
James G. Schmolze 
Department of Computer Science 

Tufts University 
Medford, MA 02155 USA 

Email: schmolze@s.tufts.edu 

Abstract 

Tb speed up production systems, researchers 
have developed parallel algorithms that execute 
multiple instantiations simultaneously. Unfor- 
tunately, without special controls, such systems 
can produce results that could not have been pro- 
duced by any serial execution. We present and 
compare three different algorithms that guaran- 
tee a serializable result in such systems. Cur 
goal is to analyze the overhead that serialization 
incurs. All three algorithms perform synchro- 
nization at the level of instantiations, not rules, 
and are targeted for shared-memory machines. 
One algorithm operates synchronously while the 
other two operate asynchronously. Of the latter 
two, one synchronizes instantiations using com- 
piled tests that were determined from an offline 
analysis while the other uses a novel locking 
scheme that requires no such analysis. Our ex- 
amination of performance shows that asynch- 
ronous execution is clearly faster than synchro- 
nous execution and that the locking method is 
somewhat faster than the method using com- 
piled tests. Moreover, we predict that the syn- 
chronization and/or locking needed to guarantee 
serializability will limit speedup no matter how 
many processors are used. 

A production system (PS) is an effective vehicle for 
implementing a variety of computer systems. Most 
notable are implementations of successful expert 
systems such as Rl [14]. Unfortunately, PSs are 
slow and will require substantial speedup when 

This work was supported in part for the first author by 
the National Science Foundation under grant number 
IRI-8800163 and in part for the second author by the 
Office of Naval Research under University Research 
Initiative grant number N00014-86-K-0764, NSF 
contract CDA-8922572, and DARPA contract 
NOOOlA-89-J-1877. Mr. Neiman gratefully acknowl- 
edges the support provided by his advisor Victor R. 
Lesser. Thanks also to the UMass Computer Science 
Dept. for providing access to the Sequent Symmetry and 
to lbp Level, Inc. for providing lbp Level Common Lisp. 

492 Problem Solving: Real-Time 

Daniel E. Neiman 
Department of Computer Science 

University of Massachusetts 
Amherst, MA 01003 USA 
Email: dann@s.umass.edu 

executing large systems under demanding time 
constraints [4]. 

To speed them up, researchers have studied par- 
allel implementations with much of that research 
focusing on OPS5 [2] or CPS-like languages. Since 
most CPU time in OPS5 is spent in the MATCH step 
(over 90% according to [l] and over 50% according 
to [ll]), many efforts have tried to make parallel 
that one step while leaving the system to continue 
executing only one rule at a time (e.g., [5,6,9,15,20, 
27,281). 

To gain even more speedup, several researchers 
have investigated systems that execute many rule 
instantiations simultaneously (e.g., [7,8,11,13,16, 
17, l&21,22,23,24,25, 26, 291). Such parallelism 
is often called rule or production level parallelism. 
Each match of a rule is represented by an instant& 
tion, where any given rule can have many instantia- 
tions at a given point. When two or more instantia- 
tions execute simultaneously, we say they coexecute. 

It is possible for these latter systems to produce 
results that could never have been produced by a se- 
rial PS. To deal with this, most of the above systems 
guarantee serializability (some exceptions are [17, 
18,291). In other words, they guarantee that the fi- 
nal result could have been attained by some serial 
execution of the same instantiations that were 
executed in parallel. 1 Numerous algorithms have 
been offered to guarantee serializability, most of 
which are based on the seminal work in [7], which 
enforced serializability by prohibiting the coexecu- 
tion of pairs of instantiations that interfere with 
each other. We will soon define interference. 

In this paper, we present and analyze three dif- 
ferent algorithms that execute multiple instantia- 
tions simultaneously while guaranteeing serializ- 
able results. Our goal is to measure the overhead 
that serialization incurs. These algorithms are ar- 
guably the three most precise such algorithms in the 
literature. They use a very precise criteria to deter- 

. We v&l not address the control problem. Given that 
most parallel PSs are non-deterministic, there may be 
many possible serializable results. The control problem 
is concerned with making the parallel PS produce the 
preferred result (e.g., see [12, 181). 

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved. 



mine interference and, as a result, prohibit coexecu- 
tions less often, which produces greater concurren- 
cy. Algorithm Al operates synchronously, which 
means that all the instantiations in the conflict set 
are executed in their entirety before new instantia- 
tions are considered. Interference checking is per- 
formed using tests created during an offline analy- 
sis. Algorithm A2 is an asynchronous version of Al. 
Algorithm A3 also operates asynchronously but 
uses a locking mechanism to prevent interfering 
instantiations from coexecuting. Al appears as al- 
gorithm Ml-Greedy in [24]. A2 and A3 have not 
previously been published. 

Section 2 describes the offline analysis used by 
algorithms Al and A2, which are themselves ex- 
plained in Sections 3 and 4, respectively. Section 5 
discusses algorithm 83. Section 6 analyzes the per- 
formance of all three. Section 7 draws conclusions. 

Much of the following is a brief summary of the work 
presented in [24], which builds upon the framework 
set out in [7]. 

Let a production rule be written as P: Cl9 . . . . & 
-+ Al, . . . . &. P is the name, each Ci is a condition 
element (CE) and each A; is an action. Each Cr; has 
a sign of + or -, denoted S&&J;), and a literal, de- 
noted Lit(Q). S imilarly for A;. Variables that ap- 
pear in positive CEs are bound. Al% other variables 
are free. We only consider the actions of adding to 
or deleting from worlG2g memory 1. 

An instantiation of B, written i< consists of the 
name P plus the working memory elements (WMEs) 
that match the positive CEs of I? Alternatively, we 
can consider ip to be the name P plus the bindings 
of P’s bound variables that led to ip matching. Let 
2M&h(‘,y,8) be true iff 6 is a substitution list that 
makes x unify with JL We will freely use instantia- 
tions as substitutions lists. For example, if 

(PA (OPEN 2E 1232) (WANTS Schmoke 1232)) 
is an instantiation of rule PA, shown below, it is 
equivalent to a substitution list where <seat>=BE, 
<flight>=1232 and <passenger>=Schmolze. 

PA: (QPEN <seat> c-flight>) 
(WANTS <passenger> <flight>) + 
(REMOVE 12) 
(MAKE RESERVATION <passenger> <Flight> 

<seat>). 

Let #((~,a) denote the result of substituting the 
variables in 6 into x. Let IV(x,y,c? ‘) be true iff 6’ is an 
independent variable substitution. Here, we re- 
name the variables iny so that x andy share no vari- 
ables. Finally, let ch(x,y,$J ‘) be defined as 

w(x,Y,~~ A iWtch(x,q!$y,,b3,6). We call ma& an 
independent variable match. 

We say that one instantiations disables another 
iff executing one causes the other to match no long- 
er. This occurs if the first adds (deletes) a E that 
the other matches negatively (positively). We define 
a test for inter-instantiation disabling as follows 
(the proofs for all theorems appear in 1241). 

Theorem 1: ip disables z? iff 3 j,k,G,Q’ such that: 
Sg?Z(Aj’) Z Sgn(Ck ‘) A 

We say that one- instantiations clashes with 
another iff executing one would add a E that 
executing the other would delete. We define a test 
for inter-instantiation clashing as follows. 

Theorem 2: ip clashes with 8 iff 3 j,kJ,a’ such 
that: Sgn(Aj’) + Sgn(& Q) A 

A?Match@(Lit(Ajp),ip), $(Lit@&Q),iQ),6,671. 
We note that clashing is symmetric, i.e., ip 

clashes with iQ iff ip clashes with i@ 
We let I be a set of instantiations and define a di- 

rected graph called IDO as the instantiation dis- 
abling order. For each i in I, there is a node in 
IDO( For each distinct il and i2 in where i2 dis- 
ables il, there is an edge from il to i2 in KU(I). This 
comprises all of IDO( 

We say that two instantiations coexecute if the 
time of the execution of their right-hand sides 
(RHSs) overlap. We finally arrive at serializability 

Theorem 3: The coexecution of a set of in&anti& 
tions, I, using our parallel model is serializable if 
IDO is acyclic and no two distinct instantiations 
in I clash. 

Interfering instantiations, then, are those that 
cause Theorem 3 to be violated. Our algorithms 
thus must make sure that, among the set of instan- 
tiations that are coexecuting, no two clash and there 
is no cycle of disabling relations. Our algorithms all 
work at the instantiation level, not the rule level. 
Most other published algorithms (e.g., [7,16]) iden- 
tify pairs of rules whose instantiations might dis- 
able (or clash), and then prohibit the coexecution of 
all their instantiations whether they would actually 
disable (or clash) or not. Thus, working at the 
instantiation level is much more precise. In fact, in 
[24], we show that frequently there is little parallel- 
ism to be gained by working at the rule level. 

In order to make our algorithms fast, we perform 
an offline analysis along the lines set forth in the 
above theorems. For each pair of rules, we synthe- 
size a function that takes an instantiation of each 
rule as arguments and returns true iff the first will 
disable the second. We do the same for clashing. 
These functions are produced in Lisp, compiled and 

Schmolze and Neiman 493 



‘ 

then demon is idle & loop to 1. 
2. Demon is busy. Remove an instantiation from 

3. Remove M instantiations from CS and place them queue & call its index i. 
in array A from 1 to M. 3. Forj:= i+l to Mwhile A[/] is still marked in do 

4. Mark each instantiation in A as in. . If (Au] is still marked in) and 
5. Schedule each instantiation in A. (A[r] clashes with or disables Au]) 
6. Wait for quiescence (demon queue empty and then mark A[/] as out. 

4. If A[/] is still marked in then execute it. 
5. Loop to 1. 

then stored in tables for fast access and execution. 

3. Al: Synchronous usin 
sis 
All three algorithms begin with a similar architec- 
ture which comes from the second author’s disserta- 
tion research [19]. We will explain that architecture 
here, followed by the details of Al. 

Given N processors, we assign 1 processor to be 
the scheduler and the remaining N-l processors to 
be demons. The specific jobs of the scheduler and de- 
mons differ for the different algorithms, but their 
basic jobs are the same. The scheduler pulls new 
instantiations off of the conflict set (CS) and decides 
whether or not to schedule them. Scheduling an 
instantiation consists simply of putting it on a 
shared queue. Each demon pull instantiations off 
the shared queue - each instantiation goes to ex- 
actly one demon - and executes them if the demon 
decides that execution is appropriate. This basic ar- 
chitecture is shown in Figure 2. The differences be- 
tween the three algorithms are in the processing 
that each does to an instantiation, and how each de- 
cides whether to schedule and/or to execute the 
instantiation. 

Figure 3 shows the scheduler’s and demons’ algo- 
rithms for Al. As can be inferred, the scheduler and 

494 Problem Solving: Real-Time 

demons take turns doing work, and each such pair 
of turns is called apurallel cycle. The scheduler only 
begins when the demons are idle, whereupon it 
takes M instantiations from the conflict set, places 
them into an array and schedules them. It limits M, 
the number of instantiations considered per parallel 
cycle, to be BN, where F is a constant factor and N 
is the number of processors. We apply this limit be- 
cause the time that each demon spends testing for 
disabling and clashing is proportional to the size of 
M. We experimented with an F of 2,4, 3 and 1000 
(1000 has the same effect as F=m) and found that 
F=2 consistently produced the fastest execution 
times. All of our results in Section 6 use F=2. 

The demons take the instantiations off of the 
queue one by one, test them for disabling and clash- 
ing, and if appropriate, execute them. Multiple 
instantiations can be tested as such in parallel be- 
cause each demon will only mark the instantiation 
it is considering and no other. Moreover, the body 
of code that executes an instantiation has been writ- 
ten to allow multiple simultaneous executions. 

Upon examination of the demon algorithm, one 
can infer that, after the demons finish, the set of 
instantiations in A that are still marked in meet the 
requirements of Theorem 3. As a result of line 3, 
there is no i-cj where both A[i] and Afj] are in and 
where either A[i] clashes with Au] or A[i] disables 



A2 Scheduler Algorithm 3. Mark /as in. 

1. If there are instantiations in the CS then go to 2 4. Add /to E, a list of executing instantiations. 

else if the demons are quiescent Access to Eis critical code. Writers have 

(i.e., queue empty and all demons idle) unique access but there can be many readers. 

then exit else loop to I. 5. For J := each element in E 

2. Remove a non-dead instantiation from CS and while (/ is in) and (/ is not dead) do 

schedule it. If (Jis in) and (Jis not dead) and 

3. Loop to 1. (/ clashes with or disables J) 
then mark /as out. 

A2 Demon Algorithm 6. If (1 is in) and (1 is not de&) 
1. If demon queue is empty then execute I & remove it from E 

then demon is idle & loop to 1. else remove /from Eand 
2. Demon is busy. Remove an instantiation from return it to CS if it is not dead. 

queue & call it I. 7. Loop to 1. 

Figure 4: A2: Asynchronous algorit 

A3 Scheduler Algorithm A3 Demon Algorithm 
1. If there are instantiations in the CS then go to 2 1. If demon queue is empty 

else if the demons are quiescent then demon is idle & loop to 1. 
(i.e., queue empty and all demons idle) 2. Demon is busy. Remove an instantiation from 
then exit else loop to 1. queue & call it /. 

2. Remove a non-dead instantiation from CS. Call it 1. 3. Execute 1. 
3. Try to acquire locks for 1. 4. Loop to 1. 
4. If successful then schedule I 

else if I is not dead then return I to CS. 
5. Loop to 1. 

Figure 5: A3: Async m using locks. 

Av]. Thus, no two in instantiations clash (remem- 
ber, clashing is symmetric) and there is no cycle of 
in disabling relations (since we have prevented any 
forward links of A[i] disabling Ali]). 

synchronous using 
ysis 

Al is synchronous, and as such, wastes a consider- 
able amount of time. Given that different instantia- 
tions take different amounts of time to execute, 
some demons sit idle while waiting for other demons 
to finish. An asynchronous algorithm eliminates 
this wasted waiting time (as was argued in 117, IS]), 
and so we designed A2. 

Figure 4 shows A2, an asynchronous version of 
Al. Here, the scheduler simply takes instantiations 
from the CS and schedules them, thereby perform- 
ing very little work. The scheduler also checks for 
an empty CS and quiescence, which signals no fur- 
ther executions. This is similar to Al, however, the 
scheduler does no waiting. 

The demons also behave similarly to the demons 
in Al. However, we must carefully define the 
execution time of an instantiation. An instantiation 
is said to be executing from the time that a demon 

removes it from the queue to the time that the de- 
mon either discards it or finishes executing its R 
A list E of the instantiations currently executing is 
maintained where E is a critical resource. Writers 
to E have unique access but multiple readers can 
have simultaneous access. In addition, and due to 
the asynchrony of the system, it is possible for an 
instantiation to become disabled while a demon is 
testing it in line 5. In that case, the system marks 
the instantiation as dead and no further processing 
is performed on it. 

For reasons similar to those for Al, A2 obeys 
Theorem 3 and yields a serializable result. 

5. =Y 

Figure 5 shows A3, which is considerably different 
from Al and A2. Here, we try to acquire locks 
instead of checking for disabling/clashing; we will 
soon explain how this works. Moreover, since this 
occurs in the scheduler, lock acquisition is a serial 
process, which eliminates the potential for dead- 
lock. By the time an instantiation is scheduled, the 
system has already determined that it should 
execute, so the demons perform no decision-mak- 
ing: they simply take instantiations off the queue 
and execute them. 

Schmolze and Neiman 495 



The locking scheme would be simple but for the 
use of negative CEs. While it is easy to lock a WME 
that is already in the WM, it is not so easy to lock the 
“non-existence” of a WME, as implied by a negative 
CE. However, we have designed an efficient way to 
use the Rete net [3] to identify precisely the set of 
WMEs that would match the negative CE. Sellis et 
al [23] also use locks for serializing but for negative 
CEs, they lock an entire class of WMEs. 

In the Bete net, when a WME is positively 
matched, a token representing that element is con- 
catenated to a set of tokens being propagated 
through the network. We can similarly create a 
pseudo-token corresponding to a successful match 
of a negated element. This token represents a pat- 
tern of the working memory elements that would 
disable this instantiation. This pattern is simply the 
set of tests encountered by the working memory ele- 
ment as it proceeds through the matching process; 
specifically, the inter-element uZpha tests preced- 
ing the NOT node, concatenated to the tests per- 
formed by the NOT node and unified with the posi- 
tively matched tokens in the instantiation. 

For example, if we had a rule such as the one 
shown below, the pseudo-token would have the 
form ((class = B) (element(l)=wombat) (ele- 
ment(2) =koala)). Thus, any currently executing 
instantiation that creates an element matching this 
pattern would disable an instantiation of PM stimu- 
lated by the working memory element (A wombat). 

(P PK (A <x>) WM = { (A wombat) ) 
- (B CX> koala) ---, 

(B CX> koala)) 

When a rule instantiation is created, we thus 
have two sets of tokens: the WMEs matching the 
left-hand side (LHS) and negative pattern tokens. 
‘lb use the latter, we must also do the following. Be- 
fore each instantiation is scheduled, we develop a 
list of all the WMEs that it will add when it is 
executed. This is reasonable as the formation of ele- 
ments is usually inexpensive. Immediately before 
the instantiation is executed, we post all the WMEs 
it is about to add onto a global ADD list. We now ex- 
plain the operation of lock acquisition in detail. 

1. Each WME has a read counter and write flag. 
Each instantiation has a read and write list. As 
each instantiation, 1, enters the CS, we add to its 
write list each WME matched on its LHS that 
would be modified or removed by I. The remain- 
ing WMEs matched on Ps EHS are placed on its 
read list. Next, we see if any of the WMEs on the 
read or write list have their write flag set. If so, 
we discard I because it will soon be disabled by 
another instantiation that is already executing. 

496 Problem Solving: Real-Time 

2. 

3. 

If a WME on the write list has its read counter > 
0, we do not execute I and instead, place it back 
on the CS. In this way, we do not disable another 
instantiation that is already executing while giv- 
ing I another chance later. If I has not been dis- 
carded or put back on the CS, we proceed. 

We compare r’s negated pattern tokens against 
the list of WMEs on the ADD list. If any match, 
then I is discarded as it will soon be disabled by 
an instantiation already executing. Otherwise, 
we proceed. 

We now acquire the locks, which amounts to in- 
crementing the read counters for the WMEs on 
the read list and setting the write flags for the 
WMEs on the write list. We also post the WMEs 
to be added to the ADD list. 

The demon also has some extra tasks. After it fi- 
nishes executing an instantiation I, it removes the 
elements that I added to the ADD list and decre- 
ments the read counters for those WMEs on ps read 
list. We note that accessing and modifying the ADD 
list, read counters and write flags must be per- 
formed in critical code. 

A3 does not check for clashing. While space does 
not permit our discussing it here, it turns out that 
the implementation of WM as a multiset in OPS5 
makes testing for clashing unnecessary (e.g., we 
could go back to Al and A2 and safely remove the 
clashing tests). 

In order to determine the cost of serialization, we 
have implemented the three algorithms and run 
them against a benchmark PS that we call Toru- 
Waltz-N. Toru-Waltz-N began with Toru Ishida’s 
implementation of Dave Waltz’s constraint propaga- 
tion algorithm to identify objects from line drawings 
[30]. It was modified by the second author to 
increase the available rule concurrency by 
combining the initialization and processing stages 
and to allow rules to be asynchronously triggered.2 
The time for serial execution is 12.79 seconds. In 
our parallel system, if we turn off the checks for ser- 
ializability, the best time we obtain is 1.2 seconds 
with 15 processors. Thus, 10.7 is the maximum pos- 
sible speedup for this benchmark and for our soft- 
ware without serialization. Any further reductions 
in speedup are due to the serialization component of 
our algorithms. 

Figure 6 shows the speedups attained by the 
three algorithms. Clearly A3 performed the fastest, 

. The text of the Toru-Waltz-N benchmark plus a dis- 
cussion of its implementation and performance can be 
found in [19]. 



Al: Synchronous algorithm using 
disables/clashes tests 

A2: Asynchronous algorithm using 
disables/clashes tests 

A3: Asynchronous algorithm using 
locks 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Number of Rule Demons 

Number of Rule Demons 

Figwe 7: Average Times Used 

attaining a maximum speedup of 5.70 (runtime of 
2.24 seconds), followed by A2 with a maximum 
speedup of 4.64 (runtime of 2.75 seconds), and fol- 
lowed, finally, by Al, with a maximum speedup of 
2.80 (runtime of 4.57 seconds). However, when A3 
was run, additional mechanisms were used: match 
and action parallelism. Space does not allow us to 
describe those algorithms here, but we estimate 
that they reduce the run time by about 0.5 seconds. 
Subtracting 0.5 from A2’s best time of 2.75 seconds 
yields 2.25 seconds, or a speedup of 5.68. The run 
times of A2 and A3 are thus very similar. 

It is clear that the speedup for each algorithm ta- 
pers off at around 10 to 12 processors, indicating 
that these maximum speedups are close to the abso- 
lute maximums for these algorithms and bench- 
mark. The speedups realized fall quite short of 10.7, 
which was achieved without serialization. Serial- 
ization thus appears to cut the potential speedup 
roughly in half for this benchmark. 

The reason for Al being slowest is simple. Al is 
performing nearly the same work as A2, but has the 
disadvantage of being synchronous. Given that dif- 
ferent instantiations take different amounts of time 
to execute, this amounts to a waste of processor time 
as demons sit idle while waiting for other demons to 
finish. An asynchronous algorithm eliminates this 
wasted waiting time (as was argued in [17]). 

Conceptually, A2 and A3 perform the same type 
of interference checking, although they use very dif- 
ferent mechanisms to do so. It is interesting to see 
that they offer similar potential for speedup. If we 
take a brief look at these mechanisms, we see that 
A2 requires Q(M) time to check interference for each 
instantiation, where M is the number of instantia- 
tions currently coexecuting: each instantiation 
must be checked against all those currently coexe- 
cuting. It turns out that A3, when checking nega- 
tive CEs, also requires Q(M) time per instantiation 
since the size of ADD depends on M. However, when 
A3 checks positive CEs, the time required is not de- 
pendent on the size of M and, instead, is constant 
per rule, which makes this type of check very fast.3 

To discover some of the limitations of these algo- 
rithms, we broke down the execution times of A2 
and A3 further. Figure 7 shows a bar chart of the 
total run times for A2 along with the average time 
spent by the demons doing their two main tasks: 
testing for interference and executing instantia- 
tions. It is clear that the time spent testing in- 
creases with the number of demons. This makes 
sense because the average number of coexecuting 

3. In [171, the second author argues that this is a good 
reason for preventing interference only for positive CEs 
and not for negative CEs, even though this falls short of 
guaranteeing serializability. 

Schmolze and Neiman 497 



instantiations increases with the number of de- 
mons, so there is more testing to be done. The time 
spent executing rules decreases since there are 
more demons, and so each one executes fewer 
instantiations. Therefore, A2 will always be slower 
than a system that does not guarantee serializabil- 
ity because of this testing time. 

In A3, the interference checking is done via a 
locking mechanism. However, this mechanism 
must run serially in order to avoid deadlocks be- 
tween instantiations simultaneously attempting to 
acquire locks. All locking is thus performed in the 
scheduler. The most time consuming portion of the 
locking mechanism is the portion that deals with ne- 
gated tokens. If the cost of checking negated tokens 
against the ADD list is expensive as compared to the 
time needed to execute an instantiation, then the 
benefits of asynchronous execution are lost. In order 
to form an estimate of the overhead associated with 
negated tokens, we note that the processing per- 
formed when matching each working memory ele- 
ment being asserted against each negated pseudo- 
token pattern is essentially equivalent to the time of 
a beta node activation within the Rete net (for the 
check against the ADD list) and two memory node 
activations (one for each addition or deletion to the 
ADD list). This approximation is reasonable as the 
tests contained within the negated pseudo-tokens 
are derived from the NOT nodes which generated 
them. The beta nodes are the most time-consuming 
component of the pattern matching process and the 
number of beta nodes executed can be used to create 
an estimate of relative costs. Using the statistics 
gathered by Gupta [6], we note that the average 
instantiation activates approximately 40 beta node 
and memory operations (of course, the actual fig- 
ures depend on the size and complexity of the CEs). 
Thus the runtime detection of interactions due to 
negated tokens may incur costs of as much as 10% 
of the cost of actually executing the rule for each ne- 
gtied condition in the rule. Because the detection 
of interference must be carried out within a critical 
region of the scheduler, an overhead of this magni- 
tude would limit the potential parallelism within 
the system to a factor of 10 (assuming one negative 
CE per rule on average, which agrees roughly with 
the measurements in [6]), exclusive of other sched- 
uling costs.4 

7. Conclusions 
We conclude that one pays a fairly high price for en- 
suring serializability While the design and imple- 

4. We can model a system of this type as an M/M/x 
queue [lo]. 

498 Problem Solving: Real-Time 

mentation of these algorithms could certainly be op- 
timized further, each incurs an unavoidable 
overhead. For A3, this overhead appears to be at 
least 10%. For A2, we do not have a firm estimate 
for the minimum overhead, but it is clear that the 
overhead increases with the number of processors, 
suggesting a firm limitation to speedup. For Al, we 
have shown that its performance will always lag be- 
hind that of A2. Overall, a speedup of 10 appears to 
be an absolute limit for A3, and probably applies to 
A2 and Al as well. In addition, we find that our ser- 
ializable algorithms obtain roughly half the speed- 
up obtained by a similar parallel system that does 
not guarantee serializability. 

One could potentially improve throughput by 
modifying our algorithms. For example, in A3 we 
could perform a compilation-time analysis on the 
rule set and divide the rules such that several lock 
acquisition processes could be used. Because our 
results depend on analyzing the ratio between lock 
acquisition times and rule execution times, mecha- 
nisms such as those described here may be more 
suitable for environments such as blackboard sys- 
tems in which the units of execution are of a higher 
granularity. Another possibility for decreasing the 
time required to acquire locks is to apply micrc+lev- 
el parallelism to the checking process such that new 
candidate instantiations are compared against 
executing instantiations in parallel, along the lines 
suggested in [9]. 

While we have concentrated on the detection of 
rule interactions in this paper, the overhead analy- 
sis is appropriate for any overhead such as control 
scheduling or heuristic pruning that has to occur 
within a critical region. We thus feel that this type 
of research is essential to our understanding of the 
applicability of parallelism to artificial intelligence 
research in general. 

References 
111 

l21 

131 

141 

C. L. Forgy. On the Efficient Implementation of Pro- 
duction Systems. PhD thesis, Department of Com- 
puter Science, Carnegie Mellon University, Pitts- 
burg, PA, 1979. 

C. L. Forgy. OPS5 User’s Manual. Technical Report 
CMU-CS-81-135, Department of Computer Sci- 
ence, Carnegie Mellon University, 1981. 

C. L. Forgy. Fete: AFast Algorithm for the Many Pat- 
tern/Many Object Pattern Match Problem. Artificial 
Intelligence, September 1982. 

Charles Forgy, Anoop Gupta, Allen Newell, and Rob- 
ert Wedig. Initial Assessment of Architectures for 
Production Systems. In Proceedings of the Fourth 

National Conference on Artificial Intelligence 
(AAAI-&#), Austin, Texas, August 1984. 



c51 

El 

E71 

181 

PI 

rm 

Em 

ml 

Cl31 

El41 

I351 

I331 

1171 

II181 

[191 

Anoop Gupta. Implementing OPS5 Production Sys- 
tems on DADO. Technical Report CMU-CS-84-115, 
Department of Computer Science, Carnegie Mellon 
University, December 1983. 

Anoop Gupta. Parallelism in Production Systems. 
Morgan Kaufmann Publishers, Inc., Los Altos, CA, 
1987. 

T. Ishida and S. J. Stolfo. ‘Ibwards the Parallel Execu- 
tion of Rules in Production System Programs. In Pro- 
ceedings of the International Conference on Parallel 
Processing, 1985. 

‘Ibru Ishida. Parallel Firing of Production System 
Programs. IEEE lkmsactions on Knowledge and 
Data Engineering, 3( l):ll-17, 1991. 

Michael A. Kelly and Rudolph E. Seviora. AMultipro- 
cessor Architecture for Production System Matching. 
InProceedingsoftheSixthNational ConferenceonAr- 
tificial Intelligence (AAAI-87), Seattle, Washington, 
July 1987. 

Kleinrock and Leonard, Queueing Systems, Volume I: 
Theory, John Wiley and Sons, 1975. 

Chin-Ming Kuo, Daniel P. Miranker and James C. 
Browne. On the Performance of the CREL System. 
Journal of Parallel and Distributed Computing, 
13(4):424-441, 1991. 

Steve Kuo, Dan Moldovan, and Seungho Cha. Con- 
trol in Production Systems with Multiple Rule Fir- 
ings. ‘lbchnical Report PKPL 90-10, Department of 
Electrical Engineering, University of Southern Cali- 
fornia, Los Angeles, CA, August 1990. 

Steve Kuo and Dan Moldovan, Implementation of 
Multiple Rule Firing Production Systems on Hyper- 
cube. In Proceedings of the Ninth National Confer- 
ence on Artificial Intelligence (k&U-91), pages 
304-309, Anaheim, CA, July 1991. 

J. McDermott. Rl: A Rule-based Configurer of Com- 
puter Systems. Artificial Intelligence, 19(l), 1982. 

Daniel P. Miranker. TREAT A New and Eficient- 
Match Algorithm for AI Production Systems. Morgan 
Kaufmann Publishers, Inc., San Mateo, CA, 1990. 

Dan I. Moldovan. RUBIC: AMultiprocessor for Rule 
Based Systems. IEEE !Ikansactions on Systems, Man, 
and Cybernetics, 19(4):699-706, July/August 1989. 

Daniel Neiman. Control in Parallel Production Sys- 
tems: A Research Prospectus. Technical Report 
COINS TR 91-2, Computer and Information 
Sciences Department, University of Massachusetts, 
Amherst, MA, 1991. 

Daniel Neiman. Control Issues in Parallel Rule-Fir- 
ing Production Systems. In Proceedings of the Ninth 
National Conference on Artificial Intelligence 
(AAAI-91), pages 310-316, Anaheim, CA, July 1991. 

Daniel Neiman. UMass Parallel OPS5 Version 2.0: 
User’s Manual and Technical Report. Technical Re- 

c201 

I311 

I221 

[=I 

II241 

l.251 

I261 

IPI 

m31 

[291 

1301 

port COINS TR 92-28, Computer and Information 
Sciences Department, University of Massachusetts, 
Amherst, MA, 1992. 

K. Oflazer. Partitioning in Parallel Processing of Pro- 
duction Systems. PhD thesis, Department of Com- 
puter Science, Carnegie Mellon University, 1987. 
(Also appears as ‘I&h. Rep. CMU-CS-87-114, March 
1987.). 

A. 0. Oshisanwo and P. P. Dasiewicz. A Parallel Mod- 
el and Architecture for Production Systems. In Pro- 
ceedings of the 1987 International Conference on Par- 
allel Processing, pages 147-153, University Park, PA, 
August 1987. 

Alexander J. Pasik. A Methodology for Programming 
Production Systems and its Implications on Parallel- 
ism. PhD thesis, Columbia University, New York, 
1989. 

Louiqa Raschid, Timos Sellis, and Chih-@hen Lin. 
Exploiting concurrency in a DBMS Implementation 
for Production Systems. Technical Report CS- 
TR-2179, Department of Computer Science, Univer- 
sity of Maryland, College Park, MD, January 1989. 

James G. Schmolze. Guaranteeing Serializable Re- 
sults in Synchronous Parallel Production Systems. 
Journal of Parallel and Distributed Computing, 
13(4):348-365, 1991. 

James G. Schmolze and Suraj Goel. A Parallel 
Asynchronous Distributed Production System. In 
Proceedings of the Eighth National Conference on Ar- 
tifkial Intelligence (AAAI-90), Boston, MA, July 
1990. 

Times Sellis, Chih-Chen Lin, and Louiqa Raschid. 
Implementing Large Production Systems in a DBMS 
Environment: Concepts and Algorithms. In Proceed- 
ings of the ACM-SIGMOD International Conference 
on the Management ofData, pages 404-412, Chicago, 
IL, 1988. 

S. J. Stolfo. Five Parallel Algorithms for Production 
System Execution on the DAD0 Machine. In Proceed- 
ings of the Fourth National Conference on Artificial 
Intelligence @AAI-84), 1984. 

Salvatore J. Stolfo and Daniel P. Miranker. The 
DAD0 Production System Machine. Journal of Par- 
allel and Distributed Computing, 3:269-296, 1986. 

Salvatore J. Stolfo, Ouri Wolfson, Philip K. Chan, Ha- 
sanat M. Dewan, Leland Woodbury, Jason S. Glazier, 
and David A. Ghsie. PARULEL: Parallel Rule Proces- 
sing Using Metarules for Redaction. Journal of Par- 
allel andDistributed Computing, 13(4):366-382, Dee 
1991. 

D. L. Waltz. Understanding Line Drawings of Scenes 
with Shadows. In P. Winston, editor, The Psychology 
of Computer Vision, pages 19-91. McGraw Hill, New 
York, NY., 1975. 

Schmolze and Neiman 499 


