www.radisys.com

World Headquarters
5445 NE Dawson Creek Drive ¢ Hillsboro, OR
97124 USA
Phone: 503-615-1100 ¢ Fax: 503-615-1121
Toll-Free: 800-950-0044

International Headquarters
Gebouw Flevopoort ¢ Televisieweg 1A
NL-1322 AC * Almere, The Netherlands
Phone: 31 36 5365595 ¢ Fax: 31 36 5365620

007-00992-0002
December 2000

TASK-6000™

software reference
guide

December 2000
Copyright ©2000 by RadiSys Corporation.
All rights reserved.
EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of RadiSys Corporation. Spirit,
DAI, DAQ, ASM, Brahma, and SAIB are trademarks of RadiSys Corporation.
1 All other trademarks, registered trademarks, service marks, and trade names are the property of their
respective owners.

| Before you begin

This guide explains how to install and use TASK-6000™ software.

TASK-6000 software provides programming methodology, tools, and runtime
libraries that you use to quickly develop optimized, multi-algorithm, multi-channel
telecom applications for the Texas Instruments’ TMS320C620x (c6x) DSP.

About this guide

Contents

Chapter/appendix

Description

]

Introducing TASK-6000
software

Overviews TASK-6000 software solutions.

2 Understanding TASK-6000 Explains how TASK-6000's kernel works with host,
software architecture IOP and DSP OSs to provide telecom
functionality. It also lists and describes
TASK-6000 components.
3 Installing and configuring Explains how to install and uninstall TASK-6000
TASK-6000 software software.
4 Developing Host and Provides general guidelines for host and IOP
IOP applications application design.
A Host functions Lists and describes calls used to communicate
with the host.
B IOP functions Lists and describes calls used to communicate
with the i960T 1/O processor.
C HDLC driver library Describes the HDLC driver library and its calls.
D TI/ET library Describes the T1/E1 library and its calls.
E T8100 library Describes the T8100 library and its calls.
F Service descriptions Lists and describes TASK-6000 services.

TASK-6000 reference guide

I

Notational conventions

This guide uses the following conventions:

‘% about the product.

Screen text and syntax strings appear in this font.
All numbers are decimal unless otherwise stated.
Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true

unless otherwise stated.

Notes indicate important information C Cautions indicate situations that
may result in damage to data or

Tips indicate alternate techniques or the hardware.
procedures that you can use to save This includes situations that may
time or better understand the product. cause damage to hardware via
@ The globe indicates a World Wide electro-static discharge (ESD).
= Web address. ﬁ Warnings indicate situations that
may result in physical harm to

you or the hardware.

Where to get more information

About TASK-6000

You can find out more about TASK from these sources:

Release notes (relnotes.txt): Lists features and issues that arose too late to
include in other documentation.

World Wide Web: RadiSys maintains an active site on the World Wide Web. The
site contains current information about the company and locations of sales
offices, new and existing products, contacts for sales, service, and technical
support information. You can also send e-mail to RadiSys using the web site.

‘% When sending e-mail for technical support, please include information
about both the hardware and software, plus a detailed description of the
problem, including how to reproduce it.

@ To access the RadiSys web site, enter this URL in your web browser:
= http://ww.radi sys. com

Requests for sales, service, and technical support information receive
prompt response.

Other: If you purchased your RadiSys product from a third-party vendor, you
can contact that vendor for service and support.

Before you begin

About related RadiSys products

TASK software algorithms

The RadiSys TASK software algorithms extend the functionality of your TASK
software, providing the tools you need for DSP programming. TASK software

algorithms include:

Algorithm Description
AGC/VOX software for Performs level estimation, normalization of PCM
TMS320C620x samples with respect to the user specified reference

level and voice activity detection, which are part of
the voice processing system.

Bad frame masking and
comfort noise generator for

TMS320C620x

Bad frame masking eliminates gaps in the received
voice signal due to congested network conditions.
The comfort noise generator engine generates comfort
noise at the decoder of G.711 when no packets are
received or when the received VAD (Voice Activity
Detector) field indicates silence or background

noise frames.

Call progress monitor for

Performs CPT detection for high capacity trunks.

TMS320C620x
Line echo canceller for Provides:
TMS320C620x * Up to 32 ms echo span.

* Robust double-talk detection.
* Adaptation Non-linear processing control.

ITU-T G.711 Speech Coder
for TMS320C620x

Encodes and decodes with an option to select A-Law/
U-Law and multiple frame sizes at compilation/run
time.

ITU-T G.723.1 Speech
Coder for TMS320C620x!

Encodes and decodes based on 30 ms frames, as
specified by the ITU-T Recommendation G.723.1
Dual Rate Speech Coder for Multimedia
Communications Transmitting at 5.3 and 6.3 kbits.

ITU-T G.729 Speech Coder
for TMS320C620x!

Encodes and decodes based on 10 ms frames, as
specified by the ITU-T Recommendation G.729
Coding of speech at 8 kbits/s using conjugate-
structure algebraic-code-excited linear-prediction

(CS-ACELP).

I

TASK-6000 reference guide

I

Algorithm Description

ITU-T G.729A Speech Encodes and decodes based on 10 ms frames, as

Coder for TMS320C620x! specified by the ITU-T Recommendation G.729 annex
A, a low-complexity version of “Coding of speech at 8
kbits/s using conjugate-structure algebraic-code-
excited linear-prediction (CS-ACELP).

A silence compression scheme specified by the ITU-T
Recommendation G.729 annex B, A silence
compression scheme for G.729 optimized for
terminals conforming to ITU-T V.70 digital
simultaneous voice and data application, operates
with G.729A coder to reduce transmission rate.

Line/Register Signaling Performs R1/R2 detection for high capacity trunks.
(RT1/R2 MF) for

TMS320C620x

DTMF Detector/Suppressor Performs DTMF detection and suppression for

for TMS320C620x high-capacity trunks.

Tone Generator for Performs general call-progress and other telecom
TMS320C620x tones generation for high capacity trunks.

IETF RTP Protocol! Performs RTP packetizing, depacketizing, and jitter

buffering, as specified by the IETF Request for
Comments 1889.
1 This algorithm is not part of the TASK-6000 release. To purchase this algorithm,
contact RadiSys as described in About TASK-6000 on page ii.

SPIRIT™ boards

The RadiSys SPIRIT boards are optimized for telecom OEM applications. The

SPIRIT family currently includes the RadiSys SP6040E (SPIRIT-6040 CompactPCIt
board), a high-performance single board voice gateway designed for telecom and
datacom applications. Based on Texas Instrumentst devices, the SP6040E has a
200MHz DSP engine with a PMC connector that provides either LAN/WAN
interface or additional DSP resources. The SP6040 contains four TMS320C6201
digital signal processors for processing multi-channel telecommunications with Hot
Swap support.

About other related products

Tl tools
Software tools from Texas Instruments used to build DSP executables.
@ For more information about Texas Instruments products, enter this URL in

= your web browser:
http://ww.ti.com dsp

RadiSys Line/Register Sgnaling (RI/R2 MF) for TMS320C6201 User’s Manual, RadiSys
Corpration.

www.ti.com/dsp
http://www.ti.com/dsp

Before you begin

I

RadiSys Call Progress Tones Monitor for TMS320C6201 User’s Manual, RadiSys
Corporation.

ITU-T Rec. H.225, Media stream Packetization and synchronization on non-guaranteed
guality of service LANs

RFC 1889 RTP - A Transport Protocol for Real Time Applications,

H.225 Real-time Transport Protocol / Real-time Transport Control Protocol API
Document

Hughes Software Systems RTP/RTCP module specification

TASK-6000 reference guide

I

vi

| Contents

Chapter 1: Introducing TASK-6000 software

ProdUuct CONFIGUIATIONS. cuviieeitieeeetteeeitteeeiteeeiteeectteeeesteeessesesssseeeseseassesssrssesassssesnssesansssessssssesssssnsssenn 2
Chapter 2: Understanding TASK-6000 software architecture
COIMPOTIENIES .uvvvrvreereeersseesersmmrreeseeeessesssssssssssssesesessssssssssssssssasssasesssssssssssssssssesssssssssssssssssssssassesssssssnss 3
TASK HoOSt runtime IIDIATY .uviicvieieriieieiiieieeeeeseeeeseeceseesesteeeeaesssntesseseeessssesssssesssssessssseesssseesns 3
12T 4 1 e T e || PP 3
NT Kernel Mode device driver (1I9601P.SYS) ceveuirerirerireeereerrreeeesisneeesessneessesrsnsessssssnsesssnnes 4
HoOt SWap HOSE IIDIATY ceecuiieieiieieiie ettt eecte e e te e s teesva e s sbee e sbae e saaeesssasenssasennns 4
TASK TOP runtime IDrary .oeiceeeieeieeieesiecteeeeecteeceecrre e e seeare s s e saee e e s s aasae e ssssaeessesnssnnessnnnsens 4
VXWOrkst-based IDIary .oceececceeeeecieieciiecieceeieectesttesteectes e e ste e e e teeseesbe e bessaebeensasssensasnsens 4
Peripheral device driver [IDTaries .uiuuueierveereieieireeecteeesreeecteessreeeetesseaeeseaeeseeeesesseesnveeas S
DY o) o) 1671 o) s F SRR 6
UEILIEIES 1uveeuvrerureereeersueeseresrtesetesseesseessseesssessaesseessseessneessessnsessssenssessssesssessseesssessssesssesssessssesnssnenns 6
Ry 01e) UL 1 I U 6
FINONADLEXE . ceutiiiiieeieiie ittt ettt e e e see et esate e s teesasbeesaseaesaseaessseaesnsaesssseessnsassnnses 6
INEEITACES truvrereerreresieeeiieeeeteeesttee e tteeeseeeessseee e saeesaseeessrassassesssssessassesenssesensseessssessssseesssseessssnesarssesnns 6
INEEINEE PLOTOCOL (IP).eieeeeuereereiereeeeeirieieiieieeereereeeeeeeeseesssaseeeneereeeeeesesssssssassrsreeseessessessssssssnssneees 6
Public Switched Telephone Network (PSTIN).....ciicviereereeierieieeiieeeecieeessreesevressveesessneseseesssseesenns 7
Application Programming Interface (API).....ccccueieiieeeciieciieeeeteeeeieeeeteeeccre e e e e eesveeesrae e svaeenes 7
(0] 31T £ UPRRSTR 7
SEIVICES weveeerreetteerreeiteeeeeeetteeeeetteeeeseeteeeeeeuneteeasseneteeeseasneteesessneteesssneenessssanetessesnneenessennenes 8
INter-procesSOr COMMUIICATION «.uuuuueerereeeeteresaaaarunereeeeeeeeeeeaaaenaansereeteseesesassesasnsnsseeeesaseeseasann 10
Chapter 3: Installing and configuring TASK-6000 software
R OQUITEIMEIIES 1.ttt ettt e e ettt ettt et ettt e e te e e e e s se e s ree e et e eeeaeaeee e ansesbeaaeseeeaassesannnnnneaeeaeens 13
BefOre YOU DEGIN 1eveuieieieieieieiee ettt ettt ee et e s sre s sette s seate e sesaeeessteeeesaee s ssaesnseasssseesssnessssnenns 13
Running the inStall PrOgram ..icuuiiicieieiieeeceteerieeeeieeesre s eeteeseteese e e esteeessaeesssnesssseesssseessssnesssssesnns 14
Uninstalling TASK SOFtWATE c.vveieeieeeitieeeiieeeiieeeitteeeitteeeiteeeeeseeeesseaessseesssstesssssssssssessssssessssessssssssees 17
Automatic uninstall (recOmMmENAEd)......ccceeeeiiiiirriiiieeieeieeieieiirreeeeeeeeeeeeeererrrrreseeeeseeeeeessssssnsenes 17
Uninstalling HOt SWap ..ccciiiecieeecieecciieeecteeecte e cteeecteessteessteesssaessasessssaessssesesssessnssasannses 18
Manual uninstall ProCEAUIE ...uiiviviericiieiiieeecieeeeie et te e see ettt esrae e s rsee s reeesesaeessseeasnsseesenees 19
TASK-6000 fIlES11eeiieiurrreeieiiiireeeeiitteeeeeiittteaeeeessesesaeassessaeaassesessessssssasaassssssasssssssssssasssssssessssssssasanssnes 20
HOT SWAD ettt ettt ettt et e e e ettt e e e e e e e e s se s saet e eeaeeee e e e e nnneeneeaas 20
RUNTIME KIT teruvreeeieieriiieeniieeeniieeerteeeeteessteesesteessuteessaseesssseessssaesssseessssesssssesssseesssssssssssesssssasssnses 21
|1 (o) o) T3 1 L S U 23
DSP develOPMENT Kit eiveeviveeiieeiiieeieeiiieeseeeiteeeeeeitreeseseitreeesesnsnessesssssessessssseesssssssnessesssssesssssnsenes 26
Chapter 4: Developing Host and IOP applications
Developing the Host application (IOpAPPLOAAEL.C) ..vriieirriiecreieierieeeieeecieeeeteeeereeeeveeesseeeesaesesveeas 30
Initialize the HOSE drIVET .cuiiiiiiiiiiiiiereciee sttt eeeteeesiese it e e te s s e e estaeessabeessssaesssneesesseesssseasssseesenees 30
Set Up MeSSAZE NANAIELS c..vviiiiiiieiiei ettt te e s e s e e s re e s rae e s ae e e e raeeseneas 30
INitialize UPA STTUCTUTES 1euvreirerereiirereeiesssreereeeesessesessseessssesssssesssssessssssesssssesssssessssessssesssssesssnees 30

vii

TASK-6000 software reference guide

I

Load and run apPliCatiONS..cccueeeeeercrrreereeiireeeeesittreeeesisreeeeesssraeesessssseessessssssessssssssessesssssssssssnseees 30
Developing the IOP application (UPaloPAPD.C) eeeererreerrrereererisrereeseeessieseessesssssessssseesssseesssssesssssessns 31
Initialize the TOP drIVET cieciiiicieiiiiiereeieecsieeeeteeeeieseste e e steessveessseeesssseessssaessseeasssseessssessssseesenees 31
Set Up MeSSAZE NANAIELS c..vviiiciiiiiiiei ettt s e s e e s e e e s rae e st e e e naeesenees 31
CONFIGUIE SEIVICES 1ereuvrerrerreeeiieeeerteesesteeeessseeeseeessassasssessssesesssssesssssesssssessssssassessssssssssssssensssssnnses 32
Create data PALRS civieuieeeiieiieeee et eertee e eestee e e ee it reeeee s rtreeeee et aaeeesessraaeeenntbaeeeenrraaeaeenraaaaans 32
Building Host and TOP appliCations....cccueeceueeeiireeeereeieeeesiteeesireeessseesssseeesssasessssessssssssssesssssesssssseens 33
NaAMING CONVENTIONS tttttiereiuieenetttereraeaeeaeiaensetetteeetesaaeeaaanseaeeteaeeeeaaseesasssessetesseseaassesansansseeeeseees 34
Host application develOPIMENT....ccuereeieeisiereeteeesieresteeeesieeesreeesrteessaseessseeessseeesssseessssessssseessnees 34
[OP application deVElOPIMENT ..uiivcvvereeieeiiiereeieeeriereteeeesieeeteeestaeessasreserseessseeesesseessssessssseesenees 34
Special note for IOP apPliCAtions ..ccuueeccrveeeeieeeireeeeeieeeireeeeeeeerteeesteeeesseeessssesssesesssesssnsees 35
Sample code: Host application (IOpAPPLOAAEL.C) cocuuriiriieeieiiieeeieeeeiteeeecreeeectee e cteeerree e sreeersseeesseeeanns 36
Initializing the ROSt AIIVET .iiiiiiiiiiiiericieeccieeecre et eee e ie e e e e estae e ssabeeserseessrneeseseeesssseasasseesenees 36
Setting up mMessage NANAIErS c...uiiicieiiciieiiieeece et e s rr e s e e s rae e s aee e s naeeseaes 36
INitializing UPA STIUCLUTES .ueirevererrrereereerssriereereeeessesassseeesssesesssessssssesssssesssseessssesasssssssesssssesssnees 36
Loading and running appliCAtioNscueeccceeeeeiieeeeiieeeiiteeeeiteeesreeeesseeessssessssesesssssssssssessssessssssnnnes 37
Retrieving SyStem INfOIMATION couueeeeveeeirreeeeieeeireeeeeeeeesseeeeeeeeersesssssssesssssassssessssesssssessssens 37
Loading the VXWorks image on TOPSciiicccviiiiiiciieeeecciteeceeiree s secvreeeeeeeee s s esvvanesssnnneas 37
Waiting fOr IOP TESPOMNSE uvvreuvrereerrereirrereerteresrrereereeesseesasssesessseesssssesssseesssseessssesssssessssessnnees 38
Loading MUICOAEr.OUL c..uviiieiiereiieieiiererree ettt reseeeesreeestreeseraeessseeesessesssssessasseessssesssssessssseens 38
Sample code: IOP application (UPalOPADPP.C) cerrerrereerrrrierierierieiiereesieeessseseesseesssseessssessssseessssessssesnns 39
Initializing the TOP driVE cecvuviiiciiieeiiiieeiieeecieeeeeeeeeitee e eeeeeerttee e stee e steeesbee s nsae s ssaessssesssassnssasanes 39
Calling TOPIMIL . veeeeetreeeitreeeiiteeeiieeeitreesetreesreeesteeesteeessaaeaseeaasaeesasasessseesassssessssesesssesnsnsens 39
CalliNg UPSTATT . uteeiereeeiireeeeiteeeitteeeteeeitreeeeeeeessteeeestseessseeasssasasssasasssaaesssesassasessessnnseeassssenns 39
Configuring on-board peripherals.......ccvuiiiiieieceeiiriieieree e ssre s re e e see s e e ae e s vee s 40
Setting up mMessage NANAIETS c..uuiiiiiiiiciie et este e s sbe e s e e e ssre e s rae e seaee e s naeesenes 41
Installing event handlers (callback fUnCtionSs)....ccueiecvveeerveeierieeirieerciee e eeeee e e e eee e e 41
Connecting the TDM t0 TOPS ...uuiiiieeiiiieiieiiireececitee e sectrtee s e ssaeeesesreseesssssaeessessssanesssnseees 41
Enabling bi-directional voice data flow to and from the DSP.......ccceccereirevierniensvierseenieennnens 41
CONFIGUIINE SEIVICES uvrereerrereirreeeerteesarteeesisseeeiseesiasaeessseesssesesssssesssssssssssessssssessessssssssssssssessssssnnses 42
Configuring DSP services for outbound direction (toward the IP cloud) ..c..cecerrveereeencenneen. 42
Creating data PALRS couiiiicieicces ettt e s re s e e e et e s e ae e e s e e e s be e e e rae e e reeaeasaeeennees 43
Creating a data path between an outgoing RTP channel running on a DSP and the IOP driver’s
network packet roUting COMPONENT ..uuerevuererriererrreereieeeireesesressreesesseessssessssseesssseesssseessssees 43
Enabling the receive direction on the channelcccuviviiiciieiiieiiieeccceece e, 44
Initializing the RTP deCOEr . uuiiiiiiiiirieeeciieeeiieeecteeecteee e e eetteeetree e saeeesrae e sres e sseeenssaeennnes 45
Creating a data path between an inbound RTP channel running on a DSP and the IOP driver’s
network packet routing COMPONENT vuviiieriureeererirrreeeeiiireeeeeeirrreeeesssreesssssssseessssssseesssssssssssnns 45

Appendix A: Host functions

OVEIVIEW 1euuvteerereeeeeerreieeeeeeseisteeessesseeessseseaeessensseaesssesseeesssenssteesssensesessssnssneesssssseeeesssnseeeessassseaesssonse 47
IMESSAZE AP ittt e ettt e st e e e e st e s s s ae e e e e bbb e e e s abbaeesesarraaeeennnrees 47
FUNCEION LIST 11tttereieiieitteieiiececte s este s ettt s sstteeeeteeestte s e ae e s saeseseaesssaeesssseassseessseeesasseessssessnssessnnees 48
O T L e oL o) | o T o) 13 =Y TR 50
OSTEXITu e euterieeettenteeeeeee sttt sttt st et s et et s et s s et sene s e st e e sme e s ne e ne e s ee e eneesmeeenes 54
hOStGEtBOATAINTO e viiiririireiieieeetesrieeetesieeseessreesseesbeesasesssaesseesssassssesssesssnesssaesseesssessnsesssasnnes S5
HOSTGELSYSTEMINTO .uviieirieeeiieieiieeeiieeectteeecie e e ettt eesbeeeeeteeeessaeeessaeesssseesessaeesssaesassasssnseessnseesnsseeans 57
OSEIIIT e e tvteeetieeesieeeeeeeeeseeeeeteeeseessetteesesteeessseesasseeasseasasseesasseasassresasseasassseessseesassensesseseessreeeane 59
L0 T e T | D TR 60
L0 T e Y- |) o SRR 61

viii

Contents

I

HOSTRESETBOAIA «.eeeneeiriiieiirieeeete ettt sttt s e e st e e 62
ROSTRESELDISP wvvereuvieieireieiiieeeeieteiteseettessstteeeeteeesstesessaee e steesssaesssseessseesssseesssneesasseessssessssseesnnees 63
ROSERUNDISP 1.utveieiiieieiteiectececte s ecte s ettt s s stteeeetesestte s e sae e s sae e s ssaesssstesssseasssaessseeasasseesssseesassessnnees 64
hOSTRUNLOAAEAIOP 1cicuvieieieeeeiitieeiteeectecerre s ettt e sete s e e te e e s te s e s aee s stee s ssaessssesssseesasseessssnasssseasanes 65
hostSetEVEntHANAIEr . ..vveiiiieriieeeitieriteeete ettt ettt e et essteessabe e s be e s beessbaessssaessnsaesnns 66
hostSetHOtSWaPHANAIET wuviiiiiiiieiieeiieee ettt ettt e e etre e e e s rae e e e s e aaee e ssssaee s s esassaaesennnsens 67
hostSetPeripheralDataHandIercicc.uvieiiieeiiieeiiccteeceecreee e e eere s e aee s s e aaee s e aaes 68
UPCONTIZSEIVICE 1uuvveirrrrieiieeeeeiereireseetesssteeeesesesssesassseesssseesssseesssssssssssesssseesssesessssesssssesssssesssnees 69
UPCONTIgSErvICEGIODAL . c.uuiiiiiiiiiecie ettt e e e e e e e s ve e s e e e e s e e e aeaeenee 72
UPCONNECIPKIREC 1uiiuiiiieiteiectteectecectecerre s cete s ssre s e te e e stte s e s aeessbee s vae s sseesssseesassnesssseasssseesanes 75
UPCONNECIPKESENA 1eiiieiiiiiiiiceireeeeccree ettt eetre e s e e taee s s e saee e s esvaeaee e s ssanessssnssnaesansssenens 77
UPDISADIESEIVICE wvveeiieiiiiieieeiitteeeeiiite e ee ettt e e ee sttt e e e sstree e e e abaeesessasaeessessssaaesesssseessesssssaesennnseees 79
UPDISCONNECIPKERECY . viiiuiieiictieieiiereeieeesteee e e e e eie s e te e e te e s veesssaeesaeeesssaessseeasasseessssessssseesnnees 82
UPDISCONNECTPRESEN ..viieriiiiiieieiieseeiee et ee et e et ee e e te e e vee e taeesaaeesreaessneesssseesssseasssseesenees 83
UPENADIECRANNEL ..ceiitieieiieicte sttt ettt e e ettt e st e e s ve e e s re e e s saeessateeensaeesenees 84
UPENADIESEIVICE 1uvviiiieiiiiiiieeiiteeeeecte ettt e e e e e e e e et bae e s e s aaee e s e sbaaeeeessssaeessesnssanesennnseees 86
UPQUEIYQOSREPOIT ceeiiiiiiiiitiirtiiiiiiiiiriieeeeeeeaaaaeeeeeeeeeeeeeeeeteseenreeerenssnnes 89
UPSELEVENTHANAIET ceeiiiiiiiciieeeceee ettt e e strre e e e ae e e e e va e e e s e baee s sessraaaesennnnenas 90
UPSEtUSErMSEHANAIET vevueveeiiiiiieiieeeciececiescetee st se et e e ete s e e aeesete e s vee s saeesssseesassaessssaasssseasanes 91
LD SEATT ettt et e ettt e et et e e e e et ee et et e e e e se s b e et e e e e aeeeeee s e e n et e e e aaeeeeeeseannreeraaaaeeaaeeens 92
hOSTGEENWPKEBUS ..ee.uvieieieeieceeeecte et cestescete e sttt s e te e e s te s e s aee s tee s svee s ssnesssseasassaesssseesssseesanes 94
ROSEJILLEICONTIOL .uviriiiieeiieiiiecteee e ettt e e eeete e e e e re e e e e streeesssaearessesssaeesessssssaessssssseessessssnesannseees 95
Yo Ty A U (o) o U 96
hOSESENANTWPKEBUL ...vviriireiieiiireieesieestesrieeseesseeesseesseessessseessessssessssesssesssnesssesssaesssessssesssasnnes 97
Lo T 1 T 1Y = PSR 98
NOSESEEN N O .veietreieireeeetereireseeteessteeeeteeesteeeaee e tesessaesssseessseasassaessseeesasseesssseesassessnnees 99
Lo T A4 =) (o) TSR 100
hOSTSEIPOIPEIIOA ...vvieeiiereiiieriieeeitteniteeeiteeerteeertteesiteessuteeseateesssteessssaesnseesssseessssaessssassssasanns 101
NOSTSENAPIIONIEYIMISE c.evtreeeieeirieeieetreeeeeetreeeeeeteeesessteeeeesssssaeseesssssesssssssaesassssseessessrssnesannsenes 102
Appendix B: IOP functions
OVEIVIEW evtiriiiiiiiiiiiiiiiiic sttt sttt st e e s s bbbt e e s s s abb e e e s sabab e e s s sabaeeessaraaeessssataessssans 103
MESSAZE APL....euiiiiiiiiiiiiiiieiieiiiriiteeeeeeeeeeeesserrteteeeeesessssssssssssasstasessssssssssssssssseeseasesssssssssssssseaneeses 103
FUNCEION LIST 11tttereiiieeitteieiieceeeeseste s ettt s sstese e teeestte s e sae e e stessseaesssseesssseasssaessseeasasseessssessnssessnsees 104
ey ST e ¥ o TSRS 106
0] o1 @fe) sV o) 1 0 o) s T | O SR URR 108
TOPINIT ceeeeeeieeiereeeeeee ittt e eeeeessesaeseeeeeseeeeeeeseesesnnessssssssssssssssssssssssssssssssssssasesessnsnsesnsnnes 112
UPCONTIZSEIVICE uuvrrietrreeirieeeiieeeiieeeeteeesteeeesteeesteeesseesassesassassasssesssssessssssesssssssssssenssssenssessnnses 113
UPCONTISErvICEGIODAL c..uviiiiiiiieciie ettt et e e e e e be e e sbee e bae e asae e nraaeenns 116
UPCONNECIPKEREC 1uiiuiiiieitiiecitieectecectecerre e ettt s sste s e s te e e ste s e s aee s stee s nvee s sanessseasassnesssseasssseesanes 119
UPCONNECIPKESENT 1riiuevieieieeiecieeeeiee et erre e ettt e st s e te e e ste e e s aee s tee s vee s sseesssseesassnessssnasssseasanes 121
UPDISADIESEIVICE .uvvviitiiieiieiicieieiteseeteesste e et eeste e e te e e teessaee s saeessseessseessseeasasseessssessssseesnsees 123
UPDISCONMNECIPRERECY . .utiiiieeiiiiiiietite ettt rre e e e e trre e s e aaee e s e baaee e s ssaeessenseaaesennnsens 126
UPDISCONNECTPRESENA ...uviiiieeiiiiiiieiiiieeeeete e cee st e e e erre e e e e traee e e s saaeeeeesrsaeesesssseessesssssaesennnsenes 127
UPENADIECRANNEL ittt e e e e e s e rae e e e e baa e e e s abaees s e nsaaaeeennneeas 128
UPENADIESEIVICE 1.vvveiiiieieiieieciececte s eeteessteseete e e ste s e ae e e te e sstaessbaeesaseasssaesssneassseesssseesassessnnees 130
UPQUETYQOSREPOIT 1ttt et ettt et e et e e et ettt e e e e e e e se e e saeeeeeeeaeeeaassesannnnsneeeeaaens 133
UPSEtEVENTHANAIET .uevviiiiieiciie ettt te e re e e tae e saae e s e e e s an e e s naeesssseasnsseesenees 136
UPSTATT eueeererereeeeeeeeeeeeerrererereeerenssssssssssssessssssssssssesssesssesensnnne 139
TOPGEENTHPKEBULeiveiiieritertieieesteeriteeteestes e sstesstessbeessneessaesssesssaesssesssaenssesssessssesssnesseesssens 141

TASK-6000 software reference guide

I

oY o) FIRuc A @) 114 o) OSSP 142
TOPSENAN T PKEBUL 1.eiutieieieeieceeeeste e ecteeertes sttt e ssteseete e e stte s e ssaee s sveesssvae s ssnesssseesassaesssseasssseesanes 143
o) oI T=x 0 1e 1Y, YRR 144
TOPSEEINTWINOLILY «.vveeetrereireeeeeeereiieeseetesestereetesesstesessseessssesssssessssseesssssesssseesssesesasseesssessssessenees 145
UPSELUSErMSGHANAIET ..vviiiiiiiieiiiiciiieeeeccte ettt cectre e e e etree s s e saee e s esraraeessraaeeesssssaaessnsssenens 146
Appendix C: HDLC driver library
OVCIVIEW 1ereereeeeieeeerrrererereeeessnsssssssssssssssssssssasssessssssesesssensessesssessssssssssssssssssns 147
Driver internals, data StrUCTUIeS, ANd FESOUICES ceverrurrrrrrereeeeeeeensrirrrrrereeeeeeeeeessessssssssssssssesessssesssssnns 147
DAt STIUCTUIES tevvrerrrrrreununinenniieieeaeeeereaaaserereeeeeeeeseerrersssssssssssssssssssssssssssssssssesssssssssssssnsssssssssssnssnns 148
PrOCESSING MOUES .uveieerreieirieieiiereiiteseeieessitereeteeestesessseessseesssseesssseesssssesssssessseeesssesssssesssssessssees 148
Processing packet transmission and reCEPLION ..uiivvieierrreererererrreeesrueessseesarseesseeesesseessrsessessesssnees 149
Sample HDLC driVer SEQUETICE .uvuieevuererveererreriieeeereeessreseersesssssesssssesesssesssssssssssessssseesssseessssssssssessns 150
SO et u o) s Y T U U UU 151
FUNCLIONS cetttttttitiiiticeeeieeeeeeeeeeeeeeeeeeeeeteteeererereeeasasssssssssssssssssssssssssssessesesssssessssssssssssnsssssssssnsnssssssens 153
HID LGN e ttttttueeieeiettneeeeeeetunteeeeeseetunneeeeeeressnnaeeessssssnseesssssnnnseessssssnnnnsesssssnnnsessssssssnneeessssnnnnnsenes 153
HD L C R ST eeeeiiiiiiieieeeeeieeteeeeeteeittee i eeeeeeessesessaeeeesaeeaeesnenesssesesesesesensssssssssssssssesassseesesaaasaennnnes 154
HD LCCIOSEDIIVEL teiietiiiieieeeitieieeeeittieeeeeeitteeeeeeittteeeseesteeeaeeesssssaseesssseaeeasssssaeassssseesssssssasesssssens 155
|5 18 B O @] 1o Y1 o) o USSP 156
HD L CCONTIZPOIT c.uvtiiittieeeiieeeitieeeireeeeireeeesteeeeeseeessseeesssaeessseeesssssesssssssssssessssessssssssssssessssasesssssanns 157
HDLCCONfIZCRANMEL 1vvviiiiiieiiieeeiiiecciieeeiteeeeceeeectteeeeeeeerttee e tee s steessbae s nsee s ssaessssesssasssssasanes 158
HDLCENADIECRANNEL ..uviiiiiiiiiiececiiiie ettt e et e e e e ttte e e e teee e e e brase e e ssaseeaenseaseaeennsens 159
|3 18] (@) DT o) (@] ¥ sV 1) AR 160
HDLCRESETCRANNEL. .. .utiiiieeiiiiieeecitiie ettt e e ee ettt e eeeeiteeeeeeabeeeaeessaseseesssssssasessesesaeenssssssannnsenes 161
HDLCSENAPACKEL v1vtiiieeuiiieiiecitieeiecieesseetteeeeeeitteesessteesesessssnessesssssesssssssssessssssseessessssssessssnsenes 162
HD LCGEIPACKEL «uvvteeieeeiieeiiecitiieeeeiiteeeeeetteeeeeeteeesessseesessssssaessssssssessessssssessssssssessessssseesensnseees 163
HD L CGEtD EVICESTATUS etttreeeerieiiirreeeteeerererssissirrreteeeeessesssssssssssseesaessssssssssssssssssasessessssssssssssnsanes 164
HDLCGEtCRaNNEISTATUS teeeeeiiiiieeeiiiiieeeeiiieeeeecitteeeeeeitteeeeeestseeeesessasesaeesssssaasaassssessessssssssssnnsenes 165
HDLCSetTXPaACKETHANAIET 1uvvvvvvveiiiiiiieiieeeeeeeee ettt e ee e seeesaaaraereeesessesssssssssranreereees 166
HDLCSEtRXPaCKEHANAIET 1.vvvvviviiiiiiiieieeeteeeee ettt ee e eeessaaer e e e e e e s sessssssssseanneeseees 167
HDLCSetDevice ErrorHandler ...uuii i uuiiiiiiieee ettt sctee e s vaee s essaee s s e aaae s s nneas 168
HDLCSetTXErrOrHANAIEr coieeeivieiciieee ettt s e stre e e e s aaee s s e s aaae s s esanaaessnsnnnnas 169
HDLCSetRXErrOrHANAIET ceiieiviiieieiieeiiccitees ettt ceetre e e eectee s e seee e s e s aaee s sssaaee s s esavaaaessnnnnenns 170
TYPE dEINITIONS 1uverreteereiiereiteeecteresreeetteeeteee sttt eesteeasseeessneesseeessseesssssassassesssssessassesesssesssssnessssees 171
ST UL CEUTES et vvrereurereeneeeuaunnneaaaesaeessereseeeeeeesereeesssesessssssssssnsnssssssssssssssssasessssesesesresessssessssssssnnnnnnnnnsssnssases 172
T HDLC_POTT_CONTIZ cvvrereriireiiiereiieeeeieereseeseseeseseesesaesssseesseseesssssesssssesssssesassssesssssessssnssssnesnns 173
t_HDLC_Channel_CONFIZ ... uuiiiiiiiiiiiiieiiiiieeiieeecieeeiteeeeeteeeritee e teeessreessbae s see s nsaessssaesssassnssssanes 175
t_HDLC_Channel_STATUS wueiiiicvuiiieiieiiieeseeeitteeeeeeiiteesessteeeeeseeeenessessssnessesssssnesssssssnessessssssesasnsenes 176
Appendix D: T1/E1 library
OVCIVIEW 1ereeeeeeeieeeerrrerereeeeeesssssssssssssssssssssassssssesessssesesssessesssssssssssssssssssssssssssessssssssssssssssessssssssssnsssnsssns 177
SAMPIE STATTUP SEQUEIICE teereeurrrerererrrreereeirreeeeessrreeeeiassreesessssaeessssssssessesssssesssssssssessessssssessssseees 178
RO et u o) s T U USSR 179
FUINICEIONS 1 tvtttrtttttttcesere e ee e e ee e e e e e s e ee e e e e te e e et etate e e a e e e e e aeasassasassaseeseesaesesearenesssssssssssssnnsssnnnnnnsnssenes 183
B O BT O e USRS 183
TIET1GEtBOArdCONTIZ cuvvveeeiiiieiiieeeitiieecieeeeitteceeteeeeiteeeeeteeeesteee e saee s sseeesssaesnsessnssesassseassasssssesanes 184
0 O YT TG PP 185
SEET T CONTIZ cuvreeeieieeciieeeieeeecteeesteeeetteeestteeeeteeeesteeessae s stee s ssaeasssessssaeassasaseseanssssanssssanssaesnsses 186
Yo B I e T2 Y TSR 187

SEtTTCOMIMANA . .ceiiiiiiiiiiiiiiiiiiiiit e eeeseeeeeeeseeeeeeeeeeeeeetetesssessressaasasasasasssssssssssssssssssssssessssennes 188

Contents

I

SEETTCIEarCRANIELS ..vveieieeeeieietee ettt ettt st et s e e sttt e sabeesataessteesnseeesaseessasasssanes 189

SEL T TIAIECRANNELS 1eeenetiiiieieeiieeeeecttte e ettt e e ettt e e ee et ee e e e e bbeseee e baseseessssaseaaessasaesennsessesnannsenes 190

SEtTTCRANNEICONTIG .vviieiieiiciieieiieteciee et et te e te e e e e e be e e vae e ssabee s rseessneesesseesssseasssseesenees 191

Y S 003 0 = SRS 192

RTS8 S I =8 s B U Y= TP 193

ELTTSIGNALING cnevriieeieeeiee ettt e e eeere e e e e re e s e s steeeesssaaaeeesessaeeaeessssanesssssseessessssnesannsenes 194

GEE T ISTATUS 1uvuviiiirieeeeetterereieeiittrteeeeeeeeeeesssutrrreeeeeeesessssssssssssnnseaeesessssssssssnsssseeseesesssssssssssssseeneenes 195

EtTISIGNAIINEZRAW 1eeitvieieiiiieiieeeieeeeseeeeste s eree s e stte s eeveesssteesseraeeessseeeesseeessesesseessssnesssnessssnesnns 196

Lo O I Tea 1 21 USRNSSR 197

SetT1SIgNaliNgHANALET 1ueiuieeieiiiiecie ettt te e e re e e ae e s ve e s ave e s sane e esaeesenaeaeenes 198

SEE T T StaAtUSHANAIET 1euetveieiieieiieietee ettt ettt sre e et e st e st e e sateesateeesataeesasaessans 199

SEtET1SIgNalingHANAIEr ..vviiiiiiiiiiiieiee et re e e e e e ae e e e s ae e e e e aaraae s 200

ST UL CEUTES et vvrererrereeeaueununnneeesaeaeessereseeeeeeeeereeesrssesssssssssssssnsssssssssssessssssesesseseseseesessssessssssssnnnnnnnnnsssnssases 201

E T AR T framMIET 10 et eeeeeeeeeee ettt e e et e e e e e s e et aaeaeeee e e taaanaeseeeaeanaesseeenaanaaesaerananaaeseaennas 203

E T TE T _CATA_LYPE ctrrerrurrereiieeeitiereiteeeeieeseseesesreesesseesesvaesssseessessessssesasssssssssesessseessssnessssnessrsnenns 204

E U TTE T _Led_STATE.cuuveerrieeeeiieeniieeeittenieeestteeeieeeesrteessueesssueeessuseesssseessssaessnseessssesssssaessssassssasenns 20S

t_TTET_user_signaling_data...ccueciecciieeiieciieeeicciieeceeire e e ceetee e s e stre e s s e aaee s s s s saae s s essvnanessnnnsenas 206

t_TTET_BOArdCON g cuvveeeveieeiieeeiiiieeiieeeeiteeeecieeeeitteeeeteeessseeeesseeesssseeesssaessssesssssssssssesssssasenssasanes 207

L O B 3T ol Ya 33 V= USROS 208

T _framing_MOAE .cccuueeeeireieiiereieeeeieeeeseeeeseesesreesesraesssaeesseseesesssesasssesssssesessssesssssessssnessssnesns 209

£ T IINE DULLAOUL teeet ettt ettt ettt e e et e e e e et et eeeseeeaaanaeeseaeanaaaeseeeaenaaaesaenaee 210

£ T 1 _USET_COMTIZ_ STIUCE teeeuriieeitieeeitereeireeeeieeeeseeeessteeseseeessseeeessseeessseeassssessssesassssesssseesnssasanssseanes 211
t_T1_user_signaling_data

L O S T=a s Y o P e o v IO U 213

t_T1_user_command_data ...eeeceeeeererenieeenneeerrieeeniteeeeteesiteeeseeesssesssseessseesssseesssseessssasssssassns 214

BT] USEE STATUS. STITUCTuuuteunreuneeuneeeuneesnersneeesneesseessssesssessssssesesssessssssssesssessssssesesssessessssssssesnsssneses 215

£ T1 user_clear Channel data coveeee e oot e et e e e e e e teeeeeeeeetaaaeeseeraneaaeesseeanas 216

£ T USEE TALE SEIUCE eeeeeteeeee e ettt e e et e e e e e s e et eeeeee e e taaaeeseeeaeenaeeeeeenaanaaesaerananaaeseaennes 217

t_T1_user_channel_CONFIZ...uuiiiiiiiiiieciiieeiie e et eecte e eeee e erte e e teeesre e e s te e e be e s baesssaesnssaeenssaeanns 218

t_T1_user_raw_SigNaling_ STIUCE uiiievvveeiieeireeeieeiiteeeeeeitteeeseeteeeeessareesessssseessssssseessessrsssesessnsenes 220

EXAMIPIC .t eeiiiiiiee ettt e e e ere e e e et e e e e e e e e s e e aee e e e e rabae e e e e ratee s enrraaeeennnraaes 220

TS tatuUSHANAIET «.viiiieciiie ettt e e ctee e e e e te e e e e e eabee e e eeabsaeeeessbaaeaeenseaaeaannnsens 221

T1SigNalingHANAIET cevuvvveieiiiieiieeeteeee e erre s eerte s ssre s s te e s s tee e e srae e e sbe e e saeessssnesnssnasarsnesnns 222

E_E T _lINE_COAING ceuttiiiitrieieiieieiiererieeeertesesteeeesteesesteesestaessaeessesaesesssasasssessssesesseesssseessssnessrsnenns 223

t_E1_SIgNnaling MOdE c..uuveiiiieiiiieiccree sttt tre e e e tre s e e s are e e s e eaa e e s e s raee e s e raaae e e nnnaes 224

E_ET_1iNe_DUIldOUL uveiriiieiieiieectteete ettt et e e e ssate e sbe e s sateessaba e s bae s baessnneeens 22§

£ E T _USEI_COMNFIZ SIIUCE teeeurrieriiieeeitreeeiteeeeiteeeeieeeeiseeeesseeessseeeessseessssseassssessnsessssssesssssssnssasesssssanes 226

t_ET_user_sigNaling data ..ccciccvereceereiieieieeieceecestessstessseesseteeesssesessseessnsesesseessssnessssnessrsneanns 228

E1SignalingHandIeruieuieiieieieiies ettt eete st e te e ve e s vae e ssabe e s vs e e s rn e e s saeeseneaasanaeesenees 229

Appendix E: T8100 library

OVEIVIEW tetiiieiieeeeeereterereeeeeeeeerereeaeaasassasesaeeaeeesesesesseeerenessesessssssnsssssssnssssssssesssessssseseesesseeeessssnssnsnnes 231

Making and breaking CONMECTIONSuiiivveirevveeriieeieieeriieseeteeeerteseesaeeeeteeessaeesssseesssseesssseesssssesssssesns 231

BrOadCasting ceeccuveeeiieiiieeieeiiteeeeeittreeeesitteeeeesttaeeessnsaeeseessssaaessssssaeeseesssssaasasassaeessenrsenesennseees 232

SAMPIE STATTUP SEQUEIICE teereeurrreeeeeirrreereeirreeeeeisrreeeesassreesessssseessssssssessesssseessssssssessessrsssessssnseees 234

FUNCEION LIST 11uttteeitieriieeniieeeiteeerteeeeteessteese et essteesteesateesaaraesssseesssaesnsaessseeessnssessssessssasssases 235

5300V Fa o) s [N 235

FUINICEIONS 1 tttttttttttitice s eree e e eeee e e e e e s eee e e e e ee e e e e tteteta e aaaa s i asassasassasasssesaeeeseeeeeesssssssssssssnnsnnnnnnnnsnsseses 237

INIET8T00 1urieureeereeeieeeeeeiteeceesteesteesteesstessteeeseeastasssessrteassasssssesseessseessseasssessessstesssessnsesssesssessnsees 237

SEET8TO0CIOCKCONIIZ 1vveeurieeetieieiieeeeieeecteeee e e e te e e e e e te e e rae e sbeeessaaessasesesaanssssesssesanssassnnses 238

Xi

TASK-6000 software reference guide

I

SEtT8100SEIEAMCONTIZ . 1eeeuvrreeeririeirieeeeieeeiteeeeteeesteeesteeesteeeessaeeesseeesnsaeasssseesssasasssasesssssenssssennes 239
SELTBTOOSWILCRCONTIZ 1vereurreieirieieiieeeeieeesreseeteessteseeteeesteeeeaeesssteessnseeesssnesssseasassaeessseesssseesanes 240
ClearT8 100 CIOCKEAULL...ccieieeieeteeeeeeeeeeeeceettter e eeeeeebrearreeeeeeeeessesssessanrrreeeeessessnsnrsreennnees 241
ClearTE8TOOMEMOTYFAULL ..uvviieiiiieceieeieeeeee e eeececte e eere s sre s s te e s teeessae e e sse e e saeessssaessssnasssenennns 242
SEtT8TO0CIOCKFAULEIMASK «uvvvvvvrieeeeeeeeeeiieiirierieeeeeeeeeeeeeeeitnsreeeeeeeeeeeeesesssssssssssesseessesenssssssssssssees 243
G T8 TOOEITOISTATUS cevvirereriiirirteeereeeereeeesinrrteeeeeesesssssssssnrsnsseeeesessssssssssssssseeseasesssssssssssssseenaeses 244
SEETSTOOHANALET ceveeiieeeeeiiitrieeieeeeeeeeeereerrerteeeeeeeeeeeeerarraesaeeeeeeeeesessssssssssssesseesessensssssssssssssees 245
T I U S ettt eeeeerereeneeeeeereesnnaeeeeesssnnneseeessssnnnsesssssssnnsesssssssneseeesssssnnsessssssnnnnsssssssnnsessssssssnneessnssnnnnnsenns 246
BT LI ettt ettt et e e e e e e e e e e e e et e aeees e et au— et ettan————taetuan———aeeeta——asaeranaaaaaeeeranns 247
B Al DACK LK ettt ettt e e e e e ettt e e e e e et e e e eetua———aeea et ——asaerana——aaaaaranas 248
ELIIEETEE CIK rviiiiiieieeeceeeee ettt ceere e e te e e eeerbeeeeeesaabaeeeesabeeaeeeasaaeeseetbaeeseerrraeesennres 249
t_T8TO0CIOCKCONTIZ uvvveeeuriieeiieeeitiieeiteeeeiteeeecteeeesteeeeetteessreeeessteesssseeassssesssessassaeassseesssasenssssanes 250
£ STICAITL TATE veuuerernrenneeuneeeseeeuneesnesesnsessesssesessssssesssssssssessssssssesssssssssnssssssssnsssnesesssesnessnsssssesnsssneses 252
E_T8100SIrEAMCONTIZ v vveeeurrereirererireeeieeieseeeeseesesteseseesssreeseessesssssesesssesssssesessssesssssessssnesssnesnns 253
£ SOUTCE ST eeeteeneeeeeeteeeeeeeeeeeeunaeeeeeeueanaeseeeaennnaaesaesaaennesseeannnesseeneenneseesesannaaeseerananaaesseeanes 256
£ T8 TOOCONIMECTION vrrrrrururnnnnnnnnaseaeeereeeeeeeeeeeesseseseeresssssssssnnssssnnnsssssssesesssssessssesessssssssssssssssssssnnnnns 257
£ T8 LO0SWILCHCONTIG «vvveerrrieetieeeiieieeieeeecteeeecte e ecteeeeetteeesttee e aeeessseeessssesnsaeassaesssssesssasasssssanes 258
Appendix F: Service descriptions
COAECE veriieieeeeieiiirtttteee e e e e e eeeeeseitaraeeeeeeeeeeesesaasssaasasaeeesessessssssssssasssaaeesseessssssssssssssaeessesensssssssssseseesennns 260
SECOMEC cnrunrrrrirrireeeeeeeeeeeeiiitrteeeeeeeeeeeeessesssaasasaeeseessesesssssssasssssaeeesesssssssssssssasesseesensenssssssssssnseens 260
| S TO R =T Telcy | B A o3 s WS TRRR 263
] el e L O s eSS 263
TONE GENETATION 1.ueiieeteete ittt e ee e ettt e et e et e ee e e e ettt e e eeeeaesseaaassretaeaeeeeeeaeaannnnsnreeaaaaeeaassassannnnnes 264
SE T A TONE G v eeeeeeeeeeeeeeiiirteeeeeeeeeeeeereeiveereeeeeseeeeeeeessssssassssseeeessesssssssssssssseeseeseesenssssssssssssees 264
ST KT TOMEGEN v vveeeeeeeeeeeeeeiitrteeeeeeeeeeeeeeeeirrereeeeeseeeeeeeessssassassssseeeessesesessssssssasesseeeeesenssssssssssssees 265
UP_TONEGEN_CONEFIG_ST ...utvttieiriirreeeeeeireeeeeerineeeeeenssereseesssssseesssssssssessssssssssssssssesssnnns 265
TONE AELECTION veiiveiveireerrieriereeeeeeeeeeeseatreereereeeeessessssasassnrsreeeesessesesssssssssnesreesssssssmssnssssessneseesesesnnsnnes 266
SETAMDTIMEDEE coeiiiiiieeeeieeteeee e eeceeeeeetre e e e et e seseesssasaasreereeeeessessssssssssareeseeesessesssssssrsnsnnees 266
UP_DTIME_CONFIG_ST ..eetttiiiiieteiieeeetreeeeseetteeeesetaeeeessstesssesssssessssessseessssssesssssssssesesssenes 266
UP_EVT_TDM_DTMF_DETECTEDuuvttiiieiiieeeeetieeeeeeeteeeeeeertreeeeeeseseeeseessserseessssssseessnnns 266
UP_DTMF_DETECTED_DATA _ST cceoitvtieiieiieeeeeeeireeeeeniteeeeeesssseeeeesssseeeseesssesseessssssseessnnns 266
SEPREDTIMEDEL «.vvveveeeiireieeeeiieeeeeerrreeeeeesreeeeeesssreeessasssesesssssseessssssesesssssseessssssssessnssnsssesssnnnens 267
UP_DTIME _CONEIG_ST ..ottt eetee e e tee e ettt e eesaee e e saaeees s essanssessansessnnseessnnnen 267
UP_EVT_PKT_DTMEF_DETECTED ...ttt ee e ee vt e e s aeeee v eesnnnaes 267
UP_DTMF_DETECTED_DATA_ST coieetttiiie ettt ettt e eetee e e e setvteeesessseeesesssseeesssesssenssssenes 267
L O Ll D T SR SRUURPURRRR Ot 268
UP_CPT_CONEFIG_ST oorieeeiveeeeeeirreeeeeiireeeeeeiveeeeeesesesesesssssseesssssssesssssssssessssssssessssnsssessns 268
UP_EVT_CPT_DETECTED
UP_CPT_DETECTED _DATA_ST ceeeeiiieiiteeeeeeieeeeeeeeireeeeeeiteeeeeesssseeeesssssssesessssssseesssssssesssnnns 268
R 0AY 1 20 B T SRRt 270
UP_IME _CONEIG_ST ..ottt eetee e et e ettt s e et eesaaseessasessannsersansessnnseensnnnen 270
L8] 0 SAVA LY § S0 B) O 1 2O 1 27 B TN 270
UP_MF_DETECTED_DATA _ET ...oiiiiiiiiiieeeieiieeeeeriieeeeeeeiseeeeeesssseeeesssssssesessssssseessssssseessnnns 271
RTP PACKETIZATION 1uvrreiiieierrieiieiiieeeeieiiteeeeeeiitteeeeeitteeeesesssseessesssssessssssssasssssssssesssssssssssssssssssssssssssseenns 272
R A0 o) S5 Lol e Y [ST 272
RTP_HEADER _ST oottt ettt eetteer et e e stasesaaanessaansssasasesssnnssssannerssnnsssnns 272
UP_RTP_SEND _CONEIG_ST ottt et eteeeetteeee e e e sveeee s essaaneessnneessnnseessnnnes 272
8 S 0] D1 eT Yo LSRR 274
UP_RTP_RECV_CONEFIG_ST ...tvttiiieiirreeeeenireeeeerinreeeeensseeeseessssseesssssssesesssssssesssssssseessnnns 274

xii

Contents

UP_EVT_RTP_PT_CHANGE
UP_RTP_PT_CHANGE _DATA_ST ooeeeeeeeeeeereeeeeeiereeeeeesveeeeeesssseseessssesseesssssssesssssssssesnns 275
UP_EVT_RTP_SSRC_CHANGE
UP_RTP_SSRC_CHANGE _DATA_ST eettteiiiietieeee ettt e eette e e e seitteeesessaeeesesssseeeeesesssesesssnnes 275
SIEIIANINE 1ertreeeeteresreeeste e e te e ettt e e tte e ettt e e reee e beeeeeraeessrassasseesastessasseeeasseeeasaeesssaeenseeesreessrrasaraeasns 276
O X IR 276
UP_CAS_CONFIG_ST crtrieeeereeeeeeiireeeeeiireeeeeesreeeeessssesesesssessessssssssesssssssssessssssssesssssssssssnns 276
UP_EVT_CAS_CHANGE
UP_CAS_CHANGE_DATA_ST . otteeeeeiereeeeeeireeeeeesiireeeseesseseeessssssseesssssssseesssssssesssssssssesens 276
SEQDSOHAIC .. tteeeieieecieee ettt et et e et e e cte e e te e e te e e te e s bae e bba e e sbae e st ae e stae e saeeeerteeannraeenanes 277
ALGTTIING et eeteeeeieeeet e e esee e erteeeste s e teesearae e e ate e e ssee e steeasseeeesseeeasseeesseeesssasaassessassessassasessseesnssnesnsseenn 278
R D a1 w1117 a Y - o o NSRS 278
UP_EVT_ETHERNET_ALARM
UP_ETHERNET_ALARM _DATA ST e eeoeetieeeieeeetiieeeeerreviiieeeeeevrtineeeessessnneesessssssnsssessssses 278
ol A O N o3 s WU USRI 279
UP_TIETALARM_CONFIG_ST .euvttiiieiiieeeeierieeeeeeneireeeeeniteeeeeesssreeeeessssssesessssssssesssssssesssnnns 279
UP_EVT_T1E1_ALARM
UP_TIET_ALARM_DATA_ST ettt ettt ettt e s sette e s e ssstvteessessseessessssesesesssssesesssnnes 279
AUAIO PIOCESSING 1evreuvrereiriereireresrereirereseeeasseerassseeesssesasseeessssesssssessseesssssesssssesssssessassesssssesssssesssssess 281
7N € OO 281
UP_AGC_CONEFIG_ST coiottiieiieteieeeeeiireeeeeeireeeeeesetaveeeeesssesesessssssseesssssssesesssssssesssssssseessnnns 281
INEEINIAL . utiriiiieeeeeeieieeiiiirtree ittt e e eeeeeeeirberereeeeeeeeeeesesssssssasaeeseeeeeesnsssssssssssssaessessensensssssssssesssasassenessnsssns 282
SEPACKEIBUILACT 1vvrieieeeieeeeeiirieeeeee e ettt e e e et e eee e tarreeeeeeeeeeeeesssssssssssasesseeesseenssssssssssssaees 282
UP_PACKET_BUILDER_CONEFIG_ST ..ottt ettt e eeee s eeseaseeeseeeeans 282
SEPACKEIPAISE vuvvriiiiiiiieeeeiiettteeeeeeeeeeeeesietrereereeeeeesessesssasassneereeeeessesssssssasssaneereeesessessssnrsrnnnnnees 283
UP_PACKET_PARSER_CONTFIG_ST ...utviiiiiieiiieeiietiieeeseeieeeeeestveeeesessseeesessssessssssssesssssenns 283
GLOSSATYvovieicieieecetice ettt ss s st b st b e es bt s s bt e et et b s s s b ebsssns e b ssnsasensatesansnsnsas 285
INAEX ..ottt sttt et et a e bt a et et s bbb s ke b e e bt s R bbb et et s et s nansesenans 293

xiii

I

TASK-6000 software reference guide

I

Figures

Figure 1-1. TASK application distribution: IOP onlycccccccveeeiieiiiieiiicieeeeeciiieeseecreeeseeereee s e sereessenes 1
Figure 1-2. TASK application distribution: Host and TOPccoccvuiiiiiiciiieiiieiieececcreeeeeevree e s e eeree e e 2
Figure 2-1. DSP application on the DSP Chip...cccuiiiieciiiiieiieiiiieeccicieeeeeecireeeeeccree e s eerreeeseasreeessesvnneseenns 6
Figure 2-2. Data PAth SEIVICES wuiiveiiieiiiericiireiieieeieeeeiteeesteeesteesssresessaeessresassseessssssessnsesssseessssesssssessesees 9
Figure 2-3. Using events and message handlers........oucuiiiirieeerieiiiieneieseiieseieeeseeeeseneeseneessvneessaeesenees 11
Figure 4-1. Location of files required to compile the applicationcccueeevirererieeriveeeeiieeeeieessreeeereeesennes 33
Figure A-1. Packet 0rganization bUffer......iiiiiiieciiiieciiecicieeeee et e e re e e e rae e eare s e aee e nnas 97
Figure B-1. Packet 0rganization DUferiiciuiieciiiieciieeciieeeie ettt e e e e enre s e aee e enas 143
Tables

Table A-T1. HOSE fUNCEIONS t.eeevuvvereeeeireeeeenirereeeessreeeeeesssesseesssseseesssssssssesssssssessssssssesesssssssessssssssesessssnsseses 48
Table B-1. IOP fUINCHIONS vvveeerrrrrrreeeiireeeeenirrereeeessreeeeessssesseesssssssecsssssssseesssssssessssssssesssssssssesssssssesesssnssesns 104
Table C-1. HDLC driver fUNCIIONS c..ccoveeeeeieeveeeeeeeeeeieeesitsrveeereeeeeeeeessssssssesssesessesssssssssssssssssseesessssssssnnsnes 151
Table C-2. HIDLC StIUCIUIES.uuutrrreeeeeieereierrrrerereeeeeeeereessssssssseereeseesssessssssssssssssssssesssssssssssssssssseesesssssssssssnes 172
1o (S O I N 4 O o Vel L o - N 179
Table D-2. Time SIOt NUMDELS v.vvvviiieiiiieiieirirreieeeeeeeeeeeeiirreereeeeeeeeeessessssresssseesesessssssssssssssssssesesssnesssnssnns 181
Table D-3. E1/TT STEUCIULES .uvvvvvereeeereeeeieriiiverreeeeseeeessessssssssssssessessessssesssnssnns 201
Table E-1. T8100 fUNCIIONS c.cevuvrrrreererrrreeeerrrreeeesisreeeessssrseeesssssseesssssssseessssssssessssssssessssssssessssnsssessssnseses 235
Table E-2. Time SIOt TIUMDEIS ..cvvviiiiiiiiiciciitiieeee ettt eeeeeeeessstareasreeeeeessessssssssssneereesesssesnssnssnns 236
Table E-3. T8T100 STITCTULIES wuvvvrrrrreeeieireierrrrrereereeeeeeeseeessssssssrereeesesssssssssssssssssssesssssssssssssssssnssseesssssssssssnsnes 246

Xiv

Introducing TASK-6000 software

\
29y

To create the complex applications needed by today’s telecom service providers,
system developers can benefit strongly from a proven software toolkit that abstracts
the details of codecs, telephony algorithms, and network data connections. The
RadiSys TASK-6000 software provides a powerful set of features that reduce
development time without sacrificing flexibility, allowing the developer to
cost-effectively add value at the application level.

Based on a powerful API, with a set of field-proven DSP algorithms and
high-performance packet protocols under the hood, TASK forms the core of Media
Gateways and other vital telecom applications. It takes its name from the
underlying RadiSys “Telecom Application-Specific Kernel” that runs on the Digital
Signal Processors (DSPs) and provides the flexible and powerful core of the
telephony applications.

TASK components are distributed among the three hardware subsystems of the
RadiSys family of Media Gateway products: DSP, IOP, and Host, according to the
performance requirements dictated by modern VoIP and similar applications. A
developer may choose to create applications whose functionality resides primarily
on the IOP, primarily on the Host, or in a distributed fashion using both:

IOP

Application I

TASK runtime
library

"DSP kernel |

Figure 1-1. TASK application distribution: IOP only

Some applications will utilize multiple Hosts to meet high-availability requirements.
Advanced developers can even create DSP-based applications that use the powerful
RadiSys DSP library components directly.

'% For information about developing TASK applications, see Chapter 4,
Developing Host and IOP applications.
Developing DSP-based applications using RadiSys DSP library components
requires that you use the TASK-6000 DSP development kit. For more
information about this kit, see Product Configurations, later in this chapter.

TASK-6000 software reference guide

I

Application that resides on the Host Application distributed across
and communicates with the IOP the Host and IOP
Host IOP Host IOP

Application I Application Application I

TASK runtime TAS|.< runtime TASK runtime TAS[(runtime
. library . library
library ¢ library ¢

"DSP kernel | "DSP kernel |

Figure 1-2. TASK application distribution: Host and IOP

TASK supports data and control flow between the Host- and IOP-based
components, using the hardware PCI interconnection (for high throughput and low
latency) or using a message-based interface over a protocol link via the IOP’s
optional LAN/WAN subsystems.

The TASK API creates abstractions for common telecom objects such as Slots,
Units, Channels, and UDP Ports, and provides functions for the configuring,
enabling, and disabling of a powerful set of services that operate on these objects.
The API also provides abstractions for Fast Packet Routing, HDLC, T1/E1, and
TDM (Time-Division Multiplex) Switch peripheral devices.

TASK-6000 software supports CompactPCI Hot Swap, as defined in the Hot Swap
Specification [PICMG97c¢], for fail-over and high-availability applications.

Product configurations

You can order TASK software in these configurations:
e TASK-6000 runtime kit: Provides the software required to run TASK applications.

e TASK-6000 development kit: Provides the tools required to write and debug
TASK Host and IOP applications. This software also includes the TASK-6000
runtime kit.

e TASK-6000 DSP development kit: Provides the tools required to write and
debug TASK DSP applications. This software also includes the TASK-6000
development kit.

\
29y

Understanding TASK-6000
software architecture

This chapter explains how the TASK-6000 software components and interfaces
work together to provide the tools you need to create and run telephony
applications.

When reading this file online, you can immediately view information about any
topic by placing the mouse cursor over a topic name and clicking;:

For information about... Go to this page...
COMPONENTS et 3
TASK Host runtime library...........coooiiiiiiiciiiieeee e 3
TASK TOP runtime librarycccoooiiiiiiiie e 4
BT THIES .ot et e aeeeaaa b aaaans 6
1o (T (e (ol =T T T U O PO U U UUUUUPPPPPUPRPRPRt 6
[INternet ProtoCol (IP)oee i 6
Public Switched Telephone Network (PSTN) ... 7
Application Programming Interface (API).......coooiiiiiiiii e 7
Components

The TASK-6000 software architecture comprises several interdependent
components: a Host Run-Time Library, an IOP Run-Time Library, and a standard
DSP application. The following sections describe these components.

TASK Host runtime library

User Host application components interface to TASK through the Host runtime
library. This comprises a static library linked to the Host application and a Win32
DLL (Dynamic Linked Library), which implements the functions of the API
(Application Programming Interface).

% For information about the Host APl and functions, including syntax and
parameter values, see Appendix A, Host functions.

taskhost.dll

The taskhost.dll library creates several Win32 threads which poll the IOPs in all
slots of a system to monitor for data and events. It resets, downloads, and monitors
the IOPs, maintains message and data queues, communicating with each IOP via
the NT Kernel Mode device driver. taskhost.dll includes API functions that
implement callbacks to user-defined functions for event handling and data delivery.

TASK-6000 software reference guide

[

NT Kernel Mode device driver (i960rp.sys)

The NT Kernel Mode device driver is a low-level driver that provides PIO
(Programmed 1/0) and DMA (Direct Memory Access) to the memory and control
registers on all IOPs in the system. It also scans the PCI bus at system boot time,
enumerates the IOPs and, through interaction with the Hot Swap Service, maintains
slot state information.

Hot Swap Host library

'% For detailed information about the RadiSys Hot Swap for Windows NT, see Hot
Swap for Windows NT (PN 07-1080-00).

Hot Swap support is implemented as a Windows NT service and a device driver.
These communicate with taskhost.dll to notify the user application of insertion and
extraction events for all IOPs in the system. They communicate with the IOP
through the TASK NT Kernel Mode device driver to detect the extraction tab flips
and illuminate the blue quiescent LEDs on each IOP.

* hsmgrint.dll: Implements the Hot Swap Manager library and creates the Win32
threads necessary to poll the IOPs in the system for insertion and extraction
events.

e hbus.sys (NT Kernel Mode device driver): Enumerates the hot swap capable
devices present in the system, monitors their hot swap state, alerts the Hot Swap
Manager to changes in a device’s hot swap state, and configures the device’s hot
swap configuration status register (HS_CSR) in response to requests from the
Hot Swap Manager.

TASK IOP runtime library

TASK-6000 applications that reside on the IOP interface directly with the TASK
IOP runtime library. This component serves command and event API functions to
control on-board peripherals such as the T8100 TDM (Time Division Multiplex)
switch, the optional LAN/WAN interface, and to load, reset and run the DSPs.

‘% For information about the IOP API and functions, including syntax and
parameter values, see Appendix B, |OP functions.

VxWorkst-based library

The current implementation of the IOP runtime library is based on Wind River’s
VxWorks RTOS (Real-Time Operating System), which it uses for multi-tasking,
messaging, and IP (Internet Protocol) stacks. You can create user applications under
the Tornadot 2.0 development system and link them with the components of the
IOP runtime library to produce easily-debuggable applications.

The library includes the following;:

e Message dispatcher: The IOP runtime library exposes its API to local user
applications (in the same IOP), as well as to applications that run on a remote
processor. For example, a Host application can exercise the API indirectly via

Chapter 2: Understanding TASK-6000 software architecture

the Host runtime library, which forms messages and sends them to the IOP
across the PCI bus.

The messages from remote API servers are acted upon in the same fashion as
locally-originated function calls.

Event dispatcher: Events generated locally on the IOP or arriving in messages
from associated DSPs are forwarded by the IOP runtime library’s event dispatch
function. This makes a decision based on a runtime configuration variable of
whether to route events to a remote API server (e.g. the Host), or to perform a
callback to a local user application’s function handler.

Fast packet router: The heart of the TASK VoIP capability of the TASK-6000
software is the Fast Packet Router. This functionality is built in to the IOP
runtime library with a custom Ethernet device driver and corresponding
components in the DSP software. The Fast Packet Router can forward over
twenty thousand packets per second of voice data to and from the DSPs on each
IOP. It does this while consuming less than 40 percent of the CPU time and bus
bandwidth of the IOP’s processor. The DSPs build and parse Ethernet frames
according to configuration parameters specified by the user application via
specialized API functions.

Peripheral device driver libraries

TASK-6000 software provides a basic set of libraries for controlling the on-board
peripheral devices, currently comprising the Siemens MUNICH128 128-channel
HDLC (High-level Data Link Controller), the Siemens QFALC (Quad Framing And
Line Interface Component), and the Lucent Technologies T8105 TDM (Time
Division Multiplex) switch.

HDLC: The MUNICH128 supports up to 128 channels of HDLC. The
TASK-6000 driver library provides functions that configure, enable, and disable
channels and an ISR (Interrupt Service Routine) that provides callback function
hooks to the user application for transmitting and receiving frames, and
handling errors.

E1/T1 line interface: The TASK-6000 driver library provides functions that
configure, enable, and disable each of the device’s four E1/T1 ports. The device
must be operated as all E1 or all T1; you cannot mix line types. The driver
provides an ISR that provides callback function hooks to the user application
for transmitting and receiving frames, and handling errors.

TDM (Time Division Multiplex) switch: The TASK-6000 driver library
provides functions that establish and tear down sets of half-duplex time slot
connections from one to any of the TDM resources on the board. TDM
resources include serial ports on the DSPs, E1/T1 framers, and the H.110
backplane bus. The driver provides an ISR that provides a callback function
hook to the user application for handling errors.

[

TASK-6000 software reference guide

[

DSP application

Utilities

Interfaces

The standard TASK-6000 DSP application comes with a variety of voice codecs,
telephony algorithms, including echo canceller and tone detector/generators. It also
includes RTP (Real-time Transport Protocol) send and receive functions as well as a
jitter buffer, and packet build and parse functions for the system’s Fast Packet
Routing.

The DSP application is built on top of the RadiSys TASK kernel for the Cé6x family
of DSPs. The underlying kernel provides deterministic thread switching, RAM
memory management, and inter-processor message-passing functions.

DSP chip

DSP application

Algorithms

DSP kernel

Figure 2-1. DSP application on the DSP chip

TASK provides these tools that you use to develop TASK applications:

spbk_util.exe

This is a development tool that provides host access to the memory and devices on
the IOP. It includes functions to reset boards, read and write memory on the IOP,
dump internal trace buffers, and so on.

rmondb.exe

rmondb, the RadiSys version of Intel’s mondb.exe Win32 Console utility, connects a
Windows NT host to the 1960 Monitor over a PCI bus or serial port via the Host
debugger interface. This program includes a GUI for use by diagnostics
applications.

TASK-6000 software interfaces to the external environment using the methods
described in this section.

Internet Protocol (IP)

The Fast Packet Router and the VxWorks IP stack provide flexible communication
to other hosts and media gateways on an IP network. You can configure the Fast
Packet Router to route UDP frames to individual DSPs based on their UDP port

Chapter 2: Understanding TASK-6000 software architecture

number. All other traffic passes through to the VxWorks IP stack, so you can
implement protocols such as RTCP in the IOP.

Applications on the IOP can communicate with remote hosts (or the local host) via
IP, and the TASK-6000 IOP runtime library also contains functionality for
extending its API to a remote IP host.

Public Switched Telephone Network (PSTN)

TASK-6000 software interfaces with the PSTN using the features of the E1/T1 line
interface and HDLC controllers, which allow for implementations of ISDN and
Robbed Bit call control applications. The DSP algorithms support R1/R2 signaling,
DTMEF generation and detection, echo cancellation, along with various industry-
standard voice codecs.

Application Programming Interface (API)

The TASK-6000 API is presented at the IOP and is also reflected on the Host. In its
baseline form the API provides the tools you use to:

e Map a physical channel (T1 or E1 DSO or H.110 channel) to a DSP’s
virtual channel.

e Configure a DSP channel with a particular codec, echo canceller, tone detectors
and generators.

e RTP encode and decode a channel.

e Map an RTP-encoded channel to an RTP socket so that the socket is
transparently (to the user) connected to the DSP channel.

The API also includes provisions for non-voice data types, such as T.38 traffic and
V.90 data. Finally, the API is designed to be easily extensible so that you can add
future services with minimal impact to existing applications.

Objects

TASK-6000 defines a hierarchy of objects that describe software operation:

e Slot: Refers to a given IOP in a system. Slots are numbered from zero.

'% IOP functions do not specify a slot; all functions are assumed to operate
on the current slot. Host functions include the slot parameter in all
relevant functions.

e Unit: Usually refers to a DSP in a relative numbering system for each IOP in the
system. Units are numbered from zero. For IOP-based services such as stCas,
however, the unit parameter specifies the framer unit number.

e Channels: Usually refers to a virtual channel (see the following subsections). For
IOP-based services such as stCas, however, the channel parameter specifies the
physical channel. Channels are numbered from zero.

TASK-6000 software reference guide

[

Physical channels: Physical Channels are duplex TDM streams (DSOs)
associated with a hardware port. A device type (T1, E1, or H.100), unit
number, and timeslot uniquely identify a physical channel. Physical channels
are referred to only when setting up a call (via) or when sending or receiving
Channel Associated Signaling via the service.

Virtual channels: Virtual Channels are duplex paths through a DSP. They
are referenced by DSP unit number and channel. On one side of the DSP this
refers to the TDM timeslot connected to a TDM switch, and on the other
side to the channel number reported in network messages carrying
packetized data. All of the TASK services except those that deal with
physical channels (currently only stCas) are controlled and monitored via
virtual channels.

Channel groups: Virtual Channels are grouped by the DSP application based
on their function. For example, voice and fax. Each TASK module operates
on groups of virtual channels. The user application can change the channel
grouping dynamically using TASK API functions.

Services

Services are processing entities that operate on a data or signaling stream. Services
can be individually enabled and disabled, and have a particular position where they
fit into the data stream when enabled. When disabled they are bypassed as
necessary so that the data streams continue. Examples of services include voice
codecs, tone detectors and generators, packet builders and parsers, and alarm
detectors and generators.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Chapter 2: Understanding TASK-6000 software architecture

r-——-—-— - —-"-"-"-"—-"—-—-"—-"—" - — - — — — T
] [
| Echo TDM tone \ Events
TDM canceller detectors ! to user
inputand | | |
output | |
| codec- , RTP | Ethernet
encode encoder packets
| | to/from
[2 [Fast
| 1 | Packet
. Router
codec - | Jitter RTP
: f decode buffer decode |
[[
| TDM tone |
| generator |
L — o ___ 4

1 If the tone generator is enabled and active (cadence in progress) then the tone
generator output is connected to the TDM output. If the tone generator is inactive
(disabled or cadence finished) then the codec is connected to the TDM output.

2 If the codec is disabled, a silent sound source is used in its place.

A second tone generator and tone detector exist in the opposite directions, but are
omitted from this diagram for clarity.

Figure 2-2. Data path services

e Setting up a service: Most services must be configured before operation. To
configure a service, the application fills in a configuration structure and passes
the structure to the upConfigService function. This then uses the underlying
message API to get the configuration data to the correct processor and set up the
service.

The configuration of a service is private to a particular slot, unit, and channel,
and is persistent. The application can configure a service just once during
initialization, and then enable and disable the service as needed, or the
application can reconfigure the service every time it is needed. Configuring a
service also enables it.

e Caveats: To ensure that your applications are compatible with future versions of
TASK, take care to follow these guidelines:

e Reference data structure elements by name.

e Allocate memory for data structures using the sizeof(data structure
type) operator.

e (Clear the memory allocated for the data structure before filling in the
elements, so that any new elements are set to zero.

TASK-6000 software reference guide

[

10

Example

UP_CONFI G_SVC_MSG UT *pt Cf g;

pt Cfg = cal l oc(si zeof (UP_CONFI G_SVC MsG UT));

pt Cf g. t CodecConfi g. eCodec = ct Gr1lnu;

pt Cf g. t CodecConfi g.t CodecPar ans. t G7r11Par ans. eLaw = enunVULAW

pt Cf g. t CodecConfi g.t CodecPar ans. t G7r11Par ans. eVadEnabl e enunDi sabl ed;
pt Cf g. t CodecConfi g.t CodecPar ans. t G711Par ans. eBf nEnabl e enunEnabl ed;

e Codecs: TASK-6000 software API supports these voice codecs:

G.711 u-Law, G.711 A-Law, G.723.1 High Rate, G.723.1 Low Rate, G.729,
G.729A with Annex B.

‘% Some of these codecs require third-party licensing arrangements.

e VoIP: TASK-6000 software supports VoIP with RTP, UDP and Ethernet packet
building and parsing, and a Fast Packet Router that can forward over 20,000
packets in each direction for each IOP in the system.

e Telephony functions: The TASK-6000 software API supports these telephony
functions:

e VAD (Voice Activity Detection), CNG (Comfort Noise Generation), and
BFM (Bad Frame Masking) for G.711.

* G.165 echo cancellation with 32ms echo span.

e DTMF (Dual-Tone Multi-Frequency) detector, R1/R2 MF tone detector, and
CPT (Call Progress Tone) detector.

® General purpose tone generator with programmable levels and cadences.

e RTP (Real-time Transport Protocol) encoder and decoder, Ethernet/UDP
packet builder and parser.

e T1 and E1 channel associated signaling (CAS).

Inter-processor communication

TASK-6000 software communicates between processors in the system, and in
certain circumstances, between threads on the same processor via messages. The
messages structures are defined in the API, and functions exist to send and receive
messages on the Host, IOP, and DSP.

® Messages: Messages are generally of these types:

e Commands: The application sends commands to configure, enable, and
disable services, and to request status from them. Commands are also used
to configure and operate the peripheral devices on the IOP.

e Events: TASK software uses events, an asynchronous message mechanism,
to prevent the application thread from blocking on API functions. When an
API function requires another system processor to do some of the
processing, the API function creates a message, sends it to the other
processor using TASK’s messaging feature, and immediately returns to the
application thread. The message is delivered to the destination processor

Chapter 2: Understanding TASK-6000 software architecture

(IOP or DSP), where it is interpreted and acted upon. In response to some of
these messages, the destination processor communicates back to the
application by means of an event.

Host : IOP
Application ™ Application
> 2
6
Message S
handler A
3| |4
r = % | — 71
: Application :
| psp |
|

j—

. A function from the Host application sends a message to the IOP
2. The function immediately returns to the Host, reporting that the message was sent
successfully.
3. The IOP forwards the message to the DSP
4. The DSP receives the message, interprets it, performs required actions, and then
reports the status as an event to the IOP.
. The IOP forwards the event to the Host's Message Handler.
6. The Host's Message Handler receives and analyzes the event, performing any
necessary action.
Figure 2-3. Using events and message handlers

(8]

The application must register an appropriate event handler callback
function to receive the events. It is the responsibility of the user application
to keep track of which commands are outstanding and to associate the
returned events with their originating function calls. The events contain
identification information that can be helpful for this purpose, such as the
event message header which contains the slot, unit, and channel numbers, as
well as the event.

Control: Some events notify the application of the deferred results of
command messages. These can include acknowledgement or error reports.

Status: Events are also generated asynchronously by the operation of
various services in the system. For example, a DTMF detector on a DSP
generates events at the start and stop of a detected tone.

Callback functions: TASK software uses a simple mechanism to send messages
asynchronously to the user application. Messages are created by the TASK
software and then a user-designated handler function in the application is
called, passing a pointer to the message as a parameter. The user application
must register a handler function for each subsystem that can generate a
callback. This is done by means of API functions.

11

[

TASK-6000 software reference guide

[

12

It is important to note that the user’s event handler function executes in one of
the TASK threads on the local processor (IOP or host). The user should
ensure that:

e The handler function does not spend excessive amounts of time before
returning to TASK.

e The function always returns.

It should also be noted that resource locks can occur if the user’s handler
function calls another TASK function that may contend for an internal TASK
resource that is already held by the original TASK thread. This situation can be
avoided by employing additional user threads and some form of signaling (using
the appropriate Operating System features). The TASK API is “multi-thread
safe” and, in general, telecom applications benefit from having as many threads
as practical to accomplish their operation.

\
29y

Installing and configuring
TASK-6000 software

This chapter explains how to install your TASK-6000 software on a
Windows NT system.

You can order TASK software in these configurations:

TASK-6000 runtime kit: Provides the software required to run TASK
applications.

TASK-6000 development kit: Provides the tools required to write and debug
TASK Host and IOP applications.

TASK-6000 DSP development kit: Provides the tools required to write and
debug TASK DSP applications. This software also includes the TASK-6000
development kit.

The installation program (t6kinst.exe) installs the components needed for your
TASK software.

Requirements

Installing TASK software on your system requires:

A PC with a processor similar to or better than Pentium II 266 MHz.
A minimum 32 MB of DRAM.

A minimum 20 MB disk space.

A PC that runs Windows NT, version 4.0, with Service Pack 5.

Before you begin

Ensure that you are logged on with Administrator privileges.
Exit all programs prior to installing TASK software.

If your system already has TASK software installed, you must uninstall it using
one of these methods:

e If your system has TASK software version 2.x, remove it when prompted
during installation.

e If the system has an earlier version of TASK software, follow the steps
described in Uninstalling TASK software on page 17. After removing the
software, continue with the installation.

13

TASK-6000 software reference guide

I

Running the install program
To install TASK software:
Insert the TASK software CD-ROM into the CD-ROM drive.

14

1.
2.

Double-click t6kinst.exe from the Windows NT Explorer, then select one
of these:

Read release notes: Select this option to run Notepad and display
relnotes.txt, the release notes file.

This document contains the latest information about the release. You may
find it useful to print the release notes for future reference. When you finish
reading the file, select File>Exit. The install program displays.

If you don’t read the release notes at this time, you can access it at any time
from the InstallDinTASK6000\doc directory.

Install TASK6000: Select this option to install TASK software.

If a version of TASK 2.x software is already installed, the install program
prompts you to specify the installation method. To continue, go to step 3.

Otherwise, the install program displays a welcome screen followed by the
TASK software license agreement. To continue the installation, go to step 4.

Exit Installation: Select this option to leave the install program without
installing TASK software.

Select one of these:

Continue after Uninstall: The install program uninstalls the software. The
uninstall removes the TASK software.

'% The install program does not remove Hot Swap software. For
information about uninstalling Hot Swap software, see Uninstalling
Hot Swap on page 18.
When you uninstall TASK software using this method, Hot Swap should
also be reinstalled from the CD-ROM. This is explained in step 6.

'% If the uninstaller prompts to reboot, cancel the operation and
proceed with the installation.

After uninstalling TASK software, the installation continues.

Install Additional components: Installs the TASK software components that
you select. Select this option to add components not selected during the
original install.

The install program copies any duplicate file (a file with the same name and
path as a file to install) to the installation directory’s BACKUP folder.

Exit: The install program exits without installing TASK software.

If you selected either of the first two options, the install program displays a
welcome screen, followed by the TASK software license agreement.

Chapter 3: Installing and configuring TASK-6000 software

I

4. Read the agreement, then select one of these:

e Agree: Selecting this option means you accept the terms of the software
license agreement. The install program continues.

e Cancel: Selecting this option means you do not accept the terms of the
software license agreement. The install program exits.

If you agreed with the software licensing agreement, the install program
prompts you to identify a destination, or installation, directory.

5. Select a destination directory for TASK software files, then click the Next
button. The default is C:\.

Makefiles for Host and IOP development assume that the installation
directory is C:\.

When you choose C:\ as the installation directory, the install program extracts
certain files into the C:\Tornado2 directory. It is assumed that the Tornado
software is also installed under InstallDir\Tornado2 directory, such that the files
from the CD-ROM are extracted into the Tornado installation directory.

If Tornado was installed in a directory other than C:\ (for example,
D:\xyz\tornado2), or the software cannot install in the C:\ directory for other
reasons (such as space constraints), choose another directory for the TASK6000
installation (for example, InstallDir) and copy the files installed under
InstallDir\Tornado?2 to the Tornado installation directory (for instance, copy
files under C:\Tornado2 to D:\xyz\tornado2).

For Makefile setting changes required when TASK6000 is installed in a
directory other than C:\, see [OP application development on page 34.

The install program prompts you to choose the TASK components you want
to install.

6. Select the TASK components you want to install, then click the Next button:
e Hot Swap: Select this option if your system is Hot Swap capable.

‘% Select this option if you are installing TASK software, and version 2.x
was uninstalled prior to installation.

The TASK uninstall program does not uninstall Hot Swap, but does
remove certain registries required by TASK to support Hot Swap.
Selecting the Hot Swap option re-installs these registries.

* Runtime kit: Installs the software required to run TASK applications.

* Development kit: Installs the files required to write and debug TASK Host
and IOP applications. This option displays only in the TASK-6000
development kit configuration.

* DSP development kit: Installs the files required to write and debug TASK
DSP applications. This option includes the Development kit and displays
only in the TASK-6000 DSP development kit configuration.

The install program prompts you to select a program group name.

15

TASK-6000 software reference guide

I

16

7.

8.

10.

11.

12.

Do one of these:

e Accept the default group name. This method may reduce confusion as the
program name will match TASK documentation.

e Enter a program group name. This method can provide a program name
that has meaning to you.

When you click the Next button, install creates the directory you specified, then
installs the TASK software files.

If the installation program is cancelled at any point after this step, the
installation program prompts you to perform rollback. Select “Yes” to clean up
the partial installation.

If you chose to install RadiSys Hot Swap for Windows NT 4.0 software, the
TASK installation program starts the Hot Swap installation program, and the
Hot Swap installation welcome screen displays. To continue, go to step 9.

Otherwise, the install prompts you to view the relnotes.txt file. This file
contains the latest information about the TASK6000 2.x release. To continue
the installation, go to step 13.

Select one of these:
e Next: Installs Hot Swap software.

e Cancel: Exits only the Hot Swap installation. The TASK installation
continues.

The install program prompts you to identify a destination directory.

Select a destination directory for Hot Swap software files, then click the Next
button. The default is C:\Program Files\HotSwap.

The install program prompts you to confirm your choices before installation.
Select one of these:
e Next: Continues installing Hot Swap software.

e Back: Returns to the previous screen where you can change installation
information.

e Cancel: Exits only the Hot Swap installation. The TASK installation
continues.

After selecting Next, the install program installs the Hot Swap software, and
then displays the readme.txt file. Select next after reading the displayed text.

The install program prompts you to restart the computer. Skip this step by
selecting “Cancel” since the TASK installation program provides you with
the same option at the end of installation.

The installation is now complete, and the installation program prompts you to
select “Finish”.

Click the “Finish” button.

Chapter 3: Installing and configuring TASK-6000 software

I

Next, install prompts you to view the relnotes.txt file. This file contains the
latest information about the TASK6000 2.x release.

13. Choose one of these:

® View Release notes: Notepad runs and the relnotes.txt file displays. You may
find it useful to print the relnotes.txt file for future reference. When you
finish reading the file, select File>Exit. After reading the document, you can
choose to Exit the installation by selecting Exit Install.

e Exitinstall: If you don’t read the relnotes.txt file at this time, you can access
it at any time from the InstallDinTASK6000\doc directory.

14. Restart your system using one of these methods:
e Select OK at the last screen. The install program restarts your system.
e Select Cancel to restart your system at a later time.

You must restart your system before you can run TASK user applications.

If you installed the DSP Development kit, you must also define TASK_DIR, an
environment variable, as one of the System variables. Set the variable to the
InstallDiN\TASK6000 directory path by selecting Start>Settings>Control
Panel>System>Environment. If the variable is already defined, change it to the new
installation path. Otherwise, add the variable with the current installation path
under the values field. For example, if the installation path was at C:\, then set the
TASK_DIR to C:\TASK6000.

Uninstalling TASK software

Automatic uninstall (recommended)
To automatically uninstall TASK software, use one of these methods:

® Go to the Control panel and select Add/Remove programs, then select one of
these from the list that displays:

e TASK6000 (displays if Task 2.0 was previously installed).

e TASK-6000 and SPIRIT-6000 BSP (displays if Task 1.2 Beta 10 was
previously installed).

® During installation, select Continue after Uninstall. This option is available only
if the TASK software you want to uninstall is version 2.0 or later.

The uninstall program removes all the files installed by the CD-ROM, including
files with same name as those installed by the CD-ROM—even if updated after
installation. After uninstalling TASK software, only new files added to the
installation directory remain.

The TASK uninstall program does not uninstall Hot Swap, but does remove certain
registries required by TASK to support Hot Swap. If you install TASK again, you
must select the Hot Swap option to re-install these registries.

17

TASK-6000 software reference guide

I

Uninstalling Hot Swap

If you installed Hot Swap, you must also complete these steps:
1. Select Start>Settings>Control Panel>Add\Remove Programs.
2. Select the Hot Swap 1.10 for Windows NT option.

3. Click the Add/Remove button.

18

Chapter 3: Installing and configuring TASK-6000 software

I

Manual uninstall procedure
The TASK uninstall program relies on files created during installation. If these files

are accidentally deleted, you must manually uninstall the software.

% Use the manual uninstall only when you cannot uninstall the software with
the Automatic Uninstall methods.
To manually uninstall TASK software:

1. Remove TASK software files, located in the directory you specified during
installation.

Two subdirectories, TASK6000 and Tornado2, must be removed. However, if
these directories existed prior to installation and had some files already present
in them, or were added after the installation, you should not remove those files.

For a list of files added by the installation program, see TASK-6000 files on
page 20.

2. Remove TASK entries from Start menu:

A. Right-click the Start menu button, then select Explore all users. The Start
Menu folder displays.

B. Right-click the RadiSys TASK6000 icon and select Delete.
3. Stop the 1960 driver:

A. Select Start>Settings>Control Panel>Devices and select I960RP from the
device list.

B. Select Stop to halt the driver.

4. Remove the following registry keys using regedit:

HKEY_CLASSES_ROOT\TASK6000
HKEY_LOCAL_MACHINE\System\Services\CurrentControlSet\Services\i9%60RP
HKEY_LOCAL_MACHINE\System\Services\ControlSet001\Services\i960RP
HKEY_LOCAL_MACHINE\System\Services\ControlSet002\Services\i960RP
HKEY_LOCAL_MACHINE\System\Services\ControlSet003\Services\i960RP
HKEY_LOCAL_MACHINE\Software\RadiSys\HotSwap\Configuration\i9%60RP

'% Your system may not include all these registries.

5. Remove this driver file:
%Sy st emRoot % syst enB2\ dri ver s\i 960r p. sys
Remove Hot Swap as described in Uninstalling Hot Swap on page 18.

7. Reboot the system.

19

TASK-6000 software reference guide

I

TASK-6000 files

Hot Swap

20

This section lists all files installed as part of TASK-6000 software. All the file paths
are listed relative to the directory of installation.

For a detailed list of files by product configuration, go to the topic below:

For information about... Go to this page...
HOOt QWD e 20
RUNTIME KIT 1uvviiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e e ettt bbb e beereeeaeeaaeaeens 21
Development Kit..........ouiieeee e 23
DSP development Kit............oooiiiiiiiiiiiccc e 26

% For a complete description of RadiSys Hot Swap for Windows NT software,
see Hot Swap for Windows NT (RadiSys part no. 07-1080-00). The Hot Swap
install program copies this file to InstallDir\hotswap.pdf.

Type Files

Documentation InstallDir\readme.txt
InstallDir\hotswap. pdf
Install utility InstallDir\setup.exe

Uninstall utility InstallDir\unwise.exe
InstallDir\unwise.ini

Drivers InstallDir\hbus.sys
%SystemRoot%\system32\drivers\hsbus.sys

Services InstallDir\bin\hsmgr.exe
%SystemRoot%\system32\hsmgr.exe

Hot Swap API InstallDir\hsmgrint.dll
InstallDir\inc\hsmgrint.h
InstallDir\lib\hsmgrint.lib
%SystemRoot%\system32\hsmgrint.dll

InstallDir is the directory in which RadiSys Hot Swap software is installed.

Chapter 3: Installing and configuring TASK-6000 software

I

Runtime kit

Type Files

Documentation InstallDiN\TASK6000\Doc\Taskman.ico
InstallDir\TASK6000\Doc\TaskMan.pdf
InstallDir\ TASK6000\Doc\sp6040 _hwref.pdf
InstallDir\TASK6000\Doc\relnotes.txt

Installation InstallDiN\TASK6000\misc\UNWISE .EXE
ma nogement InstallDir\TASK6000\misc\spdiag.ico
information InstallDirTASK6000\misc\hwref.ico

InstallDir\ TASK6000\misc\hsetup.exe
InstallDi\TASK6000\misc\u_guide.ico
InstallDir\ TASK6000\misc\uninst.ico
InstallDir\ TASK6000\misc\Taskdiag.ico
InstallDir\ TASK6000\misc\Taskman.ico
InstallDir\TASK6000\misc\Taskact.ico
InstallDir\ TASK6000\misc\installed_comp
InstallDir\TASK6000\misc\UNWISE.INI
InstallDi\TASK6000\misc\INSTALL.LOG

DSP mulcoders InstallDir\ TASK6000\Dsp\UpaApp\mulcoder.ntb
InstallDir\TASK6000\Dsp\UpaApp\mulcoder.out
InstallDir\ TASK6000\Dsp\UpaApp\mulcoder.ttb

IOP image InstallDir\Tornado2\target\config\sp6k\vxWorks

Windows NT DLLs InstallDi\TASK6000\Host\Nt\Bin\hsmgrint.dll
InstallDir\TASK6000\Host\Nt\Bin\TASKHOST.dII

Utilities InstallDir\TASK6000\Host\Nt\Bin\spék _util.exe
Windows NT InstallDir\ TASK6000\Host\Nt\Bin\I?60RPsys
driver %SystemRoot%\system32\drivers\I960rp.sys

21

TASK-6000 software reference guide

I

22

Type

Files

Diagnostics

InstallDi\TASK6000\Host\Nt\Bin\rmondb.exe
InstallDir\ TASK6000\Host\Nt\Bin\diag
InstallDir\TASK6000\Host\Nt\Bin\diag\céxcodec
InstallDi\TASK6000\Host\Nt\Bin\diag\céxcodec.hlp
InstallDi\TASK6000\Host\Nt\Bin\diag\céxmem
InstallDiTASK6000\Host\Nt\Bin\diag\céxmem.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\e 1t1dq
InstallDir\TASK6000\Host\Nt\Bin\diag\e 1t1dq.hlp
InstallDir\ TASK6000\Host\Nt\Bin\diag\hs_adiag
InstallDir\TASK6000\Host\Nt\Bin\diag\Hs_adiag.hlp
InstallDir\ TASK6000\Host\Nt\Bin\diag\hs_targ
InstallDi\TASK6000\Host\Nt\Bin\diag\iopmem
InstallDi\TASK6000\Host\Nt\Bin\diag\iopmem.hlp
InstallDi\TASK6000\Host\Nt\Bin\diag\iopper
InstallDir\TASK6000\Host\Nt\Bin\diag\iopper.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\t8 100
InstallDir\TASK6000\Host\Nt\Bin\diag\t8 100.hlp
InstallDi\TASK6000\Host\Nt\Bin\diag\tiolan
InstallDir\TASK6000\Host\Nt\Bin\diag\Tiolan.hlp
InstallDi\TASK6000\Host\Nt\Bin\diag\tiowan
InstallDi\TASK6000\Host\Nt\Bin\diag\Tiowan.hlp

InstallDir is the directory in which RadiSys TASK software is installed.

Chapter 3: Installing and configuring TASK-6000 software

Development kit

Type

Files

Documentation

InstallDiN\TASK6000\Doc\Taskman.ico
InstallDir\TASK6000\Doc\TaskMan.pdf
InstallDir\ TASK6000\Doc\sp6040 _hwref.pdf
InstallDir\TASK6000\Doc\relnotes.txt

Installation
management
information

InstallDir\TASK6000\misc\UNWISE.EXE
InstallDir\TASK6000\misc\spdiag.ico
InstallDir\ TASK6000\misc\hwref.ico
InstallDir\TASK6000\misc\hsetup.exe
InstallDi\TASK6000\misc\u_guide.ico
InstallDir\TASK6000\misc\uninst.ico
InstallDir\ TASK6000\misc\Taskdiag.ico
InstallDir\TASK6000\misc\Taskman.ico
InstallDir\TASK6000\misc\Taskact.ico
InstallDir\ TASK6000\misc\installed_comp
InstallDir\TASK6000\misc\UNWISE.INI
InstallDi\TASK6000\misc\INSTALL.LOG

Example
Applications: Host

InstallDir\ TASK6000\Examples\Upa\UpaHostApp\Bin\UpaHostApp.exe
InstallDINTASK6000\Examples\Upa\UpaHostApp\UpaHostApp.h
InstallDir\ TASK6000\Examples\Upa\UpaHostApp\UpaHostApp.dsw
InstallDINTASK6000\Examples\Upa\UpaHostApp\UpaHostApp.dsp
InstallDir\ TASK6000\Examples\Upa\UpaHostApp\UpaHostApp.c

Example
Applications: IOP

InstallDir\TASK6000\Examples\Upa\UpalopApp\lopAppLoader.c
InstallDir\ TASK6000\Examples\Upa\UpalopApp\UpalopApp.c
InstallDi\TASK6000\Examples\Upa\UpalopApp\UpalopApp.dsp
InstallDir\ TASK6000\Examples\Upa\UpalopApp\UpalopApp.dsw
InstallDir\TASK6000\Examples\Upa\UpalopApp\Bin\lopAppLoader.exe

23

I

TASK-6000 software reference guide

I

24

Type

Files

IOP libraries and
object files

InstallDi\TASK6000\lop\VxWorks\Lib\Dsplo.a
InstallDir\TASK6000\lop\VxWorks\Lib\E 1t1.a
InstallDi\TASK6000\lop\VxWorks\Lib\Hdlc.a
InstallDir\ TASK6000\lop\VxWorks\Lib\lopDma.a
InstallDir\TASK6000\lop\VxWorks\Lib\T8100.a
InstallDir\ TASK6000\lop\VxWorks\Lib\Tasklop.a
InstallDir\TASK6000\lop\VxWorks\Lib\Upalop.a
InstallDir\Tornado2\target\config\sp6k\dataSegPad.o
InstallDir\Tornado2\target\config\sp6k\sysALib.o
InstallDir\Tornado2\target\config\spék\sysLib.o
InstallDir\Tornado2\target\config\sp6k\usrConfig.o
InstallDir\Tornado2\target\config\spék\if fei.o
InstallDir\Tornado2\target\config\sp6k\Rominit.s
InstallDir\Tornado2\target\config\sp6k\Sysalib.s
InstallDir\Tornado2\target\config\sp6k\Pciutil.o
InstallDir\Tornado2\target\config\sp6k\Rppcilib.o

Host library

InstallDiNTASK6000\Host\Nt\lib\taskhost.lib

Chapter 3: Installing and configuring TASK-6000 software

I

Type Files

Sources InstallDir\TASK6000\lop\VxWorks\Application\tasklopApp.c
InstallDir\Tornado2\target\config\spék\sysSerial.c (null file)
InstallDir\Tornado2\target\config\spék\sysNetif.c (null file)
InstallDir\Tornado2\target\config\sp6k\Syslib.c (null file)
InstallDir\Tornado2\target\config\sp6k\sysEeprom.c (null file)
InstallDir\Tornado2\target\config\spé6k\rpQueuelib.c (null file)
InstallDir\Tornado2\target\config\sp6k\Rppcilib.c(null file)
InstallDir\Tornado2\target\config\sp6k\Rpintlib.c (null file)
InstallDir\Tornado2\target\config\sp6k\Rpdmalib.c (null file)
InstallDir\Tornado2\target\config\sp6k\Pciutil.c (null file)
InstallDir\Tornado2\target\config\sp6k\pcilomapLib.c (null file)
InstallDir\Tornado2\target\config\sp6k\iopSupport.c (null file)
InstallDir\Tornado2\target\config\sp6k\if_fei.c (null file)
InstallDir\Tornado?2\target\config\all\dataSegPad.c
InstallDir\Tornado2\target\config\all\version.c

InstallDir\Tornado2\target\config\all\usrConfig.c
InstallDir\Tornado2\target\src\usr\usrLib.c
InstallDir\Tornado2\target\config\spék\Target.bat
InstallDir\Tornado2\target\config\spbk\sysEeprom.h
InstallDir\Tornado2\target\config\sp6ék\startit.tcl
InstallDir\Tornado2\target\config\spék\setit.tcl
InstallDir\Tornado2\target\config\spé6k\sdm.h
InstallDir\Tornado2\target\config\spb6k\rpQueuelib.h
InstallDir\Tornado2\target\config\sp6k\Rppci.h
InstallDir\Tornado2\target\config\sp6k\Rpint.h
InstallDir\Tornado2\target\config\sp6k\Rpdmalib.h
InstallDir\Tornado2\target\config\sp6k\Radtimer.h
InstallDir\Tornado2\target\config\sp6k\Pcilib.h
InstallDir\Tornado2\target\config\sp6k\pcilomapLib.h
InstallDir\Tornado2\target\config\sp6k\Pci_devs.h
InstallDir\Tornado2\target\config\spék\pc.h
InstallDir\Tornado2\target\config\sp6k\|960rx.h
InstallDir\Tornado2\target\config\sp6k\Dsputil.h
InstallDir\Tornado?2\target\config\sp6k\Config.h
InstallDir\Tornado2\target\h\drv\netif\if_fei.h
InstallDir\Tornado2\target\config\sp6k\Makefile.app
InstallDir\Tornado2\target\config\sp6k\Makefile
InstallDir\Tornado2\target\config\spék\saveobj
InstallDir\Tornado2\target\h\make\defs.bsp
InstallDir is the directory in which RadiSys TASK software is installed.

25

TASK-6000 software reference guide

I

DSP development kit

Type Files

Documentation InstallDiN\TASK6000\Doc\Taskman.ico
InstallDir\TASK6000\Doc\TaskMan.pdf
InstallDir\ TASK6000\Doc\sp6040 _hwref.pdf
InstallDir\TASK6000\Doc\relnotes.txt

Installation InstallDiN\TASK6000\misc\UNWISE .EXE
management InstallDir\TASK6000\misc\spdiag.ico
information InstallDirTASK6000\misc\hwref.ico

InstallDir\TASK6000\misc\hsetup.exe
InstallDi\TASK6000\misc\u_guide.ico
InstallDir\TASK6000\misc\uninst.ico
InstallDir\ TASK6000\misc\Taskdiag.ico
InstallDir\TASK6000\misc\Taskman.ico
InstallDir\TASK6000\misc\Taskact.ico
InstallDir\ TASK6000\misc\installed_comp
InstallDir\TASK6000\misc\UNWISE.INI
InstallDi\TASK6000\misc\INSTALL.LOG

Libraries InstallDir\ TASK6000\Dsp\Rsys Task\Lib\kernel.lib
InstallDi\TASK6000\Dsp\RsysTask\Lib\céxrts.lib
InstallDi\TASK6000\Dsp\UpaApp\Lib\Dtmf.lib
InstallDir\ TASK6000\Dsp\UpaApp\Lib\Tonedet.lib
InstallDi\TASK6000\Dsp\UpaApp\Lib\rtp.lib
InstallDi\TASK6000\Dsp\UpaApp\Lib\R 1r2mf.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\PktFifo.lib
InstallDir\ TASK6000\Dsp\UpaApp\Lib\G711.lib
InstallDir\ TASK6000\Dsp\UpaApp\Lib\Echocanc.lib
InstallDi\TASK6000\Dsp\UpaApp\Lib\Cpm.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Tonegen.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Bfm.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Agcvox.lib

26

Chapter 3: Installing and configuring TASK-6000 software

I

Type Files

Sources InstallDi\TASK6000\Dsp\UpaApp\src\include\VOXTypedef.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\Vadstr.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\UpaPacket.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\upadsp.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\UpaDef.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\typedef.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\Tongen.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\tonedet.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\tasktapi.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\task.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\Tapi.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\rtpDsp.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\r1r2proto.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\R 1r2mf.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\R 1r2def.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\Proto.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\lpUtil.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\G711.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\Ecproto.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\Eciostrc.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\Echostrc.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\Ecdefine.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\Dtmfu.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\DspFifo.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\defs.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\Def.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\cpmu.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\Cpmdef.h
InstallDi\TASK6000\Dsp\UpaApp\src\include\Coder.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\BFMTypedef.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\BFMBasic_op.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\BFMasking.h

27

TASK-6000 software reference guide

I

Type

Files

Sources (cont’d)

InstallDir\ TASK6000\Dsp\UpaApp\src\include\basic_op.h
InstallDir\ TASK6000\Dsp\UpaApp\src\include\Agcvox.h
InstallDi\TASK6000\Dsp\UpaApp\src\R 1r2mf

InstallDir\ TASK6000\Dsp\UpaApp\src\R1r2mfA\Zr1r2mf.c
InstallDir\TASK6000\Dsp\UpaApp\src\R1r2mARTR2Tbl.h
InstallDir\ TASK6000\Dsp\UpaApp\src\R 1r2mfAARTR2Stmchn.c
InstallDi\TASK6000\Dsp\UpaApp\src\R 1r2mfA\R 1r2findkey.c
InstallDir\ TASK6000\Dsp\UpaApp\src\msgDbg
InstallDir\TASK6000\Dsp\UpaApp\src\msgDbg\msgDbg.c
InstallDi\TASK6000\Dsp\UpaApp\src\Cpm
InstallDi\TASK6000\Dsp\UpaApp\src\Cpm\Zcpm.c
InstallDir\TASK6000\Dsp\UpaApp\src\Cpm\Cpmtbl.h
InstallDir\ TASK6000\Dsp\UpaApp\src\NoCoder
InstallDir\ TASK6000\Dsp\UpaApp\src\NoCoder\ZnoCoder.c
InstallDir\TASK6000\Dsp\UpaApp\src\G7 11
InstallDi\TASK6000\Dsp\UpaApp\src\G7 1 1\Zg711Enc.c
InstallDir\TASK6000\Dsp\UpaApp\src\G7 1 1\Zg7 1 1Dec.c
InstallDi\TASK6000\Dsp\UpaApp\src\G7 1 1\Vadtbl.dat
InstallDi\TASK6000\Dsp\UpaApp\src\G7 1 1\law.dat
InstallDi\TASK6000\Dsp\UpaApp\src\G7 1 1\Bfmtab.h
InstallDir\ TASK6000\Dsp\UpaApp\src\pkt

InstallDir\ TASK6000\Dsp\UpaApp\src\pkt\Zpktrecv.c
InstallDi\TASK6000\Dsp\UpaApp\src\pkt\Zpktsend.c
InstallDir\ TASK6000\Dsp\UpaApp\src\Echo
InstallDi\TASK6000\Dsp\UpaApp\src\Echo\zecho.c
InstallDir\ TASK6000\Dsp\UpaApp\src\Dtmf
InstallDi\TASK6000\Dsp\UpaApp\src\Dtmf\Ztonedet.c
InstallDir\ TASK6000\Dsp\UpaApp\src\Dtmfitonetbl.dat
InstallDi\TASK6000\Dsp\UpaApp\src\Serial

InstallDir\ TASK6000\Dsp\UpaApp\src\Serial\zserial.c
InstallDi\TASK6000\Dsp\UpaApp\src\Tonegen
InstallDir\ TASK6000\Dsp\UpaApp\src\Tonegen\dB2lin.h
InstallDi\TASK6000\Dsp\UpaApp\src\Tonegen\Tonegen.dat
InstallDir\ TASK6000\Dsp\UpaApp\src\Tonegen\Ztonegen.c
InstallDi\TASK6000\Dsp\UpaApp\src\UpaDspCirl
InstallDir\ TASK6000\Dsp\UpaApp\src\UpaDspCtr\UpaDspCitrl.c

Configuration files

InstallDi\TASK6000\Dsp\UpaApp\config.cfg
InstallDir\ TASK6000\Dsp\UpaApp\Board.cfg

Composer

InstallDi\TASK6000\Host\Nt\Bin\compose.exe

InstallDir is the directory in which RadiSys TASK software is installed.

28

\
29y

Developing Host and
IOP applications

This chapter describes how to write a simple Voice-Over-Internet-Protocol (VoIP)
application. It explains what you must do to create IOP-based applications that run
under the VxWorks real-time OS.

The sample application demonstrates how the SPIRIT board can conduct voice
channels over a network and shows what’s needed to establish a UPA channel with
an enabled service, receive channels status, and control its behavior. Different DSP
units, channel numbers and predefined set of codecs are used to demonstrate the
SPIRIT board’s ability.

v For a copy of this application in ASCII format, see these files in the
InstallDir/TASK6000/Examples/Upa/UpalopApp directory:

* lopApploader.c
* UpalopApp.c

Host-based application rules differ only slightly and are covered in a separate
paragraph.

For information about... Go to this page...
Developing the Host application (lopAppLoader.c)........ccooeevviiiiiiiiiiiiiiiiiiiiee e, 30
Initialize the HOSt driver..........eiiiiiiiie e 30
Set up message haNAIErsuuvveeiiiiiiiiii e, 30
INitiAlize UPA STrUCTUIES.....ovviiiiiiiieceeeeee e 30
Load and run applicAtions............coooiiiiiiiiiiiee e 30
Developing the IOP application (UpalopApp.C)....cccovveeiiieiiieiiiiiiiireeeer e 31
Initialize the TOP drivereiiiiii e 31
Set up mMessage NaNAIErsuviiiiiiiiiiiiiiiiieeee e 31
CoNfIQUIE SEIVICESoiiii i 32
Create data paths ... 32
Building Host and IOP applications............uueiveiiiiiiiiiiiiiiiiiece e 33
NAMING CONVENTIONS ..tviiiiiiiiiiiieeieeeeeeeee ettt e eeeeeaeaeeeeeseeseesesenesennannes 34
Host application developmentuuuiiiiiiiiiii e, 34
IOP application developmentouuieiiiiiiii e 34
Sample code: Host application (lopAppLoader.C).........uvvvviiiiiiiiiiiiiiiiiiiiiiciccciinn, 36
Sample code: IOP application (UpalopAPP.C) ...eeuuviuiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeceii, 39

29

TASK-6000 software reference guide

I

Developing the Host application (lopAppLoader.c)

Initialize the Host driver

The Host software must first initialize the host driver, as shown in Initializing the
host driver on page 36.

Set up message handlers

After initializing the host driver, the application sets a UPA event handler (a
function to call whenever a UPA event occurs). In our sample application, the
handler waits for an indication that the DSP is running (see the hostRunProg
function description below).

The Host application creates Win32 events, ghlopRunning and ghDspRunning, to
signal that a particular IOP or DSP is running, and then sets these flags:

e etCommandAck: Specifies whether DSP should acknowledge commands sent to
it from IOP or host.

e ectEventForwarding: Specifies whether IOP is to forward UPA events to the
Host.

e etLanControl: Specifies whether the Host sends control messages to the IOP via
the Local Area Network or via the PCI bus. You must set this field to
enumNoLanCont r ol 53 TASK does not support LAN-based messaging.

For sample code, see Setting up message handlers on page 36.

Initialize UPA structures

The host application initializes UPA structures on the host and informs the IOP of
its IP address, as shown in Initializing UPA structures on page 36

Load and run applications

30

The host application retrieves system information, such as the number of boards
plugged into the system, and the specifics of each board. For sample code, see
Loading and running applications on page 37.

The VxWorks image resides in a file on the host. The host application loads each
IOP with the same image. For sample code, see Loading the VxWorks image on
[OPs on page 37.

The HOST waits for an indication from each IOP that it is running, as shown in
Waiting for IOP response on page 38.

Finally the host loads the DSP image “mulcoder.out” to each DSP, sends a
command to DSP to start the image, and waits until it receives feedback from DSP
that it is running. For sample code, see Loading mulcoder.out on page 38.

Chapter 4: Developing Host and IOP applications

I

Developing the IOP application (UpalopApp.c)

The entry point for our sample IOP application is the function “idiag()”.

Initialize the IOP driver

idiag initializes the IOP driver by calling iopInit, which creates message queues, sets
interrupt vectors, and so on, as shown in Calling ioplnit on page 39

The upStart function initializes UPA structures on the IOP, as shown in Calling
upStart on page 39

The IOP application then configures the on-board peripherals by doing
the following:

e Assigns default values to T8100 registers.
e Sets T8100 clocks.
e Configures T1 structures.

For sample code, see Configuring on-board peripherals on page 40.

Set up message handlers

If the application is intended to react to various UPA events, it must install an event
handler (callback function), as described in Installing event handlers (callback
functions) on page 41.

In this case, CasEventMsgHandler is a function that establishes and tears down
voice channels in response to OFF-Hook and ON-Hook events.

Upon UPA CAS event, a callback CasEventHandler() is called. It analyzes the
ABCD bits of the CAS event to determine if it was an OFF HOOK or ON HOOK
CAS event. Information about time-slot and the framer port on which the CAS
event has happened is passed to CasEventHandler() function.

In the case of an OFF HOOK event, the functions CreateFastPacketOut and
CreateFastPacketIn are called. CreateFastPacketOut enables transmit direction on a
particular channel.

Since the SPIRIT board has four framer and four DSPs capable of running up to
24 channels, the sample application directly maps framers to DSPs and time-slots to
virtual channel numbers. For example, if an OFF HOOK event happens on framer 1
time-slot 9, the application sets up channel 9 on DSP 1. This is accomplished by
making the appropriate TDM connection using the IOP’s T8105 switch.

For sample code, see Connecting the TDM to IOPs on page 41.

31

TASK-6000 software reference guide

I

Once the TDM connection is made, the application calls upEnableChannel to
enable bidirectional voice data flow to and from the DSP, as described in Enabling
bi-directional voice data flow to and from the DSP on page 41.

Configure services

At this point the application configures services on DSP for the outbound direction
(toward the IP cloud). The sample application chooses a G.711 voice codec, Echo
Cancellation, and RTP Encoder. For sample code, see Configuring services on
page 42.

Create data paths

32

Once the services are configured, the application creates a data path between an
outgoing RTP channel running on a DSP and the IOP driver’s network packet
routing component. For simplicity, the sample application assumes operation over a
private LAN; each IOP assumes that its peer IP address is equal to its own address
with the least-significant bit toggled. For sample code, see Creating a data path
between an outgoing RTP channel running on a DSP and the IOP driver’s network
packet routing component on page 43.

The application calls CreateFastPacketln to enable the receive direction on the
channel. Time-slots are mapped to virtual channels in the same fashion as for
CreateFastPacketOut and the T8105 switch makes another TDM connection for
this direction of voice data flow. For sample code, see Enabling the receive direction
on the channel on page 44.

The application then initializes the RTP decoder, as shown in Initializing the RTP
decoder on page 45.

Finally the sample IOP application creates a data path between an inbound RTP
channel running on a DSP and the IOP driver’s network packet routing component,
as shown in Creating a data path between an inbound RTP channel running on a
DSP and the IOP driver’s network packet routing component on page 45

The receive direction is now initialized.

When an OFF HOOK event occurs on both IOPs, the application establishes VoIP
call across the Local Area Network.

When an ON HOOK event occurs on either IOP, the application tears down the
channels by calling functions TerminateFastPacketOut and TerminateFastPacketIn,
which disable services. As a final step, the application disables the virtual channel.

Chapter 4: Developing Host and IOP applications

I

Building Host and IOP applications

The TASK6000 2.x distribution for Host and IOP development kit includes the
Microsoft Visual C++ project files for Host applications and Makefiles for IOP
applications. This section explains the development environment setup for Host and
IOP applications. The next figure identifies the locations of the files that you need
to use to compile the application.

EI{:l Examples
=1 Upa
{:I UpaHostipp
-1 Upalophpp
=27 Host
=03 M
{27 Bin

Host examyie gopdcation
FOF axamyie gamication

Mmciude fies far Host
gefainnment

23 IncComman
=-1 lop

=3 CommonSie
E El{:l Dirivers

{:l [nclude
E-1 Wewiarks

{1 Application

| dholigs fiss for JOP
devaianment

Litwary fles far 700

El{:l Tazklop
C] Inchude —

Sl ation:

El{:l pa

----- 23 Inchude

=] Tomado?
El{:l target
El{:l config
] al
=] spkk

{:' h
] s

Tarnaan dvectory

Figure 4-1. Location of files required to compile the application

33

TASK-6000 software reference guide

I

Naming conventions

The directory under which TASK6000 and Tornado2 directories are installed is
referred to as InstallDir in the following sections.

The directory under which tornado was installed, i.e., the directory under which the
Tornado2 directory was installed by the original Tornado installation CD is referred
to as TornadoDir.

Host application development

The host example application is available under
InstallDiNTASK6000\Examples\Upa\UpaHostApp. The Microsoft Visual C++
project file contains the configurations required for making the build. Please make
sure that you use similar configurations in the host application developed.

The include file directories are marked in the figure.
The following library files are available for Host application development

Taskhost.dll, hsngrint.dll (lnstallDir\TASK6000\ Host\ Nt\ Bi n)
Taskhost.lib (used to conpile the application,
I nstal | Di r\ TASK6000\ Host\ Nt \ | i b)

The VxWorks image to be used with the host application is available in
InstallDiNTASK6000\lop\VxWorks\.

IOP application development

34

The application lopAppLoader.exe (located in
InstallDiNTASK6000\Examples\Upa\UpalopApp\) loads the bootable image (with
the filename “vxworks”) to the IOP.

The library files required to make a bootable VxWorks image are available under
InstallDiN\Tornado2\target\config\sp6k.

A sample makefile is provided along with the example application (UpalopApp).
The sample Makefile provides example build and clean clauses for the example
application. The installation CD extracts into the system a set of files meant to be
under the Tornado distribution directory. The default setup expected from the
installation system is that Tornado is installed in the C drive, and the Tornado2
directory path is C:\Tornado2.

The installation CD extracts files into this directory assuming that this directory
already exists. If this directory is located in another location, say for example D:,
install the software with destination directory as D: instead of C:. This ensures that
the Tornado files from the CD are extracted to the right directory. If you cannot
select a directory such that the Tornado files are extracted in the same path as the
Tornado distribution files, you should manually copy these files from the
installation directory into the Tornado distribution directory.

Copy all the files under InstallDir\Tornado2 to TornadoDir\Tornado2.

Change the makefiles such that PACE_PATH points to the location of
InstallDir\TASK6000 and WIND_BASE as <TORNADO_ DIR>\Tornado?2.

Chapter 4: Developing Host and IOP applications

I

Special note for IOP applications

The CD contains certain object files extracted into the sp6k directory under
InstallDir\tornado2\target\config. These files are required for building the VxWorks
image. Use a clean clause similar to the one provided in the sample Makefile
(task6000_clean). This backs up the object files before cleaning the build
environment and the restores these files after the end of “clean” clause. This is
required because the “clean” clause provided inside the makefiles of Tornado
distribution clean all the object files including the one provided with the TASK6000
2.X distribution, and these object files cannot be re-built using the TASK6000 2.X
distribution files.

35

9¢

Sample code: Host application (lopAppLoader.c)

Initializing the host driver

/1 Initialize host driver
if(hostlnit() != SUCCESS)
{
printf("\nUpaHost App ==> ** ERROR ** Failed to initialize Host Driver - Exiting\n");
return(UP_FAI LURE) ;
}

Setting up message handlers

/1 Set an event handler to process any events received fromeither the | OP or DSP
upSet Event Handl er (UpaEvent Handl er) ;

/1 Set up an automatically resettable event, signalled when an individual |1OP runs.
ghl opRunni ng = Creat eEvent (NULL, FALSE, FALSE, NULL);

/1 Set up an autonmtically resettable event, signalled when an individual DSP runs.
ghDspRunni ng = CreateEvent (NULL, FALSE, FALSE, NULL);

menset (&t opConfig, (int)NULL, sizeof(UP_I OPSYSCONFI G ST));
st 1 opConfi g. et CommandAck = enuntnabl ed;

st 1 opConfi g. et Event Forwar di ng = enunEnabl ed;

st 1 opConfi g. et LanCont rol = enumNoLanControl ;

Initializing UPA structures

/1 Call Up Start and pass any IOP Initialization code that nay have been provi ded.
i f(upStart(&stlopConfig) != UP_SUCCESS)

{
printf("\nUpaHost App==> ** ERROR ** Unable to Start UPAn");
}
else if(!ilOPS)
{

printf("\nUpaHost App==> UPA started with No Ethernet Adapters Initialized.");
}

ap!nﬁ 90Ud49434 IDMHOS 0009-IISY.L

LE

Loading and running applications

Retrieving system information

/1 Get the System Information and Load and Run | OPs
host Get Syst em nfo(& | opCount, & DspCount, &pstBoardl nfo);
printf("\nUpaHost App ==> System Information: % |OP(s) Installed *** % DSPs |Installed\n", |lopCount, |DspCount);
Loading the YxWorks image on IOPs

i f (pst Boardl nfo[llOP].DeviceState == HS_DEVI CE_NORMAL)

{
i f (host Loadl op(I10P, "vxworks") != SUCCESS)
{
printf("\nUpaHost App ==> ** ERROR ** Unable to Load Program % on IOP # %\ n", "VxWrks", |10P);
conti nue;
}
el se
printf("\nUpaHost App ==> Program % |oaded on 10P # %\ n", "VxWorks", 110P);
}
/1 The board is either in a quiescent or powered off state. Log that the board
/1 cannot be loaded at this time and allow the board to be | oaded when re-inserted.
el se
{
printf("\nUpaHost App==> ** ERROR ** | OP #%l Cannot be Loaded because it is in a % state\n", |10OP,
(pstBoardlnfo[l | OP].DeviceState == HS_DEVI CE_QUI ESCED ? " QU ESCENT" : "POAERED OFF"));
conti nue;

/1 The process of running an IOP is tine consuming, so we poll the | OP several tines
/'l regarding its ready-to-run state.

Ilterations = 0O;

do
{
/1 Run the previously | oaded | OP
i f (host RunLoaded! ops(I10P) ! = SUCCESS)
{
/1 Catch a qui ck pause
printf("\nUpaHost App ==> ** ERROR ** Unable to Run Program % on |IOP % - RETRYING n", "VxWrks", [10P);

Sl eep(1000); //wait 1s

suonpdijddo Q| pup 3soH Buidojaraq 7 493doy)

|

8¢

}

el se

{
printf("\nUpaHost App ==> | OP % Running program %!\n", 110P, "VxWorks");

bl OPRunni ng[| 1 OP] = TRUE;
br eak;

}

}while(llterations++ < RETRIES);

Waiting for IOP response

/1 Wait for response from | OP before proceeding.
Wi t For Si ngl eoj ect (ghl opRunni ng, UPA WAI T_TI MEQUT) ;

Loading mulcoder.out

/1 Go through the 10Ps that are | oaded and running and | oad and execute their
/'l associ ated DSPs
for(I10OP=0; I10OP < IlopCount; |1 OP++)

{
if(!bl OPRunni ng[110P])
conti nue;
/1 Load and run the DSPs found on a specific |IOP
for(IDSP = 0; |IDSP < pstBoardlnfo[ll OP].Nunber DSPs; | DSP++)
{
/1 Load the DSP using the program whose path was specified as an argunent to this application
i f (host LoadProg(| DSPOF fset + | DSP, "nul coder.out") != UP_SUCCESS)
{

printf("\nUpaHost App ==> ** ERROR ** Failed to | oad Program % on d obal DSP # %l\n", "nul coder. out",
| DSPOf f set + | DSP) ;

conti nue;
}
el se
printf("\nUpaHost App ==> Program % | oaded on d obal DSP # %\n", "nul coder.out", |DSPOfset + | DSP);
/1 Try to run the recently | oaded DSP

i f (host RunProg(| DSPOf f set + | DSP) ! = UP_SUCCESS)
{

apInb adualajaa 31DMIOS 0009-ISY.L

6¢

printf("\nUpaHost App ==>
| DSPOf fset + | DSP)

}
el se i f (Wit For Si ngl eObj ect (ghDspRunni ng, UPA_WAI T_TI MEQUT)
printf("\nUpaHost App==> ** ERROR ** DSP %l Ti ned Qut when
| DSP, "nmul coder. out");

el se
{
printf("\nUpaHost App ==>
/1 Increment the nunmber of Startup Replies to be expected
gl Start Repl i es++;
}
} //for(IDSP = 0; IDSP < pstBoardlnfo[llOP].NunberDSPs; | DSP++)
/1 Updat e the G obal DSP of fset

| DSPOYf f set += pstBoardl nfo[l | OP]. Nunber DSPs;
Y /for(11OP=0; 110OP < |lopCount; |IQOP++)
Sample code: IOP application (UpalopApp.c)
Initializing the 1OP drive

Calling ioplnit

if (ioplnit() != SUCCESS)
{

** ERROR ** Unable to Run Program % on d obal DSP %\ n", "mul coder. out",

I= WAI T_OBJECT_0)
attenpting to run program %!\n", | DSPOfset +

d obal DSP % Runni ng program %s'!\n", |DSPCOffset + | DSP, " nul coder. out");

| opLogEvent (1 OP_EVENT_LOG TYPE_ APP HIGH, 0, 0, 0, "loplnit FAILED');

ret urnO(FAI LURE) ;
}
Calling upStart

i f(upStart(NULL) != UP_SUCCESS)
{

| opLogEvent (1 OP_EVENT_LOG TYPE_APP_ HIGH, 0, 0, 0, "upStart FAILED');

return(FAI LURE) ;

suonpdijddo Q| pup 3soH Buidojaraq 7 493doy)

or

Configuring on-board peripherals
i opControl Peri pheral (TASK _T8100, CONFI G T8100_DEFAULTS, (t_confi gArg *) &t 81000 kConfi g);

/1 SET T8105 CLOCKS

t 81000 kConfi g.reference_cl k_sel ect = REF_LOCAL;
t 81000 kConfi g. netref _sel ect = NETREF_LOCAL;
t 8100C kConfi g. fal | back_cl k_sel ect = FB_LOCAL;

t 81000 kConfi g. netref _enabl e = TRUE;
t 81000 kConfi g. netref2_enabl e = FALSE;
t 81000 kConfi g.franme_cl k_a _enabl e = TRUE;

t 8100C kConfi g. frane_cl k_b_enabl e = TRUE;
t 81000 kConfi g. conpat _cl ks_enabl e = TRUE;
t 81000 kConfi g. fal | back_enabl e = FALSE;

i opControl Peri pheral (TASK T8100, CONFI G T8100_CLOCKS, (t_configArg *) &t 81000 kConfi g);

/1 CONFI GURE T1

T1_config_struct.line_codi ng= B8ZS
T1_config_struct.fram ng_node= ESF; /* extended superframe */
Tl _config_struct.line_build_out= DSX1_0 to_133 ft;
Tl config_struct.idle_code= Oxff; [* 255 */
T1_config_struct.idle_channel s= 0x00000000;

/* do not insert idle code in any channels */
T1_config_struct. payl oad_| oopback_enabl e= FALSE;
T1_config_struct.framer_| oopback_enabl e= FALSE
T1_config_struct. | ocal _| oopback_enabl e= FALSE;

T1 config_struct.renote_| oopback_enabl e= FALSE;
T1 config_struct.robbed_bit_signaling_enabl e= TRUE;

for (franmer_id = framer_1; framer_id<=franer_4; franmer_id++)
/1 it has to a better way, |ike i<=numports
{
Tl config_struct.framer_id = framer_id,;
i opControl Peri pheral (TASK_T1, CONFI G T1, (t_configArg *)&T1_config_struct);

}

apInb acualajal aIDMIOS 0009-IISV.L

Setting up message

handlers

Installing event handlers (callback functions)

upSet Event

Handl er (&CasEvent MsgHandl er) ;

Connecting the TDM to 10Ps
/1 Setup path from Tl to DSP

t 8100Swi t chCf g. nunber _of _connections = 1;
t 8100Swi t chCf g. connecti ons = path;

path[0] .
path[0] .
path[0] .
path[0] .
path[0] .

path[0] .
path[0] .
path[0] .
path[0] .
path[0] .

i opCont rol Peri pher al

connect _src.resource= T8100_T1;

connect _src. node= T8100_CONNECT_CONST_DELAY;
connect _src. ct bus_connect _num = 0;
connect_src.port= T1_Port[lUnit];

connect _src. tinmeslot= | Channel;

connect _dest.resource= T8100_DSP;

connect _src. node= T8100_CONNECT_CONST_DELAY;
connect _dest. ctbus_connect _num = 0;

connect _dest.port= DSP_Port[l Unit];

connect _dest.timesl ot = | Channel ;

(TASK T8100, CONFIG T8100 SW TCHI NG (t_configArg *)& 8100Swi t chCf g);

Enabling bi-directional voice data flow to and from the DSP

i f (upEnabl eChannel (1 Unit// DSP Unit #

| Channel ,// Channel #

TRUE, // Tx Enabl ed
TRUE) != UP_SUCCESS)// Rx Enabl ed

{

| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, O,

}

el se

{

| opLogEvent (| OP_EVENT_LOG TYPE_APP_HI CGH, | Unit, | Channel, O,

}

74

" Cr Fast Pkt Qut : : Enabl eChannel - Bad") ;

" Cr Fast Pkt Qut : : Enabl eChannel - Good") ;

suonpdijddo Q| pup 3soH Buidojaraq 7 493doy)

[44

Configuring services

Configuring DSP services for outbound direction (toward the IP cloud)

/| Setup G711l Service Paraneters
ut Confi gSvc. t CodecConfi g. eCodec = ctGrl1; /1 Set Codec to Grill
ut Confi gSvc. t CodecConfi g. eCodecPar ans. t Gr11Par am eBf nEnabl e FAL SE; [/ | BFM OFF
ut Conf i gSvc. t CodecConfi g. eCodecPar ans. t G7r11Par am eLaw enumMULAW / / U Law
ut Conf i gSvc. t CodecConfi g. eCodecPar ans. t G7’11Par am eVadEnable = FALSE; / / VAD OFF
ut Conf i gSvc. t CodecConfi g. eCodecPar ans. t Gr11Par am | VadLowSi gThr eshol d = -50;

/1 Configure Service

i f (upConfigService(lUnit, /] DSP Unit #
| Channel , /1 Channel #
st Codec, /| CODEC Service Type Enuneration
&ut ConfigSvc) != UP_SUCCESS) // Codec Configuration Settings
{
| opLogEvent (| OP_EVENT_LOG TYPE_APP_HI CGH, | Unit, | Channel, stCodec, "CrFastPktCQut:: ConfigSvc-Bad");
return(UP_FAI LURE) ;
}
el se
{
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_H GH, | Unit, | Channel, stCodec, "CrFastPktCut:: ConfigSvc-CGood");
}

/1 Setup Echo Cancell ation Service
ut Confi gSvc. t EchoCancConfi g. eTapLengt h
ut Conf i gSvc. t EchoCancConfi g. | FreezeAdapt ati on
ut Conf i gSvc. t EchoCancConfi g. | NLPDi sabl e
ut Conf i gSvc. t EchoCancConfi g.| Nl pThreshol d
ut Conf i gSvc. t EchoCancConfi g. | SI owAdapt ati on

TL8ns;

enunDi sabl ed;
enunDi sabl ed;
10;

enunDi sabl ed;

/1 Configure Service

i f (upConfigService(lUnit, /1 DSP Unit #
| Channel , /'l Channel #
st EchoCanc, /1l Echo Cancel |l ation Service Type Enuneration
&ut ConfigSvc) !'= UP_SUCCESS) // Codec Configuration Settings
{
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, stEchoCanc, "CrFast Pkt CQut
return(UP_FAI LURE) ;
}

el se

:: ConfigSvc-Bad");

apInb adualajaa 31DMIOS 0009-ISY.L

(914

{
}

/1 Setup RTP Encoder Service

| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, stEchoCanc, "OCrFastPktQut:: ConfigSvc-Good");

ut ConfigSvc. t Rt pSendConfi g. st Rt pSendHeader . ver si on = 2;
ut Confi gSvc. t Rt pSendConfi g. st Rt pSendHeader . p = 0;
ut Confi gSvc. t Rt pSendConfi g. st Rt pSendHeader . x = 0;
ut Confi gSvc. t Rt pSendConfi g. st Rt pSendHeader . cc = 0;
ut Confi gSvc. t Rt pSendConfi g. st Rt pSendHeader . m = 0;
ut Confi gSvc. t Rt pSendConfi g. st Rt pSendHeader . pt = 0;
ut Confi gSvc. t Rt pSendConfi g. st Rt pSendHeader . seq = 1,
ut Confi gSvc. t Rt pSendConfi g. st Rt pSendHeader . ts = 0;
ut Confi gSvc. t Rt pSendConfi g. st Rt pSendHeader . ssrc = 0x12345;
ut Confi gSvc. t Rt pSendConfi g. ul Paddi ngLen = 0;
ut Confi gSvc. t Rt pSendConfi g. ul Payl oadl nt er val = 10;
ut Confi gSvc. t Rt pSendConfi g. ul Ti meEl apsedFor EachFr anme = 80;
ut Confi gSvc. t Rt pSendConfi g. ul I nitConfig = 0;
/1 Configure Service
i f (upConfigService(lUnit, /1 DSP Unit #
| Channel , /1 Channel #
st Rt pEncode, /] RTP Encoder Service Type Enumeration
&ut ConfigSvc) !'= UP_SUCCESS) // Codec Configuration Settings
{
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, stRtpEncode, "CrFastPktQut:: ConfigSvc-Bad");
ret urn(UP_FAI LURE) ;
}
el se
{
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, stRtpEncode, "CrFastPktQut:: ConfigSvc-Good");
}

Creating data paths

Creating a data path between an outgoing RTP channel running on a DSP and the IOP driver’s network
packet routing component

ul Rout er Addr = gul SrcAddress ~ 1 ; //toggle |least significant bit
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI CH, ul RouterAddr, 0, 0, "ul RouterAddr");

st Pkt SendConfi g. ul I nterface =0; // Interface 0 (feiQ)

suonpdijddo Q| pup 3soH Buidojaraq 7 493doy)

|

144

st Pkt SendConfi g. ul Rout er Address = ul RouterAddr; // |P address of Router

st Pkt SendConf i g. ul Dest Addr ess

st Pkt SendConfi g. ul Dest Port

ul RouterAddr; // | P address of Destination

6000 + ((32*IUnit + | Channel)<<1);// RTP Port

/1 Configure Packet Buil der Service

i f (upConnect Pkt Send(| Uni t, /| DSP #
| Channel , /1 Channel #
&st Pkt SendConfig) != UP_SUCCESS) /1 Fast Pkt Send Structure
{
| opLogEvent (| OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, 0, "OCrFastPktQut:: ConPkt Send-Bad");
return(UP_FAI LURE) ;
}
el se
{
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, 0, "OCrFastPktQut:: ConPkt Send- Good") ;
}

Transmt directionis initialized !

Enabling the receive direction on the channel

/1 Setup path fromDSP to T1

t 8100Swi t chCf g. nunber _of _connections = 1;
t 8100Swi t chCf g. connecti ons = path;

path[0] .
pat h[0] .

pat h[0]

path[0] .
path[0] .

path[0] .
path[0] .
path[0] .
path[0] .
path[0] .

connect _src.resource = T8100_DSP;

connect _src. node = T8100_CONNECT_CONST_DELAY;
.connect _src. ct bus_connect _num = 0;

connect _src. port = DSP_Port[l Unit];

connect _src.tinmeslot = |Channel;

connect _dest.resource = T8100_T1;

T8100_CONNECT CONST_DELAY;

connect _src. node

connect _dest. ctbus_connect _num = 0;
connect _dest . port = T1_Port[lUnit];
connect _dest.tinmesl ot = | Channel;

i opControl Peripheral (TASK T8100, CONFI G T8100_SWTCH NG (t_configArg *) & 8100SwitchCfg);

apInb adualajaa 31DMIOS 0009-ISY.L

1°14

11

/1

11

/1

Initializing the RTP decoder
Setup RTP Decoder Service

ut Confi gSvc. t Rt pRecvConfi g. ul Aut oAdj ust abl e = TRUE;
ut Confi gSvc. t Rt pRecvConfi g. ul MaxJitterBufferDy = 200;
ut Confi gSvc. t Rt pRecvConfi g.ul TargetJitterBufferDly = 30;
ut Confi gSvc. t Rt pRecvConfi g. ul MaxFraneSi zel nByt es = 80;
ut Confi gSvc. t Rt pRecvConfi g. ul Ext ract Dat aLengt h = 80;
ut Confi gSvc. t Rt pRecvConfi g. ul I nitConfig = 0;
Configure Service
i f (upConfigService(lUnit, /] DSP Unit #
| Channel , /1 Channel #
st Rt pDecode, /]| RTP Decoder Service Type Enuneration
&ut ConfigSvc) !'= UP_SUCCESS) // Codec Configuration Settings
{
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, stRtpDecode, "CrFastPktln::ConfigSvc-Bad");
ret urn(UP_FAI LURE) ;
}
el se
{

| opLogEvent (1 OP_EVENT_LOG TYPE_APP_H GH, | Unit, | Channel, stRtpDecode, "CrFastPktln:: ConfigSvc-Good"); }

Creating a data path between an inbound RTP channel running on a DSP and the IOP driver’s network
packet routing component

Setup the Fast Packet Receiver Service

st Pkt RecvConfi g. ul I nterface = 0, /] Ethernet Adapter Interface (feiO)

st Pkt RecvConfi g. ul Recei vePort = 6000 + ((32*IUnit + | Channel)<<1); // Port Assignnent (6000 - 7000 port range)
st Pkt RecvConfi g. eServi ce = st Rt pDecode;

Set up Packet Parser Service

i f (upConnect Pkt Recv(I Unit, /| DSP #
| Channel , /'l Channel #
&st Pkt RecvConfig) != UP_SUCCESS) /| Fast Pkt Receive Structure
{
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, 0, "CrFastPktln:: ConPktRecv-Bad");
ret urn(UP_FAI LURE) ;
}
el se
{
| opLogEvent (1 OP_EVENT_LOG TYPE_APP_HI GH, | Unit, | Channel, 0, "CrFastPktln:: ConPktRRecv- Good");
}

suonpdijddo Q| pup 3soH Buidojaraq 7 493doy)

TASK-6000 software reference guide

I

46

\
29y

Host functions

Overview

The Host API provides a control interface for the allocation, configuration, and
execution of Host resources. The function prototypes and definitions for this API
are contained in these header files:

e Host control peripherals: sp6khostapi.h (anything that begins with host)
e UPA calls: upa.h.

The host application is developed by linking with the Host API library. The library
is installed as part of the TASK-6000 development kit and resides in this file:

Instal I Dir\host\nt\lib\taskhost.lib
This appendix lists function descriptions alphabetically within the following groups:
e Standard functions: Includes Control and Message APIs.

e Advanced functions: Includes functions you use only in unusual,
special-purpose circumstances.

You can find a function in this appendix either by locating it alphabetically within
its group, or by using Table A-1 on the next page, which groups like functions
together.

Message API

The Message API from the host is substantially the same as from the IOP with the
addition of slot numbers to the function arguments.

47

TASK-6000 software reference guide

I

Function list

Use this table to identify the Host functions you want to use. Use the function
description later in this appendix to obtain detailed information, including syntax

and parameter values.

Table A-1. Host functions

Function

Description

Standard functions

hostControlPeripheral

Configures and controls peripherals on
SPIRIT boards.

hostExit

Inform TASK of user application exit.

hostGetBoardInfo

Obtains information on a specific board.

hostGetSystemInfo

Obtains information about all boards in the
system.

hostlnit Initializes the driver.

hostLoadDsp Loads ‘Céx application into ‘Céx memory.
hostLoadlop Loads and runs an IOP application.
hostResetBoard Resets the SPIRIT board.

hostResetDsp Reset and initialize a DSP.

hostRunDsp Runs ‘Céx program.

hostRunLoadedlop

Run all loaded 10Ps.

hostSetEventHandler

Register a handler for IOP/DSP events.

hostSetHotSwapHandler

Set user handler for Hot Swap events.

hostSetPeripheralDataHandler

User handler for peripheral data callback.

Control API

upEnableChannel

Enables transmit and receive paths the
specified channel.

upEnableService

Enables a specified service based on the service
type for a specific channel, and also implicitly
enables a service when it is configured.

upDisableService

Disables a specified service based on service
type for a specific channel.

upConfigService

Configures a specified service based on service
type for a specific channel.

upConfigServiceGlobal

Configures a specified service based on service
type for all channels.

upSetEventHandler

Sends notification of DSP events.

upQueryQOSReport Causes the specified DSP to send a Quality of
Service report as an UP_EVT STATISTICS RPT
event.
upStart Initializes the Universal Port subsystem
Message API The Message API from the host is substantially

the same as from the IOP with the addition of
slot numbers to the function arguments.

48

Appendix A: Host functions ¢ Function list

Table A-1. Host functions

Function Description
upConnectPktSend Creates a data path connection between an
RTP or T.38 coder that runs in a channel on a
DSP and the IOP’s networking hardware.
upConnectPktRecv Creates a data path from a UDP receive port to

an RTP or T.38 decoder that runs on the
specified DSP channel.

upDisconnectPktSend

Stops the forwarding of packets from a DSP

channel to an IP socket and deallocates all
associated IOP and DSP resources.

upDisconnectPktRecv

Stops the forwarding of packets from an IP

socket to a DSP channel and de-allocates all
associated |OP and DSP resources.

Advanced functions

hostGetNWPktBuf

Receives network packets from the DSP.

hostJitterControl

Updates jitter control parameters.

hostReadlop

Read from IOP memory.

hostSendNWPktBuf Sends network packets to the DSP.
hostSendMsg Sends a message to IOP/DSP.
hostSetNWNotify Set user handler for network packets

notification.

hostWritelop

Write to IOP memory.

hostSetPollPeriod

Set time period for message and network data
polling.

hostGetNWPktBuf Receives network packets from the DSP
hostlitterControl Updates jitter control parameters.
hostSendPriorityMsg Send a priority message to IOP.

upSetUserMsgHandler

The MsgHandlerFunc is called whenever a
TASK user message is received by the host with

a msgType not used by UPA.

49

I

TASK-6000 software reference guide

I

hostControlPeripheral

Configures the specified peripheral.

Call this function to initialize, configure, and operate the T1/E1 framer and TDM
switch peripherals.

Syntax

i nt host Control Peri pheral (
IN int peripheral,
INint cnd,
INt_configArg *pArg

)

Parameters

peri pheral
Peripheral. You can select one of these values:

TASK_E1
TASK_T1
TASK_T8100

crd Command to send to the peripheral. You can use one of these values:

CONFIG_E1
Instructs the framer to use E1 line protocol.

CONFIG_T1
Instructs the framer to use T1 line protocol.

CONFIG_T8100_DEFAULT
Reserved.

CONFIG_T8100_SWITCHING
A pointer to the structure that specifies T8100 switching;:

t_T8100SwitchConfig structure

typedef struct {
ul ong nunmber _of _connecti ons;
t _T8100Connect i on *connecti ons;

} t_T8100Swi t chConfi g;

nunber _of _connecti ons
The number of T8100 connections to be made.
The maximum connections per call is 256.

*connecti ons
Pointer to a list that contains
nunber _of _connecti ons connections.

50

Appendix A: Standard Host functions ¢ hostControlPeripheral

CONFIG_T8100_CLOCKS
A pointer to the structure that specifies the clock the TDM
switch uses:

t_T8100ClockConfig

typedef struct {

t_ref_clk reference_cl k_sel ect;
t_netref_clk netref_sel ect;

t _fallback_clk allback_clk_sel ect;
BOOL32 netref _enabl e;

BOOL32 netref2_enabl g;
BOOL32 frame_cl k_a_enabl e;
BOOL32 frame_cl k_b_enabl e;
BOOL32 conpat _cl ks_enabl e;
BOOL32 fal | back_enabl e;

} t_T8100d ockConfi g;

reference_cl k_sel ect
Specifies the primary clock source to be used by
the T8100.

netref_sel ect
Specifies the clock source used by the T8100 to
generate its output CT_NETREEF signal.

fal l back_cl k_sel ect
Specifies the fallback clock source used by the
T8100. That is, the clock used when the primary
clock source selected via ref erence_cl k_sel ect
fails.

netref_enabl e
Enables the CT_NETREEF signal, generated by the
T8100, onto the CT Bus.

netref2_enabl e
Enables the CT_NETREF_2 signal, generated by
the T8100, onto the CT Bus.

framer_cl k_a_enabl e
Enables the CT_C8_A (clock) and
CT_FRAME_A (frame sync) signals, generated by
the T8100, onto the bus.

framer_cl k_b_enabl e
Enables the CT_C8_B (clock) and CT_FRAME_B
(frame sync) signals, generated by the T8100,
onto the bus.

conpat _cl ks_enabl e
Enables the MVIP and SCSA compatibilty clock
and strobe signals, generated by the T8100, onto
the bus.

51

I

TASK-6000 software reference guide

I

fal | back_enabl e
Enables clock fallback. When a clock error occurs
on the current clock reference, the T8100 will fall
back to fal | back_cl k_sel ect.

CONFIG_T8100_STREAMS
A pointer to the structure that specifies the T8100
stream parameters:

t_T8100StreamConfig structure

typedef struct {
t_streamrate dsp_bspO_rate;
t_streamrate dsp_bspl_rate;
t_streamrate eltl_rate;

t_streamrate ct _bus_03_00_rate;
t_streamrate ct _bus_07_04_rate;
t_streamrate ct_bus_11 08 rate;

t_streamrate ct_bus_15_12 rate;
t_streamrate ct_bus_19 16 rate;
t_streamrate ct _bus_23 20 rate;
t_streamrate ct _bus_27_24 rate;
t_streamrate ct_bus_31_28 rate;
} t_T8100St reanConfi g;
dsp_bspO_rate
Specifies the TDM stream rate for Buffered Serial
Port 0 of the DSPs. Currently this value must be
the same as dsp_bspl_rate.

dsp_bspl_rate
Specifies the TDM stream rate for Buffered Serial
Port 1 of the DSPs. This value must be the same
as dsp_bspO_rate.

elt1_rate Specifies the TDM stream rate for the E1/T1

framers. Under most conditions, this rate should
be 2MHz.

ct_bus_03 00 rate
Specifies the TDM stream rate for CT bus streams
0 through 3.

ct_bus_07_04 rate

Specifies the TDM stream rate for CT bus streams
4 through 7.

ct_bus_11 08 rate
Specifies the TDM stream rate for CT bus streams
8 through 11.

ct_bus_15 12 rate
Specifies the TDM stream rate for CT bus streams
12 through 15.

ct_bus_19 16 rate

52

Appendix A: Standard Host functions ¢ hostControlPeripheral

I

Specifies the TDM stream rate for CT bus streams
16 through 19.

ct_bus_23 20 rate
Specifies the TDM stream rate for CT bus streams
20 through 23.

ct_bus_27_24 rate
Specifies the TDM stream rate for CT bus streams
24 through 27.

ct_bus_31 28 rate
Specifies the TDM stream rate for CT bus streams
28 through 31.

pAr g Pointer to the union of configuration structures. This union contains
structures containing peripheral control information:

t_configArg structure

t ypedef union {
t _T1 user_config_struct t 1Confi g;
t _E1 user _config_struct elConfig;

t _T8100d ockConfi g t 8100C kCf g;
t _T8100Swi t chConfi g t 8100Swi t chCf g;
t _T8100Str eantConfi g t 8100St r eantf g;

} t_configArg;

t _T1 user_config_struct
Configuration structure for T1.

t _E1 _user_config_struct
Configuration structure for E1.

t _T8100d ockConfi g
Configuration structure for the T8100 clock.

t _T8100Swi t chConfi g
Configuration structure for the T8100 switch.

t _T8100Str eantConfi g
Configuration structure for the t8100 stream.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

53

TASK-6000 software reference guide

I

hostExit
Sets all SPIRIT boards to quiesced state.

Syntax

STATUS hostExit (
I N char unused

)

Parameters

unused Reserved.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Comments

Call this function just prior to host application termination, if desired, to reset the
state of all boards in the system. That is, the [OP and DSPs are reset.

54

Appendix A: Standard Host functions * hostGetBoardInfo

I

hostGetBoardInfo

Provides a board’s information structure, as defined by the IOP monitor’s
SP6K_BOARD_INFO_T structure.

This function reports the extents of the systemby identifying the number and type of
processors, T1/E1 framers, HDLC codecs, and TDM switches on the board. Also,
you can use hostGetSystemInfo to determine the number and type of SPIRIT boards
in the system.

For more information, see the sp6k_board_info_tspék.h file.

Syntax

i nt host Get Boar dl nf o(
IN long i opNum
IN QUT SP6K_BOARD | NFO T *pBoardl nfo
)
Parameters
i opNum The IOP number of the board for which you want information.

pBoar dl nf o
A pointer to SP6K_BOARD_INFO_T, the structure that stores
board information:

SP6K_BOARD_INFO_T structure
typedef struct {

Ul NT32 post _results;
Ul NT32 free_zone;

Ul NT32 flash_si ze;

Ul NT32 nenory_si ze;
UCHAR board_revi si on;
UCHAR num dsps;
UCHAR hm c_present;
UCHAR board_t ype;

Ul NT32 error_code;

C6X_INFO. T dsp_i nfo[MAX_DSPS];
} SP6K_BOARD | NFO T;

post _results
POST results.

free_zone Address of host free memory zone.

flash_size

The Flash ROM size.

nenory_si ze
The memory size.

board_revi sion
The board revision number.

num dsps The number of DSPs in the configuration.

hm c_present

55

TASK-6000 software reference guide

I

board_t ype

error_code

HMIC/T8100 presence. The lower nibble identifies the
installed T810x, and the upper nibble identifies the installed
option card, if one exists.

Since all deliverable SPIRIT boards have a T810x (HMIC)
installed, this field is not used for additional information.
The lower nibble identifies the type of T810x installed. The
upper nibble identifies the type of option card (if any)
installed.

Specifies the board type. You can select one of these:
Single

Dual

Quad

Error code storage (for IOPDRYV).

dsp_i nf o] MAX_DSPS |

Outputs

pBoar dl nf o

DSP POST results and memory sizes.

A buffer that stores board information.

Return values

SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Comments

For more information,

56

see hostGetSystemInfo on page 57.

Appendix A: Standard Host functions * hostGetSysteminfo

I

hostGetSysteminfo

Provides a board’s information structure as defined by the IOP monitor’s
SP6K_BOARD_INFO_T structure. For more information, see the sp6k.h file.

Syntax

i nt host Get Syst em nf o(
QUT |l ong *pTotal | ops,
QUT | ong *pTot al Dsps,
QUT PREPORTBQARDI NFO *pBoar dI nf o

)

Parameters

None.

Outputs

pTotal | ops
A pointer to the variable that stores the number of boards (IOPs).

pTot al Dsps
A pointer to the variable that stores the total number of DSPs in system.

pBoar dl nf o
A pointer to REPORTBOARDINFO, the buffer that stores board driver
information:

REPORTBOARDINFO structure

typedef struct _ReportBoardlnfo {
ULONG BusNumnber ;
ULONG Devi ceNunber ;
ULONG Functi onNunber ;
ULONG | opMenorySi ze;
ULONG Post Resul t s;
UCHAR Boar dRevi si on;
UCHAR Numnber DSPs;
UCHAR H100Pr esent ;
UCHAR Boar dType;
ULONG DspMenorySi ze;
ULONG Devi ceSt at e;
ULONG reserved[3] ;
} REPORTBQARDI NFO, * PREPORTBOARDI NFG,

BusNunber
The board’s physical PCI bus number.

Devi ceNurber
The board’s physical PCI device number.

Funct i onNumber
The board’s physical PCI function number.

| opMenorySi ze
The number of bytes in the ATU memory block.

57

TASK-6000 software reference guide

I

58

Post Resul ts

The POST results bitmask.

Boar dRevi si on
The board’s revision number.

Nunber DSPs
The number of DSPs in the system.

H100Pr esent
Indicates whether the H100 switch is populated.

Boar dType
The board type: SP-6000 or 6040.

DspMenorySi ze
The size of the DSP memory window. This parameter is valid
only when the value of Boar dType is SP-6040.

Devi ceState
Contains Hot Swap state information.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Comments

This function returns the information detected by the driver. The buffer should be
capable of holding up to 8 REPORTBOARDINFO structures. You can use the
pointer used in conjunction with an IOP number to index into a specific board’s
information, up to the given number of IOPs in the system. For more information,
see hostGetBoardInfo on page 55.

Appendix A: Standard Host functions * hostlnit

I

hostlnit
Initializes the Host API.

Call this function first, before calling any other functions, to initialize
the module.

Syntax

int hostlnit (void)

Parameters

None.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

59

TASK-6000 software reference guide

I

hostLoadDsp

60

Loads a TASK-generated DSP program onto the specified DSP processor.
You can skip this step if an external program loads the cards before this
application begins.

Syntax

i nt host LoadDsp(
IN I ong dspNum
IN char *sCoffFi | eName

)

Parameters
dspNum The number of the DSP onto which the program loads.
sCof f Fi | eNane

The DSP executable file, generated by the TASK composer.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix A: Standard Host functions * hostLoadlop

I

hostLoadlop
Loads the IOP with an application.

This function loads and executes the IOP application. Reloading the IOP resets the
DSPs. DSPs must then be reloaded.

You can skip this step if an external program loads the IOP before this
application begins.
Syntax

i nt host Loadl op(
I N UCHAR i opNum
I N char *app_nane

)

Parameters

i opNum The number of the IOP board onto which the program loads.

app_name A pointer to a character string that specifies the IOP executable filename
and path.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

61

TASK-6000 software reference guide

I

hostResetBoard

Resets and initializes an IOP.

Syntax

i nt host Reset Board
IN long ullopNum
)

Parameters

ul 1ophum The IOP number to reset and initialize.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

62

Appendix A: Standard Host functions * hostResetDsp

|
hostResetDsp

Resets and initializes a DSP.

Syntax

i nt host Reset Dsp(
IN I ong dspNum

)

Parameters

dspNum The number of the DSP you want to reset and initialize.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

63

TASK-6000 software reference guide

I

hostRunDsp

64

Runs the program downloaded through the hostLoadDsp function.
You can skip this step if an external program loads the IOP before this
application begins.

Syntax

i nt host RunDsp(
IN I ong dspNum

)

Parameters

dspNum The number of the DSP on which the program runs.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix A: Standard Host functions * hostRunLoadedlop

I

hostRunLoadedlop
Initializes the message buffers which allow communication between the host and

IOP, and sends handshake messages in both directions.

Syntax

int WNAPI host RunLoaded! ops(
ul ong ul I opNum

)

Parameters

ul 1 ophum IOP number.

Return values
SUCCESS The IOP is running.

FAILURE Invalid IOP number, the IOP is not running, or internal API
error occurred.

65

TASK-6000 software reference guide

I

hostSetEventHandler

Specifies the user event handler for TASK events.

Syntax

i nt host Set Event Handl er (
IN void (* eventHandl er) (
| ong src,

| ong type,
ul ong count,
| ong *pDat aBuf

)

Parameters

event Handl er
A pointer to the event handler.

src The message handler, in this format:
Devi ce | Devi ceNum
Devi ce Enter either TASK_IOP or TASK_DSP.
Devi ceNum Enter the device number.

Examples:

To invoke a handler from the second IOP, use (TASK_IOP | 2) as
the destination.

To invoke a handler from the third DSP, use (TASK_DSP | 3)
as destination.

type Message type. You can use any positive integer.
count The number of words in the message.

pDat aBuf The buffer that contains the message.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

66

Appendix A: Standard Host functions * hostSetHotSwapHandler

hostSetHotSwapHandler
Initializes the Hot Swap interface, and registers for notification of Hot Swap events
with the Hot Swap service.
Syntax

STATUS W NAPI host Set Hot SwapHandl er (
IN voi d(*Handl er) (
IN long i opNum
IN long eventl D

)

Parameters

Handl er A pointer to the message handler.

i opNum The number of the IOP board that registered for the Hot Swap Event.
eventI D The event identification. You can enter one of these values:

HS_DEVICE_NORMAL
Indicates that the board is in the slot and activated.

HS_DEVICE_QUIESCED
Indicates that the board is removed from the slot and activity
has ceased.

HS_DEVICE_POWERED_OFF
No board exists in the specified slot.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Comments

Currently, only RadiSys SPIRIT-6040 boards support Hot Swap. For more
information about these boards, see SPIRIT™ boards on page iv.

67

TASK-6000 software reference guide

|
hostSetPeripheralDataHandler

Identifies the message handler to invoke for processing received messages.

Syntax

voi d host Set Peri pher al Dat aHandl er (
voi d(* peri pher al Dat aHandl er)

(
| ong src,
| ong type,
| ong *pDat aBuf
)
)
Parameters

peri pher al Dat aHandl er
A pointer to the message handler.

src The message’s source, in this format:
Devi ce | Devi ceNum
Devi ce Enter either TASK_IOP or TASK_DSP.
Devi ceNum Enter the device number.
Examples:

To receive a message from the second IOP, use (TASK_IOP | 2) as
the destination.

To receive a message from the third DSP, use (TASK_DSP | 3)
as destination.

type Message type (currently only GET_T1_SIGNALING).

pDat aBuf The buffer that contains the message.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

68

Appendix A: Standard Host functions * upConfigService

upConfigService

Configures a specified service based on service type for a specific channel.

Also enables the service after configuration.

% * Enabling the stCodec service disables the stTdmToneGen and

stPktToneGen services.

* For descriptions of available services, see Appendix F, Service descriptions.

Syntax

UP_ERROR _ET upConfi gServi ce(
RSYS_I NT32 1Sl ot
RSYS_ I NT32 | Uni t,
RSYS_| NT32 | Channel
UP_SERVI CE_ET eServi ce,
UP_CONFI G_SVC_MsG _UT *puCfg

)

Parameters
| Sl ot The resource card unit number.
| Uni t Specifies:

e For most services: the DSP unit number.

e For IOP-based services such as stCAS: the framer unit number.
| Channel Specifies:

e For most services: the virtual channel number.

e For IOP-based services such as stCAS: the timeslot number.
eServi ce Identifies the service you want to configure:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen

69

TASK-6000 software reference guide

I

70

puCt g

Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
st]itterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm

Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDSOHdIc
Concatenates four sub-rate HDLC channels into a full DSO.

For detailed information about TASK services, see Appendix F, Service
descriptions.

A pointer to the configuration data structure:

UP_CONFIG_SVC_UT structure
t ypedef union {

UP_CODEC _CONFI G_ST t CodecConfi g;
UP_ECHO_CONFI G_ST t EchoCancConfi g;
UP_AGC_CONFI G ST t AGCConf i g;
UP_DTMF_CONFI G _ST t DTMFConf i g;
UP_CPT_CONFI G ST t CPTConfi g;

Appendix A: Standard Host functions * upConfigService

UP_MF_CONFI G ST
UP_TONEGEN_CONFI G ST
UP_RTP_SEND_CONFI G ST
UP_RTP_RECV_CONFI G ST
UP_T38_CONFI G ST
UP_T1ELALARM CONFI G ST
UP_CAS_CONFI G ST
UP_PACKET_BUI LDER_CONFI G ST
UP_PACKET PARSER CONFI G ST
UP_1 OPI Nl TCONFI G_ST

} UP_CONFI G_SVC UT;

Return values

UP_SUCCESS

Successful completion.

t M=Confi g;

t ToneGenConfi g;

t Rt pSendConfi g;

t Rt pRecvConfi g;

t T38Confi g;

t TLE1Al ar nConfi g;
t CasConfi g;

t PBConfi g;

t PPConfi g;
t1oplnitDat a;

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function

returns one of these values:

UP_EVT_CONFIG_ACK

Occurs in response to this function if the service is configured.

UP_EVT_CONFIG_ERROR

Occurs if the function fails, for instance if the specified service

is not configured.

UP_FAILURE

General failure.

71

I

TASK-6000 software reference guide

I

upConfigServiceGlobal

72

Configures a specified service based on service type for all channels.

% For descriptions of available services, see Appendix F, Service descriptions.

Syntax

UP_ERROR _ET upConfi gServi ced obal (
RSYS_I NT32 | Sl ot
RSYS_ I NT32 | Unit,
UP_SERVI CE_ET eServi ce,
UP_GLOBALCONFI GDATA _UT *puCf g

)

Parameters
| Sl ot The resource card unit number.
| Uni t Specifies:
e For most services: the DSP unit number.
e For IOP-based services such as stCAS: the framer unit number.
eServi ce Identifies the service you want to configure:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.
stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
st]itterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic

Appendix A: Standard Host functions * upConfigServiceGlobal

puCt g

jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm

Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDSOHdIc
Concatenates four sub-rate HDLC channels into a full DSO.

For detailed information about TASK services, see Appendix F, Service
descriptions.

A pointer to the configuration data structure:

UP_GLOBALCONFIGDATA_UT structure

t ypedef union {
UP_DSPI NI TCONFI G_ST t1nitData;
} UP_GLOBALCONFI GDATA UT;

This structure is currently only used by UPA initialization code.

Return values

UP_SUCCESS

Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

73

TASK-6000 software reference guide

I

UP_EVT_CONFIG_ACK
Occurs in response to this function if the service is configured.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified service
is not configured.

UP_FAILURE
General failure.

74

Appendix A: Standard Host functions * upConnectPktRecy

I

upConnectPktRecv

Creates a data path from a UDP receive port to an RTP or T.38 decoder that runs
on the specified DSP channel.

As each packet is received it is DMA’d to a FIFO in the DSP specified by I Uni t .
During the DSP’s inter-frame time the packets in the FIFO are sorted by channel and
their payloads passed either to the RTP Receive/Jitter Buffer service, or to the
appropriate T.38 FIFO.

Syntax

UP_ERRCOR _ET upConnect Pkt Recv(

RSYS_I NT32 | Sl ot

RSYS_ I NT32 | Uni t,

RSYS_| NT32 | Channel

UP_PKT_RECV_CONFI G_ST *pst Pkt RecvConfi g
)

Parameters
| Sl ot The resource card unit number.
| Uni t The DSP unit number.

| channel The DSP virtual channel number.

pst Pkt RecvConfi g
A pointer to the UP_PKT_RECV_CONFIG_ST structure:

UP_PKT_RECV_CONFIG_ST structure

typedef struct {
RSYS_UI NT32 ul Recei vePort;
RSYS U NT32 ullnterface;
} UP_PKT RECV_CONFI G ST:
ul Recei vePort
The 16-bit port number of the socket which receives the
packets. You can use one of these values:

0 The port number is automatically assigned. An
appropriate port number is chosen from the range
of UP_PREALLOC_PORT_START through
(UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTYS) (defined as
5000-5999 in upa.h) and returned via an event.

Other You specify the port number. The number must fall
in the range of (UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS) through
(UP_PREALLOC_PORT_START +
UP_MAX_RTP_PORTS) (defined as 6000-6999 in
upa.h), and must be an even number.

75

TASK-6000 software reference guide

I

76

ul I nterface
The unit number of the Ethernet interface on the IOP on
which packets are received.

Return values
UP_SUCCESS

Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the connection
is established.

UP_EVT_CONFIG_ERROR
Emitted when the port number could not be allocated (for
example, the port is already assigned or the DSP channel is
already in use).

UP_EVT_PORT_ASSIGNED
Emitted upon success to identify the UDP port number
allocated to the connection.

UP_FAILURE

General failure.

Appendix A: Standard Host functions * upConnectPktSend

upConnectPktSend

Creates a data path connection between an RTP or T.38 coder that runs in a
channel on a DSP and the IOP’s networking hardware.

After each packet is encoded, it is passed to the stPacketBuilder service which adds
UDP, IP, and Ethernet headers to the packet, and then adds it to the DSP’s Ethernet
Transmit FIFO. On expiration of a timer tick, the packets in the FIFO are added to
the transmit queue of the appropriate Ethernet controller.

Syntax

UP_ERRCOR _ET upConnect Pkt Send(

RSYS_I NT32 | Sl ot

RSYS_ I NT32 | Uni t,

RSYS_| NT32 | Channel

UP_PKT_SEND_ CONFI G_ST *pst Pkt SendConfi g
)

Parameters
| Sl ot The resource card unit number.
| Uni t The DSP unit number.

| channel The DSP virtual channel number.

pst Pkt SendConfi g
A pointer to the UP_PKT_SEND_CONFIG_ST structure:

UP_PKT_SEND_CONFIG_ST structure

typedef struct {
RSYS U NT32 ullnterface;
RSYS_UI NT32 ul Rout er Addr ess;
RSYS_UI NT32 ul Dest Addr ess;
RSYS_UI NT32 ul DestPort;
RSYS_UI NT32 ul Servi ceType;
RSYS_UI NT32 ul SrcPort;
} UP_PKT_SEND_ CONFI G_ST;
ul I nterface
The unit number of the Ethernet interface on which packets
should be sent.

ul Rout er Addr ess
The 32-bit IP address, in host order, of a router on the same
network as the IOP which should be used to forward packets
to ul Dest Addr ess. If ul Dest Addr ess is on the same network
as the IOP and no router should be used, then ul Dest Rout er
should be set to ul Dest Addr ess.

ul Dest Addr ess
The 32-bit IP address, in host order, of the RTP or T.38
packets’ destination.

77

TASK-6000 software reference guide

I

ul Dest Port
The 16-bit UDP port number of the RTP or T.38 packets’
destination.

ul Servi ceType
An 8-bit value used to specify the precedence, delay,
throughput, and reliability of a message. This is used in
making quality of service decisions in the delivery of a packet.

ul SrcPort The optional 16-bit UDP port number that identifies the RTP
or T.38 source application peer. If the source port is not
provided, the values of ul Uni t and | Channel passed with the
function are used to find the corresponding port ID registered
to the inbound fast packet channel established through
upConnectPktRecv. This approach assumes that
upConnectPktSend is preceded by upConnectPktRecv, and
that each path makes up one part of full-duplex connection
on a specified DSP and channel. A source port ID of 0 is
assigned if the user does not specify a source port in their call
to upConnectPktSend and if an upConnectPktRecv was not
successfully executed prior to calling upConnectPktSend on
the specified DSP and Channel numbers.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the connection
is established.

UP_EVT_CONFIG_ERROR

Occurs if the function fails, for instance if an ARP of the
ulDestRouter (destination IP address) fails.

UP_FAILURE
General failure.

78

Appendix A: Standard Host functions ¢ upDisableService

upDisableService
Disables a specified service based on service type for a specific channel.

Other services not dependent on this service are not affected. Major services
(codecs, echo canceller), when disabled this way, consume no DSP resources. Minor
services (tone detectors and generators, and so on) still load but do not run,
reducing their resource load to a minimum, but not zero.

'% * Enabling the stCodec service disables the stTdmToneGen and stPktToneGen
services.

* For descriptions of available services, see Appendix F, Service descriptions.

Syntax

UP_ERRCR _ET upDi sabl eServi ce(
RSYS_INT32 | Sl ot
RSYS_INT32 [Unit,

RSYS_| NT32 | Channel
UP_SERVI CE_ET eService

)

Parameters
| Sl ot The resource card unit number.
| Uni t Specifies:

e For most services: the DSP unit number.

e For IOP-based services such as stCAS: the framer unit number.
| Channel Specifies:

e For most services: the virtual channel number.

e For IOP-based services such as stCAS: the timeslot number.
eServi ce Identifies the service you want to disable:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.
stMFDet Performs MF Tone detection on TDM input data for R1 or

79

TASK-6000 software reference guide

I

80

R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
st]itterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm

Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDSOHdIc
Concatenates four sub-rate HDLC channels into a full DSO.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Return values

UP_SUCCESS

Successful completion.

Appendix A: Standard Host functions ¢ upDisableService

I

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the service is disabled.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified service
remains enabled.

UP_FAILURE
General failure.

81

TASK-6000 software reference guide

I

upDisconnectPktRecv

82

Stops the forwarding of packets from an IP socket to a DSP channel and
de-allocates all associated IOP and DSP resources.

Syntax

UP_ERROR _ET upDi sconnect Pkt Recv(
RSYS_INT32 | Sl ot
RSYS_INT32 [Unit,
RSYS_| NT32 | Channel

)

Parameters
| Sl ot The resource card unit number.
| Uni t The DSP unit number.

| Cchannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the

function sends a message to another processor to implement a

configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function

returns one of these values:
UP_EVT_CONFIG_ERROR

UP_FAILURE
General failure.

Appendix A: Standard Host functions ¢ upDisconnectPktSend

I

upDisconnectPktSend

Stops the forwarding of packets from a DSP channel to an IP socket and deallocates
all associated IOP and DSP resources.

Syntax

UP_ERROR _ET upDi sconnect Pkt Send(
RSYS_INT32 | Sl ot
RSYS_INT32 [Unit,
RSYS_| NT32 | Channel

)

Parameters
| Sl ot The resource card unit number.
| Uni t The DSP unit number.

| Cchannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_FAILURE
General failure.

83

TASK-6000 software reference guide

I

upEnableChannel

84

Enables transmit and receive paths the specified channel.

Syntax

UP_ERROR _ET upEnabl eChannel (
RSYS I NT32 | Sl ot
RSYS I NT32 | Unit,
RSYS_| NT32 | Channel
RSYS_| NT32 | TxEnabl e,
RSYS_| NT32 | RxEnabl e

)

Parameters
| Sl ot The resource card unit number.
| Uni t The DSP unit number.

| Channel The DSP virtual channel number.

| TxEnabl e Controls a channel’s transmit path processing.
TRUE Enables transmit path processing.
FALSE Disables transmit path processing.

| RxEnabl e Controls a channel’s receive path processing.
TRUE Enables receive path processing.
FALSE Disables receive path processing.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the channel is enabled.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified
channel is not enabled.

UP_FAILURE
General failure.

UP_INVALID_ARG
Invalid argument.

Appendix A: Standard Host functions * upEnableChannel

I

Comments

| TxEnabl e and | RxEnabl e may be used to separately control the transmit and
receive path processing for a channel, e.g., a channel which generates tones may not
need receive path processing. However, while this way the DSP processing time
associated with transmit or receive algorithms, it does not eliminate the overhead of
loading the algorithm into DSP memory. Only when | TxEnabl e and | R<Enabl e are
both false is the channel entirely disabled, which removes its overhead entirely.

85

TASK-6000 software reference guide

I

upEnableService

86

Enables a specified service based on the service type for a specific channel, and also
implicitly enables a service when it is configured.

% For descriptions of available services, see Appendix F, Service descriptions.

Syntax

UP_ERRCR _ET upEnabl eSer vi ce(
RSYS_INT32 | Sl ot
RSYS_INT32 [Unit,

RSYS_| NT32 | Channel
UP_SERVI CE_ET eService

)

Parameters
| Sl ot The resource card unit number.
| Uni t Specifies:

¢ For most services: the DSP unit number.

e For IOP-based services such as stCAS or stT1E1Alarm: the framer
unit number.

| Channel Specifies:

e For most services: the virtual channel number.

e For IOP-based services such as stCAS: the timeslot number.
eServi ce Identifies the service you want to enable:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

Appendix A: Standard Host functions * upEnableService

I

stRtpEncode
Performs RTP Packetization and, when used with the
st]itterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm

Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDSOHdIc
Concatenates four sub-rate HDLC channels into a full DSO.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK

87

TASK-6000 software reference guide

I

Occurs in response to this function if the service is enabled.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified service
is not enabled.

UP_FAILURE
General failure.

88

Appendix A: Standard Host functions * upQueryQOSReport

I

upQueryQOSReport

Causes the specified DSP to send a Quality of Service report as an
UP_EVT_STATISTICS_RPT event.

An RTCP stack may use the provided information to create Sender and Receiver
Reports.

Syntax

UP_ERRCOR _ET upQuer yQOSReport (
RSYS_INT32 | Sl ot
RSYS_INT32 [Unit,

RSYS_| NT32 | Channel

)

Parameters

| Sl ot The resource card unit number.
| Uni t The DSP number.

| channel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion. The function requests this event:

UP_EVT_STATISTICS_RPT
Contains the statistics report requested by this function. The
statistics are contained in the UP_STATISTICS_ST structure.

UP_FAILURE
General failure.

UP_INVALID_ARG
Invalid argument.

89

TASK-6000 software reference guide

I

upSetEventHandler

90

Sends notification of DSP events.

Events can include tone detection, peripheral state changes such as hook and other
CAS signals, and any other events any service generates, to
EventHandlerFunc(UP_EVENT_DATA_ST*).

Syntax

UP_ERRCR _ET upSet Event Handl er (
voi d (*event Handl er Func) (
UP_EVENT_DATA_ST*
)
)

Parameters

UP_EVENT_DATA ST
Receives notification of DSP events such as tone detection, peripheral
state changes such as hook and other CAS signals, and any other events
any service generates.

Return values

UP_SUCCESS
The handler was installed.

Appendix A: Standard Host functions * upSetUserMsgHandler

I

upSetUserMsgHandler

The MsgHandlerFunc is called whenever a TASK user message is received by the
host with a msgType not used by UPA.

Currently, UPA uses only message type 80 (decimal).

Syntax

voi d upSet User MsgHandl er (
voi d (*MsgHandl er Func) (
IN long src,
IN long nsgType,
I N ul ong nsgSzW
IN | ong *pBuf

)

Parameters

MsgHandl er Func
A pointer to the message handler.

src The message handler, in this format:
Devi ce | Devi ceNum
Devi ce Enter either TASK_IOP or TASK_DSP.
Devi ceNum Enter the device number.

Examples:

To invoke a handler from the second IOP, use (TASK_IOP | 2) as
the destination.

To invoke a handler from the third DSP, use (TASK_DSP | 3)
as destination.

nmsgType The message type. You can use any positive integer.
msgSzW The number of words in the message.

pBuf The buffer that contains the message.

Return values

None.

91

TASK-6000 software reference guide

I

upStart

92

Initializes the Universal Port subsystem

To perform necessary system initialization, call this function once before calling any
other UPA function on the Host. A controlling Host application populates the
UP_IOPSYSCONFIG_ST structure when making its initial call to upStart.

To reconfigure network adapters or change VOIP control characteristics, call
upStart again during runtime.

upStart also signals a change of control from a primary to a secondary Host
Controller. This is a natural fit since the Host Controller’s IP address is passed as
part of the information that travels from Host Controller to the IOP. Under this
model, a new controlling Host application simply has to call upStart to each IOP to
inform it of the new IP address to use for control.

Syntax

UP_ERROR ET upStart (
UP_| OPSYSCONFI G_ST *pt| OPSysConfi g
)

Parameters

pt | OPSysConfi g
A pointer to a structure that configures the board during UPA
initialization. This structure has the following format:

UP_IOPSYSCONFIG_ST structure

typedef struct {

RSYS_Ul NT32 aul NI CAddr ess[UP_MAX_SLOTS] [MAX_NI CS] ;
RSYS_Ul NT32 ul Host | PAddr ess;

UP_ENABLE ET et CommandAck;

UP_ENABLE ET et Event For war di ng;

UP_LAN CONTROL_ET et LanControl ;
} UP_I OPSYSCONFI G_ST;

aul NI Caddr ess
An array element that carries the IP addresses (host byte
ordered) to associate with Ethernet adapters of the installed
IOPS. The IOP number serves as an index to de-reference the
two installed Ethernet adapters (fei 0 and 1). You can enter
one of these:

0 for either interface 0 or 1
Indicates that you do not want UPA software to
configure the Ethernet adapter and bind an IP
address to it.

Other Causes UPA on the associated IOP to perform a
vxWork’s usrNetlnit to initialize the adapter and
a hostAdd to make a representative hostname to
IP address mapping in the host table.

Appendix A: Standard Host functions * upStart

I

ul Host | PAddr ess
Identifies the IP Address assigned to each NIC. This informs
an IOP of its controlling host’s IP address. An IOP uses this
IP address to establish a communication link to the host for
event forwarding when either TCP or UDP based control is
configured.

ul Host | PAddr ess
The IP Address of the controlling host.

et ConmandAck
A flag that specifies whether UPA acknowledges each UPA
command request with an asynchronous notification. You
can select one of these:

enunDi sabl ed
Commands are issued by an IOP based
application.

enunknabl ed
A host based application requires positive
confirmation of command processing.

et Event For war di ng
A flag that specifies whether the system forwards all events
from each IOP to the host. You can select one of these:

enunDi sabl ed
Events are forwarded from each IOP to the host.

enunkEnabl ed
Events are not forwarded to the host. If you select
this option, then a user application must be
present on each IOP to receive most events.

et LanContr ol
A flag that specifies the transport to use for communicating
control messages between a controlling host and an IOP. You
can select one of these:

enumNoLanCont r ol
The PCI bus communicates control messages
between host and IOP. This limits host control to
IOPs located within the same shelf.

Return values

UP_SUCCESS
Successful completion.

UP_FAILURE
General failure.

93

TASK-6000 software reference guide

I

hostGetNWPktBuf

Receives the next buffer of packets from the DSP.

Syntax

i nt host Get NPkt Buf (
IN I ong dspNum
IN | ong *pBuf

)

Parameters
dspNum The DSP number.

pBuf A pointer to the buffer that receives network packets.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Comments

The buffer contains one or more packets in the following format:
e Total buffer length

e Channel number (one word)

e Packet length (one word)

® One or more words of packet data

For details about the packet buffer contents, see hostSendNWPktBuf on page 97.

94

Appendix A: Advanced Host functions ¢ hostlitterControl

I

hostJitterControl

Updates jitter control parameters.

Syntax

int hostJitterControl (
IN I ong dspNum
IN 1 ong Chnl Num
INt_jitterParam *pJitter

)

Parameters
dspNum The DSP number.
¢chnl Num The channel number.

pJitter A pointer to a structure contains jitter parameters:

t_jitterParam structure

typedef struct {
| ong nJitterBuf;
} t_jitterParam

nJi tter Buf
The number of jitter buffers between the Host and IOP/DSP.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

95

TASK-6000 software reference guide

I

hostReadlop

96

Reads memory space from an IOP.

Syntax

i nt host Readl op(
UCHAR boar dNum
| ong *i opSrcAddr,
| ong *hst Dst Addr,
ULONG uCount W
Parameters
i opNum The number of the IOP you want to read memory from.

i opSr cAddr
The IOP external memory space address to read from.

hst Dst Addr
The Host buffer address that stores read memory.

uCountW The number of words to read from the DSP.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix A: Advanced Host functions * hostSendNWPktBuf

|
hostSendNWPktBuf

Sends network packets to the DSP. The packets are organized in the buffer
as follows:

A Total length excluding length word =

L(32-bit words)

Channel number = x

Channel data length (excluding length word) =
di_x+1 dl_x(32-bit words)

- - — > - —

d|$ X
Channel x data

L Channel number =y

Channel data length (excluding length word) =
di_y+1 dl+y(32-bit words)

- — > - —

y Channel y data

All numbers and sizes are in 32-bit words

Figure A-1. Packet organization buffer

Syntax

i nt host SendNWPkt Buf (
IN I ong dspNum
IN | ong *pBuf

)

Parameters

dspNum The number of the DSP to which you want to send packets.

pBuf A buffer that consists of one or more network packets, as shown in
Figure A-1.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

97

TASK-6000 software reference guide

I

hostSendMsg

Sends a message from the Host to the specified IOP or DSP. If the message is not
delivered to the IOP within the specified time, the function returns failure.

98

Syntax

i nt host SendMsg (
IN |l ong dst,
IN I ong nsgType,
IN ul ong nsgSzW
IN | ong *pBuf,
IN long waitTi meMsec

)

Parameters

dst

msgType
msgSzW
pBuf

The message’s destination, in this format:

Devi ce | Devi ceNum

Devi ce Enter either TASK_IOP or TASK_DSP.
Devi ceNum Enter the device number.

Examples:

To send a message to the second IOP, use (TASK_IOP | 2) as
the destination.

To send a message to the third DSP, use (TASK_DSP | 3) as destination.
Message type. You can use any positive integer value.
The number of words in a message.

The buffer that contains the message.

wai t Ti neMsec

The number of milliseconds that elapse before determining a message’s
delivered status.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix A: Advanced Host functions ¢ hostSetNWNotify

|
hostSetNWNotify

Identifies the handler to invoke to notify the arrival of network packets from the
DSP. The handler must take the DSP number as the argument.
Syntax

voi d host Set N\Not i fy(
IN void (* NWNotifyHndlr) (1IN Iong dspNum

)

Parameters

NWNot i f yHndl r
A pointer to the handler that notifies the Host application of the arrival
of network packets from the DSP.

dspNum The number of the DSP from which network packets were sent.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

99

TASK-6000 software reference guide

I

hostWritelop

100

Writes to the IOP memory space.

¥

Syntax

int hostWitelop(
UCHAR boar dNum
| ong *hst SrcAddr,
| ong *i opDst Addr,
ULONG uCount W
)
Parameters
i opNum The number of the IOP board to write memory from.

hst Sr cAddr
A pointer to host buffer you want to write to.

i opDst Addr
The IOP destination address.

uCountW The number of words to write to the IOP.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix A: Advanced Host functions ¢ hostSetPollPeriod

I

hostSetPollPeriod

Specifies the number of milliseconds that elapse before the host polls all IOPs for
received network packets.
Syntax

i nt Host Set Pol | Peri od(
ul ong ul Pol | Peri od

)

Parameters

ul Pol I Peri od
The number of milliseconds that elapse before the host polls all IOPs for
received network packets. The default is 10 ms.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

101

TASK-6000 software reference guide

I

hostSendPriorityMsg

102

Sends a message from the Host to the specified IOP or DSP. If the message is not
delivered to the IOP within the specified time, the function returns failure.

The message advances to the first position in the queue of messages destined for
each IOP, and therefore pre-empts any other messages waiting in the queue.

Syntax

i nt host SendPriorityMsg (
IN |l ong dst,
IN I ong nsgType,
I N ul ong nsgSzW
IN | ong *pBuf,
IN long waitTi meMsec

)

Parameters

dst

megType
nmsgSzW
pBuf

The message’s destination, in this format:

Devi ce | Devi ceNum

Devi ce Enter either TASK_IOP or TASK_DSP.
Devi ceNum Enter the device number.

Examples:

To send a message to the second IOP, use (TASK_IOP | 2) as
the destination.

To send a message to the third DSP, use (TASK_DSP | 3) as destination.
Message type. You can use any positive integer value.
The number of words in a message.

The buffer that contains the message.

wai t Ti neMsec

The number of milliseconds that elapse before determining a message’s
delivered status.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

\
29y

IOP functions

Overview

The IOP API provides a control interface for the allocation, configuration, and
execution of IOP resources. The function prototypes and definitions for this API are
contained in the header filexyz.h.

You develop IOP applications by linking with the IOP API library.
This appendix lists function descriptions alphabetically within the following groups:
e Standard functions: Includes Control and Message APIs.

e Advanced functions: Includes functions you use only in unusual, special-
purpose circumstances.

You can find a function in this appendix either by locating it alphabetically within
its group, or by using Table B-1 on the next page, which groups like functions
together.

Message API

You use these functions to configure UPA to transparently forward packets between
an Ethernet interface and an RTP or T.38 transport service that runs on a RadiSys
SPIRIT board’s DSP.

The implementation of this functionality is very high performance, capable of
moving many thousands of packets per second while consuming only a fraction of
the 1960 I/O processor’s time. In brief, this is accomplished by bypassing the
VxWorks TCP/IP stack and processing the majority of the Ethernet, IP, and UDP
layers on the DSP.

The caveat is that no full IP stack proceses these packets, so “unusual” cases are not
supported. For instance:

e Fragmentation/reassembly is not supported. Fragmented packets are
silently discarded.

e Buffer sizes are based on typical RTP voice packets. Packets larger than a
predefined maximum (initially 350 bytes) are silently discarded.

e VxWorks routing tables are not used; only a simple default route is currently
supported.

103

TASK-6000 software reference guide

I

Function list

Use this table to identify the IOP functions you want to use. Use the function
description later in this appendix to obtain detailed information, including syntax

and parameter values.

Table B-1. IOP functions

Function

Description

Standard functions

iopControlPeripheral

Configures specified peripheral.

getBoardInfo

Provides a board’s information structure, as
defined by the IOP monitor’s
SP6K BOARD INFO T structure.

ioplnit Initializes the IOP API.

Control API
upStart Initializes the Universal Port subsystem.
upEnableChannel Enables transmit and receive paths of a

specified channel.

upEnableService

Enables a specified service based on service
type for the specified channel. upConfigService
also implicitly enables a service when it is
configured.

upDisableService

Disables a specified service based on service
type for a specific channel.

upConfigService

Configures a specified service based on service
type for a specific channel.

upConfigServiceGlobal

Configures a specified service based on service
type for all channels.

upSetEventHandler

Passes information received from DSPs to the
event handler.

upQueryQOSReport

Causes the specified DSP specified to send a
Quiality of Service report as an
UP_EVT STATISTICS RPT event.

Message API

You use these functions to configure UPA to
transparently forward packets between an
Ethernet interface and an RTP or T.38 transport
service that runs on a RadiSys SPIRIT board’s
DSP

upConnectPktSend

Creates a data path between an RTP or T.38
coder running on a DSP channel and the IOP’s
Ethernet driver.

upConnectPktRecv

Creates a data path from a UDP receive socket
to an RTP or T.38 decoder running on a DSP
channel.

104

Appendix B: IOP functions * Function list

I

Table B-1. IOP functions

Function Description

upDisconnectPktSend Stops the forwarding of packets from a DSP
channel to an IP socket and de-allocates all
associated IOP and DSP resources.

upDisconnectPktRecv Stops the forwarding of packets from an IP
socket to a DSP channel and de-allocates all
associated IOP and DSP resources.

Advanced functions

iopGetNWPktBuf Receives the next buffer of packets from the
DSP

iopJitterControl Updates the IP network buffer control
parameters.

iopSendNWPktBuf Sends network packets to the DSP

iopSendMsg Sends a message from the Host to the specified
IOP or DSP

iopSetNWNotify Sets handler to be invoked for notifying arrival
of network packets from the DSP

upSetUserMsgHandler MsgHandlerFunc is called whenever a TASK

user message is received by the IOP with a
msgType not used by UPA.

105

TASK-6000 software reference guide

I

getBoardinfo

106

Provides a board’s information structure, as defined by the IOP monitor’s
SP6K_BOARD_INFO_T structure.

This function reports the extents of the system by identifying the number and type
of processors, T1/E1 framers, HDLC codecs, and TDM switches on the board.
Also, you can use hostGetSystemInfo to determine the number and type of SPIRIT
boards in the system.

For more information, see the sp6k_board_info_tspék.h file.

Syntax

i nt get Boardl nf o(
| NOUT SP6K_BOARD | NFO T *pBoardl nfo

)

Parameters

pBoar dl nf o
A pointer to SP6K_BOARD_INFO_T, the structure that stores
board information:

SP6K_BOARD_INFO_T structure
typedef struct {

Ul NT32 post _results;
Ul NT32 free_zone;

Ul NT32 flash_si ze;

Ul NT32 nenory_si ze;
UCHAR board_revi si on;
UCHAR num dsps;

UCHAR hm c_present;
UCHAR board_t ype;

Ul NT32 error_code;

C6X_INFO. T dsp_i nfo[MAX_DSPS];
} SP6K_BOARD | NFO T;

post _results
POST results.

free_zone Address of host free memory zone.

flash_size

Flash ROM size.

nenory_si ze
Memory size.

board_revi si on
Board revision.

num dsps The number of DSPs in the configuration.

hm c_present
HMIC/T8100 presence. The lower nibble identifies the
installed T810x, and the upper nibble identifies the installed

Appendix B: Standard IOP functions * getBoardInfo

I

option card, if one exists.

Since all deliverable SPIRIT boards have a T810x (HMIC)
installed, this field is not used for additional information.
The lower nibble identifies the type of T810x installed. The

upper nibble identifies the type of option card (if any)
installed.

board_t ype
Specifies the board type. You can select one of these:

Single
Dual
Quad

error_code

Error code storage (for IOPDRYV).
dsp_i nfo[MAX_DSPS |
DSP POST results and memory sizes.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

107

TASK-6000 software reference guide

I

iopControlPeripheral

Configures specified peripheral.

Syntax

i nt iopControl Peripheral (
IN int peripheral,
INint cnd,
INt_configArg *pArg

)

Parameters

peri pheral
The peripheral. You can select one of these values:

TASK_E1
TASK_T1
TASK_T8100
crd Command to send to the peripheral. You can use one of these values:

CONFIG_E1
Instructs the framer to use E1 line protocol.

CONFIG_T1
Instructs the framer to use T1 line protocol.

CONFIG_T8100_DEFAULT
Reserved.

CONFIG_T8100_SWITCHING
A pointer to the structure that specifies T8100 switching;:

t_T8100SwitchConfig structure

typedef struct {
ul ong nunber _of _connecti ons;
t _T8100Connecti on *connecti ons;

} t_T8100Swi t chConfi g;

nunmber _of _connecti ons
The number of T8100 connections to be made.
The maximum connections per call is 256.

*connecti ons
Pointer to a list that contains
number _of _connect i ons connections.

CONFIG_T8100_CLOCKS
A pointer to the structure that specifies the clock the TDM
switch uses:

108

Appendix B: Standard IOP functions ¢ iopControlPeripheral

t_T8100ClockConfig structure

typedef struct {

t_ref _clk reference_cl k_sel ect;
t_netref_clk netref _sel ect;

t _fallback _clk allback_clk_select;
BOOL32 netref _enabl e;

BOOL32 netref 2_enabl e;
BOOL32 frame_cl k_a_enabl e;
BOOL32 frame_cl k_b_enabl e;
BOOL32 conpat _cl ks_enabl e;
BOOL32 fal | back_enabl e;

} t_T8100d ockConfi g;

reference_cl k_sel ect
Specifies the primary clock source to be used by
the T8100.

netref_sel ect
Specifies the clock source used by the T8100 to
generate its output CT_NETREEF signal.

fal | back_cl k_sel ect
Specifies the fallback clock source used by the
T8100. That is, the clock used when the primary
clock source selected via reference_cl k_sel ect
fails.

netref_enabl e
Enables the CT_NETREEF signal, generated by the
T8100, onto the CT Bus.

netref2_enabl e
Enables the CT_NETREF_2 signal, generated by
the T8100, onto the CT Bus.

framer_cl k_a_enabl e
Enables the CT_C8_A (clock) and
CT_FRAME_A (frame sync) signals, generated by
the T8100, onto the bus.

framer _cl k_b_enabl e
Enables the CT_C8_B (clock) and CT_FRAME_B
(frame sync) signals, generated by the T8100,
onto the bus.

conpat _cl ks_enabl e
Enables the MVIP and SCSA compatibilty clock
and strobe signals, generated by the T8100, onto
the bus.

109

TASK-6000 software reference guide

I

fal | back_enabl e
Enables clock fallback. When a clock error occurs
on the current clock reference, the T8100 will fall
back to fal | back_cl k_sel ect.

CONFIG_T8100_STREAMS
A pointer to the structure that specifies the T8100
stream parameters:

t_T8100StreamConfig structure

typedef struct {
t_streamrate dsp_bspO_rate;
t_streamrate dsp_bspl_rate;
t_streamrate eltl_rate;

t_streamrate ct _bus_03_00_rate;
t_streamrate ct _bus_07_04_rate;
t_streamrate ct_bus_11 08 rate;

t_streamrate ct_bus_15_12 rate;
t_streamrate ct_bus_19 16 rate;
t_streamrate ct _bus_23 20 rate;
t_streamrate ct _bus_27_24 rate;
t_streamrate ct_bus_31_28 rate;
} t_T8100St reanConfi g;
dsp_bspO_rate
Specifies the TDM stream rate for Buffered Serial
Port 0 of the DSPs. Currently this value must be
the same as dsp_bspl_rate.

dsp_bspl_rate
Specifies the TDM stream rate for Buffered Serial
Port 1 of the DSPs. This value must be the same
as dsp_bspO_rate.

elt1_rate Specifies the TDM stream rate for the E1/T1

framers. Under most conditions, this rate should
be 2MHz.

ct_bus_03 00 rate
Specifies the TDM stream rate for CT bus streams
0 through 3.

ct_bus_07_04 rate

Specifies the TDM stream rate for CT bus streams
4 through 7.

ct_bus_11 08 rate
Specifies the TDM stream rate for CT bus streams
8 through 11.

ct_bus_15 12 rate
Specifies the TDM stream rate for CT bus streams
12 through 15.

ct_bus_19 16 rate

110

Appendix B: Standard IOP functions ¢ iopControlPeripheral

I

Specifies the TDM stream rate for CT bus streams
16 through 19.

ct_bus_23 20 rate
Specifies the TDM stream rate for CT bus streams
20 through 23.

ct_bus_27_24 rate
Specifies the TDM stream rate for CT bus streams
24 through 27.

ct_bus_31 28 rate
Specifies the TDM stream rate for CT bus streams
28 through 31.

pAr g A pointer to the union of configuration structure. This union contains
structures that have peripheral control information:

t_configArg structure

t ypedef union {
t _T1 user_config_struct t 1Confi g;
t _E1 user _config_struct elConfig;

t _T8100d ockConfi g t 8100C kCf g;
t _T8100Swi t chConfi g t 8100Swi t chCf g;
t _T8100Str eantConfi g t 8100St r eantf g;

} t_configArg;

t _T1 user_config_struct
Configuration structure for T1.

t _E1 _user_config_struct
Configuration structure for el.

t _T8100d ockConfi g
Configuration structure for t8100 clock.

t _T8100Swi t chConfi g
Configuration structure for t8100 switch.

t _T8100Str eantConfi g
Configuration structure for t8100 stream.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

111

TASK-6000 software reference guide

I

ioplnit

112

Initializes the IOP API.
Syntax

int ioplnit (void)
Parameters

None.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix B: Standard IOP functions * upConfigService

upConfigService

Configures a specified service based on service type for a specific channel.

Also enables the service after configuration.

% * Enabling the stCodec service disables the stTdmToneGen and stPktToneGen

services.

* For descriptions of available services, see Appendix F, Service descriptions.

Syntax

UP_ERROR _ET upConfi gServi ce(
RSYS I NT32 | Uni t,
RSYS_| NT32 | Channel
UP_SERVI CE_ET eServi ce,
UP_CONFI G_SVC_MsG_UT *put Confi gService

)

Parameters

| Unit

| Channel

eServi ce

Specifies:

e For most services: the DSP unit number.

e For IOP-based services such as stCAS: the framer unit number.
Specifies:

* For most services: the virtual channel number.

® For IOP-based services such as stCAS: the timeslot number.
Identifies the service you want to configure:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

113

TASK-6000 software reference guide

I

114

stRtpEncode
Performs RTP Packetization and, when used with the
st]itterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,

and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm

Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDSOHdIc
Concatenates four sub-rate HDLC channels into a full DSO.

For detailed information about TASK services, see Appendix F, Service
descriptions.

put Confi gServi ce

A pointer to the configuration data structure:

UP_CONFIG_SVC_UT structure
t ypedef union {

UP_CODEC _CONFI G_ST t CodecConfi g;
UP_ECHO CONFI G_ST t EchoCancConfi g;
UP_AGC _CONFI G_ST t AGCConfi g;
UP_DTMF_CONFI G_ST t DTM-Conf i g;
UP_CPT_CONFI G_ST t CPTConfi g;
UP_M~_CONFI G_ST t MFConfi g;
UP_TONEGEN_CONFI G_ST t ToneGenConfi g;

Appendix B: Standard IOP functions * upConfigService

I

UP_RTP_SEND CONFI G_ST t Rt pSendConfi g;
UP_RTP_RECV_CONFI G_ST t Rt pRecvConfi g;
UP_T38_CONFI G ST t T38Confi g;
UP_T1E1ALARM CONFI G_ST t TLE1Al ar nConf i g;
UP_CAS_CONFI G ST t CasConfi g;

UP_PACKET_BUI LDER CONFI G ST t PBConfi g;

UP_PACKET_PARSER CONFI G STt PPConfi g;

UP_I OPI NI TCONFI G_ST t 1 opl ni t Dat a;
} UP_CONFI G_SVC_UT;

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

P_EVT_CONFIG_ERROR
The new channel or service configuration is invalid.

UP_EVT_CONFIG_ACK
(for debugging) acknowleges each configuration action.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

115

TASK-6000 software reference guide

I

upConfigServiceGlobal

116

Configures a specified service based on service type for all channels.

% For descriptions of available services, see Appendix F, Service descriptions.

Syntax

UP_ERROR _ET upConfi gServi ced obal (
RSYS_ I NT32 | Uni t,
UP_SERVI CE_ET eServi ce,
UP_GLOBALCONFI GDATA_UT *put Confi gd obal

)

Parameters

| Uni t

service

Specifies:

e For most services: the DSP unit number.

e For IOP-based services such as stCAS: the framer unit number.
Identifies the service you want to configure:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.
stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
st]itterBuf service, depacketization.

Appendix B: Standard IOP functions * upConfigServiceGlobal

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,

and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm

Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDSOHdIc
Concatenates four sub-rate HDLC channels into a full DSO.

For detailed information about TASK services, see Appendix F, Service
descriptions.

put Confi gd obal

A pointer to the configuration data structure:

UP_GLOBALCONFIGDATA_UT structure

t ypedef union {
UP_DSPI NI TCONFI G_ST t 1l nit Dat a;
} UP_GLOBALCONFI GDATA _UT,;

This structure is currently only used by UPA initialization code.

Return values
UP_SUCCESS

Successful completion.

UP_CONFIG_ERR

Configuration error.

117

TASK-6000 software reference guide

I

UP_INVALID_ARG
Invalid argument.

118

Appendix B: Standard IOP functions ¢ upConnectPktRecy

I

upConnectPktRecv

Creates a data path from a UDP receive socket to an RTP or T.38 decoder running
on a DSP channel.

As each packet is received it will be DMA’d to a FIFO in the DSP specified by [Unit.
During the DSP’s inter-frame time the packets in the FIFO are sorted by channel and

their payloads are passed either to the RTP Receive/Jitter Buffer service, or to the
appropriate T.38 FIFO.

An asynchronous UP_EVT_PORT_ASSIGNED event will be emitted on success to
identify the UDP port number that was allocated to the connection. A
UP_EVT_CONFIG_ERROR shall be emitted in situations where to port number
could not be allocated (port already assigned or DSP channel already in use).

Syntax

UP_ERRCOR _ET upConnect Pkt Recv(
RSYS I NT32 | Uni t,
RSYS_| NT32 | Channel
UP_PKT_RECV_CONFI G_ST *pst Pkt RecvConfi g

)

Parameters
| Uni t The DSP unit number
| channel The DSP virtual channel number

pst Pkt RecvConfi g
A pointer to the UP_PKT_RECV_CONFIG_ST structure:

UP_PKT_RECV_CONFIG_ST structure

typedef struct {
RSYS_UI NT32 ul Recei vePort;
RSYS U NT32 ullnterface;
} UP_PKT_RECV_CONFI G ST:
ul Recei vePort
The 16-bit port number of the socket which will receive the
packets. If this number is specified as zero an appropriate port
number will be chosen from the range of
UP_PREALLOC_PORT_START through
UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS (defined as 5000 — 5999 in
upa.h) and returned via an event. If this number is specified
manually it must fall in the range through
UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS through
UP_PREALLOC_PORT_START + UP_MAX_RTP_PORTS
(defined as 6000 — 6999 in upa.h) and must be even.

119

TASK-6000 software reference guide

I

ul Recei vePort
The 16-bit port number of the socket which receives the
packets. You can use one of these values:

0 An appropriate port number is chosen from the
range of UP_PREALLOC_PORT_START
through (UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS) (defined as

5000-5999 in upa.h) and returned via an event.

Other The number must fall in the range of
(UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS) through
(UP_PREALLOC_PORT_START +
UP_MAX_RTP_PORTS) (defined as 6000-6999
in upa.h), and must be an even number.

ul I nterface
The unit number of the Ethernet interface on which to
send packets.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR
UP_EVT_CONNECT_RECV
UP_EVT_PORT_ASSIGNED

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

UP_DSP_ERR
DSP channel assignment error—fast packet.

120

Appendix B: Standard IOP functions * upConnectPktSend

I

upConnectPktSend

Creates a data path between an RTP or T.38 coder running on a DSP channel and
the IOP’s Ethernet driver.

As each packet is encoded by the codec, it will be passed to the stPacketBuilder
service which will add UDP, IP, and Ethernet headers to the packet and then add it
to a DSP->IOP FIFO. On the expiration of a timer tick the packets in the fifo will
be added to the transmit queue of the appropriate Ethernet controller and
transmitted to the network addressable device specified by the Ethernet frame’s
destination MAC address.

An asynchronous UP_EVT_CONFIG_ACK event will occur in response to this
function if the connection is established. A UP_EVT_CONFIG_ERROR will occur

if the function fails; for instance if an ARP of ulDestRouter (destination IP address)
fails.

Syntax

UP_ERROR _ET upConnect Pkt Send(
RSYS_I NT32 | Unit,
RSYS_| NT32 | Channel
UP_PKT_SEND CONFI G_ST *pst Pkt SendConfi g

)
Parameters
| Uni t The DSP unit number

| channel The DSP virtual channel number

pst Pkt SendConfi g
A pointer to the UP_PKT_SEND_CONFIG_ST structure:

UP_PKT_SEND_CONFIG_ST structure

typedef struct {
RSYS U NT32 ullnterface;
RSYS_UI NT32 ul Rout er Addr ess;
RSYS_UI NT32 ul Dest Addr ess;
RSYS_UI NT32 ul DestPort;
RSYS_UI NT32 ul Servi ceType;
RSYS_UI NT32 ul SrcPort;
} UP_PKT_SEND CONFI G_ST;
ul I nterface
The unit number of the Ethernet interface on which packets
should be sent.

ul Rout er Addr ess
The 32-bit IP address, in host order, of a router on the same
network as the IOP which should be used to forward packets
to ul Dest Addr ess. If ul Dest Addr ess is on the same network
as the IOP and no router should be used, then ul Dest Rout er
should be set to ul Dest Addr ess.

121

TASK-6000 software reference guide

I

122

ul Dest Addr ess
The 32-bit IP address, in host order, of the RTP or T.38
packets’ destination.

ul Dest Port
The 16-bit UDP port number of the RTP or T.38 packets’
destination.

ul Servi ceType
An 8-bit value used to specify the precedence, delay,
throughput, and reliability of a message. This is used in
making quality of service decisions in the delivery of a packet.

ul SrcPort The optional 16-bit UDP port number that identifies the RTP
or T.38 source application peer. If the source port is not
provided, the values of ul Uni t and I Channel passed with the
function are used to find the corresponding port ID registered
to the inbound fast packet channel established through
upDisconnectPktRecv. This approach assumes that
upDisconnectPktSend is preceded by upConnectPktRecv, and
that each path makes up one part of full-duplex connection
on a specified DSP and channel. A source port ID of 0 is
assigned if the user does not specify a source port in their call
to upConnectPktSend and if an upConnectPktRecv was not
successfully executed prior to calling upConnectPktSend on
the specified DSP and Channel numbers.

Return values
UP_SUCCESS

Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR
UP_EVT_CONNECT_SEND

UP_FAILURE

General failure.

UP_INVALID_ARG

Invalid argument.

Appendix B: Standard IOP functions ¢ upDisableService

I

upDisableService
Disables a specified service based on service type for a specific channel.

Services not dependent on this service are not be affected. Major services (codecs,
echo canceller) when disabled this way consume no DSP resources. Minor services
(tone detectors and generators, etc.) still load but don’t run, reducing their resource
load to a minimum but not zero.

'% * Enabling the stCodec service disables the stTdmToneGen and stPktToneGen
services.

* For descriptions of available services, see Appendix F, Service descriptions.

Syntax

UP_ERRCR _ET upDi sabl eServi ce(
RSYS_I NT32 [Unit,
RSYS_| NT32 | Channel
UP_SERVI CE_ET eServi ce

)
Parameters
| Uni t Specifies:

e For most services: the DSP unit number.

e For IOP-based services such as stCAS: the framer unit number.
| Channel Specifies:

e For most services: the virtual channel number.

e For IOP-based services such as stCAS: the timeslot number.
eServi ce Identifies the service you want to disable:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

123

TASK-6000 software reference guide

I

124

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
st]itterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,

and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm

Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDSOHdIc
Concatenates four sub-rate HDLC channels into a full DSO.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Return values
UP_SUCCESS

Successful completion.

UP_CONFIG_ERR

Configuration error.

UP_INVALID_ARG

Appendix B: Standard IOP functions ¢ upDisableService

I

Invalid argument.

125

TASK-6000 software reference guide

I

upDisconnectPktRecv

Stops the forwarding of packets from an IP socket to a DSP channel and
de-allocates all associated IOP and DSP resources.

Syntax

UP_ERROR _ET upDi sconnect Pkt Recv(
RSYS_INT32 [Unit,
RSYS_| NT32 | Channel

)
Parameters
| Uni t The DSP unit number.

| Cchannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

UP_DSP_ERR
DSP channel assignment error—fast packet.

126

Appendix B: Standard IOP functions * upDisconnectPktSend

I

upDisconnectPktSend

Stops the forwarding of packets from a DSP channel to an IP socket and
de-allocates all associated IOP and DSP resources.

Syntax

UP_ERROR _ET upDi sconnect Pkt Send(
RSYS_INT32 [Unit,
RSYS_| NT32 | Channel

)
Parameters
| Uni t The DSP unit number.

| Cchannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

127

TASK-6000 software reference guide

I

upEnableChannel

128

Enables transmit and receive paths of a specified channel.
| Channel does not display in messages returned via upGetNWMsg or forwarded to
an RTP socket unless the channel is enabled via this function.
Syntax
UP_ERRCR _ET upEnabl eChannel (
RSYS_ I NT32 | Unit,
RSYS_| NT32 | Channel
RSYS_| NT32 | TxEnabl e,
RSYS | NT32 | RxEnabl e
)
Parameters
| Uni t The DSP unit number.
| Channel The DSP virtual channel number.
| TxEnabl e Controls a channel’s transmit path processing.
TRUE Enables transmit path processing.
FALSE Disables transmit path processing.
| RxEnabl e Controls a channel’s receive path processing.

TRUE Enables receive path processing.
FALSE Disables receive path processing.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

Appendix B: Standard IOP functions ¢ upEnableChannel

I

Comments

| TxEnabl e and | RxEnabl e may be used to separately control the transmit and
receive path processing for a channel, e.g., a channel which generates tones may not
need any receive path processing. However, while this reduces the DSP processing
time associated with transmit or receive algorithms, it does not eliminate the
overhead of loading the algorithm into DSP memory. Only when | TxEnabl e and

| RxEnabl e are both false is the channel entirely disabled, which removes its
overhead entirely.

129

TASK-6000 software reference guide

I

upEnableService

130

Enables a specified service based on service type for the specified channel.
upConfigService also implicitly enables a service when it is configured.

% * Enabling the stCodec service disables the stTdmToneGen and

stPktToneGen services.

* For descriptions of available services, see Appendix F, Service descriptions.

Syntax

UP_ERROR _ET upEnabl eServi ce(
RSYS I NT32 | Uni t,
RSYS_| NT32 | Channel
UP_SERVI CE_ET eServi ce

)

Parameters

| Uni t

| Channel

eServi ce

Specifies:
¢ For most services: the DSP unit number.

e For IOP-based services such as stCAS or stT1E1Alarm: the framer
unit number.

Specifies:

e For most services: the virtual channel number.

e For IOP-based services such as stCAS: the timeslot number.
Identifies the service you want to enable:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

Appendix B: Standard IOP functions * upEnableService

stRtpEncode
Performs RTP Packetization and, when used with the
st]itterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDSOHdIc
Concatenates four sub-rate HDLC channels into a full DSO.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Return values
UP_SUCCESS

Successful completion.

UP_CONFIG_ERR

Configuration error.

UP_FAILURE

General failure.

UP_INVALID_ARG

Invalid argument.

131

I

TASK-6000 software reference guide

I

132

UP_RTP_ERR
RTP port assignment error—fast packet.

UP_DSP_ERR
DSP channel assignment error—fast packet.

UP_START_TIMEOUT
A timeout occurred on a blocking call to upStart.

UP_HDLC_PORT_ERR
HDLC port configuration error.

UP_HDLC_CHAN_ENABLE_ERR
HDLC channel enable error.

UP_HDLC_CHAN_CONFIG_ERR
HDLC channel configuration error.

Appendix B: Standard IOP functions * upQueryQOSReport

upQueryQOSReport

Causes the specified DSP specified to send a Quality of Service report as an
UP_EVT_STATISTICS_RPT event.

An RTCP stack can use the provided information to create Sender and Receiver
Reports.

Syntax

UP_ERRCOR _ET upQuer yQOSReport (
RSYS_INT32 [Unit,
SYS_|I NT32 | Channel

)

Parameters
| Uni t The DSP number.
| channel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_EVT_STATISTICS_RPT
UP_STATISTICS_ST

typedef struct {

RSYS_Ul NT32 sender _packet _count;
RSYS_Ul NT32 sender _oct et _count;
RSYS_Ul NT32 frac_l ost;

RSYS_Ul NT32 cum packet _| ost_count;
RSYS_Ul NT32 cum | at e_packet _count;
RSYS_Ul NT32 ext _hi _seq_recv;
RSYS_Ul NT32 interarrival jitter;
RSYS_| NT32 | Si | encePer cent Tx;
RSYS_| NT32 | Si | encePer cent Rx;
RSYS_Ul NT32 recv_packet _count;
RSYS_Ul NT32 recv_octet _count;
RSYS_Ul NT32 pkt _p_no_pkt _count;
RSYS_Ul NT32 pkt _p fifo_errl_count;
RSYS_Ul NT32 pkt _p_fifo_err2_count;
RSYS_Ul NT32 pkt _p_len_err_count;
RSYS_Ul NT32 pkt _p_i p_cksum count;
RSYS_Ul NT32 pkt _p_udp_cksum count;
RSYS_Ul NT32 pkt _b_error_count;
RSYS_Ul NT32 rtp_unsupport_pt_count;
RSYS_Ul NT32 rtp_j b_resync_count;

133

I

TASK-6000 software reference guide

I

134

RSYS_Ul NT32 rtp_seq_dup_count;
RSYS_Ul NT32 rtp_jb_full _count;
RSYS_Ul NT32 rtp_ssrc_change_count;
RSYS_Ul NT32 ul SysCycl e;

RSYS_Ul NT32 ul Thr eadAvg;

RSYS_Ul NT32 ul Thr eadMax;

RSYS_Ul NT32 ul Usage;

} UP_STATI STI CS_ST;

Parameters

sender _packet _count
The number of packets sent by the RTP encoder

sender _oct et _count
The number of bytes of payload sent by the RTP
encoder

frac_Il ost
The ratio packets_lost/packets_expected as an 8-
bit fraction

cum packet _| ost _count
The count of packets which were not available to
play when required

cum | at e_packet _count
The count of packets which were not available to
play when required but which subsequently
arrived and were discarded

ext _hi _seq_recv
The highest sequence number received thus far in
an RTP session

interarrival jitter
The jitter in packet arrival times, computed
according to H.225

| Si | encePer cent Tx
A number from 0 to 100 indicating the percentage
silence suppression transmitted since the last
upConfigService(stRTP,...)

| Si | encePer cent Rx
A number from 0 to 100 indicating the percentage
silence suppression received since the last
upConfigService(stRTP,...)

recv_packet _count
The number of packets received by the RTP
decoder

recv_octet count
The number of bytes of payload received by the
RTP decoder

Appendix B: Standard IOP functions * upQueryQOSReport

I

ul SysCycl e
The timer count of DSP system cycle

ul Thr eadAvg

The timer counter in average spent by TDM
thread

ul Thr eadMax

The maximum timer counter spent by TDM
thread since the DSP is loaded.

ul Usage A number from 0 to 100 indicating ulThreadMax/
ulSysCycle.

All the other members of the structure are reserved for Radisys internal
use only.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

135

TASK-6000 software reference guide

I

upSetEventHandler

Passes information received from DSPs to the event handler.

Syntax

UP_ERRCR_ET upSet Event Handl er (
voi d (*event Handl er Func) (UP_EVENT_DATA ST*)

)

Parameters

Event Handl er Func(UP_EVENT_DATA_ST*)
Receives notification from the UP_EVENT_DATA_ST structure of DSP
events such as tone detection, peripheral state changes such as hook and
other CAS signals, and any other events any service generates.

UP_EVENT_DATA_ST structure

t ypedef struct
{

UP_SERVI CE_ET eServi ce;
UP_EVENT_ET eEvent Num

RSYS_Ul NT32 ul Sl ot;

RSYS_UI NT32 ul Uni t;

RSYS_Ul NT32 ul Channel ;

RSYS_Ul NT32 ul Event Dat aLengt h;
uni on

{
UP_DTMF_DETECTED DATA ST sDtnf Det ect edDat a;

UP_CPT_DETECTED DATA ST sCpt Det ect edDat a;
UP_MF_DETECTED DATA ST sM Det ect edDat a;
UP_RTP_PT_CHANGE DATA ST sRt pPt Dat a;
UP_RTP_SSRC CHANGE_DATA ST sRt pSsr cDat a;

UP_CAS_CHANGE_DATA_ST sCasChangeDat a;
UP_STATI STI CS_ST sStatistics;
UP_CONNECT_SEND _RPT_ST sConnect SendRpt ;
UP_ERRCOR _ET et Er r or Code;
RSYS_| NT32 | Rt pPort | D
UP_START_DSP_REPLY_ST tStart Reply;
UP_T1E1_ALARM DATA ST t TLE1Al ar nDat a;

UP_ETHERNET_ALARM DATA ST t Et her net Al ar nDat a;
UP_STREAM CONNECT_DATA ST t StreanConnect Dat a;
UP_HDLC REPORT_DATA ST t Hdl cReport Dat a;
} uEvent Dat a;
} UP_EVENT_DATA ST;

eService The service (from t_UP_SERVICE enum) which sent
the event.
eEvent Num The event from this service.

ul Uni t The device unit number (i.e. for a DSP-based service this
holds the DSP number).

ul channel The channel or timeslot within device uni t .

136

Appendix B: Standard IOP functions * upSetEventHandler

I

ul Event Dat aLengt h
The length of the associated data.

uEvent Dat a
Further information about the event, when the event requires
more than eEventNum to describe it.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR
UP_EVENT_ET

t ypedef enum {
UP_EVT_GENERAL_DSP_FAI LURE = 1,
UP_EVT_CONFI G_ERRCOR,
UP_EVT_STATI STI CS_RPT,
UP_EVT_CONNECT_SEND,

UP_EVT_CONNECT RECV,
UP_EVT_CONFI G_ACK,

UP_EVT_TDM DTMF_DETECTED,
UP_EVT_PKT_DTMF_DETECTED,
UP_EVT_CPT_DETECTED,
UP_EVT_MF_DETECTED,
UP_EVT_RTP_PT_CHANGE,
UP_EVT_RTP_SSRC_CHANGE,
UP_EVT_T1E1_ALARM
UP_EVT_CAS_CHANGE
UP_EVT_PORT_ASS| GNED,
UP_EVT_FAI LURE,
UP_EVT_DSP_RUNNI NG,
UP_EVT_ETHERNET ALARM
UP_EVT_| OP_RUNNI NG,
UP_EVT_ETHERNET _CONFI GURED,
UP_EVT_STREAM CONNECTED,
UP_EVT_STREAM FAI LURE,
UP_EVT_HDLC_REPORT

} UP_EVENT _ET;

UP_ERROR_ET
An enumerated data type passed in a UP_EVT_FAILURE
event that contains the specific source of the UPA command
processing failure.

137

TASK-6000 software reference guide

I

138

P_START_DSP_REPLY_ST

A structure type passed in a UP_EVT_START_REPLY event
that contains the FIFO address locations to use for setting up
Fast Packet services. Receipt of the UP_EVT_START_REPLY
event signals successful initialization of a loaded DSP.

UP_START DSP_REPLY_ST structure

typedef struct {

RSYS_ U NT32
RSYS_U NT32
RSYS_U NT32
RSYS_U NT32
RSYS_ U NT32
RSYS_U NT32

ul SendFi f oAddr ;

ul SendFi f 0Si ze;

ul RecvFi f oAddr ;

ul RecvFi f 0Si zePer Channel ;
ul RecvFi f oChannel s;

ul Al t SendFi f oAddr ;

} UP_START DSP_REPLY_ST;

Appendix B: Standard IOP functions * upStart

I

upStart
Initializes the Universal Port subsystem.

To perform necessary system initialization, call this function once before calling any
other UPA function from the IOP. At this early stage of IOP initialization,
IOP-based applications typically do not have access to information in the
UP_IOPSYSCONFIG_ST structure. Therefore. IOP implementation typically pass a
NULL pointer to upStart and allow the Host component, when making its call to
upStart, to populate the contents of the UP_IOPSYSCONFIG_ST structure.

Syntax

UP_ERROR ET upStart (

UP_I OPSYSCONFI G_ST *pt| OPSysConfi g
)
Parameters

pt | OPSysConfi g
Points to the UP_IOPSYSCONFIG_ST structure, which configures the
board during UPA initialization:

UP_IOPSYSCONFIG_ST structure
typedef struct {

RSYS_UI NT32 aul NI CAddr ess[UP_MAX_SLOTS] [MAX_NI CS] ;
RSYS_Ul NT32 ul Host | PAddr ess;

UP_ENABLE ET et ComandAck;

UP_ENABLE ET et Event For war di ng;

UP_LAN_CONTROL_ET et LanControl ;

} UP_I OPSYSCONFI G ST:

aul NI Caddr ess
Carries the IP addresses (host byte ordered) to associate with
Ethernet adapters of installed IOPS. The IOP number is used
as an index to de-reference the two Ethernet adapters (fei 0
and 1) installed. An IP address setting of zero for either
interface 0 or 1 indicates that the user does not want UPA
software to configure the Ethernet Adapter and bind an IP
address to it. A non-zero entry causes UPA on the associated
IOP to perform a vxWork’s usrNetlnit to initialize the
adapter and a hostAdd to make a representative hostname to
IP address mapping in the host table.

ul Host | PAddr ess
This element informs an IOP of its controlling host’s IP
address. This IP address is used by an IOP to establish a
communication link to the host for event forwarding when
either TCP or UDP based control has been configured.

et CommandAck
This enumeration specifies whether UPA should acknowledge
each UPA command request with an asynchronous
notification. This enumeration should be set to

139

TASK-6000 software reference guide

I

‘enumDisabled’ when commands are issued by an IOP based
application and should only be set to ‘enumEnabled’ when a
host based application wants positive confirmation of
command processing.

et Event For war di ng
This enumeration specifies whether UPA should forward
events emanating from an IOP to the Host. This forwarding
is useful in determining the success or failure of an UPA
command when issued from the host.

et LanContr ol
A flag that specifies the transport to use for communicating
control messages between a controlling host and an IOP. You
can select one of these:

enumNoLanCont r ol
The PCI bus communicates control messages
between host and IOP. This limits host control to
IOPs located within the same shelf.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

140

Appendix B: Advanced IOP functions * iopGetNWPktBuf

I

iopGetNWPktBuf

Receives the next buffer of packets from the DSP.

The buffer contains one or more packets in the following format:
e Total buffer length

e Channel number (one word)

e Packet length (one word)

® One or more words of packet data

For details about the packet buffer contents, see iopSendNWPktBuf on page 143.

Syntax

i nt i opGet NWPkt Buf (
IN I ong dspNum
IN | ong *pBuf

)

Parameters
dspNum The DSP number.

pBuf A pointer to the buffer that receives network packets.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

141

TASK-6000 software reference guide

I

iopJitterControl

Updates the IP network buffer control parameters.

Syntax

int iopJitterControl (
IN I ong dspNum
IN 1 ong Chnl Num
INt_jitterParam *pJitter

)

Parameters
dspNum The DSP number.
¢chnl Num The channel number.

pJitter A pointer to the structure that contains jitter parameters:

t_jitterParam structure

typedef struct {
long nJitterBuf;
} t_jitterParam

nJi tter Buf
The number of jitter buffers between Host and IOP/DSP.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

142

Appendix B: Advanced IOP functions * iopSendNWPktBuf

|
iopSendNWPktBuf

Sends network packets to the DSP.

The packets are organized in the buffer as follows:

A Total length excluding length word =

L(32-bit words)

Channel number = x

Channel data length (excluding length word) =
di_x+1 dl_x(32-bit words)

- - — > - —

d|$ X
Channel x data

L Channel number =y

Channel data length (excluding length word) =
di_y+1 dl+y(32-bit words)

- — > - —

y Channel y data

All numbers and sizes are in 32-bit words

Figure B-1. Packet organization buffer

Syntax

i nt i opSendNWPkt Buf (
IN I ong dspNum
IN | ong *pBuf

)

Parameters

dspNum The number of the DSP to which you want to send packets.

pBuf A buffer that consists of one or more network packets, as shown in
Figure B-1.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

143

TASK-6000 software reference guide

I

iopSendMsg

144

Sends a message from the Host to the specified IOP or DSP.

If the message is not delivered to the IOP within the specified time, the function
returns failure.

Syntax

int iopSendMvsg (
IN |l ong dst,
IN I ong nsgType,
IN ul ong nsgSzW
IN | ong *pBuf,
IN long waitTi meMsec

)

Parameters

dst

msgType
msgSzW

pBuf

The destination, in this format:

Devi ce | Devi ceNum

Devi ce Enter either TASK_IOP or TASK_DSP.
Devi ceNum Enter the device number.

Examples:

To invoke a handler from the second IOP, use (TASK_IOP | 2) as
the source.

To invode a handler from the third DSP, use (TASK_DSP | 3) as source.
The message type. You can use any positive integer.
The number of words in the message.

The buffer that contains the message.

wai t Ti neMsec

The number of milliseconds that elapse before determining
message status.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix B: Advanced IOP functions * iopSetNWNotify

I

iopSetNWNotify

Sets handler to be invoked for notifying arrival of network packets from the DSP.

The handler must take the DSP number as the argument.

Syntax

voi d i opSet N\Not i fy (
IN void (* NWNotifyHndlr) (1IN Iong dspNum
)

Parameters

NWNot i f yHndl r
A pointer to the handler that notifies the Host application of the arrival
of network packets from the DSP.

dspNum The DSP number from which network packets were sent.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

145

TASK-6000 software reference guide

I

upSetUserMsgHandler

146

MsgHandlerFunc is called whenever a TASK user message is received by the IOP
with a msgType not used by UPA.

UPA currently uses only message type 80.

Syntax

voi d upSet User MsgHandl er (
voi d (*MsgHandl er Func) (
IN long src,
IN long nsgType,
I N ul ong nsgSzW
IN | ong *pBuf

)

Parameters

MsgHandl er Func
A pointer to the message handler.

src The message handler, in this format:
Devi ce | Devi ceNum
Devi ce Enter either TASK_IOP or TASK_DSP.
Devi ceNum Enter the device number.
Examples:

To invoke a handler from the second IOP, use (TASK_IOP | 2) as
the source.

To invode a handler from the third DSP, use (TASK_DSP | 3) as source.
msgType The message type. You can use any positive integer.
msgSzW The number of words in the message.

pBuf The buffer that contains the message.

Return values

None.

\
29y

HDLC driver library

Overview

This appendix describes the HDLC driver library.

When reading this file online, you can immediately view information about any
topic by placing the mouse cursor over a test name and clicking.

For information about... Go to this page...
OVEIVIEW ..ot 147
Driver internals, data structures, and resourCescovvveviiiiiiiiiieiiiniieeen. 147
Sample HDLC driver SEQUENCEuueeeeiieiieeeieeeeeeee e 150
U] o Yot (To) o T 11 ST 151
FUNCHIONS <. e e 153
Type defiNitioNS ..ccoiiiiiiiiiee e e e e e e e e e e e aea e 171
ST UCRUIES e e a e 172

The HDLC Status and Control API is the interface to the HDLC driver.

The HDLC driver provides the software interface to the HDLC controller of the
LAN/WAN option card. The driver works under the VxWorks Real-Time operating
system. The driver is not a “true” VxWorks driver in the sense that it is not built as
part of the kernel. It does however make use of VxWorks system calls and therefore
requires the O/S.

The driver provides control and monitoring of the HDLC controller of the
LAN/WAN option card. The controller is a Siemens Munich128X. This document
assumes that the reader has some understanding of the operation of the device.

The driver consists of these main parts:
e ISR (Interrupt Service Routine)
e IST (VxWorks Interrupt Service Task)

e Status and control API

Driver internals, data structures, and resources

This section describes some internal workings of the driver and issues related
to resources.

Unlike the T1/E1 and T8100 drivers, which provide only control and status
functionality, the HDLC driver includes data path functionality. That is, it is also
responsible for the transmission and reception of data to and from the user
application. Because of this, the HDLC driver requires board resources well beyond

147

TASK-6000 software reference guide

I

what is used by the T1/E1 and T8100 drivers. The resources of concern are
memory, on-board PCI bandwidth and processor power. These topics are discussed
in great detail in the Munich128X documentation and are summarized here to
illustrate how the driver code relates to the hardware.

Data structures

The HDLC driver maintains numerous data structures required by the HDLC
controller to transmit and receive data. Of greatest interest are the transmit and
receive descriptors and buffers and the interrupt queues.

e Control Configuration Block (CCB): The primary data structure for the
controller, the CCB is a relatively small block of data which contains setup
information for the controller as well a table of pointers to transmit and receive
descriptors. Each port and channel has one or more associated transmit and
receive descriptors. The driver currently implements 32 descriptors per channel.
Therefore with a maximum of 4 ports and 32 channels per port, there are a
total of 4 * 32 * 32 = 4096 descriptors. The 32 descriptors per channel are
configured as a circular chain. Each descriptor points to a data buffer as well as
the next link in the chain. The data buffers are currently set to 512 bytes each.
512 was selected since it is sufficient to store the largest LAPD message.

e Interrupt queues: Another important data structure, the interrupt queues—one
for transmit and one for receive—are used by the controller to store information
on transmit and receive events. Each time a complete packet is sent or received
or a transmit or receive error is detected, an entry or entries are written to the
queue. These entries are later processed by the driver based on the mode (see
mode description below).

Processing modes

148

Transmission and reception of packets requires various processing to be performed
by the I/O processor (IOP). The following paragraphs describe the processing flow
for transmission and reception as well as some of the build options (#define’s)
which are available to modify the driver operation to tailor it to the user’s
application. There are four modes in which the driver can work. These modes differ
in the number of interrupts which are generated and the way in which Tx and Rx
buffers are processed. Three of the four modes use polling for transmit, receive or
both. Polling in this case refers to timer based polling in which an interrupt is
generated by the Munich128X timer, and the transmit and receive descriptors are

read (polled) in response to this timer interrupt. The interrupt/timer interval is a
build option controlled by the HDLC_POLLING_INTERVAL #define.

e Mode 1 (Fully interrupt driven): In this mode interrupts are generated for every
packet which is transmitted and received. For applications which transmit many
packets per second over many channels this mode results in high interrupt
overhead and should not be used.

e Mode 2 (Mixed mode 1—Tx polled): In this mode, packet transmission does
not result in any interrupts but receive packets continue to generate interrupts.
This mode generates approximately half the interrupts as compared to the first
mode and still maintains very low latency on receive packets. It should be noted

Appendix C: HDLC driver library * / Processing packet transmission and reception

that polling for completed packet transmission does NOT increase transmission
latency. It does however increase the time before which the buffer for a
transmitted packet is available for reuse by another packet. This gives the
appearance of reducing the number of transmit buffers.

* Mode 3 (Mixed mode 2—Rx polled): This mode is the opposite of the second
mode. In this mode, interrupts are generated for transmitted packets while
polling is used for receive packets.

* Mode 4 (Fully polled): In this mode, no interrupts are generated as a result of
transmitted or received packets. Timer based polling is used to determine when
a packet has been transmitted and when one has been received. For applications
which process many packets per second, this mode provides the least amount of
processing overhead, however, the application must be able to tolerate the
latency on receive packets. If this latency cannot be tolerated, Mode 2 should
be used.

Processing packet transmission and reception

The descriptions below assume that the device, it ports and its channels are properly
configured via the appropriate API calls.

Transmission of data begins with a call to the HDLCSendPacket function. This
function takes the user data and copies it to the next available buffer associated
with the next available descriptor for the port and channel being specified. Once the
data has been copied to the buffer, it is marked as available for transmission. If the
HDLC controller is idle, this wakes up the controller and begins transmission of the
packet. If the controller is working on other links in the chain, marking the buffer
ensures that the newly filled link gets transmitted after the others are completed.
The HDLCSendPacket function returns immediately after the data is copied and the
buffer is marked. It does NOT wait for transmission to begin.

When a packet has been completely transmitted, an interrupt is generated if the
driver has been configured for Mode 1 or Mode 3 operation. As described
previously, this interrupt results in a message to the driver task which picks up the
message and processes the interrupt event. In this case, the processing involves
reading the transmit interrupt queue, checking for any transmission errors and
freeing the descriptor and buffer which held the packet that was transmitted. If
Mode 2 or Mode 4 is used, no transmit interrupt is generated and the descriptor
and buffer remains unavailable until the timer interrupt. When the timer interrupt
occurs, the transmit interrupt queue is parsed and all descriptors and buffers
associated with transmitted packets are freed. Note that although no per-packet
transmit interrupt is generated for Modes 2 and 4, the controller continues to make
entries in the interrupt queue for each packet.

During transmit packet processing, if the user has registered transmit handlers, the
user is called back on two events. These events are a transmit error condition and/or
a complete error-free packet transmission. Although not required, the later callback
can be used to send another packet to the driver. Note that these callbacks occur in
the context of the interrupt service task.

Once fully configured (device, port and channel), the controller constantly monitors
the receive data stream awaiting a packet. When a packet is completely received, an

149

TASK-6000 software reference guide

I

interrupt is generated if the driver was configured for Mode 1 or Mode 2 operation.
As described previously, this interrupt with result in a message to the driver task
which picks up the message and processes the interrupt event. In this case, the
processing involves reading the receive interrupt queue, checking for any receive
errors and marking the descriptor and buffer as having valid receive data. If Mode 3
or Mode 4 is used, no receive interrupt is generated and the descriptor and buffer
remains unmarked until the timer interrupt. When the timer interrupt occurs, the
receive interrupt queue is parsed and all descriptors and buffers associated with
received packets are marked.

During receive packet processing, if the user has registered receive handlers, the user
is be called back on two events. These events are a receive error condition and/or a
complete error-free packet reception. In the error-free case, the user may call the
HDLCGetPacket function to retrieve the received packet or as an alternative, the
user can signal another task to read the packet. The user may also use a polling
method to detect packet reception. In this case, the user can periodically poll for
received packets using HDLCGetPacket. The function returns an indication if no
packet is available, or copies the data to the user’s space if a packet is available.
HDLCGetPacket does not block when no packet is available. As in the interrupt
versus polling case for the driver, polling for packet reception in this manner
introduces additional latency. In either case, when HDLCGetPacket returns a valid
packet, it copies the data to the user’s space and frees the receive descriptor and
buffer. As in the transmit case, the callbacks occur in the interrupt task context.

Since the HDLC controller user I/O processor memory for all its structures, memory
bus and PCI bandwidth is also a consideration. This topic is discussed in detail in
the device datasheets and user’s manuals.

Sample HDLC driver sequence

150

Initialize the device and driver:
HDLCI ni t ()
Set device-wide event handler:
HDLCSet Devi ceError Handl er (.....)
Setup port-wide event handlers.

HDLCSet TxPacket Handl er (.....)
HDLCSet RxPacket Handl er(.....)
HDLCSet TxEr r or Handl er (.....)
HDLCSet RxEr r or Handl er (.....)

Configure the port(s). Called for each port to be used.
HDLCConf i gPort (.....)

Configure the channel(s). Called for each channel of each port to be used.
HDLCConf i gChannel (... ..)

Enable the channel(s). Called for each channel of each port to be used.
HDLCEnabl eChannel (... ..)

Channels are now enabled for transmission and reception of packets.

Appendix C: HDLC driver library * / Processing packet transmission and reception

I

Transmit packets using;:
HDLCSendPacket (.....)

Receive packets using:
HDLCGet Packet (.....)

This function may be used to poll for receipt of a packet or may be called in the user
supplied callback function.

Close the driver before exiting the application

HDLCO oseDri ver ()

Function list

This appendix lists function descriptions alphabetically. You can find a function in
this appendix either by locating it alphabetically within its group, or by using Table
C-1 below, which groups like functions together.

Use this table to identify the HDLC driver functions you want to use. Use the
function description later in this appendix to obtain detailed information, including
syntax and parameter values.

Table C-1. HDLC driver functions

Type Function Description
Configuration Configures each port and channel of the
HDLC controller.
HDLClnit Initializes the HDLC hardware and software.
HDLCReset Resets the device and driver.
HDLCCloseDriver Shuts down the HDLC controller and
device driver.
HDLCClosePort Shuts down an HDLC controller port.
HDLCConfigPort Specifies the configuration of any HDLC

controller port, primarily mapping a port’s
timeslots to data channels.

HDLCConfigChannel Specifies the configuration of any channel of
any HDLC controller port.
HDLCEnableChannel Enables a channel for operation.
HDLCDisableChannel Disables all status (interrupts and data)
received from the specified channel.
HDLCResetChannel Resets the specified channel.

Packet transmission and reception ~ Queues packets for transmission and to read
received packets.

HDLCSendPacket Sends an HDLC packet on the specified channel.
HDLCGetPacket Gets an HDLC packet from the driver.
Status monitoring Polls the status of the controller and of

each channel.

151

TASK-6000 software reference guide

I

152

Table C-1. HDLC driver functions

Type Function Description
HDLCGetDeviceStatus Returns the status of the HDLC device
and driver.
Note: This function is not currently
implemented.
HDLCGetChannelStatus Returns the status of the specified channel of

the specified port.

Note: This function is not currently
implemented.

Interrupt/event control

Specifies handlers (callback functions) to call
when an event occurs.

HDLCSetTxPacketHandler

Specifies the user handler to call when packet
transmission is complete.

HDLCSetRxPacketHandler

Specifies the user handler to call when packet
reception is complete.

HDLCSetDeviceErrorHandler

Specifies the user handler to call when a device
error is detected.

HDLCSetTxErrorHandler

Specifies the user handler to call when a
transmission error occurs.

HDLCSetRxErrorHandler

Specifies the user handler to call when a
message reception error occurs.

Function prototypes and type definitions for the interface are contained in this

header file:
iop_to_hdlc.h

This document uses the term “Port”

to refer to any one of the four TDM streams

(ports) of the Siemens Munich128X HDLC controller. Ports are numbered 0 to 3.
Each port consists of 32 64Kbps timeslots which are assigned to up to 32
“Channels”. The term “Channel” refers to logical (virtual) data channels of the
HDLC controller. A channel consists of one or more bits from one or more TDM
timeslots on a port. Therefore, each channel can have a data rate from 8Kbps to
2048Kbps. Each port is independent, so channels and timeslots of one port have no
relationship or connection to channels and timeslots of another port. No two
channels can share data from the same timeslot.

Appendix C: HDLC driver library * Functions / HDLClInit

I

Functions

HDLClInit

Initializes the HDLC hardware and software.

C Call this function before using any other HDLC driver functions.

Syntax
Ul NT32 HDLCI ni t (voi d)

Parameters

None.

Return values

HDLC_INIT_COMPLETE_32X
The device is 32X initialization succeeded.

HDLC_INIT_COMPLETE_128X
The device is 128X initialization succeeded.

HDLC_INIT_FAILURE
An unspecified failure occurred.

HDLC_INIT _FAILURE NO_DEV
No device was found.

HDLC_INIT_INTR_FAILURE
The device interrupt failed.

HDLC_INIT _CONFIG_FAILURE
Reserved for future use.

HDLC_INIT_INTR_CONNECT_FAIL
Failed to set the VxWorks interrupt handler.

HDLC _INIT _RESET FAIL
Cannot reset the device.

153

TASK-6000 software reference guide

I

HDLCReset

Resets the device and driver.

Syntax

U NT32 HDLCReset (
I N const U NT32 reset_type

)

Parameters

reset _type
Specifies the type of reset. You can use one of these values:

HDLC_HARD_RESET
Resets the device (equivalent to a hardware reset).

HDLC_SOFT_RESET
Resets only the driver.

In the current driver implementation, both reset types result in a
hard reset.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

154

Appendix C: HDLC driver library * Functions / HDLCCloseDriver

|
HDLCCloseDriver

Shuts down the HDLC controller and device driver.

Call this function prior to exiting the user application to properly quiesce the
device.

Syntax
U NT32 HDLCO oseDri ver (voi d)

Parameters

None.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

155

TASK-6000 software reference guide

I

HDLCClosePort

Shuts down an HDLC controller port.

If multiple ports are in use, this function can shut down a port that generates
excessive errors while keeping the remaining ports active.

This function is currently not implemented.

Syntax
U NT32 HDLCC osePort (I N const U NT port)

Parameters

port The HDLC controller port.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

156

Appendix C: HDLC driver library * Functions / HDLCConfigPort

I

HDLCConfigPort

Specifies the configuration of any HDLC controller port, primarily mapping a port’s
timeslots to data channels.
Syntax

Ul NT32 HDLCConfi gPort (
I N const Ul NT32 port,
IN const t_HDLC port_config *port_config

)

Parameters

port The HDLC controller port.

*port_config
For a detailed description of configuration options, see the data type
section of the t_ HDLC_port_config structure description.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

157

TASK-6000 software reference guide

I

HDLCConfigChannel

Specifies the configuration of any channel of any HDLC controller port.

Configuration includes parameters such as interframe time-fill character, CRC type,
enable/disabling CRC checking and channel loopbacks.

The current implementation of the driver does not support loopbacks.

Syntax

Ul NT32 HDLCConf i gChannel (
I N const Ul NT32 port,
I N const U NT32 channel ,
IN const t_HDLC channel _config *channel _config

)

Parameters

port The HDLC controller port.

channel ~ The HDLC channel.

channel _config
For a detailed description of configuration options, see the data type
section of the t HDLC_channel_config structure description.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

158

Appendix C: HDLC driver library * Functions / HDLCEnableChannel

I

HDLCEnableChannel

Enables a channel for operation.

The port and channel must be already configured. Once enabled, a channel can
receive and accept packets for transmission.

Syntax

U NT32 HDLCEnabl eChannel (
I N const Ul NT32 port,
I N const Ul NT32 channel

)

Parameters
port The HDLC controller port.
channel The HDLC channel.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

159

TASK-6000 software reference guide

I

HDLCDisableChannel

Disables all status (interrupts and data) received from the specified channel.

Syntax

Ul NT32 HDLCDi sabl eChannel (
I N const Ul NT32 port,
I N const U NT32 channel

)

Parameters
port The HDLC controller port.
channel The HDLC channel.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

160

Appendix C: HDLC driver library * Functions / HDLCResetChannel

I

HDLCResetChannel

Resets the specified channel.

A soft reset occurs on the channel, and the channel is disabled. Channel
configuration resets and all allocated memory for that channel is deallocated within
the driver.

Syntax

U NT32 HDLCReset Channel (
I N const Ul NT32 port,
I N const Ul NT32 channel

)

Parameters
por t The HDLC controller port.
channel The HDLC channel.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

161

TASK-6000 software reference guide

I

HDLCSendPacket
Sends an HDLC packet on the specified channel.

Syntax

Ul NT32 HDLCSendPacket (
I N const Ul NT32 port,
I N const U NT32 channel,
IN const U NT8 *data_ptr,
IN const U NT32 | ength

)

Parameters

por t The HDLC controller port.

channel ~ The HDLC channel.

data_ptr A pointer to the data.

| ength The number of bytes in the data. The current maximum packet length is
512 bytes.

Return values

SUCCESS Successful completion.

FAILURE Returns an error if the driver does not have sufficient memory to queue
the message or if an invalid channel or port is specified.

162

Appendix C: HDLC driver library * Functions / HDLCGetPacket

I

HDLCGetPacket
Gets an HDLC packet from the driver.

The user was notified of the packet arrival by specifying a handler for received
packets via HDLCSetRxPacketHandler. You can also use this function to poll for
receipt of packet in which case the function returns a HDLC_NO_RX_DATA
indication if no packet is available. The function does 7ot wait for a packet, but
instead returns immediately when no packet is available. This function returns only
valid packets, that is, packets received without any errors (such as CRC).

Syntax

Ul NT32 HDLCGet Packet (
I N const Ul NT32 port,
I N const U NT32 channel,
IN const U NT8 *data_ptr,
QUT U NT32 *length

)

Parameters

por t The HDLC controller port.

channel The HDLC channel.

data_ptr A pointer to the buffer from which to receive data.

| ength The number of bytes in the buffer.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

163

TASK-6000 software reference guide

|
HDLCGetDeviceStatus

Returns the status of the HDLC device and driver.

% This function is currently not implemented.

Syntax
U NT32 HDCLGet Devi ceStatus(void *status_ptr)

Parameters
status_ptr

No information available.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

164

Appendix C: HDLC driver library * Functions / HDLCGetChannelStatus

I

HDLCGetChannelStatus

Returns the status of the specified channel of the specified port.

% This function is currently not implemented.

Syntax

Ul NT32 HDLCGet Channel St at us(
I N const Ul NT32 port,
I N const Ul NT32 channel,
QUT t_HDLC channel _status *status_ptr

)

Parameters
por t The HDLC controller port.
channel ~ The HDLC channel.

status_ptr
A pointer to the t HDLC_channel_status structure. For details about this
structure, see t_HDI.C_channel_status on page 176.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

165

TASK-6000 software reference guide

I

HDLCSetTxPacketHandler

166

Specifies the user handler to call when packet transmission is complete.

Although not required, this can be used by the user code to send the next message.
The current version of the driver queues up to 32 packets per channel. To disable
this callback, the function can be called with a NULL function pointer.

Syntax

Ul NT32 HDLCSet TxPacket Handl er (
I N const Ul NT32 port,
IN voi d (*User HDLCTxPacket Handl er) (Ul NT32 channel, U NT32 st atus)

)

Parameters
por t The HDLC controller port.

User HDLCTxPacket Handl er
The user function that handles the event of packet transmission
completion.

channel The HDLC channel.

st at us The HDLC transmission status.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix C: HDLC driver library * Functions / HDLCSetRxPacketHandler

I

HDLCSetRxPacketHandler

Specifies the user handler to call when packet reception is complete.

When the driver performs the callback, the user may then call HDLCGetPacket to
retrieve the data. Alternately the user may choose to poll for packet reception via
repeated calls to HDLCGetPacket, or set a flag in the handler and read the packet at
a later time. It is up to the user code to service the packet reception in a timely
manner as to prevent overruns. The driver queues up to 32 received packets per
channel. To disable this callback, the function can be called with a NULL function
pointer.

Syntax

Ul NT32 HDLCSet RxPacket Handl er (
I N const Ul NT32 port,
IN void (*User HDLCRxPacket Handl er) (U NT32 channel, U NT32 st atus)

)

Parameters
port The HDLC controller port.

User HDLCRxPacket Handl er
The user function that handles the event of packet receive completion.

channel The HDLC channel.

st at us The HDLC transmission status.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

167

TASK-6000 software reference guide

I

HDLCSetDeviceErrorHandler

168

Specifies the user handler to call when a device error is detected.

Device errors can occur on events such are loss of frame sync or the device not being
able to read IOP (1960) memory in a timely manner. To disable this callback, the
function can be called with a NULL function pointer.

Syntax

U NT32 HDLCSet Devi ceError Handl er (

I N const Ul NT32 port,

IN void (*User HDLCDevi ceErrorHandl er) (U NT32 error_code)
)

Parameters
por t The HDLC controller port.

User HDLCDevi ceEr r or Handl er
The user function that handles device errors.

error_code

The HDLC error code.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix C: HDLC driver library * Functions / HDLCSetTxErrorHandler

I

HDLCSetTxErrorHandler

Specifies the user handler to call when a transmission error occurs.

To disable this callback, the function can be called with a NULL function pointer.

Syntax

Ul NT32 HDLCSet TxErr or Handl er (
I N const Ul NT32 port,
IN void (*User HDLCTxError Handl er) (U NT32 channel, Ul NT32 status)

)

Parameters
port The HDLC controller port.

User HDLCTxEr r or Handl er
The user function that handles transmission errors.

channel The HDLC channel.
st at us The HDLC channel status.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

169

TASK-6000 software reference guide

I

HDLCSetRxErrorHandler

Specifies the user handler to call when a message reception error occurs.

To disable this callback, the function can be called with a NULL function pointer.

Syntax

Ul NT32 HDLCSet RxErr or Handl er (
I N const Ul NT32 port,
IN void (*User HDLCRxError Handl er) (U NT32 channel, Ul NT32 status)

)

Parameters
port The HDLC controller port.

User HDLCRxEr r or Handl er
The user function that handles receive errors.

channel The HDLC channel.
st at us The HDLC channel status.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

170

Appendix C: HDLC driver library * Functions / HDLCSetRxErrorHandler

I

Type definitions
(from IOP_TO_HDLC.H)

/* device limts */

#def i ne HDLC_MAX_PORTS 4
#def i ne HDLC_MAX_CHANNELS_PER PORT 32
#def i ne HDLC_MAX_TI MESLOTS_PER_PORT32

/* reset types */
#defi ne HDLC HARD RESET
#def i ne HDLC SOFT_RESET 2

I

/* channel specifications */
#def i ne HDLC_CHANNEL_NORVAL_MODE 1
#def i ne HDLC_CHANNEL_LOOPBACK | NT
#def i ne HDLC_CHANNEL_LOOPBACK_EXT

#define HDLC | FTF_I'S_7EO
#define HDLC | FTF_I'S FF1

#def i ne HDLC_FLAG ADJUST OFF
#def i ne HDLC_FLAG ADJUST ON

0
1
#define HDLC CRC TYPE 16 BI T 0
#define HDLC CRC TYPE 32 BIT 1
0
1
0

w N

/* see Miunich datasheet for */
/* description of this node */

#def i ne HDLC_CRC_ENABLE
#def i ne HDLC_CRC DI SABLE

#define HDLC DONT | NVERT DATA
#define HDLC | NVERT DATA 1

/* code returned to device error handler */
#defi ne HDLC_CVD_ERROR_NO_ACK 1
#def i ne HDLC_CMD_ERROR _ACK_FAI L 2
#def i ne HDLC_TX_SYNC_ERROR 3
#def i ne HDLC_RX_SYNC_ERROR 4
#defi ne HDLC_UNKNOAN ERROR 5
#defi ne HDLC TX_BUFFER _ERROR 6

/* initialization return values */

#define HDLC | NI T_COWPLETE_32X 1 /* device is 32X, init successful */
#define HDLC | NI T_COVWPLETE_128X 2 /* device is 128X, init successful */
#define HDLC_I NI T_FAI LURE3

#define HDLC_I NI T_FAI LURE_NO DEV 4

#define HDLC_I NI T_I NTR_FAI LURE 5

#define HDLC I NI T_CONFI G FAILURE 6

#define HDLC_I NI T_I NTR_CONNECT_FAI L7

#define HDLC | NI T_RESET_FAI L 8

/* return status from HDLCGet Packet */
#define HDLC_NO RX_DATA 1
#def i ne HDLC_RX_DATA_ RETURNED 2

/* return status from HDLCSendPacket */
#defi ne HDLC_TX_CHAN_NOT_CONFI GURED1
#def i ne HDLC_NO_TX BUFFER_AVAI L 2

#def i ne HDLC_PACKET _QUEUED 3
/* status word for Rx error handler */
#defi ne HDLC_RX_BUFFER_ERROR 1

/* used in xx_channel _assignnent field to indicate unassign tinmeslots */
#define HDLC UNASSI GNED_TI MESLOT Oxf f

171

TASK-6000 software reference guide

I

Structures

Use this table to identify the HDLC driver structures. Use the structure description
later in this appendix to obtain detailed information, including syntax and
parameter values.

Table C-2. HDLC structures

Call Description

t HDLC port_config Specifies a port’s configuration.

t HDLC channel_config Specifies the configuration for each channel.
t HDLC _channel_status Specifies a channel’s status.

Note: This structure is not currently implemented.

172

Appendix C: HDLC driver library * Structures /t HDLC port_config

t HDLC port_config

Specifies a port’s configuration.

Syntax

t ypedef st
Ul NT8
Ul NT8
Ul NT8
Ul NT8
bool
bool
bool
Ul NT32

} t_HDLC p

ruct {

t x_channel _assi gnment [HDLC_MAX_TI MESLOTS_PER_PORT] ;
t x_enabl ed_bi t s[HDLC_MAX_TI MESLOTS_PER _PORT] ;
rx_channel _assi gnment [HDLC_MAX_TI MESLOTS_PER_PORT] ;
rx_enabl ed_bi t s HDLC_MAX_TI MESLOTS_PER_PORT] ;

updat e_channel _assi gnnent s;

enabl e_port _| oopback;

enabl e_frane_| engt h_check;

max_frane_| engt h;

ort_config;

Parameters

t x_channel
t x_enabl ed

r x_channel
rx_enabl ed

_assi gnnent
_bits

Specifies the timeslot-to-data channel mapping for the port. The element
indices correspond with timeslot numbers. These fields are an array of
length 32. t x_channel _assi gnnent specifies the data channel to which a
timeslot belongs, while t x_enabl ed_bi t s is a bitmask that determines
which bits in a timeslot are enabled.

Examples

t x_channel _assignment[5] =7
Indicates that timeslot 5 belongs to data channel 7.

t x_channel _assignment[5] =7

t x_enabl ed_bits[5] = OxFF

Indicates that all 8 bits in timeslot 5 belong to data channel 7 forming a
64Kbps data channel.

t x_channel _assignment[5] =7

tXx_enabl ed_bits[5] = 0x03

Indicates that the first 2 bits of timeslot 5 belong to data channel 7, thus
forming a 16Kbps channel.

_assi gnnent
_bits

Specifies the timeslot-to-data channel mapping for the port. The element
indices correspond to timeslot numbers. These fields are an array of
length 32. rx_channel _assi gnnent specifies the data channel to which a
timeslot belongs, while rx_enabl ed_bi t s is a bitmask that determines
which bits in a timeslot are enabled.

Examples

rx_channel _assignment[5] = 7
Indicates that timeslot 5 belongs to data channel 7.

173

I

TASK-6000 software reference guide

I

174

rx_channel _assignment[5] = 7

rx_enabl ed_bits[5] = OxFF

Indicates that all 8 bits in timeslot 5 belong to data channel 7 forming a
64Kbps data channel.

rx_channel _assignment[5] = 7

rx_enabl ed_bits[5] = 0x03

Indicates that the first 2 bits of timeslot 5 belong to data channel 7, thus
forming a 16Kbps channel.

updat e_channel _assi gnnent s
Indicates whether to process this structure’s first four fields
(channel/timeslot assignments and enables). You can select one of these:

FALSE The first four fields are ignored and the structure’s remaining
fields are processed.

TRUE The first four fields are valid and processed along with the
structure’s other fields.

enabl e_port _| oopback
Not available. The current release of the driver does not support
loopbacks. Loopback functionality can be accomplished by controlling
the T8100 Timeslot switch on the SPIRIT board, to which all HDLC

controller ports are connected.

enabl e_frane_| engt h_check
Determines whether to use maximum frame length checking.

max_frane_l ength
Determines the maximum length for maximum frame length checking.
The maximum length should not exceed 1024 in this version of the driver.

Appendix C: HDLC driver library * Structures / t HDLC_channel_config

I

t HDLC_channel_config

Specifies the configuration for each channel.

Syntax

typedef struct {
U NT8 channel _node;
U NT8 interfrane_tinefill _char;
U NT8 crc_type;
U NT8 crc_enabl e;
U NT8 invert_data;
U NT8 protocol;
U NT8 fl ag_adj ust;
} t_HDLC channel _config;

Parameters

channel _node
Specifies whether a channel is in normal or loopback mode. This version
of the driver only supports normal mode.

interframe_tinmefill _char
Specifies the octet to use for interframe time-fill (IFTF). You can select
one of these:

HDLC_IFTFE_IS_7E (IFTF = 0x7E)
HDLC_IFTE_IS_FF (IFTF = OxFF)
crc_type Specifies whether the size of the CRC. You can select one of these:
16 bits (HDLC_CRC_TYPE_16_BIT)
32 bits (HDLC_CRC_TYPE_32_BIT)

crc_enabl e

Enables and disables CRC checking (Rx) and generation (Tx).

invert_data
Inverts transmitted and received data.

protocol Specifies the type of formatting protocol to use. The current driver
supports only HDLC formatting and therefore this field is ignored

fl ag_adj ust
Adjusts the number of transmitted interframe time-fill characters. You
can select one of these:

HDLC_FLAG_AD]JUST_OFF
Uses a minimum of three interframe time-fill characters
between two consecutive frames.

HDLC_FLAG_ADJUST_ON
Reduces the number of interface time-fill characters by 1/8
the number of zero insertions. See Munich128X datasheet for
a complete description of this mode.

175

TASK-6000 software reference guide

I
t HDLC_ channel_status

Specifies a channel’s status.

% This function is currently not implemented.

Syntax

typedef struct {
} t_HDLC channel _stat us;

176

T1/E1 library

\
29y

Overview

This appendix describes the T1/E1 driver library.

When reading this file online, you can immediately view information about any
topic by placing the mouse cursor over a test name and clicking.

For information about... Go to this page...
OVEIVIEW ..t 177
Sample startup SEQUENCEuuuueeeieeieee e 178
FUNCHION TIST..ttiiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e s e eannenes 179
FUNCHIONS ©.teiiitiiiiiiie ettt ettt e e et e eeeaeeeeeeeeeeessssssasesssrasseeseeeeeens 183
SHFUCIUIES ...ttt e e e e e e e e e e e 201

The T1/E1 Status and Control API is the user’s interface to the T1/E1 driver.

The T1/E1 driver provides the software interface to the T1/E1 spans of the
LAN/WAN option card. The driver is designed to work under the VxWorks Real-
Time Operating System. The driver is not a “true” VxWorks driver in the sense that
it is not built as part of the kernel. It does however make use of VxWorks system
calls and therefore requires the O/S.

The driver provides control and monitoring of the two or four T1/E1 ports of the
LAN/WAN option card. The ports use a Seimens Quad FALC LIU/Framer as their
interface device. You do not need a working knowledge of this device to use T1/E1
functions.

The driver includes:
e Interrupt handling tools

¢ Function list

177

TASK-6000 software reference guide

I

Sample startup sequence
T1E1li ni t Car d(&oar d_config);
Initializes the T1 card and driver. Not required if ioplnit is being called.
set T1Confi g(&onfig_struct);
Sets the configuration of the T1 line.
set T1Si gnal i ng(&si gnhal i ng_struct);

Sets the initial state of the transmitted signaling bits. Not required if signaling
has not been enabled.

set T1Si gnal i ngHandl er (&user T1Si gnal i ngHandl er) ;
Sets a callback function for receive signaling bit changes.
set T1St at usHandl er (&user T1St at usHandl er) ;

Sets a callback function for receive line state/status changes.

178

Appendix D: T1/E1 library * / Function list

Function list

This appendix lists function descriptions alphabetically. You can find a function in
this appendix either by locating it alphabetically within its group, or by using Table
D-1 below, which groups like functions together.

Use this table to identify the T1/E1 driver functions you want to use. Use the
function description later in this appendix to obtain detailed information, including

syntax and parameter values:

Table D-1. T1/E1 functions

Type Function

Description

Configuration

Configure each port for T1 or E1 operation and
configure the appropriate line parameters (line
coding, framing mode, buildout, etc.). In
addition, these functions allow for controlling of
outbound robbed bit signaling, alarm
generation, idle code insertion and loop-
up/loop-down codes.

T1ETinitCard

Initializes the driver and initialize the framers on
the option card.

T1E1getBoardConfig

Gets information about the installed option
card without performing the initialization done
by T1ETinitCard.

T1E1setLeds Controls the LEDs associated with each port of
the card.
setT 1Config Sets the card in T1 mode and sets the

configuration of a specified port.

setT 1Signaling

Sets the values of the transmitted robbed bit
signaling bits.

setT 1Command

Transmits “commands” over the specified T1
port.

setT 1ClearChannels

Specifies which timeslots (DSOs) on the
specified T1 port are clear channel (64Kbps)
and which use robbed bit signaling and are
therefore 56Kbps channels.

setT 1ldleChannels

Specifies which timeslots (DSOs) on the
specified T1 port transmit the idle code and
which transmit data “normally”.

setT1ChannelConfig Configures individual timeslots (DS0Os) on the
specified T1 port.
setE1Config Sets the card in E1 mode and set the

configuration of a specified port.

setE1Signaling

Sets the values of the transmitted CAS (channel
associated signaling) bits.

179

TASK-6000 software reference guide

I

180

Table D-1. T1/E1 functions

Type Function

Description

Status monitoring

Polls the status of the framer and of each T1/E1
span. This status includes alarm conditions,
loop code receipt and robbed bit signaling.
These functions can also be used to collect
status following the receipt of an interrupt
event.

getT 1Signaling

Reads the values of the received robbed bit
signaling bits on the specified T1 port.

getT 1Status

Reads the current receive and transmit status of
a specified T1 port.

getT1SignalingRaw

Reads the values of the received robbed bit
signaling bits on the specified T1 port.

getE 1Signaling

Reads the values of the received CAS (channel
associated signaling) bits on the specified
E1 port.

Interrupt/event controls

Turns on and off alarm and signaling interrupt
generation and allow the user to specify
handlers (callback functions) to be called when
the event occurs.

setT1SignalingHandler

Specifies the event handler to call after
detecting a change in receive T1
signaling state.

setT 1StatusHandler

Specifies the event handler to call after
detecting a change in receive line state.

setE 1SignalingHandler

Specifies the event handler to call after
detecting a change in receive E1
signaling state.

Function prototypes and type definitions for the driver interface are contained in
the following header files.

iop_to_t1.h
iop_to_el.h
iop_to_tlel.h

tlel_common_types.h

The functions and their data types are described in the pages that follow. The
descriptions use the terms port, framer, span, line and DS1 interchangeably to
indicate 1 of 4 T1/E1 connections available on the I/O board.

Functions which contain “T1E1” in their name are used for either T1 or E1
operation. Currently the driver does not support mixed operation on a single option
card. Functions with only “T1” in their name are T1 specific while functions with
only “E1” are E1 specific. Basic selection between T1 and E1 operating modes is
made with the setT1Config or setE1Config API calls. These mutually exclusive

Appendix D: T1/E1 library * / Function list

functions will configure the card for either T1 or E1 operation and must be called

prior to calling other T1 or E1 specific functions.

Limitations

e E1 support: The API currently provides limited support for E1. Support is

provided for span configuration and signaling generation and detection only. T1
support is much more comprehensive, however the T1 ESF Facility Data Link
functionality is not supported.

e Time slot assignments for T1 and E1 interfaces: There are differences in the

mapping of T8100 time slots depending on the interface used, as illustrated by
the following table. The developer should be aware of these differences when
assigning DSP data channel resources to time slots using the T8100 peripheral.

Table D-2. Time slot numbers

T8100 T1 El

0 1 (data 0) 0 (signaling 0)
1 2 (data 1) 1 (data 0)

2 3 (data 2) 2 (data 1)

3 4 (data 3) 3 (data 2)

4 5 (data 4) 4 (data 3)

5 6 (data 5) 5 (data 4)

6 7 (data 6) 7 (data 6)

7 8 (data 7) 7 (data 6)

8 9 (data 8) 8 (data 7)

9 10 (data 9) 9 (data 8)
10 11 (data 10) 10 (data 9)
11 12 (data 11) 11 (data 10)
12 13 (data 12) 12 (data 11)
13 14 (data 13) 13 (data 12)
14 15 (data 14) 14 (data 13)
15 16 (data 15) 15 (data 14)
16 17 (data 16) 16 (signaling 1)
17 18 (data 17) 17 (data 15)
18 19 (data 18) 18 (data 16)
19 20 (data 19) 19 (data 17)
20 21 (data 20) 20 (data 18)
21 22 (data 21) 21 (data 19)
22 23 (data 22) 22 (data 20)
23 24 (data 23) 23 (data 21)
24 N/A 24 (data 22)
25 N/A 25 (data 23)

181

I

TASK-6000 software reference guide

I

182

Table D-2. Time slot numbers

T8100 T1 El

26 N/A 26 (data 24)
27 N/A 27 (data 25)
28 N/A 28 (data 26)
29 N/A 29 (data 27)
30 N/A 30 (data 28)
31 N/A 31 (data 29)

Appendix D: T1/E1 library * Functions / T1E1initCard

I

Functions

T1E1linitCard

Initializes the driver and initialize the framers on the option card.

The function accepts a pointer to a structure and fills the structure with information
about the installed card. You must call this function before using any other driver
functions, however, the you do not need to call this function if iopInit is called, since
ioplnit also makes the call. As the name implies, this function is not specific to T1
or E1 operations.

Syntax

voi d T1ELli nit Card(
t _T1E1l BoardConfig *board_config

)

Parameters

board_config
A pointer to the t_T1E1_BoardConfig structure. For more information
about this structure, see t_T1E1_BoardConfig on page 207.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

183

TASK-6000 software reference guide

I

T1E1getBoardConfig

Gets information about the installed option card without performing the
initialization done by T1E1initCard.
Syntax

voi d T1lElget Boar dConfi g(
t _T1E1l BoardConfig *board_config

)

Parameters

board_config
A pointer to the t_T1E1_BoardConfig structure. For more information
about this structure, see t_T1E1_BoardConfig on page 207.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

184

Appendix D: T1/E1 library * Functions / T1E1setLeds

|
T1E1setLeds

Controls the LEDs associated with each port of the card.

See the Type Definition section for a complete description of possible LED states.

Syntax

voi d T1lElset Leds(
IN const t_T1E1 franer_id framer_id,
IN const t_T1El1 |led_state |led_state

)

Parameters

framer_id A pointer to the t_T1E1_framer_id structure. For more information
about this structure, see t_T1E1_framer_id on page 203.

| ed_state A pointer to the structure.
Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

185

TASK-6000 software reference guide

I

setT1Config

186

Sets the card in T1 mode and sets the configuration of a specified port.

You must call this function after calling T1ETinitCard (for T1 operation).

Syntax

voi d set T1Confi g(
IN const t_T1 user_config_struct *config_struct

)

Parameters

config_struct
A pointer to the t_T1_user_config_struct structure. For more
information about this structure, see ¢_T1_user_config_struct on
page 211.

Configuration includes:

e Line coding

e Framing mode

e Line buildout

e Idle channel and loopback specifications

e Enabling/disabling robbed bit signaling
Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix D: T1/E1 library * Functions / setT1Signaling

I

setT1Signaling
Sets the values of the transmitted robbed bit signaling bits.

To transmit the bits, robbed bit signaling must be enabled via setT1Config. The
changed_bi t s field of the signaling_struct determines which channel’s (DSO0’s) bits
are updated.

A 1 in Bit 0 of changed_bi t s corresponds to the first timeslot of the DS1 line. Bit 23
of changed_bi t s corresponds to the last timeslot of the DS1 line.

For details about each field, see the t_T1_user_signaling_data structure description.

Syntax

voi d set T1Si gnal i ng(
IN const t_T1 user_signaling data *signaling_struct

)

Parameters

signal i ng_struct
A pointer to the t_E1_user_signaling_data structure. For more
information about this structure, see ¢_T1_user_signaling_data
t_T1_signaling_data on page 213.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

187

TASK-6000 software reference guide

I

setT1Command

188

Transmits “commands” over the specified T1 port.

Syntax

voi d set T1Command(
IN const t_T1 user_conmmand_data *command_struct
)

Parameters

conmand_struct
A pointer to the t_T1_user_command_data structure. For more
information about this structure, see t_T1_user _command_data on
page 214

You can select one of these:
Transmit AIS

Transmit yellow (remote) alarm
Transmit loop up code

Transmit loop down code
Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix D: T1/E1 library ¢ Functions / setT1ClearChannels

|
setT 1ClearChannels

Specifies which timeslots (DS0s) on the specified T1 port are clear channel (64Kbps)
and which use robbed bit signaling and are therefore 56Kbps channels.

By default, channels are assigned to be non-clear channel (56Kbps). For any
channels to be used for robbed bit signaling, the r obbed_bi t _si gnal i ng_enabl e
field in the t_T1_user_config_struct configuration command sent via setT1Config
must be set to TRUE. If it is set to FALSE, all channels are clear, regardless of the
configuration specified through this function.

Syntax

voi d set T1C ear Channel s(
IN const t_T1 user_cl ear_channel _data cl ear_channel s_struct

)

Parameters

cl ear_channel s_struct
A pointer to the t_T1_user_clear_channel_data structure. For more
information about this structure, see t_T1_user_clear_channel _data on
page 216.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

189

TASK-6000 software reference guide

I

setT1ldleChannels

190

Specifies which timeslots (DSOs) on the specified T1 port transmit the idle code and
which transmit data “normally”.

By default, channels are assigned as non-idle. The function also specifies the 8-bit

idle code.

‘% Idle code data overwrites robbed bit signaling bits.

Syntax

voi d set T1l dl eChannel s(
IN const t_T1 user_idle_struct *idle_channels_struct

)

Parameters

i dl e_channel s_struct
A pointer to the t_T1_user_idle_struct structure. For more information
about this structure, see t_T1_user_idle_struct on page 217.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix D: T1/E1 library * Functions / setT1ChannelConfig

|
setT1ChannelConfig
Configures individual timeslots (DSOs) on the specified T1 port.
You can specify these parameters:
e Insertion/removal of idle code
e Clear channel mode

e ABCD robbed bits (supervision)

Syntax

voi d set T1Channel Confi g(
IN const t_T1 user_channel _config *channel _config

)

Parameters

channel _config
A pointer to the t_T1_user_channel_config structure. For more
information about this structure, see ¢_T1_user_channel_config on
page 218.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

191

TASK-6000 software reference guide

I

setE 1Config

Sets the card in E1 mode and set the configuration of a specified port.

Configuration includes line coding, framing mode, line buildout, idle channel and
loopback specifications and enabling/disabling channel associated signaling. This
function must be called after calling T1ET1initCard (for E1 operation).

Syntax

voi d set E1Confi g(
IN const t_E1 user_config_struct *config_struct

)

Parameters

config_struct
A pointer to the t_E1_user_config_struct structure. For more information
about this structure, see t_E1_user_config_struct on page 226.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

192

Appendix D: T1/E1 library * Functions / setE1Signaling

I

setE 1Signaling
Sets the values of the transmitted CAS (channel associated signaling) bits.

To transmit the bits, CAS must be enabled via setE1Config. The changed_bi t s field
in signaling_struct determines which channel’s (DS0’) bits to update. A 1 in Bit 0 of
changed_bi t s corresponds to the first timeslot of the E1 line. Bit 31 of

changed_bi ts corresponds to the last timeslot of the E1 line.

See t_E1_user_signaling_data structure description for details on each of the fields.

Syntax

voi d set E1Si gnal i ng(
IN const t_E1 user_signaling data *signaling_struct

)

Parameters

signal i ng_struct
A pointer to the t_E1_user_signaling_data structure. For more
information about this structure, see t_E1_user_signaling_data on
page 228.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

193

TASK-6000 software reference guide

I

getT1Signaling

194

Reads the values of the received robbed bit signaling bits on the specified T1 port.

To receive bits, robbed bit signaling must be enabled via setT1Config. When
signaling is read in this fashion, the changed_bi t s and ti nest anp fields of the
signaling_struct are invalid and not updated.

Syntax

voi d get T1Si gnal i ng(
INOUT t_T1 user_signaling_data *signaling_struct

)

Parameters

signal i ng_struct
A pointer to the t_E1_user_signaling_data structure. For more
information about this structure, see ¢_T1_user_signaling_data
t_T1_signaling_data on page 213.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix D: T1/E1 library * Functions / getT 1Status

|
getT1Status

Reads the current receive and transmit status of a specified T1 port.

Status consists of the currently transmitted “commands” and the current receive
conditions (alarms and errors).

Syntax

voi d get T1St at us(
INOUT t_T1 user_status_data *status_struct

)

Parameters

status_struct
A pointer to the t_T1_user_status_struct structure. For more information
about this structure, see t_T1_user_status_struct on page 215.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

195

TASK-6000 software reference guide

I

getT1SignalingRaw
Reads the values of the received robbed bit signaling bits on the specified T1 port.

This function differs from the getT1Signaling function in the format in which data
is presented to the user. This function is specifically designed for users who want to
poll signaling bits rather than use an interrupt based method.

Syntax

voi d get T1Si gnal i ngRaw(
I NOUT t_T1 user_raw signaling_struct *signaling_struct

)

Parameters

signal i ng_struct
A pointer to the t_T1_user_raw_signaling_struct structure. For more
information about this structure, see t_T1_user_raw_signaling_struct on
page 220.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

196

Appendix D: T1/E1 library * Functions / getE1Signaling

I

getE1Signaling

Reads the values of the received CAS (channel associated signaling) bits on the
specified E1 port.

To receive the bits, CAS must be enabled via setE1Config. When signaling is read in
this fashion, the changed_bi ts and ti nest anp fields of si gnal i ng_struct are
invalid and not updated.

Syntax

voi d get E1Si gnal i ng(
I NOUT t_E1_user_signaling_data *signaling_struct

)

Parameters

signal i ng_struct
A pointer to the t_E1_user_signaling_data structure. For more
information about this structure, see t_E1_user_signaling_data on
page 228.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

197

TASK-6000 software reference guide

I

setT1SignalingHandler

198

Specifies the event handler to call after detecting a change in receive T1
signaling state.

This function “hooks” in the user’s event handler and enables signaling
event generation.
Syntax

voi d set T1Si gnal i ngHandl er (
T1Si gnal i ngHandl er user T1Si gnal i ngHandl er

)

Parameters

user T1Si gnal i ngHandl er
You can select one of these:

Event handler name
A user-specified signaling event handler. For more
information about this event handler, see
T1SignalingHandler on page 222.

NULL Disables status event generation.
Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix D: T1/E1 library * Functions / setT1StatusHandler

setT 1StatusHandler

Specifies the event handler to call after detecting a change in receive line state.

This function “hooks” in the user’s event handler and enables status

event generation.

Syntax

voi d set T1St at usHandl er (

)

T1St at usHandl er user T1St at usHandl er

Parameters

user T1St at usHandl er
A pointer to the structure. For more information about this structure, see

t_T1E1_BoardConfig on page 207.

You can select one of these:

Event handler name

Passes a pointer to t_T1_user_status_data that indicates

which framer had a state change or changes, which state bits
changed value, the value of each state bit, and a timestamp

that indicates when the change took place.

For more information about this event handler, see
T1StatusHandler on page 221.

NULL Disables status event generation.

Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Comments

Detected receive-line state changes include:

AIS

Yellow alarm

LOF (Loss of frame sync)
LOS (Loss of signal)

199

I

TASK-6000 software reference guide

I

setE1SignalingHandler

Specifies the event handler to call after detecting a change in receive E1
signaling state.

This function “hooks” the user’s event handler and enables signaling event.

Syntax

voi d set E1Si gnal i ngHandl er (
E1Si gnal i ngHandl er user E1Si gnal i ngHandl er
)

Parameters

user E1Si gnal i ngHandl er
You can select one of these:

Event handler name
A user-specified signaling event handler. For more
information about this event handler, see
E1SignalingHandler on page 229.

NULL Disables status event generation.
Outputs

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

200

Appendix D: T1/E1 library * Functions / setE1SignalingHandler

I

Structures

Use this table to identify the E1/T1 driver structures. Use the structure description
later in this appendix to obtain detailed information, including syntax and
parameter values.

Table D-3. E1/T1 structures

Type Call Description
Common (E1 and T1) definitions
t TIE1 framer_id Specifies a framer (port) for functions which
can operate on any port.
t TIE1 card_type |dentifies the type of card installed.
t TIET led state Controls the LEDs for each port/span.
t TIE] user_signaling_data
t T1IET_BoardConfig Indicates the installed card type.
T1 definitions
t T1 line_coding Specifies the line coding for a framer (port).
t T1_framing_mode Specifies the line framing for a framer
(port).
t T1 line_buildout Specifies the line buildout for a framer
(port).
t T1 user_config_struct Specifies the complete configuration for a

framer (port).

t T1 _user_signaling_data Reads and writes signaling data.
t T1_signaling_data

t T1 user command_data Sends alarm and loop up or down codes
over the T1 line.

t T1 _user_status_struct Provides line status.

t T1 user clear channel data Indicates which channels are clear channels
(64Kbps) and which are not (56Kbps).

t T1 user idle_struct Transmits an idle code on a selected DSO.

t T1 _user _channel_config Controls the configuration of a specified
DSO0 on a specified framer/port.

t T1 user raw _signaling struct Reads the signaling bit (supervision bit)
values for each channel on the specified

T1 port.
E1 definitions

t E1_line_coding Enumerate the line coding for a framer
(port).

t E1_signaling_mode Enumerates the signaling mode for a framer
(port).

t E1_line_buildout Enumerates the line buildout for a framer
(port).

201

TASK-6000 software reference guide

I

Table D-3. E1/T1 structures

Type Cadll Description

Specifies the complete configuration for a

t E1_user_config_struct
framer (port).

t E1 _user signaling_data Reads and writes signaling data.

202

Appendix D: T1/E1 library * Structures /t_T1E1_framer_id

t TIE1 framer_id

Specifies a framer (port) for functions which can operate on any port.

Syntax

t ypedef enum {
framer_1
framer_2
framer_3
framer_4

} t_T1E1 franer_id;

nooun
whFEo

Elements

framer _1 The first port on the framer.
framer_2 The second port on the framer.
framer_3 The third port on the framer.

framer_4 The fourth port on the framer.

203

I

TASK-6000 software reference guide

I

t TIE1 card_type

204

Identifies the type of card installed.

Syntax

t ypedef enum {
E1l,
T1
} t_T1E1l card_type;

Elements
E1 The E1 card.
T1 The T1 card.

Appendix D: T1/E1 library * Structures /t_T1E1_led_state

I

t TIE1 led_state
Controls the LEDs for each port/span.

Each port has two associated LEDs. Each LED is bi-colored, with one LED either
yellow or green, and the other either red or green.

Syntax

t ypedef enum {
| eds_of f,
| eds_normal ,
| eds_yel |l ow_al arm
| eds_red_al arm
| eds_| oopback,
leds_line_fault,
| eds_gr_yel | ow,
| eds_red_gr,
| eds_of f _gr,

} t_T1E1 |led_state;

Elements
| eds_of f Sets both LEDs to off.

| eds_nor mal
Sets one LED to off and sets the other to green.

| eds_yel l ow_al arm
Sets one LED to off and sets the other to yellow.

| eds_red_al arm
Sets one LED to off and sets the other to red.

| eds_| oopback

Sets both LEDs to green.

| eds_line_fault
Sets one LED to red and sets the other to yellow.

| eds_gr_yel | ow
Sets one LED to green and sets the other to yellow.

| eds_red_gr
Sets one LED to red and sets the other to green.

| eds_of f_gr
Sets one LED to off and sets the other to green.

205

TASK-6000 software reference guide

I

t TIE1 _user_signaling_data
A type definition for a function pointer that points to a user handler that will
receive a t_T1E1_user_signaling_data structure pointer as a parameter.
Syntax

t ypedef void

(*T1ELSi gnal i ngHandl er)

(t_T1E1l user_signaling_data *signaling_struct);
Elements

T1E1Si gnal i ngHandl er
A pointer to the T1/E1 signaling handler.

signal i ng_struct
A pointer to a t_T1E1_user_signaling_data structure.

206

Appendix D: T1/E1 library * Structures /t_T1E1_BoardConfig

I
t TIE1_BoardConfig

Indicates the installed card type.
Calls to T1ETinitCard and T1E1getBoardConfig fill in this structure.

Syntax

typedef struct {
bool i nit_passed,;
t _T1El card_typecard_type;
uchar nunber _of ports;

} t_T1E1_BoardConfi g;

Elements

init_passed
Determines whether to send AIS. You can select one of these:

TRUE Initialization was successful.

FALSE The board was not intialized.

card_type
Identifies the type of card installed. For more information, see
t T1E1_card_type on page 204.

nunmber _of _ports
The number of T1 or E1 ports on the board.

207

TASK-6000 software reference guide

I

t T1_line_coding

208

Specifies the line coding for a framer (port).

Syntax

t ypedef enum {
AM ,
B8ZS
} t_T1 line_coding;

Elements
AM AMI (alternate mark inversion) line coding.
B8ZS B8ZS (binary 8 zeros substitution) line coding.

Appendix D: T1/E1 library * Structures /t_T1_framing_mode

I

t T1_framing_mode

Specifies the line framing for a framer (port).

Syntax

t ypedef enum {
D4_SF,
ESF

} t_T1 fram ng_node;

Elements
D4_SF D4 super frame.
ESF Extended super frame.

209

TASK-6000 software reference guide

I
t T1_line_buildout

Specifies the line buildout for a framer (port).

Syntax

t ypedef enum {
DSX1_0_to_133_ft,
DSX1_133_to_266_ft,
DSX1_266_to_399 ft,
DSX1_399 to 533 ft,
DSX1_533_to_655 ft,
CSU_m nus7p5_db,
CSU_m nus15_db,
CSU_m nus22p5_db

} t_T1 line_build_out;

Elements
DSX1 Sets line buildout to short-haul mode.
Csu Sets line buildout to long-haul mode.

210

Appendix D: T1/E1 library * Structures /t_T1_user_config_struct

t T1 user _config_struct

Specifies the complete configuration for a framer (port).

Syntax

typedef struct {
t_T1ELl framer_id framer _id;
t_T1 line_coding I i ne_codi ng;
t _T1_fram ng_node fram ng_node;
t_T1 line_build_out line_build_out;

uchar i dl e_code;

ul ong i dl e_channel s;

BOOL32 payl oad_| oopback_enabl €;
BOOL32 framer _| oopback_enabl e;
BOOL32 | ocal _| oopback_enabl e;
BOOL32 renot e_| oopback_enabl e;
BOOL32 robbed_bi t _si gnal i ng_enabl e;

} t_T1 user_config_struct;

Elements

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

i ne_codi ng
Specifies the line coding for a framer (port). For more information, see
t_T1_line_coding on page 208.

fram ng_node
Specifies the line framing for a framer (port). For more information, see
t_T1_framing_mode on page 209.

i ne_buil d_out
Specifies the line buildout for a framer (port). For more information, see
t T1_line_buildout on page 210.

i dl e_code Specifies the pattern to inject into transmitted data.

i dl e_channel s
The lower 24 bits specify the channels to inject the pattern specified in
i dl e_code into.

A 1in any bit indicates that the pattern is to be injected. Bit 0 is associated
with the first DSO of the DS1 line while bit 23 is associated with the
last DSO.

payl oad_| oopback_enabl e

Instructs the framer to perform a line-side loopback. Setting any field to
TRUE enables the loopback.

framer _| oopback_enabl e
Instructs the framer to perform a system-side loopback. Setting any field
to TRUE enables the loopback.

211

TASK-6000 software reference guide

I

| ocal _| oopback_enabl e
Instructs the framer to perform a system-side loopback. Setting any field
to TRUE enables the loopback.

renot e_| oopback_enabl e
Instructs the framer to perform a line-side loopback. Setting any field to
TRUE enables the loopback.

robbed_bi t _si gnal i ng_enabl e
Turns on and off the robbed bit signaling. You can select one of these:

Disabled The T1 line operates in clear channel mode.

Enabled Robbed bit signaling bits are inserted into and extracted from
the T1 data stream.

212

Appendix D: T1/E1 library * Structures /t_T1_user_signaling_data t_T1_signaling_data

I

t T1 _user_signaling_data
t T1 signaling_data
Reads and writes signaling data.

The first five fields of t_T1_signaling_data are bit masks where the 24 low-order
bits represent the 24 DSOs of a DS1 line. These bits either provide status of
(setT1Signaling or user callback) or allow control over the signaling bits
(setT1Signaling). Bit O is used for timeslot 1, Bit 1 for timeslot 2 and so on to bit 23
which is used for timeslot 24.

Syntax

typedef struct {

t_T1E1l framer _idfraner_id;

t _T1_signaling_datasignaling data;
} t_T1 user_signaling_data;
typedef struct {

ul ong changed_bits;

ulong a_bhits;

ulong b_hits;

ulong c_hits;

ulong d_bits;

ul ong ti mest anp;
} t_T1 signaling_data;

Elements

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

signaling_data
Reads and writes signaling data. For more information, see
t_T1_user_signaling_data t_T1_signaling_data on page 213.

changed_bits
Indicates which bits have changed or need to change state. When setting
signaling bits, this mask indicates which bits should be updated. When
reading signaling bits, this mask indicates which bits have changed state
since the previous change. Any bit set to 1 indicates that a change has
taken (or needs to take) place.

a_bits Rrepresents the 24 A signaling bits of the DS1 line.
b_bits Represents the 24 B signaling bits of the DS1 line.

c_bits Represents the 24 C signaling bits of the DS1 line. If the line is configured
for D4/SF framing, these bits are not used.

d_bits Represents the 24 D signaling bits of the DS1 line. If the line is configured
for D4/SF framing, these bits are not used.

ti mestanp A 1pS granularity (LSB=1 pS) timestamp that indicates when the
signaling change took place. This field is useful when forwarding
signaling information to other systems which may be interpreting
signaling bit changes. The rollover value for this field is 0x07C1F080.
This field is not used when setting signaling bits.

213

TASK-6000 software reference guide

I

t T1 _user_command_data

214

Sends alarm and loop up or down codes over the T1 line.

Setting any field to TRUE sends the alarm or code. These fields are mutually
exclusive.

Syntax

typedef struct {
t _T1E1l framer_idfraner_id;
BOOL32send_Al S;
BOOL32send_yel | ow_al arm
BOOL32send_I| oop_up;
BOOL32send_| oop_down;

} t_T1 user_command_dat a;

Elements

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

send_Al'S Determines whether to send AIS. You can select one of these:
TRUE Sends an AIS (unframed all 1s signal) alarm.
FALSE Does not send and AIS alarm.

send_yel | ow_al arm
Determines whether to send yellow alarms. You can select one of these:

TRUE Sends yellow alarms.
FALSE Does not send yellow alarms.

send_| oop_up
Determines whether to send loop up. You can select one of these:

TRUE Sends loop up.
FALSE Does not send loop up.

send_| oop_down
Determines whether to send loop down. You can select one of these:

TRUE Sends loop down.
FALSE Does not send loop down.

Appendix D: T1/E1 library * Structures /t_T1_user_status_struct

I

t T1 user_status_struct
Provides line status.
Status is provided via one of these methods:

e Call getT1Status: The framer _i d is specified by the caller and the t i mest anp and
change_wor d fields are invalid.

e Use a callback function specified through setT1StatusHandler: A change in
receive line status results in a callback to the user specified handler. In this case
all four fields of t_T1_user_status_struct are valid.

Syntax

typedef struct {
t _T1E1l framer _idfraner_id;
ul ong state_word;
ul ong change_wor d;
ul ong ti mest anp;
} t_T1 user_status_data;

Elements
framer_i d Identifies the framer that changed state.

state_word
A bit mask which indicates the current transmit commands and receive
line status. It indicates the current line state (same as in the “get” case).
The bit definitions for this field are contained in iop_to_t1.h.

change_word
A bit mask which indicates which bit (or bits) in st at e_word caused the
event to occur.

timestanp A 1 pS granularity time value indicating when the state change
took place.

215

TASK-6000 software reference guide

I

t T1 _user_clear_channel_data
Indicates which channels are clear channels (64Kbps) and which are not (56Kbps).

Syntax

typedef struct {
t _T1E1l framer _idfraner_id;
ul ong cl ear _channel s;

} t_T1 user_cl ear_channel _dat a;

Elements
framer_i d Specifies the framer or port to configure.

cl ear_channel s
A bit mask with the 24 lower bits representing the 24 DSOs.

1 (in any bit) configures that DSO for clear channel operation.
0 (in any bit) configure that DSO for non-clear channel.

Bit O is associated with the first DSO of the DS1 line while bit
23 is associated with the last DSO.

216

Appendix D: T1/E1 library * Structures /t_T1_user_idle_struct

I

t T1 user_idle_struct

Transmits an idle code on a selected DSO.

Syntax

typedef struct {
t _T1E1l framer _idfraner_id;
uchar idl e_code;
ul ongi dl e_channel s;
} t_T1 user_idle_struct;
Elements
framer_id Specifies the framer or port to configure.
i dl e_code An 8-bit value which represents the idle code to transmit.

i dl e_channel s
A bit mask where the 24 lower bits represent the 24 DSOs.

1 (in any bit) configures that DSO to transmit the i dl e_code.

0 (in any bit) configures that DSO to transmit data received
from the on-board TDM switch.

Bit 0 is associated with the first DSO of the DS1 line while bit
23 is associated with the last DSO.

217

TASK-6000 software reference guide

I

t T1_user_channel_config

Controls the configuration of a specified DSO on a specified framer/port.

Syntax

typedef struct {
t _T1E1l framer _idfraner_id;
ul ongchannel ;
BOOL32enabl e_i dl e_code;
BOOL32di sabl e_i dl e_code;
BOOL32enabl e_cl ear _channel ;
BOOL32di sabl e_cl ear _channel ;
BOOL32updat e_super vi si on;
BOOL32a_signal ing_bit;
BOOL32b_signal ing_bit;
BOOL32c_signal ing_bit;
BOOL32d_signal ing_bit;

} t_T1 user_channel _config;

Elements
framer_id Specifies the framer/port to configure.

channel Specifies the DSO to configure (zero based).

enabl e_i dl e_code
You can select one of these:

TRUE Enables transmission of the idle code on the selected channel.

Do not set both this field and di sabl e_i dl e_code to
this value.

FALSE If both this field and di sabl e_i dl e_code contain this value,
transmission remains at its previous state.

di sabl e_i dl e_code
You can select one of these:

TRUE Disables transmission of the idle code on the selected channel.

Do not set both this field and enabl e_i dl e_code to this
value.

FALSE If both this field and enabl e_i dl e_code contain this value,
transmission remains at its previous state.

enabl e_cl ear _channel
You can select one of these:

TRUE Configures the channel for eith 64Kbps (clear channel) or
56Kbps (non clear channel).

Do not set both this field and di sabl e_cl ear _channel
to this value.

218

Appendix D: T1/E1 library * Structures /t_T1_user_channel_config

FALSE If both this field and di sabl e_cl ear _channel contain this
value, the channel’s clear/not-clear configuration remains at
its previous state.

di sabl e_cl ear _channel
You can select one of these:

TRUE Configures the channel for eith 64Kbps (clear channel) or
56Kbps (non clear channel).

Do not set both this field and enabl e_cl ear _channel
to this value.

FALSE If both this field and di sabl e_cl ear _channel contain this
value, the channel’s clear/not-clear configuration remains at
its previous state.

updat e_supervi si on
You can select one of these:

TRUE Specifies the transmitted robbed bit signaling bits
(supervision bits) by changing the ABCD bit values specified
in x_si gnal ing_bit.

Do not set both this field and enabl e_cl ear _channel
to this value.

FALSE Supervision for the selected channel remains unchanged.

x_signaling_bit
You can select one of these:

TRUE Sets the signaling bit to 1.

Do not set both this field and enabl e_cl ear _channel
to this value.

FALSE Sets the signaling bit to 0.

219

I

TASK-6000 software reference guide

I

t T1 _user_raw_signaling_struct

Reads the signaling bit (supervision bit) values for each channel on the specified
T1 port.

Use in conjunction with the getT1SignalingRaw function.

Syntax

typedef struct {
t _T1E1l framer_idfraner_id;
ucharsignaling_bits[12];

} t_T1 user_raw_ signaling_struct;

Elements

framer_id
Specifies which framer or port to read.

signaling_bits
An array of 12 bytes, each of which contain the signaling bits for
two DSO0s.

Example

The high-order nibble of each byte contains the signaling bits for the lower
numbered channel. For example:

signaling_bits[0] bit 7 = DSO-0 A bit
signaling_bits[0] bit 6 = DSO-0 B bit
signaling_bits[0] bit 5 = DSO-0 C bit
signaling _bits[0] bit 4 = DSO-0 D bit
signaling _bits[0] bit 3 = DSO-1 A bit
signaling _bits[0] bit 2 = DSO-1 B bit
signaling_bits[0] bit 1 = DSO-1 C bit
signaling_bits[0] bit 0 = DSO-1 D bit
signaling_bits[11] bit 7 = DS0-22 A bit
signaling _bits[11] bit 6 = DS0-22 B bit
signaling _bits[11] bit 5 = DS0-22 C bit
signaling_bits[11] bit 4 = DS0O-22 D bit
signaling_bits[11] bit 3 = DS0-23 A bit
signaling_bits[11] bit 2 = DS0-23 B bit
signaling_bits[11] bit 1 = DS0-23 C bit
signaling _bits[11] bit 0 = DSO-23 D bhit

220

Appendix D: T1/E1 library * Structures / T1StatusHandler

I

T1StatusHandler

A type definition for a function pointer that points to a user handler that will
receive a t_T1_user_status_data structure pointer as a parameter.

Syntax

t ypedef void
(*T1St at usHandl er)
(t_T1 user_status_data *status_struct);

Elements

status_struct
Provides line status. For more information, see
t_T1_user_status_struct on page 215.

221

TASK-6000 software reference guide

I

T1SignalingHandler
A type definition for a function pointer that points to a user handler that will
receive a t_T1_user_signaling_data structure pointer as a parameter.
Syntax

t ypedef void
(*T1Si gnal i ngHandl er)
(t_T1 user_signaling_data *signaling_struct);

Elements

signal i ng_struct
Reads and writes signaling data. For more information, see
t_T1_user_signaling_data t_T1_signaling_data on page 213.

222

Appendix D: T1/E1 library ¢ Structures / t_E1_line_coding

I
t E1_line_coding

Enumerate the line coding for a framer (port).

Syntax

t ypedef enum {
NON_HDB3
HDB3
} t_El1 line_coding;
Elements
NON_HDB3 The framer uses non-HDB3 line coding.

HDB3 The framer uses HDB3 line coding.

223

TASK-6000 software reference guide

I

t E1_signaling_mode

224

Enumerates the signaling mode for a framer (port).

Syntax

t ypedef enum {
CAS,
CCs
} t_El1 signaling_nopde;

Elements
CAS Channel Associated Signaling.
CCs Common Channel Signaling.

Appendix D: T1/E1 library * Structures /t_E1_line_buildout

I
t E1_line_buildout

Enumerates the line buildout for a framer (port).

Syntax

t ypedef enum {
BUI LDOUT_75_CHM
BUI LDOUT_120_CHM

} t_E1 line_build_out;

Elements

BUI LDOUT_75_OHM
Sets the framer (specifically the LIU portion) to 7SOHM operation.

BUI LDOUT_120_OHM
Sets the framer (specifically the LIU portion) to 1200HM operation.

225

TASK-6000 software reference guide

I

t_ E1_user_config_struct

226

Specifies the complete configuration for a framer (port).

Syntax

typedef struct {
t_T1ELl framer_id framer _id;

t _E1 _line_coding I i ne_codi ng;

t _E1_signaling_node signaling_node;

BOOL32 crc4_enabl e;

t_E1 line_build_out line_build_out;

uchar i dl e_code;

ul ong i dl e_channel s;

BOOL32 framer _| oopback_enabl e;
BOOL32 | ocal _| oopback_enabl e;
BOOL32 renot e_| oopback_enabl e;

} t_E1 user_config_struct;

Elements

The first three fields and the line 1 i ne_bui | d_out field are described above in the
type definitions.

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

i ne_codi ng
Specifies the line coding for a framer (port). For more information, see
t_E1_line_coding on page 223.

si gnal i ng_node
Enumerates the signaling mode for a framer (port). For more
information, see ¢_E1_signaling mode on page 224.

crc4d_enabl e

Sets the CRC4 multiframe mode. A value of TRUE sets the mode.

i ne_buil d_out
Specifies the line buildout for a framer (port). For more information, see
t_E1_line_buildout on page 225.

i dl e_code Specifies the pattern to inject into transmitted data.

i dl e_channel s
The lower 32 bits specify the channels to inject the pattern specified in
i dl e_code into.

A 1in any bit indicates that the pattern is to be injected. Bit 0 is associated
with the first DSO of the E1 line while bit 31 is associated with the
last DSO.

framer _| oopback_enabl e

Instructs the framer to perform a system-side loopback. Setting any field
to TRUE enables the loopback.

Appendix D: T1/E1 library * Structures /t_E1_user_config_struct

I

| ocal _| oopback_enabl e
Instructs the framer to perform a system-side loopback. Setting any field
to TRUE enables the loopback.

renot e_| oopback_enabl e
Instructs the framer to perform a line-side loopback. Setting any field to
TRUE enables the loopback.

227

TASK-6000 software reference guide

I

t E1_user_signaling_data

228

Reads and writes signaling data.

This structure is identical tot _T1_user_signal i ng_data since the

t _E1_signal i ng_dat a field is typedef’ed to t _T1_si gnal i ng_dat a. See description of
the corresponding T1 structures. The only difference is that the E1 structure makes
use of all 32 bits where as the T1 structure uses only 24, 1 per DSO.

Syntax

typedef struct {

t_T1E1l framer_id framer_id;

t _E1_signaling_data signaling_data;
} t_El1 user_signaling_data;

Elements

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

signaling_data
Reads and writes signaling data. For more information, see
t_T1_user_signaling_data t_T1_signaling_data on page 213.

Appendix D: T1/E1 library * Structures / E1SignalingHandler

I

E1SignalingHandler

Type definition for user-specified signaling event handler.

Syntax

t ypedef void
(*EL1Si gnal i ngHandl er)
(t_E1 _user_signaling data *signaling struct);

Elements

signal i ng_struct

Reads and writes signaling data. For more information, see
t_E1_user_signaling_data on page 228.

229

TASK-6000 software reference guide

I

230

\
29y

T8100 library

Overview

This appendix describes the T8100 driver library. This appendix assumes that you
have a working understanding of the T8100 device family and of the
H.100/H.110 Bus.

When reading this file online, you can immediately view information about any
topic by placing the mouse cursor over a test name and clicking.

For information about... Go to this page...
OVEIVIEW ..ttt ettt e e e ettt e e e ettt e e e e s sebaeeeeeeanans 231
Making and breaking conNECtioNSvvvviviiiiiiiiiiieiieeeee e 231
Sample startup SEQUENCEuuuiiiiiiiiiieiiiiiee e 234
FUNCHION TISt. ..ttt e 235
Functions 237
Structures 246

The T8100 Status and Control API is the interface to the T8100 driver.

The T8100 driver provides the software interface to the Lucent T8100 Time Slot
Interchange device of the SPIRIT platform. The driver works under the VxWorks
real-time OS. The driver is not a “true” VxWorks driver as it is not built as part of
the kernel. It does use VxWorks system functions, and therefore requires the OS.

The driver controls and monitors the T8100. More specifically, the driver supports
these devices in the T8100 family:

e T8100
e T8100A
e T8105

The driver consists of:
e Interrupt handling tools

¢ Function list

Making and breaking connections

setT8100SwitchConfig allows the user application to configure switching for one or
all timeslots within the T8100. The function’s parameter’s structure type,
t_T8100SwitchConfig, and its associated sub-types are defined in iop_to_t8100.h
and were shown above for reference. Using this function, the user can specify
local-to-local, local-to-CT-bus, and CT-bus-to-CT-bus connections.

231

TASK-6000 software reference guide

I

Connections are specified with a source (input) and destination (output) for the
connection. Sources and destinations are specified in terms of resources (DSP, T1,
E1, HDLC, CT-Bus, etc), ports within those resources (for multiple port devices)
and timeslot numbers. The range of timeslot values varies based on the stream rate
for that resource’s port.

Due to the T8100’s limited number of CT-Bus connections (256 for T8100 and
T8100A, 512 for T8105(5)) versus the number of switching combinations, the user

application must assign each CT-Bus related(4) connection a unique connection
number, ctbus_connect_num, in the range of 0..255 (0..511 for T8105). This
number is used to identify the connection in the event that a connection must first
be broken to make room for a new connection. In this case, the connection using
the specified connection number is broken, then the newly specified connection is
made and assigned its number. Connections not using the CT-Bus as either the
source or destination of the connection need not specify a connection number.

Three special “resources” exist to support breaking connections and outputting
patterns:

e T8100_CT _BUS_DISCONNECT: The source and destination resource for
connections which are to be broken. The ct bus_connect _numfield is used to
specify the connection.

e T8100_LOCAL_DISCONNECT: The source resource to break a local
connection. The port and timeslot fields associated with this resource are not
used. However, the destination must be the actual resource, port and timeslot of
the connection to be broken.

e T8100_PATTERN: A connection source resource when outputting a pattern to
a destination resource timeslot. When T8100_PATTERN is specified as the
source resource, the source timeslot field is used to specify the 8-bit pattern to
be output on the destination resource, port and timeslot.

Broadcasting

232

The T8100 supports broadcasting of timeslots, that is, data from one input timeslot
can be sent to multiple output timeslots. There are four possible broadcast paths:

® One (1) Local/On-board input to N Local/On-Board outputs
® One (1) Local/On-board input to N CT-Bus outputs

e One (1)

® One (1) CT-Bus input to N CT-Bus outputs

CT-Bus input to N Local/On-Board outputs

For broadcast connections which do not involve the CT-Bus (case 1 above),
commanding a broadcast connection to N output timeslots is identical to
commanding N standard connections. To broadcast a timeslot to N outputs, specify
N connections in which the source resource, port and timeslot for each connection
is identical. The destination resources, ports, and timeslots must be unique.

For broadcast connections which involve CT-Bus timeslots (cases 2, 3 and 4 above)
as either the source or destination of the connection, programming is slightly
different from both the CT-Bus non-broadcast case and the Local-to-Local

Appendix E: T8100 library * / Broadcasting

broadcast case. For non-broadcast CT-Bus connections, specify a unique connection
number for each connection. For a CT-Bus broadcast, specify the same connection
number for each connection which is part of the broadcast. Like the Local-to-Local
broadcast case, the source resource, port, and timeslot is fixed for each broadcast
connection element.

The following code samples show broadcast connections for the Local-to-Local and
CT-Bus cases.

Example 1: Local-to-local broadcast 1 local timeslot
(T1 port O, timeslot 0) to 4 local timeslots (DSP A, port 0, timeslots 0..3)

configStruct.t8100Sw t chCf g. nunber _of _connections = 4;
configStruct.t8100Swi tchCf g. connections = //ptr to connection array
(t_T8100Connecti on *)connecti ons;

for(i=0;i<4;++i) {
connections[i].connect_src.resource = T8100_T1;
connections[i].connect_src.port = O;
connections[i].connect_src.tinmeslot = 0; // fixed
connections[i].connect_dest.resource = T8100_DSP;
connections[i].connect_dest.port = T8100_DSP_A SP _0;
connections[i].connect_dest.tineslot =i; // increnenting
/1 ctbus_connect _numfield for |ocal-local connections is not used

}

host Cont r ol Peri pheral (ul opNum TASK T8100, CONFI G _T8100_SW TCHI NG,
&configStruct);

Example 2: Local-to-CT-Bus broadcast 1 local timeslot
(T1 port O, timeslot 0) to (applies to cases 2, 3, and 4) 4 CT-Bus timeslots
(Stream 5, timeslots 0..3)

configStruct.t8100Sw t chCf g. nunber _of _connections = 4;
configStruct.t8100Swi tchCfg. connections = //ptr to connection array
(t _T8100Connecti on *)connecti ons;

for(i=0;i<4;++i) {
connections[i].connect_src.resource = T8100_T1;
connections[i].connect_src.port = O;
connections[i].connect_src.tinmeslot = 0; // fixed
connections[i].connect_src.ctbus_connect_num= 0; // fixed
connections[i].connect_dest.resource = T8100_CT_BUS;
connections[i].connect_dest.port = 5;
connections[i].connect_dest.tinmeslot =i; // increnenting
connections[i].connect_dest.ctbus_connect_num= 0; // fixed

}

host Cont r ol Peri pheral (ul opNum TASK_T8100, CONFI G_T8100_SW TCHI NG,

&configStruct);

The ct bus_connect _numfor each of the broadcast members must be the
same. However, this number must be different from the ctbus_connect num of
any other active connections.

(4) Either the source or destination (or both) of the connection is the CT-BUS

233

I

TASK-6000 software reference guide

I

(5) This number represents the maximum number of CT-BUS related connections
assuming that the source and destination of the connection are not both either even
numbered CT-BUS streams or odd number CT-BUS streams. If all CT-BUS
connections were to connect even streams to even streams or odd streams to odd
streams, the number of connections would be reduced in half.

Sample startup sequence

voi d initT8100(void)
Initialize the T8100 card and driver. Not required if ioplnit is being called.

i nt set T8100Handl er (void (*User T8100Handl er) (int status))
Set a callback function for errors/state changes.

voi d set T8100C ockConfi g(I N const t_T8100C ockConfi g *T8100C ockConfi g)
Set the configuration of the T8100 reference and bus clocks.

voi d set T8100StreanConfi g(I N const t_T8100StreanConfi g *T8100St r eanConfi g)
Set the rates for the on-board and CT-Bus streams.

voi d set T8100Swi t chConfi g(I N const t_T8100Sw tchConfi g
*T8100Swi t chConfi Q)

Make timeslot connections, both on-board and CT-Bus.

234

Appendix E: T8100 library * / Function list

I

Function list

This appendix lists function descriptions alphabetically. You can find a function in
this appendix either by locating it alphabetically within its group, or by using Table
E-1 below, which groups like functions together.

Use this table to identify the T8100 driver functions you want to use. Use the
function description later in this appendix to obtain detailed information, including
syntax and parameter values:

Table E-1. T8100 functions

Type Function Description
Configuration Configures the T8100.
initT8100 Initializes the driver and the T8100, and
identifies the installed device (T8100, T8T100A,
or T8105).
setT8100ClockConfig Configures the clocking of the T8100.
setT8100StreamConfig Sets the T8100’s stream rates.
setT8100SwitchConfig Sets the T8100’s switching.
clearT8100ClockFault Clears a clock fault in the T8100.
clearT8100MemoryFault Clears a memory (CAM) fault in the T8100.
setT8100ClockFaultMask Disables the monitoring of clock faults.
Status monitoring Polls and reads the status of the T8100.
getT8100ErrorStatus Reads the status of the T8100 error status
registers: SYSERR, CLKERR1, CLKERR2, and
CLKERRS.
Interrupt/event controls Specifies a handler (callback function) to call
when an interrupt event occurs.
setT8 100Handler Specifies the event handler to call when

detecting a T8100 interrupt.

Function prototypes and type definitions for the driver interface are contained in
the following header file:

iop_to_t8100.h

The functions and their data types are described in the pages that follow. The
descriptions use the terms H.100 Bus, H.110 Bus and CT-Bus interchangeably.

Limitations

Time slot assignments for T1 and E1 interfaces: There are differences in the
mapping of T8100 time slots depending on the interface used, as illustrated by the
following table. The developer should be aware of these differences when assigning
DSP data channel resources to time slots using the T8100 peripheral.

235

TASK-6000 software reference guide

I

236

Table E-2. Time slot numbers

T8100 T1 E1l

0 1 (data 0) 0 (signaling 0)
1 2 (data 1) 1 (data 0)

2 3 (data 2) 2 (data 1)

3 4 (data 3) 3 (data 2)

4 5 (data 4) 4 (data 3)

5 6 (data 5) 5 (data 4)

6 7 (data 6) 7 (data 6)

7 8 (data 7) 7 (data 6)

8 9 (data 8) 8 (data 7)

9 10 (data 9) 9 (data 8)
10 11 (data 10) 10 (data 9)
11 12 (data 11) 11 (data 10)
12 13 (data 12) 12 (data 11)
13 14 (data 13) 13 (data 12)
14 15 (data 14) 14 (data 13)
15 16 (data 15) 15 (data 14)
16 17 (data 16) 16 (signaling 1)
17 18 (data 17) 17 (data 15)
18 19 (data 18) 18 (data 16)
19 20 (data 19) 19 (data 17)
20 21 (data 20) 20 (data 18)
21 22 (data 21) 21 (data 19)
22 23 (data 22) 22 (data 20)
23 24 (data 23) 23 (data 21)
24 N/A 24 (data 22)
25 N/A 25 (data 23)
26 N/A 26 (data 24)
27 N/A 27 (data 25)
28 N/A 28 (data 26)
29 N/A 29 (data 27)
30 N/A 30 (data 28)
31 N/A 31 (data 29)

Appendix E: T8100 library * Functions / initT8100

Functions

initT8100

Initializes the driver and the T8100, and identifies the installed device (T'8100,
T8100A, or T8105).

This function must be called before using any other driver functions, however, the
user need not call this function if i opl ni t is being called, since the iopInit function
makes the call. Following this function call, the T8100 and the CT-Bus are in the
following state:

No CT-Bus timeslots are driven, all connections are broken.

All CT-Bus bus clocks are turned off, CT-Bus stream rates set to 8.192MHz.
The T8100 reference clock is set to be the on-board oscillator.

All local/on-board connections are broken.

The local/on-board streams are set to a 2.048MHz rate (32 timeslots).
On-board device clocks are set to a 2.048MHz rate (DSP clocks, framer clocks).

Syntax

voi d i ni t T8100(voi d)

Parameters

None.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

237

I

TASK-6000 software reference guide

I

setT8100ClockConfig

238

Configures the clocking of the T8100.

This includes selecting reference clocks for normal and fallback operation as well as
determining which (if any) clocks to drive onto the bus. This function is typically
called first following initT8100.

Syntax

voi d set T8100C ockConfi g(
IN const t_T8100C ockConfig *T8100d ockConfi g

)

Parameters

T8100C ockConfi g
A pointer to the t_T8100ClockConfig structure. For more information
about this structure, see t_T8100ClockConfig on page 250.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix E: T8100 library * Functions / setT8100StreamConfig

|
setT8100StreamConfig

Sets the T8100’s stream rates.

You can configure stream rates for the three on-board stream groups as well as the
CT-Bus. The 32 streams of the CT-Bus are broken up into eight groups of four
streams each. Each group can be independently configured.

Available rates include:

e 8.192MHz
e 4.096MHz
e 2.048MHz
e OMHz (off)

'% Call this function prior to making timeslots connections. Changing stream rates
results in reconfiguration of T8100 internal switch memory and may result in
undesired connectivity.

Syntax

voi d set T8100St r eanConfi g(
IN const t_T8100StreanConfig *T8100St reamConfig

)

Parameters

T8100St r eanConfi g
A pointer to the t_T8100StreamConfig structure. For more information
about this structure, see t_T8100StreamConfig on page 253.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

239

TASK-6000 software reference guide

I

setT8100SwitchConfig

240

Sets the T8100’s switching.

The function is passed the number of connections to make (or break), and the end
points for those connections. These connections can be of any type: local-to-local,
local-to-CT-Bus or CT-Bus to CT-Bus.

Syntax

voi d set T8100Swi t chConfi g(
IN const t_T8100Sw tchConfig *T8100Swi t chConfi g

)

Parameters

T8100Swi t chConfi g
A pointer to the t_T8100SwitchConfig structure. For more information
about this structure, see t_T8100SwitchConfig on page 258.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix E: T8100 library * Functions / clearT8100ClockFault

clearT8100ClockFault
Clears a clock fault in the T8100.

Syntax
int clearT8100d ockFaul t (voi d)

Parameters

None.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

241

TASK-6000 software reference guide

I

clearT8100MemoryFault

242

Clears a memory (CAM) fault in the T8100.

Syntax
i nt clear T8100Menor yFaul t (voi d)

Parameters

None.

Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

Appendix E: T8100 library * Functions / setT8100ClockFaultMask

I

setT8100ClockFaultMask

Disables the monitoring of clock faults.

This function allows you to disable monitoring of known bad clocks.

Syntax

i nt set T8100C ockFaul t Mask(
IN const int clock_nask

)

Parameters

cl ock_mask
The lower 8 bits of cl ock_mask are inverted and and’ed with the contents
of the T8100’s CKW register. For the T8100A and T81035, bit 9 of
cl ock_mask is inverted and and’ed with the LSB of the CLKERR3 register.
Return values
SUCCESS Successful completion.

FAILURE Unsuccessful completion.

243

TASK-6000 software reference guide

getT8100ErrorStatus
Reads the status of the T8100 error status registers: SYSERR, CLKERR1,
CLKERR2, and CLKERR3.
Syntax
i nt get TB100Err or St at us(voi d)

Parameters

None.

Return values
SUCCESS Return data is formatted as follows:

Bits 07-00 SYSERR

Bits 15-08 CLKERR1

Bits 23-16 CLKERR2

Bits 31-24 CLKERR3 (T8100A & T8105 only)
FAILURE No information available.

244

Appendix E: T8100 library * Functions / setT8100Handler

I

setT8 100Handler

Specifies the event handler to call when detecting a T8100 interrupt.

The value passed to the function is identical to the return parameter of
getT8100ErrorStatus. setT8100Handler can be called with a NULL handler in
order to disable callbacks.

Syntax

i nt set T8100Handl er (
void (*User T8100Handl er) (int status)

)

Parameters
User T8100Handl er
The user call to handle T8100 interrupt events.
Return values
SUCCESS Successful completion.
FAILURE Unsuccessful completion.

245

TASK-6000 software reference guide

I

Structures

246

Use this table to identify the T8100 driver structures. Use the structure description
later in this appendix to obtain detailed information, including syntax and
parameter values.

Table E-3. T8100 structures

Call Description

t_ref clk Selects the primary reference of the T8100.

t_fallback_clk Selects the fallback reference of the T8100.

t_netref_clk Selects the clock reference used to generate the
CT-NETREF bus clocks.

t T8100ClockConfig Used by the setT8100ClockConfig function to control
the clocking of the T8100.

t_stream_rate Selects the CT-BUS rate.

t_ T8100StreamConfig Used by the setT8100StreamConfig function to control
the stream rates of the T8100.

t_source_dest Specifies a connection’s endpoint (source or
destination).

t_T8100Connection Specifies a single connection.

t_ T8100SwitchConfig Specifies a series (one or more) connections to make
(or break).

Appendix E: T8100 library * Structures / t_ref_clk

t_ref_clk

Selects the primary reference of the T8100.

Syntax

t ypedef enum {

REF_LOCAL= 0,
REF_CT_NETREF= 1,
REF_CT_C8_A= 2,
REF_CT_C8_B= 3,
REF_MI P= 4,
REF_HWI P= 5,
REF_SCSA 2M= 6,
REF_SCSA 4_8M: 7,
REF_T1E1 1= 8,
REF_T1El 2= 9,
REF_T1E1 3= 10,
REF_T1E1 4= 11,
REF_CT_NETREF2= 12

} t_ref_clk;

247

I

TASK-6000 software reference guide

t_fallback_clk
Selects the fallback reference of the T8100.

Syntax

t ypedef enum {
FB_LCOCAL= 0,
FB_CT_C8_A= 1,
FB_CT_C8_B= 2,
FB_CT_NETREF= 3,
FB_T1El1 1= 4,
FB_T1El1_2= 5,
FB_T1El1_3= 6,
FB_CT_NETREF2= 7

} t_fallback_clk;

248

Appendix E: T8100 library * Structures / t_netref clk

I

t_netref_clk
Selects the clock reference used to generate the CT-NETREF bus clocks.

Syntax

t ypedef enum {
NETREF_LCOCAL= 0,
NETREF_T1E1_1= 1,
NETREF_T1E1 2= 2,
NETREF_T1E1 3= 3,
NETREF_T1E1 4 = 4,
NETREF_CT_NETREF= 5,
NETREF_CT_NETREF2= 6

} t_netref_clk;

249

TASK-6000 software reference guide

I

t T8100ClockConfig

250

Used by the setT8100ClockConfig function to control the clocking of the T8100.

Syntax

typedef struct {
t _ref_clkreference_cl k_sel ect;
t_netref_cl knetref_sel ect;
t _fall back_cl kfal |l back_cl k_sel ect;
bool netref_enabl e;
bool netref2_enabl e;
bool frame_cl k_a_enabl e;
bool frame_cl k_b_enabl e;
bool conpat _cl ks_enabl e;
bool fal | back_enabl e;
} t_T8100d ockConfi g;

Elements

reference_cl k_sel ect
Selects the primary reference clock for the T8100. The T8100 will lock
to this clock (under non-fallback conditions) and generate both its
internal references as well as any external clocks, based on this clock.
This clock can be either the on-board reference, any of the H.100/110 bus
clocks or one of the E1 or T1 loop timing clocks.

netref_sel ect
Selects the reference clock for generation of the CT_NETREEF signal. This
field selects the reference but does not enable the output.

fal | back_cl k_sel ect
Selects the reference clock to which the T8100 will switch when an error
is detected on the signal used as the ref erence_cl k_sel ect . Fallback
must be enabled for this to occur.

netref_enabl e
Determines whether the T8100’s CT_NETREF output goes onto the
H.100/110 bus. You can select one of these:

TRUE CT_NETREF output goes onto the H.100/110 bus.
FALSE CT_NETREF output does not go onto the H.100/110 bus.

netref2_enabl e
Determines whether the T8100’s CT_NETREF_2 output goes onto the
H.100/110 bus. You can select one of these:

TRUE CT_NETREF_2 is available only for H.110 applications.
FALSE CT_NETREF_2 is not available for H.110 applications.

Appendix E: T8100 library * Structures / t_T8100ClockConfig

frame_cl k_a_enabl e

Determines whether the T8100’s CT_C8_A and /CT_FRAME_A outputs
go onto the H.100/110 bus. You can select one of these:

TRUE

FALSE

frame_cl k_b_enabl e

CT_C8_A and /CT_FRAME_A output goes onto the
H.100/110 bus.

CT_C8_A and /CT_FRAME_A output does not go onto the
H.100/110 bus.

Determines whether the T8100’s CT_C8_B and /CT_FRAME_B outputs
go onto the H.100/110 bus. You can select one of these:

TRUE

FALSE

conpat _cl ks_enabl e

CT_C8_B and /CT_FRAME_B output goes onto the
H.100/110 bus.

CT_C8_B and /CT_FRAME_B output does not go onto the
H.100/110 bus.

Determines whether the T8100’s compatibility clocks and frame strobes
go onto the H.100/110 bus. These signals include
/FR_COMP,SCLK,SCLKx2,C2,/C4,/C16+,/C16-2). You can select one

of these:
TRUE

FALSE

fal | back_enabl e

Compatibility clocks and frame strobes go onto the
H.100/110 bus.

Compatibility clocks and frame strobes do not go onto the
H.100/110 bus.

Determines whether to engage the T8100’s fallback (switch) mode. You
can select one of these:

(1)

Enables the fallback mode. The T8100 will fallback (switch)
to the reference clock specified in f al | back_cl k_sel ect
when an error is detected on the primary reference clock
specified in r ef erence_cl k_sel ect . Select this option if E1 or
T1 option card is installed.

Disables the fallback mode. Only SCLK, SCLKx2 and
/FR_COMP are defined for use in H.110 systems.

251

I

TASK-6000 software reference guide

I

t_stream_rate
Selects the CT-BUS rate.

Syntax

t ypedef enum {

TWO _MHZ= 0,

FOUR _MHZ= 1,

El GHT_MHZ= 2,

DI SABLE_GROUP= 3
} t_streamrate;

252

Appendix E: T8100 library * Structures / t_T8100StreamConfig

I

t T8100StreamConfig

Used by the setT8100StreamConfig function to control the stream rates of
the T8100.

On-board/local stream rates are controlled in groups:
e BSP 0: DSP Buffered Serial Port (BSP) 0 group.
e BSP 1: DSP Buffered Serial Port (BSP) 1 group.
e E1/T1: SPIRIT board’s option card site group

For the H.100/110 bus, each group is a set of four consecutive H.100/110 streams.
The streams rates correspond to 32, 64 and 128 timeslots respectively.

Syntax

typedef struct {
t_streamrate dsp_bspO_rate;
t_streamrate dsp_bspl_ rate;
t_streamrate eltl_rate;
t_streamrate ct_bus_03_00_rate;
t_streamrate ct_bus_07_04_rate;
t_streamrate ct_bus_11 08 rate;
t_streamrate ct_bus_15_12 rate;
t_streamrate ct_bus_19 16 rate;
t_streamrate ct_bus_23 20 rate;
t_streamrate ct_bus_27_24 rate;
t_streamrate ct_bus_31_28 rate;

} t_T8100St reanConfi g;

Elements

dsp_bspO_rate
Sets the stream rate for the streams which are connected to BSP 0 of
each DSP.

dsp_bspl_rate
Sets the stream rate for the streams which are connected to BSP 1 of
each DSP.

eltl rate
Sets the stream rate for the streams which are connected to the SPIRIT
board’s option card site. You can set the rate to one of these:

2.048MHz Sets the stream rate to 2.048MHz. If the RadiSys E1 or T1
option card is being used, you must select this option.

4.096 MHz Sets the stream rate to 4.096 MHz.
8.192MHz Sets the stream rate to 8.192MHz.
Disabled Disables the stream.

ct_bus_yy xx_rate
Sets the stream rates for the H.100/110 streams xx thru yy.

253

TASK-6000 software reference guide

I

Restrictions

The H.100/110 streams rates can be configured without restriction, that is, any
combination of rates is allowed. The on-board/local streams have the following
restrictions:

e Ifelti1_rateis set to EIGHT_MHZ, the other 2 on-board/local stream groups
(the DSP BSP streams) are disabled.

e Ifdsp_bspl_rate is set to EIGHT_MHZ, the on-board/local stream connected
to BSP 0 of each DSP are disabled.

In general the following must hold true:
8*TSgiT1 + 4*TSpspespr + 4*TSpspespo <=1024
Where:

e TSE1T1 is the number of timeslots for the E1T1 streams(3)
e TS DSPBSP1 is the number of timeslots for the DSP BSP1 streams

e TS DSPBSPO is the number of timeslots for the DSP BSPO streams

2.048MHz rate = 32 timeslots
4.096MHz rate = 64 timeslots
8.192MHz rate = 128 timeslots

® When a group is disabled via the DISABLE_GROUP command, its rate is still
considered to be 2.048MHz, although the T8100's output for that group is
disabled.

/* list of all possible TDM resources on a SPIRIT board */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne

T8100_DSPO
T8100_T11

T8100_E12

T8100_HDLC3

T8100_CODECA
T8100_CT_BUS5
T8100_CT_BUS_DI SCONNECT6
T8100_LOCAL_DI SCONNECT7
T8100_PATTERNS

/* constants used to specify DSP and it serial port in the port field of the*/
/* t_source_dest structure */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

254

ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne

T8100 DSP_A SP 0 0x0/* DSP A (0) Serial port 0 */
T8100 DSP_A SP 1 Ox1/* DSP A (0) Serial port 1 */
T8100_DSP_ B SP 0 0x4/* DSP B (1) Serial port 0 */
T8100_DSP B SP 1 0x5/* DSP B (1) Serial port 1 */
T8100_DSP_C SP 0 0x8/* DSP C (2) Serial port 0 */
T8100 DSP_C SP 1 0x9/* DSP C (2) Serial port 1 */
T8100 DSP_D SP 0 OxC/* DSP D (3) Serial port 0 */
T8100 DSP_D SP 1 OxD)Y* DSP D (3) Serial port 1 */
T8100_DSP_E SP 0 0x2/* DSP E (4) Serial port 0 - future use */
T8100_DSP_E SP 1 0x3/* DSP E (4) Serial port 1 - future use */
T8100_DSP_F_SP 0 0x6/* DSP F (5) Serial port O - future use */
T8100_DSP_F_SP 1 0x7/* DSP F (5) Serial port 1 - future use */
T8100_DSP_G SP 0 Oxa/* DSP G (6) Serial port 0 - future use */
T8100_DSP_G SP_1 Oxb/* DSP G (6) Serial port 1 - future use */

Appendix E: T8100 library * Structures / t_T8100StreamConfig

#defi ne
#defi ne

#def i ne
#def i ne

T8100_DSP_H SP 0 Oxe/* DSP H (7) Serial port 0 - future use */
T8100_DSP_ H SP 1 Oxf/* DSP H (7) Serial port 1 - future use */

T8100_CONNECT_CONST_DELAYO /* used to specify constant delay */
T8100_CONNECT_M N_DELAY1 /* used to specify minimm delay */

255

I

TASK-6000 software reference guide

I

t_source_dest

256

Specifies a connection’s endpoint (source or destination).

Syntax

typedef struct {

unsi gned i nt node;

unsi gned int resource;

unsi gned int port;

unsigned int timeslot;

unsi gned int ctbus_connect_num
} t_source_dest;

Elements
node Specifies the connection to be either constant delay or minimum delay.

resource Specifies the connection’s resource number. For example: CT-Bus, DSP,
T1, or HDLC.

Most resources have multiple ports. In the case of the CT-Bus, each
stream is a port. In the case of an E1 or T1 card, the port corresponds to
the framer.

por t Specifies the connection’s port number. For example: CT-Bus, DSP, T1, or
HDLC.

timesl ot Specifies the connection’s timeslot number. The maximum value for this
field is a function of the stream rate selected.

ct bus_connect _num
Used for CT-Bus connection only and is described in the “Making and
Breaking Connections” section

Appendix E: T8100 library ¢ Structures / t_ T8100Connection

I

t T8100Connection

Specifies a single connection.

Syntax

typedef struct {
t _source_dest connect_src;
t _source_dest connect_dest;
} t_T8100Connecti on;

Elements

connect _Ssrc
The connection’s source.

connect _dest
The connection’s destination.

257

TASK-6000 software reference guide

I

t T8100SwitchConfig

258

Specifies a series (one or more) connections to make (or break).

Syntax

typedef struct {

ul ongnunber _of _connecti ons;

t _T8100Connecti on*connecti ons;
} t_T8100Swi t chConfi g;

Elements

nunmber _of _connecti ons
Indicates the total number of connections to be made or broken. The
maximum value is 512 (256 for T8100 and T8100A), but is further
limited by the maximum number of connections supported by the device.

*connecti ons
A pointer to number_of_connections number of connections, each of
type t_T8100Connection. Each of these connections is made up of a
connect_src and connect_dest. Each connect_src and connect_dest is in
turn made up of a mode, resource, port, timeslot and ctbus_connect_num
(CT-BUS Connections only)

Service descriptions

\
29y

This appendix describes TASK services.

This appendix lists structures in the order listed in the table below. Use this table to
identify the service or services you want to use. Use the service description later in
this appendix to obtain detailed information, including syntax and parameter
values.

For information about... Go to this page...
(o Te L=T oIS 260
] (OLe e [T R 260
ECho canCellation..........iiiiiiee e 263
STECOCANC . 263
TONE GENEIATION «.evviiiiiiiiiiiee et ee e e e e e e e e e e e e e e e e e eeeeaaaaans 264
SETAMTONEGEN 264
STPKETONEGEN ... 265
TONE ETECHON v 266
STTAMDTMEDEL ... e 266
STPKEIDTMEDET .. 267
SEC P T D T e 268
STMEIDEL .o 270
RTP packetizationuuueeieieei et 272
STRIPENCOAE ...t 272
SERIPDECOAE v 274
SIGNAIING .. oo 276
SEC S e 276
STODSOHAIC ... 277
YN o' 011 Ve TR U UUPRPRP 278
STEthErNEtALGIM ..o 278
SET TETAIGIM e e 278
AUAIO PrOCESSING..uvvviriiiiiiiieiie e e e e e e e e e e et e e e e ettt eee s 278
SETAGC .o 281
INEEINGAL ..eee e 282
STPACKEtBUIIAEr i 282
STPACKETPAISEr ... e 283

259

TASK-6000 software reference guide

I

Codec

stCodec

Config
data

260

Converts voice, fax, or modem data between TDM and a packetized form.

In the voice case, it takes a frame (often 10ms) of TDM audio data, compresses it
according to one of the voice codecs such as G.711, G.723, G.729 etc., and outputs
the compressed result. In the reverse direction it takes a compressed packet
corresponding to an audio frame and decompresses it into the full data frame for
playout via a TDM channel. In addition to the standard compression/decompression
functions, some codecs also support Voice Activity Detection and Comfort Noise
Generation, which allows suppression of packetized data during periods of silence.

‘% upEnableService and upConfigService disables the stTdmToneGen service, if it
is currently running on the same channel.

UP_CODEC_CONFIG_ST

typedef struct
{
UP_CODEC ET eCodec;
UP_CODEC_PARAM UT t CodecPar ans;
} UP_CODEC_CONFI G_ST;

eCodec The codec to enable and configure.

t CodecPar ans
The parameters for this codec; may be NULL for codecs which are
not configured.

UP_CODEC_ET

t ypedef enum {
Ct G729A = 1,
ct Gr23,
ct Gr11im,
ct G7'11A,
ct Gr26_32,
ct G3Fax,
ct Vo0,
ct NoCoder, /* disable codec (used internally) */
ct Gr29,
ct GSM

} UP_CODEC ET;

UP_CODEC_PARAM_UT

t ypedef uni on

{
UP_CODEC G711_PARAM ST t G711Par am
UP_CODEC_G729 PARAM ST t G729Par am
UP_CCDEC G723_PARAM ST t G723Par am

} UP_CODEC_PARAM UT;

Appendix F: Service descriptions * Codec / stCodec

UP_CODEC_G711_PARAM ET

typedef struct {
enum

{
enunVULAWEO,
enumALAW
} elLaw;
UP_ENABLE ET eVadEnabl e;
RSYS | NT32 | VadLowSi gThr eshol d;
UP_ENABLE _ET eBf nEnabl e;
} UP_CODEC G711 PARAM ST;
eLaw Selects between G.711 p-Law and A-Law versions. You can select one
of these:

enumVULAW Selects p-Law coding.
enumALAW Selects A-Law coding.

eVadEnabl e
Allows the Voice Activity Detector to suppress packet generation on the
encoder side. You can select one of these values:

enunEnabl ed
Enables VAD.

enunDi sabl ed
Always generates packets.

| VadLowSi gThr eshol d
VAD noise threshold in dBm.

eBf nEnabl e
Enables and disables bad frame masking.

UP_CODEC_G729_PARAM ET

typedef struct {
UP_ENABLE_ET eVadEnabl e;
} UP_CODEC G729 PARAM ST:
eVadEnabl e
Allows the Voice Activity Detector to suppress packet generation on the
encoder side. You can select one of these:

enunknabl ed
Enables VAD.

enunDi sabl ed
Always generates packets.

261

TASK-6000 software reference guide

I

Events

262

UP_CODEC_G723_PARAM_ST

typedef struct {
enum {
enunRat e63=0,/* 6300 bps*/
enunRat e53/* 5300 bps*/
} eRate;
UP_ENABLE ET UseHp;/* Hi gh pass filter enable*/
UP_ENABLE ET UsePf;/* Post filter enabl e*/
UP_ENABLE_ET UseVx;/* VAD enabl e*/
} UP_CODEC_Gr23_PARAM ST;

UseVx Allows the Voice Activity Detector to suppress packet generation on the
encoder side. You can select one of these:

enunknabl ed
Enables VAD.

enunDi sabl ed
Always generates packets.

There are no events associated with this service.

Appendix F: Service descriptions * Echo cancellation / stEchoCanc

I

Echo cancellation

stEchoCanc

Tries to remove time-delayed versions of a TDM channel’s output from its input
stream.

These echoes are typically introduced when the TDM channel is translated into a
two-wire analog line somewhere outside the gateway. The echo canceller uses an
adaptive filter with a 32 millisecond buffer to eliminate near-end echoes.

Config UP_ECHO_CONFIG_ST

data typedef struct {

RSYS_| NT32I Nl pThr eshol d; /* Non-Li near Processor Threshol d*/
enum {

TL8ms = 1,

TL16ms,

TL24nms,

TL32ms
} eTaplLengt h;
UP_ENABLE ET | SI owAdapt ati on;
UP_ENABLE ET | FreezeAdapt ati on;
UP_ENABLE_ET | NLPDi sabl e;

} UP_ECHO CONFI G_ST;

The echo canceller’s initial version includes:
* A fixed INIpThreshold value; this flag currently has no effect.
* A fixed eTapLength value of 32ms; this flag currently has no effect.

Events There are no events associated with this service.

263

TASK-6000 software reference guide

I

Tone generation

stTdmToneGen

Config
data

Events

264

Generates tones or tone-pairs to a TDM output with programmable cadence and
cadence count.

While a cadence is in progress, this service overrides the decompression side of any
codec concurrently enabled on the same channel. Once the cadence ends the
channel automatically reverts to the codec output.

UP_TONEGEN_CONFIG_ST

typedef struct {
RSYS | NT32 | Freql;
RSYS | NT32 | Freq2;
RSYS_| NT32 | Anpl i t udedB1l;
RSYS_|I NT32 | Anpl i t udedB2;
RSYS_ | NT32 | CadenceOn;
RSYS | NT32 | CadenceOrf;
RSYS_| NT32 | Repeat ;

} UP_TONEGEN_CONFI G_ST;

| Freql The primary tone’s frequency in Hz.

| Freg2 The secondary tone’s frequency in Hz, or zero if no secondary tone
is required.

| Anpl it udedBl and | Anpl i t udedB2
Each tone’s amplitude. If both tones are used, the total amplitude is the
sum of the two individual amplitudes.

| CadenceOn
The tone or tone-pair’s on-time, in ms. This number is rounded up to the
nearest frame, i.e. 30ms. CadenceOn=0 means leave the tone on forever, or
until the tone generator is reconfigured or disabled.

| CadenceOr f
The tone or tone-pair’s off-time, in ms, rounded up to the nearest frame.

| Repeat The number of times to repeat the cadence; —1 means repeat forever.

There are no events associated with this service.

Appendix F: Service descriptions * Tone generation / stPktToneGen

stPktToneGen

Config
data

Events

Generates tones or tone-pairs to the input of a codec with programmable cadence
and cadence count.

While a cadence is in progress the stTdmToneGen service overrides the TDM
channel’s input. Once the cadence ends the codec input automatically reverts to the
TDM input.

UP_TONEGEN_CONFIG_ST

typedef struct {
RSYS | NT32 | Freql;
RSYS | NT32 | Freq2;
RSYS | NT32 | Anpl i t udedBl;
RSYS_| NT32 | Anpl i t udedB2;
RSYS | NT32 | CadenceOn;
RSYS | NT32 | CadenceO f;
RSYS_| NT32 | Repeat ;

} UP_TONEGEN_CONFI G_ST;

| Freql The primary tone’s frequency in Hz.

| Freg2 The secondary tone’s frequency in Hz, or zero if no secondary tone is
required.

| Anpl it udedBl and | Anpl i t udedB2
Each tone’s amplitude. If both tones are used, the total amplitude is the
sum of the two individual amplitudes.

| CadenceOn
The tone or tone-pair’s on-time, in ms. This number is rounded up to the
nearest frame, i.e. 30ms. CadenceOn=0 means leave the tone on forever, or
until the tone generator is reconfigured or disabled.

| CadenceCf f
The tone or tone-pair’s off-time, in ms, rounded up to the nearest frame.

| Repeat The number of times to repeat the cadence; —1 means repeat forever.

There are no events associated with this service.

265

TASK-6000 software reference guide

I

Tone detection

stTdmDTMFDet
Performs DTMF detection on TDM input data.

It generates UP_EVT_DTMF_DETECTED events to alert the application of the
digit detected.

Config UP_DTMF_CONFIG_ST
data typedef struct {
RSYS | NT32 | LowSi gThr eshol d;
*UP_ENABLE_ET supressOnToneDet ;
} UP_DTMF_CONFI G ST;
| LowSi gThr eshol d
Absolute low-signal threshold.

supressOnToneDet
Supress audio during DTMF.

Events UP_EVT_TDM_DTMF_DETECTED

UP_DTMF_DETECTED DATA ST

typedef struct {
RSYS_UI NT32 ul Ti meSt anp;
RSYS INT32 IDigit;
} UP_DTMF_DETECTED DATA ST;
ul Ti meSt anp
Contains the RTP timestamp when the digit was detected.

| Di git Contains the ASCII code for the digit detected {°0°-’9°,’A’-’D’, <*°, ‘#’} or
zero when tone detection ends.

266

Appendix F: Service descriptions * Tone detection / stPktDTMFDet

I

stPktDTMFDet

Performs DTMF detection on decompressed packet data before it is output to a
TDM stream.

It generates UP_EVT_DTMF_DETECTED events to alert the application of the
digit detected.

Config UP_DTMF_CONFIG_ST
data typedef struct {
RSYS | NT32 | LowSi gThr eshol d;
UP_ENABLE_ET supressOnToneDet;
} UP_DTM~_CONFI G_ST;

% DTMF’s initial version:
* Includes a fixed ILowSigThreshold value; this flag currently has no effect.

* Does not incorporate the supressOnToneDet feature; this flag currently has
no effect.

| LowSi gThr eshol d
Absolute low-signal threshold.

supressOnToneDet
Supress audio during DTMF.

Events UP_EVT_PKT_DTMF_DETECTED

UP_DTMF_DETECTED DATA ST

typedef struct {
RSYS_UI NT32 ul Ti neSt anp;
RSYS_INT32 IDigit:
} UP_DTMF_DETECTED DATA ST:
ul Ti meSt anp
Contains the RTP timestamp when the digit was detected.

| Di git Contains the ASCII code for the digit detected {°0°-’9°’A’-’D’, “*°, ‘#’} or
zero when tone detection ends.

267

TASK-6000 software reference guide

I

stCPTDet

Config
data

Events

268

Performs Call Progress Tone detection on TDM input data.

It generates UP_EVT_CPT_DETECTED events to alert the application of the call
progress indication detected.

UP_CPT_CONFIG_ST

typedef struct {
RSYS_ | NT32 | LowSi gThr eshol d;
RSYS_UI NT32 ul Det Fl ags;

} UP_CPT_CONFI G_ST;

| LowSi gThr eshol d
Absolute low-signal threshold.

ul Det FI ags A bit field that designates which call progress tones are detected. In this
field, tone O detection is enabled by bit 0, tone 1 by bit 1, etc. Set this
field to Oxffttffff to enable all 32 possible tone/cadence detections,
though only 22 are currently defined. See UP_CPM_TONES_ET in
section 3.4.3.1 for the tone number definitions.

CPT's initial version has a fixed ILowSigThreshold value; this flag currently has
no effect.

UP_EVT_CPT_DETECTED
UP_CPT_DETECTED_DATA ST

t ypedef enum {
enumCpt Dial = 0,/* Oth conbi nation (350+440Hz di al tone) */
enunCpt Recal IDial = 1, /* 1st conbination (350+440Hz Recall Dial tone) */
enunCpt Confirm= 2, /* 2nd conbi nati on (350+440Hz Conformati on tone) */
enunCpt StutterDial = 3, /* 3rd conbi nati on (350+440Hz Stutter D al tone)*/
enumCpt Busy = 4, /* 4th conbi nation (480+620Hz Busy tone) */
enunCpt Reorder = 5, /* 5th conbi nati on (480+620 Reorder tone) */
enunCpt Ring = 6, /* 6th conbinati on (440+480 Audible ring tone) */
enuntCpt Speci al Ri ng 7, I* 7th conb (440+480Hz Special Audible ring tone) */
enunCpt Cal | Wi ting 8, /* 1st single (440Hz Call Waiting tone) */
enunCpt BusyVerify 9, /* 2nd single (440Hz Busy Verification tone) */

enunCpt ExecOverri de 10,/* 3rd single (440Hz Executive Override tone) */

enunCpt | nt er cept 440 11,/* 4th single tone (440Hz Intercept tone) */

enunCpt | nt er cept 620 12,/* 5th single tone (620Hz Intercept tone) */

13,/* 6th single tone (1400Hz O f Hook) */

14,/* 7th single tone (2060Hz O f Hook) */
enunCpt O f Hook2450 15,/* 8th single tone (2450Hz O f Hook) */
enunCpt O f Hook2600 16,/* 9th single tone (2600Hz O f Hook) */
enunCpt FaxTx = 17, /* 10th single tone (1100Hz fax TX tone) */
enunCpt FaxRx = 18, /* 11th single tone (2100Hz fax rx tone) */
enunCpt Dat aModem = 19, /* 12th single tone (2100Hz data nodemtone) */
enunCpt Li neTest = 20, /* 13th single tone (1004Hz line test tone) */
enunCpt SS7 = 21 /* 14th single tone (2010Hz SS7 tone) */

} UP_CPM TONES_ET;

enunCpt O f Hook1040
enunCpt O f Hook2060

Appendix F: Service descriptions * Tone detection / stCPTDet

I

typedef struct {
RSYS_UI NT32 ul Ti neSt anp;
UP_CPM TONES_ET eTone;
} UP_CPT_DETECTED DATA ST:
ul Ti meSt anp
Contains the RTP timestamp when the tone was detected. This denotes
when the required cadence for this tone was established, not when the
tone began.

eTone The detector value for the detected tone. Note that the listed enumerated
tones are valid only for the CPM module’s default configuration. The
CPM module may be configured to detect many other combinations and
cadences of tones and tone-pairs and the tone value simply reflects the
entry matched in the CPM module’s configuration.

269

TASK-6000 software reference guide

I

stMFDet

Performs MF Tone detection on TDM input data for R1 or R2 signaling.

It generates UP_EVT_MF_DETECTED events to alert the application of the
digit/signal detected. Since the tone sets overlap, you must configure this service for
the expected signaling type.

Config UP_MF_CONFIG_ST

data typedef struct {

RSYS | NT32 | LowSi gThr eshol d;
enum {
RL = 1,
R2F,
R2R
} eM Tones;
} UP_MF_CONFI G_ST;

MF’s initial version has a fixed ILowSigThreshold value; this flag currently has
no effect.

| LowSi gThr eshol d
Absolute low-signal threshold.

R1 R1 signaling.
R2F R2 forward signaling.
R2R R2 reverse signaling.

eM Tones
The set of tones to detect.

Events UP_EVT_MF_DETECTED

For details about MF tone detector operation, see the Line/Register Signaling
(R1/R2 MF) for TMS320C6201 User’s Manual.

t ypedef enum {
/* MF tones for Rl signaling by function */
MFRL_LINE, MFR1_KP, MFR1_1, MFR1_2, MFR1_3,
MFR1_4, MFR1_5, MFR1_6, MFR1_7, MFR1_8, MFR1_9,
MFR1_O, MFR1_ST, MFR1_ST1, MFR1_ST2, MFR1_ST3,
/* MF tones for R2 forward signaling by register */
MFR2F1, MFR2F2, MFR2F3, MFR2F4, MFR2F5, MFR2F6,
MFR2F7, MFR2F8, MFR2F9, MFR2F10, MFR2F11, MFR2F12,
MFR2F13, MFR2F14, MFR2F15,
/* MF tones for R2 reverse signaling by register */
MFR2R1, MFR2R2, MFR2R3, MFR2R4, MFR2R5, MFR2RS,
MFR2R7, MFR2R8, MFR2R9, MFR2R10, MFR2R11, MFR2R12,
MFR2R13, MFR2R14, MFR2R15

} UP_RLIR2_TONES_ET;

270

Appendix F: Service descriptions * Tone detection / stMFDet

UP_MF_DETECTED_DATA_ET

typedef struct {
RSYS_UI NT32 ul Ti neSt anp;
UP_RIR2_TONES _ET eTone;
} UP_MF_DETECTED DATA ST,

ul Ti meSt anp
Contains the RTP timestamp when the tone or tone-pair was detected.

eTone Contains the enumerated value for the tone, or -1 when the end of the
tone is detected.

271

TASK-6000 software reference guide

I

RTP packetization

stRtpEncode

Performs RTP Packetization and, when used with the st]itterBuf service,
depacketization.

The stRTP service accumulates a specified number of codec frames into a payload
before wrapping them with an RTP header. This service also keeps statistics that an
RTCP stack can use to generate Sender Reports.

Config RTP_HEADER_ST

data typedef struct {

RSYS_UI NT32 ver si on;
RSYS_UI NT32 p;
RSYS_UI NT32 x;
RSYS_UI NT32 cc;
RSYS_UI NT32 m
RSYS_UI NT32 pt;
RSYS_UI NT32 seq;
RSYS_UI NT32 ts;
RSYS_UI NT32 ssrc;
RSYS_UI NT32 csrc[15];
} RTP_HEADER ST;

version Protocol version (2 bits).

p Padding type (1 bit).

X Header extension (1 bit).
cc CSRC count (4 bits).

m Marker bit (1 bit).

pt Payload type (7 bits).

seq Sequence number (16 bits).
ts Time stamp.

ssrc Synchronization source.
csre Optional CSRC list.

UP_RTP_SEND_CONFIG ST

typedef struct {
RTP_HEADER_ST st Rt pSendHeader ;
RSYS_UI NT32 ul Paddi ngLen;
RSYS_UI NT32 ul Payl oadl nterval ;
RSYS_UI NT32 ul Ti meEl apsedFor EachFr ane;
UP_RTP_SEND CFG FLAG ET ul I ni t Confi g;
} UP_RTP_SEND CONFI G_ST;

st Rt pSendHeader
The RTP sender header.

272

Appendix F: Service descriptions * RTP packetization / stRtpEncode

I

ul Paddi ngLen
Desired length of the RTP packet. Set the padding bit in stRtpHeader
appropriately. You can select one of these:

0 No padding.
Other The number of bits in the RTP packet.

ul Payl oadl nt er val
The interval, in milliseconds, for payload duration. For example, if the
ul Payl oadl nterval is 15ms, each RTP packet carries 15ms of voice.
ul Payl oadl nt er val must be chosen based on the codec in use.
Frame-based codecs (G.723.1, G.729, etc.) require that the payload
interval be an integer multiple of the codec frame size. Sample-based
codecs (G.711) require that the payload interval be an integer number of
milliseconds.

ul Ti meEl apsedFor EachFr ane
The frame duration of the codec in use, in samples. G.711, G.729, and
G.729A encode 10ms frames, so this element should be set to 80. G.723
encodes 30ms frames, so this element should be set to 240.

ul I nitConfig
Specifies whether the service is being setup for the first time within a call
or whether it is a modification to a previously configured
UP_RTP_SEND_CONFIG_ST.

For details regarding the RTP Header structure’s content, see RFC 1899.

Events There are no events associated with this service.

273

TASK-6000 software reference guide

I

stRtpDecode

Config
data

274

Implements both RTP decode functionality and a dynamic jitter buffer that feeds
compressed frames to a codec for decompression on a strict schedule regardless of
input variations.

The RTP decoder places the packet’s payload into the proper position in the jitter
buffer according to the RTP timestamp The jitter buffer can accommodate packet
streams with missing, silence suppressed, and out-of-order packets.

The stRtpDecode service also keeps statistics that an RTCP stack can use to
generate Receiver Reports and to control the jitter buffer’s automatic size
adjustment.

UP_RTP_RECV_CONFIG ST

typedef struct {
RSYS_UI NT32 ul Aut oAdj ust abl e;
RSYS U NT32 ul MaxJitterBufferDiy;/* Maxi mumjitter buf depth in ns*/
RSYS U NT32 ul TargetJitterBufferD y;/* Target jitter buffer depth in ns*/
RSYS_UI NT32 ul MaxFr aneSi zel nBytes;/* user expected max franme size*/
/* in jitter buf*/
RSYS_UI NT32 ul Extract Dat aLengt h; /* Nunber of sanples output*/
RSYS _UINT32 ullnitConfig;/* Indicate init config or update config*/
} UP_RTP_RECV_CONFI G_ST;
ul Aut oAdj ust abl e
You can use one of these values:

FALSE Controls the jitter buffer’s target delay through the
ul Target Ji tt er Buf f er Dl y element of the configuration
structure.

TRUE Overrides the ul Target Ji tterBuf fer Dl y element and
automatically controls target jitter buffer delay based on the
jitter measurements of arriving packets.

Note: This element is not currently implemented. Jitter does not
automatically adjust, regardless of the value you enter; the jitter buffer’s
target delay is always controlled through the ul TargetJitterBufferDy
element of the configuration structure.

ul MaxJitterBufferPD y
The play-out jitter buffer’s maximum length, in RTP packets. The jitter
buffer induced delay can never exceed this number. The maximum
usable value for this number depends on the memory allocated to the
Jitter Buffer in the DSP application and the payload size of the codec in
use; the standard maximum is 120ms of G.711 data.

ul TargetJitterBufferDy
The play-out jitter buffer’s target length, in milliseconds. Over long time
periods, the jitter buffer tries to average this many ms of delay, and so can
cope with this many milliseconds of packet arrival time jitter. For best
results this element should be set to an integer multiple of the codec frame
size—30mS for G.723, and 10ms otherwise.

Appendix F: Service descriptions * RTP packetization / stRtpDecode

I

ul I nitConfig
Specifies whether the service is being setup for the first time within a call
or whether it is a modification to a previously configured

UP_RTP_RECV_CONFIG_ST.

Events UP_EVT_RTP_PT_CHANGE
UP_RTP_PT_CHANGE_DATA ST

typedef struct {
RSYS_UI NT32 ul Ti neSt anp;
RSYS_UI NT32 ucNewPTVal ue;
} UP_RTP_PT_CHANGE DATA ST:
ul Ti meSt anp
Contains the RTP timestamp in the packet where the change
was detected.

ucNewPTVal ue
Contains the new 6-bit PT value

UP_EVT_RTP_SSRC_CHANGE
UP_RTP_SSRC_CHANGE_DATA_ST

typedef struct {
RSYS_UI NT32 ul Ti neSt anp;
RSYS_UI NT32 ucNewSsr cVal ue;
} UP_RTP_SSRC_CHANGE_DATA ST:
ul Ti meSt anp
Contains the RTP timestamp in the packet where the change was
detected.

ucNewSsr cVal ue
Contains the new SSRC value.

275

TASK-6000 software reference guide

I
Signaling

stCAS

Config
data

Events

276

Implements Channel Associated Signaling on T1 and E1 lines which are attached
locally to framers control by the I/O Processor.

It allows control of two-bit SF or four-bit ESF CAS on the framer’s transmission side
and, if configured to do so, generates UP_EVT_CAS_CHANGE events whenever
received bit values change.

UP_CAS_CONFIG_ST

typedef struct {
RSYS_| NT32 | ABCD
RSYS | NT32 | Event Fl ag;
} UP_CAS_CONFI G ST;
| ABCD The four-bit value to assign to the timeslot, with a in bit 3. In SF mode
only a and b are used; b and c are ignored.

| Event Fl ag
Non-zero means generate an event each time the received bits for this
channel change.

When upEnableService, upDisableService, or upConfigService is called for the
stCas service, the dsp and channel arguments are used as framer unit number
and timeslot number, respectively.

UP_EVT_CAS_CHANGE
UP_CAS_CHANGE_DATA ST

typedef struct {
RSYS_UI NT32 ul Ti neSt anp;
RSYS | NT32 | ABCD:
} UP_CAS CHANGE DATA ST:
ul Ti meSt anp
Contains the microsecond timestamp when the change was detected.
This timestamp value rolls over at 0x07C1F080.

| ABCD Holds the ABCD bits’ four-bit value with A in bit 3 to indicate the current
CAS data for this channel. In SF framing only the A and B bits are valid.

Appendix F: Service descriptions * Signaling / stQDSOHdIc

I
stQDSOHdIc

Concatenates four sub-rate HDLC channels into a full DSO.

DSP virtual channels 16 through 31 are reserved for Quarter DSO support, with a
maximum of 16 Quarter DSO channels per DSP. The starting channel must be
either 16, 20, 24, or 28. Enabling the first channel in this block concatenates that
channel with the remaining three channels in the block, and output the results in the
last channel of the block.

For example, the following concatenates channels 20, 21, 22, and 23 into
channel 23:

UP_ERROR _ET upEnabl eService(l Slot, IUnit, 20, stQSOHdIc);

Channels 16 through 31 are reserved for Q-DSO0 traffic to prevent the user from
accidently interleaving voice channels with Q-DSO0 channel groups. This service
enforces the reservation and checks that the first channel within the grouping
(‘ulChannel’) is a factor of 4 (e.g. 16, 20, 24, 28).

Config There are no data structures associated with this service.
data
Events There are no events associated with this service.

277

TASK-6000 software reference guide

I

Alarming

stEthernetAlarm

Config
data

Events

278

Detects Ethernet Link status changes and generates UP_EVT_ETHERNET_ALARM
events, which notify a user application of the change.

A ‘UP_EVT_ETHERNET_ALARM’ event with a link status of ‘enumEthernetUp’ is
emitted when the Ethernet Adapter is in an active state and detects a valid LAN
connection. This state occurs when the Ethernet Adapter is first initialized when
connected to a network or after initialization following reconnection to the
network.

A ‘UP_EVT _ETHERNET_ALARM’ event with a link status of
‘enumEthernetDown’ is also emitted when the Ethernet Adapter becomes inactive
or is disconnected from the network.

There are no data structures associated with this service.

UP_EVT_ETHERNET_ALARM
UP_ETHERNET ALARM_DATA ST

A structure type passed in a UP_EVT_ETHERNET_ALARM event containing state
change information associated with a specific adapter located on a specific IOP.

t ypedef enum {
enunEt hernetUp = 1,/* This ethernet link is avail able */
enunkt her net Down/* This ethernet link is unavail able */
} UP_ETHERNET_ALARM ET;

typedef struct {
RSYS_UI NT32 ul Ti meSt anp;
UP_ETHERNET_ALARM ET eEt her net St at e;
} UP_ETHERNET_ALARM DATA_ST;
UP_EVT_ETHERNET_ALARM

enunkt her net Up

enunkt her net Down

Appendix F: Service descriptions * Alarming / stT1E1Alarm

stTT1E1Alarm

Config

data

Events

Notifies the user of an alarm signaled by a T1 or E1 framer, and allows control of
the LEDs associated with each span.

The user application must cause the LEDs to reflect the alarm status of
the span.

UP_TT1E1ALARM_CONFIG_ST

t ypedef enum {
enunLedsOF f = 0x05,/* both LEDs are off */
enunlLedsNor mal = 0x07,/* one LED is off, other is green */
enunledsYel | owAl ar m= 0x04,/* one LED is off, other is yellow */
enunLedsRedAl arm= 0x01,/* one LED is off, other is red */
enunmLedsLoopback= 0xOf,/* both LEDs are green */
enunlLedsLi neFaul t= 0x00,/* one LED is red, other is yellow */

/* Ot her possible conbinations */

enunlLedsG Yel | ow= 0x0c,/* one LED is green, other is yellow */
enunLedsRedG = 0x03,/* one LED is red, other is green */
enunLedsOf f Gr= 0x0d/* one LED is off, other is green */

} UP_T1E1_LED STATE_ET;

t ypedef enum {
enunSendNot hi ng = 0,
enuntBendAl S,
enunSendYel | owAl m
enuntSendLoopUp,
enunSendLoopDown

} UP_T1E1_SEND CMD ET;

typedef struct {
UP_T1E1 LED STATE_ETt LedSt at e;
UP_T1E1_SEND CMD_ETt SendCnd;
RSYS_| NT32| Event Fl ag;

} UP_T1E1ALARM CONFI G ST;

tLedState Controls the display of LEDs for this span.

t SendCnd Causes the specified state to be sent on the span. Set this to
enumSendNothing for normal operation.

| Event Fl ag
Non-zero means generate a UP_EVT_T1E1_ALARM event each time the
alarm status of this span changes.

Since the T1/E1 alarm status is per span rather than per channel, the | Channel
argument is ignored when a function enables, disables, or configures this service,
and has no meaning in a received alarm event message.

UP_EVT T1E1_ALARM
UP_T1E1_ALARM_DATA ST

typedef struct {
RSYS_UI NT32 ul Ti neSt anp;
RSYS_UI NT32 ul St at eWor d;
RSYS_UI NT32 ul ChangeWr d;
} UP_T1E1_ALARM DATA ST;

279

I

TASK-6000 software reference guide

I

ul Ti meSt anp
Contains the microsecond timestamp when the status change was
detected. This timestamp value rolls over at 0x07C1F080.

ul St at eWord
Indicates which bits of ul St at ewor d changed since the last notification.

ul ChangeWrd
May be interpreted bit by bit according to the following macros,
provided in iop_to_t1.h:

#define T1_RX AI'S BIT(1<<0)/* bit O of Tl status is Rx AIS state*/

#define T1_RX YELLOWBI T(1<<1)/* bit 1 of Tl status is Rx yell ow/
/* al arm st at e*/

#define T1_RX LOS BIT(1<<2)/* bit 2 of Tl status is Rx |loss of */
/* signal state*/

#define T1_RX LOF _BIT(1<<3)/* bit 3 of Tl status is Rx |loss of*/
/* frame state*/

#define T1_TX AIS BIT(1<<16)/* bit 16 of Tl status indicates */
/* AI'S transm ssi on*/

#define T1_TX YELLOWBI T(1<<17)/* bit 17 of T1 status indicates */
/* yellow al mtransm ssion */

#define T1_TX LOOP_UP_BI T(1<<18)/* bit 18 of T1 status indicates */
/* loop up code transm ssion */

#define T1_TX LOOP_DOM BI T(1<<19)/* bit 19 of T1 status indicates */
/* 1 oop down code transnission */

280

Appendix F: Service descriptions * Audio processing / stAGC

Audio processing

stAGC

Config
data

Events

Provides Automatic Gain Control for TDM input data.

It normalizes input data to the level specified in the service configuration.

UP_AGC_CONFIG_ST

typedef struct {
RSYS | NT32 | Target Val dB; /* AGCTar getval ue in dB*/
RSYS | NT32 | I nScal eFact;/* absol ute scal efactor for input*/
RSYS | NT32 | Qut Scal eFact;/* absol ute scal efactor for output*/
} UP_AGC_CONFI G_ST;

There are no events associated with this service.

281

I

TASK-6000 software reference guide

I

Internal

These are services which are implemented in one part of the system for the internal
use of other parts of the system.

stPacketBuilder

Config
data

Events

282

This is an embedded service controlled by the upConnectPktSend function.

It takes the output of the stT38 or stRTP service, adds UDP, IP, and Ethernet
headers, and submits the result to the DSP’s Ethernet Transmit Queue.

UP_PACKET BUILDER_CONFIG_ST

typedef struct {
RSYS_UI NT32 ul Dest Addr ess;
RSYS_UI NT32 ul Dest Port;
RSYS_UI NT32 ul SrcAddr ess;
RSYS_UI NT32 ul SrcPort;
RSYS_UI NT32 ul Rout er Et her Addr [2] ;
RSYS_UI NT32 ul Dest Et her Addr [2] ;
RSYS_UI NT32 ul Servi ceType;

} UP_PACKET_BU LDER CONFI G_ST;

Elements

ul Dest Addr ess
The destination IP address.

ul Dest Port The destination UDP port.

ul Sr cAddr ess
The source IP address.

ul SrcPort The source UDP port.

ul Rout er Et her Addr
The router Ethernet address.

ul Dest Et her Addr
The destination Ethernet address.

ul Servi ceType;
A bit that indicates priority, delay, thruput and reliability.

This structure is internally used by UPA on the IOP to configure the stPacketBuilder
on a particular DSP channel. This structure is not directly accessed by the user but
is populated with the contents of a UP_PKT_SEND_CONFIG_ST passed as an
argument to the upConnectPktSend function.

There are no events associated with this service.

Appendix F: Service descriptions * Internal / stPacketParser

I

stPacketParser

Takes an IP/UDP packet from the Et her net - >DSP FIFO, checksums headers and

data as appropriate, strips headers, and passes the payload to the next module,
usually stRtpDecode or stT38, in TASK2.

This is an embedded service controlled by the upConnectPktRecv function.
Generally, user applications should not directly access this service.

Config UP_PACKET PARSER_CONFIG_ST

data typedef struct {

RSYS_UI NT32 ul Recei vePort;
RSYS_UI NT32 ul I nterface;
UP_SERVI CE_ET eServi ce;

} UP_PACKET_PARSER_CONFI G_ST;

This structure is internally used by UPA on the IOP to configure the stPacketParser
on a particular DSP channel. This structure is not directly accessed by the user but
is populated with the contents of a UP_PKT_RECV_CONFIG_ST passed as an
argument to the upConnectPktRecv function.

Events There are no events associated with this service.

283

TASK-6000 software reference guide

I

284

Glossary

Address

AGC

ANSI

BFM

BIOS

Bit

Boot

Boot Device
Byte
CAS

CNG

CODEC

A number that identifies the location of a word in memory. Each word in a memory
storage device or system has a unique address.

(Automatic Gain Control) An electronic circuit or software algorithm used to
maintain signal level.

(American National Standards Institute) An organization dedicated to advancement
of national standards related to product manufacturing.

(Bad Frame Masking) A software algorithm that hides transmission losses in a
packetized voice communication system where the input signal is encoded and
packetized at a transmitter, sent over a network, and received at a receiver that
decodes the packet and plays out the output.

Basic Input/Output System) Firmware in a PC-compatible computer that runs when
the computer is powered up. The BIOS initializes the computer hardware, allows the
user to configure the hardware, boots the operating system, and provides standard

mechanisms that the operating system can use to access the PC’s peripheral devices.

A binary digit.

The process of starting a microprocessor and loading the operating system from a
powered down state (cold boot) or after a computer reset (warm boot). Before the
operating system loads, the computer performs a general hardware initialization and
resets internal registers.

The storage device from which the computer boots the operating system.
A group of 8 bits.

1. (Channel Associated Signaling) Repetitively sending one or more bits of signaling
status associated with the specified circuit to indicate circuit state.

2. (Column Address Strobe) An input signal from the DRAM controller to an
internal DRAM latch register specifying the column at which to read or write
data. The DRAM requires a column address and a row address to define a
memory address. Since both parts of the address are applied at the same DRAM
inputs, use of column addresses and row addresses in a multiplexed array allows
use of half as many pins to define an address location in a DRAM device as
would otherwise be required.

(Comfort Noise Generator) A software algorithm that creates a background audio
signal to replace the silence created by some software CODECs during the time no
speech data is transmitted over the telephone line.

(COder/DECoder) Converts voice signals from analog form to digital signals
acceptable to modern digital PBXs and digital transmission systems. It then converts

285

TASK-6000 software reference guide

I

COFF
CPT

CPU

COM Port

CSMA/CD

CSuU

CT bus

Default

Driver

DRAM.

DSP

DSX

DSX-1

286

those digital signals back to analog so that you can hear and understand what the
other person is saying.

(Common Object File Format)

(Call Progress Tones) Call Progress is a tonal-signaling standard used to acquire
connections between subscribers in telephone network systems. Call Progress Tones
indicate a call’s status. CPT signals consist of single frequency and dual frequency
combinations of sinusoidal signals with specific ON-OFF patterns.

(Central Processing Unit) A semiconductor device which performs the processing of
data in a computer. The CPU, also referred to as the microprocessor, consists of an
arithmetic/logic unit to perform the data processing, and a control unit which

provides timing and control signals necessary to execute instructions in a program.

A bi-directional serial communication port which implements the
RS-232 specification.

(Carrier-Sense Multiple Access with Collision Detect) A method whereby
workstations on a network listen for transmission in progress (carrier sense) before
starting to transmit (multiple access). If two or more workstations transmit at the
same time, each workstation stops transmitting (collision detection) for a different
amount of time before trying to transmit again.

(Channel Service Unit) A device to terminate a digital channel on a customer’s
premises. It performs certain line coding, line-conditioning and equalization
functions, and responds to loopback commands sent from the central office.

(Computer Telephony Bus) An auxiliary bus used in computer systems. This bus is
dedicated to carrying telecom data between the system components.

The state of all user-changeable hardware and software settings as they are originally
configured before any changes are made.

A software component of the operating system which directs the computer interface
with a hardware device. The software interface to the driver is standardized such that
application software calling the driver requires no specific operational information
about the hardware device.

(Dynamic Random Access Memory) Semiconductor RAM memory devices in which
the stored data does not remain permanently stored, even with the power applied,
unless the data are periodically rewritten into memory during a refresh operation.

(Digital Signal Processor) A high-speed computer chip that performs real-time signal
manipulation. DSPs are used extensively in telecommunications for tasks such as
echo cancellation, audio and video processing.

(Digital System Cross-connect Frame) A bay or panel to which T-1 lines and DS1
circuit packs are wired and that permits cross-connections by patch cords and plugs.
A DSX panel is used in small office applications where only a few digital trunks
are installed.

(Digital Signal Cross-connect Level 1) The set of parameters for cross connecting
DS-1 lines.

Glossary J

DTMF

EEPROM

EDO

ESF

Flash
Memory

Flash
Recovery

Flash
Update

FPM
FPGA

Framers

GB or GByte

Hang

HDLC

Header

IMI

(Dual-Tone Multi-Frequency) Push button or Touchtone dialing, where touching a
button on a push button pad makes two tones, one high frequency and one low
frequency.

(Electrically Erasable Programmable ROM) EPROMs that can be erased electrically
as compared to other erasing methods.

(Extended Data Out) A type of DRAM that allows higher memory system
performance since the data pins are still driven when CAS# is de-asserted. This
allows the next DRAM address to be presented to the device sooner than with Fast
Page Mode DRAM.

(Extended Super Frame or Extended Superframe Format) A T-1 format that uses the
193rd bit as a framing bit. ESF provides frame synchronization, cyclic redundancy
checking and data link bits. Frames consist of 24 bits instead of the previous standard
12 bits as in the D4 format. The standard allows error information to be stored and
retrieved easily, facilitating network performance monitoring and maintenance.

A fast EEPROM semiconductor memory typically used to store firmware such as the
computer BIOS. Flash memory also finds general application where a semiconductor
non-volatile storage device is required.

A process whereby an existing, corrupt BIOS image in the flash boot device is
overwritten with a new image. Also referred to as a flash recovery.

A process whereby an existing, uncorrupted BIOS image in the flash boot device is
overwritten with a new image. Also referred to as a flash update.

(Fast Page Mode) A “standard” type of DRAM that is lower performance than EDO.

(Field Programmable Gate Array) A large, general-purpose logic device that is
programmed at power-up to perform specific logic functions.

A device used in digital communication systems to create parellel data frames from
a serial data stream.

(Gigabyte) Approximately one billion (US) or one thousand million (Great Britain)
bytes. 2230 = 1,073,741,824 bytes exactly.

A condition where the system microprocessor suspends processing operations due to
an anomaly in the data or an illegal instruction.

(High Level Data Link Control) An ITU-TSS link layer protocol standard for point-
to-point and multi-point communications.

A mechanical pin and sleeve style connector on a circuit board. The header may exist
in either a male or female configuration. For example, a male header has a number
and pattern of pins which corresponds to the number and pattern of sleeves on a
female header plug.

(Hexadecimal) A base 16 numbering system using numeric symbols 0 through 9 plus
alpha characters A, B, C, D, E, and F as the 16 digit symbols. Digits A through F are
equivalent to the decimal values 10 through 15.

(Initial Memory Image) A structure in memory the 1960 core requires to initialize
internal registers before normal operation.

287

I

J TASK-6000 software reference guide

I

INT
IOP

I/0

IRQ

ISR

Jumper

KB or KByte
LIU

Logical
Address

MAC

MB or
MByte
Memory
Memory
shadowing

Offset

PAL

PCI

Peripheral
Device

288

(Interrupt Request) A software-generated interrupt request.

(Input/Output Processor) A processing element on intelligent adapter boards used to
off-load a host processor.

(Input/Output) The communication interface between system components and
between the system and connected peripherals.

(Interrupt Request). In ISAbus systems, a microprocessor input from the control bus
used by I/O devices to interrupt execution of the current program and cause the
microprocessor to jump to a special program called the interrupt service routine. The
microprocessor executes this special program, which normally involves servicing the
interrupting device. When the interrupt service routine is completed, the
microprocessor resumes execution of the program it was working on before the
interruption occurred.

(Interrupt Service Routine) A program executed by the microprocessor upon receipt
of an interrupt request from an I/O device and containing instructions for servicing
of the device.

A set of male connector pins on a circuit board over which can be placed coupling
devices to electrically connect pairs of the pins. By electrically connecting different
pins, a circuit board can be configured to function in predictable ways to suit
different applications.

(Kilobyte) Approximately one thousand bytes. 210 = 1024 bytes exactly.
(Line Interface Unit)

The memory-mapped location of a segment after application of the address offset to
the physical address.

(Media Access Controller) A media-specific access control protocol within IEEE 802
specifications for the lower half of the data link layer (layer 2) that defines topology
dependent access control protocols for IEEE LAN specifications.

(Megabyte) Approximately one million bytes. 2220 = 1,048,576 bytes exactly.

A designated system area to which data can be stored and from which data can be
retrieved. A typical computer system has more than one memory area.

Copying information from an extension ROM into DRAM and accessing it in this
alternate memory location.

The difference in location of memory-mapped data between the physical address and
the logical address.

(Programmable Array Logic) A semiconductor programmable ROM which accepts
customized logic gate programming to produce a desired sum-of-products
output function.

(Peripheral Component Interconnect) A popular microcomputer bus standard used
extensively in personal computer architecture. This 32-bit local bus, used inside PCs,
was designed by Intel.

An external device connected to the system for the purpose of transferring data into
or out of the system.

Glossary J

PHY

PLL

Physical
Address

Pinout

PMC

POST

PQFP

Program

PSTN

R1/R2

RAM

ROM

Reflashing

(Physical Layer) An ATM layer whose functionality loosely corresponds to the OSI
physical layer (Layer 1). ATM Physical Layer functionality includes the Physical
Medium sublayer (PM) and the Transmission Convergence (TC) sublayer.

(Phase-Locked Loop) A semiconductor device which functions as an electronic
feedback control system to maintain a closely regulated output frequency from an
unregulated input frequency. The typical PLL consists of an internal phase
comparator or detector, a low pass filter, and a voltage controlled oscillator which
function together to capture and lock onto an input frequency. When locked onto
the input frequency, the PLL can maintain a stable, regulated output frequency
(within bounds) despite frequency variance at the input.

The address or location in memory where data is stored before it is moved as memory
remapping occurs. The physical address is that which appears on the computer’s
address bus when the CPU requests data from a memory address. When remapping
occurs, the data can be moved to a different memory location or logical address.

A diagram or table describing the location and function of pins on an
electrical connector.

(PCI Mezzanine Card) A new standard form factor for PCI add-in modules. PMCs
mate with their respective connectors on the motherboard and are secured with screws.

(Power On Self Test) A diagnostic routine which a board runs at power up. Along
with other testing functions, this comprehensive test initializes the system chipset and
hardware, resets registers and flags, performs ROM checksums, and checks disk
drive devices and the keyboard interface.

(Plastic Quad Flat Pack) A popular package design for integrated circuits of
high complexity.

A set of instructions a computer follows to perform specific functions relative to user
need or system requirements. In a broad sense, a program is also referred to as a
software application, which can actually contain many related, individual programs.

(Public Switched Telephone Network) The worldwide voice telephone networks and
services accessible to all who have telephones and access privileges.

Multi-frequency signaling for PSTN trunk lines. R1/R2 signaling consists of register
signaling for address signals, and line signaling for line and supervisory signals.

(Random Access Memory) Memory in which the actual physical location of a
memory word has no effect on how long it takes to read from or write to that
location. In other words, the access time is the same for any address in memory. Most
semiconductor memories are RAM.

(Read Only Memory) A broad class of semiconductor memories designed for
applications where the ratio of read operations to write operations is very high.
Technically, a ROM can be written to (programmed) only once, and this operation
is normally performed at the factory. Thereafter, information can be read from the
memory indefinitely.

The process of replacing a BIOS image, in binary format, in the flash boot device.

289

I

J TASK-6000 software reference guide

I

Register

Reset

RS-232

RAS

RTOS

Sample rate

generator

SBSRAM

Serial Port

SF

Shadow
Memory

SODIMM

Standoff

SRAM

290

An area typically inside the microprocessor where data, addresses, instruction codes,
and information on the status on various microprocessor operations are stored.
Different types of registers store different types of information.

A signal delivered to the microprocessor by the control bus, which causes a halt to
internal processing and resets most CPU registers to 0. The CPU then jumps to a
starting address vector to begin the boot process.

A popular asynchronous bi-directional serial communication protocol. Among other
things, the RS-232 standard defines the interface cabling and electrical
characteristics, and the pin arrangement for cable connectors.

(Row Address Strobe) An input signal to an internal DRAM latch register specifying
the row at which to read or write data. The DRAM requires a row address and a
column address to define a memory address. Since both parts of the address are
applied at the same DRAM inputs, use of row addresses and column addresses in a
multiplexed array allows use of half as many pins to define an address location in a
DRAM device as would otherwise be required.

(Real Time Operating System) An operating system that performs tasks at
specified times.

Software or firmware that the number of times per second that an analog signal is
measured and converted to a binary number -- the purpose being to convert the
analog signal to a digital analog. The most common digital signal—PCM—samples
voice 8,000 times a minute.

Synchronous Burst Static Random Access Memory.

A physical connection with a computer for the purpose of serial data exchange with
a peripheral device. The port requires an I/O address, a dedicated IRQ line, and a
name to identify the physical connection and establish serial communication between
the computer and a connected hardware device. A serial port is often referred to as
a COM port.

(Super Frame) A DS1 framing format in which 24 DSO timeslots plus a coded
framing bit are organized into a frame which is repeated 12 times to form the
ssuperframe.

RAM in the address range 0xC0O00h through OxFFFFFh used for shadowing.
Shadowing is the process of copying BIOS extensions from ROM into DRAM for the
purpose of faster CPU access to the extensions when the system requires frequent
BIOS calls. Typically, system and video BIOS extensions are shadowed in DRAM to
increase system performance.

(Small Outline Dual Inline Memory Module) A new form factor for memory
modules that is smaller and denser than SIMMs.

A mechanical device, typically constructed of an electrically non-conductive
material, used to fasten a circuit board to the bottom, top, or side of a
protective enclosure.

(Static Random Access Memory) A semiconductor RAM device in which the data
remains permanently stored as long as power is applied, without the need for
periodically rewriting the data into memory.

Glossary

Symmetrically
Addressable
SIMM

TDM

TSI

UART

VAD

VolP

Wait State

—

A SIMM, the memory content of which is configured as two independent banks.
Each 16-bit wide bank contains an equal number of rows and columns and is
independently addressable by the CPU via twin row address strobe registers in the
DRAM controller.

(Time Division Multiplex) A technique originated in satellite communications to
interweave multiple conversations into one transponder so as to appear to get
simultaneous conversations. This technicque is used on the H.110 bus and the
internal DSP serial buses.

Time-slot interchange. A way of temporarily storing data bytes so they can be sent
in a different order than they were received. TSI is a way to switch calls.

(Universal Asynchronous Receiver/Transmitter) A device, usually an integrated
circuit chip, that converts digital data to transmit from parallel to serial, and
transmitted digital data from serial to parallel. The UART converts incoming serial
data from the device connected to the serial port (typically a modem) into the parallel
form that your computer handles. UART also converts the computer’s parallel data
into serial data suitable for asynchronous transmission on phone lines.

(Voice Activity Detector) A signal classifier used to distinguish between active voice
and inactive voice (silence and background noise).

(Voice over Internet Protocol) A protocol that enables devices of disparate
manufactures to support voice communication over packet networks such as the
Internet.

A period of one or more microprocessor clock pulses during which the CPU suspends
processing while waiting for data to be transferred to or from the system data or
address buses.

291

J TASK-6000 software reference guide

I

292

S ABCDEFGHI JKLMNOPAQRSTUVWXYZ

Index

A
addresses
defined 285
logical, defined 288
physical, defined 289
ANSI, defined 285
API 7
application distribution
Host and IOP 2
IOP 1
Application Programming Interface (API) 7
applications
DSP 1, 6
Host
initializing the Host driver 30
initializing UPA structures 30
loading and running applications 30
sample code 36
setting up message handlers 30
0P
configuring services 32
creating data paths 32
initializing the IOP driver 31
sample code 39
setting up message handlers 31
B

BIOS, defined 285
boot device, defined 285
broadcasting 232

C

callback functions 11
channels

defined 7

groups 8

physical 8

virtual §
clearT8100ClockFault 241
clearT8100MemoryFault 242
command messages 10
communication, inter-processor 10
components, TASK 3
configuring services 32

connections, making and breaking 231
conventions, notational 77
creating data paths 32

D
data path services 9
data structures, HDLC 148
developing
Host applications 30
IOP applications 31
device drivers
libraries, peripheral §
NT Kernel Mode 4
dispatchers
event S
message 4
driver sequence, sample 1.50
driver, defined 286
DSP application 6
DSP applications 1
Dynamic Random Access Memory (DRAM),

defined 286
E
E1/T1 functions
Eland T1

T1E1getBoardConfig 184
T1E1initCard 183
T1E1setLeds 185

E1 only
getE1Signaling 197
setE1Config 192
setE1Signaling 193
setE1SignalingHandler 200

T1 only
getT1Signaling 194
getT1SignalingRaw 196
getT1Status 195
setT1ChannelConfig 191
setT1ClearChannels 189
setT1Command 188
setT1Config 186
setT1IdleChannels 190
setT1Signaling 187
setT1SignalingHandler 198

293

TASK-6000 software reference guide

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

setT1StatusHandler 199
E1/T1 library §
function list 179
sample startup sequence 178
structures 201
E1/T1 structures
E1 only
E1SignalingHandler 229
t_E1_line_buildout 225
t_E1_line_coding 223
t_E1_signaling_mode 224
t_E1_user_config_struct 226
t_E1_user_signaling _data 228
T1 and E1
t_T1E1_BoardConfig 207
t_T1E1_card_type 204
t_ T1E1_framer_id 203
t_T1E1_led_state 205
t_T1E1_user_signaling_data 206
T1 only
t_T1_framing_mode 209
t_T1_line_buildout 210
t_T1_line_coding 208
t_T1_signaling_data 213
t_T1_user_channel_config 218
t_T1 user_clear channel data 216
t_T1 user_command_data 214
t_T1_user_config_struct 211
t_T1 user_idle_struct 217
t_T1_user_raw_signaling_struct 220
t_T1_user_signaling_data 213
t_T1 user_status_struct 215
T1SignalingHandler 222
T1StatusHandler 221
E1SignalingHandler 229
EDO DRAMs, defined 287
e-mail address, RadiSys 77
event dispatcher §
event messages 10

F
fast packet router §
Fast Page Mode DRAMs, defined 287
Flash

recovery, defined 287
functions

callback 11

E1/T1 function list 179

HDLC function list 151

Host function list 48

T8100 function list 235

294

G

getE1Signaling 197
getT1Signaling 194
getT1SignalingRaw 196
getT1Status 195
getT8100ErrorStatus 244
glossary 285

H
hbus.sys 4
HDLC functions
HDLCCloseDriver 155
HDLCClosePort 156
HDLCConfigChannel 158
HDLCConfigPort 157
HDLCDisableChannel 160
HDLCEnableChannel 159
HDLCGetChannelStatus 165
HDLCGetDeviceStatus 164
HDLCGetPacket 163
HDLClInit 153
HDLCReset 154
HDLCResetChannel 161
HDLCSendPacket 162
HDLCSetDeviceErrorHandler 168
HDLCSetRxErrorHandler 170
HDLCSetRxPacketHandler 167
HDLCSetTxErrorHandler 169
HDLCSetTxPacketHandler 166
HDLC library 5
data structures 148
function list 151
overview 147
processing modes 148
processing packet transmission and reception
149
sample driver sequence 150
structure list 172
type definitions 171
HDLC structures
t_ HDLC_channel_config 175
t_ HDLC_channel_status 176
t HDLC_port_config 173
HDLCCloseDriver 155
HDLCClosePort 156
HDLCConfigChannel 158
HDLCConfigPort 157
HDLCDisableChannel 160
HDLCEnableChannel 159
HDLCGetChannelStatus 165
HDLCGetDeviceStatus 164
HDLCGetPacket 163
HDLClInit 153

Index

SABCDEFGHIJKLMNOPQRSTUVWXYZT

HDLCReset 154
HDLCResetChannel 161
HDLCSendPacket 162
HDLCSetDeviceErrorHandler 168
HDLCSetRxErrorHandler 170
HDLCSetRxPacketHandler 167
HDLCSetTxErrorHandler 169
HDLCSetTxPacketHandler 166
header, defined 287
help i
Host and IOP application distribution 2
Host applications, developing 30
initializing the Host driver 30
initializing UPA structures 30
loading and running applications 30
setting up message handlers 30
Host applications,sample code 36
Host files
Hot Swap
hbus.sys 4
Host library 4
hsmgrint.dll 4
1960rp.sys 4
taskhost.dll 3
host functions
function list 48
hostControlPeripheral 50
hostExit 54
hostGetBoardInfo 55
hostGetNWPktBuf 94
hostGetSystemInfo 57
hostlnit 59
hostJitterControl 95
hostLoadDsp 60
hostLoadlop 61
hostReadlop 96
hostResetBoard 62
hostResetDsp 63
hostRunDsp 64
hostRunLoadedIop 65
hostSendMsg 98
hostSendNWPktBuf 97
hostSetEventHandler 66
hostSetHotSwapHandler 67
hostSetNWNotify 99
hostSetPeripheralDataHandler 68
hostWritelop 100
upConfigService 69
upConfigServiceGlobal 72
upConnectPktRecv 75
upConnectPktSend 77
upDisableService 79

upDisconnectPktRecv §2
upDisconnectPktSend 83
upEnableChannel 84
upEnableService §6
upQueryQOSReport 8§89
upSetEventHandler 90
upSetUserMsgHandler 91
upStart 92
Host runtime library 3
host structures
REPORTBOARDINFO 57
SP6K_BOARD_INFO_T 55
t_configArg 53
t_T8100StreamConfig 52
t_T8100SwitchConfig 50
UP_CONFIG_SVC_UT 70
UP_GLOBALCONFIGDATA_UT 73
UP_PKT_RECV_CONFIG_ST 75
hostControlPeripheral 50
hostExit 54
hostGetBoardInfo 5.5
hostGetNWPktBuf 94
hostGetSystemInfo 57
hostlnit 59
hostJitterControl 95
hostLoadDsp 60
hostLoadlop 61
hostReadlop 96
hostResetBoard 62
hostResetDsp 63
hostRunDsp 64
hostRunLoadedlop 65
hostSendMsg 98
hostSendNWPktBuf 97
hostSetEventHandler 66
hostSetHotSwapHandler 67
hostSetNWNotify 99
hostSetPeripheralDataHandler 68
hostWritelop 100
Hot Swap 4
hbus.sys file 4
hsmgrint.dll file 4
Hot Swap files
hsmgrint.dll 4
hsmgrint.dll 4

|

1960rp.sys 4

initialize the Host driver 30
initialize the IOP driver 31

initializing UPA structures 30
initT8100 237

295

TASK-6000 software reference guide

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

interfaces 6

Application Programming Interface (API) 7

Internet Protocol (IP) 6
PSTN 7

Internet Protocol 6

inter-processor communication 10

interrupt
request (IRQ), defined 288

IOP application distribution 1

IOP applications, developing
initializing the IOP driver 31
setting up message handlers 3 1

IOP applications,configuring services 32

IOP applications,creating data paths 32

IOP applications,sample code 39

IOP functions
iopControlPeripheral 108
iopGetNWPktBuf 141
iopInit 112
iopJitterControl 142
iopSendMsg 144
iopSendNWPktBuf 143
iopSetNWNotify 145
upConfigService 113
upConfigServiceGlobal 116
upConnectPktRecv 119
upConnectPktSend 121
upDisableService 123
upDisconnectPktRecv 126
upDisconnectPktSend 127
upEnableChannel 128
upEnableService 130
upQueryQOSReport 133
upSetEventHandler 136
upSetUserMsgHandler 146
upStart 139

IOP runtime library 4

IOP structures
SP6K_BOARD_INFO_T 106
t_configArg 111
t_jitterParam 142
t_T8100ClockConfig 109
t_T8100StreamConfig 110
t_T8100SwitchConfig 108
UP_CONFIG_SVC_UT 114
UP_EVENT_DATA_ST 136
UP_GLOBALCONFIGDATA_UT 117
UP_IOPSYSCONFIG_ST 139
UP_PKT_RECV_CONFIG_ST 119
UP_PKT_SEND_CONFIG_ST 121
UP_START_DSP_REPLY_ST 138

IopAppLoader.c 30, 36

iopControlPeripheral 108

296

iopGetNWPktBuf 141
iopInit 112
iopJitterControl 142
iopSendMsg 144
iopSendNWPktBuf 143
iopSetNWNotify 145
IP 6

J
jumpers

defined 288

L
libraries
E1/T1 S
HDLC §
Hot Swap Host 4
peripheral device driver §
TDM switch §
loading and running applications 30

logical address, defined 288
M

memory
random access, defined 289
message dispatcher 4
messages
callback functions 11
command 10
event 10

N

notational conventions 77
NT Kernel Mode device driver 4

o)

objects 7
channels 7
slot 7
unit 7
offset, defined 288
operating system, defined 290

P

packets
fast packet router §
transmission and reception, HDLC 149
peripheral device driver libraries 5
physical address, defined 289
physical channels 8
POST 289
Power-On Self Test (POST), defined 289

Index

SABCDEFGHIJKLMNOPQRSTUVWXYZT

processing modes, HDLC 148
protocols
Internet Protocol (IP) 6
PSTN 7
Public Switch Telephone Network (PSTN) 7

R
RadiSys, contacting 7i
RAM, defined 289
Random Access Memory (RAM), defined 289
README file ii
reflashing, defined 289
REPORTBOARDINFO structure 57
requests
IRQ, defined 288
reset, defined 290
rmondb.exe 6
router, fast packet §
runtime libraries
Host 3
IOP 4

S

sample code
Host application 36
IOP application 39
services §
data path 9
stAGC 281
stCodec 260
stCPTDet 268
stEchoCanc 263
stMFDet 270
stPacketBuilder 282
stPacketParser 283
stPktDTMFDet 267
stPktToneGen 265
stRtpDecode 274
stRtpEncode 272
stT1E1Alarm 279
stTdmDTMFDet 266
stTdmToneGen 264
setE1Config 192
setE1Signaling 193
setE1SignalingHandler 200
setT1ChannelConfig 191
setT1ClearChannels 189
setT1Command 188
setT1Config 186
setT1IdleChannels 190
setT1Signaling 187
setT1SignalingHandler 198
setT1StatusHandler 199

setT8100ClockConfig 238

setT8100ClockFaultMask 243

setT8100Handler 24.5

setT8100StreamConfig 239

setT8100SwitchConfig 240

setting up message handlers on an IOP 31

setting up message handlers on the Host 30

SIMMs
symmetrically addressable, defined 291

slot, defined 7

SP6K_BOARD_INFO_T structure 55, 106

sp6k_util.exe 6

stAGC 281

startup sequence, E1/T1 178

startup sequence, 18100 234

stCodec 260

stCPTDet 268

stEchoCanc 263

stMFDet 270

stPacketBuilder 282

stPacketParser 283

stPktDTMFDet 267

stPktToneGen 265

stRtpDecode 274

stRtpEncode 272

structure list, HDLC 172

structures
E1/T1 201
E1SignalingHandler 229
REPORTBOARDINFO 57
SP6K_BOARD_INFO_T 55, 106
t_configArg 53, 111
t_E1_line_buildout 225
t_E1_line_coding 223
t_E1_signaling_mode 224
t_E1_user_config_struct 226
t_E1_user_signaling_data 228
t_fallback_clk 248
t_jitterParam structure 142
t_netref clk 249
t_ref clk 247
t_source_dest 256
t_stream_rate 252
t_T1_framing_mode 209
t_T1_line_buildout 210
t_T1_line_coding 208
t_T1_signaling_data 213
t_T1_user_channel_config 218
t_T1 user_clear channel data 216
t_T1 user_command_data 214
t_T1_user_config_struct 211
t_T1 user_idle struct 217
t_T1_user_raw_signaling_struct 220

297

TASK-6000 software reference guide

TSABCDEFGHIJKLMNOPQRSTUVWXYZ

t_T1_user_signaling data 213
t_T1_user_status_struct 215
t_T1E1_BoardConfig 207
t_T1E1_card_type 204
t_T1E1_framer_id 203
t_T1E1_led_state 205
t_T1E1_user_signaling_data 206
t_T8100ClockConfig 51, 109, 250
t_T8100Connection 257
t_T8100StreamConfig 52, 110, 253
t_T8100SwitchConfig 50, 108, 258
T1SignalingHandler 222
T1StatusHandler 221
T8100 structure list 246
UP_CONFIG_SVC_UT 70, 114
UP_EVENT_DATA_ST 136
UP_GLOBALCONFIGDATA_UT 73, 117
UP_IOPSYSCONFIG_ST 139
UP_PKT_RECV_CONFIG_ST 75,119
UP_PKT_SEND_CONFIG_ST 121
UP_START_DSP_REPLY_ST 138

stT1E1Alarm 279

stTdmDTMFDet 266

stTdmToneGen 264

support ii

Symmetrically Addressable SIMM, defined 291

T

t_configArg structure 53, 111
t_E1_line_buildout 225
t_E1_line_coding 223
t_E1_signaling_mode 224
t_E1_user_config_struct 226
t_E1_user_signaling_data 228
t_HDLC_channel_config 175
t. HDLC_channel_status 176
t_HDLC_port_config 173
t_jitterParam structure 142
t_T1_framing_mode 209
t_T1_line_buildout 210
t_T1_line_coding 208
t_T1_signaling_data 213
t_T1_user_channel_config 218
t_T1 user_clear channel data 216
t_T1 user_command_data 214
t_T1_user_config_struct 211
t_T1 user_idle_struct 217
t_T1_user_raw_signaling_struct 220
t_T1_user_signaling_data 213
t_T1 user_status_struct 215
t_T1E1_BoardConfig 207
t_T1E1_card_type 204

298

t_T1E1_framer_id 203
t_T1E1_led_state 205
t_T1E1_user_signaling_data 206
t_T8100ClockConfig structure 51, 109
t_T8100StreamConfig structure 52, 110
t_T8100SwitchConfig structure 50, 108
T1E1getBoardConfig 184
T1E1initCard 183
T1ElsetLeds 185
T1SignalingHandler 222
T1StatusHandler 221
T8100 functions
clearT8100ClockFault 241
clearT8100MemoryFault 242
getT8100ErrorStatus 244
initT8100 237
setT8100ClockConfig 238
setT8100ClockFaultMask 243
setT8100Handler 245
setT8100StreamConfig 239
setT8100SwitchConfig 240
T8100 library
broadcasting 232
function list 235
making and breaking connections 231
sample startup sequence 234
T8100 structure list 246
T8100 structures
t_fallback_clk 248
t_netref clk 249
t_ref clk 247
t_source_dest 256
t_stream_rate 252
t_T8100ClockConfig 250
t_T8100Connection 257
t_T8100StreamConfig 253
t_T8100SwitchConfig 258
TASK
application distribution, Host and IOP 2
application distribution, IOP 1
interfaces 6
objects 7
runtime libraries
Host 3
I0P 4
software components 3
taskhost.dll 3
TDM switch library §
technical support 77
Tornado 4
troubleshooting 77
type definitions, HDLC 171

Index

SABCDEFGHIJKLMNOPQRSTUVWXYZT

U

unit, defined 7

UP_CONFIG_SVC_UT structure 70, 114

UP_EVENT_DATA_ST structure 136

UP_GLOBALCONFIGDATA_UT structure 73,
117

UP_IOPSYSCONFIG_ST structure 139

UP_PKT_RECV_CONFIG_ST structure 75, 119

UP_PKT_SEND_CONFIG_ST structure 121

UP_START_DSP_REPLY_ST structure 138

UpalopApp.c 31, 39

upConfigService 69, 113

upConfigServiceGlobal 72, 116

upConnectPktRecv 75, 119

upConnectPktSend 77, 121

upDisableService 79, 123

upDisconnectPktRecv 82, 126

upDisconnectPktSend 83, 127

upEnableChannel 84, 128

upEnableService 86, 130
upQueryQOSReport 89, 133
upSetEventHandler 90, 136
upSetUserMsgHandler 91, 146
upStart 92, 139
URL, RadiSys i1, iv
utilities
rmondb.exe 6
sp6k_util.exe 6

\

virtual channels 8
VxWorks 4

w
World-Wide Web URLSs
RadiSys iv
World-Wide Web, accessing RadiSys 77

299

	TASK-6000™ software reference guide
	Before you begin
	About this guide
	Contents
	Notational conventions

	Where to get more information
	About TASK�6000
	About related RadiSys products
	TASK software algorithms
	SPIRIT™ boards

	About other related products
	TI tools

	Contents
	Figures
	Tables

	Chapter 1: Introducing TASK-6000 software
	Product configurations

	Chapter 2: Understanding TASK-6000 software architecture
	Components
	TASK Host runtime library
	taskhost.dll
	NT Kernel Mode device driver (i960rp.sys)
	Hot Swap Host library

	TASK IOP runtime library
	VxWorks†-based library
	Peripheral device driver libraries

	DSP application
	Utilities
	sp6k_util.exe
	rmondb.exe

	Interfaces
	Internet Protocol (IP)
	Public Switched Telephone Network (PSTN)
	Application Programming Interface (API)
	Objects
	Services
	Inter-processor communication

	Chapter 3: Installing and configuring TASK-6000 software
	Requirements
	Before you begin
	Running the install program
	Uninstalling TASK software
	Automatic uninstall (recommended)
	Uninstalling Hot Swap

	Manual uninstall procedure

	TASK-6000 files
	Hot Swap
	Runtime kit
	Development kit
	DSP development kit

	Chapter 4: Developing Host and IOP applications
	Developing the Host application (IopAppLoader.c)
	Initialize the Host driver
	Set up message handlers
	Initialize UPA structures
	Load and run applications

	Developing the IOP application (UpaIopApp.c)
	Initialize the IOP driver
	Set up message handlers
	Configure services
	Create data paths

	Building Host and IOP applications
	Naming conventions
	Host application development
	IOP application development
	Special note for IOP applications

	Sample code: Host application (IopAppLoader.c)
	Initializing the host driver
	Setting up message handlers
	Initializing UPA structures
	Loading and running applications
	Retrieving system information
	Loading the VxWorks image on IOPs
	Waiting for IOP response
	Loading mulcoder.out

	Sample code: IOP application (UpaIopApp.c)
	Initializing the IOP drive
	Calling iopInit
	Calling upStart
	Configuring on-board peripherals

	Setting up message handlers
	Installing event handlers (callback functions)
	Connecting the TDM to IOPs
	Enabling bi-directional voice data flow to and from the DSP

	Configuring services
	Configuring DSP services for outbound direction (toward the IP cloud)

	Creating data paths
	Creating a data path between an outgoing RTP channel running on a DSP and the IOP driver’s networ...
	Enabling the receive direction on the channel
	Initializing the RTP decoder
	Creating a data path between an inbound RTP channel running on a DSP and the IOP driver’s network...

	Appendix A: Host functions
	Overview
	Message API
	Function list
	hostControlPeripheral
	hostExit
	hostGetBoardInfo
	hostGetSystemInfo
	hostInit
	hostLoadDsp
	hostLoadIop
	hostResetBoard
	hostResetDsp
	hostRunDsp
	hostRunLoadedIop
	hostSetEventHandler
	hostSetHotSwapHandler
	hostSetPeripheralDataHandler
	upConfigService
	upConfigServiceGlobal
	upConnectPktRecv
	upConnectPktSend
	upDisableService
	upDisconnectPktRecv
	upDisconnectPktSend
	upEnableChannel
	upEnableService
	upQueryQOSReport
	upSetEventHandler
	upSetUserMsgHandler
	upStart
	hostGetNWPktBuf
	hostJitterControl
	hostReadIop
	hostSendNWPktBuf
	hostSendMsg
	hostSetNWNotify
	hostWriteIop
	hostSetPollPeriod
	hostSendPriorityMsg

	Appendix B: IOP functions
	Overview
	Message API
	Function list
	getBoardInfo
	iopControlPeripheral
	iopInit
	upConfigService
	upConfigServiceGlobal
	upConnectPktRecv
	upConnectPktSend
	upDisableService
	upDisconnectPktRecv
	upDisconnectPktSend
	upEnableChannel
	upEnableService
	upQueryQOSReport
	upSetEventHandler
	upStart
	iopGetNWPktBuf
	iopJitterControl
	iopSendNWPktBuf
	iopSendMsg
	iopSetNWNotify
	upSetUserMsgHandler

	Appendix C: HDLC driver library
	Overview
	Driver internals, data structures, and resources
	Data structures
	Processing modes
	Processing packet transmission and reception

	Sample HDLC driver sequence
	Function list
	Functions
	HDLCInit
	HDLCReset
	HDLCCloseDriver
	HDLCClosePort
	HDLCConfigPort
	HDLCConfigChannel
	HDLCEnableChannel
	HDLCDisableChannel
	HDLCResetChannel
	HDLCSendPacket
	HDLCGetPacket
	HDLCGetDeviceStatus
	HDLCGetChannelStatus
	HDLCSetTxPacketHandler
	HDLCSetRxPacketHandler
	HDLCSetDeviceErrorHandler
	HDLCSetTxErrorHandler
	HDLCSetRxErrorHandler

	Type definitions
	Structures
	t_HDLC_port_config
	t_HDLC_channel_config
	t_HDLC_channel_status

	Appendix D: T1/E1 library
	Overview
	Sample startup sequence
	Function list

	Functions
	T1E1initCard
	T1E1getBoardConfig
	T1E1setLeds
	setT1Config
	setT1Signaling
	setT1Command
	setT1ClearChannels
	setT1IdleChannels
	setT1ChannelConfig
	setE1Config
	setE1Signaling
	getT1Signaling
	getT1Status
	getT1SignalingRaw
	getE1Signaling
	setT1SignalingHandler
	setT1StatusHandler
	setE1SignalingHandler

	Structures
	t_T1E1_framer_id
	t_T1E1_card_type
	t_T1E1_led_state
	t_T1E1_user_signaling_data
	t_T1E1_BoardConfig
	t_T1_line_coding
	t_T1_framing_mode
	t_T1_line_buildout
	t_T1_user_config_struct
	t_T1_user_signaling_data t_T1_signaling_data
	t_T1_user_command_data
	t_T1_user_status_struct
	t_T1_user_clear_channel_data
	t_T1_user_idle_struct
	t_T1_user_channel_config
	t_T1_user_raw_signaling_struct
	Example

	T1StatusHandler
	T1SignalingHandler
	t_E1_line_coding
	t_E1_signaling_mode
	t_E1_line_buildout
	t_E1_user_config_struct
	t_E1_user_signaling_data
	E1SignalingHandler

	Appendix E: T8100 library
	Overview
	Making and breaking connections
	Broadcasting
	Sample startup sequence
	Function list
	Limitations

	Functions
	initT8100
	setT8100ClockConfig
	setT8100StreamConfig
	setT8100SwitchConfig
	clearT8100ClockFault
	clearT8100MemoryFault
	setT8100ClockFaultMask
	getT8100ErrorStatus
	setT8100Handler

	Structures
	t_ref_clk
	t_fallback_clk
	t_netref_clk
	t_T8100ClockConfig
	t_stream_rate
	t_T8100StreamConfig
	t_source_dest
	t_T8100Connection
	t_T8100SwitchConfig

	Appendix F: Service descriptions
	Codec
	stCodec

	Echo cancellation
	stEchoCanc

	Tone generation
	stTdmToneGen
	stPktToneGen
	UP_TONEGEN_CONFIG_ST

	Tone detection
	stTdmDTMFDet
	UP_DTMF_CONFIG_ST
	UP_EVT_TDM_DTMF_DETECTED
	UP_DTMF_DETECTED_DATA_ST

	stPktDTMFDet
	UP_DTMF_CONFIG_ST
	UP_EVT_PKT_DTMF_DETECTED
	UP_DTMF_DETECTED_DATA_ST

	stCPTDet
	UP_CPT_CONFIG_ST
	UP_EVT_CPT_DETECTED UP_CPT_DETECTED_DATA_ST

	stMFDet
	UP_MF_CONFIG_ST
	UP_EVT_MF_DETECTED
	UP_MF_DETECTED_DATA_ET

	RTP packetization
	stRtpEncode
	RTP_HEADER_ST
	UP_RTP_SEND_CONFIG_ST

	stRtpDecode
	UP_RTP_RECV_CONFIG_ST
	UP_EVT_RTP_PT_CHANGE UP_RTP_PT_CHANGE_DATA_ST
	UP_EVT_RTP_SSRC_CHANGE UP_RTP_SSRC_CHANGE_DATA_ST

	Signaling
	stCAS
	UP_CAS_CONFIG_ST
	UP_EVT_CAS_CHANGE UP_CAS_CHANGE_DATA_ST

	stQDS0Hdlc

	Alarming
	stEthernetAlarm
	UP_EVT_ETHERNET_ALARM UP_ETHERNET_ALARM_DATA_ST

	stT1E1Alarm
	UP_T1E1ALARM_CONFIG_ST
	UP_EVT_T1E1_ALARM UP_T1E1_ALARM_DATA_ST

	Audio processing
	stAGC
	UP_AGC_CONFIG_ST

	Internal
	stPacketBuilder
	UP_PACKET_BUILDER_CONFIG_ST

	stPacketParser
	UP_PACKET_PARSER_CONFIG_ST

	Glossary
	Index

