Tachograph Software Test Tool

o

L,
HENRIK CARUANA EFKTHS

{E VETENSKAP
39 OCH KONST 9%

ST

KTH Information and
Communication Technology

Bachelor of Science Thesis
Stockholm, Sweden 2012

TRITA-ICT-EX-2012:269

Tachograph Software Test Tool

— Development and evaluation of test automation regarding
the user interface component of the SE5000 tachograph

VETENSKAP
@ OCH KONST Q%

8 &

TR

ROYAL INSTITUTE
OF TECHNOLOGY

Henrik Caruana
2012-09-25

Kungliga Tekniska Hogskolan, KTH
School of Information and Communication Technology (ICT)
Examinator: Bengt Molin, bengtm@kth.se
Handledare: Anders Sundholm, foretag Stoneridge Electronics,
anders.sundholm@stoneridge.com
Forfattarens e-postadress: caruana@kth.se
Utbildningsprogram: Hogskoleingenjorsutbildningen Elektronik och Datorteknik, 180p

SAMMANFATTNING

Det har kandidatexamensarbetet beskriver utvecklingen av ett program som testar en
mjukvarukomponent i SE5000 fardskrivaren och utreder om det ar vart att vidareutveckla den
har testmetodiken.

En av produkterna Stoneridge Electronics utvecklar ar fardskrivaren SE5000.

En digital fardskrivare ar ett elektroniskt system for att spela in kér- och vilotid for férare som
kér kommersiella fordon. Fordonshastighet, korstracka och andra systemrelaterade parametrar
loggas ocksa. Data sparas i ett minne inuti enheten och pa férarspecifika smartkort.

Mjukvaran i enheten, SE5000, bestar av flera separata komponenter och man vill testa varje
komponent for sig pa mjukvaruniva. Genom att testa pa mjukvaruniva forkortas
aterkopplingstiden for utvecklarna och eventuella buggar upptacks tidigare.

Hog testtackning ar ett tydligt kvalitetstecken och ar en trygghet for Stoneridge Electronics nar
enheten ska bli testad och funktionscertifierad av Transportstyrelsen.

Anvéandargranssnittskomponenten ansvarar for att producera ratt utdata som svarar pa
forarindata och fordonsrelaterade parametrar. Tidigare har testning av
anvandargranssnittskomponenten genomforts pa systemniva, dvs. mjukvaran har integrerats
med hardvaran och hela systemet testas genom ett extern granssnitt. Tidsatgangen for att
genomfora tester pa det har sattet ar valdigt stor och det ar ett problem da man vill ha hog
testteckning.

Stoneridge Electronics Justusprojekt vill kunna genomfora tillforlitliga, automatiserade tester pa
mjukvaruniva regelbundet eller vid mjukvaruférandringar. Det &r ocksa dnskvart att etablera ett
stort testfallsbibliotek som kan kéras utan den stora tidsatgangen associerad med manuella
tester. Dessa testfall bor vara enkla och snabba att implementera.

ABSTRACT

This thesis work describes the development of a program that tests a software component in the
SE5000 tachograph and investigates if this test methodology and setup is worth further
investigation.

One of the products Stoneridge Electronics develop is the tachograph SE5000.

A digital tachograph is an electronic system for recording driving and rest times for drivers and
co-drivers of commercial vehicles. Vehicle speed, distance travelled and other system-related
parameters are also logged. Data is stored in a memory inside the unit and on driver-specific
smart cards.

The software of the SE5000 tachograph consists of several separate components that SE wishes
to test separately on software level. By testing on software level the feedback loop is shortened
and allows developers to catch possible bugs much earlier in the process.

High test coverage is a clear sign of quality and is a reassuring for Stoneridge Electronics when
the unit is tested and a function certificate is issued by the Swedish Transport Agency.

The user interface component is responsible for delivering data in response to driver and vehicle
input and stimulation. Previously the user interface testing has been performed on system level,
i.e. software has been integrated with the hardware and the system has been put under test by
using external interfaces of the target. The test execution time consumption is a problem when
performing user interface tests on system level.

It is the projects wish to be able to perform reliable automated testes at a software level in order
to run the test on a regularly basis or at software change. It is also desirable to establish a great
variety of tests that can be executed without huge time consumption. These test cases should be
easy and quick to implement.

ABBREVIATIONS

Definition Explanation

SE Stoneridge Electronics

SwW Software

Ul User Interface

TC Test Case

TE User Interface Test Engine

PC Personal computer

VU Vehicle Unit

DLL Dynamic Link Library (filename extension)
HW Hardware

GUI Graphical User Interface

DDS Driver Decision Support

RDI Read Data Identifier

EXE Executable (filename extension)

XML Extensible Markup Language (filename extension)

Table of Contents

SAMMANFATTNING L..eotietieitieiee sttt ettt ettt et et e e st e e s bt e sbeesaeesaeesaeesatesasesasesnbeenbeesseenseessaessaesanesasesanes 3
ABSTRACT ..ttt ettt ettt ettt e b e e bt e bt e bt e bt e b e e s bt e sh et s he e sat e sa et sa bt et e et e et e et e e bee £eeneeenreereeas 5
ABBREVIATIONS. ... ettt ettt ettt ettt et e b e bt e b e s bt e s bt e s bt e sheesaeesabesabesabeeabeeabe e be e bee eeemteeneeeateenseans 6
N 10N i o o (U ot o DT POV P PSP 9
1.1 23 1ol €= o101 Vo SR 9
1.2 U o Lo 1 TP PP PPPPPPPPPPPPPPPPPI 10
1.3 Delimitations and definition of dONecooviriiriiiiiei e 10
1.4 Test method and frameWOrK........coiiiiieiiiiiiee e s 11
1.5 oY T=Tor k40 V=T o] = o SRR 13

2. Frame Of FEIEIENCE ... it st et e st e s b e s ar e e sar e e sareeeneeesanes 14
3. The DEVElOPMENT PrOCESS. . cuiiii i ciiieeee e ettt e e e eecrre e e e e e e e bre e e e e e e esabtbaeeeeeeesansstaseeeeeessnnseanees 15
3.1 Familiarization With CH and SETUPveiiiciiiee et e s e e e sbaeeeeaes 15
3.2 Program arChit@CIUIEviie et e e e e e ate e e e ebtee e sentaeeeebaneeenes 15
3.3 Yol g o) f=4=T o [T o= | £ o] o O T U PN 16
3.4 Managing display datac.coccciiiiiee e e e e aae s 16
35 Communication with Ul Test FramewWork.........cooeiiiiiiiiieiie e 16
3.6 (oo} o) i 6e] ol =Y o | APPSRt 17
3.7 Documentation and Presentation ... e e e 17
3.8 Development beyond the scope and handover..........coccuvviieiiee e 17
B, RESUIES e s s b b et e ne e e s b e e tesareesanes 18
4.1 CUITENT STATUS ...t nre e s 18
4.2 FAN ol o 11 =T o (U o < T PP PP PPTOVRI 19
4.3 Test case creation WOrk fIOW........eooiiiiiiiiiee e 20
4.4 REPIAY WOTK FIOW ...t e sre e e et e e s sbteeeesbaeeesanes 21
4.5 PO M VIBWS . ettt bttt et ettt et e tea e et e e e e e et e e aeaeaaaaes 22
45.1 Program laYOUL ... ee e e e e e et e e e e e e s n b e e e e e earrrrreaeeeeaan 22
4.5.2 Y g1] 0 - | « USSR 23
45.3 Y AU oI 7 o SR 25
454 DY - 1 - | « USRSt 27
45.5 USEr INtErface Tabhooiieieeeeee s 28
4.5.6 Card handler tab......coveeeeeeee e 29
45.7 COMMENTS TAD .eeieiiieee e s s 30
4.5.8 Y 1o o 13 - | « T UV U RO URTOUUPPRRRTOPRION 31

5.
6.

7.

459 20T o1 Y - | o USSR

DiSCUSSION @NA CONCIUSION euueiiiiiiiieeiiee ettt e e e ettt e e e e e e et b st s e e s eeesss b s esesessssannasnss

Recommendations and fULUIME WOTKcoooiiiiiiiiiieieeeeeeeeeee ettt e e et e e e e e e e e e baaa s

6.1 RO COMMEBNAATIONS. ..ccieiiiitieee ettt ettt e e e e ettt et eeeeeeeeetaabaaaassesssessssssassssssesesrannns

6.2 FUBUIE WOTK e bbb be e bbb abebebabeaeaessaesseseeaeseeeeeeeeeeereeeneees

References

1. Introduction

1.1 Background

Stoneridge Electronics (SE) is a leading supplier to the automotive, truck, bus and off-road
markets. Their products range from telematics systems, driver information systems, and
tachographs through electronic control modules and power distribution center to multiplex
systems and cockpit switch modules.

One SE product is the digital tachograph SE5000. A digital tachograph [1] is an electronic
system for recording driving and rest times for drivers and co-drivers of commercial vehicles.
Vehicle speed, distance travelled and other system-related parameters are also logged. Data is
stored in a memory inside the unit and on driver-specific smart cards.

The way tachographs work is strictly regulated by law. In Sweden the Swedish Transport
Agency is responsible for issuing a so called function certificate [2] consisting of the following
three tests.

e Product compliance with Annex1b
e Product compatibility with all existing smart cards
e Product security standards are adequate

The certification is time consuming and expensive so it is desirable to have the product as
tested and free from bugs as possible before the actual certification takes place.

The problem is that testing all the components and all possible scenario permutations in the
vehicle unit (VU) is very time consuming. This leads to selectivity among tests and/or
ineffective use of resources. Neither of which contribute to the effective development and
quality of the product.

One of the most time consuming sets of tests are the Manual Entries. A manual entry is
performed when there is unaccounted time for the driver. Unaccounted time occurs when the
time in the VU and the withdrawal time of the driver card differ more than 1 minute. When
this occurs the driver has to register what activity he/she has engaged in during the
unaccounted time period.

Preparing and performing this particular type of test on system level is prone to errors and
extra time demanding.

If testing could be automated then test cases (TC) could be created once and then put to
regression. This would lead to higher test coverage and productivity, thus allowing for fewer
bugs to slip through to system verification and a more efficient development.

Automated tests performed at software (SW) test level decreases the running time to
practically zero.

All components producing any kind of measurable output can be subjected to this method of
testing which is a big incentive for further investigation.

1.2 Purpose

The purpose of this thesis work is to develop a test tool and evaluate a test setup and
methodology for testing SW components in order to automate components tests in the
tachograph.

The SW component chosen to be evaluated is the user interface (Ul) component. It is
responsible for producing the data needed for the display and in response to manual entries.

1.3 Delimitations and definition of done
It is not expected to create a full test setup in order to test and evaluate the complete
functionality of the Ul component.

This thesis is limited to producing a proof of concept program that can create some basic test
cases that are evaluated by the test engine set up by SE.

The following shall be achieved before the thesis work is considered done:

e The source code of the test tool is committed in software versioning and revision
control system (from now referred to as version system)

e The source code of the test cases is committed in the version system

e Source code documentation has been approved by the SE5000 software project and
committed in the version system.

e Test tool manual has been approved by the SE5000 software project and committed in
the version system.

e A detailed documentation of the test setup has been approved by the SE5000 software
project and committed in the version system.

e A detailed documentation of test cases has been approved by the SE5000 software
project and committed in the version system.

e It shall be possible to rebuild the project successfully when the test tool source code is
checked out from version system.

e Areportis delivered to the SE5000 software project that states the appropriateness of
using the test tool and the described test setup in order to perform software test of
the Ul software component. The report should also contain pros and cons of the test
setup.

10

1.4 Test method and framework

The encapsulated loose coupled SW component Ul needs to be compiled together with a
stubbed environment that simulates the environment that communicates with the Ul
component on target. The stubbed environment also needs to supply interfaces that are
externally accessible so that output from Ul might be evaluated. The SW component is
compiled together with its stubbed environment and test framework in order to create a
dynamic link library file (DLL). See figure 1. The purpose of the test framework is to enable
testing of the Ul component when executing in the simulated environment.

SW Component
DLL

SE5000

Stubbed environment

and test framework

Figure 1. Use the compiler used for software test on HOST environment to create a dll-file.

The shared library file (DLL-file) is then integrated with a Microsoft Dialogue Application in
order to send events to the Ul component and to manually evaluate its behavior and output.
The application should have a display where the graphical user interface is shown.

Further the application should implement a graphical user interface so that the user can make
settings and send events to the Ul SW Component that is put under simulation.

The application should also create a log of the simulation with actions taken by the tester, and
also references to the expected output (display image). See Figure 2.

11

DLL

SE5000

uses

Microsoft

A

Dialogue

Application

creates

A 4

Generated logg file

Figure 2. A Microsoft Dialogue Application uses the DLL-file to simulate the Ul and generates a logg-file.

The Generated logg-file is a readable script that can be used by a script interpreting test engine

that access the Ul test component and uses the test environment in order to evaluate the

expected result, see Figure 3.

The test framework uses the CUnit test framework in order to perform evaluation and

generate an xml test report.

Hence the Generated logg-file will be used as a TC put to regression tests of the Ul after once

simulated. The created log file should also be possible to replay, using the application that

communicates with the DLL.

Generated logg file 1

Generated logg file 2

Generated logg file N

uses

SW Component

creates

Stubbed environment

and test framework

Test result report

Figure 3. The SW Component Ul with its test environment uses the generated scripts as test input.

12

1.5 Project time plan

The project method for this thesis is agile and iterative.

The author was responsible for the graphical user interface (GUI) so there was no clear

requirement specification regarding the final design of the program. This resulted in design

changes and modifications along the way to adapt to new features being implemented as well

as input and suggestions from the customer, SE.

The test engine and test framework were developed simultaneously with the test tool. This

made it difficult to estimate when different features would be implemented. As soon as new

features were implemented in the test engine and framework they were also implemented in

the test tool.

The only definite project dates are listed in table 1 below.

Table 1. Preliminary breakdown

Date

Duration

Activity

June 1%

Project start

Familiarization with C# and subversion

Architectural design of test tool

Definition of script language and test case structure

Handle dummy binary data file from Ul component

Communicate with test environment

Proof of Concept

August 29"

Half time presentation and demo

Documentation towards SE

Documentation towards KTH

Refinement of design and further development of
functionality

September 30"

Handover of project

The features in table 1 above were modified and condensed as the work progressed. At the

end of the project they could be summarized discussed in Chapter 3 The Development Process.

13

2. Frame of reference

This thesis work is an evaluation of a new approach of testing the SW in the Ul component of the
tachograph.

The UISWTestTool is built to work with the Ul Test Engine which is a script based test engine for
the Activities component in the SE5000 tachograph. The test engine and framework is described
in the section 1.4 Test method and framework

The Ul Test Engine has been developed alongside the UISWTestTool by developers at Stoneridge
Electronics.

14

3. The Development Process

The development the UISWTestTool has been iterative. The core function and workflow of the
program was decided early on in cooperation with SE. The functionality of the program gradually
increased as the Ul Test Engine was developed and the design of the program was modified
many times.

As the progress of the UISWTestTool, design and function, relied almost completely on the
development of the Ul Test Engine it was difficult to predict the rate at which the project would
progress.

The sections below describe the different stages of the project.

3.1 Familiarization with C# and setup

The language C-Sharp (C#) was chosen for development of the UISWTestTool since it was going
to be run as a Microsoft Dialogue Application on PCs using Windows as Operating System. It is
the author’s opinion that C# is intuitive and has a simple mode for developing applications.

To get more familiar with C# tutorials and the MSDN .NET Library [4] were very helpful. The
tutorial site most frequently visited was The New Boston [5]

The following programs were used for this project

- SharpDevelop [6] for C# development

- Notepad++ [7] for C# development

- UMLet [8] for UML diagrams.

- GIMP [9] for handling pictures

- Microsoft Office Word 2010 [10] for documentation

3.2 Program architecture
It was decided that the program would be made into two separate modules to make certain
parts of the program reusable. One script generating- and one Ul specific module.

The script generating module may be used in the future if this test methodology is adopted for
other SW components in the SE5000 tachograph or possibly other projects.

The Ul module would include a GUI for controlling the input and output going to and from the
Ul test framework. It would include buttons matching the ones on the tachograph panel and
ways to set data in the stubbed environment in the framework.

15

3.3 Script generation
This approach of testing is built around scripting each test to make it possible to reproduce
exactly the same tests automatically.

When the program is started you are presented with several fields of a script information form
to fill out. This information is used to create a test case with a certain folder structure. A folder
with the test case name will be created at the location you choose. In that folder a .txt script
file and a folder named dispRef are also created.

The .txt file will contain all scripted commands sent to the Ul Test Framework in that exact
order as well as the test specification in a header, including requirements specification and
purpose of the specific test.

The folder dispRef will contain all the binary reference pictures needed to verify the test case.

3.4 Managing display data

The data needed to represent the display is 293 bytes. When it is fetched from the test
environment it is stored in a byte array in the dialogue application. The content is interpreted
and displayed in the top display in the program with each pixel clearly distinguished in order to
spot errors and inconsistencies.

It is possible to save the content of the byte array display buffer as a binary reference file with
a uniquely identifiable name in the dispRef folder. When saving the content of the display
buffer a command is entered into the script containing the command EVALUATE DISPLAY and
the name of the binary reference file. At run time the test engine will compare the content of
the display buffer with the content of the associated binary reference file and determine if
they differ in any way.

A possibility to choose and open up a specific binary reference file is also available in order to
inspect faulty binaries.

3.5 Communication with UI Test Framework

Communication with the test framework is done through a DLL interface. The entire test
environment consists of several parts. It contains the Ul component, the test framework, the
stubbed control environment and some tests and initializations. This test environment is
developed by the Stoneridge Electronics engineers and is described in section 1.4.

The DLL is imported into the UISWTestTool making several functions available.
These are the functions currently available

- ui_dll_init(): Initializes the entire test environment
- ui_dll_pushScriptCommand(): Pushes script commands to the test framework
- ui_dll_getDisplayBufferData(): Gets display buffer byte for byte

16

3.6 Proof of Concept

The final goal of this thesis work was to produce a proof of concept and evaluate if the method
and test setup for testing the SW of the Ul component was possible and if it was worth further
development.

The proof of concept would consist of a program where a test case is created and the top level
menus are cycled through and verified visually. Commands are to be recorded in the
associated TC script and each menu is to be evaluated using the evaluate command.

The test case is then to be run by the test engine both using valid and corrupt commands and
binary reference files.

3.7 Documentation and presentation
The documentation and presentation consist of a User Manual for the program, a Technical
Description of the program, the thesis report and two presentations.

The User Manual contains information on the intended use of the program and how to use it
as well as images and descriptions of the view of the different program tabs.

The Technical Description contains information about what kind of input the program can
handle and what output it produces.

The User Manual and the Technical Description are both internal documents for SE.

The thesis report will be public and both KTH and SE will receive a copy.

3.8 Development beyond the scope and handover

All remaining time after the proof of concept and documents are done and have been
approved will be spent on additional features and functionality to the UISWTestTool as well as
revising the documents.

Handover of project will consist of a code review with a Stoneridge Electronics developer and a
briefing where interested parties are informed where the tool is checked in and where the
relevant documents are located.

17

4. Results

4.1 Current status

The result of this thesis work is a program called UISWTestTool created using C# as a Microsoft
Dialogue Application. The program tests the software of the Ul component in the SE5000
tachograph by communicating with a test environment containing the Ul component, a test
framework and a stubbed control environment.

The scripted commands sent to the test environment result in data being sent from the Ul
component, in this case to the display. The program records all commands sent in a script and
can save the content of the display buffer as a binary reference file.

When the Ul test engine runs the scripted tests it interprets the content of the script line by
line and either sends the command to the Ul component, sets new data in the stubbs,
compares the current content of the display buffer with the content of the associated binary
reference file or ignores the line if it is a comment.

The source code of the program is available in the SE Tools trunk of their repository. Once
checked out it is possible to rebuild the program and run it on a windows host PC.

A User Manual as well as a Technical Description of the program exist in their document
repository.

18

4.2 Architecture

In this section it is described how the UISWTestTool connects to the surrounding environment.

The vehicle unit consists of a HW and a SW part. The SW part is made up by many separable

components. The Ul component is integrated in the SW test environment along with stubbs, a

test framework and some basic tests. The SW test environment can be compiled into two
different files a DLL and EXE. UISWTestTool uses the DLL to communicate with the test
environment and create TCs. The EXE version of the TE runs all added TCs and produces an

XML result file that can be interpreted by the developers.

VU
Software

‘ Speed U ‘ ul

|Activities U |

VU
Hardware

UISWTestTool

Software Test Environment

Ul Component Stubs

Test framework

Included test cases

DLL

Requires a DLL to work.

Communicates through
the Test Framework with
stubs and test object

Figure 4. How the test setup and program are connected

Test Cases

—] Test0o01

—] Test0o01

Display Tests

—] Testooo2
— " Testoo03

Manual Entries

—] Test0002

19

4.3 Test case creation work flow
The activities diagram below illustrates the work flow of the UISWTestTool when creating a TC

M

GENERATE BUTTON

’ EVALUATE

ALL QTHER

Figure 5. Program flow when creating a test case 20

4.4 Replay work flow
The activities diagram below illustrates the work flow of the UISWTestTool when using the
replay function

OTHER

Figure 6. Program flow when using replay

21

4.5 Program views
This section shows and describes the different parts and views of the program.

4.5.1 Program layout

UISW TestTool
[1]] EEE_ B L []] [[]] | 1]] EEE_ B [[|] [1]
| | | B | |]] | | [] EN EE ® | | N [| | |
@ EE E EE E BN B EE B ER EE BN B EE B EE N BN B EE B ®m
E N EEEEENE EEEEERERR N EE E N E E NN ENR EEENERESRN
EE N Em N | H Em H Em] N BN BN = EEN | | H NN H NN
| | L B L | | LN u EE EE B L L | | N
[1]] EEE ® H EEm [[]] | []] EEE B H EEEm [||]
BEEE HEE] L L1}] [L1]]] n EEEER
u | N | H = u H =] L] | { | | (] | u
u HE B EE E _EER] H R [] mn n [|} LN n
E N EEEEEE BN EE RN u]] n
EE E EE E E H EE E EE ©® u [|] u
u L | L | N LI B n L[] L]
EEE HER | H EER [1]] EEEEE EEN EEEEE EEER
Scipt | Setup | Data | Ul Card Handler | Comments | Macros | Replayp.
RUN_100_MS
Stoneridge Electronics RUN_100_MS

T $o sesimpa 0w (R

RELEASE_BUTTON CANCEL
EVALUATE DISPLAY O.jrd
SET_TIME 201212121313

—] A v
RUN_100_MS
RUN_100_MS
RUN_100_MS
EVALUATE DISPLAY PRESS BUTTON RUN_100_MS
Evaluste I Cancel J [Up I [Down l I oK I \‘ Diiver J I Codiiver RUN_100_MS

PRESS_BUTTON OK
RELEASE_BUTTON OK
WAIT RELEASE BUTTON

PRESS_BUTTON CANCEL

Wait x 100ms 5 = l Cancel] [Up] [Down I I oK l { Diiver J [Codiver]
RELEASE_BUTTOM CANCEL

Figure 7. Basic layout of UISWTestTool

The basic design of the program consists of three parts

Top display panel
In the top display panel the content of the display buffer is printed. Each pixel is
deliberately made large and contrasted to make it easy to distinguish possible faults.

This display is always visible.

Control tabs
The tabs control the creation of TCs and input to the test environment and script.

Script window

Every command sent to the test environment is also printed in this text box in order to
trace your actions without having to locate the script, open it up and see where in the test
you currently are.

This text box is always visible.

22

4.5.2 Scripttab

Script Header
Test Case

Author

Date

Requirements

Purpose

Expected

Load Reference Restart program
Display Image

Generate Script A e[,‘;:ic .

Figure 8. Script tab view in UISWTestTool

Script Header

The information entered here is used to create the TC structure.

Before “Generate Script” is clicked all other tabs are inactive.

When “Generate Script” is clicked a TC is created, the information from the script header

fields are entered into the script and the fields are inactivated to prevent overrides.

Table 2. Script Header actions

Input Function

Test Case Content is used to generate TC folder and name of the script. Is also
entered into the script

Author Is entered into the script

Date Is entered into the script

Requirements Is entered into the script

Purpose Is entered into the script

Expected Is entered into the script

Generate Script | Generates folder structure for TC, creates the script with the correct
name and writes the header information to it

23

Load Reference Display Image
This button opens up a file browsing dialogue that allows you to locate a binary reference

file and display its content in the top display panel.

Table 3. Load Reference Display Image actions

Input Function
Load Allows you to open a binary reference file and display it for inspection
Reference

Restart program
The button closes the application down, releases the DLL and restarts the application. The
main purpose of this button is to speed up the process of creating new TCs.

Table 4. Restart program actions

Input

Function

Restart

Closes the application and then restarts again

24

4.5.3 Setup tab

Setup

Initialize

RDI Parameters

| SetRDI

Default RDI
Parameters

Expectations
complete

Figure 9. Setup tab view in UISWTestTool

This tab is used to initialize the test object and the test environment. Once initialized the
button is inactivated.

You can also set RDI parameters from this tab. Those parameters are set in the stubbed
environment that the Ul component gets its information from.

You can give the command “Expectations complete” that signals to the VU that it has all
the information it needs to start up.

Once “Expectations complete” has been pressed the button is inactivated. A duplicate
button in the Macro-tab is also inactivated. All other tabs are now activated.

25

Table 5. Setup actions

Input Function

Initialize Initializes the test environment and the test object

Set RDI Allows you to manually set whichever RDI parameter you want
Default RDI Sets some RDI parameters at once.

Parameters

Expectations Sends the command EXPECTATIONS COMPLETE

complete

26

4.5.4 Datatab

Data
Time and Date
[YYY-MM-DD HH:MM]

Speed [km/h]

Odometer [m]

DDS Data

Activities Data

Activity

Events
Event type
Set Time
Set Speed Event status

o
<>

0 = Set Odometer

Made of Operation

<
o
<
<

Set DDS Data

<
o

v
Set Activities Data

Set Activity

<

Figure 10. Data tab view in UISWTestTool

Data

You can set data in the stubs here

Table 6. Data actions

v Set Event

Input Function

Set Time Sets the time and date

Set Speed Sets the current speed

Set Odometer Sets the current odometer value

Set DDS Data Allows you to set DDS Data for either driver or codriver

Set Parameter Allows you to set data for either driver or codriver

Set Activity Allows you to set current activity for either driver or codriver
Events

You can trigger all the different events possible and set them as active or inactive

Table 7. Event actions

Input

Function

Set Event

Trigger event from list and flag them as either active or inactive.

Mode of Operation
You can set the current mode of operation of the vehicle

Table 8. Mode of Operation actions

Input

Function

Set MOP

Sets current mode of operation

27

4.5.5 User Interface tab

Stoneridge Electronics

E SEEES “SEI:IEEEI ftoneridgeISESDBU Exakt Dug”

EVALUATE DISPLAY PRESS BUTTON

Evaluate [Cancel] [Up] I Down] [0K] m m

WAIT RELEASE BUTTON

Wait % 100ms 1

Figure 11. Ul tab view in UISWTestTool

<

(o] (=] [(=] (o] (o]

This tab gives you full control over what signals are sent and at what times to the test
environment.

Table 9. Ul advanced control actions

Input Function

Evaluate Saves the current content of the display buffer as a binary file in the
folder dispRef and gives it a name unique for the TC

Wait x Sends the command RUN_100MS the given amount of times

100ms

Press Cancel | Sends the command PRESS BUTTON CANCEL

Press Up Sends the command PRESS_BUTTON UP

Press Down Sends the command PRESS_BUTTON DOWN

Press OK Sends the command PRESS_BUTTON OK

Press Driver Sends the command PRESS_BUTTON DRIVER

Press Sends the command PRESS_BUTTON CODRIVER

Codriver

Release Sends the command RELEASE_BUTTON CANCEL

Cancel

Release Up Sends the command RELEASE_BUTTON UP

Release Sends the command RELEASE_BUTTON DOWN

Down

Release OK Sends the command RELEASE_BUTTON OK

Release Sends the command RELEASE_BUTTON DRIVER

Driver

Release Sends the command RELEASE_BUTTON CODRIVER

Codriver

28

4.5.6 Card handler tab

Card Handler

o | ¥ | Insert Card

Withdraw Card

Figure 12. Card handler tab view in UISWTestTool

This tab allows you to handle insertion and withdrawal of smart cards.

Table 10. Card handler actions

Input Function

Insert Card You choose which slot and what type of card to insert.
Withdraw You choose with slot you want to withdraw

Card

29

4.5.7 Comments tab

Comments

Add comment

Figure 13. Comments tab view in UISWTestTool

This tab is for writing comments to make it easier and more understandable to read and

review the final script.

Table 11. Comment actions

Input Function
Add Comments are added to the script file and to the script window
Comment

30

4.5.8 Macros tab

Short Press Long Press General Time Macros
- — e — = = 1 :
wpectations
Cancel Cancel |] -
-WAIT 2000ms 1 -
upP up -EXPECTATIONS COMPLETE b AN
- - WAITS00ms =
I
DOWN DOWN

Evaluate Display

0K oK
e —

DRIVER DRIVER
CODRIVER CODRIVER
-PRESS BUTTON - PRESS BUTTON
-WAIT 500ms -WAIT 2000ms
- RELEASE BUTTON -RELEASE BUTTON
- WAIT 500ms -WAIT 2000ms

Figure 14. Macros tab view in UISWTestTool

This tab has macro buttons designed to make it faster and easier to navigate through the
menus and set certain values.

Table 12. Macro button definitions

Definitions

Expectations Complete Short Press Buttons Long Press Buttons

- WAIT 2000ms - PRESS_BUTTON - PRESS_BUTTON

- EXPECTATIONS - WAIT 500ms - WAIT 2000ms
COMPLETE - RELEASE BUTTON - RELEASE BUTTON

- WAIT 500ms - WAIT 500ms - WAIT 2000ms

Table 13. Macro tab actions

Input Function

Evaluate Duplicate of button in Ul tab to make quick evaluation easier.
Saves the current content of the display buffer as a binary file
in the folder dispRef and gives it a name unique for the TC
Expectations Complete See definition above.

Only active if “Expectations Complete”-button in Setup tab
has not been pressed. If this button is pressed the
“Expectations Complete”-button in Setup tab is inactivated

Short Press Button Cancel button, see short press definition above
Macro CANCEL
Short Press Button Up button, see short press definition above

31

Macro UP

Short Press Button

Down button, see short press definition above

Macro DOWN

Short Press Button OK button, see short press definition above
Macro OK

Short Press Button Driver button, see short press definition above
Macro DRIVER

Short Press Button Codriver button, see short press definition above
Macro CODRIVER

Long Press Button Cancel button, see long press definition above
Macro CANCEL

Long Press Button Up button, see long press definition above
Macro UP

Long Press Button Down button, see long press definition above
Macro DOWN

Long Press Button OK button, see long press definition above
Macro OK

Long Press Button Driver button, see long press definition above
Macro DRIVER

Long Press Button Codriver button, see long press definition above
Macro CODRIVER

Run Seconds

Simulates elapsed time in seconds. Amount specified in field.

Run Minutes

Simulates elapsed time in minutes. Amount specified in field.

Run Hours

Simulates elapsed time in hours. Amount specified in field.

Run Days

Simulates elapsed time in days. Amount specified in field.

32

4.5.9 Replay tab
Open Library file

l Open Lib

Stepwise Replay

Single Step Replay

Auto Replay

| Start \

Figure 15. Replay tab view in UISWTestTool

Evaluate Display

Quick Step Replay

In this tab you can open up a script and step through it in different ways and save the
content as a reference file. It is mainly intended to be used to create permutations of a

specific script. One example is stepping through all menus in several different languages.

Create a new TC folder, rename it and the script and delete the reference binaries. You
can then step through the script, evaluating the display and saving the new references in

the new folder.

Table 14. Replay actions

Input Function

Open Lib Opens up a file browsing dialog that allows you
to choose script to step through

Evaluate Saves content of display buffer in folder dispRef
of chosen script

Single Step Next Steps through the script line by line sending the
commands to the Ul component. Stops after
each command.

Quick Step Next Steps through the script line by line sending the
commands to the Ul component. Stops after
each evaluate.

Auto Replay Start Automatically plays through the entire script

33

5. Discussion and Conclusion
This method of testing the software of the Ul component is very effective and worth further
development.

Since tests run on hosts it can never replace tests run on system verification level on target. But
it can still help a great deal. It shortens the feedback loop for SW developers since they can see
the effects of changes directly instead of having to wait for reports from the system verification
engineers.

Once the test case is created and added to the test regression suite it is fully automated. Since it
is fully automated all tests can be run every time instead of just a select few. This results in much
greater test coverage at practically no additional cost.

Since tests are automated once they are created, developers no longer need to spend time
manually testing them after each greater software change. This results in a much more efficient
use of time.

Saving time on manual testing should result in higher productivity and better competitiveness
for the company. This in turn should result in more development of better products at better
prices.

What would happen if the display changes in a future version of the tachograph? As long as the
script language is the same it is possible to open up an existing test case through the Replay tab
and step through it and overwrite the old binary references with the new content of the display
buffer.

34

6. Recommendations and future work

6.1 Recommendations

It seems appropriate that this program is further developed and refined. It will take quite
some time to produce an extensive library of test cases but in the long run it will probably save
a lot of time and money.

Testing the Ul component has been done on system verification level with system verification
requirements. There needs to be specific requirements for testing on SW level to cover the
large amount of new TCs needed.

Deciding on a good TC structure is also important so that TCs can be more easily divided into
smaller groups and better organized to keep track of what has been tested and what is yet to
be tested.

6.2 Future work

There are many functions and features that have not yet been implemented in the
UISWTestTool. One of these functions is loop control. It would be very useful to be able to play
a script within a script. This is already supported by the Ul TE but has not been implemented in
this version of the program.

Further development of the Ul TE would improve the usefulness of the UISWTestTool and this
test methodology even further.

The following implementations to the TE should be considered

- Evaluate Manual Entries and the data it returns

- Evaluate Specific Conditions

- Evaluate changes of parameters via Ul

- Support withdrawal of smart cards

- Support insertion of all card types

- Fully test DDS features

- Modify response from TE to determine if input is correct

- Save mismatching display buffer data when mismatch occurs
- Reinitiate a fresh version of Ul component after each TC run

35

7. References

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]
(9]

(10]

http://en.wikipedia.org/wiki/Tachograph, 2012-09, Tachograph

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31985R3821:sv:HTML,

2012-09, function certificate regulation

http://en.wikipedia.org/wiki/C Sharp (programming language), 2012-09, C#

http://msdn.microsoft.com/en-us/library/gg145045.aspx, 2012-09, MSDN .NET Library

http://thenewboston.org/list.php?cat=15, 2012, C# tutorial

http://en.wikipedia.org/wiki/SharpDevelop, 2012-09, SharpDevelop

http://en.wikipedia.org/wiki/Notepad%2B%2B, 2012-09, Notepad++

http://en.wikipedia.org/wiki/UMLet, 2012-09, UMLet

http://en.wikipedia.org/wiki/GIMP, 2012-09, Gimp

http://en.wikipedia.org/wiki/Microsoft Office 2010, 2012-09, Microsoft Office Word

36

TRITA-ICT-EX-2012:269

www.kth.se

	exjobb_cover
	UISWTestTool_Rapport_HenrikCaruana_1 5
	Blanksida
	exjobb_cover

