# API2540 Liquid Volume Correction User Program (ROC300-Series and FloBoss™ 407 Flow Managers) (ROCLINK™ for DOS Configuration Software)

User Manual (QER 03Q008)

> Form A6138 May 2004



# **Revision Tracking Sheet**

#### May 2004

This manual may be revised from time to time to incorporate new or updated information. The revision level of each page is indicated at the bottom of the page opposite of the page number. A change in revision level to any page also changes the date of the manual that appears on the front cover. Listed below is the revision level of each page.

| Page         | Revision |
|--------------|----------|
| Pages i, 1-1 | 05/04    |
| All pages    | 05/03    |
| All pages    | 01/03    |

FloBoss and ROCLINK are marks of one of the Emerson Process Management companies. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their respective owners.

 $\circledcirc$  Fisher Controls International, LLC. 2003-2004. All rights reserved. Printed in the U.S.A.

While this information is presented in good faith and believed to be accurate, Fisher Controls does not guarantee satisfactory results from reliance upon such information. Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding the performance, merchantability, fitness or any other matter with respect to the products, nor as a recommendation to use any product or process in conflict with any patent. Fisher Controls reserves the right, without notice, to alter or improve the designs or specifications of the products described herein.

# **Table of Contents**

# Page

| 1 Getting Started                                          |     |
|------------------------------------------------------------|-----|
| 1.1 Scope of this Manual                                   |     |
| 1.2 Organization of this Manual                            |     |
| 1.3 API2540 Liquid Volume Correction User Program Overview |     |
| 1.4 Domain Limitations Handling                            |     |
| 1.5 Program Names and Versions                             |     |
| 2 Installing the User Program                              |     |
| 2.1 Customizing ROCLINK                                    |     |
| 2.2 Downloading the User Program                           |     |
| 2.3 Update Firmware                                        |     |
| 2.3.1 Altering Your .LST File                              |     |
| 3 Configuring the User Program                             |     |
| 3.1 API2540 Setup                                          | 3-1 |
| 3.1.1 Calculations                                         | 3-3 |
| 3.1.2 Volume-Time Snapshot                                 |     |
| 3.1.3 Alarms                                               |     |
| 3.1.4 Inputs                                               |     |
| 3.1.5 Slippage Factors                                     |     |
| 3.2 Data Transfer                                          |     |
| Appendix A Standards                                       | A-1 |
| Appendix B Domain Violations                               | B-1 |
| Appendix C Engineering Units                               | C-1 |
| Index                                                      | I-1 |

# **1 GETTING STARTED**

### 1.1 Scope of this Manual

This document serves as a user manual for the API2540 Liquid Volume Correction User Program (QER 03Q008), intended for use with the ROC300-series of Remote Operation Controllers (ROCs) with a FlashPAC, version 2.12 or greater, and FloBoss<sup>™</sup> 407 Flow Manager, version 1.08 or greater. This manual describes how to download, configure, and monitor the program. The user program is accessed using ROCLINK<sup>™</sup> for DOS configuration software version 2.23. The configuration software uses an IBM-compatible computer and Windows<sup>®</sup> Operating System. For information on use of the API2540 program with ROCLINK 800 configuration software, refer to user manual Form A6167.

### **1.2** Organization of this Manual

In this manual, the sections are arranged to provide information in the order in which it is required for first-time users. Once you become familiar with the procedures, and the software is running in a ROC or FloBoss 407, use the manual as a reference tool.

The manual is organized into the following major sections:

Section 1Getting StartedSection 2Installing the User ProgramSection 3Configuring the User ProgramAppendix AStandardsAppendix BDomain ViolationsAppendix CEngineering Units

This manual assumes that the user is familiar with the ROC300-series and FloBoss 407 units and their configuration. For additional information, refer to the:

- Type ROC306/ROC312 Remote Operations Controller Instruction Manual (Form A4630).
- Type ROC364 Remote Operations Controller Instruction Manual (Form A4193).
- FloBoss 407 Flow Manager Instruction Manual (Form A6013).
- RL101 ROCLINK Configuration Software User Manual (Form A6051).

**NOTE:** "ROC" is used in this manual to stand for all ROC and FloBoss devices.

#### 1.3 API2540 Liquid Volume Correction User Program Overview

The Liquid Correction Program is designed for the ROC300-series units equipped with FlashPACs and the FloBoss 407. The Liquid Correction Program corrects the measured flow of crude oils, oil generalized products, LPG, and water by converting values to standard temperature and pressure levels. The Liquid Correction Program monitors the current flow rate, temperature, and pressure, and to calculate a corrected flow value for standard conditions based upon density value, sediment, and water percent value, vapor pressure, and the meter slippage factor.

The Liquid Correction Program accumulates the volume of the flowing fluid and can be configured to perform calculations for up to three different flows in the ROC306 and ROC312, five flows in the ROC364, or four flows in the FloBoss 407.

The Liquid Correction Program tracks two accumulated volumes for each flow. One accumulation is the volume since contract hour or last manual reset and the second accumulation is a running total that rolls over at 9,999,999. At contract hour or manual reset, flow and minutes today are transferred to flow and minutes yesterday.

The Liquid Correction Program supports the following liquids:

- Crude oil.
- Generalized oil products (jet fuel, diesel, oil, and gasoline).
- LPG (Liquefied Petroleum Gas).
- ♦ Water.

The Liquid Correction Program supports the following standards:

 API2540 Tables 5A, 5B, 6A, 6B, 34, 53, 53A, 53B, 54, API21, API5, AGA3/1992 and was developed according to API/ANSI/AGA standards. Refer to Appendix A for a list of all applicable standards.

The Liquid Correction Program supports the following types of inputs:

- Pulse (mass or volume).
- Analog Flow (mass or volume).
- Analog Differential Pressure (DP).
- Density.
- Vapor Pressure.
- Water and Sediments.

An uncorrected flow can be determined by one of the following inputs:

- Pulse Input (such as from a turbine).
- Analog Input (such as from a Vortex or MicroMotion).
- Differential Orifice Metering (flange taps only).

# 1.4 Domain Limitations Handling

The Liquid Correction Program application domain is limited, by API standards, to correcting the flow of densities, pressures, and temperatures within a custody transfer degree of accuracy. The domain borders vary according to the product class and parameter values. The calculation automatically adjusts the Liquid Type between LPG and Crude Oil if the input density fluxuates

Whenever a domain violation occurs, an error message displays and stored in the Event Log, with the ERR tag, the Domain Limit as "old value", and the Current Value of the parameter. When the violation clears, "No Error" displays and a clear event is logged with the CLR tag. A real-time stamp is appended to each event. In error mode, calculations use the closest domain formulas.

NOTE: Further interpretation of the volumes calculated and accumulated during domain violation periods is the user's sole responsibility.

Because domain limits for flowing pressure corrections and flowing temperature corrections overlap, the Liquid Correction Program assumes temperature-driven domain below 500 kPa (75 PSIA) and pressure-driven domain above 500 kPa. The associated error is less than 50 PPM.

# 1.5 Program Names and Versions

Program versions and names display in Table 1-1. You must download two user programs.

| Program Name | User<br>Task | User<br>Point | Code Blocks | Data Blocks | <b>ROC or FloBoss Version</b>                                        |
|--------------|--------------|---------------|-------------|-------------|----------------------------------------------------------------------|
| api_3a.h00   | 3            | 28-29         | C0000-CFFFF | A0000-ABFFF | ROC306/312/364<br>FlashPAC versions 2.12<br>and 2.20                 |
| apitbl3a.h00 | 3            | 28-29         | C0000-CFFFF | A0000-ABFFF | ROC306/312/364<br>FlashPAC versions 2.12<br>and 2.20                 |
| api_3b.h00   | 3            | 28-29         | D0000-DFFFF | B4000-BFFFF | ROC306/312/364<br>FlashPAC versions 2.12<br>and 2.20                 |
| apitbl3b.h00 | 3            | 28-29         | D0000-DFFFF | B4000-BFFFF | ROC306/312/364<br>FlashPAC versions 2.12<br>and 2.20                 |
| api3a_ic.h00 | 3            | 28-29         | A0000-AFFFF | B0000-BBFFF | ROC306/312 FlashPAC<br>versions 2.12 and 2.20 for<br>Industry Canada |
| ap3tblic.h00 | 3            | 28-29         | A0000-AFFFF | B0000-BBFFF | ROC306/312 FlashPAC<br>versions 2.12 and 2.20 for<br>Industry Canada |
| api4a_ic.h00 | 3            | 28-29         | 60000-6FFFF | 70000-7BFFF | FloBoss 407 version 1.08<br>for Industry Canada                      |
| ap4tblic.h00 | 3            | 28-29         | 60000-6FFFF | 70000-7BFFF | FloBoss 407 version 1.08<br>for Industry Canada                      |
| api_4a.h00   | 3            | 28-29         | C0000-CFFFF | 74000-7FFF  | FloBoss 407, version 1.08                                            |
| apitbl4a.h00 | 3            | 28-29         | C0000-CFFFF | 74000-7FFF  | FloBoss 407, version 1.08                                            |
| api_4b.h00   | 3            | 28-29         | B0000-BFFFF | 60000-6BFFF | FloBoss 407, version 1.08                                            |
| apitbl4b.h00 | 3            | 28-29         | B0000-BFFFF | 60000-6BFFF | FloBoss 407, version 1.08                                            |

 Table 1-1.
 Versions and Program Names

# 2 INSTALLING THE USER PROGRAM

This section describes how to download and install the user program into the ROC306/312/364 with a FlashPAC (version 2.12 or greater) and FloBoss<sup>™</sup> 407 Flow Manager (version 1.08 or greater), using ROCLINK for DOS Configuration Software (version 2.23). For additional information on downloading the program, checking memory allocation, and enabling the program, refer to the *RL101 ROCLINK Configuration Software User Manual* (Form A6051).

# 2.1 Customizing ROCLINK

ROCLINK for DOS requires several files to use the API2540 Liquid Volume Correction User Program:

- 1. **Navigate** to the **CD-ROM** directory where the gas flow calculation installation files are located. Program files are typically located in the Program Files/ROCLINK Files folder on the CD-ROM.
- 2. Select and Copy the following files:
  - ♦ menu3.txt
  - ♦ menu4.txt
  - ♦ scl\_api1.tpl
  - ♦ scl\_reg1.tpl
  - tlplist.txt
- 3. Paste the files in to the ROCLINK default working directory.

The default directory is located at:

 $C: \setminus ROCLINK$ 

- \* NOTE: Select Yes if prompted to overwrite existing files.
- 4. **Right-mouse click** on the selected files.
- 5. Select Properties.



Figure 2-1. Properties

6. **De-select** the **Read-only Attribute** for each program file that has the Read-only Attribute set. If the files remain Read-only, ROCLINK will not connect to the ROC or FloBoss.

| F | LOW.MON,      | Properties                                       |
|---|---------------|--------------------------------------------------|
|   | General       |                                                  |
|   |               | 10 Files, 0 Folders                              |
|   | Туре:         | Multiple Types                                   |
|   | Location:     | All in C:\_Tawni\Fisher\Spartan\ISO 5167 3588 Ga |
|   | Size:         | 718 KB (736,213 bytes)                           |
|   | Size on disk: | 896 KB (917,504 bytes)                           |
|   | Attributes:   |                                                  |
|   |               | 🔲 <u>H</u> idden                                 |
|   |               | ✓ Archive                                        |
|   |               |                                                  |
|   |               |                                                  |
|   |               |                                                  |
|   |               | OK Cancel Apply                                  |

Figure 2-2. Attributes

- 7. Click **OK**.
  - \* NOTE: Customize ROCLINK *before* downloading the user program.

# 2.2 Downloading the User Program

To download the user program:

- 1. Connect the ROC or FloBoss to your computer through the LOI port.
- 2. Launch and logon to **ROCLINK for DOS**.
- 3. Select Utilities > User Programs.

|   | MS ROCLI     | NK      |       |                 |         |                |         |             |        | - 🗆 🗵     |
|---|--------------|---------|-------|-----------------|---------|----------------|---------|-------------|--------|-----------|
| Ī | Auto         | •       | ] 🗈   | te 🛃            | 88      | A              |         |             |        |           |
| I | File         | Heter   | 1/0   | Data            | PureGas | Display        | listory | tilities    | System | Help      |
| I |              |         |       |                 |         |                |         |             |        |           |
| I | Unuse        | d Memor | y Blo | o <u>ck (16</u> | K Bytes | per block      |         | 6 000 6 000 |        |           |
| I | 6006         | 1063ff: | f     | 64000-          | -67fff  | 680000         | bbfff   | 6C0006fff   | 3      |           |
| I | 7000         | 073ff:  | f     | 74000-          | -77fff  | 78000'         | 7bfff   | 7c0007fff   |        |           |
| I | a000         | 0a3ff:  | f     | a4000-          | -a7fff  | a8000          | abfff   | ac000afff   | E      |           |
| I | <b>БОО</b> О | 0b3ff:  | f     | b4000-          | -b7fff  | <b>ь8000</b> 1 | bbfff   | bc000bfff   | E      |           |
| I | c 000        | 0c3ff   | f     | c 4000-         | -c7fff  | c8000          | cbfff   | cc000cfff   | E      |           |
| I | d800         | 0dbff:  | f     | dc000-          | -dffff  |                |         |             |        |           |
| I |              |         |       |                 |         |                |         |             |        |           |
| I |              |         |       |                 |         |                |         |             |        |           |
| I | Dava         | 1       | Maa   | 741.            |         |                |         |             | C      |           |
|   | Down         | Load    | 110)  | re file         | 5       |                |         |             | Ga     | ICEL      |
|   | Open F       | OC file | s, Cu | onnect          | ROC     |                |         |             |        | Line:COM2 |

Figure 2-3. User Programs

- 4. Determine the **Unused Memory Blocks**. The memory location must be available for the specific user program that you are loading.
- 5. Determine whether program **A** or **B** is required. The **A** and **B** programs are identical other than the location in which they load into ROC memory. Refer to Table 1-1.
- 6. Click **DownLoad** and select the user program file to download from the CD-ROM. Program files are typically located in the Program Files/ROCLINK Files folder. The Open File dialog displays the names of all the files that have the .H00 extension.
  - NOTE: You must download two user programs. Refer to Table 1-1, Versions and Program Names.



Figure 2-4. Open File

7. Select the User Program file you desire to load and click OK.

| Device            | User Program Names            |
|-------------------|-------------------------------|
| ROC306/312/364    | api_3a.h00 and apitbl3a.h00   |
| ROC306/312/364    | api_3b.h00 and apitbl3b.h00   |
| ROC306/312        | api3a_ic.h00 and ap3tblic.h00 |
| (Industry Canada) |                               |
| FloBoss 407       | api_4a.h00 and apitbl4a.h00   |
| FloBoss 407       | api_4b.h00 and apitbl4b.h00   |
| FloBoss 407       | api4a_ic.h00 and ap4tblic.h00 |
| (Industry Canada) |                               |

8. Click **More Files** to download the second user program.

| MS ROCLINK                               |                  |                     |                |              |
|------------------------------------------|------------------|---------------------|----------------|--------------|
| Auto 💽 🛄 🖻                               | 🛍 🛃 💣 🗗 A        |                     |                |              |
| File Meter 1/0                           | Data API2540     | <br>Display History | Utilities Syst | em Help      |
|                                          |                  |                     |                |              |
| Unused Memory B1                         | ock (16K Bytes p | er block)           |                |              |
| 6000063fff                               | 6400067fff       | 680006bfff          | 6c0006ffff     |              |
| 7000073fff                               | 7400077fff       | 780007bfff          | 7c0007ffff     |              |
| a0000a3fff                               | a4000a7fff       | a8000abfff          | ac000affff     |              |
| b0000b3fff                               | b4000b7fff       | b8000bbfff          | bc000bffff     |              |
| c0000c3fff                               | c4000c7fff       | c8000cbfff          | cc000cffff     |              |
| d8000dbfff                               | dc000dffff       |                     |                |              |
| C:\ROCLINK\AP4TBLI<br>C:\ROCLINK\API4A_I | С.НОО<br>С.НОО   |                     |                |              |
|                                          |                  |                     |                |              |
| DownLoad Mo                              | re Files         |                     |                | Cancel -     |
|                                          |                  |                     |                |              |
| Segment=6000 Add                         | ress=10e0 Block  | Size=240, Tota      | 1 Sent=4320    | On Line:COM2 |

Figure 2-5. User Programs Ready to Download

- 9. Select the User Program file you desire to load and click OK.
- 10. Click **DownLoad** to download the selected user programs.

After the user program is loaded, the user program is automatically turned on. This automatically enables the program run Flags and performs a Warm Start. The Status field displays ON or OFF indicating the Status of the user program.

\* **NOTE:** Only one user program displays even though you installed two programs.

| S ROCLINK                      |                              |                          |           |                    |              |
|--------------------------------|------------------------------|--------------------------|-----------|--------------------|--------------|
| Auto 💌 🛄 🖿                     |                              | A                        |           |                    |              |
| File Meter 1/0                 | Data API2540                 | Display Hist             | ory Utili | ties Syste         | m Help       |
| User Program                   | Name and Versi               | on                       | Status    | Code D             | ata          |
| [ ] EPM FCD API2               | 540 ver 2.5.0                | Jan Ø3,USER 3            | ON        | 60000 7<br>6ffff 7 | 0000<br>bfff |
| Unused Memory B1<br>7c0007ffff | ock (16K Bytes<br>a0000a3fff | per block)<br>a4000a7fff | a8000-    | -abfff             |              |
| ac000affff                     | b0000b3fff                   | b4000b7fff               | ь8000-    | -bbfff             |              |
| bc000bffff                     | c0000c3fff                   | c4000c7fff               | c8000-    | -cbfff             |              |
| cc000cffff                     | d8000dbfff                   | dc000dffff               |           |                    |              |
|                                |                              |                          |           |                    |              |
|                                |                              |                          |           |                    |              |
|                                |                              |                          |           |                    |              |
| DownLoad Mo                    | re Files Cle                 | ar All Turn              | On Tu     | rn Off             | Cancel       |
| Open ROC files, C              | onnect ROC,                  |                          |           |                    | On Line:COM2 |

Figure 2-6. User Program Downloaded

11. Select System > **Flags**. Refer to Figure 2-7.

| MS ROCLINK                               |                                             |                                          |
|------------------------------------------|---------------------------------------------|------------------------------------------|
| Auto 💽 🛄 🖻 🛍 🛃                           |                                             |                                          |
| File Meter I/O Data                      | PureGas Display History<br>ROC Flags 1 of 1 | Utilities System Help                    |
| Warm Start Yes -                         | Cold Start Ontions                          |                                          |
| Clear EEPROM No                          | Write to EEPROM Yes                         | Write Status: Complete                   |
| On Port User Program                     | Comt User Program                           | Com2 User Program                        |
| (*) Inactive                             | (*) Inactive                                | (*) Inactive                             |
| () Active Option 2<br>() Active Option 3 | () Active Option 2<br>() Active Option 3    | () Active Option 2<br>() Active Option 3 |
| Calc User Program                        |                                             |                                          |
| () Inactive<br>(*) Active                |                                             | Advanced Features-                       |
| () Active Option 2<br>() Active Option 3 |                                             | navaroou routaroo                        |
|                                          |                                             |                                          |
| (F1)IIndate_                             |                                             | (F6)Capcel_ (F8)Saue_                    |
| 1170paace                                |                                             | (TU/Suiter) (TU/Save                     |
| Open ROC files, Connect                  | ROC,                                        | On Line:COM2                             |

Figure 2-7. ROC Flags

- 10. Select Active under the Calc User Program option. Refer to Figure 2-7.
- 11. Ensure that the Write to EEPROM button displays Yes. Refer to Figure 2-7.
- 12. Click Save. This ensures that the program automatically restarts after a Cold Start.
  - NOTE: Remember to de-select the Read-only Property of all user program files. Refer to Figure 2-2.

# 2.3 Update Firmware

If the firmware version does not match the recommended version displayed in Table 1-1: Versions and Program Names, proceed with the following firmware update procedure. The firmware is available from your sales representative or from technical support.

Update Firmware updates the internal firmware Flash memory of the FloBoss 407 or the ROC300series FlashPAC by loading it from a file.

- NOTE: The Update Firmware procedure clears the configuration of the ROC or FloBoss and reloads configuration from EEPROM after the update procedure is completed. The Event Log, Alarm Log, Audit Log, and History logs are cleared. To preserve the contents of the logs, be sure to save them to a file (Collect ROC Data) before starting. The Event, Alarm, and History Logs cannot be reloaded.
  - 1. Create a backup of the log data using File > Collect ROC Data > All.
  - 2. Save all FSTs to a disk file.
  - 3. Select System > **Flags**. Refer to Figure 2-7.
  - 4. Click **Write to EEPROM** and click **Save** and wait for the save process to complete. This may take several minutes for ROC300-series units.
  - 5. Read the **README** text file included with the firmware update.
  - 6. Select File > **Update Firmware**.

7. Navigate to the location of the firmware File Name in the Open File dialog box.

You can change the path to the directory containing the file using the Directory / Drive field using the <Enter> key or by double-clicking on a different drive or directory. Select ".." to move up a directory. The Open File dialog displays the names of all files with the .LST extension located in the current directory.



Figure 2-8. Open File

- 8. Select the desired file in the Files list and click OK to start the Update Firmware process.
  - NOTE: If you receive an error such as "File gas85.fsr is missing or bad," refer to Section 2.3.1, Altering Your .LST File, on page 2-7.

The file begins loading, with the Status Line displaying the progress in four categories: Segment, Address, Block Size, and Total Sent. While Flash memory is being modified, the I/O is not read, but is held at the last values.

The loading process typically takes several minutes; do not disturb it during this time. If you are running ROCLINK under Windows 95/98, you can adjust the miscellaneous properties of the ROCLINK window to allow you to leave the window without interrupting the download (Allow Screen Saver and Always Suspend should not be selected, and Idle Sensitivity should be set to Low).

- 9. Click **OK** in the history lost prompt.
- 10. Press **<Enter>** after the firmware upgrade is complete.

When loading of the firmware is complete, the action is recorded in the Event Log and a message line appears saying that the FloBoss has been successfully upgraded. Press <Enter> to return to the ROCLINK menus.

- 11. Select System > Flags and click **Cold Start**. Refer to Figure 2-7.
- 12. Select Restore config from flash/defaults and click OK.



Figure 2-9. Cold Start

- 13. Click Save to reload the configuration from EEPROM. Refer to Figure 2-7.
- 14. Check the configuration and the **FSTs**. If the configurations are incorrect, reload the configuration and the FSTs from the files previously created.

#### 2.3.1 Altering Your .LST File

You may be required to change the path in your .lst file if you copied the firmware files to a different directory than the directory that was specified in the Readme.txt.

To alter the path, follow these steps:

1. Open the **.lst** file in a text editor such as **Notepad**.

| 🖉 Firm_92.1st - Notepad 📃 🗖 🕅                         | <  |
|-------------------------------------------------------|----|
| <u>F</u> ile <u>E</u> dit <u>S</u> earch <u>H</u> elp |    |
| ╞:\roc_firm\fb_108\407_92.fsr 🚪                       |    |
| c:\roc_firm\fb_108\mv205.fsr                          |    |
| c:\roc_firm\fb_108\pid.fsr                            |    |
| c:\roc_firm\fb_108\logic.fsr                          |    |
| c:\roc_firm\fb_108\lcd.fsr                            |    |
| c:\roc_firm\fb_108\db.fsr                             |    |
| c:\roc_firm\fb_108\qas92.fsr                          |    |
|                                                       | 1  |
|                                                       | // |

Figure 2-10. Changing a Directory Path

- 2. Change the **path** to reflect the same directory where you copied the upgrade files. Be careful not to alter the file names.
- 3. Save your changes and exit Notepad.

### **3 CONFIGURING THE USER PROGRAM**

#### 3.1 API2540 Setup

| TS ROCLINK                                  |                                         |                        |                 |
|---------------------------------------------|-----------------------------------------|------------------------|-----------------|
| Auto 🔽 🛄 🖻 🔁 💕                              | B A                                     |                        |                 |
| File Meter 1/0 Data API2                    | 2540 Display Histo                      | ry Utilities Sy        | ystem Help      |
|                                             | HPI Setup 1 of 4                        |                        |                 |
| Point Tag API                               | Domain Status Not                       | Active !!!             |                 |
| Units Metric                                | Meter Type<br>(*) Pulse                 | Meter Input            | Volume          |
| Liquid (*) Water<br>Tune () Crude Oil       | ( ) Analog<br>( ) Owifice Plate         | Calc Output            | Volume          |
| () Gasl Cond                                | Alaundan                                | Static Press           | Absolute        |
| () Jet Fuel<br>() Diesel Oil<br>() LPG      | Hlarming<br>( ) Disabled<br>(*) Enabled | Static Press Ta        | up Downstream   |
| ( ) Transition<br>Calc Vapor Prs No         | Pi                                      | pe Diameter            | Ø mm            |
|                                             | 0r                                      | ifice Diam             | 0 mm            |
| Scan Period 0 50ms<br>Scan Time 0.000 Secor | units vi<br>ids Co                      | scosity<br>ntract Temp | 0 CP<br>0 Deg C |
| Calculations Volume-Time                    | Snanshot Alarms                         | Innuts Slinna          | ge Factors      |
|                                             |                                         |                        |                 |
| (F1)Update (F2)Prev (F3)                    | Next                                    |                        | (F8)Save        |
| Open ROC files, Connect ROC,                |                                         |                        | On Line:COM     |
|                                             |                                         |                        |                 |

Select API2540 > API 2540 Setup to display the API Setup screen. Refer to Figure 3-1.

Figure 3-1. API 2540 Setup

- **Point Tag** Enter a ten-character name used to label the meter run upon which the flow computation is performed.
- **Domain Status** Current Domain Status, such as violations, inactive, or everything within limits. Statuses are archived in Event Log. Refer to Appendix B, Domain Violations, for error messages.
- **Units** Click to select US (English / Imperial) units or Metric units for calculations. If Metric units are selected, then the calculation expects all inputs to be in terms of the indicated units (such as KPa for the Static Pressure input).

**Liquid Type** – Select the type of liquid in the meter run:

- Water.
- Crude Oil.
- Gasoline, Condensate.
- ♦ Jet Fuel.
- Diesel Oil.
- LPG (Liquefied Petroleum Gas).
- Transition.

| Liquid Type | Me                                         | tric                          | US                |                   |  |
|-------------|--------------------------------------------|-------------------------------|-------------------|-------------------|--|
| Liquid Type | Low Density                                | High Density                  | Low Density       | High Density      |  |
| Crude Oil   | below 610.5 kg/m <sup>3</sup>              | above 1075 kg/m <sup>3</sup>  | above 100 deg API | below 0 deg API   |  |
| Gasoline *  | below 653 kg/m <sup>3</sup>                | above 770.5 kg/m <sup>3</sup> | above 85 deg API  | below 52 deg API  |  |
| Jet Fuel*   | below 787.5 kg/m <sup><math>3</math></sup> | above 829 kg/m <sup>3</sup>   | above 48 deg API  | below 37 deg API  |  |
| Diesel*     | below 829 kg/m <sup>3</sup>                | above 1075 kg/m <sup>3</sup>  | above 40 deg API  | below 0 deg API   |  |
| LPG         | below 495 kg/m <sup>3</sup>                | above $610.5 \text{ kg/m}^3$  | above 155 deg API | below 100 deg API |  |
| Transition* | below 771 kg/m <sup>3</sup>                | above 787 kg/m <sup>3</sup>   | above 52 deg API  | below 48 deg API  |  |

Table 3-1. Liquid Types

NOTE: \*Domain violations are triggered at contract conditions. The program automatically switches to the proper operating range, using the corrected density value, when one of the indicated ranges is selected.

- **Calc Vapor Prs** Click to unlock (Yes) or lock (No) the calculated vapor pressure feature. When the Liquid Type is Gasoline, Condensate, or LPG, the Calc Vapor Prs option is unlocked (Yes), for all other liquids it is locked (No).
- Scan Period 50-millisecond interval the flow is set to run. When it is set to less than 10ms, the flow does not run, and the "Not Active !!!" message displays. You must reset this parameter with the number of flows, particular configuration of the liquid flow, and general configuration of the ROC.
- Scan Time Value calculated and displayed by the ROC for each scan, in seconds. If an unrealistic setting is in place for the Scan Period, the ROC cannot keep the calculation speed in place with the desired value, so significant differences will occur between the Scan Period and Scan Time, with a correspondent increase in Central Processor Unit (CPU) loading.

Meter Type – Select the type of meter being used:

- Pulse.
- ♦ Analog.
- Orifice Plate.

Alarming – Select Enable or Disabled.

- **Enabled** Click the Alarms button to configure alarms for this point. Alarms are logged to the Alarm Log. Refer to Section 3.1.3, Alarms, on page 3-5.
- **Disabled** No alarm generates for this point, regardless of the Alarms configuration.
- Meter Input Select the Meter Input: Volume or Mass. When the Meter Type is Orifice Plate, the Meter Input is always Volume.

Calc Output – Select the Calculation Output: Volume or Mass.

Static Press – Select the Static Pressure mode: Gauge or Absolute.

Static Press Tap – Select if the Static Pressure is Downstream or Upstream of the orifice plate.

- **Pipe Diam** Internal diameter of the pipe entered in millimeters or inches. Meter Type Orifice Plate only.
- **Orifice Diameter** Diameter of the orifice entered in millimeters or inches. Meter Type Orifice Plate only.
- **Viscosity** Viscosity of the flowing fluid at base conditions (cP or Lbm/Ft-s). Meter Type Orifice Plate only.
- **Contract Temp** Contract Temperature of 15 Deg C or 60 Deg F. An invalid setting generates an error message and is logged. Contract Pressure is always assumed to be 101.325 kPa or 14.73 PSIA.
- (F1)Update Click to refresh the screen with current values.
- (F2)Prev Click to view the previous point.
- (F3)Next Click to view the next point.
- (F8)Save Click to save the changed data.

#### 3.1.1 Calculations

Select API2540 > API 2540 Setup and click Calculations to define the Accum Reset Mode, and also clear the accumulated values. The calculated values of Density and Correction Factors also display.

|                                               | API Calculations                                              |                                |
|-----------------------------------------------|---------------------------------------------------------------|--------------------------------|
|                                               | Accum Reset Mode                                              | At Contract Hour               |
|                                               | Reset Accum                                                   | Idle                           |
| Densities                                     | Cor                                                           | rrection Factors               |
| Input Value<br>Flow Conditions<br>At Contract | 0 kg/m3 With Tempy<br>0 kg/m3 With Pres<br>0 kg/m3 Meter Slij | erature 0<br>sure 0<br>ppage 0 |
|                                               |                                                               | OK Cancel                      |

Figure 3-2. API Calculations

Accum Reset Mode – Select the accumulated reset mode option:

- At Contract Hour At contract hour the program automatically transfers flow volume and minutes to yesterday values, and resets Flow Minutes Today and Acc Volume Today.
- Manual Only Contract hour is ignored.

Reset Accum– Select the accumulated reset option:

- Idle Normal state, no action taken.
- Reset Now Forces transfer from Flow Minutes Today to Flow Minutes Yesterday, Acc Volume Today to Acc Volume Yesterday, and sets Acc Volume Today and Flow Minutes Today fields to zero.

#### Densities

Input Value – Displays actual input read (or set) density in kg/m<sup>3</sup>, lbm/cft, or Deg API.

**Flow Conditions** – Displays actual flow density used in calculations in kg/m<sup>3</sup>, lbm/cft, or Deg API.

At Contract – Displays actual base density used in calculations in kg/m<sup>3</sup>, lbm/cft, or Deg API.

#### **Correction Factors**

With Temperature – Temperature Correction factor currently used in flow calculation.

With Pressure – Pressure Correction Factor currently used in flow calculation.

Meter Slippage – Actual Meter Slippage factor used in calculations. The value is read-only and values are calculated and transferred from the Meter Slippage screen. Refer to Section 3.1.5, Slippage Factors, on page 3-7.

#### 3.1.2 Volume-Time Snapshot

Select API2540 > API 2540 Setup and click Volume-Time Snapshot to view Rates-Volumes and Flow Minutes.

|                                                             | Volume-Time    | Snapshot                |              |
|-------------------------------------------------------------|----------------|-------------------------|--------------|
| Rates-Volumes                                               |                |                         | Flow Minutes |
| Inst Flow Raw<br>Inst Flow Corrected                        | 0 m3/<br>0     | 'day Today<br>Yesterday | 0<br>0       |
| Acc Volume Today<br>Acc Volume Yesday<br>Acc Volume Forever | 0 m3<br>0<br>0 | Hrs.Forev               | er Ø         |
|                                                             |                |                         | Cancel       |

Figure 3-3. Volume-Time Snapshot

#### **Rates-Volumes**

**Inst Flow Raw** – Displays daily flow uncorrected in m<sup>3</sup>/day or bbl/day.

**Inst Flow Corrected** – Displays daily flow corrected to contract conditions in m<sup>3</sup>/day or bbl/day.

Acc Volume Today – Accumulated corrected volume since contract hour or last manual reset, flow units. At contract hour or manual reset, values transfer to Flow Minutes Yesterday.

Acc Volume Yesday – Accumulated corrected volume yesterday, flow units.

Acc Volume Forever – Accumulated corrected volume since last rollover, flow units. Rollovers at 9,999,999 (ten million less 1).

#### **Flow Minutes**

**Today** – Flow Minutes Today.

Yesterday – Flow Minutes Yesterday.

Hrs. Forever – Flow Hours Forever.

#### 3.1.3 Alarms

Select API2540 > API 2540 Setup and select Alarms Enabled. Click Alarms to define low, high, low flow alarms and Spontaneous Report-by-Exception (RBX) Alarming. Refer to Figure 3-4.



Figure 3-4. Alarms

- **Low Flow Cutoff** When the Meter Input value of the metering device is less than the Low Flow Cutoff value, the calculated flow is equal to zero, (m<sup>3</sup>/Day or BBL/Day).
- **Low Alarm** Limit value, in engineering units, to which the calculated flow must fall to generate a Low Alarm, (m<sup>3</sup>/Day or BBL/Day).
- **High Alarm** Limit value, in engineering units, to which the calculated flow must rise to generate a High Alarm, (m<sup>3</sup>/Day or BBL/Day).
- **RBX Alarming** Currently, there are no communication programs available to handle API 2540 notifications. However, the alarms and Spontaneous Report-by-Exception (RBX) tags are logged into the Alarm Log.
  - Disabled Select Disabled to turn RBX Alarming Off.
  - **On Alarm Set** When the point enters an alarm condition, the ROC generates a Report-By-Exception message.
  - **On Alarm Clear** When the point leaves an alarm condition, the ROC generates a Report-By-Exception message.
  - **On Alarm Set & Clear** In either condition, an RBX message generates. Note that RBX Alarming also requires the communications port to be properly configured.

Active Alarms – Displays any alarms that are currently active.

#### 3.1.4 Inputs

Select API2540 > API 2540 Setup and click Inputs to define the Meter Input, Temperature Input, Static Prs. Input, Vapor Prs. Input, Density Input, and Sediment & Water inputs.

|                   | Inputs                  |                |
|-------------------|-------------------------|----------------|
| Meter Input       | I/O Def U<br>AIN A 2,EU | Value<br>Ø kPa |
| Temperature Input | Undefined               | Ø Deg C        |
| Static Prs. Input | Undefined               | 0 kPa          |
| Vapor Prs. Input  | Undefined               | 0 kPa          |
| Density Input     | Undefined               | 0 kg∕m3        |
| Sediment&Water    | Undefined               | 0 % weight     |
|                   |                         | OK Cancel      |

Figure 3-5. Inputs

Meter Input – Source of the uncorrected measured flow. Typically, this links to a Pulse Input engineering units Value, or the Analog Input Filter engineering unit value. Softpoint parameters, FST Registers, or manual (Undefined) mode are also accepted. The value transferred or set displays as the (Meter) Value field.

When using a Pulse Input, this is typically configured as "rate," but the user program calculates pulse values starting from the Accumulated Pulses (Accum'd Pulses) in the Pulse Input (m<sup>3</sup> or kg for metric and bbl or lbm for US). If the Meter Type is configured as Pulse Input, and the actual value is manual (Undefined), or from a different register in the ROC (such as a Softpoint), the user program interprets the number as a daily rate (kg, m<sup>3</sup>, lbm or bbl per day).

When using an Analog Input, such as from a Vortex transmitter, the rate must be m<sup>3</sup>/hour or kg/hour in metric, and bbl/hour or lbm/h in US units.

When using a differential Analog Input for orifice metering, the scaling must be kPa in Metric and in.  $H_2O$  in US units.

- **Temperature Input** Location where the process temperature of the fluid is originated. Typically, this floating-point parameter is assigned to the "Filter" engineering units (EU) value of an Analog Input. Softpoint parameters, FST registers, or manual (Undefined) mode are also accepted. The value transferred or set displays as the (Temperature) Value in Deg C or Deg F.
- Static Prs. Input Location where pressure of the fluid is originated. The pressure is assumed to be consistent with the Vapor Pressure. Typically, this floating-point parameter is assigned to the "Filter" EU value of an Analog Input or MVS. Softpoint parameters, FST registers, or manual (Undefined) mode are also valid. The value transferred or set displays as the (Pressure) Value in kPa or PSI.
- Vapor Prs. Input Location where the vapor pressure of the fluid is originated. The vapor pressure is assumed to be absolute pressure and consistent with the Process Pressure (see above). Typically, this floating-point parameter is assigned to the "Filter" EU value of an Analog Input, Softpoint, FST Register, or manual (Undefined) mode. The value transferred or set displays as the Value in kPa or PSI.

**Density Input** – Location where the density of the fluid is originated.

There are two typical practical applications:

- 1. This parameter is manually (Undefined) entered, to a value certified by a laboratory. The Value is assumed to be at base temperature and pressure, except API rounding. No corrections are made on this Value.
- 2. A flow density meter can be assigned to the "Filter" EU value of an Analog Input. The current Value of the floating-point parameter is assumed at flow conditions, so temperature and pressure corrections are applied. Softpoint and FST registers are also accepted. The value transferred or set displays as the (Density) Value in kg /  $m^3$  or Deg API.
- Sediment & Water Input Analog Input weight percentage, such as from a BS&W device, Softpoint, FST Register, or manual (Undefined) entry. Valid Domain 0-100.

#### 3.1.5 Slippage Factors

Select API2540 > API 2540 Setup and click Slippage Factors to "fine tune" each individual meter, based on proven calibration data described in *API Manual of Petroleum Standards*, Chapter 12. This screen is only accessible for Pulse or Analog Meter Types.

|                                                                                   | Meter Slippage   | Factors                                                  |                  |
|-----------------------------------------------------------------------------------|------------------|----------------------------------------------------------|------------------|
| Meter Value 1<br>Meter Value 2<br>Meter Value 3<br>Meter Value 4<br>Meter Value 5 | 0<br>0<br>0<br>0 | Factor 1<br>Factor 2<br>Factor 3<br>Factor 4<br>Factor 5 | 0<br>0<br>0<br>0 |
| Calculated Fac                                                                    | tor Ø            |                                                          | OK Cancel        |

Figure 3-6. Meter Slippage Factors

Up to five different Meter Slippage Factors may be entered for various flow rates.

- 1. If the first flow rate is set to 0.0, the rest of the table is ignored and a Meter Slippage Factor of 1.0 is used.
- 2. If only one flow rate / meter factor pair is entered, the program uses that Meter Slippage Factor for all flow rates. Enter a unique Meter Slippage Factor.
- 3. If more than one flow rate / meter factor pair is entered, the program uses linear interpolation to arrive at the Meter Slippage Factor for the current raw flow rate. Each meter flow rate entered must be higher than the previous flow rate entered, such as:

Meter Value 1 < Meter Value 2 < Meter Value 3, and so forth.

4. If an error occurs due to improper configuration, such as negative numbers, the program sets the Meter Slippage Factor to 1.0.

**Meter Value 1** – First flow rate for 1<sup>st</sup> Meter Slippage Factor. Typically 20% of maximum flow.

**Factor 1** – Meter Slippage Factor for 1<sup>st</sup> flow rate.

Meter Value 2 – Second flow rate for 2<sup>nd</sup> Meter Slippage Factor. Typically 40% of maximum flow.

Factor 2 – Meter Slippage Factor for 2<sup>nd</sup> flow rate.

Meter Value 3 – Third flow rate for 3<sup>rd</sup> Meter Slippage Factor. Typically 60% of maximum flow.

**Factor 3** – Meter Slippage Factor for 3<sup>rd</sup> flow rate.

Meter Value 4 – Fourth flow rate for 4<sup>th</sup> Meter Slippage Factor. Typically 80% of maximum flow.

Factor 4 – Meter Slippage Factor for 4<sup>th</sup> flow rate.

Meter Value 5 – Fifth flow rate for 5<sup>th</sup> Meter Slippage Factor. Typically 100% of maximum flow.

**Factor 5** – Meter Slippage Factor for 5<sup>th</sup> flow rate.

**Calculated Factor** – Displays the actual calculated meter factor to be used in calculations. The value is transferred to the API Calculations (Figure 3-2) as Meter Slippage Factor.

# 3.2 Data Transfer

Select API2540 > Data Transfer to configure eight individual register data transfers. The values defined in **Source** definition data 1 to 8 are transferred into target **Destination** data 1 to 8. The actual value for each field displays in the corresponding **Value** field. Only floating-point values can be transferred, even though other data options are selectable.

The Register Transfer screen is set to run by setting the **Scan Period** to a value greater than zero. The actual **Scan Time** is typically 2 seconds.

| MS ROCLINK           |                             |                                 |                | _ <b>_</b> X |
|----------------------|-----------------------------|---------------------------------|----------------|--------------|
| Auto 💽 🛄 🖻 健         |                             |                                 |                |              |
| File Heter I/O Dat   | ta API2540 Di<br>Register I | isplay History<br>Transfer 1 of | Utilities<br>4 | System Help  |
| Timing (Seconds):    | Scan Period                 | Ø                               | Scan Time      | 0.000000     |
| Source               | Destination                 | Value                           |                |              |
| AIN A 1,MAXEU        | Undefined                   |                                 | 0              |              |
| Undefined            | Undefined                   |                                 | 0              |              |
| Undefined            | Undefined                   |                                 | 0              |              |
| Undefined            | Undefined                   |                                 | 0              | (F1)Update   |
| Undefined            | Undefined                   |                                 | 0              | (F2)Prev     |
| Undefined            | Undefined                   |                                 | 0              | (F3)Next     |
| Undefined            | Undefined                   |                                 | 0              | (F6)Cancel   |
| Undefined            | Undefined                   |                                 | 0              | (F8)Save     |
| Open ROC files, Conn | ect ROC                     |                                 |                | On Line:COM2 |

Figure 3-7. Data Transfer

# APPENDIX A STANDARDS

The following API and ASTM standards were used to develop the API2540 Liquid Volume Correction User Program:

#### ASTM D 1250-80

Tables 34, 53, 53A, 53B, 54, 54A, and 54B

#### 1980. Manual of Petroleum Measurement Standards

Chapter 11.1 of Volume Correction Factors Volume X - Background, Development, and Program Documentation. API Standard 2540, first edition.

#### 1984. Manual of Petroleum Measurement Standards

Chapter 11.2.1 of Compressibility Factors for Hydrocarbons: 638 - 1074 Kilograms per Cubic Meter Range. American Petroleum Institute, first edition.

#### 1986. Manual of Petroleum Measurement Standards

Chapter 11.2.2M of Compressibility Factors for Hydrocarbons: 350 - 637 Kilograms per Cubic Meter Density (15°C) and -46°C to 60°C Metering Temperature. American Petroleum Institute, first edition.

#### 1981 reaffirmed 1987. Manual of Petroleum Measurement Standards

Chapter 12 of Calculation of Petroleum Quantities Field Manual. Section 2 of Instructions for Calculating Liquid petroleum Quantities measured by Turbine or Displacement Meters. American Petroleum Institute, first edition.

#### 1993. Manual of Petroleum Measurement Standards

Chapter 21 of Flow Measurement Using Electronic Metering Systems. American Petroleum Institute, first edition.

#### 1990. American Gas Association. Report No.3 of Orifice Metering

American Petroleum Institute, third edition. API Manual of Petroleum Measurement Standards. Chapter 11 of Physical Properties Data Addendum to Section 2, Part 2 Correlation for Vapor Pressure for Commercial Natural Gas Liquids.

| Error Message          | Units  | Description                                                                |
|------------------------|--------|----------------------------------------------------------------------------|
| Low Temp. (Water)      | Metric | Temperature below 0 Deg C                                                  |
|                        | US     | Temperature below 32 Deg F                                                 |
| Low Temp. (Oil Prod)   | Metric | Temperature below -18 Deg C                                                |
|                        | US     | Temperature below 0 Deg F                                                  |
| Low Temp. (LPG)        | Metric | Temperature below -45 Deg C                                                |
|                        | US     | Temperature below -20 Deg F                                                |
| High Temp (Water)      | Metric | Temperature above saturation curve at actual pressure                      |
|                        | US     | Temperature above saturation curve at actual pressure                      |
| Critical Temp. LPG     | Metric | Temperature above 55 Deg C                                                 |
|                        | US     | Temperature above 120 Deg F                                                |
| High Temp. (Oil Prod)  | Metric | Pressure less than 500 kPa                                                 |
|                        | Metric | Crude oil or gasoline, density 653-778.5, temperature over 90<br>Deg C     |
|                        | Metric | Crude oil or jet fuel, density 779.5-824, temperature over 125<br>Deg C    |
|                        | Metric | Crude oil or Diesel oil, density 824.5-1075, temperature over 150<br>Deg C |
|                        | Metric | Pressure over 500 kPa, temperature over 90 Deg C                           |
|                        | US     | Pressure less than 75 PSIA                                                 |
|                        | US     | Crude oil or gasoline, density 50.1-100, temperature over 200<br>Deg F     |
|                        | US     | Crude oil or jet fuel, density 40.1-50, temperature over 250 Deg F         |
|                        | US     | Crude oil or Diesel oil, density 0-40, temperature over 200 Deg F          |
|                        | US     | Pressure exceeding 75 PSIA, temperature greater than 200 Deg F             |
| High Press. (Oil Prod) | Metric | Pressure exceeding 10300 kPa                                               |
|                        | US     | Pressure exceeding 1450 PSIA                                               |
| Low Density Oil        | Metric | Crude oil, density below 610.5 kg/m <sup>3</sup>                           |
| Low Dens. Gasoline     | Metric | Gasoline, density below 653 kg/m <sup>3</sup>                              |
| Low Dens. Jet          | Metric | Fuel Jet Fuel, density below 787.5 kg/m <sup>3</sup>                       |
| Low Density Diesel     | Metric | Diesel oil, density below 829 kg/m <sup>3</sup>                            |
| Low Density (P.drv)    | Metric | Oil products, press domain, density below 638 kg/m <sup>3</sup>            |
| Low Density LPG        | Metric | LPG, density below 495 kg/m <sup>3</sup>                                   |
| Low Trans Zone         | Metric | Density in transition area below 770.5 kg/m <sup>3</sup>                   |
| Low Density Oil        | US     | Crude oil, density above 100 Deg API                                       |
| Low Dens. Gasoline     | US     | Gasoline, density above 85 Deg API                                         |
| Low Density Jet Fuel   | US     | Jet Fuel, density above 48 Deg API                                         |
| Low Density Diesel     | US     | Diesel oil, density above 37 Deg API                                       |
| Low Density (P.drv)    | US     | Oil products, press domain, density above 90 Deg API                       |

# APPENDIX B DOMAIN VIOLATIONS

# API2540 Liquid Volume Correction User Program

| Error Message        | Units  | Description                                                     |
|----------------------|--------|-----------------------------------------------------------------|
| Low Density LPG      | US     | LPG, density above 155 Deg API                                  |
| Low Trans. Zone      | US     | Density in transition area above 52 Deg API                     |
| High Density Oil     | Metric | Crude oil, density above 1075 kg/m <sup>3</sup>                 |
| High Dens. Gasoline  | Metric | Gasoline, density above 770.5 kg/m <sup>3</sup>                 |
| High Dens. Jet Fuel  | Metric | Jet Fuel, density above 829 kg/m <sup>3</sup>                   |
| High Density Diesel  | Metric | Diesel oil, density above 1075 kg/m <sup>3</sup>                |
| High Density (P.dry) | Metric | Oil products, press domain, density above1075 kg/m <sup>3</sup> |
| High Density LPG     | Metric | LPG, density above $610.5 \text{ kg/m}^3$                       |
| High Trans Zone      | US     | Density in transition area below 48 Deg API                     |
| High Density Oil     | US     | Crude Oil, density below 0 Deg API                              |
| High Dens. Gasoline  | US     | Gasoline, density below 52 Deg API                              |
| High Dens. Jet Fuel  | US     | Jet fuel, density below 37 Deg API                              |
| High Density Diesel  | US     | Diesel oil, density below 0 Deg API                             |
| High Density (P.drv) | US     | Oil products, press domain, density below 0 Deg API             |
| High Density LPG     | US     | LPG, density below 100 Deg API                                  |
| High Trans. Zone     | Metric | Density in transition area above 787.5 kg/m <sup>3</sup>        |
| Low Sed & Water      |        | Sediment & water is negative                                    |
| High Sed & Water     |        | Sediment & water is greater than 100%                           |
| Low Meter Factor     |        | Meter Factor below 0.2                                          |
| High Meter Factor    |        | Meter Factor above 3                                            |
| High Vapor Pressure  |        | Vapor Pressure greater than Static Pressure                     |
| Invalid Base Temp    | Metric | Base Temperature differs from 15 Deg C                          |
|                      | US     | Base Temperature different from 60 Deg F                        |
| Tables Not Found!    |        | API Tables 34, 53 and 54 not loaded or corrupted                |
| Inside Domain (OK)   |        | All parameters within domain                                    |
| Not Active!!         |        | Flow not running                                                |

| Metric Units |                    |                                                  |  |  |
|--------------|--------------------|--------------------------------------------------|--|--|
| Inputs       | Pulse Meter        | kg if mass, m <sup>3</sup> if volume             |  |  |
|              | Analog Meter       | kg/hour if mass, m <sup>3</sup> if volume        |  |  |
|              | Differential Meter | kPa                                              |  |  |
|              | Static Pressure    | kPa                                              |  |  |
|              | Temperature        | Deg C                                            |  |  |
|              | Density            | kg/m <sup>3</sup>                                |  |  |
|              | Viscosity          | cP                                               |  |  |
| Outputs      | Flow               | E3 kg/day if mass, m <sup>3</sup> /day if volume |  |  |
|              | Density            | kg/m <sup>3</sup>                                |  |  |

# APPENDIX C ENGINEERING UNITS

| US Units |                    |                                            |  |
|----------|--------------------|--------------------------------------------|--|
| Inputs   | Pulse Meter        | lbm if mass, US bbl if volume              |  |
|          | Analog             | Meter lbm/hour if mass, bbl/hour if volume |  |
|          | Differential Meter | inches Water                               |  |
|          | Static Pressure    | PSI                                        |  |
|          | Temperature        | Deg F                                      |  |
|          | Density            | Deg API if Oil Products, lbm/cuft if water |  |
|          | Viscosity          | lbm / ft*sec                               |  |
| Outputs  | Flow               | E3 lbm/day if mass, US bbl/day if volume   |  |
|          | Density            | Deg API if Oil Products, lbm/cuft if water |  |

# INDEX

| .H00 1-3, 2-3                               |
|---------------------------------------------|
| .LST2-6, 2-7                                |
| Acc Volume Forever                          |
| Acc Volume Today                            |
| Acc Volume Yesday                           |
| Accum Reset Mode                            |
| Active Alarms                               |
| Alarming                                    |
| Alarms                                      |
| Altering Your .LST File 2-7                 |
| API Calculations                            |
| API2540 Setup                               |
| At Contract                                 |
| Calc Output                                 |
| Calc Vapor Prs                              |
| Calculated Factor                           |
| Calculations                                |
| Cold Start                                  |
| Contract Temp                               |
| Correction Factors                          |
| Customizing2-1                              |
| Customizing ROCLINK                         |
| Data Transfer                               |
| Densities                                   |
| Density Input 3-7                           |
| Disabled                                    |
| Domain Limitations Handling1-2              |
| Domain Status                               |
| Domain ViolationsB-1                        |
| DownLoad 2-3                                |
| Downloading the User Program 2-2            |
| Engineering UnitsC-1                        |
| English                                     |
| Error MessageB-1                            |
| Extensions                                  |
| .H001-3, 2-3                                |
| .LST2-6, 2-7                                |
| Factor 1 - 5 3-7                            |
| Figure 2-1. Properties 2-1                  |
| Figure 2-2. Attributes 2-2                  |
| Figure 2-3. User Programs 2-2               |
| Figure 2-4. Open File                       |
| Figure 2-5. User Programs Ready to Download |
|                                             |

| Figure 2-6 User Program Downloaded                                                                          |                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                             | 2-4                                                                                                                                      |
| Figure 2-7. ROC Flags                                                                                       | 2-5                                                                                                                                      |
| Figure 2-8. Open File                                                                                       | 2-6                                                                                                                                      |
| Figure 2-9. Cold Start                                                                                      | 2-6                                                                                                                                      |
| Figure 2-10. Changing a Directory Path                                                                      | 2-7                                                                                                                                      |
| Figure 3-1. API 2540 Setup                                                                                  | 3-1                                                                                                                                      |
| Figure 3-2. API Calculations                                                                                | 3-3                                                                                                                                      |
| Figure 3-3. Volume-Time Snapshot                                                                            | 3-4                                                                                                                                      |
| Figure 3-4. Alarms                                                                                          | 3-5                                                                                                                                      |
| Figure 3-5. Inputs                                                                                          | 3-6                                                                                                                                      |
| Figure 3-6. Meter Slippage Factors                                                                          | 3-7                                                                                                                                      |
| Figure 3-7. Data Transfer                                                                                   | 3-8                                                                                                                                      |
| Firmware                                                                                                    |                                                                                                                                          |
| Update                                                                                                      | 2-5                                                                                                                                      |
| Flags                                                                                                       | 2-5                                                                                                                                      |
| Flow Conditions                                                                                             | 3-4                                                                                                                                      |
| Flow Minutes                                                                                                | 3-5                                                                                                                                      |
| Getting Started                                                                                             | 1-1                                                                                                                                      |
| High Alarm                                                                                                  | 3-5                                                                                                                                      |
| Hrs Forever                                                                                                 | 3-5                                                                                                                                      |
| Imperial                                                                                                    | 3-1                                                                                                                                      |
| Input Value                                                                                                 | 3-4                                                                                                                                      |
| Inputs                                                                                                      | 3-6                                                                                                                                      |
| Inst Flow Corrected                                                                                         | 3-4                                                                                                                                      |
|                                                                                                             | ., -                                                                                                                                     |
| Inst Flow Raw                                                                                               | 3-4                                                                                                                                      |
| Inst Flow Raw<br>Installing the User Program                                                                | 3-4<br>2-1                                                                                                                               |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type                                                 | 3-4<br>2-1<br>3-1                                                                                                                        |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm                                    | 3-4<br>2-1<br>3-1<br>3-5                                                                                                                 |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off                | 3-4<br>2-1<br>3-1<br>3-5<br>3-5                                                                                                          |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off                | 3-4<br>2-1<br>3-1<br>3-5<br>3-5<br>3-6                                                                                                   |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-1<br>3-5<br>3-5<br>3-6                                                                                                   |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-1<br>3-5<br>3-5<br>3-6<br>3-1                                                                                            |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-1<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4                                                                                     |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-1<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4<br>3-7                                                                              |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-5<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4<br>3-7<br>3-2                                                                       |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-5<br>3-5<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4<br>3-7<br>3-2<br>3-7                                                         |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-5<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4<br>3-7<br>3-2<br>3-7<br>3-1                                                         |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off                | 3-4<br>2-1<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-7<br>3-7<br>3-7<br>3-7<br>3-7<br>3-7<br>3-7<br>3-7                                    |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-1<br>3-5<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4<br>3-7<br>3-2<br>3-7<br>3-5<br>3-5<br>3-5<br>3-5                             |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-1<br>3-5<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4<br>3-7<br>3-7<br>3-7<br>3-7<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5               |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off                | 3-4<br>2-1<br>3-1<br>3-5<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4<br>3-7<br>3-7<br>3-7<br>3-7<br>3-5<br>3-5<br>3-5<br>3-5<br>1-1               |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-5<br>3-5<br>3-5<br>3-6<br>3-1<br>3-7<br>3-2<br>3-7<br>3-7<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5        |
| Inst Flow Raw<br>Installing the User Program<br>Liquid Type<br>Low Alarm<br>Low Flow Cut Off<br>Meter Input | 3-4<br>2-1<br>3-5<br>3-5<br>3-5<br>3-6<br>3-1<br>3-4<br>3-7<br>3-7<br>3-7<br>3-7<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5 |

| Press Tap3                              | -2 |
|-----------------------------------------|----|
| Program                                 |    |
| Versions and Names1                     | -3 |
| Rates-Volumes                           | -4 |
| RBX Alarming                            | -5 |
| Reset Accum                             | -3 |
| ROC Flags2                              | -5 |
| Scan Period                             | -2 |
| Scan Time                               | -2 |
| Scope1                                  | -1 |
| Sediment & Water Input                  | -7 |
| Slippage Factor                         | -7 |
| Slippage Factors                        | -7 |
| Standards1-2, A                         | -1 |
| Static Press                            | -2 |
| Static Press Tap                        | -2 |
| Static Pressure Input                   | -6 |
| Table 1-1. Versions and Program Names 1 | -3 |
| Table 3-1. Liquid Types3                | -2 |
| Тар                                     | -2 |
| 1                                       |    |

| Temperature Input     | 3-6 |
|-----------------------|-----|
| Today                 | 3-5 |
| Troubleshooting       |     |
| Domain Violations     | B-1 |
| Units                 | 3-1 |
| Unused Memory Blocks  | 2-3 |
| Update Firmware       | 2-5 |
| US                    | 3-1 |
| User Program Overview | 1-1 |
| User Programs         | 2-2 |
| .H00                  | 1-3 |
| Values                | C-1 |
| Vapor Pressure Input  | 3-6 |
| Versions              | 1-3 |
| Viscosity             | 3-3 |
| Volume-Time Snapshot  | 3-4 |
| With Pressure         | 3-4 |
| With Temperature      | 3-4 |
| Write to EEPROM       | 2-5 |
| Yesterday             |     |

If you have comments or questions regarding this manual, please direct them to your local sales representative or contact:

Flow Computer Division Marshalltown, Iowa 50158 USA Houston, TX 77065 USA Pickering, North Yorkshire UK Y018 7JA Website: www.EmersonProcess.com/flow