
Embedded Alley Solutions, Inc.
SMACK for Digital TV
Revision 1.2 • September 21, 2009

Embedded Alley is a trademark of Embedded Alley Solutions, Inc in the US and other countries. Linux is a trademark of Linus Torvalds. All other names
mentioned are trademarks, registered trademarks or service marks of their respective owners. ©2009 Embedded Alley Solutions, Inc. All Rights Reserved

Embedded Alley Solutions, Inc • 2055 Junction Avenue, Suite 125 • San Jose, California 95131 • +1 408 577 1884 • www.embeddedalley.com

Table of Contents
Revision 1.2 • September 21, 2009...1

Acknowledgement...4
Introduction..4
SMACK overview..5
SPACE digital TV platform...6
Overview..6

DirectFB...6
SaWMan...7
FusionDale..7

SPACE architecture...7
Application manager...7
Platform application and API..7
Television application...8

Open SPACE and third-party applications...9
Overview...9
Third-party application types..9

Content viewers..9
Entertainment applications...10
Internet services..10

Third-party application use-cases..10
Simple game application...10
Weather application..11

Third-party applications access control requirements...11
How to apply SMACK...12

Addressing the requirements...13
Running third-party applications...14
Proposed solution..15

SMACK rule set...15
Changes to system initialization scripts..15
External application installer..16
External application launcher...16
Platform API changes...16

Applied SMACK..17
Labeling system resources...17
Smack rule set...17
Third-party application loader...18

SMACK rule set verification...19
Test environment...19

Hardware platform..19
Linux kernel..19
Root file system..19

Test applications..20
Test preparation script...20
Client-Server application..21
SMACK test script..21

Test procedure...22

Page 2 9/21/2009

SMACK memory foot-print analysis...23
Static memory foot-print...24
Dynamic memory foot-print..24

SMACK performance analysis..25
File system performance analysis..26

Methodology...26
Results..27

File creation...27
File deletion...27
Read operation...28
Write operation...28

Conclusion...28

Page 3 9/21/2009

Acknowledgement
This paper was derived from work sponsored by CE Linux Forum. Embedded Alley would like to
acknowledge and thank CELF for their continued support of the development and enhancement of
Linux-based embedded devices.

Introduction

Modern consumer electronic products (mobile phones, set top boxes, digital TVs, etc) implement
complex software solutions that usually include the entire software stack from operating system on a
bottom level, to end user applications accessing system resources through middle ware abstraction
layers. In embedded systems most of available user space applications are intended to implement a
device function, such as capturing, handling and showing video stream on TV screen in case of digital
TV device. These applications are normally implemented either by the device vendors or their partners
that are considered as trusted sources.

In addition to vendor or partner applications, there is another group called third-party applications.
These are developed by third parties (e.g. independent software companies or developers, end users)
using a development platform (not necessarily open) provided by vendors. The main goal of third-party
applications are to extend existent platforms with more features that are not directly related to main
device function. And providing a development platform enables end users to develop or select from a
variety of existent application choices customizing their devices for personal needs.

One of the aspects of supporting third-party applications is to create a development platform that
exposes all necessary interfaces to interact with underlying hardware and users. However, since third-
party applications can not be considered as trusted, there has to be a way to control access to various
system resources to prevent them from performing illegal actions, such as accessing protected data,
destroying system information, distributing TV stream and so on. In other words, third-party
applications should be run in “sandbox” that exactly defines what actions third-party applications are
allowed to perform.

The problem of access control of third-party applications is even more serious in embedded products
based on embedded Linux where all system and user applications normally run as a root user with UID
0, which by default has all privileges and capabilities to access any resources and to perform any
actions.

One of the possible ways to solve this problem in Embedded Linux is to move away from the
conventional way of granting user privileges based on user discretion to another mechanism already
implemented in a Linux kernel, such as Linux security module (LSM). LSM implements a mandatory
control access approach based on a set of rules enforced by the system instead of a particular user.
Currently, there are three LSMs available in Linux kernel – Security-Enhanced Linux (SELinux),
Simple Mandatory Access Control (SMACK) and TOMOYO Linux, where SELinux is a

Page 4 9/21/2009

desktop/server LSM and others are oriented towards embedded systems.

This paper describes the results of applying SMACK LSM to a Phillips Linux based Digital TV Split
Application Architecture (SPACE). It starts from an overview of the platform and how applications
interact with it. And process to provide basic use-cases for third-party applications and their access
control requirements defined by Phillips SPACE developers. Then a SMACK rule set to address the
requirements will be proposed and verification process will be described, supplemented with results of
analysis of SMACK impact to system memory consumption and performance.

Also in this paper there is a discussion on how SMACK by itself, is not enough to guarantee that all the
requirements are met. The paper will propose a solution consisting of a hybrid of several Linux security
and control mechanisms, such as SMACK, Capabilities and C-groups with SMACK playing a major
role.

SMACK overview

SMACK stands for Simple Mandatory Access Kernel. It is an alternative Linux Security Module
providing simple configuration interface and smaller memory footprint than its predecessors, which
makes it suitable for embedded systems based on Linux. This section is a brief overview of SMACK.

Since SMACK is a mandatory control access (MAC) mechanism it operates with standard MAC terms,
like:

 Subject
On SMACK subjects are task running in the system.

 Object
Objects are passive entities in a system. On SMACK objects are files of any type, native Linux
IPC objects and tasks in a sense when they are accessed by other tasks (e.g. one task sends a
signal to another)

 Access
Any attempt by a subject to put on or get any information from an object

SMACK performs access control based on labels assigned to objects and subjects and a set of the
following rules:

1. Any access requested by a task labeled "*" is denied.

2. A read or execute access requested by a task labeled "^" is permitted.

3. A read or execute access requested on an object labeled "_" is permitted.

Page 5 9/21/2009

4. Any access requested on an object labeled "*" is permitted.

5. Any access requested by a task on an object with the same label is permitted.

6. Any access requested that is explicitly defined in the loaded rule set is permitted.

7. Any other access is denied.

The sixth rule implies having a special SMACK rule set where subjects and objects relationships are
explicitly defined in the following format:

subject-label object-label access

where access is a combination of 'r' (read), 'w' (write), 'x'(execute) and 'a'(append)

SMACK labels are strings of no more than 23 characters. They can be kept in extended file system
attributes for files, SMACK configuration files or, are inherited from the object owner for dynamic
objects like shared memory.

SPACE digital TV platform

Overview

Split application architecture (SPACE) is a software platform offered by Philips for their digital TV
products. SPACE platform is based on the following open source components:

 Linux kernel (2.6.x)

 DirectFB 1.2

 SaWMan

 FusionDale

DirectFB

Direct FB library provides hardware graphics acceleration, input device handling and abstraction,
integrated windowing system with support for translucent windows and multiple display layers. All
user applications running in SPACE are DirectFB applications that create DirectFB window and draw
into it.

Page 6 9/21/2009

SaWMan

Shared application and window manager (SaWMan) is a custom DirectFB window manager module
that allows one process hooked to SaWMaN to be an application and window manager. An application
manager controls life cycle of other processes in the system and their appearance on a screen including
window layout and focus management.

FusionDale

FusionDale is an application of DirectFB Fuison library that provides high-level inter-process
communications (IPC) mechanisms. DirectFB Fusion is based on shared memory where all IPC objects
are stored and accessed by different applications. Shared memory is implemented via memory mapped
files located in temporary RAM-based file system (tmpfs).

SPACE architecture

SPACE consists of the following building blocks:

 Application Manager (amApp)

 Platform application (pflApp)

 Plarform API (pflAPI)

 Television application (tvApp)

Application manager

The application manager is responsible for the other application’s life cycles and their windows layout.
It decides in which DirectFB virtual layer a window will be shown and defines window position and
size on a screen. All other DirectFB applications create and draw into DriectFB window but do not
control how the window will be rendered on a screen. The application manager is hooked into
SaWMan.

Platform application and API

Platform application implements a hardware platform abstraction layer for all other applications
running in the system. It offers access to different hardware resources, such as TV tuner, audio, video
and graphics control, via platform API wrapped around FusionDale. The system module of DirectFB is
a part of platform application.

Page 7 9/21/2009

Television application

Television application implements core TV functionality. It allows users to set general TV settings,
browse TV channels, read teletext and so on.

There are also other user applications that include media application to play video and audio files, web
browser application currently based on Opera, user manual application allowing user to browse through
TV manual and home application used by users to start other applications. All of these components are
supplied by Philips and, thus, do not require any access control.

Page 8 9/21/2009

Open SPACE and third-party applications

Overview

Open SPACE is a Philips SPACE platform open for external or third-party applications development. It
enables third-parties to develop DirectFB applications using platform API. These applications are not
intended to implement core TV functionality, which is completely covered by vendor applications.
Instead, they extend digital TV with new features, such as entertainment or multimedia capabilities.

However, in current SPACE implementation there is no explicit edge between vendor and third-party
applications. Practically it means that third-party applications running in the system get the same set of
privileges as vendor applications. It leaves an opportunity for external applications to abuse of
privileges and perform undesired actions like damaging TV or accessing any content that require
special licensing.

Distributing open SPACE platform to different third-parties does not leave any possibility to control
each possible application separately due to a constantly growing number of applications. Thus, the
problem of access control has to be solved in general for all external applications by using system-wide
control mechanisms. To define a set of privileges available to third-party applications an analysis of
external applications use cases is required.

Third-party application types

Third-party applications in SPACE are basically DirectFB applications that create a DirectFB window
and draw into it. Even though every application is different, depending on their functionality they can
fall to different groups. And each group determines the specific system resources the applications will
need to access. Three different examples of third-party application types are described below:

 Content viewers

 Entertainment applications

 Internet services

Content viewers

Content viewers applications display data stored in various formats. The examples include audio/video
and flash players, pictures and document viewers.

Specific requirements:

Page 9 9/21/2009

 Access to pluggable media – USB sticks and external hard drives, SD/MMC cards

 Access to data partition shared among all the applications in the system

Entertainment applications

This group of third-party applications includes games of various types. They could be characterized by
close and intensive interaction with users.

Specific requirements:

 Access to hardware acceleration resources

 Access to multiple input devices that may not be directly handled by vendor software (a remote
control device oriented)

Internet services

In additional to general-purpose web browser supported by SPACE, Internet services applications are
dedicated to particular Internet resources providing a digital TV oriented (tuned for display and control
specifics) interface to them. Such applications may include weather application, YouTube player,
MySpace portal viewer and many other examples.

Specific requirements:

 Network access

Third-party application use-cases

Below are two use-cases for third-party application requirements. First is an example of a simple game
controlled using the TV remote control. As an example, it could be a Tetris game. Second application is
a simple Internet service displaying current weather.

Simple game application

 Launched by application manager

 Reads local configuration

 Reads saved data. For example last passed game level.

Page 10 9/21/2009

 Creates DirectFB window

 Listens to input events

 Performs necessary computations

 Draws to the DriectFB window

 Saves data and configuration

 Exits per user request

Weather application

 Launched by application manager

 Creates DirectFB window

 Sets up network connection with remote weather server

 Periodically reads data from the server

 Draws weather information to the DirectFB window

 Exits per user request

Third-party applications access control requirements

Below is a list of access control requirements defined by Philips SPACE developers that should be met
in order to define a sandbox for third-party applications running in SPACE environment:

 No access to certain device nodes

There is a list of devices (e.g. mtd, i2c) that external applications should never have an access
to. Other devices (e.g. USB input devices) may be accessed by third-party applications because
they are not controlled by SPACE or just required for normal application work (e.g.
/dev/urandom)

 No ability to create device node

This is necessary to prevent external applications from creating device nodes in their home
directories and accessing prohibited devices.

 No access to certain mounted data partitions

Various data partitions may contain information that needs to be protected (e.g. HDMI, ECD
keys). External applications should never have access to such partitions.

Page 11 9/21/2009

 No ability to mount file system

This is necessary to prevent external applications to mount a data partition containing protected
information. External applications should have access to externally pluggable media. Vendor
software should mount external block devices and grant access to mounted data partitions to
third-party applications.

 Limited network access

Only trusted external subnets or hosts should be accessed by external applications. It includes
only those network resources required for normal operation of Internet services.

 Limited access to platform API

Currently the platform API is implemented as a single library providing access to all underlying
resources. The API is divided into different groups per functionality. It is necessary to protect
certain API subsets from external applications. If not, an external application can get a hold of
the TV-tuner and, for example, distribute a TV stream across the network.

 Limited memory consumption

External applications should be able to allocate and use only limited amounts of memory.

 Limited CPU consumption

External applications should not consume more than given quantum of CPU time.

How to apply SMACK

Currently Linux kernel offers a number of different mechanisms to perform access control to different
system resources and functions:

 Users and groups

This is a discretion access control (DAC) mechanism used when different resources are
controlled by their owners, identified by user and group ID. This implies having a power user
(UID 0) that has a full set of privileges to access all resources.

 POSIX Capabilities

A capability is a privilege to perform a certain action in the system. An example would be the
capability to mount a file system or open a raw socket. A full set of capabilities forms the power
of super-user but this power is split up in discrete privileges that can be individually granted to
different processes not necessarily running as super-user (root). To support legacy UNIX super-
user by default all the processes running as root are granted full set of capabilities.

Page 12 9/21/2009

 Linux security modules (SELinux and SMACK)

System wide mandatory control access (MAC) to control access to different resources on a
system level, rather than by different users.

 Control groups (C-groups)

Having different mechanisms, which are intended to accomplish the same goals, leads to undesired
results when different mechanisms interfere and sometimes conflict with each other.

For example, when a process attempts to open a file, user/group permissions are checked first and if
passed LSM is involved. However, if a user associated with the process does not have required
permissions, access is immediately denied and LSM is not called. This breaks an idea of MAC where
access to all resources is totally under control of the system.

Another example is interference between LSM and POSIX capabilities. There are capabilities that
override LSM/SMACK policy, so if a process, e.g. running as root, has those capabilities then it can
bypass SMACK rules.

Additionally, for different operations like opening a file or creating a device node, the order of calling
different security mechanisms to perform access checks may be different. This makes it more
complicated to configure and implement access control.

To avoid any possible conflicts between different security mechanisms it is preferable to let a single
subsystem (SMACK for example) have total control of system resources. However, it will be discussed
in the following chapter SMACK is not capable of addressing all the requirements. This calls for a
hybrid approach, combining SMACK with other mechanisms like POSIX capabilities and C-groups.
And impact of those mechanisms should be minimized.

Addressing the requirements

 No access to certain device nodes

All the device nodes that needed to be protected can be protected using special SMACK labels
and policy preventing external applications running with different labels to access them.

 No ability to create device node

This is not directly supported by SMACK even though there is a corresponding LSM callback.
However, there is a special POSIX capability (CAP_MKNOD) to control this.

 No access to certain mounted data partitions

This can be accomplished with SMACK. Mount point and all files on a data partition should
have special SMACK labels that are not accessible by external applications.

 No ability to mount file system

Page 13 9/21/2009

SMACK allows controlling this privilege basing on a label associated with a process trying to
mount file system.

 Limited network access

SMACK allows assigning labels to external host and subnets. In addition all packets coming
from external network and not labeled with SMACK labels (using Netlabel to SMACK labels
mapping) are associated with special “ambient” label. It allows controlling network traffic
between third-party applications and external hosts.

 Limited access to platform API

Platform API is based on DirectFB Fusion IPC library. This is a high-level IPC mechanism
based on native Linux IPC, namely shared memory and special device driver helper. SMACK
works with native Linux objects only, so theoretically it is possible to build in SMACK into
Fusion.

Exact implementation depends on how Fusion is utilized by the platform API (based on Fusion
Dale). FusionDale uses a single Fusion “world” associated with a special Fusion kernel device
node. Analysis of SPACE running on Philips digital TV shown that different platform API
subsets are associated with separate memory mapped files shared across different process
entered the Fusion “world”.

This means it is possible to assign different SMACK labels to different platform API groups.
However this approach requires modifications in platform API implementation as well as in
Fusion (e.g. to handle a case when a certain shared file can not be mapped because of lack of
sufficient permissions).

 Limited memory consumption

In general, LSM and, thus, SMACK do not implement memory consumption control. To
achieve this goal C-groups available in Linux kernel, can be utilized. An external process can be
put to a special memory C-group that do not allow to consume more than a given memory
quantum.

 Limited CPU consumption

This type of control is not directly supported neither by SMACK nor other Linux mechanisms.
To lower CPU consumption in case of intensive CPU load the application manager can adjust
priorities of external applications processes.

Running third-party applications

All third-party applications in SPACE environment should be run following the rules below:

1. All third-party applications are running as super user (UID 0)

2. All third-party applications have all POSIX capabilities disabled

Page 14 9/21/2009

3. All third-party applications are assigned a special SMACK label

4. All third-party applications are put into a special memory C-group

5. All third-party applications run with lower priority than vendor applications

Although the first rule looks inappropriate, it intent is to have all applications running in the system
having the same user id to prevent conflict between SMACK and permission control based on user
groups. A full super-user power is taken away from third party processes by the second rule. All other
processes running in the system are by default granted full set of privileges and, thus, SMACK does not
break their operation.

The third rule enforces SMACK policy to prevent access for resources closed to user applications.

The forth and fifth rules allows controlling memory and CPU consumption, respectively.

Proposed solution

The solution proposed to implement necessary access control using SMACK includes the following
components:

 SMACK rule set

 Necessary changes to SPACE:

 Changes to system initialization scripts

 External application installer

 External application launcher

 Platform API changes

SMACK rule set

This is the main rule set that defines access permissions to system resources for third-party
applications. Each system resources group should be assigned to a special SMACK label and the rule
set has to explicitly define relationships between third-party applications processes and resource
groups.

In addition to the SMACK rule set, all additional SMACK configurations should be defined, such as
network ambient label, mapping between external hosts/subnets and SMACK labels.

Changes to system initialization scripts

The system initialization scripts need to be changed to perform the labeling of system resources and

Page 15 9/21/2009

enforcing SMACK policy. This includes mounting root file systems with proper SMACK mount
options, labeling device nodes, applying SMACK configuration and other necessary actions.

External application installer

There needs to be a way to distinguish third-party and vendor applications. One possible way is to
provide a different set of keys to different development groups (vendor, partners or third-parties) and
check against a key during installation process.

External applications may be installed from external pluggable media (e.g. USB stick or MMC/SD
card) or from special network resource (application store).

Installation steps should include:

 Checking against a key

 Saving application files to a proper location

 Disable all POSIX capabilities associated with applications executable file

External application launcher

SPACE already implements the application manager application that is responsible for starting all other
applications in the system. The application manager should be extended to perform the following steps
during third-party application launching before executing new process:

 Disable all capabilities – set SECURE_NOROOT security bit for a newly created process so it
does not receive all capabilities as a regular root process.

 Assign a SMACK label corresponding to third-party applications

 Put the new process to a proper memory C-group, if C-groups are used

 Set a lower priority to the new process

Platform API changes

Platform API changes are required to integrate SMACK support. These are required to protect different
API subsets from being used by third-party applications. In current SPACE implementation, single
Fusion 'world' is used for Platform API implementation, which means that all platform APIs are located
in a single shared memory pool implemented as a single shared file. Such an implementation prevents
SMACK to protect platform API groups. To make this possible, it is necessary to split platform API
across different shared files and tag them with different SMACK labels. This work will not be covered
in this paper and requires further investigations.

Page 16 9/21/2009

Applied SMACK

The implementation of concepts presented in a previous chapter includes a set of SMACK labels to tag
different system resources and tasks, SMACK rule set to define relationships between third party
applications and other objects in the system, and a third-party application loader. The main goal of the
implementation is to develop a comprehensive list of subjects, objects and rules to meet the access
control requirements. In addition to comprehensiveness there are few other characteristics that are just
as important. It is also important that the number of rules and labels should be minimal to avoid extra
complexity that adds more space for possible security holes. Also the proposed implementation should
be a graphic example of SMACK application, easily understandable and maintainable.

Labeling system resources

The following sets of labels represent system resources relevant for third-party applications:

 third_party

Assigned to all third-party applications running in the system

 tv

Assigned to Digital TV specific data

 ext_media

Assigned to mount point and files located on external media (e.g. MMC/SD card)

 prot_device

Device node that should be protected from third-party applications

 open_device

Device node open for third-party applications

 trusted_net

Network resources open for third-party applications

 untrusted_net

Network resources closed for third-party applications

Smack rule set

The following smack rule set implements the access control requirements to third-party applications:

1. third_party open_device rwx

2. third_party ext_media rwx

Page 17 9/21/2009

3. third_party trusted_net w

4. trusted_net third_party w

5. _ trusted_net w

6. trusted_net _ w

7. untrusted_net _ w

8. _ untrusted_net w

The rule '1' grants third-party applications full access to open device nodes

The rule '2' grants third-party applications full access to external media devices

The rule '3' grants third-party applications write access to trusted networks

The rule '4' allows packets coming from trusted networks to be delivered to third party applications

The rules '5' through '8' are intended to allow other applications (native or partner) to access both
trusted and untrusted networks. Since other applications running in the system are not explicitly
assigned to any SMACK labels they get default '_' label, which is also default for all unlabeled network
resources (default ambient label). Having these rules is necessary because of SMACK specifics in
network packets handling where access check is performed against an application, not an object that
application is trying to access.

Third-party application loader

The application loader is an instrument to run a third-party application in the system. It is started as a
native application with a full set of privileges that allows it to take them out of loaded third-party
program.

The loader perform the following steps to run a third-party application:

 Fork a new process

 Set a SMACK label for new process

 Disable all privileges for new process

 Execute third-party program

The application loader is called 'run_app' and should be run as follows.

Usage: run_app [-h] [-n] -l label args

 -n no-root flag, remove 0-UID priveleges

Page 18 9/21/2009

 -l label SMACK label, maximal 23 characters

 -h pint this message

 args program to run with parameter

The example below shows how to use the application loader to start a 'weather' applet that connects to
'weather.net' server (both applet and server mentioned in the example are fake). Note that the weather
server should be added into list of trusted network:

run_app -n -l third_party wheather_applet -s weather.net

SMACK rule set verification

The verification process is intended to check that the proposed SMACK rule set implements the access
control requirements for third-party applications running in the system. A special shell script has been
implemented to simulate a third-party application trying to access different open and protected system
resources checking whether access is granted or not.

Test environment

Hardware platform

The target hardware platform is a NXP TV543 digital TV reference board. However, due to a lack of
support for this board in the latest Linux kernel and the fact that SMACK functional behavior does not
depend on a hardware platform it has been decided to use a virtual environment to perform the
SMACK rule set verification and analysis. The virtual platform used for verification is QEMU
emulator version 0.9.1 for MIPS Malta Core LV platform. Three virtual machine instances have been
used to simulate digital TV running third-party application, remote server located in trusted network
and remote server located in closed network.

Linux kernel

 Linux kernel 2.6.30-rc7

The latest kernel available at the time of SMACK testing contains SMACK with features not
available in earlier kernel versions, e.g. labeling network resources.

Root file system

 glibc-2.9

Page 19 9/21/2009

 Busybox 1.7.2 with a SMACK patch from smack-util-1.0 package applied

 attr-2.4.43 package to manipulate extended file attributes

 libcap-2.16 library to manipulate POSIX capabilities of a process

 SMACK rule set stored in /etc/smack/load

 SMACK test applications

Test applications

This chapters describes test applications and scripts that have been implemented to verify the SMACK
rule set, including system preparation script, simple client-server application to simulate remote servers
and test script simulating a third-party application.

Test preparation script

Test preparation script runs on QEMU instance representing digital TV platform and performs the
following steps:

 Configure network interfaces

 Label network resources with SMACK labels

 Label protected device nodes with 'prot_dev' label

Devices labeled as protected are /dev/mem and /dev/hdc

 Label open device nodes with 'open_dev' label

Devices labeled as open are /dev/zero and /dev/null

 Create /home/tv directory

Represents digital TV protected data partition

 Create a file in /home/tv

Represents digital TV protected data

 Label /home/tv and its content with 'tv' label

 Create /home/third_party

Represents third-party applications home directory

 Create a file in /home/third_party

Represents third-party applications data

 Label /home/third_party and its content with 'third_party' label

 Mount external disk to /mnt/ext and label it with 'ext_media' label

Page 20 9/21/2009

Client-Server application

Simple client-server application is intended to test access control to different networks. Server side
opens a TCP port and listen for connection. Once connection is established and message is received it
sends a response and exit. Client side tries to set up a connection with server, sends a message, and
waits for response then exits.

SMACK test script

The test script runs as a third-party application and is intended to verify whether the system meets the
access control requirements for third-party applications. The test attempts to perform different
operations and access various system resources. On each step a result of performed operation is
compared with expected value and if they do not match then failure is reported. The sequence of steps
executed by the script is the following:

 Access protected data partition (directory).

All operations should be prohibited:

 Read content of protected directory

 Change current directory to protected directory

 Read a file located in protected directory

 Create a file in protected directory

 Access home data partition (directory)

All operations should be allowed:

 Read content of home directory

 Change current directory to home directory

 Read a file located in home directory

 Create a file in home directory

 Access external medial mounted to a local directory

All operations should be allowed:

 Read external media content

 Read a file from external media

 Create a file on external media

Page 21 9/21/2009

 Access protected device nodes

All operations should be prohibited:

 Read data from protected device node

 Write data to protected device node

 Access open device nodes

All operations should be allowed:

 Read data from open device node

 Write data to pen device node

 Create a device node in home directory

The operation should be prohibited

 Mount external device

The operation should be prohibited

 Connect to a trusted server

The operation should be allowed

 Connect to an untrusted server

The operation should be prohibited

Test procedure

The entire verification process includes the following stages:

1. System startup

 QEMU instance representing digital TV platform is launched

 SMACK rule set is loaded during system startup with init script

2. Test preparation

 The test preparation script is executed

 QUEMU instances representing trusted and untrusted servers are launched

Page 22 9/21/2009

 Server application is started on the both QEMU nodes

3. Test execution

 The test script is started with the third-party application loader applications

4. Results verification

 Check if the test script reported any error message

 If no errors have been reported then the test is passed

 If at least one error has been reported then the test failed

SMACK memory foot-print analysis

This chapter discusses SMACK contribution into overall system memory consumption, the subject that
is very important for embedded systems having in order of magnitude less memory than desktops and
servers.

The memory consumption analysis performed covers both static and dynamic memory consumed by
SMACK kernel module and included:

 SMACK source code examination

This step is intended to identify places where SMACK perform dynamic memory allocation

and when.

 SMACK module object file analysis

This step is intended to determine module size including code, static initialized and uninitialized
data, and memory that will be freed after the module is loaded and initialized.

 Run time memory allocation tracing

This step is intended to assess SMACK impact to dynamic memory allocation and, thus, other
applications running in the system.

The entire memory allocation analysis has been performed within the same test environment used for
the SMACK rule set verification. Using a virtual environment does not impact memory allocation
performed by Linux kernel and user applications and provides mechanisms helpful for dynamic
memory allocation analysis. For instance, GDB stub implemented in QEMU virtual environment.

The tolls and mechanisms used for memory analysis include:

Page 23 9/21/2009

 GNU Binutils for MIPS

 Built-in Linux kernel capabilities:

 /proc/meminfo

 SLAB allocator tracer (kmemtrace)

 GNU Debugger (gdb) for MIPS

GNU Binutils tools have been used to perform static memory analysis and identify all the places where
Linux SLAB allocator is called to provide dynamic memory.

Memory information reported via 'procfs' file system has shown how much system memory is allocated
in total to compare kernels with and without SMACK module enabled.

SLAB allocator tracer is a relatively new kernel mechanism available in the latest mainline kernel. It
traces calls to SLAB allocator from different kernel modules and reports this information to user space
applications. It helped to trace SMACK module memory allocation dynamics. However, it is not
possible to trace memory allocations/frees from a point when the system is started because the
kmemtrace module is loaded during last stage of system initialization where a lot of memory
allocations were already performed by SMACK module.

To trace early memory allocations a number of counters have been introduced to the SMACK module
updated by routines allocating dynamic memory. The GNU debugger attached to QEMU virtual
machine has been used to track those counters in run time.

Static memory foot-print

SMACK module built in part of Linux 2.6.30-rc7 kernel has a size of 24 KBytes including 20772 Bytes
of code and 1304 Bytes of static data.

Dynamic memory foot-print

SMACK source code analysis has shown that there are a few places where SLAB allocator is called.
Basically, for every object created in the system (e.g. file or socket) SMACK creates a special structure
associated with that object. So, the actual size of dynamic memory allocated by SMACK depends on
the number of objects in the system, which will vary depending on system load. Amount of memory
allocated for a single object is relatively small:

 44 bytes per SMACK label

Page 24 9/21/2009

 20 bytes per SMACK rule

 32 bytes per network label

 28 bytes per file system inode object presented in memory

 24 bytes per mounted file system

 32 bytes per socket

However, due to SLAB allocator overhead, which allocates memory from preallocated pool of fixed
size chunks, it allocates 128 bytes per an object.

The difference in dynamic memory consumption between kernels with and without smack enabled is
about 644 Kbytes after system is initialized. It includes 587 KBytes allocated for file system inode,
super block, and socket objects. Running the SMACK test script does not affect dynamic memory
consumption.

SMACK performance analysis

In this chapter it will be discussed how performing run-time access control with SMACK LSM module
impacts system performance. SMACK implements mandatory access control on a system level which
means that it is involved in most of operations performed by user applications running in the system. It
means that it impacts performance of every single operation, which, in turn, impacts overall system
performance.

The methodology chosen to assess performance impact is to run the same set of benchmarking tools in
the same hardware environment on two kernels, one with SMACK module enabled and another
without it. Then results are analyzed and compared. The most interesting areas to watch SMACK
overhead are file system operations and networking.

Since system performance depends on hardware platform (amount of CPU speed, I/O device
throughput, physical memory amount) it is necessary to run benchmarking tests on a real hardware
platform, which is NXP TV543 reference board:

 PNX8543 SoC based on MIPS 4Ke core running at 300Mhz speed

 128MB RAM

 USB 2.0 storage drive

The kernel used for benchmarking is a Linux 2.6.27.9 port to the TV543 board. The user space part of
software stack (tools, applications and libraries) remained the same as for the SMACK rule set
verification.

Page 25 9/21/2009

Having an older kernel version limited performance testing to file system operations because SMACK
version in Linux 2.6.27 kernel does not support assigning labels to network resources, the feature
actively used in the proposed implementation. However, since access control for different operation
(e.g. opening a file or establishing network connection) is performed by the same routines assessing
impact of file system operation can give us an idea about possible impact to network. Also, networking
is not that important for digital TV platform as file system performance as long as SMACK does not
drastically reduce network throughput.

File system performance analysis

Methodology

In general, Linux performs access control checks on most of file operations including opening, creating
or deleting a file, reading or writing to file, etc. It does it through mechanisms provided by the LSM
module enabled in the system, e.g. SMACK or SELinux. However, as soon as a user process opens a
file, SMACK no longer verifies access permissions on reading or writing operations and always grants
access to the file. It means, that the overhead introduced by SMACK on read/write operations should
be minimal and may vary depending on the number of blocks written to a file and the size of a single
block. Most of overhead introduced by SMACK should be for operations associated with file
manipulation operations, such as creating or deleting.

To verify the expected results discussed in the previous paragraph the following set of file system tests
were selected:

 Running 'bonnie++' test to create a large number of files of different size

 The test assess SMACK impact on file manipulation operations

 The test reports the number of files created or deleted per second

 File sizes used are 0 Bytes, 1 Byte and 10 KBytes

 The number of files is 10240

 The test has been run in two modes, with and without write buffering enabled. Disabled
write buffering means performing file system buffer flushing after every single file
operation

 Running 'bonnie++' test to write large amounts of data

 The test assess SMACK impact on read/write operations

 The test reports a number of bytes read or written per second

Page 26 9/21/2009

 Copying a file located in RAM based file system (tmpfs)

 The test assess SMACK impact on read/write operations

 The test reports a number of bytes read or written per second

 Tools used to copy a file are 'dd' and 'cp'

 Block sizes used by 'dd' tool are 1 KByte, 8 KBytes, 64 KBytes and 512 KBytes

 RAM based file system allows to minimize I/O waiting time

 Size of copied file is 10 Mbytes

In addition to the reported numbers, CPU utilization has been tracked for all tests to assess SMACK
impact to CPU consumption and I/O wait time.

All of the tests have been run on both kernels with and without SMACK enabled. Then average results
have been calculated and the difference is calculated in percentage relative to the numbers obtained
from non-SMACK tests.

Results

File creation

The following performance degradation has been observed in SMACK-enabled kernel using bonnie++
file creation tests in both random and selection order (percentage rounded up):

 Creating files of zero byte length: 5%

 Creating file of 1 byte length: 6%

 Creating files of 10 KBytes length: 12%

The first number shows pure SMACK overhead on file creation operation, because no writes are
performed to a file in this case. Running the same tests with disabled write buffers showed performance
degradation in range from 2% to 4% depending on file size. In this case, SMACK overhead is
compensated by I/O device access time.

File deletion

Bonnie++ test application performs file deletion tests in two ways, in sequential order and random
order, showing drastically different results in both cases. In the case of random order, the performance
degradation varies in 7% - 10% range, then for sequential order it increases up to 30% in case of zero
length file. Such a difference can be explained by the fact that file system driver reads a block of data

Page 27 9/21/2009

from I/O device to memory, so information about the next file in sequence is already precached in
memory, so I/O device access is not performed on each operation. That makes SMACK overhead
relatively long comparing to delete operation resulting in high performance degradation.

Flushing file system buffers after each operation reduces SMACK overhead to 1%-3% range in both,
sequential and random, cases. Similarly to file creation test, SMACK overhead is compensated by I/O
device access overhead.

Read operation

Neither 'bonnie++' test nor 'cp' tests have shown any performance degradation of file read operation.

Write operation

The results reported by bonnie++, dd and cp tools are in 0% - 5% range of performance degradation
depending on block size. The worst result (5%) is reported by 'bonnie++' tool for byte-to-byte writing
of 10 MBytes file. SMACK adds a constant absolute overhead to a write operation always granting
access to a file. However, total number of write operations depends on block size resulting in different
relative overhead that can be totally compensated by I/O device wait time.

Conclusion

The first part of this paper formulates access control requirements for third-party applications based on
analysis of existent Digital TV platform offered by Phillips.

Then a solution that addresses the requirements is proposed. However, two problems have been
revealed during research performed to develop the solution. First, using SMACK is not enough to meet
all the access-control requirements. And secondly, using high-level IPC mechanisms in the platform
may complicate the task of applying SMACK depending on the way high-level IPC maps to native
Linux IPC mechanisms that are controlled by LSM.

The proposed implementation is presented along with verification process and its results. It proves the
feasibility of SMACK application.

 The last part of the document provides results of SMACK memory consumption and performance
analysis showing that SMACK is suitable for embedded systems and, in particular, to digital TV
platforms. Even though some numbers reported by performance tests can be relatively high, they have
been derived under unusual system load different from normal TV operations.

Page 28 9/21/2009

	Revision 1.2 • September 21, 2009
	Acknowledgement
	Introduction
	SMACK overview
	SPACE digital TV platform
	Overview
	DirectFB
	SaWMan
	FusionDale
	SPACE architecture
	Application manager
	Platform application and API
	Television application

	Open SPACE and third-party applications
	Overview
	Third-party application types
	Content viewers
	Entertainment applications
	Internet services

	Third-party application use-cases
	Simple game application
	Weather application

	Third-party applications access control requirements

	How to apply SMACK
	Addressing the requirements
	Running third-party applications
	Proposed solution
	SMACK rule set
	Changes to system initialization scripts
	External application installer
	External application launcher
	Platform API changes

	Applied SMACK
	Labeling system resources
	Smack rule set
	Third-party application loader

	SMACK rule set verification
	Test environment
	Hardware platform
	Linux kernel
	Root file system

	Test applications
	Test preparation script
	Client-Server application
	SMACK test script

	Test procedure

	SMACK memory foot-print analysis
	Static memory foot-print
	Dynamic memory foot-print

	SMACK performance analysis
	File system performance analysis
	Methodology
	Results
	File creation
	File deletion
	Read operation
	Write operation

	Conclusion

