POP Rm D A m 1000
POP WR] D A ir2 1001
POP DRk D A k/4 1011
Table A-13. Control Instruct ions
Instruction Byte O(Xx) Byte 1 Byte 2 Byte 3
EJMP addr24 8 A addr[23:16] addr[15:8] addr[7:0]
ECALL addr24 9 A addr[23:16] addr[15:8] addr[7:0]
LIMP @WRj 8 9 2 0100
LCALL @WRj 9 9 2 0100
EJMP @DRk 8 9 k/4 1000
ECALL @DRk 8 9 k/4 1000
ERET A A
JE rel 8 8 rel
JNE rel 7 8 rel
JLE rel 2 8 rel
JG rel 3 8 rel
JSL rel 4 8 rel
JSGE rel 5 8 rel
JSLE rel 0 8 rel
JSG rel 1 8 rel
TRAP B 9

A-8

intel.

INSTRUCTION SET REFERENCE

Table A-14. Displacement/Extended MOVs

Instruction Byte 0 Byte 1 Byte 2 Byte 3
MOV Rm,@WRj+dis 0|9 m jr2 dis[15:8] dis[7:0]
MOV WRk,@WRj+dis 4|9 i2 | k2 dis[15:8] dis[7:0]
MOV Rm,@DRk+dis 2|9 m | ki4 dis[15:8] dis[7:0]
MOV WRj, @DRk+dis 6|9 i2 | ka dis[15:8] dis[7:0]
MOV @WRj+dis,Rm 119 m | j2 dis[15:8] dis[7:0]
MOV @WRj+dis,WRk 519 iz | k2 dis[15:8] dis[7:0]
MOV @DRk+dis,Rm 3|9 m | ki4 dis[15:8] dis[7:0]
MOV @DRKk+dis,WR] 7109 i2 | ka dis[15:8] dis[7:0]
MOVS WRj,Rm 1]A 2] m
MOVZ WRj,Rm 0| A 21 m
MOV WRj, @WR; 0| B jl2 | 1000 jl2 0000
MOV WRj,@DRk 0| B k/4 | 1010 2 0000
MOV @WRj,WRj 1|8 ji2 | 1000 jl2 0000
MOV @DRk,WRj 1|B k/4 | 1010 2 0000
MOV dir8,Rm 7| A m | 0001 dir8 addr
MOV dir8,WRj 7| A j/2 | 0101 dir8 addr
MOV dir8,DRk 71 A k/4 | 1101 dir8 addr
MOV dirl6,Rm 71 A m | 0011 dirl6 addr (high) dirl6 addr (low)
MOV dirl6,WRj 7| A 2 | 0111 dirl6 addr (high) dirl6 addr (low)
MOV dir16,DRk 7 1A k/i4 | 1111 dirl6 addr (high) dirl6 addr (low)
MOV @WRj,Rm 7| A i/2 | 1001 m 0000
MOV @DRk,Rm 7| A k/4 | 1011 m 0000

INSTRUCTION SET REFERENCE

A-10

Table A-15. INC/DEC

Instruction Byte 0 Byte 1
1 | INC Rm,#short 0| B m | 00 | ss
2 | INC WRji#short 0| B jl2 101 ss
3 | INC DRKk,#short 0| B kid | 11 | ss
4 | DEC Rm#short 1| B m | 00 | ss
5 | DEC WRj#short 1| B 2 {01] ss
6 | DEC DRK,#short 1| B k/id | 11 | ss

Table A-16. Encoding for INC/DEC

ss #short
00 1
01 2
10 4

Table A-17. Shifts

Instruction Byte 0 Byte 1
1| SRARmM 0| E m | 0000
2 | SRAWR]j 0| E j/2 | 0100
3 | SRLRm 1| E m | 0000
4 | SRL WRj 1| E j/2 | 0100
5 | SLL Rm 3| E m | 0000
6 | SLL WRj 3| E j/2 | 0100

Int9|® INSTRUCTION SET REFERENCE

A.3 INSTRUCTION SET SUMMARY

This section contains tables that summarize the instruction set. For each instruction there is a
short decription, its length in bytes, and its execution time in states.

NOTE

The instruction execution times given in the tables are for code executing from
on-chip code memory and for data that is read from and written to on-chip
RAM. Execution times are increased by executing code from external
memory, accessing peripheral SFRs, adogs$ata in external memory, using

a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs¢x £ 0-3, increases the
execution time. These cases are noted individually in the tables.

A.3.1 Execution Times for Instructions that Access the Port SFRs

The execution timefr someinstructions increase when the instruction accesses a port FR (P
x = 0-3) as opposed to any other SFR. Table A-18 lists thasecisns and the execution times
for Case O:

* Case 0. Code executes from on-chip OTPROM/ROM and accesses locations in on-chip data
RAM. The port SFRs are not accessed.
In Cases 1-4, the instructions access a port SFR:
* Case 1. Code executes from on-chip OTPROM/ROM and accesses a port SFR.

* Case 2. Code executes from external memory with no wait state and a short ALE (not
extended) and accesses a port SFR.

* Case 3. Code executes from external memory with one wait state and a short ALE (not
extended) and accesses a port SFR.

* Case 4. Code executes from external memory with one wait state and an extended ALE, and
accesses a port SFR.

The times for Cases 1 thugh 4are expressed as thember of state times to add ttee state
times for given for Case 0.

A-11

INSTRUCTION SET REFERENCE

A-12

Table A-18. State Timesto Access the Port SFRs

Instruction

Case 0
Execution Times

Additional State Times

Binary Source

Case 1

Case 2 Case 3

Case 4

ADD A,dir8

1

[

[

N
w

I

ADD Rm,dir8

ADDC A,dir8

ANL A,dir8

ANL CY,bit

ANL CY,bit51

ANL CY,/bit

ANL CY,/bit51

ANL dir8 #data

ANL dir8,A

ANL Rm,dir8

CLR bit

CLR bit51

CMP Rm,dir8

CPL bit

CPL bit51

DEC dir8

INC dir8

MOV A,dir8

MOV bit,CY

MOV bit51,CY

MOV CY,bit

MOV CY,bit51

MOV dir8 #data

MOV dir8,A

MOV dir8,Rm

MOV dir8,Rn

MOV Rm,dir8

MOV Rn,dir8

ORL A,dir8

ORL CY,bit

ORL CY,bit51

ORL CY,/bit

WP W|IRP[P|WOWIN[AINWIRP]|WOIN[AR|P|ININDNNAMWO|IN|AMWINW(RP|W|RP|[W|RP|PFP|®
NP [INIRP[ININW[WI[N[W[RPL[N[N[W[RPINININ][OW[IN[N]OIN[N]|OW[RPR[N]|RP[N|[RP]FPL[DN

Rlr|lRr|lr|kr|rr|RrRr|Rr[Rr|R|INM|N|R[NM|NNNRINN RN R R R Rr Rk

NIN[INININININDINDININDINNBANDABD]BDIDNB]BINB]BINND]DNDINNDDNN
W W W W[W W W(W| W W W WO W|Oo|O|O|O(W| || W| || W|Ww|w|[w|w|w|w

Al |O|0W([0|O|~|[O||A~[O|O(A~[D]| D[] B>

intel.

Table A-18.

State Times to Access the Port SFRs (Continued)

INSTRUCTION SET REFERENCE

Instruction

Case 0
Execution Times

Additional State Times

Binary

Source

Case 1

Case 2 Case 3

Case 4

ORL CY,/bit51

1

[

[

N
w

I

ORL dir8,#data

ORL dir8,A

ORL Rm,dir8

SETB bit

SETB bit51

SUB Rm,dir8

SUBB A,dir8

XCH A,dir8

XRL A,dir8

XRL dir8 #data

XRL dir8,A

XRL Rm,dir8

WINW([RP|W[(Rr[W|NA[fW|DNMNW

NINW[[RPR|W[RL[NDN|NDW[N]DN|W

RPININ|IFP|INIP|IRPININ[FRP[N]PF

N[NNI BN
Wl olojlwolw(lwj o|lo(w|o|w

h|lOO|[OO|(D|O(A~|[D|O|[O|(D|]0O|H

A-13

INSTRUCTION SET REFERENCE

intel.

A.3.2 Instruction Summaries
Table A-19. Summary of Add and Subtract Instructions
Add ADD <dest>,<src> destopnd ~ destopnd + src opnd
Subtract SUB <dest>,<src> destopnd ~ destopnd - src opnd
Add with Carry ADDC <dest>,<src> (A) < (A) + src opnd + carry bit

Subtract with Borrow SUBB <dest>,<src> (A) ~ (A) - src opnd - carry bit
Binary Mode | Source Mode
Mnemonic | <dest>,<src> Notes
Bytes |States |Bytes [States

ARn Reg to acc 1 1 2 2

ADD A,dir8 Dir byte to acc 2 1(2) 2 1(2)
A @RI Indir addr to acc 1 2 2 3
A#data Immediate data to acc 2 1 2 1
Rmd,Rms Byte reg to/from byte reg 3 2 2 1
WRjd,WRjs Word reg to/from word reg 3 3 2 2
DRkd,DRks Dword reg to/from dword reg 3 5 2 4
Rm #data Immediate 8-bit data to/from byte reg 4 3 3 2
WRj #datal6 Immediate 16-bit data to/from word reg 5 4 4 3

ADD: DRk,#0datal6 16-bit unsigned immediate data to/from 5 6 4 5

' dword reg

SuB Rm,dir8 Dir addr to/from byte reg 4 3 3 2(2)
WRj,dir8 Dir addr to/from word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to/from byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to/from word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to/from byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) to/from byte reg 4 4 3 3
A,Rn Reg to/from acc with carry 1 1 2 2

ADDC: A,dir8 Dir byte to/from acc with carry 2 1(2) 2 1(2)

SUBB A @RI Indir RAM to/from acc with carry 1 2 2 3
A #data Immediate data to/from acc with carry 2 1 2 1

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. If thisinstruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.

A-14

intel.

INSTRUCTION SET REFERENCE

Table A-20. Summary of Compare Instructions

Compare CMP <dest>,<src> dest opnd — src opnd
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes [tates
Rmd,Rms Reg with reg 3 2 2 1
WRjd,WRjs Word reg with word reg 3 3 2 2
DRkd,DRks Dword reg with dword reg 3 5 2 4
Rm #data Reg with immediate data 4 3 3 2
WRj,#datal6 Word reg with immediate 16-bit data 5 4 4 3
DRk,#0datal6 Dword reg with zero-extended 16-bit 5 6 4 5
immediate data
CMP DRk,#1datal6 Dword reg with one-extended 16-bit 5 6 4 5
immediate data
Rm,dir8 Dir addr from byte reg 4 3t 3 2t
WRj,dir8 Dir addr from word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) from byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) from word reg 5 4 4 3
Rm,@WRj Indir addr (64K) from byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) from byte reg 4 4 3 3

TIf this instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.

A-15

INSTRUCTION SET REFERENCE Int9|®

Table A-21. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) ~ (DPTR) +1
Increment INC byte byte ~ byte+1
Increment INC <dest>,<src> destopnd ~ dest opnd + src opnd
Decrement DEC byte byte ~ byte-1
Decrement DEC <dest>,<src> destopnd ~ destopnd - src opnd
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes pBtates
A acc 1 1 1 1
Rn Reg 1 1 2 2
dir8 Dir byte 2 2(2) 2 2(2)
INC; - -
@RI Indir RAM 1 3 2 4
DEC
Rm,#short Byte regby 1, 2, or 4 3 2 2 1
WRj,#short Wordregby 1,2, 0r4 3 2 2 1
DRK,#short Double wordreg by 1, 2, or 4 3 4 2 3
INC DPTR Data pointer 1 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Ifthis instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

Table A-22. Summary of Multiply, Divide, and Decimal-adjust Instructions

Multiply MUL <regl,reg2> 2)
MUL AB (B:A) =AxB
Divide DIV <regl>,<reg2> 2
DIV AB (A) =Quotient; (B) =Remainder
Decimal-adjust ACC DA A 2)
for Addition (BCD)
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes [Ptates
AB Multiply A and B 1 5 1 5
MUL Rmd,Rms Multiply byte reg and byte reg 3 6 2 5
WRjd,WRjs Multiply word reg and word reg 3 12 2 1
AB Divide A by B 1 10 1 10
DIV Rmd,Rms Divide byte reg by byte reg 3 11 2 10
WRjd,WRjs Divide word reg by word reg 3 21 2 20
DA A Decimal adjust acc 1 1 1 1

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. See “Instruction Descriptions” on page A-26

A-16

intel.

INSTRUCTION SET REFERENCE

Table A-23. Summary of Logical Instructions

Logical AND ANL <dest>,<src> destopnd ~destopnd A src opnd
Logical OR ORL <dest>,<src> destopnd ~ destopndV src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ~ destopnd O src opnd
Clear CLR A A) <0
Complement CPLA (A)) « D(A)
Rotate RXX A 1)
Shift SXX Rm or Wj 1)
SWAP A A3:0 -~ A7:4
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes [States
ARn Regto acc 1 1 2 2
A,dir8 Dir byte to acc 2 1(3) 2 1(3)
A @RI Indir addr to acc 1 2 2 3
A#data Immediate data to acc 2 1 2 1
dir8,A Acc to dir byte 2 24 2 2 (4)
dir8 #data Immediate data to dir byte 3 34 3 34
Rmd,Rms Byte reg to byte reg 3 2 2 1
gﬁt WRjd,WRjs Word reg to word reg 3 3 2 2
XRL" Rm #data 8-bit data to byte reg 4 3 3 2
' WRj#datalé | 16-bit data to word reg 5 4 4 3
Rm,dir8 Dir addr to byte reg 4 3(3) 3 2(3)
WR;j,dir8 Dir addr to word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3
CLR A Clear acc 1 1 1 1
CPL A Complement acc 1 1 1 1
RL A Rotate acc left 1 1 1 1
RLC A Rotate acc left through the carry 1 1 1 1
RR A Rotate acc right 1 1 1 1
RRC A Rotate acc right through the carry 1 1 1 1
SLL Rm Shift byte reg left 3 2 2 1
WRj Shift word reg left 3 2 2 1
NOTES:

1. See “Instruction Descriptions” on page A-26.
2. Ashaded cell denotes an instruction in the MCS® 51 architecture.

3. Ifthisinstruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

A-17

INSTRUCTION SET REFERENCE Int9|®

Table A-23. Summary of Logical Instructions (Continued)

Logical AND ANL <dest>,<src> destopnd ~destopnd A src opnd
Logical OR ORL <dest>,<src> destopnd ~ destopndV src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ~ destopnd 0O src opnd
Clear CLR A A) <0
Complement CPLA (A)) « D(A)
Rotate RXX A 1)
Shift SXX Rm or Wj 2)
SWAP A A3:0 -~ A7:4
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes [States
SRA Rm Shift byte reg right through the MSB 3 2 2 1
WRj Shift word reg right through the MSB 3 2 2 1
SRL Rm Shift byte reg right 3 2 2 1
WRj Shift word reg right 3 2 2 1
SWAP A Swap nibbles within the acc 1 2 1 2
NOTES:

1. See “Instruction Descriptions” on page A-26.

2. Ashaded cell denotes an instruction in the MCS® 51 architecture.

3. Ifthisinstruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

A-18

intel.

Table A-24. Summary of

INSTRUCTION SET REFERENCE

Move Instructions

Move (2)

Move with Sign Extension
Move with Zero Extension
Move Code Byte

Move to External Mem
Move from External Mem

MOV <dest>,<src>
MOVS <dest>,<src>
MOVZ <dest>,<src>

MOVC <dest>,<src>
MOVX <dest>,<src>
MOVX <dest>,<src>

destination ~ src opnd
destination ~ src opnd with sign extend
destination ~ src opnd with zero extend

A < code byte
external mem ~ (A)
A~ source opnd in external mem

Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States [Bytes [States

A,Rn Reg to acc 1 1 2 2
A,dir8 Dir byte to acc 2 1(3) 2 1(3)
A @RI Indir RAM to acc 1 2 2 3
A#data Immediate data to acc 2 1 2 1
Rn,A Acc to reg 1 1 2 2
Rn,dir8 Dir byte to reg 2 1(3) 3 2(3)
Rn,#data Immediate data to reg 2 1 3 2
dir8,A Acc to dir byte 2 2(3) 2 2(3)
dir8,Rn Reg to dir byte 2 2(3) 3 3(3)
dir8,dir8 Dir byte to dir byte 3 3 3 3
dir8, @Ri Indir RAM to dir byte 2 3 3 4
dir8,#data Immediate data to dir byte 3 3(3) 3 3(3)

MOV @Ri,A Acc to indir RAM 1 3 2 4
@Ri,dir8 Dir byte to indir RAM 2 3 3 4
@RI #data Immediate data to indir RAM 2 3 3 4
DPTR, #datal6 Load Data Pointer with a 16-bit const 3 2 3 2
Rmd,Rms Byte reg to byte reg 3 2 2 1
WRjd,WRjs Word reg to word reg 3 2 2 1
DRkd,DRks Dword reg to dword reg 3 3 2 2
Rm #data 8-bit immediate data to byte reg 4 3 3 2
WRj #datal6 16-bit immediate data to word reg 5 3 4 2
DRk,#0data16 zero-extended 16-bit immediate data 5 5 4 4

to dword reg
DRk, #1datal6 one-extended 16-bit immediate data 5 5 4 4
to dword reg
NOTES:

1. Ashaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26 on page A-23.

3. If thisinstruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by
DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

A-19

INSTRUCTION SET REFERENCE

intel.

Table A-24. Summary of Move Instructions (Continued)

Move (2)

Move with Sign Extension
Move with Zero Extension
Move Code Byte

Move to External Mem
Move from External Mem

MOV <dest>,<src>
MOVS <dest>,<src>
MOVZ <dest>,<src>

MOVC <dest>,<src>
MOVX <dest>,<src>
MOVX <dest>,<src>

destination ~ src opnd
destination ~ src opnd with sign extend
destination ~ src opnd with zero extend

A < code byte
external mem ~ (A)
A~ source opnd in external mem

Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States [Bytes [States
DRK,dir8 Dir addr to dword reg 4 6 3 5
DRk,dir16 Dir addr (64K) to dword reg 5 6 4 5
Rm,dir8 Dir addr to byte reg 4 3(3) 3 2(3)
WRj,dir8 Dir addr to word reg 4 4 3 3
Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to byte reg 4 2 3 2
Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3
WRjd, @WRjs Indir addr(64K) to word reg 4 4 3 3
WRj,@DRk Indir addr(16M) to word reg 4 5 3 4
dir8,Rm Byte reg to dir addr 4 4 (3) 3 3(3)
dir8,WR}j Word reg to dir addr 4 5 3 4
MOV dirl6,Rm Byte reg to dir addr (64K) 5 4 4 3
dirl6,WRj Word reg to dir addr (64K) 5 5 4 4
@WRj,Rm Byte reg to indir addr (64K) 4 4 3 3
@DRkK,Rm Byte reg to indir addr (16M) 4 5 3 4
@WRjd,WRjs Word reg to indir addr (64K) 4 5 3 4
@DRK,WRj Word reg to indir addr (16M) 4 6 3 5
dir8,DRk Dword reg to dir addr 4 7 3 6
dirl6,DRk Dword reg to dir addr (64K) 5 7 4 6
Rm,@WRj+dis16 | Indir addr with disp (64K) to byte reg 5 6 4 5
WRj,@WRj+dis16 | Indir addr with disp (64K) to word reg 5 7 4 6
Rm,@DRk+dis24 | Indir addr with disp (16M) to byte reg 5 7 4 6
WRj,@DRk+dis24 | Indir addr with disp (16M) to word reg 5 8 4 7
@WRj+dis16,Rm | Byte reg to Indir addr with disp (64K) 5 6 4 5
NOTES:

1. Ashaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26 on page A-23.

3. If thisinstruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by
DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

A-20

intel.

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions (Continued)

Move (2) MOV <dest>,<src> destination ~ src opnd
Move with Sign Extension MOVS <dest>,<src> destination ~ src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination ~ src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A < code byte
Move to External Mem MOVX <dest>,<src> external mem ~ (A)
Move from External Mem MOVX <dest>,<src> A~ source opnd in external mem
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes [States |[Bytes [States
@WRj+dis16,WRj | Word reg to Indir addr with disp (64K) 7 4 6
MOV @DRk+dis24,Rm | Byte reg to Indir addr with disp (16M) 7 4 6
@DRk+dis24,WRj | Word reg to Indir addr with disp 8 4 7
(16M)
MOVH DRKk(hi), #datal6 16-bit immediate data into upper 5 3 4 2
word of dword reg
MOVS WRj,Rm Byte reg to word reg with sign 3 2 2 1
extension
MOVZ WRj,Rm Byte reg to word reg with zeros 3 2 2 1
extension
MOVC A@A+DPTR Code byte relative to DPTR to acc 1 6 1 6
A@A+PC Code byte relative to PC to acc 1 6 1 6
A,@Ri External mem (8-bit addr) to acc (4) 1 4 2 5
MOVX A,@DPTR External mem (16-bit addr) to acc (4) 1 5 1 5
@Ri,A Acc to external mem (8-bit addr) (4) 1 4 1 4
@DPTR,A Acc to external mem (16-bit addr) (4) 1 5 1 5
NOTES:

1. Ashaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26 on page A-23.

3. If thisinstruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by
DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

A-21

INSTRUCTION SET REFERENCE Int9|®

Table A-25. Summary of Ex change, Push, and Pop Instructions
Exchange Contents XCH <dest>,<src> A o srcopnd
Exchange Digit XCHD <dest>,<src> A3:0 « on-chip RAM bits 3:0
Push PUSH <src> SP ~ SP+1;(SP) ~ src
Pop POP <dest> dest —~ (SP); SP - SP-1
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes [States

A,Rn Acc and reg 2 3 2 3
XCH A,dir8 Acc and dir addr 2 3(2 2 3(2)

A,@Ri Acc and on-chip RAM (8-bit addr) 1 4 1 4
XCHD A @RI Acc and low nibble in on-chip RAM 1 4 1 4

(8-bit addr)

dir8 Push dir byte onto stack 2 2 2

#data Push immediate data onto stack

#datal6 Push 16-bit immediate data onto 5 5 4 5
PUSH stack

Rm Push byte reg onto stack 3 4 2

WRj Push word reg onto stack 3 2

DRk Push double word reg onto stack 3 10 2

Dir Pop dir byte from stack 2 3/3 2 3/3

Rm Pop byte reg from stack 3 2
POP - POy g

WRj Pop word reg from stack 3 2

DRk Pop double word reg from stack 3 2
NOTES:

1. Ashaded cell denotes an instruction in the MCS® 51 architecture.
2. If thisinstruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

A-22

intel.

INSTRUCTION SET REFERENCE

Table A-26. Summary of Bit Instructions

Clear Bit CLR bit bit -0

Set Bit SETB bit bit ~ 1

Complement Bit CPL bit bit ~ @bit

AND Carry with Bit ANL CY,bit CY < CYAhbit

AND Carry with Complement of Bit ~ ANL CY,/bit CY ~ CYA@bit

OR Carry with Bit ORL CY,bit CY «~ CY Vhbit

ORL Carry with Complement of Bit ~ ORL CY,/bit CY <~ CYVdbit

Move Bit to Carry MOV CY,bit CY < bit

Move Bit from Carry MOV bit,CY bit ~ CY

Binary Mode | Source Mode
Mnemonic |<src>,<dest> Notes
Bytes |States |Bytes States

CY Clear carry 1 1 1 1

CLR bit51 Clear dir bit 2 2(2) 2 2(2)
bit Clear dir bit 4 4 3 3
CY Set carry 1 1 1 1

SETB bit51 Set dir bit 2 2(2) 2 2(2)
bit Set dir bit 4 4(2) 3 3(2)
CY Complement carry 1 1 1 1

CPL bit51 Complement dir bit 2 2(2) 2 2(2)
bit Complement dir bit 4 4(2) 3 3(2)

ANL CY,bit51 AND dir bit to carry 2 1(3) 2 1(3)
CY,bit AND dir bit to carry 4 3(3) 3 2(3)

ANL/ CY,/bit51 AND complemented dir bit to carry 2 1(3) 2 1(3)
CY,/bit AND complemented dir bit to carry 4 3(3) 3 2(3)

ORL CY,bit51 OR dir bit to carry 2 1(3) 2 1(3)
CY,bit OR dir bit to carry 4 3(3) 3 2(3)

ORL/ CY,/bit51 OR complemented dir bit to carry 2 1(3) 2 1(3)
CY,/bit OR complemented dir bit to carry 4 3(3) 3 2(3)
CY,bit51 Move dir bit to carry 2 1(3) 2 1(3)

MOV CY,bit Move dir bit to carry 4 3(3) 3 2(3)
bit51,CY Move carry to dir bit 2 2(2) 2 2(2)
bit,CY Move carry to dir bit 4 4(2) 3 3(2)

NOTES:

1. Ashaded cell denotes an instruction in the MCS® 51 architecture.
2. Ifthis instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.
3. Ifthis instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.

A-23

INSTRUCTION SET REFERENCE

Table A-27. Summary of Control Instructions

intel.

Binary Mode Source Mode
Mnemonic |<dest>,<src> Notes
Bytes | States (2) |Bytes States (2)
ACALL addrll Absolute subroutine call 2 9 2 9
@DRk Extended subroutine call, indirect 3 12 2 11
ECALL
addr24 Extended subroutine call 5 14 4 13
@WR]j Long subroutine call, indirect 3 2 8
LCALL -
addrl6 Long subroutine call 3 3 9
RET Return from subroutine 1 6 1 6
ERET Extended subroutine return 3 10 2 9
RETI Return from interrupt 1 6 1 6
AIMP addrll Absolute jump 2 3 2 3
addr24 Extended jump 5 6 4 5
EJMP - —
@DRk Extended jump, indirect 3 7 2 6
@WR]j Long jump, indirect 3 6 2 5
LIMP -
addrl6 Long jump 3 4 3 4
SIMP rel Short jump (relative addr) 2 3 2 3
JMP @A+DPTR Jump indir relative to the DPTR 1 5 1 5
JC rel Jump if carry is set 2 1/4 2 1/4
JNC rel Jump if carry not set 2 1/4 2 1/4
bit51,rel Jump if dir bit is set 3 2/5 3 2/5
JB bit,rel Jump if dir bit of 8-bit addr location | 5 417 4 3/6
is set
bit51,rel Jump if dir bit is not set 3 2/5 3 2/5
INB bit,rel Jump if dir bit of 8-bit addr location 47 3/6
is not set
bit51,rel Jump if dir bit is set & clear bit a/7 417
JBC bit,rel Jump if dir bit of 8-bit addr location 5 7/10 4 6/9
is set and clear bit
Jz rel Jump if acc is zero 2 2/5 2 2/5
JINZ rel Jump if acc is not zero 2 2/5 2 2/5
JE rel Jump if equal 3 2/5 2 1/4
JINE rel Jump if not equal 3 2/5 2 1/4
JG rel Jump if greater than 3 2/5 2 1/4
JLE rel Jump if less than or equal 3 2/5 2 1/4
NOTES:

1. Ashaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-24

intel.

INSTRUCTION SET REFERENCE

Table A-27. Summary of Control Instructions (Continued)

Binary Mode Source Mode
Mnemonic |<dest>,<src> Notes
Bytes | States (2) |Bytes States (2)
JSL rel Jump if less than (signed) 3 2/5 2 1/4
JSLE rel Jump if less than or equal (signed) 3 2/5 2 1/4
JSG rel Jump if greater than (signed) 3 2/5 2 1/4
JSGE rel Jump if greater than or equal 3 2/5 2 1/4
(signed)
A.,dir8,rel Compare dir byte to acc and jump 3 2/5 3 2/5
if not equal
A#data,rel Compare immediate to acc and 3 2/5 3 2/5
jump if not equal
CJINE
Rn,#data,rel Compare immediate to reg and 3 2/5 4 3/6
jump if not equal
@Ri,#data,rel | Compare immediate to indir and 3 3/6 4 a/7
jump if not equal
Rn,rel Decrement reg and jump if not 3 2/5 3 3/6
zero
DJINZ - - - -
dir8,rel Decrement dir byte and jump if not 3 3/6 3 3/6
zero
TRAP — Jump to the trap interrupt vector 2 10 9
NOP — No operation 1 1
NOTES:

1. Ashaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-25

INSTRUCTION SET REFERENCE Int9|®

A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in the MCS 251 architecture. See the note on page A-11
regarding execution times.

Table A-28 defines the symbols-(0, 1, 0, ?) used to indicate the effect of the instruction on the

flags in the PSW and PSW1 registers. For a conditional jump instruction, “!” indicates that a flag
influences the decision to jump.

Table A-28. Flag Symbols

Symbol Description

— The instruction does not modify the flag.

O The instruction sets or clears the flag, as appropriate.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: The state of the flag before the

instruction executes influences the decision to jump or not jump.

ACALL <addr11>
Function: Absolute call
Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-

byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte 0 first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15-11 of the incremented PC,
opcode bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte “page” of the program memory as the first byte of the
instruction following ACALL.

Flags:

CY AC ov N 4

Example: The stack pointer (SP) contains 07H and the label "'SUBRTN" is at program memory location
0345H. After executing the instruction

ACALL SUBRTN

at location 0123H, SP contains 09H; on-chip RAM locations 08H and 09H contain 01H
and 25H, respectively; and the PC contains 0345H.

A-26

Int9|® INSTRUCTION SET REFERENCE

Binary Mode Source Mode

Bytes: 2 2
States: 9 9
[Encoding] al0a9 a8 1 0001 ‘ ‘ a7a6a5a4 | a3a2ala0

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ACALL
(PC) « (PC) +2
(SP) « (SP) +1
((SP)) ~ (PC.7:0)
(SP) « (SP) +1
((SP)) ~ (PC.15:8)
(PC.10:0) ~ page address

ADD <dest>,<src>
Function: Add

Description: Adds the source operand to the destination operand, which can be a register or the accumu-
lator, leaving the result in the register or accumulator. If there is a carry out of bit 7 (CY), the
CY flag is set. If byte variables are added, and if there is a carry out of bit 3 (AC), the AC flag
is set. For addition of unsigned integers, the CY flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, and

immediate.
Flags:
CY AC ov
O O O
Example: Register 1 contains 0C3H (11000011B) and register O contains 0AAH (10101010B). After
executing the instruction
ADD R1,R0
register 1 contains 6DH (01101101B), the AC flag is clear, and the CY and OV flags are set.
Variations
ADD A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0010 0100 ‘ ‘ immed. data

A-27

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADD
(A) « (A) + #data
ADD A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0010 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADD
(A) « (A) + (dir8)
ADD A @RI
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0010 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ADD
(A) « (A) + ((RD)
ADD ARn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0010 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ADD

A-28

(A) ~ (A) + (Rn)

intel.

INSTRUCTION SET REFERENCE

ADD Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0010 1100 ‘ ‘ ssss Ssss
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(Rmd) ~ (Rmd) + (Rms)
ADD WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 0010 1101 ‘ ‘ tttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(WRjd) ~ (WRjd) + (WRjs)
ADD DRkd,DRks
Binary Mode Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 0010 1111 ‘ ‘ uuuu uuuu
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(DRkd) — (DRkd) + (DRks)
ADD Rm #data
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 0010 1110 | | ssss 0000 | | #data

A-29

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD

(Rm) — (Rm) + #data

ADD WRj,#datal6

Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0010 1110 | [tett 0100 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(WRj) « (WR)) + #datal6
ADD DRK,#0datal16
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0010 1110 | | uuuu 1000 | | #datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(DRK) ~ (DRK) + #datal6
ADD Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0010 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD

(Rm) — (Rm) + (dir8)

A-30

intel.

INSTRUCTION SET REFERENCE

ADD WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0010 1110 ‘ ‘ tttt 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding
Operation: ADD
(WRj) « (WRj) + (dir8)
ADD Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0010 1110 ‘ ‘ SSsSs 0011 ‘ ‘ direct addr ‘ ‘ direct add
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(Rm) — (Rm) + (dirl6)
ADD WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0010 1110 | | et 0111 | | directaddr | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(WRj) « (WRj) + (dir16)
ADD Rm,@WR]
Binary Mode Source Mode
Bytes: 4 3
States: 3 2

A-31

INSTRUCTION SET REFERENCE Int9|®

[Encoding]
0010 1110 | [tett 1001 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD
(Rm) — (Rm) + ((WRj))
ADD Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0010 1110 | | uuuu 1011 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD

(Rm) —~ (Rm) + ((DRK))

ADDC A, <src>
Function:

Description:

Flags:

Example:

A-32

Add with carry

Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

CY AC ov
0 0 0

The accumulator contains 0C3H (11000011B), register 0 contains OAAH (10101010B), and
the CY flag is set. After executing the instruction

ADDC A,RO

the accumulator contains 6EH (01101110B), the AC flag is clear, and the CY and OV flags
are set.

Int9|® INSTRUCTION SET REFERENCE

Variations
ADDC A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0011 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) < (A) + (CY) + #data

ADDC A,dir8

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0011 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) < (A) + (CY) + (dir8)
ADDC A,@RIi
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0011 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADDC
(A) — (A)+(CY) + ((R)

A-33

INSTRUCTION SET REFERENCE Int9|®

ADDC A,Rn

Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0011 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADDC
(A) - (A)+(CY) + (Rn)

AJMP addrll

Function: Absolute jump

Description: Transfers program execution to the specified address, which is formed at run time by
concatenating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7—
5, and the second byte of the instruction. The destination must therefore be within the same
2-Kbyte “page” of program memory as the first byte of the instruction following AJMP.

Flags:
cY AC ov N z
Example: The label "JIMPADR" is at program memory location 0123H. After executing the instruction
AIMP JMPADR
at location 0345H, the PC contains 0123H.
Binary Mode Source Mode
Bytes: 2 2
States: 3 3
[Encoding] al0 a9 a8 0 0001 | [a7a6a5a4 [a3azalao

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: AIMP

(PC) « (PC)+ 2
(PC.10:0) ~ page address

A-34

intel.

INSTRUCTION SET REFERENCE

ANL <dest>,<src>

Function: Logical-AND
Description: Performs the bitwise logical-AND (A) operation between the specified variables and stores
the results in the destination variable.
The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.
Flags:
cY AC ov N z
— — — O O
Example: Register 1 contains 0C3H (11000011B) and register 0 contains 55H (01010101B). After
executing the instruction
ANL R1,RO
register 1 contains 41H (01000001B).
When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction
ANL P1,#01110011B
clears hits 7, 3, and 2 of output port 1.
Variations
ANL dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0101 0010 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ANL

(dir8) — (dir8) A (A)

A-35

INSTRUCTION SET REFERENCE Int9|®

ANL dir8,#data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0101 0011 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) ~ (dir8) A #data
ANL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0101 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) « (A) A\ #data

ANL A,dir8

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) < (A) A (dir8)

A-36

intel.

INSTRUCTION SET REFERENCE

ANL A, @RI
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0101 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ANL
(A) — (A)A((Ri)
ANL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0101 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: ANL
(A) = (A)A(Rn)
ANL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0101 1100 ‘ ‘ ssss SSssS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rmd) « (Rmd) A (Rms)
ANL WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 0101 1101 ‘ ‘ tttt TTTT

A-37

INSTRUCTION SET REFERENCE

Hex Code in:

Operation:

Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

ANL
(WRjd) — (WRjd) A (WRjs)

ANL Rm #data

Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 0101 1110 ‘ ‘ ssss 0000 #data
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rm) —~ (Rm) A #data
ANL WRj #datal6
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0101 1110 | [tett 0100 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(WRj) « (WRj) A #datal6
ANL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 1110 ‘ ‘ SSSS 0001 direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL

A-38

(Rm) — (Rm) A (dir8)

intel.

INSTRUCTION SET REFERENCE

ANL WR,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0101 1110 ‘ ‘ tttt 0101 direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(WR)) « (WRj) A (dir8)
ANL Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0101 1110 | | ssss 0011 | | direct | | direct
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rm) « (Rm) A (dir16)
ANL WR)j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0101 1110 | [ttt 0111 | | direct | | direct
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(WRj) « (WRj) A (dirl6)
ANL Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2

A-39

INSTRUCTION SET REFERENCE Int9|®

[Encoding]

0101 1110 H tttt 1001 H ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) — (Rm) A ((WRj))
ANL Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0101 1110 | | uuuu 1011 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) — (Rm) A ((DRK))

ANL CY,<src—bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical O, clear the CY flag; otherwise leave the CY
flag in its current state. A slash (/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

Flags:
cY AC ov N z
0 — — — —
Example: Set the CY flag if, and only if, P1.0=1, ACC.7 = 1, and OV = 0:

MOV CY,P1.0 ;Load carry with input pin state
ANL CY,ACC.7 ;AND carry with accumulator bit 7
ANL CY,/OV ;AND with inverse of overflow flag

A-40

Int9|® INSTRUCTION SET REFERENCE

ANL CY,bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1000 0010 | [bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A (bit51)

ANL CY,/bit51

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1011 0000 ‘ ‘ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A D (bit51)
ANL CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1000 0 Vyy ‘ ‘ dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) < (CY) A (bit)

A-41

INSTRUCTION SET REFERENCE Int9|®

ANL CY,/bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1111 0 yyy ‘ ‘ dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A @ (bit)

CJINE <dest>,<src>,rel

Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches if their values are not
equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

Flags:
CY AC ov
0 — —
Example: The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence
CINE R7,#60H,NOT_EQ
; oo o ;R7 = 60H
NOT_EQ: JC REQ_LOW ; IFR7 < 60H
; :R7 > 60H

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,
WAIT: CINE A,P1,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

A-42

intel.

Variations

INSTRUCTION SET REFERENCE

CJINE A #data,rel

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
3 3 3 3
2 5 2 5
1011 0100 ‘ ‘ immed. data rel. addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

(PC) - (PC) +3
IF (A) # #data
THEN
(PC) ~ (PC) + relative offset
IF (A) < #data

THEN
(CY) -1
ELSE
(CY) -0
CJINE A,dir8,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 3 6 3 6
[Encoding] 1011 0101 ‘ ‘ direct addr rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: (PC) - (PC)+3

IF (A) #dir8
THEN
(PC) ~ (PC) + relative offset
IF (A) < dir8
THEN

A-43

INSTRUCTION SET REFERENCE

CJINE @Ri,#data,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 4 4
States: 3 6 4 7
[Encoding] 1011 011i ‘ ‘ immed. data rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: (PC) - (PC)+3
IF ((Ri)) # #data
THEN
(PC) ~ (PC) + relative offset
IF ((Ri)) < #data

THEN
(CY) -1
ELSE
(CY) -0
CJINE Rn,#data,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 4 4
States: 2 5 3 6
[Encoding] 1011 Irrr ‘ ‘ immed. data rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: (PC) - (PC)+3
IF (Rn) # #data
THEN
(PC) ~ (PC) + relative offset
IF (Rn) < #data
THEN
(CY) -1
ELSE
(CY) -0

A-44

intel.

INSTRUCTION SET REFERENCE

CLRA
Function: Clear accumulator
Description: Clears the accumulator (i.e., resets all bits to zero).
Flags:
CY AC oV
Example: The accumulator contains 5CH (01011100B). The instruction
CLR A
clears the accumulator to 00H (00000000B).
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1110 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CLR
(A) <0
CLR bit
Function: Clear bit
Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.
Flags: Only for instructions with CY as the operand.
CY AC oV N z
0 — — — —
Example: Port 1 contains 5DH (01011101B). After executing the instruction

CLR P1.2

port 1 contains 59H (01011001B).

A-45

INSTRUCTION SET REFERENCE

Variations
CLR bit51
Binary Mode Source Mode
Bytes: 4 3
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1100 0010 \ \ Bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit51) ~ O
CLR CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1100 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(CY) -0
CLR bit
Binary Mode Source Mode
Bytes: 4 4
States: 4t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 ‘ ‘ 1100 0 Vyy ‘ ‘ dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit) - O

A-46

Int9|® INSTRUCTION SET REFERENCE

CMP <dest>,<src>

Function: Compare

Description: Subtracts the source operand from the destination operand. The result is not stored in the
destination operand. If a borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is
clear.

When subtracting signed integers, the OV flag indicates a negative result when a negative
value is subtracted from a positive value, or a positive result when a positive value is
subtracted from a negative value.

The source operand allows four addressing modes: register, direct, immediate and indirect.

Flags:
cY AC ov
O O O
Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). The
instruction
CMP R1,RO
clears the CY and AC flags and sets the OV flag.
Variations
CMP Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 1011 1100 ‘ ‘ ssss SSSS

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rmd) — (Rms)
CMP WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 1011 1110 ‘ ‘ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRjd) - (WRjs)

A-47

INSTRUCTION SET REFERENCE

CMP DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 1011 1111 ‘ ‘ uuuu uuuu
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(DRkd) — (DRks)
CMP Rm #data
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
ncodin SSsSs ata
Encoding 1011 1110 0000 #d
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — #data
CMP WRj,#datal6
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1011 1110 | [ttt 0100 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRj) — #datal6
CMP DRk,#0datal6
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1011 1110 | | uuuu 1000 | | #datahi | | #datahi

A-48

intel.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP

(DRK) — #0datal6

INSTRUCTION SET REFERENCE

CMP DRk ,#ldatal6

Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1011 1110 | [wuuu 1100 | [#daahi | | #daahi
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(DRk) — #1data16
CMP Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1011 1110 ‘ ‘ ssss 0001 ‘ ‘ dir addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — (dir8)
CMP WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1011 1110 ‘ ‘ tttt 0101 ‘ ‘ dir addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRj) — (dir8)

A-49

INSTRUCTION SET REFERENCE

CMP Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
1011 1110 | | ssss o011 | | diraddr | | diraddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — (dir16)
CMP WRj,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1011 1110 | [ttt 0111 | | diraddr | | diraddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRj) — (dir16)
CMP Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
1011 1110 | | et 1001 | | ssss | | 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) — (WRY))

CMP Rm,@DRk
Binary Mode Source Mode

Bytes: 4 3
States: 4 3

A-50

intel.

INSTRUCTION SET REFERENCE

[Encoding]
1011 1110 | [wuuu 1011 | | ssss | | 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — ((DRK))
CPL A
Function: Complement accumulator
Description: Logically complements (@) each bit of the accumulator (one's complement). Clear bits are
set and set bits are cleared.
Flags:
CcYy AC ov N z
— — — O O
Example: The accumulator contains 5CH (01011100B). After executing the instruction
CPLA
the accumulator contains 0A3H (10100011B).
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1111 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(A) - 2(A)
CPL bit
Function: Complement bit
Description: Complements (&) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL
can operate on the CY or any directly addressable bit.
Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.
Flags: Only for instructions with CY as the operand.

CY

AC

ov

O

A-51

INSTRUCTION SET REFERENCE Int9|®

Example: Port 1 contains 5BH (01011101B). After executing the instruction sequence

CPLP1.1
CPL P1.2

port 1 contains 5BH (01011011B).

Variations
CPL bit51
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1011 0010 \ \ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(bit51) ~ D(bit51)
CPL CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1011 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(CY) < @(CY)
CPL bit
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 | [1011 0 yyy | | diraddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-52

intel.

Operation:

INSTRUCTION SET REFERENCE

cPL
(bit) — B(bit)

DA A
Function:

Description:

Flags:

Example:

Decimal-adjust accumulator for addition

Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two
variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010—-XXXX1111), or if the AC flag is set,
six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX—-1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.
Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

CcY AC oV
O — —

The accumulator contains 56H (01010110B), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDC A,R3
DA A

the accumulator contains 0BEH (10111110) and the CY and AC flags are clear.

The Decimal Adjust instruction then alters the accumulator to the value 24H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADD A #99H
DA A

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 — 1 = 29.

A-53

INSTRUCTION SET REFERENCE Int9|®

Binary Mode Source Mode

Bytes: 1 1
States: 1 1
[Encoding] 1101 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V[(AC) = 1]]
THEN (A.3:0) ~ (A.3:0) +6
AND
IF [[(A.7:4) > 9] V[(CY) =1]]
THEN (A.7:4) « (A7:4)+6
DEC byte
Function: Decrement
Description: Decrements the specified byte variable by 1. An original value of 00H underflows to OFFH.
Four operands addressing modes are allowed: accumulator, register, direct, or register-
indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.
Flags:
CY AC ov
Example: Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain O0H
and 40H, respectively. After executing the instruction sequence
DEC @RO
DEC RO
DEC @RO
register O contains 7EH and on-chip RAM locations 7EH and 7FH are set to OFFH and 3FH,
respectively.
Variations
DEC A
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0001 0100

A-54

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: DEC
(A) - (A)-1
DEC dir8
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0001 0101 \ \ dir addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: DEC
(dir8) « (dir8) —1
DEC @Ri
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 0001 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: DEC
(RD)) ~ ((R))-1
DEC Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0001 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: DEC

(Rn) « (Rn)—1

A-55

INSTRUCTION SET REFERENCE Int9|®

DEC <dest>,<src>

Function: Decrement
Description: Decrements the specified variable at the destination operand by 1, 2, or 4. An original value
of O0H underflows to OFFH.
Flags:
CcY AC ov N z
— — — O O
Example: Register 0 contains 7FH (01111111B). After executing the instruction sequence
DEC RO,#1
register O contains 7EH.
Variations

DEC Rm,#short

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0001 1011 ‘ ‘ ssss 01 Vv

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(Rm) ~ (Rm) — #short

DEC WRj #short

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0001 1011 | | teet 01 Vv

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(WR)) « (WRj) —#short

A-56

intel.

INSTRUCTION SET REFERENCE

DEC DRk, #short

Binary Mode Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 0001 1011 ‘ ‘ uuuu 11 Vv
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: DEC

(DRK) ~ (DRK) — #short

DIV <dest>,<src>

Function:

Description:

Flags:

Divide

Divides the unsigned integer in the register by the unsigned integer operand in register
addressing mode and clears the CY and OV flags.

For byte operands (<dest>,<src> = Rmd,Rms) the result is 16 bits. The 8-bit quotient is in
R(md+1), and the 8-bit remainder is in Rmd. For example: Register 1 contains 251 (OFBH or
11111011B) and register 5 contains 18 (12H or 00010010B). After executing the instruction

DIV R1,R5

register 0 contains 13 (ODH or 00001101B); register 1 contains 17 (11H or 00010001B),
since 251 = (13 X 18) + 17; and the CY and OV bits are clear (see Flags).

The CY flag is cleared. The N flag is set if the MSB of the quotient is set. The Z flag is set if
the quotient is zero.:

CY
0

AC
O

ov
O

Exception: if <src> contains 00H, the values returned in both operands are undefined; the
CY flag is cleared, OV flag is set, and the rest of the flags are undefined.:

CY
0

AC
?

ov
1

N 4

A-57

INSTRUCTION SET REFERENCE

Variations
DIV Rmd Rms
Binary Mode Source Mode
Bytes: 3 2
States: 11 10
[Encoding] 1000 1100 ‘ ‘ ssss Ssss

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DIV (8-bit operands)

(Rmd) ~ quotient (Rmd) / (Rms) if <dest> md = 0,2,4,..,14

(Rmd+1) ~ remainder (Rmd) / (Rms)

(Rmd-1) — quotient (Rmd) / (Rms) if <dest> md = 1,3,5,..,15

(Rmd) ~ remainder (Rmd) / (Rms)

DIV WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 22 21
[Encoding] 1000 1101 ‘ ‘ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DIV (16-bit operands)

(WRjd) ~ quotient (WRjd) / (WRjs) if <dest>jd =0, 4, 8, ... 28
(WRjd+2) ~ remainder (WRjd) / (WRjs)

(WRjd-2) ~ quotient (WRjd) / (WRjs) if <dest>jd = 2, 6, 10, ... 30
(WRjd) ~ remainder (WRjd) / (WRjs)

For word operands (<dest>,<src> = WRjd,WRjs) The 16-bit quotient is in WR(jd+2), and the
16-bit remainder is in WRjd. For example, for a destination register WR4, assume the
quotient is 1122H and the remainder is 3344H. Then, the results are stored in these register

file locations:
Location 4 5 6 7
Contents 33H 44H 11H 22H

A-58

intel.

INSTRUCTION SET REFERENCE

DIV AB

Function:

Description:

Flags:

Hex Code in:

Example:

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Divide

Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.

Exception: if register B contains 00H, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.

CYy AC ov

For division by zero:

CY AC ov N 4
0 ? 1

Binary Mode = [Encoding]
Source Mode = [Encoding]

The accumulator contains 251 (OFBH or 11111011B) and register B contains 18 (12H or
00010010B). After executing the instruction

DIV AB

the accumulator contains 13 (ODH or 00001101B); register B contains 17 (11H or
00010001B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.

Binary Mode Source Mode
1 1
10 10

1000 0100

Binary Mode = [Encoding]
Source Mode = [Encoding]

DIV

(A) < quotient (A)/(B)
(B) ~ remainder (A)/(B)

A-59

INSTRUCTION SET REFERENCE Int9|®

DJINZ <byte>,<rel-addr>
Function: Decrement and jump if not zero

Description: Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of 00H underflows to OFFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:
CcY AC ov N z
— — — O O
Example: The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the instruction sequence
DJNZ 40H,LABEL1
DJNZ 50H,LABEL2
DJNZ 60H,LABEL
on-chip RAM locations 40H, 50H, and 60H contain 00H, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)
This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.
The instruction sequence,
MOV R2,#8
TOGGLE: CPL P1.7
DJINZ R2, TOGGLE
toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three states: two for DIJNZ and one to alter the pin.
Variations
DJINZ dir8,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 3 6 3 6
[Encoding] 1101 0101 ‘ ‘ direct addr ‘ ‘ rel. addr

A-60

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: DJINZ

(PC) - (PC)+2

(dir8) ~ (dir8) -1

IF (dir8 >0 or (dir8) < 0

THEN
(PC) « (PC) +rel
DJINZ Rn,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3
States: 2 5 3 6
[Encoding] 1101 Irrr ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encoding]
Operation: DJINZ

(PC) - (PC) +2
(Rn) « (Rn)—1
IF (Rn) >0o0r(Rn)<0
THEN
(PC) ~ (PC) +rel

ECALL <dest>
Function:

Description:

Flags:

Example:

Extended call

Calls a subroutine located at the specified address. The instruction adds four to the program
counter to generate the address of the next instruction and then pushes the 24-bit result
onto the stack (high byte first), incrementing the stack pointer by three. The 8 bits of the high
word and the 16 bits of the low word of the PC are then loaded, respectively, with the
second, third and fourth bytes of the ECALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin anywhere in the full 16-
Mbyte memory space.

CY AC oV N 4

The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 123456H. After executing the instruction

ECALL SUBRTN

at location 012345H, SP contains 09H; on-chip RAM locations 08H, 09H and OAH contain
01H, 23H and 45H, respectively; and the PC contains 123456H.

A-61

INSTRUCTION SET REFERENCE

Variations

ECALL addr24

Binary Mode Source Mode

Bytes: 5 4
States: 14 13
[Encoding] 1001 1010 addr23- addrl5-addr8 addr7—addrO
addrl6é
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ECALL
(PC) - (PC)+4
(SP) - (SP) +1
((SP)) ~ (PC.23:16)
(SP) - (SP) +1
((SP)) ~ (PC.15:8)
(SP) - (SP) +1
((SP)) ~ (PC.7:0)
(PC) « (addr.23:0)
ECALL @DRk
Binary Mode Source Mode
Bytes: 3 2
States: 12 1
[Encoding] 1001 1001 ‘ ‘ uuuu
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ECALL
(PC) - (PC)+4
(SP) - (SP) +1
((SP)) ~ (PC.23:16)
(SP) - (SP) +1
((SP)) ~ (PC.15:8)
(SP) - (SP) +1
((SP)) ~ (PC.7:0)
(PC) ~ ((DRK))
EJMP <dest>
Function: Extended jump
Description: Causes an unconditional branch to the specified address by loading the 8 bits of the high

order and 16 bits of the low order words of the PC with the second, third, and fourth
instruction bytes. The destination may be therefore be anywhere in the full 16-Mbyte

memory space.

A-62

INSTRUCTION SET REFERENCE

intel.

Flags:
CcY AC ov N z
Example: The label "JIMPADR" is assigned to the instruction at program memory location 123456H.
The instruction is
EJMP JMPADR
Variations

EJMP addr24

Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding] 1000 1010 addr23- addrl5-addr8 addr7—addrO
addrl6é
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: EJMP
(PC) ~ (addr.23:0)
EIJMP @DRk
Binary Mode Source Mode
Bytes: 3 2
States: 7 6
[Encoding] 1000 1001 uuuu
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: EJMP
(PC) ~ ((DRK))
ERET
Function: Extended return
Description: Pops byte 2, byte 1, and byte 0 of the 3-byte PC successively from the stack and
decrements the stack pointer by 3. Program execution continues at the resulting address,
which normally is the instruction immediately following ECALL.
Flags: No flags are affected.
Example: The stack pointer contains OBH. On-chip RAM locations 08H, 09H and OAH contain 01H,

23H and 49H, respectively. After executing the instruction
ERET

the stack pointer contains 07H and program execution continues at location 012349H.

A-63

INSTRUCTION SET REFERENCE

Binary Mode Source Mode

Bytes: 3 2
States: 10 9
[Encoding] 1010 1010

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ERET
(PC.7:0) — ((SP))
(SP) « (SP) -1
(PC.15:8) « ((SP))
(SP) « (SP) -1
(PC.23:16) ~ ((SP))
(SP) « (SP) -1

INC <Byte>

Function: Increment

Description: Increments the specified byte variable by 1. An original value of FFH overflows to OOH.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

CY AC ov

Example: Register 0 contains 7EH (011111110B) and on-chip RAM locations 7EH and 7FH contain
OFFH and 40H, respectively. After executing the instruction sequence
INC @RO
INC RO
INC @RO
register O contains 7FH and on-chip RAM locations 7EH and 7FH contain 00H and 41H,
respectively.

Variations

INC A

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

[Encoding] 0000 0100

A-64

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: INC
(A) - (A+1
INC dir8
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0000 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: INC
(dir8) ~ (dir8) +1
INC @Ri
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 0000 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: INC
((R) « (Ri)) +1
INC Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0000 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: INC

(Rn) « (Rn) +1

A-65

INSTRUCTION SET REFERENCE

intel.

INC <dest>,<src>

Function: Increment
Description : Increments the specified variable by 1, 2, or 4. An original value of OFFH overflows to 00H.
Flags:
cYy AC ov
Example: Register 0 contains 7EH (011111110B). After executing the instruction
INC RO,#1
register 0 contains 7FH.
Variations
INC Rm,#short
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1011 ‘ ‘ ssss 00 Vv
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: INC
(Rm) ~ (Rm) + #short
INC WRj #short
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1011 | |ttt 01 Vv
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: INC
(WRj) « (WRj) + #short
INC DRK,#short
Binary Mode Source Mode
Bytes: 3 2
States: 4 3
[Encoding] 0000 1011 ‘ ‘ uuuu 11 Vv

A-66

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(DRK) ~ (DRK) + #shortdata pointer

INC DPTR

Function: Increment data pointer

Description: Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from OFFH to O0H increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).

Flags:

CY AC oV

Example: Registers DPH and DPL contain 12H and OFEH, respectively. After the instruction
sequence
INC DPTR
INC DPTR
INC DPTR
DPH and DPL contain 13H and 01H, respectively.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

[Encoding] 1010 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(DPTR) « (DPTR) +1

JB bit51,rel

JB bit,rel

Function: Jump if bit set

Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

CY AC ov N 4

A-67

INSTRUCTION SET REFERENCE Int9|®

Example: Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the
instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

program execution continues at label LABEL2.

Variations
JB bit51,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 0010 0000 ‘ ‘ bit addr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JB

(PC) - (PC) +3

IF (bit51) = 1

THEN
(PC) ~ (PC) +rel
JB bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 ‘ ‘ 0010 0 yy ‘ ‘directaddr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JB
(PC) - (PC) +3
IF (bit) = 1
THEN
(PC) ~ (PC) +rel

A-68

intel.

INSTRUCTION SET REFERENCE

JBC bit51,rel
JBC bit,rel
Function: Jump if bit is set and clear bit
Description: If the specified bit is one, branch to the specified address; otherwise proceed with the next
instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre-
menting the PC to the first byte of the next instruction.
Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.
Flags:
CcY AC oV N z
! — — — —
Example: The accumulator contains 56H (01010110B). After the instruction sequence
JBC ACC.3,LABEL1
JBC ACC.2,LABEL2
the accumulator contains 52H (01010010B) and program execution continues at label
LABEL2.
Variations
JBC bit51,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 4 7 4 7
[Encoding] 0001 0000 ‘ ‘ bit addr ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: JBC
(PC) - (PC)+3
IF (bit51) = 1
THEN
(bit51) ~ O
(PC) « (PC) +rel
JBC bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6

A-69

INSTRUCTION SET REFERENCE

intel.

[Encoding]
1010 1001 \ \ 0001 0 yyy \ ‘directaddr \ \ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: JBC

(PC) - (PC) +3

IF (bit51) = 1

THEN

(bit51) ~ O

(PC) ~ (PC) +rel
JC rel
Function: Jump if carry is set
Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement

in the second instruction byte to the PC, after incrementing the PC twice.
Flags:

CcY AC ov N
! — — —

Example: The CY flag is clear. After the instruction sequence

JC LABEL1

CPL CY

JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2
States: 1 4 1 4
[Encoding] 0100 0000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: JC

(PC) « (PC) + 2

IF(CY)=1

A-70

(PC) « (PC) +rel

intel.

INSTRUCTION SET REFERENCE

JE rel
Function: Jump if equal
Description: If the Z flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CY AC oV N z
— — — — !
Example: The Z flag is set. After executing the instruction
JE LABEL1
program execution continues at label LABEL1.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 1010 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JE
(PC) - (PC)+2
IF(2)=1
THEN (PC) ~ (PC) + rel
JG rel
Function: Jump if greater than
Description: If the Z flag and the CY flag are both clear, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.
Flags:

CY AC ov N z

A-71

INSTRUCTION SET REFERENCE Int9|®

Example: The instruction

JG LABEL1

causes program execution to continue at label LABELL1 if the Z flag and the CY flag are both

clear.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0011 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JG
(PC) - (PC) +2
IF (Z)=0AND (CY)=0
THEN (PC) ~ (PC) + rel

JLE rel
Function: Jump if less than or equal
Description: If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CcY AC ov N z
— — — ! !
Example: The instruction
JLE LABEL1
causes program execution to continue at LABELL1 if the Z flag or the CY flag is set.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0010 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-72

intel.

Operation: JLE

(PC) - (PC)+2

IF(Z)=10R(CY)=1
THEN (PC) « (PC) + rel

INSTRUCTION SET REFERENCE

JMP @A+DPTR

Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the
resulting sum into the lower 16 bits of the program counter. Load FFH into bits 16—-23 of the
program counter. This is the address for subsequent instruction fetches. The contents of the
accumulator and the data pointer are not affected.

Flags:
CcY AC oV N z
Example: The accumulator contains an even number from 0 to 6. The following sequence of instruc-
tions branch to one of four AJMP instructions in a jump table starting at JMP_TBL:
MOV DPTR,#IMP_TBL
JMP @A+DPTR
. AIMP LABELO
IMP_TBL: AJMP LABEL1
AJMP LABEL2
AIMP LABEL3
If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other
address.
Binary Mode Source Mode
Bytes: 1
States: 5
[Encoding] 0111 0011

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]

Operation: JMP

(PC.15:0) — (A) + (DPTR)

(PC.23:16) — FFH

A-73

INSTRUCTION SET REFERENCE Int9|®

JNB bit51,rel
JNB bit,rel
Function: Jump if bit not set
Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.
Flags:
CcY AC ov N z
Example: Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After
executing the instruction sequence
JNB P1.3,LABEL1
JNB ACC.3,LABEL2
program execution continues at label LABEL2.
Variations
JNB bit51,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 0011 0000 ‘ ‘ bit addr ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNB

(PC) - (PC) +3

IF (bit51) = 0

THEN (PC) — (PC) + rel
JNB bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 \ \ 0011 0 vy \ ‘directaddr \ \ rel. addr

A-74

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JNB
(PC) - (PC)+3
IF (bit)=0
THEN
(PC) ~ (PC) +rel
JNC rel
Function: Jump if carry not set
Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.
Flags:
CY AC ov N z
! — — — —
Example: The CY flag is set. The instruction sequence
JNC LABEL1
CPL CY
JNC LABEL2
clears the CY flag and causes program execution to continue at label LABEL2.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 1 4 1 4
[Encoding] 0101 0000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: JNC
(PC) « (PC)+ 2
IF(CY)=0
THEN (PC) ~ (PC) + rel
JINE rel
Function: Jump if not equal
Description: If the Z flag is clear, branch to the address specified; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

A-75

INSTRUCTION SET REFERENCE

Flags:
CY AC oV N z
— — — — !
Example: The instruction
JNE LABEL1
causes program execution to continue at LABELL if the Z flag is clear.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0111 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JINE
(PC) - (PC)+2
IF(Z)=0
THEN (PC) « (PC) + rel
JINZ rel
Function: Jump if accumulator not zero
Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.
Flags:
CY AC oV N z
— — — — !
Example: The accumulator contains 00H. After executing the instruction sequence

A-76

JNZ LABEL1
INC A
JNZ LABEL2

the accumulator contains 01H and program execution continues at label LABEL2.

intel.

INSTRUCTION SET REFERENCE

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 2 5 2 5

[Encoding] 0111 0000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]

Operation: JINZ
(PC) - (PC)+2
IF(A)£0

THEN (PC) ~ (PC) +rel

JSG rel

Function: Jump if greater than (signed)

Description: If the Z flag is clear AND the N flag and the OV flag have the same value, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CcY AC oV N z
— — ! | !

Example: The instruction
JSG LABEL1
causes program execution to continue at LABELL1 if the Z flag is clear AND the N flag and
the OV flag have the same value.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0001 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: JSG

(PC) — (PC) +2
IF [(N) = 0 AND (N) = (OV)]
THEN (PC) — (PC) + rel

A-77

INSTRUCTION SET REFERENCE

intel.

JSGE rel

Function: Jump if greater than or equal (signed)

Description: If the N flag and the OV flag have the same value, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

CY AC oV N z
— — ! ! !

Example: The instruction
JSGE LABEL1
causes program execution to continue at LABELL if the N flag and the OV flag have the
same value.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0101 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: JSGE
(PC) « (PC)+ 2
IF[(N) = (OV)]

THEN (PC) (PC) + rel

JSL rel

Function: Jump if less than (signed)

Description: If the N flag and the OV flag have different values, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

A-78

CY AC ov N 4

intel.

INSTRUCTION SET REFERENCE

Example: The instruction
JSL LABEL1
causes program execution to continue at LABELL1 if the N flag and the OV flag have different
values.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0100 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: JSL
(PC) - (PC)+2
IF (N) # (OV)

THEN (PC) ~ (PC) + rel

JSLE rel

Function: Jump if less than or equal (signed)

Description: If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CcY AC oV N z
— — ! ! !

Example: The instruction
JSLE LABEL1
causes program execution to continue at LABELL1 if the Z flag is set OR if the the N flag and
the OV flag have different values.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0000 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

A-79

INSTRUCTION SET REFERENCE Int9|®

Operation: JSLE
(PC) - (PC)+2
IF{(2) =1 OR [(N) # (OV)]}
THEN (PC) ~ (PC) + rel
JZ rel
Function: Jump if accumulator zero
Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.
Flags:
CY AC oV N z
— — — — !
Example: The accumulator contains 01H. After executing the instruction sequence
JZ LABEL1
DEC A
JZ LABEL2
the accumulator contains 00H and program execution continues at label LABEL2.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 2 5 2 5
[Encoding] 0110 0000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: Jz
(PC) - (PC)+2
IF(A)=0
THEN (PC) « (PC) + rel
LCALL <dest>
Function: Long call
Description: Calls a subroutine located at the specified address. The instruction adds three to the

A-80

program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

Int9|® INSTRUCTION SET REFERENCE

Flags:
cY AC ov N z
Example: The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction
LCALL SUBRTN
at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.
LCALL addr16
Binary Mode Source Mode
Bytes: 3 3
States: 9 9
[Encoding] 0001 0010 | |addri5-addr8 | | addr7-addr0

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LCALL
(PC) « (PC)+3
(SP) « (SP) +1
((SP)) ~ (PC.7:0)
(SP) « (SP) +1
((SP)) ~ (PC.15:8)
(PC) ~ (addr.15:0)

LCALL @WR]j
Binary Mode Source Mode
Bytes: 3 2
States: 9 8
[Encoding] 1001 1001 | | teet | | o100

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: LCALL
(PC) « (PC)+3
(SP) « (SP) +1
((SP)) « (PC.7:0)
(SP) « (SP) +1
((SP)) ~ (PC.15:8)
(PC) — ((WRj))

A-81

INSTRUCTION SET REFERENCE Int9|®

LIMP <dest>
Function: Long Jump

Description: Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

Flags:

CY AC ov N 4

Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. After
executing the instruction

LIMP JMPADR

at location 0123H, the program counter contains 1234H.

LIMP addrl6

Binary Mode Source Mode

Bytes: 3 3
States: 5 5
[Encoding] 0000 0010 | |addri5-addr8 | | addr7-addr0

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LIMP
(PC) « (addr.15:0)
LIMP @WR]j
Binary Mode Source Mode
Bytes: 3 2
States: 6 5
[Encoding] 1000 1001 ‘ ‘ tttt ‘ ‘ 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LIMP
(PC) ~ ((WRY)

A-82

Int9|® INSTRUCTION SET REFERENCE

MOV <dest>,<src>
Function: Move byte variable

Description: Copies the byte variable specified by the second operand into the location specified by the
first operand. The source byte is not affected.

This is by far the most flexible operation. Twenty-four combinations of source and
destination addressing modes are allowed.

Flags:
CY AC oV N z
Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 11001010B (0OCAH). After executing the instruction sequence
MOV RO,#30H ;RO < =30H
MOV A@RO :A < =40H
MOV R1,A :R1<=40H
MOV B,@R1 ;B<=10H
MOV @R1,P1 ;RAM (40H) < = OCAH
MOV P2,P1 ;P2 #0CAH
register O contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-chip RAM location 40H and output port 2 contain OCAH (11001010B).
Variations
MOV A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0111 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) ~ #data

MOV dir8,#data
Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0111 0101 ‘ ‘ direct addr ‘ ‘ immed. data

A-83

INSTRUCTION SET REFERENCE Int9|®

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ~ #data

MOV @Ri,#data

Binary Mode Source Mode

Bytes: 2 3
States: 3 4
[Encoding] 0111 011i ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
((Ri)) ~ #data

MOV Rn,#data

Binary Mode Source Mode

Bytes: 2 3
States: 1 2
[Encoding] 0111 Irrrr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(Rn) ~ #data
MOV dir8,dir8
Binary Mode Source Mode
Bytes: 3 3
States: 3 3
[Encoding] 1000 0101 ‘ ‘ direct addr ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) — (dir8)

A-84

Int9|® INSTRUCTION SET REFERENCE

MOV dir8,@Ri
Binary Mode Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 1000 011i ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) ~ ((Ri))

MOV dir8,Rn

Binary Mode Source Mode
Bytes: 2 3
States: 2t 3t

Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1000 lrrr ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) ~ (Rn)
MOV @Ri,dir8
Binary Mode Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 1010 011i ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
((Ri)) ~ (dir8)

MOV Rn,dir8

Binary Mode Source Mode
Bytes: 2 3
States: 1t 2t

TTIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1010 lrrr ‘ ‘ direct addr

A-85

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(Rn) ~ (dir8)
MOV A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1
TTIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1110 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(A) ~ (dir8)
MOV A @Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 1110 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(A) - ((Ri)
MOV ARn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1110 Irrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(A) - (Rn)

A-86

intel.

INSTRUCTION SET REFERENCE

MOV dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1111 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (A)
MOV @Ri,A
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 1111 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: MOV
(R)) ~ (A)
MOV Rn,A
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1111 111r
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: MOV
(Rn) ~ (A)
MOV Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0111 1100 | | Ssss

A-87

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rmd) ~ (Rms)
MOV WRjd,WRjs
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0111 1101 ‘ ‘ tttt TTTT
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRjd) — (WRjs)
MOV DRkd,DRks
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 0111 1111 ‘ ‘ uuuu uuuu
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRkd) — (DRks)
MOV Rm #data
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 0111 1110 ‘ ‘ ssss 0000 ‘ ‘ #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ~ #data

A-88

intel.

INSTRUCTION SET REFERENCE

MOV WRj,#datal6

Binary Mode Source Mode

Bytes: 5 4
States: 3 2
[Encoding]
0111 1110 | [t 0100 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) ~ #datal6
MOV DRk,#0datal6
Binary Mode Source Mode
Bytes: 5 4
States: 5 4
[Encoding]
0111 1110 | | uuuu 1000 | | #damhi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRk) ~ #0datal6
MOV DRk,#1datal6
Binary Mode Source Mode
Bytes: 5 4
States: 5 4
[Encoding]
0111 1110 | [uuuu 1100 | | #datahi | | #datalow

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ~ #1ldatal6

A-89

INSTRUCTION SET REFERENCE

MOV Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — (dir8)
MOV WR,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0111 1110 \ \ tttt 0101 \ \ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) < (dir8)
MOV DRk,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 6 5
[Encoding] 0111 1110 ‘ ‘ uuuu 1101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRK) « (dir8)
MOV Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2

A-90

intel.

INSTRUCTION SET REFERENCE

[Encoding]
0111 1110 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — (dir16)
MOV WRj,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0111 1110 | [e 0111 | | directaddr | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) < (dir16)
MOV DRKk,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0111 1110 ‘ ‘ uuuu 1111 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRk) « (dir16)
MOV Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 2 2
[Encoding]
0111 1110 | [et 1001 | [ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

A-91

INSTRUCTION SET REFERENCE

Operation: MOV
(Rm) ~ (WRj))

MOV Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3
States: 4 3
[Encoding]
0111 1110 | | uuuu 1011 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — ((DRK))
MOV WRjd,@WRjs
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0000 1011 | [TTTT 1000 | [ottt 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRjd) — ((WRjs))
MOV WRj,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding]
0000 1011 | | wuuuu 1010 | |t 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) « ((DRK))

A-92

intel.

INSTRUCTION SET REFERENCE

MOV dir8,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 1010 ‘ ‘ SSSS 0011 ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) « (Rm)
MOV dir8,WRj
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding] 0111 1010 \ \ tttt 0101 \ \ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) « (WRj)
MOV dir8,DRk
Binary Mode Source Mode
Bytes: 4 3
States: 7 6
[Encoding] 0111 1010 ‘ ‘ uuuu 1101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (DRK)
MOV dirl6,Rm
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0111 1010 ‘ ‘ SSSs 0011 ‘ ‘ direct addr ‘ ‘ direct addr

A-93

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir16) — (Rm)
MOV dirl6,WRj
Binary Mode Source Mode
Bytes: 5 4
States: 5 4
[Encoding]
0111 1010 | |ttt 0111 | [directaddr | | direct adar
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir16) — (WRj)
MOV dir16,DRk
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0111 1010 | | wuuuu 1111 | | directaddr | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir16) — (DRK)
MOV @WRj,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0111 1010 | [et 1001 | [ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

((WRj)) « (Rm)

A-94

intel.

INSTRUCTION SET REFERENCE

MOV @DRk,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding]
0111 1010 | [uuuu 1011 | [ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
((DRK)) ~ (Rm)
MOV @WRjd,WRjs
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding]
0001 1011 | |ttt 1000 | | TTTT 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
((WRjd)) — (WRjs)
MOV @DRk,WRj
Binary Mode Source Mode
Bytes: 4 3
States: 6 5
[Encoding]
0001 1011 | [uuuu 1010 | [et 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

((DRK)) ~ (WR])

MOV Rm,@WR]j + dis16

Binary Mode Source Mode
Bytes: 5 4
States: 6 5

A-95

INSTRUCTION SET REFERENCE

intel.

[Encoding]
0000 1001 ‘ ‘ SSSs tttt ‘ ‘ dis hi ‘ ‘ dis low
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) ~ ((WRj)) + (dis)
MOV WRj,@WR;j + dis16
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0100 1001 | | ottt TTTT | [dishi | | dislow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) « ((WRJ)) + (dis)
MOV Rm,@DRk + dis24
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0010 1001 ‘ ‘ SSSs uuuu ‘ ‘ dis hi ‘ ‘ dis low
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — ((DRK)) + (dis)
MOV WRj,@DRKk + dis24
Binary Mode Source Mode
Bytes: 5 4
States: 8 7
[Encoding]
0110 1001 ‘ ‘ tttt uuuu ‘ ‘ dis hi ‘ ‘ dis low
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

A-96

intel.

Operation: MOV

(WRj) ~ ((DRK)) + (dis)

INSTRUCTION SET REFERENCE

MOV @WR]j + dis16,Rm

Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0001 1001 | | ottt ssss | | dishi | | dislow
Operation: MOV
((WRj)) + (dis) — (Rm)
MOV @WR; + dis16,WRj
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0101 1001 | [e TTTT | | dishi | | dislow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
((WRj)) + (dis) — (WR))
MOV @DRk + dis24,Rm
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0011 1001 | [uuuu ssss | | dishi | | dislow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

((DRK)) + (dis) — (Rm)

A-97

INSTRUCTION SET REFERENCE

MOV @DRK + dis24,WR}j

Binary Mode Source Mode
Bytes: 5 4
States: 8 7
[Encoding]
0111 1001 | [wuuuu tett | [dishi | | dislow

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: MOV

((DRK)) + (dis) « (WRj)
MOV <dest-bit>,<src-bit>
Function: Move bit data
Description: Copies the Boolean variable specified by the second operand into the location specified by

the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.

Flags:
CcY AC ov N z
0 — — — —
Example: The CY flag is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101B). After executing the instruction sequence
MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY
the CY flag is clear and Port 1 contains 39H (00111001B).
Variations
MOV bit51,CY
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1001 0010 \ \ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(bit51) — (CY)

A-98

intel.

INSTRUCTION SET REFERENCE

MOV CY,bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1010 0010 ‘ ‘ bit addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(CY) ~ (bit51)
MOV bit,CY
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 ‘ ‘ 1001 0 yyy ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(bit) — (CY)
MOV CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1010 0 Vyy ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(CY) « (bit)

A-99

INSTRUCTION SET REFERENCE Int9|®

MOV DPTR,#datal6
Function: Load data pointer with a 16-bit constant
Description: Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the

constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).

Flags:
CY AC ov N z
Example: After executing the instruction
MOV DPTR,#1234H
DPTR contains 1234H (DPH contains 12H and DPL contains 34H).
Binary Mode Source Mode
Bytes: 3 3
States: 2 2
[Encoding] 1001 0000 ‘ ‘ data hi ‘ ‘ data low

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(DPTR) - #datal6

MOVC A @A+<base-reg>

Function: Move code byte

Description: Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is
performed.

Flags:

CY AC ov N 4

A-100

Int9|® INSTRUCTION SET REFERENCE

Example: The accumulator contains a number between 0 and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.

RELPC: INC A
MovcC A@A+PC
RET
DB 66H
DB 77TH
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to 01H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to "get around" the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.

Variations

MOVC A,@A+PC

Binary Mode Source Mode

Bytes: 1 1
States: 6 6
[Encoding] 1000 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(PC) - (PC)+1
(A) ((A) + (PC))

MOVC A,@A+DPTR

Binary Mode Source Mode

Bytes: 1 1
States: 6 6
[Encoding] 1001 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(A) - ((A) + (DPTRY))

A-101

INSTRUCTION SET REFERENCE

intel.

MOVH DRK,#datal6

Function:

Description:

Flags:

Example:

Variations

Move immediate 16-bit data to the high word of a dword (double-word) register.

Moves 16-bit inmediate data to the high word of a dword (32-bit) register. The low word of
the dword register is unchanged.

CY AC ov N 4

The dword register DRk contains 5566 7788H. After the instruction
MOVH DRKk,#1122H

executes, DRk contains 1122 7788H.

MOVH DRK,#datal6

Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0111 1010 | | wuuuu 1100 | | #daahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOVH
(DRk).31:16 — #datal6
MOVS WRj,Rm
Function: Move 8-bit register to 16-bit register with sign extension
Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The high byte of
the 16-bit register is filled with the sign extension, which is obtained from the MSB of the 8-
bit source register.
Flags:
CcY AC ov N z
Example: Eight-bit register Rm contains 055H (01010101B) and the 16-bit register WRj contains

A-102

OFFFFH (11111111 11111111B). The instruction
MOVSE WRj,Rm

moves the contents of register Rm (01010101B) to register WR;j (i.e., WRj contains
00000000 01010101B).

intel.

INSTRUCTION SET REFERENCE

Variations
MOVS WRj,Rm
Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0001 1010 | |ttt ssss
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: MOVS

(WRj).7-0 « (Rm).7-0
(WR;).15-8 — MSB

MOVX <dest>,<src>

Function:

Description:

Flags:

Example:

Move external

Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

In the first type of MOVX instruction, the contents of RO or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external 1/0O expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address
bits on port 0. In page mode, the data is multiplexed with the contents of P2 on port 2 (8-bit
address) or with the upper address bits on port 2 (16-bit address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its
upper address lines driven by P2 can be addressed via the data pointer, or with code to
output upper address bits to P2 followed by a MOV X instruction using RO or R1.

(624 AC ov N 4

The MCS 251 controller is operating in nonpage mode. An external 256-byte RAM using
multiplexed address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to port 0.
Port 3 provides control lines for the external RAM. ports 1 and 2 are used for normal I/O. RO
and R1 contain 12H and 34H. Location 34H of the external RAM contains 56H. After
executing the instruction sequence

A-103

INSTRUCTION SET REFERENCE

Variations

MOVX A,@R1
MOVX @RO,A

the accumulator and external RAM location 12H contain 56H.

MOVX A,@DPTR

Binary Mode Source Mode

Bytes: 1 1
States: 4 4
[Encoding] 1110 0000
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: MOVX

(A) - ((DPTR))
MOVX A,@RIi

Binary Mode Source Mode

Bytes: 1 1
States: 3 3
[Encoding] 1110 001i
Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encodin g]
Operation: MOVX

(A) ~ ((R)

MOVX @DPTR,A

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

A-104

Binary Mode Source Mode
1 1
5 5

1111 0000

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX
(DPTR)) « (A)

intel.

INSTRUCTION SET REFERENCE

MOVX @Ri,A
Binary Mode Source Mode
Bytes: 1 1
States: 4 4
[Encoding] 1111 001i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: MOVX
(R)) ~ (A)
MOVZ WRj,Rm
Function: Move 8-bit register to 16-bit register with zero extension
Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The upper byte of
the 16-bit register is filled with zeros.
Flags:
CY AC oV N z
Example: Eight-bit register Rm contains 055H (01010101B) and 16-bit register WRj contains OFFFFH
(11111111 11111111B). The instruction
MOVZ WRj,Rm
moves the contents of register Rm (01010101B) to register WRj. At the end of the operation,
WRj contains 00000000 01010101B.
Variations
MOVZ WRj,Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1010 ‘ ‘ tttt SSSS
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOVZ
(WRj)7-0 —~ (Rm)7-0
(WRj)15-8 ~ 0

A-105

INSTRUCTION SET REFERENCE Int9|®

MUL <dest>,<src>
Function: Multiply

Description: Multiplies the unsigned integer in the register with the other unsigned integer operand. Only
register addressing mode is allowed. For 8-bit operands, the result is 16 bits with the low
byte stored in low byte of the destination register and high byte of the result stored in the
following byte register. The OV flag is set if the product is greater than 255 (OFFH),
otherwise it is cleared. If both operands are 16 bit, the result is 32 bit with the low word
stored in the low word of the destination register and high word of the result stored in the
following word register. In this operation, the OV flag is set if the product is greater than
OFFFFH, otherwise it is cleared. The CY flag is always cleared. The N flag is set when the
MSB of the result is set. The Z flag is set when the result is zero.

Flags:
cYy AC ov
0 — O
Example: Register 1 contains 80 (50H or 10010000B) and register 0 contains 160 (OAOH or
10010000B). After executing the instruction
MUL R1,RO
which gives the product 12,800 (3200H), register 1 contains 32H (00110010B), register 0
contains 00H, the OV flag is set, and the CY flag is clear.
MUL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 6 5
[Encoding] 1010 1100 ‘ ‘ ssss SSSS

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (8-bit operands)
if <dest>md =0, 2,4, .., 14
Rmd ~ low byte of the Rmd X Rms
Rmd+1 ~ high byte of the Rmd X Rms
if <dest>md=1, 3,5, ..,15
Rmd-1 — low byte of the Rmd X Rms
Rmd high byte of the Rmd X Rms

MUL WRjd, WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 12 1
[Encoding] 1010 1101 \ \ tttt tttt

A-106

intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MUL (16-bit operands)
if <dest>jd =0, 4,8, .., 28
WRjd ~ low byte of the WRjd X WRjs
WRjd+2 ~ high byte of the WRjd X WRjs
if <dest>jd = 2, 6, 10, .., 30
WRjd-2 — low byte of the WRjd X WRjs
WRjd ~ high byte of the WRjd X WRjs
MUL AB
Function: Multiply
Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register in B. If the product
is greater than 255 (OFFH) the OV flag is set; otherwise it is clear. The CY flag is always
clear.
Flags:
CY AC ov N z
0 — O O O
Example: The accumulator contains 80 (50H) and register B contains 160 (0AOH). After executing the
instruction
MUL AB
which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains 00H, the OV flag is set, and the CY flag is clear.
Binary Mode Source Mode
Bytes: 1 1
States: 5 5
[Encoding] 1010 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MUL
(A) « low byte of (A) X (B)
(B) ~ high byte of (A) X (B)
NOP
Function: No operation
Description: Execution continues at the following instruction. Affects the PC register only.
Flags:

CY AC oV N 4

A-107

INSTRUCTION SET REFERENCE Int9|®

Example: You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states. A
simple CLR-SETB sequence generates an eight-state pulse. (Each instruction requires four
states to write to a port SFR.) You can insert three additional states (if no interrupts are
enabled) with the following instruction sequence:

CLR P27
NOP
NOP
NOP
SETB P2.7

Binary Mode Source Mode

Bytes: 1 1
States: 1 1
[Encoding] 0000 0000

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: NOP
(PC) - (PC)+1

ORL <dest> <src>

Function: Logical-OR for byte variables

Description: Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data. When the destination is register the source can be register, immmediate, direct and
indirect addressing.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

CY AC oV

Example: The accumulator contains 0C3H (11000011B) and RO contains 55H (01010101B). After
executing the instruction,

ORL A,RO

the accumulator contains 0D7H (11010111B).

A-108

Int9|® INSTRUCTION SET REFERENCE

When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

Variations
ORL dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0100 0010 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) — (dir8) V (A)

ORL dir8,#data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0100 0011 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ~ (dir8) V #data
ORL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0100 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

A-109

INSTRUCTION SET REFERENCE

Operation: ORL
(A) « (A)V #data
ORL A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0100 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ORL
(A) — (A)V (dirg)
ORL A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0100 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: ORL
(A) = (A)V ((RD)
ORL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0100 Irrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: ORL

A-110

(A) ~ (A)V (Rn)

Int9|® INSTRUCTION SET REFERENCE

ORL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0100 1100 ‘ ‘ ssss ssss

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rmd) « (Rmd) V (Rms)

ORL WRjd,WRijs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0100 1101 ‘ ‘ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRjd) — (WRjd) V (WRjs)

ORL Rm #data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0100 1110 ‘ ‘ ssss 0000 ‘ ‘ #data

Hex Code in Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) — (Rm) V #data

ORL WRj,#datal6

Binary Mode Source Mode
Bytes: 5 4
States: 4 3

A-111

INSTRUCTION SET REFERENCE Int9|®

[Encoding]

0100 1110 ‘ ‘ tttt 0100 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) « (WRj) V #datal6

ORL Rm,dir8

Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0100 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) « (Rm) V (dir8)
ORL WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0100 1111 \ \ tttt 0101 \ \ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) « (WR)) V (dir8)
ORL Rm,dir1l6
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0100 1110 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-112

intel.

INSTRUCTION SET REFERENCE

Operation: ORL
(Rm) « (Rm) V (dirl6)
ORL WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0100 1110 | [t 0111 | | directaddr | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL
(WRj) « (WRj) V (dir16)
ORL Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0100 1110 | [ttt 1001 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL
(Rm) — (Rm) V ((WRj))
ORL Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0100 1110 | | uuuu 1011 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ORL

(Rm) « (Rm) V ((DRK))

A-113

INSTRUCTION SET REFERENCE Int9|®

ORL CY,<src-bit>
Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:
cY AC ov N z
0 — — — —
Example: Set the CY flag if and only if P1.0 =1, ACC. 7=1, 0or OV = 0:
MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.
Variations
ORL CY,bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 0010 | [bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) < (CY) V (bit51)

ORL CY,/bit51

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1010 0000 \ \ bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) « (CY) V= (bit51)

A-114

Int9|® INSTRUCTION SET REFERENCE

ORL CY,bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 0111 0 yyy ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) < (CY) V (bit)
ORL CY,/bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1110 0 Vyy ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) < (CY) V = (bit)

POP <src>

Function: Pop from stack.

Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.

Flags:

CY AC oV N z
Example: The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01H,

23H, and 20H, respectively. After executing the instruction sequence

A-115

INSTRUCTION SET REFERENCE Int9|®

POP DPH
POP DPL

the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction

POP SP

the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).

Variations
POP dir8
Binary Mode Source Mode
Bytes: 2 2
States: 3 3
[Encoding] 1101 0000 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: POP
(dir8) « ((SP))
(SP) - (SP)-1
POP Rm
Binary Mode Source Mode
Bytes: 3 2
States: 3 2
[Encoding] 1101 1010 ‘ ‘ ssss 1000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: POP
(Rm) —~ ((SP))
(SP) - (SP)-1
POP WR;j
Binary Mode Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 1101 1010 ‘ ‘ tttt 1001
Hex Code in: Binary Mode = [A5][Encoding]

A-116

Source Mode = [Encoding]

intel.

INSTRUCTION SET REFERENCE

Operation: POP

(WRj) « ((SP))

(SP) - (SP)-2
POP DRk

Binary Mode Source Mode

Bytes: 3 2
States: 10 9
[Encoding] 1101 1010 ‘ ‘ uuuu 1101
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: POP

(DRK) — ((SP))
(SP) — (SP) -2

PUSH <dest>

Function: Push onto stack
Description: Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.
Flags:
CY AC oV N z
Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence
PUSH DPL
PUSH DPH
the stack pointer contains OBH and on-chip RAM locations OAH and OBH contain 01H and
23H, respectively.
Variations
PUSH dir8
Binary Mode Source Mode
Bytes: 2 2
States: 4 4
[Encoding] 1100 0000 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]

A-117

INSTRUCTION SET REFERENCE

Operation: PUSH
(SP) « (SP) +1
((SP)) — (dir8)

PUSH #data
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1100 1010 ‘ ‘ 0000 0010 ‘ ‘ #data
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: PUSH
(SP) « (SP) +1
((SP)) ~ #data
PUSH #datal6
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1100 1010 | | o000 0110 | | w#damhi | | #datalo
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: PUSH
(SP) « (SP) +2
((SP)) — #datal6
PUSH Rm
Binary Mode Source Mode
Bytes: 3 2
States: 4 3
[Encoding] 1100 1010 ‘ ‘ ssss 1000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH

(SP) « (SP) +1
((SP)) « (Rm)

A-118

intel.

INSTRUCTION SET REFERENCE

PUSH WR;j
Binary Mode Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 1100 1010 ‘ ‘ tttt 1001
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: PUSH
(SP) « (SP) +2
((SP)) ~ (WRj)
PUSH DRk
Binary Mode Source Mode
Bytes: 3 2
States: 9 8
[Encoding] 1100 1010 ‘ ‘ uuuu 1101
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: PUSH
(SP) -~ (SP) +4
((SP)) « (DRK)
RET
Function: Return from subroutine
Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack
pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.
Flags:
cY AC ov N z
Example: The stack pointer contains OBH and on-chip RAM locations OAH and OBH contain 01H and

23H, respectively. After executing the instruction,

RET

the stack pointer contains 09H and program execution continues at location 0123H.

A-119

INSTRUCTION SET REFERENCE Int9|®

Binary Mode Source Mode

Bytes: 1 1

States: 7 7

[Encoding] 0010 0010

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RET
(PC).15-8 — ((SP))
(SP) - (SP)-1
(PC).7-8 ~ ((SP))
(SP) - (SP)-1

RETI

Function: Return from interrupt

Description: This instruction pops two or four bytes from the stack, depending on the INTR bit in the
CONFIGL1 register .
If INTR =0, RETI pops the high and low bytes of the PC successively from the stack and
uses them as the 16-bit return address in region FF:.The stack pointer is decremented by
two. No other registers are affected, and neither PSW nor PSW1 is automatically restored to
its pre-interrupt status.
If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The
three bytes of the PC are the return address, which can be anywhere in the 16-Mbyte
memory space. The stack pointer is decremented by four. PSW1 is restored to its pre-
interrupt status, but PSW is not restored to its pre-interrupt status. No other registers are
affected.
For either value of INTR1, hardware restores the interrupt logic to accept additional
interrupts at the same priority level as the one just processed. Program execution continues
at the return address, which normally is the instruction immediately after the point at which
the interrupt request was detected. If an interrupt of the same or lower priority is pending
when the RETI instruction is executed, that one instruction is executed before the pending
interrupt is processed.

Flags:

CcY AC ov N z
Example: INTR1 = 0. The stack pointer contains OBH. An interrupt was detected during the instruction

A-120

ending at location 0122H. On-chip RAM locations 0AH and OBH contain 01H and 23H,
respectively. After executing the instruction,

RETI

the stack pointer contains 09H and program execution continues at location 0123H.

intel.

Binary Mode Source Mode
Bytes: 1 1
States (INTR = 0): 9 9
States (INTR = 1): 12 12
[Encoding] 0011 0010
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]

Operation for for INTR1 = 0:
RETI
(PC).7:0 ~ ((SP))
(SP) - (SP)-1
(PC).15:8 — ((SP))
(SP) - (SP)-1

Operation for INTR1 = 1:

INSTRUCTION SET REFERENCE

RETI
X <« ((SP))
(SP) - (SP)-1
X < ((SP))
(SP) - (SP)-1
X < ((SP)
(SP) - (SP)-1
X < ((SP)
(SP) - (SP)-1
RL A
Function: Rotate accumulator left
Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit 0
position.
Flags:
CY AC ov
Example: The accumulator contains 0C5H (11000101B). After executing the instruction,
RL A
the accumulator contains 8BH (10001011B); the CY flag is unaffected.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0010 0011

A-121

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RL
(A).a+l ~ (A).a
(A).0 < (A).7
RLC A
Function: Rotate accumulator left through the carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into
the CY flag position and the original state of the CY flag moves into bit O position.
Flags:
CY AC ov N z
0 — — O O
Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction
RLC A
the accumulator contains 8AH (10001010B) and the CY flag is set.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0011 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RLC
(A).a+l ~ (A).a
(A).0 < (CY)
(CY) -« (A) .7
RR A
Function: Rotate accumulator right
Description: Rotates the 8 or 16 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 or
15 position.
Flags:

A-122

CYy AC ov N 4

intel.

INSTRUCTION SET REFERENCE

Example: The accumulator contains 0C5H (11000101B). After executing the instruction,
RR A
the accumulator contains 0E2H (11100010B) and the CY flag is unaffected.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0000 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RR
(A).a « (A).a+l
(A).7 < (A).0
RRC A
Function: Rotate accumulator right through carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.
Flags:
CY AC oV N z
O — — O O
Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction
RRC A
the accumulator contains 62 (01100010B) and the CY flag is set.
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0001 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RRC
(A).a « (A).a+l
(A).7 ~ (CY)
(CY) « (A).0

A-123

INSTRUCTION SET REFERENCE Int9|®

SETB <bit>
Function: Set bit
Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable
bit.
Flags: No flags are affected except the CY flag for instruction with CY as the operand.
cY AC ov N z
0 — — — —
Example: The CY flag is clear and output Port 1 contains 34H (00110100B). After executing the
instruction sequence,
SETB CY
SETB P1.0
the CY flag is set and output Port 1 contains 35H (00110101B).
SETB bit51
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1101 0010 | [bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB
(bit51) ~ 1
SETB CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1101 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB
CY) -1

A-124

intel.

INSTRUCTION SET REFERENCE

SETB bit
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 ‘ ‘ 1101 0 yyy ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SETB
(bit) — 1
SIMP rel
Function: Short jump
Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.
Flags:
CcY AC oV N z
Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction
SIJMP RELADR
assembles into location 0100H. After executing the instruction, the PC contains 0123H.
(Note: In the above example, the instruction following SIMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H-0102H) = 21H. Put
another way, an SJMP with a displacement of OFEH would be a one-instruction infinite loop.)
Binary Mode Source Mode
Bytes: 2 2
States: 4 4
[Encoding] 1000 0000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]

A-125

INSTRUCTION SET REFERENCE Int9|®

Operation: SIMP
(PC) « (PC)+2
(PC) ~ (PC) +rel
SLL <src>
Function: Shift logical left by 1 bit
Description: Shifts the specified variable to the left by 1 bit, replacing the LSB with zero.
Flags:
cY AC oV
0 — —
Example: Register 1 contains 0C5H (11000101B). After executing the instruction
SLL register 1
Register 1 contains 8AH (10001010B).
Variations
SLL Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0011 1110 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SLL
(Rm).a+1 — (Rm).a
(Rm).0 - 0
SLL WRj
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0011 1110 | | et 0100
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SLL
(WRj).b+1 — (WRj).b
(WRj).0 < 0

A-126

Int9|® INSTRUCTION SET REFERENCE

SRA <src>
Function: Shift arithmetic right by 1 bit

Description: Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged.
Flags:

CcY AC ov
0 — —
Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SRA register 1

Register 1 contains 0E2H (11100010B).

Variations
SRARm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1110 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRA
(Rm).7 — (Rm).7
(Rm).a — (Rm).a+1

SRA WR]
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1110 | | et 0100

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRA

(WR;j).15 — (WR}).15
(WRj).b — (WRj).b+1

A-127

INSTRUCTION SET REFERENCE Int9|®

SRL <src>
Function: Shift logical right by 1 bit

Description: SRL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero.

Flags:
CcY AC ov N z
O — — O O
Example: Register 1 contains 0C5H (11000101B). After executing the instruction
SRL register 1
Register 1 contains 62H (01100010B).
Variations
SRL Rm
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0001 1110 ‘ ‘ ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRL

(Rm).7 - 0

(Rm).a « (Rm).a+1
SRL WRj

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0001 1110 ‘ ‘ tttt 0100

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRL

(WR)).15 < 0
(WRj).b — (WRj).b+1

A-128

intel.

INSTRUCTION SET REFERENCE

SUB <dest>,<src>

Function: Subtract
Description: Subtracts the specified variable from the destination operand, leaving the result in the
destination operand. SUB sets the CY (borrow) flag if a borrow is needed for bit 7.
Otherwise, CY is clear.
When subtracting signed integers, the OV flag indicates a negative number produced when
a negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.
The source operand allows four addressing modes: immediate, indirect, register and direct.
Flags:
cYy AC ov
O ot O
tFor word and dword subtractions, AC is not affected.
Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). After
executing the instruction
SUB R1,RO
register 1 contains 75H (01110101B), the CY and AC flags are clear, and the OV flag is set.
Variations
SUB Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 1001 1100 | | ssss Ssss
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB

(Rmd) ~ (Rmd) — (Rms)

SUB WRjd,WRjs

Bytes:
States:

[Encoding]

Binary Mode Source Mode
3 2
3 2

1001 1101 ‘ ‘ tett TTTT

A-129

INSTRUCTION SET REFERENCE Int9|®

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRjd) — (WRjd) - (WRjs)

SUB DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 1001 1111 ‘ ‘ uuuu uuuu

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRkd) — (DRkd) — (DRks)

SUB Rm,#data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 1001 1110 ‘ ‘ ssss 0000 ‘ ‘ #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ~ (Rm) — #data

SUB WRj,#datal6

Binary Mode Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
1001 1110 ‘ ‘ tttt 0100 ‘ ‘ #data hi #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) « (WRj) —#datal6

A-130

Int9|® INSTRUCTION SET REFERENCE

SUB DRk #datal6

Binary Mode Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
1001 1110 ‘ ‘ uuuu 1000 ‘ ‘ #data hi #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRk) ~ (DRK) — #datal16

SUB Rm,dir8

Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1001 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) « (Rm) — (dir8)
SUB WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1001 1110 ‘ ‘ tttt 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) « (WRj) — (dir8)
SUB Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2

A-131

INSTRUCTION SET REFERENCE

intel.

[Encoding]
1001 1110 ‘ ‘ SSSs 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(Rm) — (Rm) — (dir16)
SUB WR;,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1001 1110 | |ttt 0111 | [directaddr | | direct adar
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(WRj) « (WRj) — (dir16)
SUB Rm,@WR]
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
1001 1110 | [et 1001 | [ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(Rm) — (Rm) — ((WR}))
SUB Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
1001 1110 | | wuuuu 1011 | | ssss | | 0000

A-132

Int9|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ~ (Rm) - ((DRK))

SUBB A,<src—byte>

Function: Subtract with borrow

Description: SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or

immediate.
Flags:
CY AC oV N z
O O O O O
Example: The accumulator contains 0C9H (11001001B), register 2 contains 54H (01010100B), and
the CY flag is set. After executing the instruction
SUBB A,R2
the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.
Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.
Variations
SUBB A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 1001 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

A-133

INSTRUCTION SET REFERENCE

Operation: SUBB
(A) — (A) - (CY) — #data
SUBB A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1001 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SUBB
(A) ~ (A)—(CY) — (dir8)
SUBB A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 1001 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: SUBB
(A) — (A) - (CY) - ((RD)
SUBB A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1001 Irrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: SUBB

A-134

(A) ~ (A) - (CY) - (Rn)

intel.

INSTRUCTION SET REFERENCE

SWAP A
Function: Swap nibbles within the accumulator
Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3—0 and bits 7—
4). This operation can also be thought of as a 4-bit rotate instruction.
Flags:
CY AC oV N z
Example: The accumulator contains 0C5H (11000101B). After executing the instruction
SWAP A
the accumulator contains 5CH (01011100B).
Binary Mode Source Mode
Bytes: 1 1
States: 2 2
[Encoding] 1100 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SWAP
(A).3:0 - « (A).7:4
TRAP
Function: Causes interrupt call
Description: Causes an interrupt call that is vectored through location OFFO07BH. The operation of this
instruction is not affected by the state of the interrupt enable flag in PSWO0 and PSW1.
Interrupt calls can not occur immediately following this instruction. This instruction is
intended for use by Intel-provided development tools. These tools do not support user
application of this instruction.
Flags:
CY AC oV N z
Example: The instruction

TRAP

causes an interrupt call to location OFFO07BH during normal operation.

A-135

INSTRUCTION SET REFERENCE

Binary Mode Source Mode

Bytes: 2 1
States (2 bytes): 11 10
States (4 bytes): 16 15
[Encoding] 1011 1001

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: TRAP
SP - SP-2
(SP) - PC
PC ~ (OFFO07BH)

XCH A,<byte>

Function: Exchange accumulator with byte variable

Description: Loads the accumulator with the contents of the specified variable, at the same time writing
the original accumulator contents to the specified variable. The source/destination operand

can use register, direct, or register-indirect addressing.

Flags:
CcY AC ov
Example: RO contains the address 20H, the accumulator contains 3FH (00111111B) and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction
XCH A,@R0
RAM location 20H contains 3FH (00111111B) and the accumulator contains 75H
(01110101B).
Variations
XCH A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 3t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1100 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCH
(A) - ~ (dir8)

A-136

intel.

INSTRUCTION SET REFERENCE

XCH A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 4 5
[Encoding] 1100 011i
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]
Operation: XCH
(A) - < ((Ri)
XCH A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 1100 Irrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: XCH
o (A) - < (Rn)
Variations
XCHD A,@Ri
Function: Exchange digit
Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.
Flags:
CY AC oV N z
Example: RO contains the address 20H, the accumulator contains 36H (00110110B), and on-chip RAM

location 20H contains 75H (01110101B). After executing the instruction,

XCHD A,@R0

on-chip RAM location 20H contains 76H (01110110B) and 35H (00110101B) in the accumu-

lator.

A-137

INSTRUCTION SET REFERENCE Int9|®

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode

1101 011i

Binary Mode = [Encoding]

Source Mode = [Encoding]

XCHD
(A).3:0 » « ((RD)).3:0

XRL <dest>,<src>

Function:

Description:

Flags:

Example:

A-138

Logical Exclusive-OR for byte variables

Performs the bitwise logical Exclusive-OR operation ([0) between the specified variables,
storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

The two operands allow 12 addressing mode combinations. When the destination is the
accumulator or a register, the source addressing can be register, direct, register-indirect, or
immediate; when the destination is a direct address, the source can be the accumulator or
immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

CY AC oV N 4

The accumulator contains 0C3H (11000011B) and RO contains 0AAH (10101010B). After
executing the instruction,

XRL A,RO

the accumulator contains 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be comple-
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction

XRL P1,#00110001B

complements bits 5, 4, and 0 of output Port 1.

Int9|® INSTRUCTION SET REFERENCE

Variations
XRL dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0110 0010 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) « (dir8) O (A)

XRL dir8 #data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0110 0011 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) ~ (dir8) O #data
XRL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0110 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) « (A) O #data

A-139

INSTRUCTION SET REFERENCE

XRL A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0110 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) — (A) O (dir8)
XRL A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0110 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: XRL
(A) « (A) O((R)
XRL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0110 Irrr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodin g]

Operation: XRL
(A) - (A)ORN)
XRL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0110 1100 | | ssss Ssss

A-140

Int9|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rmd) « (Rmd) O (Rms)

XRL WRjd, WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0110 1101 ‘ ‘ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRds) ~ (WRjd) O (WRjs)

XRL Rm,#data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0110 1110 ‘ ‘ ssss 0000 ‘ ‘ #data
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: XRL

(Rm) —~ (Rm) O #data
XRL WRj,#datal6

Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0110 1110 | |ttt 0100 | | #damahi | | #datalow

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) « (WRj) O #datal6

A-141

INSTRUCTION SET REFERENCE Int9|®

XRL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
Tlf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0110 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) « (Rm) O (dir8)
XRL WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0110 1110 \ \ tttt 0101 \ \ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) « (WRj) O (dir8)
XRL Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0110 1110 | [ssss 0011 | | directaddr | | dir8 addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) — (Rm) O (dir16)

A-142

Int9|® INSTRUCTION SET REFERENCE

XRL WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0110 1110 | [e 0111 | | directaddr | | directaddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) « (WRj) O (dir16)
XRL Rm,@Wrj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0110 1110 | |t 1001 | | ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) — (Rm) O ((WRj))
XRL Rm,@Drk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0110 1110 | | wuuuu 1011 | | ssss | | 0000

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) — (Rm) O ((DRK))

A-143

INSTRUCTION SET REFERENCE

A-144

intel.

B

Signal Descriptions

APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the pin functions of the 8XC251SB. Table B-1
lists the signalsgrouped by function. Table B-&fines the columns used in Table B-3, which
describes the signals.

Table B-1. Signals Arranged by Functional Categories

Address & Data Input/Output Processor Control
Name Name Name

ADO/P0.0 T2/P1.0 INTO#/P3.2
AD1/P0.1 T2EX/P1.1 INT1#/P3.3
AD2/P0.2 ECI/P1.2 EA#/Vpp
AD3/P0.3 CEXO0/P1.3 RST
ADA4/P0.4 CEX1/P1.4 XTAL1
AD5/P0.5 CEX2/P1.5 XTAL2
ADG6/P0.6 CEX3/P1.6
AD7/P0.7 CEX4/P1.7 Power & Ground
A8/P2.0 RXD/P3.0 Name
A9/P2.1 TXD/P3.1 Vee
A10/P2.2 TO/P3.4 Veeo
A11/P2.3 T1/P3.5 Veo
A12/P2.4 Vess
Al13/P2.5 Bus Control & Status Vg
Al14/P2.6 Name
A15/P2.7 WR#/P3.6

RD#/P3.7

ALE/PROG#

PSEN#

SIGNAL DESCRIPTIONS

Table B-2. Description of Columns of Table B-3

intel.

Column Heading Description
Signal Name Lists the signals, arranged alphabetically. Many pins have two functions, so
there are more entries in this column than there are pins. Every signal is
listed in this column; for each signal, the alternate function that shares the
pin is listed in the Multiplexed With column.
Type Identifies the pin function listed in the Signal Name column as an input (l),
output (O), bidirectional (1/0), power (PWR), or ground (GND).
Note that all inputs except RESET# are sampled inputs. RESET# is a level-
sensitive input. During powerdown mode, the powerdown circuitry uses
EXTINTx as a level-sensitive input.
Description Briefly describes the function of the pin for the specific signal listed in the
Signal Name column.
Multiplexed With Lists the multiplexed signal name for the alternate function that the pin
provides (if applicable).
Table B-3. Signal Descriptions
Signal . Multiplexed
Name Type Description With
Al6 (0] Address Line 16 . See RD#. N.A.
A15:8f O Address Lines . Upper address lines for the external bus. pP2.7:0
AD7:0f I/O | Address/Data Lines . Multiplexed lower address lines and data lines for | P0.7:0
external memory.
ALE O Address Latch Enable . ALE signals the start of an external bus cycle | PROG#
and indicates that valid address information is available on lines A15:8
and AD7:0. An external latch can use ALE to demultiplex the address
from the address/data bus.
CEX4:0 I/O | Programmable Counter Array (PCA) Input/Output Pins . These are P1.7:3
input signals for the PCA capture mode and output signals for the PCA
compare mode and PCA PWM mode.
EA# | External Access . Directs program memory accesses to on-chip or off- | Vpp
chip code memory. For EA# = 0, all program memory accesses are off-
chip. For EA# =1, an access is to on-chip OTPROM/ROM if the
address is within the range of the on-chip OTPROM/ROM; otherwise
the access is off-chip. The value of EA# is latched at reset. For a
ROMless part, EA# must be strapped to ground.
ECI | PCA External Clock Input . External clock input to the 16-bit PCA timer. | P1.2
INT1:0# | External Interrupts 0 and 1 . These inputs set bits IE1:0 in the TCON P3.3:2
register. If bits IT1:0 in the TCON register are set, bits IE1:0 are set by a
falling edge on INT1#/INTO#. If bits INT1:0 are clear, bits IE1:0 are set
by a low level on INT1:0#.

tThe descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration
(compatible with PLCC MCS 51 microcontrollers). If the chip is configured for page-mode operation, port 0
carries the lower address bits (AO—A7), and port 2 carries the upper address bits (A8—A15) and the data

(D0-D7).

B-2

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

Signal - Multiplexed
Name Type Description With

P0.7:0 I/O | Port 0. This is an 8-bit, open-drain, bidirectional 1/0 port. AD7:0
P1.0 I/O | Port 1. This is an 8-bit, bidirectional I/O port with internal pullups. T2
P1.1 T2EX
P1.2 ECI
P1.7:3 CEX4:0
P2.7:0 I/O | Port 2. This is an 8-bit, bidirectional 1/O port with internal pullups. A15:8
P3.0 I/O | Port 3. This is an 8-bit, bidirectional I/O port with internal pullups. RXD
P3.1 TXD
P3.3:2 INT1:0#
P3.5:4 T1:.0
P3.6 WR#
P3.7 RD#
PROG# | Programming Pulse . The programming pulse is applied to this pin for | ALE

programming the on-chip OTPROM.
PSEN# (@) Program Store Enable . Read signal output. This output is asserted for | —

a memory address range that depends on bits RDO and RD1 in configu-

ration byte CONFIG1 (see also RD#):

RD1RDO0Address Range for Assertion

OOReserved

01All addresses

10AIll addresses

11All addresses = 80:0000H
RD# O Read or 17th Address Bit (A16). Read signal output to external data P3.7

memory or 17th external address bit (A16), depending on the values of

bits RDO and RD1 in configuration byte CONFIG1. (See also PSEN#):

RD1RDOFunction

OOReserved

01The pin functions as A16 only.

10The pin functions as P3.7 only.

11RD#: asserted for reads at all addresses < 7F:FFFFH
RST | Reset. Reset input to the chip. Holding this pin high for 64 oscillator —

periods while the oscillator is running resets the device. The port pins

are driven to their reset conditions when a voltage greater than V4 is

applied, whether or not the oscillator is running. This pin has an internal

pulldown resistor, which allows the device to be reset by connecting a

capacitor between this pin and V.

Asserting RST when the chip is in idle mode or powerdown mode

returns the chip to normal operation.
RXD I/O | Receive Serial Data . RXD sends and receives data in serial /O mode 0 | P3.0

and receives data in serial /O modes 1, 2, and 3.
T1:0 | Timer 1:0 External Clock Inputs . When timer 1:0 operates as a P3.5:4

counter, a falling edge on the T1:0 pin increments the count.

TThe descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration
(compatible with PLCC MCS 51 microcontrollers). If the chip is configured for page-mode operation, port 0
carries the lower address bits (AO—-A7), and port 2 carries the upper address bits (A8—A15) and the data

(D0-D7).

B-3

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

intel.

Signal
Name

Type

Description

Multiplexed
With

T2

110

Timer 2 Clock Input/Output . For the timer 2 capture mode, this signal
is the external clock input. For the clock-out mode, it is the timer 2 clock
output.

P1.0

T2EX

Timer 2 External Input . In timer 2 capture mode, a falling edge initiates
a capture of the timer 2 registers. In auto-reload mode, a falling edge
causes the timer 2 registers to be reloaded. In the up-down counter
mode, this signal determines the count direction: 1 = up, 0 = down.

P1.1

TXD

Transmit Serial Data . TXD outputs the shift clock in serial I/O mode 0
and transmits serial data in serial /O modes 1, 2, and 3.

P3.1

PWR

Supply Voltage . Connect this pin to the +5V supply voltage.

Veez

PWR

Secondary Supply Voltage 2. This supply voltage connection is
provided to reduce power supply noise. Connection of this pin to the
+5V supply voltage is recommended. However, when using the
8XC251SB as a pin-for-pin replacement for the 8XC51FX, Vg, can be
unconnected without loss of compatibility.

Programming Supply Voltage . The programming supply voltage is
applied to this pin for programming the on-chip OTPROM.

EA#

GND

Circuit Ground . Connect this pin to ground.

GND

Secondary Ground . This ground is provided to reduce ground bounce
and improve power supply bypassing. Connection of this pin to ground
is recommended. However, when using the 8XC251SB as a pin-for-pin
replacement for the 8XC51BH, Vg, can be unconnected without loss of
compatibility.

Vss2

GND

Secondary Ground 2 . This ground is provided to reduce ground
bounce and improve power supply bypassing. Connection of this pin to
ground is recommended. However, when using the 8XC251SB as a pin-
for-pin replacement for the 8XC51FX, Vg4, can be unconnected without
loss of compatibility.

WR#

Write . Write signal output to external memory. For configuration bits
RD1 = RDO = 1, WR# is strobed only for writes to locations 00 0000H—
01 FFFFH. For other values of RD1 and RDO, WR# is strobed for writes
to all memory locations.

P3.6

XTAL1

Input to the On-chip, Inverting, Oscillator Amplifier . To use the
internal oscillator, a crystal/resonator circuit is connected to this pin. If
an external oscillator is used, its output is connected to this pin. XTAL1
is the clock source for internal timing.

XTAL2

Output of the On-chip, Inverting, Oscillator Amplifier . To use the
internal oscillator, a crystal/resonator circuit is connected to this pin. If
an external oscillator is used, leave XTAL2 unconnected.

tThe descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration
(compatible with PLCC MCS 51 microcontrollers). If the chip is configured for page-mode operation, port 0
carries the lower address bits (AO—-A7), and port 2 carries the upper address bits (A8—A15) and the data

(D0-D7).

B-4

intel.

Registers

REGISTERS

APPENDIX C
REGISTERS

Table C-1. 8XC251SB Special Function Registers (SFRs)

SER Binary Reset Value
. SFR Name Hex Address
Mnemonic .
High Low

AcCCT Accumulator S:EOH 0000 0000

Bf B Register S:FOH 0000 0000

CCAPOH PCA Module 0 Compare/Capture S:FAH XXXX XXXX
Register High Byte

CCAPOL PCA Module 0 Compare/Capture S:EAH XXXX XXXX
Register Low Byte

CCAP1H PCA Module 1 Compare/Capture S:FBH XXXX XXXX
Register High Byte

CCAP1L PCA Module 1 Compare/Capture S:EBH XXXX XXXX
Register Low Byte

CCAP2H PCA Module 2 Compare/Capture S:FCH XXXX XXXX
Register High Byte

CCAP2L PCA Module 2 Compare/Capture S:ECH XXXX XXXX
Register Low Byte

CCAP3H PCA Module 3 Compare/Capture S:FDH XXXX XXXX
Register High Byte

CCAP3L PCA Module 3 Compare/Capture S:EDH XXXX XXXX
Register Low Byte

CCAP4H PCA Module 4 Compare/Capture S:FEH XXXX XXXX
Register High Byte

CCAPA4L PCA Module 4 Compare/Capture S:EEH XXXX XXXX
Register Low Byte

CCAPMO PCA Compare/Capture Module 0 S:DAH X000 0000
Mode Register

CCAPM1 PCA Compare/Capture Module 1 S:DBH X000 0000
Mode Register

CCAPM2 PCA Compare/Capture Module 2 S:DCH X000 0000
Mode Register

CCAPM3 PCA Compare/Capture Module 3 S:DDH X000 0000
Mode Register

CCAPM4 PCA Compare/Capture Module 4 S:DEH X000 0000
Mode Register

CCON PCA Timer/Counter Control S:D8H 00X0 0000
Register

TThis register resides in the register file. It can also be accessed as an SFR.

C-1

intel.

REGISTERS
Table C-1. 8XC251SB Special Function Registers (SFRs)
SER Binary Reset Value
Mnemonic SFR Name Hex Address g ™
CH PCA Timer/Counter High Byte S:FOH 0000 0000
CL PCA Timer/Counter Low Byte S:E9H 0000 0000
CMOD PCA Timer/Counter Mode Register S:D9H 00XX X000
DPH' Data Pointer High S:83H 0000 0000
DPL' Data Pointer Low S:82H 0000 0000
DPXLT Data Pointer Extended Low S:84H 0000 0001
IEO Interrupt Enable Control Register 0 S:A8H 0000 0000
IPHO Interrupt Priority High Control S:B7H X000 0000
Register 0
IPLO Interrupt Priority Low Control S:B8H X000 0000
Register 0
PO Port 0 S:80H 1111 1111
P1 Port 1 S:90H 1111 1111
P2 Port 2 S:AOH 1111 1111
P3 Port 3 S:BOH 1111 1111
PCON Power Control Register S:87H 00XX 0000
PSW Program Status Word S:DOH 0000 0000
PSW1 Program Status Word 1 S:D1H 0000 0000
RCAP2H Timer 2 Reload/Capture Register S:CBH 0000 0000
High Byte
RCAP2L Timer 2 Reload/Capture Register S:CAH 0000 0000
Low Byte
SADDR Slave Individual Address Register S:A9H 0000 0000
SADEN Mask Byte Register S:B9H 0000 0000
SBUF Serial Data Buffer S:99H XXXX XXXX
SCON Serial Control Register S:98H 0000 0000
SPf Stack Pointer - LS byte of SPX S:81H 0000 0111
SPHT Stack Pointer High - MSB of SPX S:BDH 0000 0000
T2CON Timer 2 Control Register S:C8H 0000 0000
T2MOD Timer 2 Mode Control Register S:C9H XXXX XX00
TCON Timer 0/1 Control Register S:88H 0000 0000
TMOD Timer 0/1 Mode Control Register S:89H 0000 0000
THO Timer 0 Timer Register High Byte S:8CH 0000 0000
TLO Timer O Timer Register Low Byte S:8AH 0000 0000

TThis register resides in the register file. It can also be accessed as an SFR.

C-2

intel.

Table C-1. 8XC251SB Special Function Registers (SFRs)

REGISTERS

SER Binary Reset Value
Mnemonic SFR Name Hex Address g ™

TH1 Timer 1 Timer Register High Byte S:8DH 0000 0000

TL1 Timer 1 Timer Register Low Byte S:8BH 0000 0000

TH2 Timer 2 Timer Register High Byte S:CDH 0000 0000
TL2 Timer 2 Timer Register Low Byte S:CCH 0000 0000

WDTRST Watchdog Timer Reset Register S:A6H XXXX XXXX

TThis register resides in the register file. It can also be accessed as an SFR.

C-3

REGISTERS Int9I®

ACC Address: EOH
Reset State: 0000 0000B

Accumulator. ACC provides SFR access to the accumulator, which resides in the register file as byte
register R11 (also named ACC). Instructions in the MCS® 51 architecture use the accumulator as both
source and destination for calculations and moves. Instructions in the MCS 251 architecture assign no
special significance to R11. These instructions can use byte registers Rm (m = 0-15) interchangeably.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 ACC.7:0 Accumulator.

c-4

]
Int9|® REGISTERS
B Address: FOH
Reset State: 0000 0000B

B Register. The B register provides SFR access to byte register R10 (also named B) in the register
file. The B register is used as both a source and destination in multiply and divide operations. For all
other operations, the B register is available for use as one of the byte registers Rm, m = 0-15.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 B.7:0 B Register.

C-5

REGISTERS Int9I®

CCAPXH, CCAPXL (x = 0-4) Address: ggﬁ;’g:,:: EEE’QE' 255@:

CCAP2H,L S:FCH, S:ECH
CCAP3H,L S:FDH, S:EDH
CCAP4H,L S:FEH, S:EEH

Reset State: XXXX XXXXB

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte

register controls the duty cycle of the output waveform.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 CCAPXxH.7:0 | High byte of PCA comparison or capture values.
CCAPXL.7:0 | Low byte of PCA comparison or capture values.

C-6

intel.

REGISTERS

CCAPMX (x = 0-4)

Address: CCAPMO S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: X000 0000B

PCA Compare/Capture Module Mode Registers. These five registers select the operating mode of the
corresponding compare/capture module. Each register also contains an enable interrupt bit (ECCFx)
for generating an interrupt request when the module’s compare/capture flag (CCFx in the CCON
register) is set. See Table 8-3 on page 8-15 for mode select bit combinations.

7 0
— ECOMx | CAPPx | CAPNx || MATx TOGx PWMx | ECCFx
Bit Bit Function
Number Mnemonic

7 — Reserved:
The value read from this bit is indeterminate. Do not write a “1” to this bit.

6 ECOMx Compare Modes:
ECOMXx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):
CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):
CAPNXx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATXx Match:
Set ECOMx and MAT x to implement the software timer mode. When
MATXx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGXx Toggle:
Set ECOMXx, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:
PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:
Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

C-7

REGISTERS

intel.

CCON

Address: S:D8H
Reset State: 00X0 0000B

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 0
CF CR — ccFa || ccr3 CCF2 CCF1 CCFO
Bit Bit)
Number Mnemonic Function
7 CF PCA Timer/Counter Overflow Flag:
Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.
6 CR PCA Timer/Counter Run Control Bit:
Set and cleared by software to turn the PCA timer/counter on and off.
5 — Reserved:
The value read from this bit is indeterminate. Do not write a “1” to this bit.
4:0 CCF4 PCA Module Compare/Capture Flags:
CCF3 Set by hardware when a match or capture occurs. This generates a PCA
CCF2 interrupt request if the ECCFx interrupt enable bit in the corresponding
ggEé CCAPMXx register is set. Must be cleared by software.

C-8

intel.

REGISTERS
CH, CL Address: S:F9H
S:E9H
Reset State: 0000 0000B
CH, CL Registers. These registers operate in cascade to form the 16-bit PCA timer/counter.
7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 CH.7:0 High byte of the PCA timer/counter
CL.7:0 Low byte of the PCA timer/counter

C-9

REGISTERS

intel.

CMOD

Address: S:D9H
Reset State: 00XX X000B

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

7 0
cIDL WDTE — - || - cpsi1 CPSO ECF
Bit Bit Function
Number Mnemonic

7 CIDL PCA Timer/Counter Idle Control:
CIDL =1 disables the PCA timer/counter during idle mode. CIDL =0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:
WDTE =1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 — Reserved:
The values read from these bits are indeterminate. Do not write a “1” to
these bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:
CPS1 CPSO
0 0 Fosc 112
0 1 Fosc /4
1 0 Timer 0 overflow
1 1 External clock at ECI pin (maximum rate = Fo4. /8)

0 ECF PCA Timer/Counter Interrupt Enable:
ECF =1 enables the CF bit in the CCON register to generate an interrupt
request.

C-10

intel.

REGISTERS

DPH

Data Pointer High. DPH provides SFR access to register file location 58 (also named DPH). DPH is
the upper byte of the 16-bit data pointer, DPTR. Instructions in the MCS®
for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPL and DPXL.

Address: S:83H
Reset State: 0000 0000B

51 architecture use DPTR

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 DPH.7:0 Data Pointer High:
Bits 8-15 of the extended data pointer, DPX (DR56).

C-11

REGISTERS Int9I®

DPL Address: S:82H
Reset State: 0000 0000B

Data Pointer Low. DPL provides SFR access to register file location 59 (also named DPL). DPL is the
low byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51 architecture use the 16-bit data
pointer for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPH and

DPXL.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 DPL.7:0 Data Pointer Low:
Bits 0—7 of the extended data pointer, DPX (DR56).

C-12

Int9|® REGISTERS

Address: S:84H
Reset State: 0000 0001B

DPXL

Data Pointer Extended Low. DPXL provides SFR access to register file location 57 (also named
DPXL). Location 57 is the lower byte of the upper word of the extended data pointer, DPX = DR56,
whose lower word is the 16-bit data pointer, DPTR. See also DPH and DPL.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 DPL.7:0 Data Pointer Extended Low:
Bits 16—23 of the extended data pointer, DPX (DR56).

C-13

REGISTERS

intel.

IEO

Address: S:A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IEO contains two types of interrupt enable bits. The global enable bit (EA)
enables/disables all of the interrupts, except the TRAP interrupt, which is always enabled. The
remaining bits enable/disable the other individual interrupts.

7 0
EA EC ET2 Es || Em EX1 ETO EXO
Bit Bit . Function
Number Mnemonic

7 EA Global Interrupt Enable:
Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.

6 EC PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial /0 Port Interrupt Enable:
Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.

1 ETO Timer O Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.

0 EXO0 External Interrupt O Enable:
Setting this bit enables external interrupt 0.

C-14

intel.

REGISTERS

IPHO

Address: S:B7H

Reset State: X000 0000B

Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt a priority
level from 0O (lowest) to 3 (highest):

IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPHO.6 IPHO.5 IPHO.4 ‘ ‘ IPHO.3 IPHO.2 IPHO.1 IPHO.0
Bit Bit : Function
Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Do not write a
“1" to this bit.
6 IPHO.6 PCA Interrupt Priority Bit High
5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High
4 IPHO.4 Serial /0 Port Interrupt Priority Bit High
3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High
2 IPHO.2 External Interrupt Priority Bit High
1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High
0 IPHO.0 External Interrupt O Priority Bit High

C-15

REGISTERS

intel.

IPLO

Address: S:B8H
Reset State: X000 0000B

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt a priority
level from 0O (lowest) to 3 (highest):

IPHO.x IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPLO.6 IPLO.5 IPLO.4 ‘ ‘ IPLO.3 IPLO.2 IPLO.1 IPLO.O
Bit Bit : Function
Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Do not write a
“1" to this bit.
6 IPLO.6 PCA Interrupt Priority Bit Low
5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low
4 IPLO.4 Serial I/0 Port Interrupt Priority Bit Low
3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low
2 IPLO.2 External Interrupt Priority Bit Low
1 IPLO.1 Timer O Overflow Interrupt Priority Bit Low
0 IPLO.O External Interrupt O Priority Bit Low

C-16

Int9|® REGISTERS

Address: S:80H
Reset State: 1111 1111B

PO

Port 0. PO is the SFR that contains data to be driven out from the port O pins. Read-modify-write
instructions that read port O read this register. The other instructions that read port 0 read the port 0
pins. When port 0 is used for an external bus cycle, the CPU always writes FFH to PO, and the former
contents of PO are lost.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 P0.7:0 Port 0 Register:
Write data to be driven onto the port O pins to these bits.

C-17

REGISTERS Int9I®

P1 Address: S:90H
Reset State: 1111 1111B

Port 1. P1is the SFR that contains data to be driven out from the port 1 pins. Read-write-modify
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 P1.7:0 Port 1 Register:
Write data to be driven onto the port 1 pins to these bits.

C-18

intel.

REGISTERS

P2

Address: S:AOH
Reset State: 1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 P2.7:0 Port 2 Register:
Write data to be driven onto the port 2 pins to these bits.

C-19

REGISTERS Int9I®

P3 Address: S:BOH
Reset State: 1111 1111B

Port 3. P3is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 P3.7:0 Port 3 Register:
Write data to be driven onto the port 3 pins to these bits.

C-20

Int9|® REGISTERS

PCON Address: S:87H
Reset State: 00XX 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial 1/0
functions—the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SMO bit.

7 0
SMOD1 | SMODO — POF ‘ ‘ GF1 GFO PD IDL
Bit Bit Function
Number Mnemonic
7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 9-10.

6 SMODO SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See Figure 9-2 on page 9-3.

5 — Reserved:
The value read from this bit is indeterminate. Do not write a “1” to this bit.
4 POF Power Off Flag:

Set by hardware as V¢ rises above 3 V to indicate that power has been
off or V¢ had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

3 GF1 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GFO General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode.

Cleared by hardware when an interrupt or reset occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

C-21

REGISTERS

intel.

PSW

Address: S:DOH
Reset State: 0000 0000B

Program Status Word. PSW contains bits that reflect the results of operations, bits that select the
register bank for registers RO-R7, and two general-purpose flags that are available to the user.

7 0
cy AC FO RS1 || Rso ov uD P
Bit Bit)
Number Mnemonic Function

7 CY Carry Flag:
The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by some rotate and shift instructions, logical bit instructions, bit move
instructions, and the multiply (MUL) and decimal adjust (DA) instructions
(see Table 4-11 on page 4-18).

6 AC Auxiliary Carry Flag:
The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise it is cleared. This flag is useful for BCD
arithmetic (see Table 4-11 on page 4-18).

5 FO Flag O:
This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:
These bits select the memory locations that comprise the active bank of
the register file (registers RO—R7).
RS1 RSO Bank Address
0 0 0 00H-07H
0 1 1 08H-0FH
1 0 2 10H-17H
1 1 3 18H-1FH

2 (e)Y] Overflow Flag:
This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ubD User-definable Flag:
This general-purpose flag is available to the user.

0 P Parity Bit:
This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all instruc-
tions update the parity bit.

C-22

Int9|® REGISTERS

PSW1 Address: S:D1H
Reset State: 0000 0000B

Program Status Word 1. PSW1 contains bits that reflect the results of operations and bits that select
the register bank for registers RO-R7.

! 0
cy AC N RS1 || Rso ov 7 —
Bit Bit]
Number Mnemonic Function
7 cYy Carry Flag:

Identical to the CY bit in the PSW register on page C-22.

6 AC Auxiliary Carry Flag:
Identical to the AC bit in the PSW register on page C-22.

5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative. Otherwise it is cleared.

4:3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register on page C-22.
2 oV Overflow Flag:

Identical to the OV bit in the PSW register page C-22.
1 z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 — Reserved:
The value read from this bit is indeterminate. Do not write a “1” to this bit.

C-23

REGISTERS Int9I®

RCAP2H, RCAP2L Address: RCAP2H S:CBH
RCAP2L S:CAH

Reset State: 0000 0000B

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.1l name.0
Bit Bit Function
Number Mnemonic
7:0 RCAP2H.7:0 | High byte of the timer 2 reload/recapture register
RCAP2L.7:0 | Low byte of the timer 2 reload/recapture register

C-24

Int9|® REGISTERS

SADDR Address: S:A9H
Reset State: 0000 0000B

Slave Individual Address Register. SADDR contains the device’s individual address for multiprocessor
communication.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 SADDR.7:0

C-25

REGISTERS Int9I®

SADEN Address: S:B9H
Reset State: 0000 0000B

Mask Byte Register. This register masks bits in the SADDR register to form the device's given address
for multiprocessor communication.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 SADEN.7:0

C-26

intel.

REGISTERS
SBUF Address: S:99H
Reset State: XXXX XXXXB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial /0 port. Reading SBUF
reads the receive buffer of the serial 1/0 port.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 SBUF.7:0

C-27

REGISTERS Int9I®

SCON Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO sMm1 SM2 REN ‘ ‘ TBS RBS TI RI
Bit Bit Function
Number Mnemonic
7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software, not by valid
frames.

SMO0 Serial Port Mode Bit O:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate

0 0 0 Shift register Fog./12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fosc/32T or Fug /647
1 1 3 9-bit UART Variable

TSelect by programming the SMOD bit in the PCON register (see “Baud
Rates” on page 9-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To enable transmission, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:
Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

C-28

Int9|® REGISTERS

SCON Address: 98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO sMm1 SM2 REN H TBS RBS TI RI

Bit Bit

. Function
Number Mnemonic

1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
software.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

C-29

REGISTERS Int9I®

SpP Address: S:81H
Reset State: 0000 0111B

Stack Pointer. SP provides SFR access to location 63 in the register file (also named SP). SP is the
lowest byte of the extended stack pointer (SPX = DR60). The extended stack pointer points to the
current top of stack. When a byte is saved (PUSHed) on the stack, SPX is incremented, and then the
byte is written to the top of stack. When a byte is retrieved (POPped) from the stack, it is copied from
the top of stack, and then SPX is decremented.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 SP.7:0 Stack Pointer:
Bits 0—7 of the extended stack pointer, SPX (DR60).

C-30

Int9|® REGISTERS

Address: S:BDH
Reset State: 0000 0000B

SPH

Stack Pointer High. SPH provides SFR access to location 62 in the register file (also named SPH).
SPH is the upper byte of the lower word of DR60, the extended stack pointer (SPX). The extended
stack pointer points to the current top of stack. When a byte is saved (PUSHed) on the stack, SPX is
incremented, and then the byte is written to the top of stack. When a byte is retrieved (POPped) from
the stack, it is copied from the top of stack, and then SPX is decremented.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 SPH.7:0 Stack Pointer High:
Bits 8-15 of the extended stack pointer, SPX (DR(60)).

C-31

REGISTERS Int9I®

T2CON Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0
TF2 EXF2 RCLK TCLK ‘ ‘ EXEN2 TR2 CIT2# CP/RL2#
Bit Bit Function

Number Mnemonic
7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK=1o0r TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN =1)

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.
3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.
1 CIT2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

C-32

Int9|® REGISTERS

T2MOD Address: S:C9H
Reset State: XXXX XX00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .

7 0
— — — — ‘ ‘ — — T20E DCEN
Bit Bit Function
Number Mnemonic
7:2 — Reserved:
The values read from these bits are indeterminate. Do not write a “1” to
these bits.
1 T20E Timer 2 Output Enable Bit:
In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.
0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

C-33

REGISTERS Int9I®

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0
TF1 TR1 TFO TRO ‘ ‘ IE1 IT1 IEO ITO
Bit Bit Function
Number Mnemonic
7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.
5 TFO Timer 0 Overflow Flag:

Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 1 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IEO Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).

C-34

Int9|® REGISTERS

TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0
GATE1 CIT1# M11 MO1 ‘ ‘ GATEO C/To# MO01 MO0
Bit Bit Function
Number Mnemonic
7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATEL =1 and TR1 = 1, external signal INT1 gates the
timer input.

6 CITi# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

54 M11, MO1 Timer 1 Mode Select:

M11 M01

0 O Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)

0 1 Mode 1: 16-bit timer/counter

1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.

1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer 0 Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO =1 and TRO = 1, external signal INTO gates the
timer input.

2 CITO# Timer 0 Counter/Timer Select:

C/TO# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.

1,0 MO01, MOO Timer 0 Mode Select:
M10 MOO
0 Mode 0: 8-bit timer/counter (TO) with 5-bit prescaler (TLO)

0
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow
1 1 Mode 3: TLO is 8-bit timer/counter. THO is 8-bit timer only
using timer 1 TR1 and TF1 bits.

C-35

REGISTERS

intel.

THO, TLO

Address: THO S:8CH
TLO S:8AH

Reset State: 0000 0000B

THO, TLO Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
0 or separately as 8-bit timer/counters.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 THO.7:0 High byte of the timer O timer register.
TLO.7:0 Low byte of the timer O timer register.

C-36

intel.

REGISTERS

TH1, TL1

TH1, TL1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer

1 or separately as 8-bit timer/counters.

Address: TH1 S:8DH
TL1 S:8BH

Reset State: 0000 0000B

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 TH1.7:0 High byte of the timer 1 timer register.
TL1.7:0 Low byte of the timer 1 timer register.

C-37

REGISTERS

intel.

TH2, TL2

Address: TH2 S:CDH
TL2 S:CCH

Reset State: 0000 0000B

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer

2.
7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 TH2.7:0 High byte of the timer 2 timer register.
TL2.7:0 Low byte of the timer 2 timer register.

C-38

Int9|® REGISTERS

WDTRST Address: S:A6H
Reset State: XXXX XXXXB

Watchdog Timer Reset Register. Writing the two-byte sequence 1EH-E1H to the WDTRST register
clears and enables the hardware WDT. The WDTRST register is a write-only register. Attempts to
read it return FFH. The WDT itself is not read or write accessible. See “Watchdog Timer” on page
7-16.

7 0
name.7 name.6 name.5 name.4 ‘ ‘ name.3 name.2 name.l name.0
Bit Bit Function
Number Mnemonic
7:0 WDTRST.7:0 | Provides user control of the hardware WDT.

C-39

REGISTERS

C-40

intel.

Glossary

intgl.
GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (Chapter 1, “Guide to this Manual,” discusses notational conventions and general terminol-

ogy.)

#0datal6 A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with zeros.

#1datal6 A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with ones.

#data An 8-bit constant that is immediately addressed in an
instruction.

#datal6 A 16-bit constant that is immediately addressed in an
instruction.

#short A constant, equal to 1, 2, or 4, that is immediately

addressed in an instruction.

accumulator A register or storage location that forms the result of
an arithmetic or logical operation.

addrll An 11-bit destination addss. The destination can be
anywhere in the same 2-Kbyte block of memory as
the first byte of the next instruction.

addrl6 A 16-bit destination address. The destination can be
anywhere within the same 64-Kbyte region as the first
byte of the next instruction.

addr24 A 24-bit destination address. The destination can be
anywhere within the 16-Mbyte address space.

ALU Arithmetic-logic unit. The part of the CPU that
processes arithmetic and logical operations.

assert The termassertrefers to the act of making a signal
active (enabled). The polarity (high/low) is defined by
the signal name. Active-low signals are designated by
a pound symbol (#) suffix; active-high signals have no
suffix. To assertRD# is to drive it low; tassertALE
is to drive it high.

I Glossary-1

GLOSSARY I nt9I ®

binary-code compatibility The ability of an MC8& 251 microcontroller to
execute, without modification, binary code written for
an MCS 51 microcontroller.

binary mode An operating mode, selected by a configuration bit,
that enables an MCS 251 microcontroller to execute,
without modification, binary code written for an MCS
51 microcontroller.

bit A binary digit.

bit (operand) An addressable bit in the MCS 251 architecture.
bit51 An addressable bit in the MCS 51 architecture.

byte Any 8-bit unit of data.

clear The termclear refers to the value of a bit or the act of

giving it a value. If a bit islear, its value is “0”;
clearinga bit gives it a “0” value.

code memory Seeprogram memory

configuration bytes Bytes, residing in on-chip OTPROM/ROM, that
determine a set of operating parameters for the
8XC251SB.

dir8 An 8-bit direct address. This can be a memory address
or an SFR address.

dirl6 A 16-bit memory address (00:0000H-00:FFFFH)
used in direct addressing.

DPTR The 16-bit data pointer. In MCS 251 microcontrollers,
DPTR is the lower 16 bits of the 24-bit extended data
pointer, DPX.

DPX The 24-bit extended data pointer in MCS 251 micro-

controllers. See alsbPTR

deassert The termdeasserrefers to the act of making a signal
inactive (disabled). The polarity (high/low) is defined
by the signal name. Active-low signals are designated
by a pound symbol (#) suffix; active-high signals have
no suffix. To deassertRD# is to drive it high; to
deassertALE is to drive it low.

Glossary-2 I

double word

dword

edge-triggered

encryption array

external address

FET

idle mode

input leakage

integer

internal address

interrupt handler

interrupt latency

interrupt response time

GLOSSARY

The process of introducing a periodic table Group Il
or Group V eleent into a Group IV element .(g,
silicon). A Group Il impurity (e.g., indium or
gallium) results in ap-type material. A Group V
impurity (e.g., arsenic or antimony) results in r&n
typematerial.

A 32-bit unit of data. In memory, a doubigord
comprises four contiguous bytes.

Seedouble word

The mode in which a device oomponent recognizes

a falling edge (high-to-low transition), a rising edge
(low-to-high transition), or a rising or falling edge of
an input signal as the assertion of that signal. See also
level-triggered

An array of key bytes used to encrypt user code in the
on-chip code memory as that code is read; protects
against unauthorized access to user’s code.

A 16-bit or 17-bit address presented on the device
pins. The address decoded by an external device
depends on how many of these address bits the
external system uses. See dlgernal address

Field-effect transistor.

The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and
negative whole numbers and zero.

The 24-bit address that the device generates. See also
external address

The module responsible for handling interrupts that
are to be serviced by user-written interrupt service
routines.

The delay between an interrupt request and the time
when the first instruction in the interrupt service
routine begins execution.

The time delay between an interrupt request and the
resulting break in the current instruction stream.

Glossary-3

GLOSSARY

interrupt service routine (ISR)

level-triggered

LSB

maskable interrupt

MSB

multiplexed bus

n-channel FET

n-type material

nonmaskabk interrupt

npn transistor

OTPROM

p-channel FET

p-type material

PC

program memory

Glossary-4

intel.

The software routine that services an interrupt.

The mode in which a device oomponent recognizes

a high level (logic one) or a low level (logic zero) of
an input signal as the assertion of that signal. See also
edge-triggered.

Least-significant bit of a byte or least-significant byte
of a word.

An interrupt that can be disabled (masked) by its
individual mask bit in an interrupt enable register. All
8XC251SB interrupts, except the software trap
(TRAP), are maskable.

Most-significant bit of a byte or most-significant byte
of a word.

A bus on which the data is time-multiplexed with
(some of) the address bits.

A field-effect transistor with am-type conducting
path (channel).

Semiconductor material with introduced impurities
(doping causing it to have an excess of negatively
charged carriers.

An interrupt that cannot be disabled (masked). The
software trap (TRAP) is the 8XC251SB’'s only
nonmaskable interrupt.

A transistor consisting of one partype material and
two partsn-type material.

One-time-programmable read-only memorygession
of EPROM.

A field-effect transistor with ap-type conducting
path.

Semiconductor material with introduced impurities
(doping causing it to have an excess of positively
charged carriers.

Program counter

A part of memory wherstructions can be stored for
fetching and execution.

intel.

powerdown mode

PWM

rel

reserved bits

set

SFR

sign extension
sink current
source-code compatibility

source current

source mode

SP
SPX

GLOSSARY

The power conservation mode that freezes both the
core clocks and the peripheral clocks.

Pulse-width modulated (outputs).

A signed (two's complement) 8-bit, relative
destination address. The destinationlg8 to +127
bytes relative to the first byte of the next instruction.

Register bits that are not used in this device but may
be used in future implementations. Avoid any
software dependence on these bits. In the 8XC251SB,
the value read from a reserved bit is indeterminate; do
not write a “1” to a reserved bit.

The termsetrefers to the value of a bit or the act of
giving it a value. If a bit iset its value is “1”;setting
a bit gives it a “1” value.

Special-function register.

A method for converting data to a larger format by
filling the extra bit positions with the value of the
sign. This conversion preserves the positive or
negative value of signed integers.

Current flowinginto a device to ground. Always a
positive value.

The ability of an MCS 251 microcontroller to execute
recompiled source code written for an MCS 51 micro-
controller.

Current flowingout of a device from {.. Always a
negative value.

An operating mode that is selected by a configuration
bit. In source mode, an MCS 251 microcontroller can
execute recompiled source code written for an MCS
51 microcontroller. In source mode, the MCS 251
microcontroller cannot execute unmodified binary
code written for an MCS 51 microcontroller. See
binary mode

Stack pointer.

Extended stack pointer.

Glossary-5

GLOSSARY

state time (or state)

UART

WDT

word

wraparound

Glossary-6

intel.

The basic time unit of the device; the combined
period of the two internal timing signals, PH1 and
PH2. (The internal clock generajmroduces PH1 and
PH2 by halving the frequency of the signal on
XTAL1.) With a 16-MHz crystal, onestate time
equals 125 ns. Because the device can operate at
many frequencies, this manual defines time require-
ments in terms oftate timesather than in specific
units of time.

Universal asynchronous receiver and transmitter. A
part of the serial I/O port.

Watchdog timer, an internal timer that resets the
device if the software fails to operate properly.

A 16-bit unit of data. In memory, a word comprises
two contiguous bytes.

The result of interpreting an address whose
hexadecimal expression uses more bits than the
number of available address lines. Wrapsnd
ignores the upper address bits and directs access to the
value expressed by the lower bits.

intel.

Index

intel.

#0datal6, A-3
#ldatal6, A-3
#data
definition, A-3
#datal6, A-3
#short, A-3
80C251SB, 13-1
configuration byte valuesl3-9
83C251SB, 13-1
See also ROM
87C251SB, 13-1
See also OTPROM
8XC251SB, 2-1
applications, 2-1
block diagram, 2-2
features, 2-4
on-chip peripherals, 2-1, 2-3
8XC51FX, 2-1

A
A15:8, 6-1, B-2
description,12-1
Al16, B-2
configuring for, 13-6
description,12-1
AC flag, 4-19, 4-20
ACALL instruction, 4-16, A-24, A-26
ACC, 3-10, 3-13, 3-14,C-4
Accumulator, 3-12
in register file, 3-10
See also ACC
AD7:0, 6-1, B-2
description,12-1
ADD instruction, 4-10, A-14
ADDC instruction, 4-10, A-14
addrll, 4-14, A-3
addr16, 4-14, A-3
addr24, 4-14, A-3

INDEX

caution, 10-6
description, 12-1
extended, 12-6
following reset, 10-6
idle mode, 11-4
programming for extensionl.3-6
programming on-chip OTPROM, 13-3
ANL instruction, 4-114-12
for bits, A-23
ANL/ instruction, 4-12
for bits, A-23
Arithmetic instructions, 4-10}-11
table of, A-14, A-15, A-16

B
B register, 3-12, C-5
as SFR, 3-13, 3-14
in register file, 3-10
Base address, 4-5
Baud rateSee Serial I/O port, Timer 1, Timer 2
Binary and source modes, 2-3, 4-1-4-3
opcode maps, 4-1
selection guidelines, 2-3, 4-2
Bit address
addressing modes, 4-14
definition, A-3
examples, 4-13
Bit instructions, 4-44-12-4-14
addressing modes, 4-6, 4-12
bit51, 4-13, A-3
Broadcast addreee Serial 1/0 port

C

Call instructions, 4-16
Capacitors
bypass, 10-2
CCAP1H-CCAP4H, CCAP1L-CCAP4L, 3-13,
3-16, C-6

Address spaceSee Memory space, SFRs, Register ccapm1-4, 3-13, 3-15, C-7

file, External memory, Comphility

Addresses

internal vs external, 12-3
Addressing modes, 3-5, 4-5

See also Data instructions, Bit instructions,

Control instructions

AJMP instruction, 4-16, A-24
ALE, B-2

interrupts, 5-5
CCON, 3-13, 3-15,C-8
Ceramic resonator, 10-4
CEX4:0, 6-1, B-2
CH, CL, 3-13, 3-16, C-9
CJNE instruction, A-25
Clock, 2-5

external, 10-4

Index-1

INDEX

external source, 10-3
idle and powedown modes, 11-5
idle mode, 11-4
powerdown mode, 11-5, 11-6
sources,10-3
CLR instruction, 4-11, 4-12, A-17, A-23
CMOD, 3-13, 3-15, C-10
interrupts, 5-5
CMP instruction, 4-10, 4-15, A-15
Code constants, 12-7
Code fetches
external, 12-10
internal, 12-10
page hit and page miss, 12-11
page mode, 12-11
Code memory
MCS 51 architecture, 3-5

intel.

D
DA instruction, A-16
Data instructions, 4-4-6—4-12
addressing modes, 4-6
Data pointeiSee DPH, DPL, DPTR, DPX, DPXL
Data transfer instructions, 4-11-4-12
table of, A-22
See also Move instructions
Data types, 4-4
DEC instruction, 4-10, A-16
Destination register, 4-5
dirle, A-3
dir8, A-3
Direct addressing, 4-5
in control instructions 4-14
Displacement addressing, 4-5, 4-9
DIV instruction, 4-10, A-16

See also On-chip code memory, External code pjyision, 4-10

memory
Compatibility (MCS 251 and MCS 51
architectures), 2-1, 3-2-3-5

address spaces, 3-2, 3-4

external memory, 3-5

memory configuration for, 12-5

on-chip RAM, 3-5

SFR space, 3-5

See also Binary and source modes
CONFIGO

bit definitions, 13-7
CONFIG1

bit definitions, 13-8
Configuration bytes

programming, 13-1

programming and verifying, 13-6

setup for programming and verifying, 13-2—

13-3

Control instructions, 4-4-14-4-17

addressing modes, 4-14, 4-15

table of, A-24
Core, 2-4
SFRs, 3-14

CPL instruction, 4-11, 4-12, A-17, A-23
CPU, 2-4
block diagram, 2-5
Crystal
for on-chip oscillator, 10-3
CY flag, 4-19, 4-20

Index-2

DJNZ instruction, A-25
Documents, related, 1-5
DPH, DPL, 3-12, C-11, C-12

as SFRs, 3-13, 3-14
DPTR, 3-12

in jump instruction, 4-14
DPX, 3-5, 3-10, 3-12, 4-7
DPXL, 3-12, C-13

as SFR, 3-13, 3-14

external data memory mapping, 3-5, 4-7,

4-11
reset value, 3-5

E
EA#, 3-6, B-2
description, 12-1
ECALL instruction, 4-16, A-24
ECI, 6-1, B-2
EJMP instruction, 4-16, A-24
EMAP bit, 3-6, 12-7
Encryption, 13-1
Encryption array
key bytes, 13-10
programming and verifying, 13-1, 13-10
setup for programming, 13-2-13-3
ERET instruction, 4-17, A-24
Escape prefix (A5H), 4-2
Extended stack point&ee SPX
External address lines

intel.

number of, 12-3
See also External bus
External bus
AC timing definitions, 2-28
AC timing specifications,12-24-12-27
bus-idle condition, 12-7
inactive, 12-7
pin status, 12-1512-16

structure in page mode, nonpage mode, 12-10

External bus cycles, 12-7
definitions, 12-8
extended ALE wait state, 12-14
extended PSEN#/RD#/WR# wait state, 12-13
nonpage mode, 12-8, 12-9
page hit vs page mis4,2-10
page mode, 12-10-12-12
External code memory, 12-4, 12-5
example, 12-16, 12-21, 12-22
idle mode, 11-4
powerdown mode, 11-5
External memory, 3-8
design examples]12-16-12-24
MCS 51 architecture, 3-3, 3-4, 3-5
External memory interface, 12-1-12-30
configuring, 2-2-12-7
signals, 12-1
External RAM, 12-4, 12-5
example, 12-16, 12-19, 12-21, 12-22
exiting idle mode, 11-5

E
FO flag, 4-19
Flash memory
example, 12-21, 12-22

G

Given addresSee Serial 1/0 port
Ground bounce, 10-2

H

Hardware
application notes, 1-6

|
I/O ports, 6-1-6-8
external memory access, 6-7, 6-8

INDEX

latches, 6-2
loading, 6-7
pullups, 6-6
quasi-bidirectional, 6-5
SFRs, 3-14
See also Ports 0-3
Idle mode, 2-3, 11-1, 11-4-11-5
entering, 11-4
exiting, 10-5, 11-5
external bus,12-7
IE, 5-3,5-5
IEO, 3-13, 3-14, 5-14, 9-11, C-14
Immediate addressing, 4-5
INC instruction, 4-10, A-16
Indirect addressing, 4-5
in control instructions 4-14
in data instructions, 4-9
Input pins
level-sensitive, B-2
sampled, B-2
INT1:0#, 5-1, 6-1, 7-1, 7-3, B-2
pulse width measurements, 7-10
Interrupt request, 5-1
cleared by hardware, 5-4
Interrupt service routine
exiting idle mode,11-5
exiting powerdown mode, 11-6
Interrupts, 5-1-5-15
blocking conditions, 5-14
detection, 5-3
edge-triggered, 5-4
enable/disable, 5-5
exiting idle mode,11-5
exiting powerdown mode, 11-6
external, 5-3, 5-11
global enable, 5-5
instruction completion time, 5-10
latency, 5-9-5-13
level-triggered, 5-4
PCA, 5-5
polling, 5-9, 5-10
priority, 5-1, 5-3, 5-4, 5-6-5-8
priority within level, 5-7
processing, 5-9-5-15
requesiSee Interrupt request
response time, 5-9, 5-10
sampling, 5-3, 5-10
serial port, 5-5

Index-3

INDEX

service routine (ISR), 5-4, 5-9, 5-14, 5-15
sources, 5-3
timer/counters, 5-4
vector cycle, 5-14
vectors, 3-5, 5-4

INTR bit
and RETI instruction4-17

IPHO, 3-13, 3-14, 5-3, 5-6, 5-14, C-15
bit definitions, 5-7

IPLO, 3-13, 3-14, 5-3, 5-6, 5-14, C-16
bit definitions, 5-7

ISR See Interrupts, service routine

J

JB instruction, 4-15, A-24

JBC instruction, 4-15, A-24

JC instruction,A-24

JE instruction,A-24

JG instruction,A-24

JLE instruction, A-24

JMP instruction, A-24

JNB instruction, 4-15, A-24

JNC instruction,A-24

JNE instruction,A-24

JNZ instruction, A-24

JSG instruction,A-25

JSGE instruction A-25

JSL instruction, A-25

JSLE instruction, A-25

Jump instructions
bit-conditional, 4-15
compare-conditional, 4-18-16
unconditional,4-16

JZ instruction, A-24

K
Key bytesSee Encryption array

L
LCALL instruction, 4-16, A-24
Level-sensitive input, B-2
LIMP instruction, 4-16, A-24
Lock bits
programming and verifying, 13-1, 13-9
protection types, 13-9

setup for programming and verifying, 13-2—

13-3

Index-4

intel.

Logical instructions, 4-11
table of, A-17

M

MCS 251 microcontroller, 2-1
features, 2-1

MCS 51 microcontroller, 2-1

Memory space, 2-3, 3-B:5-3-8
compatibility See Compatibility (MCS 251

and MCS 51 architectures)

hardware implementation, 3-5
internal vs externall2-4—12-6
regions, 3-2, 3-5
reserved locations, 3-5

Miller effect, 10-4

MOV instruction, 4-11, A-19, A-20, A-21
for bits, 4-12, A-23

MOVC instruction, 3-3, 4-11, A-21

Move instructions
table of, A-19

MOVH instruction, 4-12, A-21

MOVS instruction, 4-12, A-21

MOVX instruction, 3-3, 4-11, A-21

MOVZ instruction, 4-12A-21

MUL instruction, 4-10

Multiplication, 4-10

N

N flag, 4-11, 4-20

Noise reduction, 10-2, 10-3, 10-4
Nonpage mode

bus cyclesSee External bus cycles, Nonpage

mode
bus structure, 12-1
configuring for, 12-3
design example, 12-16, 12-19
port pin status, 4-15
Nonvolatile memory
programming and verifying, 13-1-13-12

See also On-chip code memory, Configuration

bytes, Lock bits, Encryption array,
Signature bytes
NOP instruction, 4-16, A-25

@)
ONCE mode, 11-1, 11-7
entering, 11-7

intel.

exiting, 11-7
On-chip code memory, 3-2, 12-4, 12-13
accessing in data memory, 12-7
accessing in region 00:, 3-6
idle mode, 11-4
powerdown mode, 11-5
programming and verifying, 13-1, 13-5
remapping, 13-6
setup for programming and verifying, 13-2—
13-3
starting address, 3-6, 13-1, 13-2
top eight bytes, 3-6, 13-2
See also OTPROM, ROM
On-chip oscillator
hardware setup, 10-1
On-chip RAM, 3-2, 3-6
bit addressable, 3-@-13
bit addressable in MCS 51 architectudel3
idle mode, 11-4
MCS 51 architecture, 3-2, 3-4
reset, 10-6
Opcodes
for binary and source modes, 4-1
map, A-4
See also Binary and source modes
ORL instruction, 4-11, 4-12
for bits, A-23
ORL/ instruction, 4-12
for bits, A-23
Oscillator, 2-5
at startup, 10-7
during reset, 10-5
ONCE mode, 11-7
on-chip, 10-3
powerdown mode, 11-5, 11-6
programming and verifying on-chip
OTPROM/ROM, 13-3
OTPROM (on-chip), 13-1
programming algorithm, 13-4
programming and verifying, 13-1-13-12
programming waveforms, 13-4

timing for programming and verifying, 13-11

verify algorithm, 13-5

See also On-chip code memory, Configuration

bytes, Lock bits, Encryption array,
Signature bytes

OV bit, 4-19, 4-20

Overflow See OV bit

INDEX

P
P bit, 4-19
PO, 3-13, 3-14, 6-2, C-17
P1, 3-13, 3-14, 6-2, C-18
P2, 3-13, 3-14, 6-2, C-19
P3, 3-13, 3-14, 6-2, C-20
PAGE bit, 12-3
Page mode, 2-4
address access time, 12-11

bus cyclesSee External bus cycles, page mode

configuring for, 12-3, 13-6
design example, 12-21, 12-22
port pin status, 4-16

Parity See P bit

PCA
idle mode, 11-4
SFRs, 3-15

PCON, 3-13, 3-14, 9-7, 11-1, 11-2, 11-5, C-21
idle mode, 11-4
powerdown mode, 11-6
reset, 10-5

Peripheral cycle, 2-5

Phase 1 and phase 2, 2-5

Pin conditions, 11-3

Pins
unused inputs, 10-2
Pipeline, 2-4
POP instruction, 3-11, 4-12, A-22
Port 0, 6-2, B-3
and top of on-chip code memor{3-2
pullups, 6-7

structure, 6-3
See also External bus
Port 1, 6-2, B-3
structure, 6-3
Port 2, 6-2, B-3
and top of on-chip code memor{3-2
structure, 6-4
See also External bus
Port 3, 6-2, B-3
structure, 6-3
Ports
at power on, 10-7
exiting idle mode,11-5
exiting powerdown mode, 11-5
extended execution times, 4-1, A-1, A-11

Index-5

INDEX

programming and verifying on-chip
OTPROM/ROM, 13-3, 13-4, 13-5
Power supply, 10-2
Powerdown mode, 2-3, 11-1, 11-5-11-6
accidental entry, 11-4
entering, 11-6
exiting, 10-5,11-6
external bus, 12-7
PROG#, 13-1, B-3
Program staus wordSee PSW, PSW1
PSEN#, 13-6, B-3
caution, 10-6
description,12-2
idle mode, 11-4
programming on-chip OTPROM, 13-3
regions for strobe, 12-3
PSW, A-26
PSw, PSW1, 3-13, 3-14, 4-17-4-18, C-22, C-23
conditional jumps, 4-15
effects of instructions on flag<}-18
PSW1, A-26
Pullups, 6-7
ports 1, 2, 3, 6-5
Pulse width measurements;10
PUSH instruction, 3-11, 4-12-22

Q

Quick-pulse algorithm, 13-1

R
RCAP2H, RCAP2L, 3-13, 3-15, 7-2, 9-12, C-24
RD#, 6-1, 13-6, B-3
as 17th address bit, 12-3, 12-4
described, 12-2
regions for strobe, 12-3
RD1:0 configuration bits, 12-3-12-6
table, 12-3
Read-modify-write instructions, 6-2, 6-5
Register addressing, 4-5, 4-8
Register banks, 3-2, 3-8
accessing in memory address space, 4-6
implementation, 3-8, 3-9
MCS 51 architecture, 3-2
selection bits (RS1:0), 4-19, 4-20
Register file, 2-4, 3-1, 3-8-8-3-12
address space, 3-2
addressing locations in, 3-9

Index-6

intel.

and reset, 10-6
MCS 51 architecture, 3-4
naming registers, 3-8
register types, 3-8
RegistersSee Register addressing, Register banks,
Register file
rel, A-3
Relative addressing, 4-6, 4-14
Reset, 10-5-10-7
cold start, 10-5, 11-1
entering ONCE mode, 11-7
exiting idle mode,11-5
exiting powerdown mode, 11-6
externally initiated,10-5
need for, 10-6
operation, 10-6
power on, 10-6
power-on setup10-1
timing sequence, 10-6, 10-7
warm start, 10-5, 11-1
RET instruction, 4-17, A-24
RETI instruction, 5-1, 5-14, 5-1%-24
Return instructions, 4-16
RL instruction, A-17
RLC instruction, A-17
ROM (on-chip), 13-1
verifying, 13-1-13-12
See also On-chip code memory, Configuration
bytes, Lock bits, Encryption array,
Signature bytes
Rotate instructions4-11
RR instruction,A-17
RRC instuction, A-17
RST, 10-5, 10-6, B-3
exiting idle mode,11-5
exiting powerdown mode, 11-6
ONCE mode, 11-7
power-on reset, 10-6
programming and verifying on-chip
OTPROM/ROM, 13-3
RXD, 6-1, 9-1, B-3
mode 0, 9-4
modes 1, 2, 3, 9-6

S
SADDR, 3-13, 3-15, 9-2, 9-8, 9-9, 9-10, C-25
SADEN, 3-13, 3-15, 9-2, 9-8, 9-9, 9-10, C-26

intel.

Sampled input, B-2

SBUF, 3-13, 3-159-2, 9-4, 9-5, C-27

SCON, 3-13, 3-15, 9-2, 9-4, 9-5, 9-6, 9-7, C-28,

C-29

bit definitions, 9-3
interrupts, 5-5

Security, 13-1

Serial I/O port, 9-1-9-14
asynchronous modes, 9-6
automatic addresscegnition, 9-7-9-10
baud rate generator, 7-9
baud rate, mode 0, 9-4, 9-10
baud rate, modes 1, 2, 3, 9-6, 9-10-9-14
broadcast address, 9-9
data frame, modes 1, 2, 3, 9-6
framing bit error detection, 9-7
full-duplex, 9-6
given address, 9-8
half-duplex, 9-4
interrupts, 9-1, 9-8
mode 0, 9-4-9-5
modes 1, 2, 3, 9-6
multiprocessor communication, 9-7
SFRs, 3-15, 9-1, 9-2
synchronous mode, 9-4
timer 1 baud rate, 9-11, 9-12
timer 2 baud rate, 9-12-9-14
timing, mode 0, 9-5

SETB instruction, 4-12, A-23

SFRs
accessing, 3-12
address space, 3-1, 3-2
idle mode, 11-4
map, 3-13
MCS 51 architecture, 3-4
powerdown mode, 11-5
reset initialization,10-6
reset values, 3-12
tables of, 3-14
unimplemented, 3-2, 3-12

Shift instruction, 4-11

Signal desdptions, 8-4

Signature bytes
setup for verifying, 13-2-13-3
values, 13-10
verifying, 13-1,13-10

SJMP instruction, 4-16, A-24

SLL instruction, 4-11, A-17

INDEX

Software

application notes, 1-6
Source register, 4-5
SP, 3-11, 3-12, 3-13, 3-14, C-30
Special function registeSee SFRs
SPH, 3-11, 3-12, 3-13, 3-14, C-31
SPX, 3-10, 3-11, 3-12
SRA instruction, 4-11, A-18
SRL instruction, 4-11, A-18
State time, 2-5
SUB instruction, 4-10, A-14
SUBB instruction, 4-10, A-14
SWAPInstruction, 4-11, A-18

T
T1:.0, 6-1, 7-3, B-3
T2, 6-1, 7-3, B-4
T2CON, 3-13, 3-15, 7-1, 7-2, 7-10, 9-13, C-32
baud rate generator, 9-12
bit definitions, 7-17
T2EX, 6-1, 7-3, 7-11, 9-12, B-4
T2MOD, 3-13, 3-15, 7-1, 7-2, 7-10, C-33
bit definitions, 7-16
Target address, 4-6
TCON, 3-13, 3-15, 7-1, 7-2, 7-4, 7-6, C-34
bit definitions, 7-8
interrupts, 5-1
TH2, TL2
baud rate generator, 9-14
baud-rate generator, 9-12
THx, TLx (x =0, 1, 2), 3-13, 3-15, 7-2, C-36,
C-37, C-38
Timer 0, 7-4-7-8
applications, 7-9
auto-reload, 7-5
counter/timer select, 7-7
interrupt, 7-4, 7-8
mode 0, 7-4
mode 1, 7-5
mode 2, 7-5
mode 3, 7-5
mode selection, 7-7
pulse width measurements, 7-10
Timer 1
applications, 7-9
auto-reload, 7-9
baud rate generator, 7-6

Index-7

INDEX

counter/timer select, 7-7
interrupt, 7-6, 7-8

mode 0, 7-6

mode 1, 7-9

mode 2, 7-9

mode 3, 7-9

mode selection, 7-7

pulse width measurement3;10

Timer 2, 7-104-17

auto-reload modey-12
baud rate generator, 7-14
capture mode, 7-11
clock out mode, 7-14
interrupt, 7-11

mode select, 7-15

Timer/counters, 7-1-7-17

externalinput ampling, 7-3
internal clock, 7-3
interrupts, 7-1

overview, 7-1-7-3
registers, 7-2

SFRs, 3-15

signal descriptions, 7-3

See also Timer 0, Timer 1, Timer 2

Timing

TMOD, 3-13, 3-15, 7-1, 7-2, 7-4, 7-6, 9-11, C-35

symbol definitions, 12-28

bit definitions, 7-7

Tosc, 2-5, 2-6

TRAP indruction, 4-17, 5-3, 5-5, 5-15, A-25

See also Oscillator

TXD, 6-1, 9-1, B-4

U

mode 0, 9-4
modes 1, 2, 3, 9-6

UART, 9-1
uD flag, 4-19

\%

Vce, 10-2, B-4

during reset, 10-5

power off flag, 11-1
powerdown mode, 11-5, 11-6
power-on reset, 10-7

See also Power supply

Vce2, 10-2, B-4

Index-8

Vpp, 13-1, B-4
requirements, 13-3

Vss, B-4

Vssl1, 10-2, B-4

Vss2, 10-2, B-4

W

Wait state, 12-6
configuring for, 13-6
extended ALE, 12-6

PSEN#/RD#/WR#, 4-1, 12-6, A-1, A-11

Watchdogtimer
SFRs, 3-15

Watchdogtimer (hardware),7-16—7-18

enabling, disabling, 7-16
in idle mode, 7-18
in powerdown mode, 7-18
overflow, 7-16

WDT
initiating reset, 10-5

WDTRST, 3-13, 3-157-2, 7-16, C-39

WR#, 6-1, B-4
described, 12-2
WSA, WSB bits, 12-6

XALE bit, 12-6

XCH instruction, 4-12, A-22

XCHD instruction, 4-12, A-22

XRL instruction, 4-11

XTAL1, B-4

XTAL1, XTAL2, 10-3
capacitance loading, 10-4

XTAL2, B-4

Z
Zflag, 4-11, 4-20

INDEX

Index-9

	8XC251SB Embedded Microcontroller User’s Manual
	CONTENTS
	CHAPTER 1 Guide to this Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.3.1 Data Sheet
	1.3.2 Application Notes

	1.4 Customer Service
	1.4.1 How to Use Intel's FaxBack Service
	1.4.2 How to Use Intel's Application BBS
	1.4.3 How to Find the Latest ApBUILDER Files and H...

	CHAPTER 2 Architectural Overview
	2.1 8XC251SB Core
	2.1.1 CPU
	2.1.2 Clock and Reset Unit
	2.1.3 Interrupt Handler
	2.1.4 On-chip Code Memory
	2.1.5 On-chip RAM

	2.2 On-chip Peripherals
	2.2.1 Timer/Counters and Watchdog Timer
	2.2.2 Programmable Counter Array (PCA)
	2.2.3 Serial I/O Port

	CHAPTER 3 Address Spaces
	3.1 Address Spaces for MCS® 251 Microcontrollers
	3.1.1 Compatibility with the MCS® 51 Architecture

	3.2 The 8XC251SB Memory Space
	3.2.1 On-chip General-purpose Data RAM
	3.2.2 On-chip Code Memory (87C251SB/83C251SB)
	3.2.2.1 Accessing On-chip Code Memory in Region 00...

	3.2.3 External Memory

	3.3 The 8XC251SB Register File
	3.3.1 Byte, Word, and Dword Registers
	3.3.2 Dedicated Registers
	3.3.2.1 Accumulator and B Register
	3.3.2.2 Extended Data Pointer, DPX
	3.3.2.3 Extended Stack Pointer, SPX

	3.4 Special Function Registers (SFRs)

	CHAPTER 4 Programming
	4.1 Binary Mode and Source Mode Configurations
	4.1.1 Selecting Binary Mode or Source Mode

	4.2 Programming Features of the MCS® 251 Architect...
	4.2.1 Data Types
	4.2.2 Register Notation
	4.2.3 Address Notation
	4.2.4 Addressing Modes

	4.3 Data Instructions
	4.3.1 Data Addressing Modes
	4.3.1.1 Register Addressing
	4.3.1.2 Immediate
	4.3.1.3 Direct
	4.3.1.4 Indirect
	4.3.1.5 Displacement

	4.3.2 Arithmetic Instructions
	4.3.3 Logical Instructions
	4.3.4 Data Transfer Instructions

	4.4 Bit Instructions
	4.4.1 Bit Addressing

	4.5 Control Instructions
	4.5.1 Addressing Modes for Control Instructions
	4.5.2 Conditional Jumps
	4.5.3 Unconditional Jumps
	4.5.4 Calls and Returns

	4.6 Program Status Words

	CHAPTER 5 Interrupt System
	5.1 OVERVIEW
	5.2 8XC251SB Interrupt Sources
	5.2.1 External Interrupts
	5.2.2 Timer Interrupts

	5.3 Programmable Counter Array (PCA) Interrupt
	5.4 SERIAL POrt Interrupt
	5.5 Interrupt Enable
	5.6 Interrupt Priorities
	5.7 Interrupt Processing
	5.7.1 Minimum Fixed Interrupt Time
	5.7.2 Variable Interrupt Parameters
	5.7.2.1 Response Time Variables
	5.7.2.2 Computation of Worst-case Latency With Var...
	5.7.2.3 Latency Calculations
	5.7.2.4 Blocking Conditions
	5.7.2.5 Interrupt Vector Cycle

	5.7.3 ISRs in Process

	CHAPTER 6 Input/Output Ports
	6.1 Input/Output port overview
	6.2 I/O Configurations
	6.3 Port 1 and Port 3
	6.4 Port 0 and Port 2
	6.5 Read-Modify-Write Instructions
	6.6 Quasi-bidirectional Port Operation
	6.7 Port Loading
	6.8 External Memory Access

	CHAPTER 7 Timer/Counters and WatchDog Timer
	7.1 Timer/Counter Overview
	7.2 Timer/Counter Operation
	7.3 Timer 0
	7.3.1 Mode 0 (13-bit Timer)
	7.3.2 Mode 1 (16-bit Timer)
	7.3.3 Mode 2 (8-bit Timer With Auto-reload)
	7.3.4 Mode 3 (Two 8-bit Timers)

	7.4 Timer 1
	7.4.1 Mode 0 (13-bit Timer)
	7.4.2 Mode 1 (16-bit Timer)
	7.4.3 Mode 2 (8-bit Timer with Auto-reload)
	7.4.4 Mode 3 (Halt)

	7.5 Timer 0/1 Applications
	7.5.1 Auto-load Setup Example
	7.5.2 Pulse Width Measurements

	7.6 Timer 2
	7.6.1 Capture Mode
	7.6.2 Auto-reload Mode
	7.6.2.1 Up Counter Operation
	7.6.2.2 Up/Down Counter Operation

	7.6.3 Baud Rate Generator Mode
	7.6.4 Clock-out Mode

	7.7 Watchdog Timer
	7.7.1 Description
	7.7.2 Using the WDT
	7.7.3 WDT During Idle Mode
	7.7.4 WDT During PowerDown

	CHAPTER 8 Programmable Counter Array
	8.1 PCA Description
	8.2 PCA Timer/Counter
	8.3 PCA Compare/Capture Modules
	8.3.1 16-bit Capture Mode
	8.3.2 Compare Modes
	8.3.3 16-bit Software Timer Mode
	8.3.4 High-speed Output Mode
	8.3.5 PCA Watchdog Timer Mode
	8.3.6 Pulse Width Modulation Mode

	CHAPTER 9 Serial I/O Port
	9.1 Overview
	9.2 Modes of Operation
	9.2.1 Synchronous Mode (Mode 0)
	9.2.1.1 Transmission (Mode 0)
	9.2.1.2 Reception (Mode 0)

	9.2.2 Asynchronous Modes (Modes 1, 2, and 3)
	9.2.2.1 Transmission (Modes 1, 2, 3)
	9.2.2.2 Reception (Modes 1, 2, 3)

	9.3 Framing Bit Error Detection (Modes 1, 2, and 3...
	9.4 Multiprocessor Communication (Modes 2 and 3)
	9.5 Automatic Address Recognition
	9.5.1 Given Address
	9.5.2 Broadcast Address
	9.5.3 Reset Addresses

	9.6 Baud Rates
	9.6.1 Baud Rate for Mode 0
	9.6.2 Baud Rates for Mode 2
	9.6.3 Baud Rates for Modes 1 and 3
	9.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and ...
	9.6.3.2 Selecting Timer 1 as the Baud Rate Generat...
	9.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and ...
	9.6.3.4 Selecting Timer 2 as the Baud Rate Generat...

	CHAPTER 10 Minimum Hardware Setup
	10.1 Minimum Hardware Setup
	10.2 Electrical Environment
	10.2.1 Power and Ground Pins
	10.2.2 Unused Pins
	10.2.3 Noise Considerations

	10.3 Clock Sources
	10.3.1 On-chip Oscillator (Crystal)
	10.3.2 On-chip Oscillator (Ceramic Resonator)
	10.3.3 External Clock

	10.4 Reset
	10.4.1 Externally Initiated Resets
	10.4.2 WDT Initiated Resets
	10.4.3 Reset Operation
	10.4.4 Power-on Reset

	CHAPTER 11 Special Operating Modes
	11.1 General
	11.2 Power Control Register
	11.2.1 Serial I/O Control Bits
	11.2.2 Power Off Flag

	11.3 Idle Mode
	11.3.1 Entering Idle Mode
	11.3.2 Exiting Idle Mode

	11.4 Powerdown Mode
	11.4.1 Entering Powerdown Mode
	11.4.2 Exiting Powerdown Mode

	11.5 ON-Circuit emulation (Once) Mode
	11.5.1 Entering ONCE Mode
	11.5.2 Exiting ONCE Mode

	CHAPTER 12 External Memory Interface
	12.1 External Memory Interface Signals
	12.2 Configuring the External Memory Interface
	12.2.1 Page Mode and Nonpage Mode (PAGE Bit)
	12.2.2 RD#, PSEN#, and the Number of External Addr...
	12.2.2.1 Sixteen External Address Bits and a Singl...
	12.2.2.2 Seventeen External Address Bits and a Sin...
	12.2.2.3 Sixteen External Address Bits and Two Rea...

	12.2.3 Wait States (WSA, WSB, XALE)
	12.2.4 Mapping On-chip Code Memory to Data Memory ...

	12.3 External Bus Cycles
	12.3.1 Inactive External Bus
	12.3.2 Bus Cycle Definitions
	12.3.3 Nonpage Mode Bus Cycles
	12.3.4 Page Mode Bus Cycles

	12.4 Wait States
	12.4.1 Extending PSEN#/RD#/WR#
	12.4.2 Extending ALE

	12.5 Port 0 and Port 2 Status
	12.5.1 Port 0 and Port 2 Pin Status in Nonpage Mod...
	12.5.2 Port 0 and Port 2 Pin Status in Page Mode
	12.6 External Memory Design Examples
	12.6.1 Nonpage Mode, 64 Kbytes External EPROM, 64 ...
	12.6.1.1 An Application Requiring Fast Access to t...
	12.6.1.2 An Application Requiring Fast Access to D...

	12.6.2 Nonpage Mode, 128 Kbytes External RAM
	12.6.3 Page Mode, 128 Kbytes External Flash
	12.6.4 Page Mode, 64 Kbytes External EPROM, 64 Kby...
	12.6.5 Page Mode, 64 Kbytes External Flash, 32 Kby...

	12.7 External Bus AC Timing Specifications
	12.7.1 Explanation of AC Symbols
	12.7.2 AC Timing Definitions

	CHAPTER 13 Programming and Verifying Nonvolatile M...
	13.1 General
	13.2 Programming and Verifying Modes
	13.3 General Setup
	13.4 OTPROM Programming Algorithm
	13.5 Verify Algorithm
	13.6 Programmable Functions
	13.6.1 On-chip Code Memory
	13.6.2 Configuration Bytes
	13.6.3 Lock Bit System
	13.6.4 Encryption Array
	13.6.5 Signature Bytes

	13.7 Verifying the 83C251SB (ROM)
	13.8 Verifying the 80C251SB (ROMless)

	APPENDIX A Instruction Set Reference
	A.1 Notation for instruction Operands
	A.2 Opcode Map and Supporting Tables
	A.3 Instruction Set Summary
	A.3.1 Execution Times for Instructions that Access...
	A.3.2 Instruction Summaries����������

	A.4 Instruction Descriptions

	APPENDIX B Signal Descriptions
	APPENDIX C Registers
	GLOSSARY
	INDEX

	Figures
	Figure 2�1. Functional Block Diagram of the 8XC251...
	Figure 2�2. The CPU
	Figure 2�3. 8XC251SB Timing
	Figure 3�1. Address Spaces for MCS® 251 Microcontr...
	Figure 3�2. Address Spaces for the MCS® 51 Archite...
	Figure 3�3. Address Space Mappings MCS® 51 Archite...
	Figure 3�4. 8XC251SB Memory Space
	Figure 3�5. The Register File
	Figure 3�6. Dedicated Registers in the Register Fi...
	Figure 4�1. Binary Mode Opcode Map
	Figure 4�2. Source Mode Opcode Map
	Figure 4�3. Program Status Word Register
	Figure 4�4. Program Status Word 1 Register
	Figure 5�1. Interrupt Control System
	Figure 5�2. Interrupt Enable Register
	Figure 5�3. Interrupt Priority High Register
	Figure 5�4. Interrupt Priority Low Register
	Figure 5�5. The Interrupt Process
	Figure 5�6. Response Time Example #1
	Figure 5�7. Response Time Example #2
	Figure 6�1. Port 1 and Port 3 Structure
	Figure 6�2. Port 0 Structure
	Figure 6�3. Port 2 Structure
	Figure 6�4. Internal Pullup Configurations
	Figure 7�1. Basic Logic of the Timer/Counters
	Figure 7�2. Timer 0/1 in Mode 0 and Mode 1
	Figure 7�3. Timer 0/1 in Mode 2, Auto-Reload
	Figure 7�4. Timer 0 in Mode 3, Two 8-bit Timers
	Figure 7�5. TMOD: Timer/Counter Mode Control Regis...
	Figure 7�6. �TCON: Timer/Counter Control Register
	Figure 7�7. Timer 2: Capture Mode
	Figure 7�8. Timer 2: Auto Reload Mode (DCEN = 0)
	Figure 7�9. Timer 2: Auto Reload Mode (DCEN = 1)
	Figure 7�10. Timer 2: Clock Out Mode
	Figure 7�11. T2MOD: Timer 2 Mode Control Register
	Figure 7�12. T2CON: Timer 2 Control Register
	Figure 8�1. Programmable Counter Array
	Figure 8�2. PCA 16-bit Capture Mode
	Figure 8�3. PCA Software Timer and High-speed Outp...
	Figure 8�4. PCA Watchdog Timer Mode
	Figure 8�5. PCA 8-bit PWM Mode
	Figure 8�6. PWM Variable Duty Cycle
	Figure 8�7. CMOD: PCA Timer/Counter Mode Register
	Figure 8�8. CCON: PCA Timer/Counter Control Regist...
	Figure 8�9. CCAPMx: PCA Compare/Capture Module Mod...
	Figure 9�1. Serial Port Block Diagram
	Figure 9�2. Serial Port Special Function Register
	Figure 9�3. Mode 0 Timing
	Figure 9�4. Data Frame (Modes 1, 2, and 3) �
	Figure 9�5. Timer 2 in Baud Rate Generator Mode
	Figure 10�1. Minimum Setup
	Figure 10�2. �CHMOS On-chip Oscillator
	Figure 10�3. External Clock Connection
	Figure 10�4. External Clock Drive Waveforms
	Figure 10�5. Reset Timing Sequence
	Figure 11�1. Power Control (PCON) Register
	Figure 11�2. Idle and Powerdown Clock Control
	Figure 12�1. Internal and External Memory Spaces f...
	Figure 12�2. Internal and External Memory Spaces f...
	Figure 12�3. Internal and External Memory Spaces f...
	Figure 12�4. External Code Fetch or Data Read Bus ...
	Figure 12�5. External Write Bus Cycle (Nonpage Mod...
	Figure 12�6. Bus Structure in Nonpage Mode and Pag...
	Figure 12�7. External Code Fetch Bus Cycle (Page M...
	Figure 12�8. External Data Read Bus Cycle (Page Mo...
	Figure 12�9. External Write Bus Cycle (Page Mode)
	Figure 12�10. External Code Fetch or Data Read Bus...
	Figure 12�11. External Write Bus Cycle with One WR...
	Figure 12�12. External Code Fetch or Data Read Bus...
	Figure 12�13. 80C251SB in Nonpage Mode with Extern...
	Figure 12�14. The Memory Space for the Systems of ...
	Figure 12�15. 87C251SB/83C251SB in Nonpage Mode wi...
	Figure 12�16. The Memory Space for the System of F...
	Figure 12�17. 80C251SB in Page Mode with External ...
	Figure 12�18. 80C251SB in Page Mode with External ...
	Figure 12�19. 80C251SB in Page Mode with External ...
	Figure 12�20. The Memory Space for the System of F...
	Figure 12�21. External Bus Cycles for Data/Instruc...
	Figure 12�22. External Bus Cycles for Data Read an...
	Figure 12�23. External Bus Cycles for Instruction ...
	Figure 13�1. Setup for Programming and Verifying
	Figure 13�2. OTPROM Programming Waveforms
	Figure 13�3. Configuration Byte 0
	Figure 13�4. Configuration Byte 1
	Figure 13�5. OTPROM Timing

	Tables
	Table 2�1. Summary of 8XC251SB Features
	Table 3�1. Address Mappings
	Table 3�2. Register Bank Selection
	Table 3�3. Dedicated Registers in the Register Fil...
	Table 3�4. 8XC251SB SFR Map and Reset Values
	Table 3�5. Core SFRs
	Table 3�6. I/O Port SFRs
	Table 3�7. Serial I/O SFRs
	Table 3�8. Timer/Counter and Watchdog Timer SFRs
	Table 3�9. Programmable Counter Array (PCA) SFRs�(...
	Table 4�1. Examples of Opcodes in Binary and Sourc...
	Table 4�2. Data Types
	Table 4�3. Notation for Byte Registers, Word Regis...
	Table 4�4. Addressing Modes for Data Instructions ...
	Table 4�5. Addressing Modes for Data Instructions ...
	Table 4�6. Bit-addressable Locations
	Table 4�7. Addressing Two Sample Bits
	Table 4�8. Addressing Modes for Bit Instructions
	Table 4�9. Addressing Modes for Control Instructio...
	Table 4�10. Compare-conditional Jump Instructions
	Table 4�11. The Effects of Instructions on the PSW...
	Table 5�1. Interrupt System Pin Signals
	Table 5�2. Interrupt System Special Function Regis...
	Table 5�3. Interrupt Control Matrix�
	Table 5�4. Level of Priority
	Table 5�5. Interrupt Priority Within Level
	Table 5�6. Interrupt Latency Variables
	Table 5�7. Actual vs. Predicted Latency Calculatio...
	Table 6�1. Input/Output Port Pin Descriptions �
	Table 6�2. Instructions for External Data Moves
	Table 7�1. Timer/Counter and Watchdog Timer SFRs
	Table 7�2. External Signals�
	Table 7�3. Timer 2 Modes of Operation
	Table 8�1. PCA Special Function Registers (SFRs)�
	Table 8�2. External Signals�
	Table 8�3. PCA Module Modes
	Table 9�1. Serial Port Signals
	Table 9�2. Serial Port Special Function Registers
	Table 9�3. Summary of Baud Rates
	Table 9�4. Timer 1 Generated Baud Rates for Serial...
	Table 9�5. Selecting the Baud Rate Generator(s)
	Table 9�6. Timer 2 Generated Baud Rates
	Table 11�1. Pin Conditions in Various Modes
	Table 12�1. External Memory Interface Signals (Con...
	Table 12�2. Configuration Bits RD1:0
	Table 12�3. Wait State Selection
	Table 12�4. Bus Cycle Definitions (No Wait States)...
	Table 12�5. Port 0 and Port 2 Pin Status In Normal...
	Table 12�6. AC Timing Symbol Definitions
	Table 12�7. AC Timing Definitions for Specificatio...
	Table 12�8. AC Timing Definitions for Specificatio...
	Table 13�1. Programming and Verifying Modes
	Table 13�2. Configuration Byte Values for 80C251SB...
	Table 13�3. Lock Bit Function
	Table 13�4. Contents of the Signature Bytes
	Table 13�5. OTPROM Timing Definitions
	Table A�1. Notation for Register Operands
	Table A�2. Notation for Direct Addresses
	Table A�3. Notation for Immediate Addressing
	Table A�4. Notation for Bit Addressing
	Table A�5. Notation for Destinations in Control In...
	Table A�6. Instructions for MCS® 51 Microcontrolle...
	Table A�7. New Instructions for the MCS® 251 Archi...
	Table A�8. Data Instructions
	Table A�9. High Nibble, Byte 0 of Data Instruction...
	Table A�10. Bit Instructions
	Table A�11. Byte 1 (High Nibble) for Bit Instructi...
	Table A�12. PUSH/POP Instructions
	Table A�13. Control Instructions
	Table A�14. Displacement/Extended MOVs
	Table A�15. INC/DEC
	Table A�16. Encoding for INC/DEC
	Table A�17. Shifts
	Table A�18. State Times to Access the Port SFRs�(C...
	Table A�19. Summary of Add and Subtract Instructio...
	Table A�20. Summary of Compare Instructions
	Table A�21. Summary of Increment and Decrement Ins...
	Table A�22. Summary of Multiply, Divide, and Decim...
	Table A�23. Summary of Logical Instructions (Conti...
	Table A�24. Summary of Move Instructions (Continue...
	Table A�25. Summary of Exchange, Push, and Pop Ins...
	Table A�26. Summary of Bit Instructions �
	Table A�27. Summary of Control Instructions (Conti...
	Table A�28. Flag Symbols
	Table B�1. Signals Arranged by Functional Categori...
	Table B�2. Description of Columns of Table B�3
	Table B�3. Signal Descriptions (Continued)
	Table C�1. 8XC251SB Special Function Registers (SF...

