The Bousi~Prolog User Manual In A Nutshell
(Version 1.04 — Release April 2008).

Pascual Julidan-Iranzo, Clemente Rubio-Manzano, and Juan Gallardo-Casero

Department of Information Technologies and Systems,
University of Castilla-La Mancha.
{Pascual.Julian}@uclm.es,{Clemente.Rubio}{Juan.Gallardo}@alu.uclm.es

1 Introduction

Bousi~Prolog (BPL for short) is an extension of the Prolog language with an
operational semantics based on the weak SLD resolution principle (WSLD) of
[3]. WSLD is an adaptation of the SLD resolution principle where classical uni-
fication has been replaced by an algorithm based on similarity relations defined
on a syntactic domain. The weak unification algorithm provides a weak most
general unifier as well as a numerical value, called the unification degree. Hence,
Bousi~Prolog computes answers as well as approximation degrees. At this point,
it is worth to say that “Bousi” is the Spanish acronym for “fuzzy unification by
similarity”.

The BPL system we are presenting is a prototype, high level implementation
written on top of SWI-Prolog [5]. The complete implementation consists of about
900 lines of Prolog code. The parser and translator module translates (compiles)
rules and facts of the source BPL code into an intermediate Prolog code repre-
sentation which is called “TPL code” (Translated BPL code). Then, following
standard techniques [4], a meta-interpreter executes the TPL code according to
the weak SLD resolution principle. More information about the structure and
main features of the BPL system can be found in [2].

Since the BPL system is a prototype implementation some bugs may arise
during its execution. Please, send your comments to Pascual.Julian@uclm.es

In the following, we assume some familiarity with the field of logic program-
ming [1]. So, some basic concepts (such as: term, atomic formula, clause, substi-
tution, etc.) are not introduced.

2 Requirements and Instalation Procedure

Bousi~Prolog version 1.04 (release April 2008) is available in two distribution
formats: the executable distribution and the complete source code distribution.
The current version of the low level implementation of Bousi~Prolog runs on
Unix-based platforms and has been tested under Linux (Red Hat/Fedora and
Debian/Ubuntu distributions).
If you want to install the BPL system on your computer, starting from the
complete source code distribution you need SWI-Prolog. Also, for compiling the

source code, in order to generate an executable (state) file you may need the
following packages installed on your computer:

— Red Hat/Fedora distributions: gmp-devel, ncurses-devel, readline-devel.

— Debian/Ubuntu distributions: libgmp3-dev, libncurses5-dev, libncurseswb-dev,
libreadline5-dev.

On the other hand if you want to install and run the executable distribution,
you do not need SWI-Prolog and, in order to run the executable (state) file you
only may need the following packages installed on your computer:

— Red Hat/Fedora distributions: gmp, ncurses, readline.
— Debian/Ubuntu distributions: libgmp3c2, libncurses5, libncurseswb, libread-
line5.

The following installation procedure is only for the executable distribu-
tion.

— Go into the directory where you want to download the executable distribu-
tion and download it.

— Decompress the file bousi-installer.tgz by the command:
tar -xzf bousi-installer.tgz

Then, a subdirectory (called “bousi-installer”) is created containing the
files of the executable distribution.

— Go into the bousi-installer directory, launching the installation process
by the command

installer.sh

Then, follow the installation instructions. If you are an ordinary user and
you choose the default installation option, the executable file “bousi” and
the shared library “closure.so” are installed into the directory

$HOME/bousi-prolog.
If you are root, the default directory where those files are installed is
/usr/local/bousi-prolog.

— Once the installation is ended you can start the BPL system via the com-
mand “bousi”.

WARNING: If you try to launch the BPL system by double clicking the ex-
ecutable file bousi from a file browser window, it might happen that the BPL
system is not open but it remains resident in memory consuming a great amount
of CPU resources. Always it is preferable to launch the BPL system from a (unix
shell) terminal by means of the command “bousi”.

Universidad de
10) ID) Castilla - La Mancha.
[0)(@\USHITI 7 |l IR (0 IL (0 (GI. (Version 1.04 ~~ February 2008)

Welcome to Bousi“Prolog. This software is for research and educational
purposes only and it is distributed with NO WARRANTY.
Please, report bugs and send your suggestions to: Pascual.JulianQuclm.es

1d -> (load) reads a file containing the source program for loading
1t -> (list) displays the current loaded program

sv -> (solve) solves a (possibly conjunctive) query

1c -> (lambdacut) reads or sets the lower bound for the approximation

degree in a weak unification process
hp -> (help) shows this help info

1s -> (list) lists the files in the working directory

pwd -> (print working directory) shows information of the working directory
cd -> (change Dir) changes the working directory

sh -> (shell) starts a new interactive shell process

qt > (quit) leaves the system

- Write '"hp Topic " to obtain more help on that Topic -

Fig. 1. Welcome screen and shell commands of the Bousi~Prolog system

3 The BPL Environment

In this section we give a brief tutorial on how to use the BPL environment wich
is the interface between the user and this high level implementation.

The BPL environment implements a command shell. Figure 1 shows the
welcome screen and a summary of the shell commands. To start the BPL envi-
ronment execute the command “bousi”. Once the BPL environment is running
you can type in the following commands:

— 1d -> (LOAD) The Load command can be used to show what program has
been loaded, when used without an argument. In this case it shows the name
of the loaded program or the notice “No program loaded”. Also, when used
with a single argument, it can be used to load a file containing the source

program.
Syntax:

I shows if there is a current loaded program.

1d <FileName> ... reads the file FileName, containing the source pro-

gram, translates it into a TPL file and consults the
TPL file. <FileName> is a BPL file name without
extension.

— 1t -> (LIST) The List command shows the rules in the current loaded
program. Note that similarity equations are not shown.

Syntax:
S A displays the current loaded program.

— sv -> (SOLVE) The Solve command sends a (possibly conjunctive) query
to be solved by the Evaluator. It requires a single argument that must be
an atom or a conjunction of atoms. Conjunctive queries must be enclosed by
curved parenthesis signs.

Syntax:

sv <Atom>
sv (<Atom_1>, <Atom_2>, ..., <Atom_N>)

— 1c -> (LAMBDACUT) We can impose a limit to the expansion of the search
space in a computation by what we called a “lambdacut”. When Lambda-
cut is set, the weak unification process fails if the computed approximation
degree goes below the stored lambdacut value. Therefore, the computation
also fails and all possible branches starting from that choice point are dis-
carded. The Lambdacut command can be used to show what is the current
Lambdacut value or to set a new Lambdacut value.

Syntax:

1 viviiiiiin reads the current value of the lower bound for the
approximation degree in a weak unification process.

lc <Value> sets the lower bound for the approximation degree in
a weak unification process. Value is a real between
0 and 1.

— hp -> (HELP) The Help command gives a summary of the BPL shell com-
mands or specific information on a BPL shell command.

Syntax:

hp .ol gives a summary of BPL shell commands.
hp <ShellCmnd> .. gives information on a BPL shell command.

— 1s -> (LIST) Executes the command “Is -B —color” on the operating sys-
tem. That is, this command shows a list of the files in the working directory,
ordered by columns, ignoring backups and distinguishing plane files from
directories, executable files and so on, by color.

Syntax:
1s coiiiiinnn lists the files in the working directory.

— pwd -> (PRINT WORKING DIRECTORY) Print the full filename of the cur-
rent working directory.

Syntax:

pwd ... shows the filename of the working directory.

— cd -> (CHANGE DIR) Changes the working directory.

Syntax:

cd <Dir> Changes the current directory to <Dir>, where
“<Dir>” is a pathname.

— sh -> (SHELL) Starts an interactive Unix shell. Default is /bin/sh. The
environment variable SHELL overrides this default.

Syntax:

sh ...t starts a new interactive shell process.

— qt -> (QUIT) Ileaves the system.

4 Edition and execution of a Program and a Query

The BPL system does not provide an specific text editor. This is not a real

inconvenient in a unix-based implementation. If you wish to create a new BPL

program or open an old one for edition, you can use your favorite text editor.
In order to launch a BPL program, you must follow these steps:

1. Once a BPL program has been created, use the 1d command for loading the

program into the working space.

. Use the sv command to send a query to the BPL system.

3. The BPL systems returns an answer or responds “no answers” if there
is not any. In the first case, you can type the semi-colon plus the new-
line keys “;<new-1line>”, if you want another solution, or return if you are
satisfied, after which Bousi~Prolog will say “Yes”. If Bousi~Prolog answers
“no answers”, this indicates it cannot find any (more) answers to the query.

[N)

5 The Bousi~Prolog programming language

In this section we briefly summarize the features of Bousi~Prolog. We concentrate
on the syntactical aspects.

The programming language we call Bousi~Prolog is an extension of the stan-
dard Prolog language with a similarity relation defined on a syntactic domain.
Therefore, the syntax is mainly the Prolog syntax but enriched with a built-in
symbol used for describing similarity relations (actually, fuzzy binary relations
which are automatically converted into similarity relations) by means of simi-
larity equations of the form:

<alphabet symbol> <alphabet symbol> = <similarity degree>

meaning that two constants, n-ary function symbols or n-ary predicate symbols
are similar with a certain degree.

A BPL program is a sequence of Prolog facts and rules plus a sequence of
similarity equations. A rule is a conditional formula of the form:

A:—Ll,L27 PPN 7Ln.

where the A is an atomic formula (i.e., a relational symbol applied to a tuple of
rst-order terms) and the L; are literals (e.i., either atomic formulas or negation of
atomic formulas). The atomic formula “A” is called the head of the rule and the
conjunction of literals “Lq, Ls,...,Ly," is called the body. In general, the body
may be an aggregation of literals connected by conjunctions (,), disjunctions (;)
and if-then-else (->) operators. A fact is a rule without a body.

Bousi~Prolog uses the similarity-based SLD principle [3] (also called weak
SLD resolution) as operational semantics. This operational mechanism is well
suited for flexible query answering.

Ezample 1. This BPL program fragment specify features and preferences on
books stored in a data base. The preferences are specified by means of similarity
equations:

% FACTS

adventures (treasure_island) .

adventures (the_call_of_the_wild).
mystery(murders_in_the_rue_morgue) .
horror(dracula).
science_fiction(the_city_and_the_stars).
science_fiction(the_martian_chronicles).

% RULES
good(X) :- interesting(X).

% SIMILARITY EQUATIONS

adventures "~ mystery = 0.5
adventures "~ science_fiction = 0.8
adventures ~~ interesting = 0.9
mystery "~ horror = 0.9

mystery ~7 science_fiction = 0.5
science_fiction "7 horror = 0.5

When this program is loaded an internal procedure constructs a similarity
relation (i.e. a reflexive, symmetric, transitive, fuzzy binary relation) on the syn-
tactic domain of the program alphabet. Therefore, all kind of books considered
as interesting are retrieved by the query “BPL> sv good(X)”.

5.1 The weak unification operator

Bousi~Prolog implements a weak unification operator, denoted by “~~7” which
is the fuzzy counterpart of the syntactical unification operator “=" of stan-
dard Prolog. It can be used, in the source language, to construct expressions
like “Terml ~~ Term2 =:= Degree” which is interpreted as follows: The ex-
pression is true if Terml and Term2 are unifiable by similarity with approx-
imation degree AD equal to Degree. In general, we can construct expressions

“Terml ~~ Term2 <op> Degree” where “<op>” is a comparison arithmetic op-

erator (that is, an operator in the set {=:=, =\=, >, <, >=, =<}). Observe
that the expression “Terml ~~ Term2” is syntactic sugar of “Terml ~~ Term?2
> 0”. Also it is possible the following construction: “Term1 ~~ Term2 = Degree”

which succeeds if Term1 and Term?2 are weak unifiable with approximation degree
Degree; otherwise fails. When Degree is a variable it is bound to the unification
degree of Terml and Term2. These expressions may be introduced in a query as
well as in the body of a clause.

Ezxample 2. Assume that the BPL program of Example 1 is load. The following
is a simple session with the BPL system:

BPL> sv adventures(X) ~~ interesting(Y) > 0.5
With approximation degree: 1

X = _G1248

Y = _G1248

Yes

BPL> sv adventures mystery
With approximation degree: 1

Yes

Both goals succeed with approximation degree 1 because: adventures(X) and
interesting(Y) weak unify with unification degree 0.9, greater than 0.5;
adventures and mystery trivially weak unify with unification degree 0.5, greater
than 0; and the comparison operator is a crisp one.

BPL> sv adventures(X) ~~ mystery(Y) =D
With approximation degree: 1

X = _G1714
Y = _G1714
D = 0.5;

No answers

This goal succeeds with approximation degree 1 because it is completely true

that adventures(X) and mystery(Y) weak unify with unification degree 0.5.

There are not more answers since only a weak unifier representative is returned.
Note that the last goal is equivalent to the following one:

BPL> sv unify(adventures(X), mystery(Y), D)
With approximation degree: 1

X = _G2522
Y = _G2522
D=20.5
Yes

Finally observe that Bousi~Prolog also provides the standard syntactic unifi-
cation operator “=". The operator symbol “=” is overloaded and it can be used in
different contexts with different meanings: i) it behaves as an identity when it is
used inside a similarity equation or inside the construction “Terml ~~ Term2 =
Degree”; ii) it behaves as the syntactic unification operator when it is used
dissociated of the weak unification operator “~~”.

5.2 Distinct Classes of Negations

Bousi~Prolog provides an operator, “\+” for crisp negation as failure and a pred-
icate “not” for weak negation as failure. The implementation of these distinct
classes of negation is as follows:

— A goal \+(4) fails only if solve (A, DA) succeeds with approximation degree
DA =1. Otherwise \+(A) is true with approximation degree 1. That is “\+”
operates as the classical negation as failure.

% Crisp negation as failure
solve(\+(A), D) :- !, (solve(A, DA) -> (DA =1 -> fail;
D =1);
D=1).

— A goal not (A) fails only if solve(A, DA) succeeds with approximation de-
gree DA =1. When solve (A, DA) succeeds, but the approximation degree DA
is lesser than 1, not (A) also succeeds with approximation degree D = 1 -
DA. If it is the case that solve (A, DA) fails, not (A) succeeds with approxi-
mation degree D = 1.

% Weak negation as failure
solve(not(A), D) :- !, (solve(A, DA) -> (DA =1 -> fail;
D is 1 - DA);
D=1).

where the predicate solve/2 is used internally by the BPL meta-interpreter to
solve BPL queries.

5.3 Directives

We can impose a limit to the expansion of the search space in a computation
by what we called a “lambda-cut”. When the LambdaCut flag is set to a value
different to zero, the weak unification process fails if the computed approximation
degree goes below the stored LambdaCut value. Therefore, the computation also
fails and all possible branches starting from that choice point are discarded. By
default the LambdaCut value is zero (that is, no restriction to a computation is
imposed). However, the LambdaCut flag can be set to a different value by means
of a lambdaCut directive introduced inside of a BPL program or the 1¢ command
of the BPL shell (explained before).

On the other hand, in a BPL program, the user supplies an initial subset
of similarity equations for defining a fuzzy relation and then, the system au-
tomatically generates its reflexive, symmetric, transitive closure to obtain, by
default, a similarity relation. In order to resolve certain problems sometimes is
preferable not to generate the similarity relation from the initial set of similar-
ity equations. This effect can be achieved by means of the BPL directive “:-
transitivity(no)”, which inhibits the construction of the transitive closure,
during the translation phase. If the BPL directive “:- transitivity(no)” is
included at the beginning of a BPL program, only the reflexive, symmetric clo-

sure is computed. By default, the transitivity flag is set to “yes”

5.4 Built-in predicates

In this section we give a list of the built-in predicates provided by Bousi~Prolog.
As for the current implementation the core of the system is a meta-interpreter,
built-in predicates are sent directly to the Prolog interpreter.

Control and meta-call predicates Control predicates are useful to manage
repetition through backtracking. We provide two simple predicates for control:

— fail: Always produces a fail.
— repeat Always succeed, providing an infinite number of choice points.

Meta-call predicates are used to call terms constructed at run time. The
meta-call mechanism offered by Bousi~Prolog is:

— call(Goal): Invokes Goal as a goal.

Arithmetic operators The basic operator for the evaluation of arithmetic
expressions is:

— Expl is Exp2: Forces the evaluation of Expl and Exp2. It will be successful
if Exp1l and Exp2 unify after their evaluation.

The following arithmetic comparison operators are available:

— Expl =:= Exp2: Succeeds if expression Expl evaluates to a number equal to
Exp?2.

— Expl =\= Exp2: Succeeds if expression Expl evaluates to a number different
to Exp2.

— Expl > Exp2: True if expression Expl evaluates to a number greater than
Exp2.

— Expl < Exp2: True if expression Expl evaluates to a number less than Exp2.

— Expl >= Exp2: True if expression Expl evaluates to a number greater than
or equal to Exp2.

— Expl =< Exp2: True if expression Expl evaluates to a number less than or
equal to Exp2.

Comparison operators Terms are ordered in the so called “standard order”.
This order is defined as follows:

1.

A

Variables are less than Numbers, Numbers are less than Atoms, Atoms are
less than Strings, Strings are less than Comound Terms.

Variables are sorted by address.

Atoms are compared alphabetically.

Strings are compared alphabetically.

Numbers are compared by value.

Compound terms are first checked on their arity, then on their functor-name
(alphabetically) and finally recursively on their arguments, leftmost argu-
ment first.

To compare the standard order between two terms the following operators are
provided:

Terml == Term2: Succeeds if term Term1 is syntactically equivalent to term
Term?2.

Terml \== Term2: Succeeds if term Term1 is not syntactically equivalent to
term Term?2.

Terml =@= Term2: True if Terml is “structurally equal” to Term2.

Terml \=@= Term2: True if Terml is not “structurally equal” to Term2.
Terml @< Term2: True if Term1 is greater than Term2, in the standard order
of terms.

Terml @> Term2: True if Terml is less than Term2, in the standard order of
terms.

Terml @>= Term2: True if Terml is greater than or equal to Term2, in the
standard order of terms.

Terml ©@=< Term2: True if expression Terml is less than or equal to Term2,
in the standard order of terms.

Syntactic unification

Terml = Term2: Unifies Term1 with Term2. True if the unification succeeds.
Terml \= Term2: True if Term1 does not unify with Term2.

List manipulation Some standard predicates for list manipulation:

is_list(Term): True if Term is bound to the empty list “[1” or a term
“[_IL]” where the second argument “L” is a list.

member (Elem, List): Succeeds when Elem is one of the members of List.

append(Listl, List2, List): True when List is the concatenation of
List1 and List2.

reverse(Listl, List2): Reverses the order of the elements in List1 and
unifies the result with the elements of List2.

last(List, Elem): Succeeds if Elem unifies with the last element of List.

length(List, Int): True if Int is the number of elements of List.

10

Analysing and Constructing Terms Some predicates for cataloging terms:

— var(Term): True if Term currently is a free variable.

— integer(Term): True if Term is bound to an integer.

— number (Term): True if Term is bound to an integer or floating point number.

— atom(Term): True if Term is bound to an atom.

— atomic(Term): True if Term is bound to an atom, string, integer or floating
point number.

— compound (Term): True if Term is bound to a compound term.

Some predicates for constructing terms:

— functor(Term, Functor, Arity): Trueif Termis a term with functor Functor
and arity Arity. If Term is a variable it is unified with a new term holding
only variables.

— arg(Arg, Term, Value): Term should be instantiated to a term, Arg to an
integer between 1 and the arity of Term. Value is unified with the Arg-th
argument of Term.

— Term =.. List: List is a list which head is the functor of Term and the
remaining arguments are the arguments of the term. Each of the arguments
may be a variable, but not both.

Edinburgh-style I/O The I/O predicates refer to the current input stream
and the current output stream. Initially these streams are connected to the ter-
minal. The current output stream is changed using tell/1. The current input
stream is changed using see/1. The streams current value can be obtained using
telling/1 for output and seeing/1 for input streams.

The streams are connected to files or the terminal. The reserved stream name
“user” refers to the terminal. The connection is made either by tell/1 or by
see/1 which open a file for output or input respectively. A simple working session
is as follows:

see(file_name). % open the file "file_name"

% which is made the current input stream
predicates for reading
the current input stream

seen. % close the current input stream
The I/0 predicates available on this implementation of Bousi~Prolog are:

— see(File): Open File for reading and makes it the current input stream.
— tell(File): Open File for writing and makes it the current output stream.
— seeing(Stream): Gets the current input stream.

— telling(Stream): Gets the current output stream.

— seen: Closes the current input stream. The new input stream becomes user.

11

— told: Closes the current output stream. The new output stream becomes
user.

— read(Term): Reads the next term from the current input stream and unifies
it with Term.
When reaching end of file Term is unified with the atom end_of file.

— write(Term): Writes Term to the current output stream.

— get(Char): Reads the current input stream and unifies the next non-blank
character with Char. Char is unified with -1 at end of file.

— get0(Char): Reads the current input stream and unifies Code with the char-
acter code of the next character. Code is unified with -1 at end of file.

— put (Char): Writes Char to the current output stream.

— nl: Writes a new-line character to the current output stream.

Runtime Statistics

— statistics(Key, Value): Unifies system statistics determined by Key with
Value. Some possible keys are:
e cputime: cpu time since Prolog was started in seconds
e inferences: Total number of predicate calls since Prolog was started.

See the SWI-Prolog documentation for more details.

5.5 Some limitations

Although Bousi~Prolog implements the main features of a standard Prolog other
features, such as working with modules, are not covered. Also, because the parser
phase is delegated to standard Prolog predicates we lost the control of the whole
parsing process, what imposes some real limitations. For instance, we cannot
use operators defined by the user, that is the “:= op(_, _, _)” directive. In the
future we want to add these missing features to our language.

OBSERVATION: Bousi~Prolog uses the standard cut predicate of the Pro-
log language, “!”, in an indirect way, embedded into more declarative predicates
and operators, such as: “not” (weak negation as failure), “\+” (crisp negation
as failure) and “->” (if-then and if-then-else operators).

References

1. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, Englewood Cliffs,
NJ, 1997.

2. P. Julidn-Iranzo, C. Rubio-Manzano, and J. Gallardo-Casero. Bousi~prolog: a pro-
log extension language for flexible query answering. page 14, 2008. (Submitted for
publication).

3. Maria I. Sessa. Approximate reasoning by similarity-based sld resolution. Theoret-
ical Computer Science, 275(1-2):389-426, 2002.

4. L. Sterling and E. Shapiro. The Art of Prolog (Second Edition). The MIT Press,
Cambridge, MA, 1994.

5. J. Wielemaker. SWI-Prolog 5.6 Reference Manual. Technical report: vesion 5.6.52,
March 2008, University of Amsterdam, 2008.

12

