
OptoFidelity AV10 Test Video Generator
User Manual Version 0.5

OFTVG is an application that is used to add synchronization and frame id markers to video streams. It

generates test videos where each video frame can be uniquely and automatically identified.

The implementation consists of a script, Run_TVG.bat, which contains the configuration parameters, and a

bitmap image, layout.bmp, which defines the locations and sizes of the markers on the screen. The

program opens an input video, which can be in various formats, optionally resizes it and then draws the

markers and compresses the result into the selected output format.

The program uses GStreamer as a backend for processing the video, and includes a custom GStreamer

plugin to add the markers. All the necessary software components are stored under the bin and lib folders.

1. Getting started
The distribution package includes a part of the Big Buck Bunny movie by the Blender Foundation as

big_buck_bunny_1080p_h264.mov. This can be used for testing the generator.

For a first test, just double-click Run_TVG.bat. This should open a command prompt and show encoding

progress. The result is saved as output.mov.

2. Structure of the output video
The output video starts with an optional calibration sequence. This 10 second long sequence can be used to

calibrate the program that is reading the video frames.

After the calibration, the actual test video begins. It consists of N first frames of the input video, each of

which has a unique frame id marker along the bottom edge. The test video can be configured to repeat

multiple times.

The length of the test sequence can be adjusted by editing the NUM_BUFFERS and REPEAT settings in the

Run_TVG.bat.

3. Configuring the test video generator
The test video generator is configured by editing Run_TVG.bat. You can make multiple copies of this file

under different names to keep different configuration sets. The script accesses files under bin and lib

folders, so it must be in the same directory as they are.

The file is a regular Windows .bat; you can use :: to comment lines.

3.1. Input and output files
These three lines set the names of the input and output files:

SET INPUT=big_buck_bunny_1080p_h264.mov

SET LAYOUT=layout.bmp

SET OUTPUT=output.3gp

The input video can have any format supported by GStreamer, which includes most of the common formats

such as AVI, MOV, MP4, 3GP and others. The format is detected automatically.

The layout image defines the location of the markers in the image. Specific colors in the image correspond

to each marker. The layout image can have either BMP or PNG format. (JPEG is not recommended because

the lossy compression may corrupt the markers.)

The output filename can be chosen freely. It should, however, have the correct file extension with respect

to the selected video format. The list of the file extensions is given below in the description of the

CONTAINER parameter.

3.2. Video output format
The format of the output video is configured using two parameters:

SET COMPRESSION=x264enc speed-preset=4

SET CONTAINER=gppmux

The COMPRESSION type defines how the video data is encoded, ie. which video codec is used. Common

video codecs are H.264 and MPEG-2. Some encoders accept configuration parameters that can be specified

after the codec name.

The CONTAINER type defines the file format used to store the encoded data. This does not affect the

encoding of the video, but is merely the selection of file and frame headers that are added to the data.

Common containers are AVI and MOV.

The compression and container types can be combined quite freely, but there is a small number of

combinations that are not supported. Most notably, Motion JPEG is not supported in the 3GP container.

3.2.1. List of supported COMPRESSION types

Name Encoder Options

Uncompressed YUV video/x-raw-yuv

Uncompressed RGB video/x-raw-rgb

H.264 video x264enc bitrate Bitrate in kbit/s. Default is 2048.

 speed-preset Speed of the encoding process.
1 = fastest encoding, worst compression;
9 = slowest encoding, best compression

 profile H.264 profile, i.e. which features of the standard
are used. One of baseline, main, high. Set to
‘baseline’ for iPod and other mobile devices.

Motion-JPEG ffenc_mjpeg bitrate Bitrate in bit/s. Default is 300 000.

MPEG-4 part 2 ffenc_mpeg4 bitrate Bitrate in bit/s. Default is 300 000.

 flags Specify ‘flags=global-headers’ when using with
.3gp or .mp4 formats.

MPEG-2 video ffenc_mpeg2video bitrate Bitrate in bit/s. Default is 300 000.

Windows Media Video 8 ffenc_wmv2 bitrate Bitrate in bit/s. Default is 300 000.

Flash video ffenc_flv bitrate Bitrate in bit/s. Default is 300 000.

3.2.2. List of supported CONTAINER types

Name Mux File extension

MPEG-4 part 14 mp4mux .MP4

3G mobile phone video container gppmux .3GP

Microsoft AVI avimux .AVI

QuickTime qtmux .MOV

Microsoft Active Streaming Format asfmux .ASF, .WMV

Flash Video flvmux .FLV

3.3. Preprocessing
The input video can be resized or the framerate can be adjusted before processing:

Resize only: SET PREPROCESS=! videoscale ! video/x-raw-yuv,width=640,height=480

Resize and change aspect ratio: SET PREPROCESS=! videoscale ! video/x-raw-

yuv,width=320,height=240,pixel-aspect-ratio=1/1

Adjust FPS: SET PREPROCESS=! videorate ! video/x-raw-yuv,framerate=10/1

Both: SET PREPROCESS=! videorate ! videoscale ! video/x-raw-yuv,framerate=5/1,width=320,height=240

The preprocessing is specified by uncommenting one of the example lines in Run_TVG.bat and editing the

width, height and framerate parameters to match the application. If no preprocessing is needed, all

PREPROCESS-lines should remain commented out.

Note that a non-integer framerate should be given as a fraction. For example 59.94 FPS equals 60000/1001.

The pixel aspect ratio is used by some video players to rescale the video at the playback time. For example,

iOS devices have a 3:2 screen but expect 320x240 video (4:3). To make full-screen video for these devices,

pixel-aspect-ratio must be set to (3:2)/(4:3) = 9:8.

3.4. Length of the test video
The test video consists of the first NUM_BUFFERS frames of the input video repeated REPEAT number of

times:

SET NUM_BUFFERS=64

SET REPEAT=5

The number of buffers should not be larger than what can be expressed using the frame id bits defined in

the layout image. For example, 8 bits can represent up to 28 = 256 frames. For AV10, you should always use

a power of 2 as the number of frames, e.g. 8, 16, 32, 64, 128, 256, 512, 1024, 2048 or 4096 frames.

The repeat count can be 1 or larger.

3.5. Generation of calibration sequence
The calibration sequence can either be added to the beginning of the test video or stored separately:

SET CALIBRATION=prepend

Allowed values are off, only, prepend and both.

Off means that no calibration sequence is added to this video. Therefore you have to have it as a separate

video file. Such a separate video can be generated by settings CALIBRATION=only, which generates only

the calibration sequence and no test video.

The third choice, prepend, puts the calibration sequence in the beginning of the test video.

The fourth choice, both, also appends white frames to the end of the test video.

4. Editing the marker layout bitmap
The layout bitmap can be edited using any bitmap editor, such as Microsoft Paint or the GIMP. If you need

pixel-accurate placement of the markers, the resolution of the layout bitmap should equal the video

resolution. Otherwise the bitmap will be automatically resized in memory by TVG.

Note: If you resize the layout bitmap manually, use “nearest neighbor” interpolation mode in the image

editor. Otherwise the edges of the markers may blur and get mixed with other markers, which will cause

visual errors, such as flickering borders around markers.

The bitmap should contain rectangles with specific colors to define where the markers will be placed:

Color value (Red, Green, Blue) Meaning

(255, 255, 255) (White) Background color

(10, 10, 10) 1st frameid bit, ie. changes most often

(20, 20, 20) 2nd frameid bit

(30, 30, 30) 3rd frameid bit

... ... similarly, greyscale values in 10 step increments ...

(240, 240, 240) 24th frameid bit

(255, 0, 0) (Red) Primary sync marker, changes every frame

(0, 255, 0) (Green) Secondary sync marker, changes every other frame

(0, 0, 255) (Blue) Multicolor marker (6-state: R, Y, G, C, B, P)

All markers do not need to be included. It is enough to include as many frame ids as are necessary to

identify the wanted number of frames. The markers should be placed in numeric order, either vertically or

horizontally in a line.

Any unknown color will be regarded as background. However, new marker types might be added in the

future so the background should be left white to guarantee that it doesn’t get mixed with the markers.

5. Audio support
Audio support is not currently implemented, but will be added in a future release. The input video may

contain audio, but it will not be included in the output video.

6. Alternative configuration method: .tvg files
Starting with version 0.4, you can store only the changed settings in a file named something.tvg. Drag this

file over Run_TVG.bat or select “Open with..” to associate .tvg files with the program.

All the same commands work in .tvg files; they are simply included into the main Run_TVG.bat at runtime.

7. Details on the implementation
The Run_TVG.bat script uses the GStreamer gst-launch command for launching the custom TVG plugin and

compressing the video. The actual command is at the end of the script, and uses variables defined earlier in

the file. Normally editing the variables is enough, but below is some basic information about the structure

to aid in development.

In gst-launch, a pipeline is defined as a set of elements separated by exclamation point: “element1 !

element2 ! element3”. After each element, there can be any number of property values: “element

property1=value1 …”. The basic pipeline flows from a filesrc (file reader) up to filesink (file writer). The

names of the compression and container elements come directly from the variables %COMPRESSION% and

%CONTAINER%. Therefore any attributes for them can be added after the SET= statements.

More documentation on the relevant gstreamer parts can be found here:

http://linux.die.net/man/1/gst-launch-0.10 (gst-launch command)

http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-ugly-plugins/html/gst-plugins-

ugly-plugins-x264enc.html (x264enc encoder)

7.1. License notices
The source code of the program is available under GPL license from http://code.google.com/p/oftvg/

The distribution package includes third-party components under GPL, LGPL and other licenses.

http://linux.die.net/man/1/gst-launch-0.10
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-ugly-plugins/html/gst-plugins-ugly-plugins-x264enc.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-ugly-plugins/html/gst-plugins-ugly-plugins-x264enc.html
http://code.google.com/p/oftvg/

8. Troubleshooting
Error messages are printed in the console window. Below are some common error causes.

Error message Reason

WARNING: erroneous pipeline: could not link
ffenc_mjpeg0 to gppmux0

The video encoder and container format are
incompatible with each other. Use either different
encoder or a different container.

streaming stopped, reason not-negotiated
when using H264 encoder with AVI format.

Add byte-stream=true option after x264enc.

If the cause of the error is not found, please contant the software vendor and provide the following

information:

1. The error message displayed on the screen.

2. The Run_TVG.bat you are using.

3. Contents of the debug folder.

