
www.radisys.com
World Headquarters

5445 NE Dawson Creek Drive • Hillsboro, OR
97124 USA

Phone: 503-615-1100 • Fax: 503-615-1121
Toll-Free: 800-950-0044

International Headquarters
Gebouw Flevopoort • Televisieweg 1A

NL-1322 AC • Almere, The Netherlands
Phone: 31 36 5365595 • Fax: 31 36 5365620

007-00992-0002
December 2000

TASK-6000™
software reference
guide

December 2000
Copyright ©2000 by RadiSys Corporation.

All rights reserved.
EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of RadiSys Corporation. Spirit,
DAI, DAQ, ASM, Brahma, and SAIB are trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their

respective owners.

i

Before you begin

This guide explains how to install and use TASK-6000™ software.

TASK-6000 software provides programming methodology, tools, and runtime
libraries that you use to quickly develop optimized, multi-algorithm, multi-channel
telecom applications for the Texas Instruments’ TMS320C620x (c6x) DSP.

About this guide

Contents

Chapter/appendix Description
1 Introducing TASK-6000

software
Overviews TASK-6000 software solutions.

2 Understanding TASK-6000
software architecture

Explains how TASK-6000’s kernel works with host,
IOP, and DSP OSs to provide telecom
functionality. It also lists and describes
TASK-6000 components.

3 Installing and configuring
TASK-6000 software

Explains how to install and uninstall TASK-6000
software.

4 Developing Host and
IOP applications

Provides general guidelines for host and IOP
application design.

A Host functions Lists and describes calls used to communicate
with the host.

B IOP functions Lists and describes calls used to communicate
with the i960† I/O processor.

C HDLC driver library Describes the HDLC driver library and its calls.
D T1/E1 library Describes the T1/E1 library and its calls.
E T8100 library Describes the T8100 library and its calls.
F Service descriptions Lists and describes TASK-6000 services.

TASK-6000 reference guide

ii

Notational conventions
This guide uses the following conventions:

• Screen text and syntax strings appear in this font.

• All numbers are decimal unless otherwise stated.

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

Where to get more information

About TASK-6000
You can find out more about TASK from these sources:

• Release notes (relnotes.txt): Lists features and issues that arose too late to
include in other documentation.

• World Wide Web: RadiSys maintains an active site on the World Wide Web. The
site contains current information about the company and locations of sales
offices, new and existing products, contacts for sales, service, and technical
support information. You can also send e-mail to RadiSys using the web site.

Requests for sales, service, and technical support information receive
prompt response.

• Other: If you purchased your RadiSys product from a third-party vendor, you
can contact that vendor for service and support.

Notes indicate important information
about the product.
Tips indicate alternate techniques or
procedures that you can use to save
time or better understand the product.
The globe indicates a World Wide
Web address.

Cautions indicate situations that
may result in damage to data or
the hardware.
This includes situations that may
cause damage to hardware via
electro-static discharge (ESD).
Warnings indicate situations that
may result in physical harm to
you or the hardware.

When sending e-mail for technical support, please include information
about both the hardware and software, plus a detailed description of the
problem, including how to reproduce it.

To access the RadiSys web site, enter this URL in your web browser:
http://www.radisys.com

Before you begin

iii

About related RadiSys products

TASK software algorithms

The RadiSys TASK software algorithms extend the functionality of your TASK
software, providing the tools you need for DSP programming. TASK software
algorithms include:

Algorithm Description
AGC/VOX software for
TMS320C620x

Performs level estimation, normalization of PCM
samples with respect to the user specified reference
level and voice activity detection, which are part of
the voice processing system.

Bad frame masking and
comfort noise generator for
TMS320C620x

Bad frame masking eliminates gaps in the received
voice signal due to congested network conditions.
The comfort noise generator engine generates comfort
noise at the decoder of G.711 when no packets are
received or when the received VAD (Voice Activity
Detector) field indicates silence or background
noise frames.

Call progress monitor for
TMS320C620x

Performs CPT detection for high capacity trunks.

Line echo canceller for
TMS320C620x

Provides:
• Up to 32 ms echo span.
• Robust double-talk detection.
• Adaptation Non-linear processing control.

ITU-T G.711 Speech Coder
for TMS320C620x

Encodes and decodes with an option to select A-Law/
µ-Law and multiple frame sizes at compilation/run
time.

ITU-T G.723.1 Speech
Coder for TMS320C620x1

Encodes and decodes based on 30 ms frames, as
specified by the ITU-T Recommendation G.723.1
Dual Rate Speech Coder for Multimedia
Communications Transmitting at 5.3 and 6.3 kbits.

ITU-T G.729 Speech Coder
for TMS320C620x1

Encodes and decodes based on 10 ms frames, as
specified by the ITU-T Recommendation G.729
Coding of speech at 8 kbits/s using conjugate-
structure algebraic-code-excited linear-prediction
(CS-ACELP).

TASK-6000 reference guide

iv

1 This algorithm is not part of the TASK-6000 release. To purchase this algorithm,
contact RadiSys as described in About TASK-6000 on page ii.

SPIRIT™ boards

The RadiSys SPIRIT boards are optimized for telecom OEM applications. The
SPIRIT family currently includes the RadiSys SP6040E (SPIRIT-6040 CompactPCI†
board), a high-performance single board voice gateway designed for telecom and
datacom applications. Based on Texas Instruments† devices, the SP6040E has a
200MHz DSP engine with a PMC connector that provides either LAN/WAN
interface or additional DSP resources. The SP6040 contains four TMS320C6201
digital signal processors for processing multi-channel telecommunications with Hot
Swap support.

About other related products

TI tools

Software tools from Texas Instruments used to build DSP executables.

RadiSys Line/Register Signaling (R1/R2 MF) for TMS320C6201 User’s Manual, RadiSys
Corpration.

ITU-T G.729A Speech
Coder for TMS320C620x1

Encodes and decodes based on 10 ms frames, as
specified by the ITU-T Recommendation G.729 annex
A, a low-complexity version of “Coding of speech at 8
kbits/s using conjugate-structure algebraic-code-
excited linear-prediction (CS-ACELP).
A silence compression scheme specified by the ITU-T
Recommendation G.729 annex B, A silence
compression scheme for G.729 optimized for
terminals conforming to ITU-T V.70 digital
simultaneous voice and data application, operates
with G.729A coder to reduce transmission rate.

Line/Register Signaling
(R1/R2 MF) for
TMS320C620x

Performs R1/R2 detection for high capacity trunks.

DTMF Detector/Suppressor
for TMS320C620x

Performs DTMF detection and suppression for
high-capacity trunks.

Tone Generator for
TMS320C620x

Performs general call-progress and other telecom
tones generation for high capacity trunks.

IETF RTP Protocol1 Performs RTP packetizing, depacketizing, and jitter
buffering, as specified by the IETF Request for
Comments 1889.

Algorithm Description

For more information about Texas Instruments products, enter this URL in
your web browser:
http://www.ti.com/dsp

www.ti.com/dsp
http://www.ti.com/dsp

Before you begin

v

RadiSys Call Progress Tones Monitor for TMS320C6201 User’s Manual, RadiSys
Corporation.

ITU-T Rec. H.225, Media stream Packetization and synchronization on non-guaranteed
quality of service LANs

RFC 1889 RTP - A Transport Protocol for Real Time Applications,

H.225 Real-time Transport Protocol / Real-time Transport Control Protocol API
Document

Hughes Software Systems RTP/RTCP module specification

TASK-6000 reference guide

vi

vii

Contents

Chapter 1: Introducing TASK-6000 software.
Product configurations.. 2.

Chapter 2: Understanding TASK-6000 software architecture.
Components ... 3.

TASK Host runtime library .. 3.
taskhost.dll .. 3.
NT Kernel Mode device driver (i960rp.sys) ... 4.
Hot Swap Host library .. 4.

TASK IOP runtime library.. 4.
VxWorks†-based library .. 4.
Peripheral device driver libraries .. 5.

DSP application.. 6.
Utilities... 6.

sp6k_util.exe.. 6.
rmondb.exe.. 6.

Interfaces .. 6.
Internet Protocol (IP).. 6.
Public Switched Telephone Network (PSTN).. 7.
Application Programming Interface (API)... 7.

Objects .. 7.
Services .. 8.
Inter-processor communication.. 10.

Chapter 3: Installing and configuring TASK-6000 software.
Requirements.. 13.
Before you begin ... 13.
Running the install program ... 14.
Uninstalling TASK software.. 17.

Automatic uninstall (recommended)... 17.
Uninstalling Hot Swap... 18.

Manual uninstall procedure ... 19.
TASK-6000 files.. 20.

Hot Swap .. 20.
Runtime kit .. 21.
Development kit ... 23.
DSP development kit .. 26.

Chapter 4: Developing Host and IOP applications.
Developing the Host application (IopAppLoader.c) .. 30.

Initialize the Host driver... 30.
Set up message handlers ... 30.
Initialize UPA structures ... 30.

TASK-6000 software reference guide

viii

Load and run applications.. 30.
Developing the IOP application (UpaIopApp.c) .. 31.

Initialize the IOP driver .. 31.
Set up message handlers ... 31.
Configure services .. 32.
Create data paths ... 32.

Building Host and IOP applications.. 33.
Naming conventions .. 34.
Host application development.. 34.
IOP application development ... 34.

Special note for IOP applications ... 35.
Sample code: Host application (IopAppLoader.c) ... 36.

Initializing the host driver .. 36.
Setting up message handlers ... 36.
Initializing UPA structures .. 36.
Loading and running applications .. 37.

Retrieving system information ... 37.
Loading the VxWorks image on IOPs .. 37.
Waiting for IOP response ... 38.
Loading mulcoder.out .. 38.

Sample code: IOP application (UpaIopApp.c) ... 39.
Initializing the IOP drive .. 39.

Calling iopInit.. 39.
Calling upStart... 39.
Configuring on-board peripherals.. 40.

Setting up message handlers ... 41.
Installing event handlers (callback functions)... 41.
Connecting the TDM to IOPs .. 41.
Enabling bi-directional voice data flow to and from the DSP... 41.

Configuring services ... 42.
Configuring DSP services for outbound direction (toward the IP cloud) 42.

Creating data paths .. 43.
Creating a data path between an outgoing RTP channel running on a DSP and the IOP driver’s
network packet routing component ... 43.
Enabling the receive direction on the channel .. 44.
Initializing the RTP decoder... 45.
Creating a data path between an inbound RTP channel running on a DSP and the IOP driver’s
network packet routing component ... 45.

Appendix A: Host functions.
Overview .. 47.

Message API... 47.
Function list ... 48.
hostControlPeripheral .. 50.
hostExit.. 54.
hostGetBoardInfo... 55.
hostGetSystemInfo ... 57.
hostInit... 59.
hostLoadDsp.. 60.
hostLoadIop... 61.

Contents

ix

hostResetBoard .. 62.
hostResetDsp ... 63.
hostRunDsp ... 64.
hostRunLoadedIop... 65.
hostSetEventHandler.. 66.
hostSetHotSwapHandler .. 67.
hostSetPeripheralDataHandler ... 68.
upConfigService ... 69.
upConfigServiceGlobal... 72.
upConnectPktRecv... 75.
upConnectPktSend ... 77.
upDisableService .. 79.
upDisconnectPktRecv... 82.
upDisconnectPktSend... 83.
upEnableChannel ... 84.
upEnableService ... 86.
upQueryQOSReport .. 89.
upSetEventHandler .. 90.
upSetUserMsgHandler ... 91.
upStart ... 92.
hostGetNWPktBuf ... 94.
hostJitterControl .. 95.
hostReadIop... 96.
hostSendNWPktBuf ... 97.
hostSendMsg.. 98.
hostSetNWNotify... 99.
hostWriteIop .. 100.
hostSetPollPeriod ... 101.
hostSendPriorityMsg .. 102.

Appendix B: IOP functions.
Overview .. 103.

Message API... 103.
Function list ... 104.
getBoardInfo .. 106.
iopControlPeripheral.. 108.
iopInit .. 112.
upConfigService ... 113.
upConfigServiceGlobal... 116.
upConnectPktRecv... 119.
upConnectPktSend ... 121.
upDisableService .. 123.
upDisconnectPktRecv... 126.
upDisconnectPktSend... 127.
upEnableChannel ... 128.
upEnableService ... 130.
upQueryQOSReport .. 133.
upSetEventHandler .. 136.
upStart ... 139.
iopGetNWPktBuf... 141.

TASK-6000 software reference guide

x

iopJitterControl.. 142.
iopSendNWPktBuf ... 143.
iopSendMsg ... 144.
iopSetNWNotify .. 145.
upSetUserMsgHandler ... 146.

Appendix C: HDLC driver library.
Overview .. 147.
Driver internals, data structures, and resources... 147.

Data structures ... 148.
Processing modes ... 148.
Processing packet transmission and reception .. 149.

Sample HDLC driver sequence ... 150.
Function list.. 151.
Functions .. 153.

HDLCInit... 153.
HDLCReset.. 154.
HDLCCloseDriver ... 155.
HDLCClosePort... 156.
HDLCConfigPort ... 157.
HDLCConfigChannel .. 158.
HDLCEnableChannel .. 159.
HDLCDisableChannel ... 160.
HDLCResetChannel... 161.
HDLCSendPacket .. 162.
HDLCGetPacket .. 163.
HDLCGetDeviceStatus... 164.
HDLCGetChannelStatus .. 165.
HDLCSetTxPacketHandler .. 166.
HDLCSetRxPacketHandler .. 167.
HDLCSetDeviceErrorHandler .. 168.
HDLCSetTxErrorHandler .. 169.
HDLCSetRxErrorHandler.. 170.

Type definitions .. 171.
Structures.. 172.

t_HDLC_port_config ... 173.
t_HDLC_channel_config.. 175.
t_HDLC_channel_status .. 176.

Appendix D: T1/E1 library.
Overview .. 177.

Sample startup sequence... 178.
Function list ... 179.

Functions .. 183.
T1E1initCard ... 183.
T1E1getBoardConfig ... 184.
T1E1setLeds... 185.
setT1Config ... 186.
setT1Signaling.. 187.
setT1Command.. 188.

Contents

xi

setT1ClearChannels ... 189.
setT1IdleChannels.. 190.
setT1ChannelConfig .. 191.
setE1Config.. 192.
setE1Signaling .. 193.
getT1Signaling ... 194.
getT1Status .. 195.
getT1SignalingRaw .. 196.
getE1Signaling.. 197.
setT1SignalingHandler ... 198.
setT1StatusHandler .. 199.
setE1SignalingHandler ... 200.

Structures.. 201.
t_T1E1_framer_id .. 203.
t_T1E1_card_type .. 204.
t_T1E1_led_state.. 205.
t_T1E1_user_signaling_data... 206.
t_T1E1_BoardConfig ... 207.
t_T1_line_coding.. 208.
t_T1_framing_mode... 209.
t_T1_line_buildout... 210.
t_T1_user_config_struct ... 211.
t_T1_user_signaling_data
t_T1_signaling_data ... 213.
t_T1_user_command_data ... 214.
t_T1_user_status_struct.. 215.
t_T1_user_clear_channel_data ... 216.
t_T1_user_idle_struct ... 217.
t_T1_user_channel_config.. 218.
t_T1_user_raw_signaling_struct ... 220.

Example... 220.
T1StatusHandler .. 221.
T1SignalingHandler ... 222.
t_E1_line_coding.. 223.
t_E1_signaling_mode ... 224.
t_E1_line_buildout ... 225.
t_E1_user_config_struct ... 226.
t_E1_user_signaling_data ... 228.
E1SignalingHandler ... 229.

Appendix E: T8100 library.
Overview .. 231.
Making and breaking connections .. 231.

Broadcasting .. 232.
Sample startup sequence... 234.
Function list ... 235.

Limitations .. 235.
Functions .. 237.

initT8100 ... 237.
setT8100ClockConfig .. 238.

TASK-6000 software reference guide

xii

setT8100StreamConfig... 239.
setT8100SwitchConfig ... 240.
clearT8100ClockFault.. 241.
clearT8100MemoryFault ... 242.
setT8100ClockFaultMask .. 243.
getT8100ErrorStatus.. 244.
setT8100Handler ... 245.

Structures.. 246.
t_ref_clk ... 247.
t_fallback_clk... 248.
t_netref_clk .. 249.
t_T8100ClockConfig ... 250.
t_stream_rate ... 252.
t_T8100StreamConfig.. 253.
t_source_dest.. 256.
t_T8100Connection ... 257.
t_T8100SwitchConfig .. 258.

Appendix F: Service descriptions.
Codec ... 260.

stCodec .. 260.
Echo cancellation.. 263.

stEchoCanc .. 263.
Tone generation .. 264.

stTdmToneGen... 264.
stPktToneGen... 265.

UP_TONEGEN_CONFIG_ST... 265.
Tone detection .. 266.

stTdmDTMFDet .. 266.
UP_DTMF_CONFIG_ST... 266.
UP_EVT_TDM_DTMF_DETECTED .. 266.
UP_DTMF_DETECTED_DATA_ST.. 266.

stPktDTMFDet .. 267.
UP_DTMF_CONFIG_ST... 267.
UP_EVT_PKT_DTMF_DETECTED.. 267.
UP_DTMF_DETECTED_DATA_ST.. 267.

stCPTDet.. 268.
UP_CPT_CONFIG_ST .. 268.
UP_EVT_CPT_DETECTED
UP_CPT_DETECTED_DATA_ST.. 268.

stMFDet... 270.
UP_MF_CONFIG_ST.. 270.
UP_EVT_MF_DETECTED.. 270.
UP_MF_DETECTED_DATA_ET... 271.

RTP packetization .. 272.
stRtpEncode... 272.

RTP_HEADER_ST .. 272.
UP_RTP_SEND_CONFIG_ST... 272.

stRtpDecode... 274.
UP_RTP_RECV_CONFIG_ST... 274.

Contents

xiii

UP_EVT_RTP_PT_CHANGE
UP_RTP_PT_CHANGE_DATA_ST ... 275.
UP_EVT_RTP_SSRC_CHANGE
UP_RTP_SSRC_CHANGE_DATA_ST... 275.

Signaling ... 276.
stCAS ... 276.

UP_CAS_CONFIG_ST .. 276.
UP_EVT_CAS_CHANGE
UP_CAS_CHANGE_DATA_ST ... 276.

stQDS0Hdlc... 277.
Alarming... 278.

stEthernetAlarm ... 278.
UP_EVT_ETHERNET_ALARM
UP_ETHERNET_ALARM_DATA_ST... 278.

stT1E1Alarm.. 279.
UP_T1E1ALARM_CONFIG_ST ... 279.
UP_EVT_T1E1_ALARM
UP_T1E1_ALARM_DATA_ST .. 279.

Audio processing .. 281.
stAGC .. 281.

UP_AGC_CONFIG_ST ... 281.
Internal ... 282.

stPacketBuilder... 282.
UP_PACKET_BUILDER_CONFIG_ST.. 282.

stPacketParser .. 283.
UP_PACKET_PARSER_CONFIG_ST.. 283.

Glossary. ... 285

Index. ... 293

TASK-6000 software reference guide

xiv

Figures
Figure 1-1. TASK application distribution: IOP only... 1.
Figure 1-2. TASK application distribution: Host and IOP ... 2.
Figure 2-1. DSP application on the DSP chip... 6.
Figure 2-2. Data path services ... 9.
Figure 2-3. Using events and message handlers.. 11.
Figure 4-1. Location of files required to compile the application... 33.
Figure A-1. Packet organization buffer.. 97.
Figure B-1. Packet organization buffer .. 143.

Tables
Table A-1. Host functions ... 48.
Table B-1. IOP functions ... 104.
Table C-1. HDLC driver functions .. 151.
Table C-2. HDLC structures.. 172.
Table D-1. T1/E1 functions ... 179.
Table D-2. Time slot numbers ... 181.
Table D-3. E1/T1 structures .. 201.
Table E-1. T8100 functions ... 235.
Table E-2. Time slot numbers.. 236.
Table E-3. T8100 structures .. 246.

1

1 Introducing TASK-6000 software

To create the complex applications needed by today’s telecom service providers,
system developers can benefit strongly from a proven software toolkit that abstracts
the details of codecs, telephony algorithms, and network data connections. The
RadiSys TASK-6000 software provides a powerful set of features that reduce
development time without sacrificing flexibility, allowing the developer to
cost-effectively add value at the application level.

Based on a powerful API, with a set of field-proven DSP algorithms and
high-performance packet protocols under the hood, TASK forms the core of Media
Gateways and other vital telecom applications. It takes its name from the
underlying RadiSys “Telecom Application-Specific Kernel” that runs on the Digital
Signal Processors (DSPs) and provides the flexible and powerful core of the
telephony applications.

TASK components are distributed among the three hardware subsystems of the
RadiSys family of Media Gateway products: DSP, IOP, and Host, according to the
performance requirements dictated by modern VoIP and similar applications. A
developer may choose to create applications whose functionality resides primarily
on the IOP, primarily on the Host, or in a distributed fashion using both:

Some applications will utilize multiple Hosts to meet high-availability requirements.
Advanced developers can even create DSP-based applications that use the powerful
RadiSys DSP library components directly.

Figure 1-1. TASK application distribution: IOP only

IOP

TASK runtime
library

DSP kernel

Application

For information about developing TASK applications, see Chapter 4,
Developing Host and IOP applications.
Developing DSP-based applications using RadiSys DSP library components
requires that you use the TASK-6000 DSP development kit. For more
information about this kit, see Product Configurations, later in this chapter.

TASK-6000 software reference guide

2

TASK supports data and control flow between the Host- and IOP-based
components, using the hardware PCI interconnection (for high throughput and low
latency) or using a message-based interface over a protocol link via the IOP’s
optional LAN/WAN subsystems.

The TASK API creates abstractions for common telecom objects such as Slots,
Units, Channels, and UDP Ports, and provides functions for the configuring,
enabling, and disabling of a powerful set of services that operate on these objects.
The API also provides abstractions for Fast Packet Routing, HDLC, T1/E1, and
TDM (Time-Division Multiplex) Switch peripheral devices.

TASK-6000 software supports CompactPCI Hot Swap, as defined in the Hot Swap
Specification [PICMG97c], for fail-over and high-availability applications.

Product configurations
You can order TASK software in these configurations:

• TASK-6000 runtime kit: Provides the software required to run TASK applications.

• TASK-6000 development kit: Provides the tools required to write and debug
TASK Host and IOP applications. This software also includes the TASK-6000
runtime kit.

• TASK-6000 DSP development kit: Provides the tools required to write and
debug TASK DSP applications. This software also includes the TASK-6000
development kit.

Figure 1-2. TASK application distribution: Host and IOP

IOP

TASK runtime
library

DSP kernel

Host

TASK runtime
library

IOP

TASK runtime
library

DSP kernel

Host

TASK runtime
library

Application Application Application

Application that resides on the Host
and communicates with the IOP

Application distributed across
the Host and IOP

3

2 Understanding TASK-6000
software architecture

This chapter explains how the TASK-6000 software components and interfaces
work together to provide the tools you need to create and run telephony
applications.

When reading this file online, you can immediately view information about any
topic by placing the mouse cursor over a topic name and clicking:

Components
The TASK-6000 software architecture comprises several interdependent
components: a Host Run-Time Library, an IOP Run-Time Library, and a standard
DSP application. The following sections describe these components.

TASK Host runtime library
User Host application components interface to TASK through the Host runtime
library. This comprises a static library linked to the Host application and a Win32
DLL (Dynamic Linked Library), which implements the functions of the API
(Application Programming Interface).

taskhost.dll

The taskhost.dll library creates several Win32 threads which poll the IOPs in all
slots of a system to monitor for data and events. It resets, downloads, and monitors
the IOPs, maintains message and data queues, communicating with each IOP via
the NT Kernel Mode device driver. taskhost.dll includes API functions that
implement callbacks to user-defined functions for event handling and data delivery.

For information about... Go to this page...
Components ... 3

TASK Host runtime library... 3
TASK IOP runtime library .. 4
Utilities.. 6

Interfaces.. 6
Internet Protocol (IP) ... 6
Public Switched Telephone Network (PSTN).. 7
Application Programming Interface (API) .. 7

For information about the Host API and functions, including syntax and
parameter values, see Appendix A, Host functions.

TASK-6000 software reference guide

4

NT Kernel Mode device driver (i960rp.sys)

The NT Kernel Mode device driver is a low-level driver that provides PIO
(Programmed I/O) and DMA (Direct Memory Access) to the memory and control
registers on all IOPs in the system. It also scans the PCI bus at system boot time,
enumerates the IOPs and, through interaction with the Hot Swap Service, maintains
slot state information.

Hot Swap Host library

Hot Swap support is implemented as a Windows NT service and a device driver.
These communicate with taskhost.dll to notify the user application of insertion and
extraction events for all IOPs in the system. They communicate with the IOP
through the TASK NT Kernel Mode device driver to detect the extraction tab flips
and illuminate the blue quiescent LEDs on each IOP.

• hsmgrint.dll: Implements the Hot Swap Manager library and creates the Win32
threads necessary to poll the IOPs in the system for insertion and extraction
events.

• hbus.sys (NT Kernel Mode device driver): Enumerates the hot swap capable
devices present in the system, monitors their hot swap state, alerts the Hot Swap
Manager to changes in a device’s hot swap state, and configures the device’s hot
swap configuration status register (HS_CSR) in response to requests from the
Hot Swap Manager.

TASK IOP runtime library
TASK-6000 applications that reside on the IOP interface directly with the TASK
IOP runtime library. This component serves command and event API functions to
control on-board peripherals such as the T8100 TDM (Time Division Multiplex)
switch, the optional LAN/WAN interface, and to load, reset and run the DSPs.

VxWorks†-based library

The current implementation of the IOP runtime library is based on Wind River’s
VxWorks RTOS (Real-Time Operating System), which it uses for multi-tasking,
messaging, and IP (Internet Protocol) stacks. You can create user applications under
the Tornado† 2.0 development system and link them with the components of the
IOP runtime library to produce easily-debuggable applications.

The library includes the following:

• Message dispatcher: The IOP runtime library exposes its API to local user
applications (in the same IOP), as well as to applications that run on a remote
processor. For example, a Host application can exercise the API indirectly via

For detailed information about the RadiSys Hot Swap for Windows NT, see Hot
Swap for Windows NT (PN 07-1080-00).

For information about the IOP API and functions, including syntax and
parameter values, see Appendix B, IOP functions.

Chapter 2: Understanding TASK-6000 software architecture

5

the Host runtime library, which forms messages and sends them to the IOP
across the PCI bus.

The messages from remote API servers are acted upon in the same fashion as
locally-originated function calls.

• Event dispatcher: Events generated locally on the IOP or arriving in messages
from associated DSPs are forwarded by the IOP runtime library’s event dispatch
function. This makes a decision based on a runtime configuration variable of
whether to route events to a remote API server (e.g. the Host), or to perform a
callback to a local user application’s function handler.

• Fast packet router: The heart of the TASK VoIP capability of the TASK-6000
software is the Fast Packet Router. This functionality is built in to the IOP
runtime library with a custom Ethernet device driver and corresponding
components in the DSP software. The Fast Packet Router can forward over
twenty thousand packets per second of voice data to and from the DSPs on each
IOP. It does this while consuming less than 40 percent of the CPU time and bus
bandwidth of the IOP’s processor. The DSPs build and parse Ethernet frames
according to configuration parameters specified by the user application via
specialized API functions.

Peripheral device driver libraries

TASK-6000 software provides a basic set of libraries for controlling the on-board
peripheral devices, currently comprising the Siemens MUNICH128 128-channel
HDLC (High-level Data Link Controller), the Siemens QFALC (Quad Framing And
Line Interface Component), and the Lucent Technologies T8105 TDM (Time
Division Multiplex) switch.

• HDLC: The MUNICH128 supports up to 128 channels of HDLC. The
TASK-6000 driver library provides functions that configure, enable, and disable
channels and an ISR (Interrupt Service Routine) that provides callback function
hooks to the user application for transmitting and receiving frames, and
handling errors.

• E1/T1 line interface: The TASK-6000 driver library provides functions that
configure, enable, and disable each of the device’s four E1/T1 ports. The device
must be operated as all E1 or all T1; you cannot mix line types. The driver
provides an ISR that provides callback function hooks to the user application
for transmitting and receiving frames, and handling errors.

• TDM (Time Division Multiplex) switch: The TASK-6000 driver library
provides functions that establish and tear down sets of half-duplex time slot
connections from one to any of the TDM resources on the board. TDM
resources include serial ports on the DSPs, E1/T1 framers, and the H.110
backplane bus. The driver provides an ISR that provides a callback function
hook to the user application for handling errors.

TASK-6000 software reference guide

6

DSP application
The standard TASK-6000 DSP application comes with a variety of voice codecs,
telephony algorithms, including echo canceller and tone detector/generators. It also
includes RTP (Real-time Transport Protocol) send and receive functions as well as a
jitter buffer, and packet build and parse functions for the system’s Fast Packet
Routing.

The DSP application is built on top of the RadiSys TASK kernel for the C6x family
of DSPs. The underlying kernel provides deterministic thread switching, RAM
memory management, and inter-processor message-passing functions.

Utilities
TASK provides these tools that you use to develop TASK applications:

sp6k_util.exe

This is a development tool that provides host access to the memory and devices on
the IOP. It includes functions to reset boards, read and write memory on the IOP,
dump internal trace buffers, and so on.

rmondb.exe

rmondb, the RadiSys version of Intel’s mondb.exe Win32 Console utility, connects a
Windows NT host to the i960 Monitor over a PCI bus or serial port via the Host
debugger interface. This program includes a GUI for use by diagnostics
applications.

Interfaces
TASK-6000 software interfaces to the external environment using the methods
described in this section.

Internet Protocol (IP)
The Fast Packet Router and the VxWorks IP stack provide flexible communication
to other hosts and media gateways on an IP network. You can configure the Fast
Packet Router to route UDP frames to individual DSPs based on their UDP port

Figure 2-1. DSP application on the DSP chip

DSP chip

DSP application

DSP kernel

Algorithms

Chapter 2: Understanding TASK-6000 software architecture

7

number. All other traffic passes through to the VxWorks IP stack, so you can
implement protocols such as RTCP in the IOP.

Applications on the IOP can communicate with remote hosts (or the local host) via
IP, and the TASK-6000 IOP runtime library also contains functionality for
extending its API to a remote IP host.

Public Switched Telephone Network (PSTN)
TASK-6000 software interfaces with the PSTN using the features of the E1/T1 line
interface and HDLC controllers, which allow for implementations of ISDN and
Robbed Bit call control applications. The DSP algorithms support R1/R2 signaling,
DTMF generation and detection, echo cancellation, along with various industry-
standard voice codecs.

Application Programming Interface (API)
The TASK-6000 API is presented at the IOP and is also reflected on the Host. In its
baseline form the API provides the tools you use to:

• Map a physical channel (T1 or E1 DS0 or H.110 channel) to a DSP’s
virtual channel.

• Configure a DSP channel with a particular codec, echo canceller, tone detectors
and generators.

• RTP encode and decode a channel.

• Map an RTP-encoded channel to an RTP socket so that the socket is
transparently (to the user) connected to the DSP channel.

The API also includes provisions for non-voice data types, such as T.38 traffic and
V.90 data. Finally, the API is designed to be easily extensible so that you can add
future services with minimal impact to existing applications.

Objects

TASK-6000 defines a hierarchy of objects that describe software operation:

• Slot: Refers to a given IOP in a system. Slots are numbered from zero.

• Unit: Usually refers to a DSP in a relative numbering system for each IOP in the
system. Units are numbered from zero. For IOP-based services such as stCas,
however, the unit parameter specifies the framer unit number.

• Channels: Usually refers to a virtual channel (see the following subsections). For
IOP-based services such as stCas, however, the channel parameter specifies the
physical channel. Channels are numbered from zero.

IOP functions do not specify a slot; all functions are assumed to operate
on the current slot. Host functions include the slot parameter in all
relevant functions.

TASK-6000 software reference guide

8

• Physical channels: Physical Channels are duplex TDM streams (DS0s)
associated with a hardware port. A device type (T1, E1, or H.100), unit
number, and timeslot uniquely identify a physical channel. Physical channels
are referred to only when setting up a call (via) or when sending or receiving
Channel Associated Signaling via the service.

• Virtual channels: Virtual Channels are duplex paths through a DSP. They
are referenced by DSP unit number and channel. On one side of the DSP this
refers to the TDM timeslot connected to a TDM switch, and on the other
side to the channel number reported in network messages carrying
packetized data. All of the TASK services except those that deal with
physical channels (currently only stCas) are controlled and monitored via
virtual channels.

• Channel groups: Virtual Channels are grouped by the DSP application based
on their function. For example, voice and fax. Each TASK module operates
on groups of virtual channels. The user application can change the channel
grouping dynamically using TASK API functions.

Services

Services are processing entities that operate on a data or signaling stream. Services
can be individually enabled and disabled, and have a particular position where they
fit into the data stream when enabled. When disabled they are bypassed as
necessary so that the data streams continue. Examples of services include voice
codecs, tone detectors and generators, packet builders and parsers, and alarm
detectors and generators.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Chapter 2: Understanding TASK-6000 software architecture

9

• Setting up a service: Most services must be configured before operation. To
configure a service, the application fills in a configuration structure and passes
the structure to the upConfigService function. This then uses the underlying
message API to get the configuration data to the correct processor and set up the
service.

The configuration of a service is private to a particular slot, unit, and channel,
and is persistent. The application can configure a service just once during
initialization, and then enable and disable the service as needed, or the
application can reconfigure the service every time it is needed. Configuring a
service also enables it.

• Caveats: To ensure that your applications are compatible with future versions of
TASK, take care to follow these guidelines:

• Reference data structure elements by name.

• Allocate memory for data structures using the sizeof(data structure
type) operator.

• Clear the memory allocated for the data structure before filling in the
elements, so that any new elements are set to zero.

1 If the tone generator is enabled and active (cadence in progress) then the tone
generator output is connected to the TDM output. If the tone generator is inactive
(disabled or cadence finished) then the codec is connected to the TDM output.

2 If the codec is disabled, a silent sound source is used in its place.

A second tone generator and tone detector exist in the opposite directions, but are
omitted from this diagram for clarity.

Figure 2-2. Data path services

Events
to user

Ethernet
packets
to/from

Fast
Packet
Router

TDM tone
detectors

Echo
cancellerTDM

input and
output

codec -
decode

TDM tone
generator

Jitter
buffer

RTP
decode

2
1

RTP
encoder

codec-
encode

TASK-6000 software reference guide

10

Example

UP_CONFIG_SVC_MSG_UT *ptCfg;
ptCfg = calloc(sizeof(UP_CONFIG_SVC_MSG_UT));
ptCfg.tCodecConfig.eCodec = ctG711mu;
ptCfg.tCodecConfig.tCodecParams.tG711Params.eLaw = enumMULAW;
ptCfg.tCodecConfig.tCodecParams.tG711Params.eVadEnable = enumDisabled;
ptCfg.tCodecConfig.tCodecParams.tG711Params.eBfmEnable = enumEnabled;

• Codecs: TASK-6000 software API supports these voice codecs:

G.711 u-Law, G.711 A-Law, G.723.1 High Rate, G.723.1 Low Rate, G.729,
G.729A with Annex B.

• VoIP: TASK-6000 software supports VoIP with RTP, UDP and Ethernet packet
building and parsing, and a Fast Packet Router that can forward over 20,000
packets in each direction for each IOP in the system.

• Telephony functions: The TASK-6000 software API supports these telephony
functions:

• VAD (Voice Activity Detection), CNG (Comfort Noise Generation), and
BFM (Bad Frame Masking) for G.711.

• G.165 echo cancellation with 32ms echo span.

• DTMF (Dual-Tone Multi-Frequency) detector, R1/R2 MF tone detector, and
CPT (Call Progress Tone) detector.

• General purpose tone generator with programmable levels and cadences.

• RTP (Real-time Transport Protocol) encoder and decoder, Ethernet/UDP
packet builder and parser.

• T1 and E1 channel associated signaling (CAS).

Inter-processor communication

TASK-6000 software communicates between processors in the system, and in
certain circumstances, between threads on the same processor via messages. The
messages structures are defined in the API, and functions exist to send and receive
messages on the Host, IOP, and DSP.

• Messages: Messages are generally of these types:

• Commands: The application sends commands to configure, enable, and
disable services, and to request status from them. Commands are also used
to configure and operate the peripheral devices on the IOP.

• Events: TASK software uses events, an asynchronous message mechanism,
to prevent the application thread from blocking on API functions. When an
API function requires another system processor to do some of the
processing, the API function creates a message, sends it to the other
processor using TASK’s messaging feature, and immediately returns to the
application thread. The message is delivered to the destination processor

Some of these codecs require third-party licensing arrangements.

Chapter 2: Understanding TASK-6000 software architecture

11

(IOP or DSP), where it is interpreted and acted upon. In response to some of
these messages, the destination processor communicates back to the
application by means of an event.

The application must register an appropriate event handler callback
function to receive the events. It is the responsibility of the user application
to keep track of which commands are outstanding and to associate the
returned events with their originating function calls. The events contain
identification information that can be helpful for this purpose, such as the
event message header which contains the slot, unit, and channel numbers, as
well as the event.

Control: Some events notify the application of the deferred results of
command messages. These can include acknowledgement or error reports.

Status: Events are also generated asynchronously by the operation of
various services in the system. For example, a DTMF detector on a DSP
generates events at the start and stop of a detected tone.

• Callback functions: TASK software uses a simple mechanism to send messages
asynchronously to the user application. Messages are created by the TASK
software and then a user-designated handler function in the application is
called, passing a pointer to the message as a parameter. The user application
must register a handler function for each subsystem that can generate a
callback. This is done by means of API functions.

1. A function from the Host application sends a message to the IOP.
2. The function immediately returns to the Host, reporting that the message was sent

successfully.
3. The IOP forwards the message to the DSP.
4. The DSP receives the message, interprets it, performs required actions, and then

reports the status as an event to the IOP.
5. The IOP forwards the event to the Host’s Message Handler.
6. The Host’s Message Handler receives and analyzes the event, performing any

necessary action.
Figure 2-3. Using events and message handlers

Host IOP

Application Application

DSP

Message
handler

Application

1

2

3 4

5
6

TASK-6000 software reference guide

12

It is important to note that the user’s event handler function executes in one of
the TASK threads on the local processor (IOP or host). The user should
ensure that:

• The handler function does not spend excessive amounts of time before
returning to TASK.

• The function always returns.

It should also be noted that resource locks can occur if the user’s handler
function calls another TASK function that may contend for an internal TASK
resource that is already held by the original TASK thread. This situation can be
avoided by employing additional user threads and some form of signaling (using
the appropriate Operating System features). The TASK API is “multi-thread
safe” and, in general, telecom applications benefit from having as many threads
as practical to accomplish their operation.

13

3 Installing and configuring
TASK-6000 software

This chapter explains how to install your TASK-6000 software on a
Windows NT system.

You can order TASK software in these configurations:

• TASK-6000 runtime kit: Provides the software required to run TASK
applications.

• TASK-6000 development kit: Provides the tools required to write and debug
TASK Host and IOP applications.

• TASK-6000 DSP development kit: Provides the tools required to write and
debug TASK DSP applications. This software also includes the TASK-6000
development kit.

The installation program (t6kinst.exe) installs the components needed for your
TASK software.

Requirements
Installing TASK software on your system requires:

• A PC with a processor similar to or better than Pentium II 266 MHz.

• A minimum 32 MB of DRAM.

• A minimum 20 MB disk space.

• A PC that runs Windows NT, version 4.0, with Service Pack 5.

Before you begin
• Ensure that you are logged on with Administrator privileges.

• Exit all programs prior to installing TASK software.

• If your system already has TASK software installed, you must uninstall it using
one of these methods:

• If your system has TASK software version 2.x, remove it when prompted
during installation.

• If the system has an earlier version of TASK software, follow the steps
described in Uninstalling TASK software on page 17. After removing the
software, continue with the installation.

TASK-6000 software reference guide

14

Running the install program
To install TASK software:

1. Insert the TASK software CD-ROM into the CD-ROM drive.

2. Double-click t6kinst.exe from the Windows NT Explorer, then select one
of these:

• Read release notes: Select this option to run Notepad and display
relnotes.txt, the release notes file.

This document contains the latest information about the release. You may
find it useful to print the release notes for future reference. When you finish
reading the file, select File>Exit. The install program displays.

If you don’t read the release notes at this time, you can access it at any time
from the InstallDir\TASK6000\doc directory.

• Install TASK6000: Select this option to install TASK software.

If a version of TASK 2.x software is already installed, the install program
prompts you to specify the installation method. To continue, go to step 3.

Otherwise, the install program displays a welcome screen followed by the
TASK software license agreement. To continue the installation, go to step 4.

• Exit Installation: Select this option to leave the install program without
installing TASK software.

3. Select one of these:

• Continue after Uninstall: The install program uninstalls the software. The
uninstall removes the TASK software.

After uninstalling TASK software, the installation continues.

• Install Additional components: Installs the TASK software components that
you select. Select this option to add components not selected during the
original install.

The install program copies any duplicate file (a file with the same name and
path as a file to install) to the installation directory’s BACKUP folder.

• Exit: The install program exits without installing TASK software.

If you selected either of the first two options, the install program displays a
welcome screen, followed by the TASK software license agreement.

The install program does not remove Hot Swap software. For
information about uninstalling Hot Swap software, see Uninstalling
Hot Swap on page 18.
When you uninstall TASK software using this method, Hot Swap should
also be reinstalled from the CD-ROM. This is explained in step 6.

If the uninstaller prompts to reboot, cancel the operation and
proceed with the installation.

Chapter 3: Installing and configuring TASK-6000 software

15

4. Read the agreement, then select one of these:

• Agree: Selecting this option means you accept the terms of the software
license agreement. The install program continues.

• Cancel: Selecting this option means you do not accept the terms of the
software license agreement. The install program exits.

If you agreed with the software licensing agreement, the install program
prompts you to identify a destination, or installation, directory.

5. Select a destination directory for TASK software files, then click the Next
button. The default is C:\.

When you choose C:\ as the installation directory, the install program extracts
certain files into the C:\Tornado2 directory. It is assumed that the Tornado
software is also installed under InstallDir\Tornado2 directory, such that the files
from the CD-ROM are extracted into the Tornado installation directory.

If Tornado was installed in a directory other than C:\ (for example,
D:\xyz\tornado2), or the software cannot install in the C:\ directory for other
reasons (such as space constraints), choose another directory for the TASK6000
installation (for example, InstallDir) and copy the files installed under
InstallDir\Tornado2 to the Tornado installation directory (for instance, copy
files under C:\Tornado2 to D:\xyz\tornado2).

For Makefile setting changes required when TASK6000 is installed in a
directory other than C:\, see IOP application development on page 34.

The install program prompts you to choose the TASK components you want
to install.

6. Select the TASK components you want to install, then click the Next button:

• Hot Swap: Select this option if your system is Hot Swap capable.

• Runtime kit: Installs the software required to run TASK applications.

• Development kit: Installs the files required to write and debug TASK Host
and IOP applications. This option displays only in the TASK-6000
development kit configuration.

• DSP development kit: Installs the files required to write and debug TASK
DSP applications. This option includes the Development kit and displays
only in the TASK-6000 DSP development kit configuration.

The install program prompts you to select a program group name.

Makefiles for Host and IOP development assume that the installation
directory is C:\.

Select this option if you are installing TASK software, and version 2.x
was uninstalled prior to installation.
The TASK uninstall program does not uninstall Hot Swap, but does
remove certain registries required by TASK to support Hot Swap.
Selecting the Hot Swap option re-installs these registries.

TASK-6000 software reference guide

16

7. Do one of these:

• Accept the default group name. This method may reduce confusion as the
program name will match TASK documentation.

• Enter a program group name. This method can provide a program name
that has meaning to you.

8. When you click the Next button, install creates the directory you specified, then
installs the TASK software files.

If the installation program is cancelled at any point after this step, the
installation program prompts you to perform rollback. Select “Yes” to clean up
the partial installation.

If you chose to install RadiSys Hot Swap for Windows NT 4.0 software, the
TASK installation program starts the Hot Swap installation program, and the
Hot Swap installation welcome screen displays. To continue, go to step 9.

Otherwise, the install prompts you to view the relnotes.txt file. This file
contains the latest information about the TASK6000 2.x release. To continue
the installation, go to step 13.

9. Select one of these:

• Next: Installs Hot Swap software.

• Cancel: Exits only the Hot Swap installation. The TASK installation
continues.

The install program prompts you to identify a destination directory.

10. Select a destination directory for Hot Swap software files, then click the Next
button. The default is C:\Program Files\HotSwap.

The install program prompts you to confirm your choices before installation.

11. Select one of these:

• Next: Continues installing Hot Swap software.

• Back: Returns to the previous screen where you can change installation
information.

• Cancel: Exits only the Hot Swap installation. The TASK installation
continues.

After selecting Next, the install program installs the Hot Swap software, and
then displays the readme.txt file. Select next after reading the displayed text.

The installation is now complete, and the installation program prompts you to
select “Finish”.

12. Click the “Finish” button.

The install program prompts you to restart the computer. Skip this step by
selecting “Cancel” since the TASK installation program provides you with
the same option at the end of installation.

Chapter 3: Installing and configuring TASK-6000 software

17

Next, install prompts you to view the relnotes.txt file. This file contains the
latest information about the TASK6000 2.x release.

13. Choose one of these:

• View Release notes: Notepad runs and the relnotes.txt file displays. You may
find it useful to print the relnotes.txt file for future reference. When you
finish reading the file, select File>Exit. After reading the document, you can
choose to Exit the installation by selecting Exit Install.

• Exit install: If you don’t read the relnotes.txt file at this time, you can access
it at any time from the InstallDir\TASK6000\doc directory.

14. Restart your system using one of these methods:

• Select OK at the last screen. The install program restarts your system.

• Select Cancel to restart your system at a later time.

You must restart your system before you can run TASK user applications.

If you installed the DSP Development kit, you must also define TASK_DIR, an
environment variable, as one of the System variables. Set the variable to the
InstallDir\TASK6000 directory path by selecting Start>Settings>Control
Panel>System>Environment. If the variable is already defined, change it to the new
installation path. Otherwise, add the variable with the current installation path
under the values field. For example, if the installation path was at C:\, then set the
TASK_DIR to C:\TASK6000.

Uninstalling TASK software

Automatic uninstall (recommended)
To automatically uninstall TASK software, use one of these methods:

• Go to the Control panel and select Add/Remove programs, then select one of
these from the list that displays:

• TASK6000 (displays if Task 2.0 was previously installed).

• TASK-6000 and SPIRIT-6000 BSP (displays if Task 1.2 Beta 10 was
previously installed).

• During installation, select Continue after Uninstall. This option is available only
if the TASK software you want to uninstall is version 2.0 or later.

The uninstall program removes all the files installed by the CD-ROM, including
files with same name as those installed by the CD-ROM—even if updated after
installation. After uninstalling TASK software, only new files added to the
installation directory remain.

The TASK uninstall program does not uninstall Hot Swap, but does remove certain
registries required by TASK to support Hot Swap. If you install TASK again, you
must select the Hot Swap option to re-install these registries.

TASK-6000 software reference guide

18

Uninstalling Hot Swap

If you installed Hot Swap, you must also complete these steps:

1. Select Start>Settings>Control Panel>Add\Remove Programs.

2. Select the Hot Swap 1.10 for Windows NT option.

3. Click the Add/Remove button.

Chapter 3: Installing and configuring TASK-6000 software

19

Manual uninstall procedure
The TASK uninstall program relies on files created during installation. If these files
are accidentally deleted, you must manually uninstall the software.

To manually uninstall TASK software:

1. Remove TASK software files, located in the directory you specified during
installation.

Two subdirectories, TASK6000 and Tornado2, must be removed. However, if
these directories existed prior to installation and had some files already present
in them, or were added after the installation, you should not remove those files.

For a list of files added by the installation program, see TASK-6000 files on
page 20.

2. Remove TASK entries from Start menu:

A. Right-click the Start menu button, then select Explore all users. The Start
Menu folder displays.

B. Right-click the RadiSys TASK6000 icon and select Delete.

3. Stop the i960 driver:

A. Select Start>Settings>Control Panel>Devices and select I960RP from the
device list.

B. Select Stop to halt the driver.

4. Remove the following registry keys using regedit:

HKEY_CLASSES_ROOT\TASK6000
HKEY_LOCAL_MACHINE\System\Services\CurrentControlSet\Services\i960RP
HKEY_LOCAL_MACHINE\System\Services\ControlSet001\Services\i960RP
HKEY_LOCAL_MACHINE\System\Services\ControlSet002\Services\i960RP
HKEY_LOCAL_MACHINE\System\Services\ControlSet003\Services\i960RP
HKEY_LOCAL_MACHINE\Software\RadiSys\HotSwap\Configuration\i960RP

5. Remove this driver file:

%SystemRoot%\system32\drivers\i960rp.sys

6. Remove Hot Swap as described in Uninstalling Hot Swap on page 18.

7. Reboot the system.

Use the manual uninstall only when you cannot uninstall the software with
the Automatic Uninstall methods.

Your system may not include all these registries.

TASK-6000 software reference guide

20

TASK-6000 files
This section lists all files installed as part of TASK-6000 software. All the file paths
are listed relative to the directory of installation.

For a detailed list of files by product configuration, go to the topic below:

Hot Swap

For information about... Go to this page...
Hot Swap .. 20
Runtime kit ... 21
Development kit .. 23
DSP development kit ... 26

For a complete description of RadiSys Hot Swap for Windows NT software,
see Hot Swap for Windows NT (RadiSys part no. 07-1080-00). The Hot Swap
install program copies this file to InstallDir\hotswap.pdf.

Type Files
Documentation InstallDir\readme.txt

InstallDir\hotswap.pdf
Install utility InstallDir\setup.exe
Uninstall utility InstallDir\unwise.exe

InstallDir\unwise.ini
Drivers InstallDir\hbus.sys

%SystemRoot%\system32\drivers\hsbus.sys
Services InstallDir\bin\hsmgr.exe

%SystemRoot%\system32\hsmgr.exe
Hot Swap API InstallDir\hsmgrint.dll

InstallDir\inc\hsmgrint.h
InstallDir\lib\hsmgrint.lib
%SystemRoot%\system32\hsmgrint.dll

InstallDir is the directory in which RadiSys Hot Swap software is installed.

Chapter 3: Installing and configuring TASK-6000 software

21

Runtime kit

Type Files
Documentation InstallDir\TASK6000\Doc\Taskman.ico

InstallDir\TASK6000\Doc\TaskMan.pdf
InstallDir\TASK6000\Doc\sp6040_hwref.pdf
InstallDir\TASK6000\Doc\relnotes.txt

Installation
management
information

InstallDir\TASK6000\misc\UNWISE.EXE
InstallDir\TASK6000\misc\spdiag.ico
InstallDir\TASK6000\misc\hwref.ico
InstallDir\TASK6000\misc\hsetup.exe
InstallDir\TASK6000\misc\u_guide.ico
InstallDir\TASK6000\misc\uninst.ico
InstallDir\TASK6000\misc\Taskdiag.ico
InstallDir\TASK6000\misc\Taskman.ico
InstallDir\TASK6000\misc\Taskact.ico
InstallDir\TASK6000\misc\installed_comp
InstallDir\TASK6000\misc\UNWISE.INI
InstallDir\TASK6000\misc\INSTALL.LOG

DSP mulcoders InstallDir\TASK6000\Dsp\UpaApp\mulcoder.ntb
InstallDir\TASK6000\Dsp\UpaApp\mulcoder.out
InstallDir\TASK6000\Dsp\UpaApp\mulcoder.ttb

IOP image InstallDir\Tornado2\target\config\sp6k\vxWorks
Windows NT DLLs InstallDir\TASK6000\Host\Nt\Bin\hsmgrint.dll

InstallDir\TASK6000\Host\Nt\Bin\TASKHOST.dll
Utilities InstallDir\TASK6000\Host\Nt\Bin\sp6k_util.exe
Windows NT
driver

InstallDir\TASK6000\Host\Nt\Bin\I960RP.sys
%SystemRoot%\system32\drivers\I960rp.sys

TASK-6000 software reference guide

22

Diagnostics InstallDir\TASK6000\Host\Nt\Bin\rmondb.exe
InstallDir\TASK6000\Host\Nt\Bin\diag
InstallDir\TASK6000\Host\Nt\Bin\diag\c6xcodec
InstallDir\TASK6000\Host\Nt\Bin\diag\c6xcodec.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\c6xmem
InstallDir\TASK6000\Host\Nt\Bin\diag\c6xmem.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\e1t1dq
InstallDir\TASK6000\Host\Nt\Bin\diag\e1t1dq.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\hs_adiag
InstallDir\TASK6000\Host\Nt\Bin\diag\Hs_adiag.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\hs_targ
InstallDir\TASK6000\Host\Nt\Bin\diag\iopmem
InstallDir\TASK6000\Host\Nt\Bin\diag\iopmem.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\iopper
InstallDir\TASK6000\Host\Nt\Bin\diag\iopper.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\t8100
InstallDir\TASK6000\Host\Nt\Bin\diag\t8100.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\tiolan
InstallDir\TASK6000\Host\Nt\Bin\diag\Tiolan.hlp
InstallDir\TASK6000\Host\Nt\Bin\diag\tiowan
InstallDir\TASK6000\Host\Nt\Bin\diag\Tiowan.hlp

InstallDir is the directory in which RadiSys TASK software is installed.

Type Files

Chapter 3: Installing and configuring TASK-6000 software

23

Development kit

Type Files
Documentation InstallDir\TASK6000\Doc\Taskman.ico

InstallDir\TASK6000\Doc\TaskMan.pdf
InstallDir\TASK6000\Doc\sp6040_hwref.pdf
InstallDir\TASK6000\Doc\relnotes.txt

Installation
management
information

InstallDir\TASK6000\misc\UNWISE.EXE
InstallDir\TASK6000\misc\spdiag.ico
InstallDir\TASK6000\misc\hwref.ico
InstallDir\TASK6000\misc\hsetup.exe
InstallDir\TASK6000\misc\u_guide.ico
InstallDir\TASK6000\misc\uninst.ico
InstallDir\TASK6000\misc\Taskdiag.ico
InstallDir\TASK6000\misc\Taskman.ico
InstallDir\TASK6000\misc\Taskact.ico
InstallDir\TASK6000\misc\installed_comp
InstallDir\TASK6000\misc\UNWISE.INI
InstallDir\TASK6000\misc\INSTALL.LOG

Example
Applications: Host

InstallDir\TASK6000\Examples\Upa\UpaHostApp\Bin\UpaHostApp.exe
InstallDir\TASK6000\Examples\Upa\UpaHostApp\UpaHostApp.h
InstallDir\TASK6000\Examples\Upa\UpaHostApp\UpaHostApp.dsw
InstallDir\TASK6000\Examples\Upa\UpaHostApp\UpaHostApp.dsp
InstallDir\TASK6000\Examples\Upa\UpaHostApp\UpaHostApp.c

Example
Applications: IOP

InstallDir\TASK6000\Examples\Upa\UpaIopApp\IopAppLoader.c
InstallDir\TASK6000\Examples\Upa\UpaIopApp\UpaIopApp.c
InstallDir\TASK6000\Examples\Upa\UpaIopApp\UpaIopApp.dsp
InstallDir\TASK6000\Examples\Upa\UpaIopApp\UpaIopApp.dsw
InstallDir\TASK6000\Examples\Upa\UpaIopApp\Bin\IopAppLoader.exe

TASK-6000 software reference guide

24

IOP libraries and
object files

InstallDir\TASK6000\Iop\VxWorks\Lib\DspIo.a
InstallDir\TASK6000\Iop\VxWorks\Lib\E1t1.a
InstallDir\TASK6000\Iop\VxWorks\Lib\Hdlc.a
InstallDir\TASK6000\Iop\VxWorks\Lib\IopDma.a
InstallDir\TASK6000\Iop\VxWorks\Lib\T8100.a
InstallDir\TASK6000\Iop\VxWorks\Lib\TaskIop.a
InstallDir\TASK6000\Iop\VxWorks\Lib\UpaIop.a
InstallDir\Tornado2\target\config\sp6k\dataSegPad.o
InstallDir\Tornado2\target\config\sp6k\sysALib.o
InstallDir\Tornado2\target\config\sp6k\sysLib.o
InstallDir\Tornado2\target\config\sp6k\usrConfig.o
InstallDir\Tornado2\target\config\sp6k\if_fei.o
InstallDir\Tornado2\target\config\sp6k\Rominit.s
InstallDir\Tornado2\target\config\sp6k\Sysalib.s
InstallDir\Tornado2\target\config\sp6k\Pciutil.o
InstallDir\Tornado2\target\config\sp6k\Rppcilib.o

Host library InstallDir\TASK6000\Host\Nt\lib\taskhost.lib

Type Files

Chapter 3: Installing and configuring TASK-6000 software

25

Sources InstallDir\TASK6000\Iop\VxWorks\Application\taskIopApp.c
InstallDir\Tornado2\target\config\sp6k\sysSerial.c (null file)
InstallDir\Tornado2\target\config\sp6k\sysNetif.c (null file)
InstallDir\Tornado2\target\config\sp6k\Syslib.c (null file)
InstallDir\Tornado2\target\config\sp6k\sysEeprom.c (null file)
InstallDir\Tornado2\target\config\sp6k\rpQueueLib.c (null file)
InstallDir\Tornado2\target\config\sp6k\Rppcilib.c(null file)
InstallDir\Tornado2\target\config\sp6k\Rpintlib.c (null file)
InstallDir\Tornado2\target\config\sp6k\Rpdmalib.c (null file)
InstallDir\Tornado2\target\config\sp6k\Pciutil.c (null file)
InstallDir\Tornado2\target\config\sp6k\pciIomapLib.c (null file)
InstallDir\Tornado2\target\config\sp6k\iopSupport.c (null file)
InstallDir\Tornado2\target\config\sp6k\if_fei.c (null file)
InstallDir\Tornado2\target\config\all\dataSegPad.c
InstallDir\Tornado2\target\config\all\version.c
InstallDir\Tornado2\target\config\all\usrConfig.c
InstallDir\Tornado2\target\src\usr\usrLib.c
InstallDir\Tornado2\target\config\sp6k\Target.bat
InstallDir\Tornado2\target\config\sp6k\sysEeprom.h
InstallDir\Tornado2\target\config\sp6k\startit.tcl
InstallDir\Tornado2\target\config\sp6k\setit.tcl
InstallDir\Tornado2\target\config\sp6k\sdm.h
InstallDir\Tornado2\target\config\sp6k\rpQueueLib.h
InstallDir\Tornado2\target\config\sp6k\Rppci.h
InstallDir\Tornado2\target\config\sp6k\Rpint.h
InstallDir\Tornado2\target\config\sp6k\Rpdmalib.h
InstallDir\Tornado2\target\config\sp6k\Radtimer.h
InstallDir\Tornado2\target\config\sp6k\Pcilib.h
InstallDir\Tornado2\target\config\sp6k\pciIomapLib.h
InstallDir\Tornado2\target\config\sp6k\Pci_devs.h
InstallDir\Tornado2\target\config\sp6k\pc.h
InstallDir\Tornado2\target\config\sp6k\I960rx.h
InstallDir\Tornado2\target\config\sp6k\Dsputil.h
InstallDir\Tornado2\target\config\sp6k\Config.h
InstallDir\Tornado2\target\h\drv\netif\if_fei.h
InstallDir\Tornado2\target\config\sp6k\Makefile.app
InstallDir\Tornado2\target\config\sp6k\Makefile
InstallDir\Tornado2\target\config\sp6k\saveobj
InstallDir\Tornado2\target\h\make\defs.bsp

InstallDir is the directory in which RadiSys TASK software is installed.

Type Files

TASK-6000 software reference guide

26

DSP development kit

Type Files
Documentation InstallDir\TASK6000\Doc\Taskman.ico

InstallDir\TASK6000\Doc\TaskMan.pdf
InstallDir\TASK6000\Doc\sp6040_hwref.pdf
InstallDir\TASK6000\Doc\relnotes.txt

Installation
management
information

InstallDir\TASK6000\misc\UNWISE.EXE
InstallDir\TASK6000\misc\spdiag.ico
InstallDir\TASK6000\misc\hwref.ico
InstallDir\TASK6000\misc\hsetup.exe
InstallDir\TASK6000\misc\u_guide.ico
InstallDir\TASK6000\misc\uninst.ico
InstallDir\TASK6000\misc\Taskdiag.ico
InstallDir\TASK6000\misc\Taskman.ico
InstallDir\TASK6000\misc\Taskact.ico
InstallDir\TASK6000\misc\installed_comp
InstallDir\TASK6000\misc\UNWISE.INI
InstallDir\TASK6000\misc\INSTALL.LOG

Libraries InstallDir\TASK6000\Dsp\RsysTask\Lib\kernel.lib
InstallDir\TASK6000\Dsp\RsysTask\Lib\c6xrts.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Dtmf.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Tonedet.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\rtp.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\R1r2mf.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\PktFifo.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\G711.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Echocanc.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Cpm.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Tonegen.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Bfm.lib
InstallDir\TASK6000\Dsp\UpaApp\Lib\Agcvox.lib

Chapter 3: Installing and configuring TASK-6000 software

27

Sources InstallDir\TASK6000\Dsp\UpaApp\src\include\VOXTypedef.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Vadstr.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\UpaPacket.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\upadsp.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\UpaDef.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\typedef.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Tongen.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\tonedet.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\tasktapi.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\task.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Tapi.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\rtpDsp.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\r1r2proto.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\R1r2mf.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\R1r2def.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Proto.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\IpUtil.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\G711.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Ecproto.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Eciostrc.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Echostrc.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Ecdefine.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Dtmfu.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\DspFifo.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\defs.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Def.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\cpmu.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Cpmdef.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Coder.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\BFMTypedef.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\BFMBasic_op.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\BFMasking.h

Type Files

TASK-6000 software reference guide

28

Sources (cont’d) InstallDir\TASK6000\Dsp\UpaApp\src\include\basic_op.h
InstallDir\TASK6000\Dsp\UpaApp\src\include\Agcvox.h
InstallDir\TASK6000\Dsp\UpaApp\src\R1r2mf
InstallDir\TASK6000\Dsp\UpaApp\src\R1r2mf\Zr1r2mf.c
InstallDir\TASK6000\Dsp\UpaApp\src\R1r2mf\R1R2Tbl.h
InstallDir\TASK6000\Dsp\UpaApp\src\R1r2mf\R1R2Stmchn.c
InstallDir\TASK6000\Dsp\UpaApp\src\R1r2mf\R1r2findkey.c
InstallDir\TASK6000\Dsp\UpaApp\src\msgDbg
InstallDir\TASK6000\Dsp\UpaApp\src\msgDbg\msgDbg.c
InstallDir\TASK6000\Dsp\UpaApp\src\Cpm
InstallDir\TASK6000\Dsp\UpaApp\src\Cpm\Zcpm.c
InstallDir\TASK6000\Dsp\UpaApp\src\Cpm\Cpmtbl.h
InstallDir\TASK6000\Dsp\UpaApp\src\NoCoder
InstallDir\TASK6000\Dsp\UpaApp\src\NoCoder\ZnoCoder.c
InstallDir\TASK6000\Dsp\UpaApp\src\G711
InstallDir\TASK6000\Dsp\UpaApp\src\G711\Zg711Enc.c
InstallDir\TASK6000\Dsp\UpaApp\src\G711\Zg711Dec.c
InstallDir\TASK6000\Dsp\UpaApp\src\G711\Vadtbl.dat
InstallDir\TASK6000\Dsp\UpaApp\src\G711\law.dat
InstallDir\TASK6000\Dsp\UpaApp\src\G711\Bfmtab.h
InstallDir\TASK6000\Dsp\UpaApp\src\pkt
InstallDir\TASK6000\Dsp\UpaApp\src\pkt\Zpktrecv.c
InstallDir\TASK6000\Dsp\UpaApp\src\pkt\Zpktsend.c
InstallDir\TASK6000\Dsp\UpaApp\src\Echo
InstallDir\TASK6000\Dsp\UpaApp\src\Echo\zecho.c
InstallDir\TASK6000\Dsp\UpaApp\src\Dtmf
InstallDir\TASK6000\Dsp\UpaApp\src\Dtmf\Ztonedet.c
InstallDir\TASK6000\Dsp\UpaApp\src\Dtmf\tonetbl.dat
InstallDir\TASK6000\Dsp\UpaApp\src\Serial
InstallDir\TASK6000\Dsp\UpaApp\src\Serial\zserial.c
InstallDir\TASK6000\Dsp\UpaApp\src\Tonegen
InstallDir\TASK6000\Dsp\UpaApp\src\Tonegen\dB2lin.h
InstallDir\TASK6000\Dsp\UpaApp\src\Tonegen\Tonegen.dat
InstallDir\TASK6000\Dsp\UpaApp\src\Tonegen\Ztonegen.c
InstallDir\TASK6000\Dsp\UpaApp\src\UpaDspCtrl
InstallDir\TASK6000\Dsp\UpaApp\src\UpaDspCtrl\UpaDspCtrl.c

Configuration files InstallDir\TASK6000\Dsp\UpaApp\config.cfg
InstallDir\TASK6000\Dsp\UpaApp\Board.cfg

Composer InstallDir\TASK6000\Host\Nt\Bin\compose.exe
InstallDir is the directory in which RadiSys TASK software is installed.

Type Files

29

4 Developing Host and
IOP applications

This chapter describes how to write a simple Voice-Over-Internet-Protocol (VoIP)
application. It explains what you must do to create IOP-based applications that run
under the VxWorks real-time OS.

The sample application demonstrates how the SPIRIT board can conduct voice
channels over a network and shows what’s needed to establish a UPA channel with
an enabled service, receive channels status, and control its behavior. Different DSP
units, channel numbers and predefined set of codecs are used to demonstrate the
SPIRIT board’s ability.

Host-based application rules differ only slightly and are covered in a separate
paragraph.

For a copy of this application in ASCII format, see these files in the
InstallDir/TASK6000/Examples/Upa/UpaIopApp directory:
• IopAppLoader.c
• UpaIopApp.c

For information about... Go to this page...
Developing the Host application (IopAppLoader.c).. 30

Initialize the Host driver... 30
Set up message handlers .. 30
Initialize UPA structures... 30
Load and run applications... 30

Developing the IOP application (UpaIopApp.c)... 31
Initialize the IOP driver .. 31
Set up message handlers .. 31
Configure services... 32
Create data paths ... 32

Building Host and IOP applications... 33
Naming conventions ... 34
Host application development ... 34
IOP application development .. 34

Sample code: Host application (IopAppLoader.c).. 36
Sample code: IOP application (UpaIopApp.c) ... 39

TASK-6000 software reference guide

30

Developing the Host application (IopAppLoader.c)

Initialize the Host driver
The Host software must first initialize the host driver, as shown in Initializing the
host driver on page 36.

Set up message handlers
After initializing the host driver, the application sets a UPA event handler (a
function to call whenever a UPA event occurs). In our sample application, the
handler waits for an indication that the DSP is running (see the hostRunProg
function description below).

The Host application creates Win32 events, ghIopRunning and ghDspRunning, to
signal that a particular IOP or DSP is running, and then sets these flags:

• etCommandAck: Specifies whether DSP should acknowledge commands sent to
it from IOP or host.

• etEventForwarding: Specifies whether IOP is to forward UPA events to the
Host.

• etLanControl: Specifies whether the Host sends control messages to the IOP via
the Local Area Network or via the PCI bus. You must set this field to
enumNoLanControl; TASK does not support LAN-based messaging.

For sample code, see Setting up message handlers on page 36.

Initialize UPA structures
The host application initializes UPA structures on the host and informs the IOP of
its IP address, as shown in Initializing UPA structures on page 36

Load and run applications
The host application retrieves system information, such as the number of boards
plugged into the system, and the specifics of each board. For sample code, see
Loading and running applications on page 37.

The VxWorks image resides in a file on the host. The host application loads each
IOP with the same image. For sample code, see Loading the VxWorks image on
IOPs on page 37.

The HOST waits for an indication from each IOP that it is running, as shown in
Waiting for IOP response on page 38.

Finally the host loads the DSP image “mulcoder.out” to each DSP, sends a
command to DSP to start the image, and waits until it receives feedback from DSP
that it is running. For sample code, see Loading mulcoder.out on page 38.

Chapter 4: Developing Host and IOP applications

31

Developing the IOP application (UpaIopApp.c)
The entry point for our sample IOP application is the function “idiag()”.

Initialize the IOP driver
idiag initializes the IOP driver by calling iopInit, which creates message queues, sets
interrupt vectors, and so on, as shown in Calling iopInit on page 39

The upStart function initializes UPA structures on the IOP, as shown in Calling
upStart on page 39

The IOP application then configures the on-board peripherals by doing
the following:

• Assigns default values to T8100 registers.

• Sets T8100 clocks.

• Configures T1 structures.

For sample code, see Configuring on-board peripherals on page 40.

Set up message handlers
If the application is intended to react to various UPA events, it must install an event
handler (callback function), as described in Installing event handlers (callback
functions) on page 41.

In this case, CasEventMsgHandler is a function that establishes and tears down
voice channels in response to OFF-Hook and ON-Hook events.

Upon UPA CAS event, a callback CasEventHandler() is called. It analyzes the
ABCD bits of the CAS event to determine if it was an OFF HOOK or ON HOOK
CAS event. Information about time-slot and the framer port on which the CAS
event has happened is passed to CasEventHandler() function.

In the case of an OFF HOOK event, the functions CreateFastPacketOut and
CreateFastPacketIn are called. CreateFastPacketOut enables transmit direction on a
particular channel.

Since the SPIRIT board has four framer and four DSPs capable of running up to
24 channels, the sample application directly maps framers to DSPs and time-slots to
virtual channel numbers. For example, if an OFF HOOK event happens on framer 1
time-slot 9, the application sets up channel 9 on DSP 1. This is accomplished by
making the appropriate TDM connection using the IOP’s T8105 switch.

For sample code, see Connecting the TDM to IOPs on page 41.

TASK-6000 software reference guide

32

Once the TDM connection is made, the application calls upEnableChannel to
enable bidirectional voice data flow to and from the DSP, as described in Enabling
bi-directional voice data flow to and from the DSP on page 41.

Configure services
At this point the application configures services on DSP for the outbound direction
(toward the IP cloud). The sample application chooses a G.711 voice codec, Echo
Cancellation, and RTP Encoder. For sample code, see Configuring services on
page 42.

Create data paths
Once the services are configured, the application creates a data path between an
outgoing RTP channel running on a DSP and the IOP driver’s network packet
routing component. For simplicity, the sample application assumes operation over a
private LAN; each IOP assumes that its peer IP address is equal to its own address
with the least-significant bit toggled. For sample code, see Creating a data path
between an outgoing RTP channel running on a DSP and the IOP driver’s network
packet routing component on page 43.

The application calls CreateFastPacketIn to enable the receive direction on the
channel. Time-slots are mapped to virtual channels in the same fashion as for
CreateFastPacketOut and the T8105 switch makes another TDM connection for
this direction of voice data flow. For sample code, see Enabling the receive direction
on the channel on page 44.

The application then initializes the RTP decoder, as shown in Initializing the RTP
decoder on page 45.

Finally the sample IOP application creates a data path between an inbound RTP
channel running on a DSP and the IOP driver’s network packet routing component,
as shown in Creating a data path between an inbound RTP channel running on a
DSP and the IOP driver’s network packet routing component on page 45

The receive direction is now initialized.

When an OFF HOOK event occurs on both IOPs, the application establishes VoIP
call across the Local Area Network.

When an ON HOOK event occurs on either IOP, the application tears down the
channels by calling functions TerminateFastPacketOut and TerminateFastPacketIn,
which disable services. As a final step, the application disables the virtual channel.

Chapter 4: Developing Host and IOP applications

33

Building Host and IOP applications
The TASK6000 2.x distribution for Host and IOP development kit includes the
Microsoft Visual C++ project files for Host applications and Makefiles for IOP
applications. This section explains the development environment setup for Host and
IOP applications. The next figure identifies the locations of the files that you need
to use to compile the application.

Figure 4-1. Location of files required to compile the application

TASK-6000 software reference guide

34

Naming conventions
The directory under which TASK6000 and Tornado2 directories are installed is
referred to as InstallDir in the following sections.

The directory under which tornado was installed, i.e., the directory under which the
Tornado2 directory was installed by the original Tornado installation CD is referred
to as TornadoDir.

Host application development
The host example application is available under
InstallDir\TASK6000\Examples\Upa\UpaHostApp. The Microsoft Visual C++
project file contains the configurations required for making the build. Please make
sure that you use similar configurations in the host application developed.

The include file directories are marked in the figure.

The following library files are available for Host application development

Taskhost.dll, hsmgrint.dll (InstallDir\TASK6000\Host\Nt\Bin)
Taskhost.lib (used to compile the application,
InstallDir\TASK6000\Host\Nt\lib)

The VxWorks image to be used with the host application is available in
InstallDir\TASK6000\Iop\VxWorks\.

IOP application development
The application IopAppLoader.exe (located in
InstallDir\TASK6000\Examples\Upa\UpaIopApp\) loads the bootable image (with
the filename “vxworks”) to the IOP.

The library files required to make a bootable VxWorks image are available under
InstallDir\Tornado2\target\config\sp6k.

A sample makefile is provided along with the example application (UpaIopApp).
The sample Makefile provides example build and clean clauses for the example
application. The installation CD extracts into the system a set of files meant to be
under the Tornado distribution directory. The default setup expected from the
installation system is that Tornado is installed in the C drive, and the Tornado2
directory path is C:\Tornado2.

The installation CD extracts files into this directory assuming that this directory
already exists. If this directory is located in another location, say for example D:,
install the software with destination directory as D: instead of C:. This ensures that
the Tornado files from the CD are extracted to the right directory. If you cannot
select a directory such that the Tornado files are extracted in the same path as the
Tornado distribution files, you should manually copy these files from the
installation directory into the Tornado distribution directory.

Copy all the files under InstallDir\Tornado2 to TornadoDir\Tornado2.

Change the makefiles such that PACE_PATH points to the location of
InstallDir\TASK6000 and WIND_BASE as <TORNADO_ DIR>\Tornado2.

Chapter 4: Developing Host and IOP applications

35

Special note for IOP applications

The CD contains certain object files extracted into the sp6k directory under
InstallDir\tornado2\target\config. These files are required for building the VxWorks
image. Use a clean clause similar to the one provided in the sample Makefile
(task6000_clean). This backs up the object files before cleaning the build
environment and the restores these files after the end of “clean” clause. This is
required because the “clean” clause provided inside the makefiles of Tornado
distribution clean all the object files including the one provided with the TASK6000
2.X distribution, and these object files cannot be re-built using the TASK6000 2.X
distribution files.

36 T
A

SK
-6000 softw

are reference guide

Sample code: Host application (IopAppLoader.c)

Initializing the host driver
// Initialize host driver

if(hostInit() != SUCCESS)
{

printf("\nUpaHostApp ==> ** ERROR ** Failed to initialize Host Driver - Exiting\n");
return(UP_FAILURE);

}

Setting up message handlers
// Set an event handler to process any events received from either the IOP or DSP

upSetEventHandler(UpaEventHandler);

// Set up an automatically resettable event, signalled when an individual IOP runs.
ghIopRunning = CreateEvent(NULL, FALSE, FALSE, NULL);

// Set up an automatically resettable event, signalled when an individual DSP runs.
ghDspRunning = CreateEvent(NULL, FALSE, FALSE, NULL);

memset(&stIopConfig, (int)NULL, sizeof(UP_IOPSYSCONFIG_ST));
stIopConfig.etCommandAck = enumEnabled;
stIopConfig.etEventForwarding = enumEnabled;
stIopConfig.etLanControl= enumNoLanControl;

Initializing UPA structures
// Call Up Start and pass any IOP Initialization code that may have been provided.

if(upStart(&stIopConfig) != UP_SUCCESS)
{

printf("\nUpaHostApp==> ** ERROR ** Unable to Start UPA\n");
}
else if(!iIOPS)
{

printf("\nUpaHostApp==> UPA started with No Ethernet Adapters Initialized.");
}

37

C
hapter 4: D

eveloping H
ost and IO

P
applications

Loading and running applications

Retrieving system information

// Get the System Information and Load and Run IOPs
hostGetSystemInfo(&lIopCount, &lDspCount, &pstBoardInfo);
printf("\nUpaHostApp ==> System Information: %d IOP(s) Installed *** %d DSPs Installed\n", lIopCount, lDspCount);

Loading the VxWorks image on IOPs

if(pstBoardInfo[lIOP].DeviceState == HS_DEVICE_NORMAL)
{

if(hostLoadIop(lIOP, "vxworks") != SUCCESS)
{

printf("\nUpaHostApp ==> ** ERROR ** Unable to Load Program %s on IOP # %d\n", "VxWorks", lIOP);
continue;

}
else

printf("\nUpaHostApp ==> Program %s loaded on IOP # %d\n", "VxWorks", lIOP);

}

// The board is either in a quiescent or powered off state. Log that the board
// cannot be loaded at this time and allow the board to be loaded when re-inserted.

else
{

printf("\nUpaHostApp==> ** ERROR ** IOP #%d Cannot be Loaded because it is in a %s state\n", lIOP,
(pstBoardInfo[lIOP].DeviceState == HS_DEVICE_QUIESCED ? "QUIESCENT" : "POWERED OFF"));

continue;
// The process of running an IOP is time consuming, so we poll the IOP several times
// regarding its ready-to-run state.

lIterations = 0;
do

{
// Run the previously loaded IOP

if(hostRunLoadedIops(lIOP) != SUCCESS)
{

// Catch a quick pause
printf("\nUpaHostApp ==> ** ERROR ** Unable to Run Program %s on IOP %d - RETRYING\n", "VxWorks", lIOP);
Sleep(1000); //wait 1s

38 T
A

SK
-6000 softw

are reference guide

}
else

{
printf("\nUpaHostApp ==> IOP %d Running program %s!\n", lIOP, "VxWorks");
bIOPRunning[lIOP] = TRUE;
break;
}

}while(lIterations++ < RETRIES);

Waiting for IOP response

// Wait for response from IOP before proceeding.
WaitForSingleObject(ghIopRunning, UPA_WAIT_TIMEOUT);

Loading mulcoder.out

// Go through the IOPs that are loaded and running and load and execute their
// associated DSPs

for(lIOP=0; lIOP < lIopCount; lIOP++)
{

if(!bIOPRunning[lIOP])
continue;

// Load and run the DSPs found on a specific IOP
for(lDSP = 0; lDSP < pstBoardInfo[lIOP].NumberDSPs; lDSP++)
{

// Load the DSP using the program whose path was specified as an argument to this application
if(hostLoadProg(lDSPOffset + lDSP, "mulcoder.out") != UP_SUCCESS)
{

printf("\nUpaHostApp ==> ** ERROR ** Failed to load Program %s on Global DSP # %d\n","mulcoder.out",
lDSPOffset + lDSP);

continue;
}
else

printf("\nUpaHostApp ==> Program %s loaded on Global DSP # %d\n", "mulcoder.out", lDSPOffset + lDSP);

// Try to run the recently loaded DSP
if(hostRunProg(lDSPOffset + lDSP) != UP_SUCCESS)
{

39

C
hapter 4: D

eveloping H
ost and IO

P
applications

printf("\nUpaHostApp ==> ** ERROR ** Unable to Run Program %s on Global DSP %d\n","mulcoder.out",
lDSPOffset + lDSP);

}
else if(WaitForSingleObject(ghDspRunning, UPA_WAIT_TIMEOUT) != WAIT_OBJECT_0)
printf("\nUpaHostApp==> ** ERROR ** DSP %d Timed Out when attenpting to run program %s!\n", lDSPOffset +

lDSP,"mulcoder.out");

else
{

printf("\nUpaHostApp ==> Global DSP %d Running program %s!\n", lDSPOffset + lDSP,"mulcoder.out");

// Increment the number of Startup Replies to be expected
glStartReplies++;

}
} //for(lDSP = 0; lDSP < pstBoardInfo[lIOP].NumberDSPs; lDSP++)

// Update the Global DSP offset
lDSPOffset += pstBoardInfo[lIOP].NumberDSPs;

}//for(lIOP=0; lIOP < lIopCount; lIOP++)

Sample code: IOP application (UpaIopApp.c)

Initializing the IOP drive

Calling iopInit

if (iopInit() != SUCCESS)
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, 0, 0, 0, "IopInit FAILED");
return0(FAILURE);

}

Calling upStart

if(upStart(NULL) != UP_SUCCESS)
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, 0, 0, 0, "upStart FAILED");
return(FAILURE);

}

40 T
A

SK
-6000 softw

are reference guide

Configuring on-board peripherals

iopControlPeripheral(TASK_T8100, CONFIG_T8100_DEFAULTS,(t_configArg *)&t8100ClkConfig);

// SET T8105 CLOCKS

t8100ClkConfig.reference_clk_select = REF_LOCAL;
t8100ClkConfig.netref_select = NETREF_LOCAL;
t8100ClkConfig.fallback_clk_select = FB_LOCAL;

t8100ClkConfig.netref_enable = TRUE;
t8100ClkConfig.netref2_enable = FALSE;
t8100ClkConfig.frame_clk_a_enable = TRUE;

t8100ClkConfig.frame_clk_b_enable = TRUE;
t8100ClkConfig.compat_clks_enable = TRUE;
t8100ClkConfig.fallback_enable = FALSE;

iopControlPeripheral(TASK_T8100, CONFIG_T8100_CLOCKS,(t_configArg *)&t8100ClkConfig);

// CONFIGURE T1

T1_config_struct.line_coding= B8ZS;
T1_config_struct.framing_mode= ESF; /* extended superframe */
T1_config_struct.line_build_out= DSX1_0_to_133_ft;
T1_config_struct.idle_code= 0xff; /* 255 */
T1_config_struct.idle_channels= 0x00000000;

/* do not insert idle code in any channels */
T1_config_struct.payload_loopback_enable= FALSE;
T1_config_struct.framer_loopback_enable= FALSE;
T1_config_struct.local_loopback_enable= FALSE;
T1_config_struct.remote_loopback_enable= FALSE;
T1_config_struct.robbed_bit_signaling_enable= TRUE;

for (framer_id = framer_1; framer_id<=framer_4; framer_id++)
// it has to a better way, like i<=num.ports

{
T1_config_struct.framer_id = framer_id;
iopControlPeripheral(TASK_T1, CONFIG_T1,(t_configArg *)&T1_config_struct);
}

41

C
hapter 4: D

eveloping H
ost and IO

P
applications

Setting up message handlers

Installing event handlers (callback functions)

upSetEventHandler(&CasEventMsgHandler);

Connecting the TDM to IOPs

// Setup path from T1 to DSP

t8100SwitchCfg.number_of_connections = 1;
t8100SwitchCfg.connections = path;

path[0].connect_src.resource= T8100_T1;
path[0].connect_src.mode= T8100_CONNECT_CONST_DELAY;
path[0].connect_src.ctbus_connect_num = 0;
path[0].connect_src.port= T1_Port[lUnit];
path[0].connect_src.timeslot= lChannel;

path[0].connect_dest.resource= T8100_DSP;
path[0].connect_src.mode= T8100_CONNECT_CONST_DELAY;
path[0].connect_dest.ctbus_connect_num = 0;
path[0].connect_dest.port= DSP_Port[lUnit];
path[0].connect_dest.timeslot= lChannel;

iopControlPeripheral (TASK_T8100, CONFIG_T8100_SWITCHING, (t_configArg *)&t8100SwitchCfg);

Enabling bi-directional voice data flow to and from the DSP

if(upEnableChannel(lUnit// DSP Unit #
lChannel,// Channel #
TRUE,// Tx Enabled
TRUE) != UP_SUCCESS)// Rx Enabled

{
IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, 0, "CrFastPktOut::EnableChannel-Bad");

}
else
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, 0, "CrFastPktOut::EnableChannel-Good");
}

42 T
A

SK
-6000 softw

are reference guide

Configuring services

Configuring DSP services for outbound direction (toward the IP cloud)

/ Setup G711 Service Parameters
utConfigSvc.tCodecConfig.eCodec = ctG711; // Set Codec to G711
utConfigSvc.tCodecConfig.eCodecParams.tG711Param.eBfmEnable = FALSE; / / BFM OFF
utConfigSvc.tCodecConfig.eCodecParams.tG711Param.eLaw = enumMULAW; / / U-Law
utConfigSvc.tCodecConfig.eCodecParams.tG711Param.eVadEnable = FALSE; / / VAD OFF
utConfigSvc.tCodecConfig.eCodecParams.tG711Param.lVadLowSigThreshold = -50;

// Configure Service
if(upConfigService(lUnit, // DSP Unit #

lChannel, // Channel #
stCodec, // CODEC Service Type Enumeration
&utConfigSvc) != UP_SUCCESS) // Codec Configuration Settings

{
IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, stCodec, "CrFastPktOut::ConfigSvc-Bad");
return(UP_FAILURE);

}
else
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, stCodec, "CrFastPktOut::ConfigSvc-Good");
}

// Setup Echo Cancellation Service
utConfigSvc.tEchoCancConfig.eTapLength = TL8ms;
utConfigSvc.tEchoCancConfig.lFreezeAdaptation = enumDisabled;
utConfigSvc.tEchoCancConfig.lNLPDisable = enumDisabled;
utConfigSvc.tEchoCancConfig.lNlpThreshold = 10;
utConfigSvc.tEchoCancConfig.lSlowAdaptation = enumDisabled;

// Configure Service
if(upConfigService(lUnit, // DSP Unit #

lChannel, // Channel #
stEchoCanc, // Echo Cancellation Service Type Enumeration

&utConfigSvc) != UP_SUCCESS) // Codec Configuration Settings
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, stEchoCanc, "CrFastPktOut::ConfigSvc-Bad");
return(UP_FAILURE);

}
else

43

C
hapter 4: D

eveloping H
ost and IO

P
applications

{
IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, stEchoCanc, "CrFastPktOut::ConfigSvc-Good");

}

// Setup RTP Encoder Service
utConfigSvc.tRtpSendConfig.stRtpSendHeader.version = 2;
utConfigSvc.tRtpSendConfig.stRtpSendHeader.p = 0;
utConfigSvc.tRtpSendConfig.stRtpSendHeader.x = 0;
utConfigSvc.tRtpSendConfig.stRtpSendHeader.cc = 0;
utConfigSvc.tRtpSendConfig.stRtpSendHeader.m = 0;
utConfigSvc.tRtpSendConfig.stRtpSendHeader.pt = 0;
utConfigSvc.tRtpSendConfig.stRtpSendHeader.seq = 1;
utConfigSvc.tRtpSendConfig.stRtpSendHeader.ts = 0;
utConfigSvc.tRtpSendConfig.stRtpSendHeader.ssrc = 0x12345;
utConfigSvc.tRtpSendConfig.ulPaddingLen = 0;
utConfigSvc.tRtpSendConfig.ulPayloadInterval = 10;
utConfigSvc.tRtpSendConfig.ulTimeElapsedForEachFrame = 80;
utConfigSvc.tRtpSendConfig.ulInitConfig = 0;

// Configure Service
if(upConfigService(lUnit, // DSP Unit #

lChannel, // Channel #
stRtpEncode, // RTP Encoder Service Type Enumeration
&utConfigSvc) != UP_SUCCESS) // Codec Configuration Settings

{
IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, stRtpEncode, "CrFastPktOut::ConfigSvc-Bad");
return(UP_FAILURE);

}
else
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, stRtpEncode, "CrFastPktOut::ConfigSvc-Good");
}

Creating data paths

Creating a data path between an outgoing RTP channel running on a DSP and the IOP driver’s network
packet routing component

ulRouterAddr = gulSrcAddress ^ 1 ; //toggle least significant bit
IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, ulRouterAddr, 0, 0, "ulRouterAddr");

stPktSendConfig.ulInterface = 0; // Interface 0 (fei0)

44 T
A

SK
-6000 softw

are reference guide

stPktSendConfig.ulRouterAddress = ulRouterAddr; // IP address of Router
stPktSendConfig.ulDestAddress = ulRouterAddr; // IP address of Destination

stPktSendConfig.ulDestPort = 6000 + ((32*lUnit + lChannel)<<1);// RTP Port

// Configure Packet Builder Service
if(upConnectPktSend(lUnit, // DSP #

lChannel, // Channel #
&stPktSendConfig) != UP_SUCCESS) // Fast Pkt Send Structure

{
IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, 0, "CrFastPktOut::ConPktSend-Bad");
return(UP_FAILURE);

}
else
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, 0, "CrFastPktOut::ConPktSend-Good");
}

Transmit direction is initialized !

Enabling the receive direction on the channel

// Setup path from DSP to T1

t8100SwitchCfg.number_of_connections = 1;
t8100SwitchCfg.connections = path;

path[0].connect_src.resource = T8100_DSP;
path[0].connect_src.mode = T8100_CONNECT_CONST_DELAY;
path[0].connect_src.ctbus_connect_num = 0;
path[0].connect_src.port = DSP_Port[lUnit];
path[0].connect_src.timeslot = lChannel;

path[0].connect_dest.resource = T8100_T1;
path[0].connect_src.mode = T8100_CONNECT_CONST_DELAY;
path[0].connect_dest.ctbus_connect_num = 0;
path[0].connect_dest.port = T1_Port[lUnit];
path[0].connect_dest.timeslot = lChannel;

iopControlPeripheral (TASK_T8100, CONFIG_T8100_SWITCHING, (t_configArg *)&t8100SwitchCfg);

45

C
hapter 4: D

eveloping H
ost and IO

P
applications

Initializing the RTP decoder
// Setup RTP Decoder Service

utConfigSvc.tRtpRecvConfig.ulAutoAdjustable = TRUE;
utConfigSvc.tRtpRecvConfig.ulMaxJitterBufferDly = 200;
utConfigSvc.tRtpRecvConfig.ulTargetJitterBufferDly = 30;
utConfigSvc.tRtpRecvConfig.ulMaxFrameSizeInBytes = 80;
utConfigSvc.tRtpRecvConfig.ulExtractDataLength = 80;
utConfigSvc.tRtpRecvConfig.ulInitConfig = 0;

// Configure Service
if(upConfigService(lUnit, // DSP Unit #

lChannel, // Channel #
stRtpDecode, // RTP Decoder Service Type Enumeration
&utConfigSvc) != UP_SUCCESS) // Codec Configuration Settings

{
IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, stRtpDecode, "CrFastPktIn::ConfigSvc-Bad");
return(UP_FAILURE);

}
else
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, stRtpDecode, "CrFastPktIn::ConfigSvc-Good"); }

Creating a data path between an inbound RTP channel running on a DSP and the IOP driver’s network
packet routing component

// Setup the Fast Packet Receiver Service
stPktRecvConfig.ulInterface = 0; // Ethernet Adapter Interface (fei0)
stPktRecvConfig.ulReceivePort = 6000 + ((32*lUnit + lChannel)<<1); // Port Assignment (6000 - 7000 port range)
stPktRecvConfig.eService = stRtpDecode;

// Setup Packet Parser Service
if(upConnectPktRecv(lUnit, // DSP #

lChannel, // Channel #
&stPktRecvConfig) != UP_SUCCESS) // Fast Pkt Receive Structure

{
IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, 0, "CrFastPktIn::ConPktRecv-Bad");
return(UP_FAILURE);

}
else
{

IopLogEvent(IOP_EVENT_LOG_TYPE_APP_HIGH, lUnit, lChannel, 0, "CrFastPktIn::ConPktRecv-Good");
}

TASK-6000 software reference guide

46

47

A Host functions

The Host API provides a control interface for the allocation, configuration, and
execution of Host resources. The function prototypes and definitions for this API
are contained in these header files:

• Host control peripherals: sp6khostapi.h (anything that begins with host)

• UPA calls: upa.h.

The host application is developed by linking with the Host API library. The library
is installed as part of the TASK-6000 development kit and resides in this file:

InstallDir\host\nt\lib\taskhost.lib

This appendix lists function descriptions alphabetically within the following groups:

• Standard functions: Includes Control and Message APIs.

• Advanced functions: Includes functions you use only in unusual,
special-purpose circumstances.

You can find a function in this appendix either by locating it alphabetically within
its group, or by using Table A-1 on the next page, which groups like functions
together.

Overview

Message API
The Message API from the host is substantially the same as from the IOP with the
addition of slot numbers to the function arguments.

TASK-6000 software reference guide

48

Function list
Use this table to identify the Host functions you want to use. Use the function
description later in this appendix to obtain detailed information, including syntax
and parameter values.

Table A-1. Host functions

Function Description
Standard functions

hostControlPeripheral Configures and controls peripherals on
SPIRIT boards.

hostExit Inform TASK of user application exit.
hostGetBoardInfo Obtains information on a specific board.
hostGetSystemInfo Obtains information about all boards in the

system.
hostInit Initializes the driver.
hostLoadDsp Loads ‘C6x application into ‘C6x memory.
hostLoadIop Loads and runs an IOP application.
hostResetBoard Resets the SPIRIT board.
hostResetDsp Reset and initialize a DSP.
hostRunDsp Runs ‘C6x program.
hostRunLoadedIop Run all loaded IOPs.
hostSetEventHandler Register a handler for IOP/DSP events.
hostSetHotSwapHandler Set user handler for Hot Swap events.
hostSetPeripheralDataHandler User handler for peripheral data callback.

Control API
upEnableChannel Enables transmit and receive paths the

specified channel.
upEnableService Enables a specified service based on the service

type for a specific channel, and also implicitly
enables a service when it is configured.

upDisableService Disables a specified service based on service
type for a specific channel.

upConfigService Configures a specified service based on service
type for a specific channel.

upConfigServiceGlobal Configures a specified service based on service
type for all channels.

upSetEventHandler Sends notification of DSP events.
upQueryQOSReport Causes the specified DSP to send a Quality of

Service report as an UP_EVT_STATISTICS_RPT
event.

upStart Initializes the Universal Port subsystem
Message API The Message API from the host is substantially

the same as from the IOP with the addition of
slot numbers to the function arguments.

Appendix A: Host functions • Function list

49

upConnectPktSend Creates a data path connection between an
RTP or T.38 coder that runs in a channel on a
DSP and the IOP’s networking hardware.

upConnectPktRecv Creates a data path from a UDP receive port to
an RTP or T.38 decoder that runs on the
specified DSP channel.

upDisconnectPktSend Stops the forwarding of packets from a DSP
channel to an IP socket and deallocates all
associated IOP and DSP resources.

upDisconnectPktRecv Stops the forwarding of packets from an IP
socket to a DSP channel and de-allocates all
associated IOP and DSP resources.

Advanced functions
hostGetNWPktBuf Receives network packets from the DSP.
hostJitterControl Updates jitter control parameters.
hostReadIop Read from IOP memory.
hostSendNWPktBuf Sends network packets to the DSP.
hostSendMsg Sends a message to IOP/DSP.
hostSetNWNotify Set user handler for network packets

notification.
hostWriteIop Write to IOP memory.
hostSetPollPeriod Set time period for message and network data

polling.
hostGetNWPktBuf Receives network packets from the DSP.
hostJitterControl Updates jitter control parameters.
hostSendPriorityMsg Send a priority message to IOP.
upSetUserMsgHandler The MsgHandlerFunc is called whenever a

TASK user message is received by the host with
a msgType not used by UPA.

Table A-1. Host functions

Function Description

TASK-6000 software reference guide

50

hostControlPeripheral

Standard Configures the specified peripheral.

Call this function to initialize, configure, and operate the T1/E1 framer and TDM
switch peripherals.

Syntax

int hostControlPeripheral (
IN int peripheral,
IN int cmd,
IN t_configArg *pArg

)

Parameters

peripheral

Peripheral. You can select one of these values:

TASK_E1
TASK_T1
TASK_T8100

cmd Command to send to the peripheral. You can use one of these values:

CONFIG_E1
Instructs the framer to use E1 line protocol.

CONFIG_T1
Instructs the framer to use T1 line protocol.

CONFIG_T8100_DEFAULT
Reserved.

CONFIG_T8100_SWITCHING
A pointer to the structure that specifies T8100 switching:

t_T8100SwitchConfig structure

typedef struct {

ulong number_of_connections;

t_T8100Connection *connections;

} t_T8100SwitchConfig;

number_of_connections
The number of T8100 connections to be made.
The maximum connections per call is 256.

*connections

Pointer to a list that contains
number_of_connections connections.

Appendix A: Standard Host functions • hostControlPeripheral

51

CONFIG_T8100_CLOCKS
A pointer to the structure that specifies the clock the TDM
switch uses:

t_T8100ClockConfig

typedef struct {

t_ref_clk reference_clk_select;

t_netref_clk netref_select;

t_fallback_clk allback_clk_select;

BOOL32 netref_enable;

BOOL32 netref2_enable;

BOOL32 frame_clk_a_enable;

BOOL32 frame_clk_b_enable;

BOOL32 compat_clks_enable;

BOOL32 fallback_enable;

} t_T8100ClockConfig;

reference_clk_select
Specifies the primary clock source to be used by
the T8100.

netref_select

Specifies the clock source used by the T8100 to
generate its output CT_NETREF signal.

fallback_clk_select

Specifies the fallback clock source used by the
T8100. That is, the clock used when the primary
clock source selected via reference_clk_select
fails.

netref_enable

Enables the CT_NETREF signal, generated by the
T8100, onto the CT Bus.

netref2_enable

Enables the CT_NETREF_2 signal, generated by
the T8100, onto the CT Bus.

framer_clk_a_enable

Enables the CT_C8_A (clock) and
CT_FRAME_A (frame sync) signals, generated by
the T8100, onto the bus.

framer_clk_b_enable

Enables the CT_C8_B (clock) and CT_FRAME_B
(frame sync) signals, generated by the T8100,
onto the bus.

compat_clks_enable

Enables the MVIP and SCSA compatibilty clock
and strobe signals, generated by the T8100, onto
the bus.

TASK-6000 software reference guide

52

fallback_enable

Enables clock fallback. When a clock error occurs
on the current clock reference, the T8100 will fall
back to fallback_clk_select.

CONFIG_T8100_STREAMS
A pointer to the structure that specifies the T8100
stream parameters:

t_T8100StreamConfig structure

typedef struct {
t_stream_rate dsp_bsp0_rate;
t_stream_rate dsp_bsp1_rate;
t_stream_rate e1t1_rate;
t_stream_rate ct_bus_03_00_rate;
t_stream_rate ct_bus_07_04_rate;
t_stream_rate ct_bus_11_08_rate;
t_stream_rate ct_bus_15_12_rate;
t_stream_rate ct_bus_19_16_rate;
t_stream_rate ct_bus_23_20_rate;
t_stream_rate ct_bus_27_24_rate;
t_stream_rate ct_bus_31_28_rate;

} t_T8100StreamConfig;

dsp_bsp0_rate

Specifies the TDM stream rate for Buffered Serial
Port 0 of the DSPs. Currently this value must be
the same as dsp_bsp1_rate.

dsp_bsp1_rate

Specifies the TDM stream rate for Buffered Serial
Port 1 of the DSPs. This value must be the same
as dsp_bsp0_rate.

e1t1_rate Specifies the TDM stream rate for the E1/T1
framers. Under most conditions, this rate should
be 2MHz.

ct_bus_03_00_rate
Specifies the TDM stream rate for CT bus streams
0 through 3.

ct_bus_07_04_rate
Specifies the TDM stream rate for CT bus streams
4 through 7.

ct_bus_11_08_rate
Specifies the TDM stream rate for CT bus streams
8 through 11.

ct_bus_15_12_rate
Specifies the TDM stream rate for CT bus streams
12 through 15.

ct_bus_19_16_rate

Appendix A: Standard Host functions • hostControlPeripheral

53

Specifies the TDM stream rate for CT bus streams
16 through 19.

ct_bus_23_20_rate
Specifies the TDM stream rate for CT bus streams
20 through 23.

ct_bus_27_24_rate
Specifies the TDM stream rate for CT bus streams
24 through 27.

ct_bus_31_28_rate
Specifies the TDM stream rate for CT bus streams
28 through 31.

pArg Pointer to the union of configuration structures. This union contains
structures containing peripheral control information:

t_configArg structure

typedef union {
t_T1_user_config_struct t1Config;
t_E1_user_config_struct e1Config;
t_T8100ClockConfig t8100ClkCfg;
t_T8100SwitchConfig t8100SwitchCfg;
t_T8100StreamConfig t8100StreamCfg;

} t_configArg;

t_T1_user_config_struct

Configuration structure for T1.

t_E1_user_config_struct

Configuration structure for E1.

t_T8100ClockConfig

Configuration structure for the T8100 clock.

t_T8100SwitchConfig

Configuration structure for the T8100 switch.

t_T8100StreamConfig

Configuration structure for the t8100 stream.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

54

hostExit
Sets all SPIRIT boards to quiesced state.

Syntax

STATUS hostExit (
IN char unused

)

Parameters

unused Reserved.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Comments

Call this function just prior to host application termination, if desired, to reset the
state of all boards in the system. That is, the IOP and DSPs are reset.

Appendix A: Standard Host functions • hostGetBoardInfo

55

hostGetBoardInfo
Provides a board’s information structure, as defined by the IOP monitor’s
SP6K_BOARD_INFO_T structure.

This function reports the extents of the systemby identifying the number and type of
processors, T1/E1 framers, HDLC codecs, and TDM switches on the board. Also,
you can use hostGetSystemInfo to determine the number and type of SPIRIT boards
in the system.

For more information, see the sp6k_board_info_tsp6k.h file.

Syntax

int hostGetBoardInfo(
IN long iopNum,
IN OUT SP6K_BOARD_INFO_T *pBoardInfo

)

Parameters

iopNum The IOP number of the board for which you want information.

pBoardInfo

A pointer to SP6K_BOARD_INFO_T, the structure that stores
board information:

SP6K_BOARD_INFO_T structure

typedef struct {
UINT32 post_results;
UINT32 free_zone;
UINT32 flash_size;
UINT32 memory_size;
UCHAR board_revision;
UCHAR num_dsps;
UCHAR hmic_present;
UCHAR board_type;
UINT32 error_code;
C6X_INFO_T dsp_info[MAX_DSPS];

} SP6K_BOARD_INFO_T;

post_results

POST results.

free_zone Address of host free memory zone.

flash_size

The Flash ROM size.

memory_size

The memory size.

board_revision

The board revision number.

num_dsps The number of DSPs in the configuration.

hmic_present

TASK-6000 software reference guide

56

HMIC/T8100 presence. The lower nibble identifies the
installed T810x, and the upper nibble identifies the installed
option card, if one exists.

Since all deliverable SPIRIT boards have a T810x (HMIC)
installed, this field is not used for additional information.
The lower nibble identifies the type of T810x installed. The
upper nibble identifies the type of option card (if any)
installed.

board_type

Specifies the board type. You can select one of these:

Single

Dual

Quad

error_code

Error code storage (for IOPDRV).

dsp_info[MAX_DSPS]
DSP POST results and memory sizes.

Outputs

pBoardInfo

A buffer that stores board information.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Comments

For more information, see hostGetSystemInfo on page 57.

Appendix A: Standard Host functions • hostGetSystemInfo

57

hostGetSystemInfo
Provides a board’s information structure as defined by the IOP monitor’s
SP6K_BOARD_INFO_T structure. For more information, see the sp6k.h file.

Syntax

int hostGetSystemInfo(
OUT long *pTotalIops,
OUT long *pTotalDsps,
OUT PREPORTBOARDINFO *pBoardInfo

)

Parameters

None.

Outputs

pTotalIops

A pointer to the variable that stores the number of boards (IOPs).

pTotalDsps

A pointer to the variable that stores the total number of DSPs in system.

pBoardInfo

A pointer to REPORTBOARDINFO, the buffer that stores board driver
information:

REPORTBOARDINFO structure

typedef struct _ReportBoardInfo {
ULONG BusNumber;
ULONG DeviceNumber;
ULONG FunctionNumber;
ULONG IopMemorySize;
ULONG PostResults;
UCHAR BoardRevision;
UCHAR NumberDSPs;
UCHAR H100Present;
UCHAR BoardType;
ULONG DspMemorySize;
ULONG DeviceState;
ULONG reserved[3];

} REPORTBOARDINFO, *PREPORTBOARDINFO;

BusNumber

The board’s physical PCI bus number.

DeviceNumber

The board’s physical PCI device number.

FunctionNumber

The board’s physical PCI function number.

IopMemorySize

The number of bytes in the ATU memory block.

TASK-6000 software reference guide

58

PostResults

The POST results bitmask.

BoardRevision

The board’s revision number.

NumberDSPs

The number of DSPs in the system.

H100Present

Indicates whether the H100 switch is populated.

BoardType

The board type: SP-6000 or 6040.

DspMemorySize

The size of the DSP memory window. This parameter is valid
only when the value of BoardType is SP-6040.

DeviceState

Contains Hot Swap state information.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Comments

This function returns the information detected by the driver. The buffer should be
capable of holding up to 8 REPORTBOARDINFO structures. You can use the
pointer used in conjunction with an IOP number to index into a specific board’s
information, up to the given number of IOPs in the system. For more information,
see hostGetBoardInfo on page 55.

Appendix A: Standard Host functions • hostInit

59

hostInit
Initializes the Host API.

Syntax

int hostInit (void)

Parameters

None.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Call this function first, before calling any other functions, to initialize
the module.

TASK-6000 software reference guide

60

hostLoadDsp
Loads a TASK-generated DSP program onto the specified DSP processor.

You can skip this step if an external program loads the cards before this
application begins.

Syntax

int hostLoadDsp(
IN long dspNum,
IN char *sCoffFileName

)

Parameters

dspNum The number of the DSP onto which the program loads.

sCoffFileName

The DSP executable file, generated by the TASK composer.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix A: Standard Host functions • hostLoadIop

61

hostLoadIop
Loads the IOP with an application.

This function loads and executes the IOP application. Reloading the IOP resets the
DSPs. DSPs must then be reloaded.

You can skip this step if an external program loads the IOP before this
application begins.

Syntax

int hostLoadIop(
IN UCHAR iopNum,
IN char *app_name

)

Parameters

iopNum The number of the IOP board onto which the program loads.

app_name A pointer to a character string that specifies the IOP executable filename
and path.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

62

hostResetBoard
Resets and initializes an IOP.

Syntax

int hostResetBoard
IN long ulIopNum

)

Parameters

ulIopNum The IOP number to reset and initialize.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix A: Standard Host functions • hostResetDsp

63

hostResetDsp
Resets and initializes a DSP.

Syntax

int hostResetDsp(
IN long dspNum

)

Parameters

dspNum The number of the DSP you want to reset and initialize.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

64

hostRunDsp
Runs the program downloaded through the hostLoadDsp function.

You can skip this step if an external program loads the IOP before this
application begins.

Syntax

int hostRunDsp(
IN long dspNum

)

Parameters

dspNum The number of the DSP on which the program runs.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix A: Standard Host functions • hostRunLoadedIop

65

hostRunLoadedIop
Initializes the message buffers which allow communication between the host and
IOP, and sends handshake messages in both directions.

Syntax

int WINAPI hostRunLoadedIops(
ulong ulIopNum

)

Parameters

ulIopNum IOP number.

Return values

SUCCESS The IOP is running.

FAILURE Invalid IOP number, the IOP is not running, or internal API
error occurred.

TASK-6000 software reference guide

66

hostSetEventHandler
Specifies the user event handler for TASK events.

Syntax

int hostSetEventHandler (
IN void (* eventHandler)(
long src,
long type,
ulong count,
long *pDataBuf

)

Parameters

eventHandler

A pointer to the event handler.

src The message handler, in this format:

Device | DeviceNum

Device Enter either TASK_IOP or TASK_DSP.

DeviceNum Enter the device number.

Examples:

To invoke a handler from the second IOP, use (TASK_IOP | 2) as
the destination.

To invoke a handler from the third DSP, use (TASK_DSP | 3)
as destination.

type Message type. You can use any positive integer.

count The number of words in the message.

pDataBuf The buffer that contains the message.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix A: Standard Host functions • hostSetHotSwapHandler

67

hostSetHotSwapHandler
Initializes the Hot Swap interface, and registers for notification of Hot Swap events
with the Hot Swap service.

Syntax

STATUS WINAPI hostSetHotSwapHandler(
IN void(*Handler) (

IN long iopNum,
IN long eventID

)
)

Parameters

Handler A pointer to the message handler.

iopNum The number of the IOP board that registered for the Hot Swap Event.

eventID The event identification. You can enter one of these values:

HS_DEVICE_NORMAL
Indicates that the board is in the slot and activated.

HS_DEVICE_QUIESCED
Indicates that the board is removed from the slot and activity
has ceased.

HS_DEVICE_POWERED_OFF
No board exists in the specified slot.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Comments

Currently, only RadiSys SPIRIT-6040 boards support Hot Swap. For more
information about these boards, see SPIRIT™ boards on page iv.

TASK-6000 software reference guide

68

hostSetPeripheralDataHandler
Identifies the message handler to invoke for processing received messages.

Syntax

void hostSetPeripheralDataHandler(
void(*peripheralDataHandler)
(

long src,
long type,
long *pDataBuf

)
)

Parameters

peripheralDataHandler

A pointer to the message handler.

src The message’s source, in this format:

Device | DeviceNum

Device Enter either TASK_IOP or TASK_DSP.

DeviceNum Enter the device number.

Examples:

To receive a message from the second IOP, use (TASK_IOP | 2) as
the destination.

To receive a message from the third DSP, use (TASK_DSP | 3)
as destination.

type Message type (currently only GET_T1_SIGNALING).

pDataBuf The buffer that contains the message.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix A: Standard Host functions • upConfigService

69

upConfigService
Configures a specified service based on service type for a specific channel.

Also enables the service after configuration.

Syntax

UP_ERROR_ET upConfigService(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_SERVICE_ET eService,
UP_CONFIG_SVC_MSG_UT *puCfg

);

Parameters

lSlot The resource card unit number.

lUnit Specifies:

• For most services: the DSP unit number.

• For IOP-based services such as stCAS: the framer unit number.

lChannel Specifies:

• For most services: the virtual channel number.

• For IOP-based services such as stCAS: the timeslot number.

eService Identifies the service you want to configure:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen

• Enabling the stCodec service disables the stTdmToneGen and
stPktToneGen services.

• For descriptions of available services, see Appendix F, Service descriptions.

TASK-6000 software reference guide

70

Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
stJitterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

For detailed information about TASK services, see Appendix F, Service
descriptions.

puCfg A pointer to the configuration data structure:

UP_CONFIG_SVC_UT structure

typedef union {
UP_CODEC_CONFIG_ST tCodecConfig;
UP_ECHO_CONFIG_ST tEchoCancConfig;
UP_AGC_CONFIG_ST tAGCConfig;
UP_DTMF_CONFIG_ST tDTMFConfig;
UP_CPT_CONFIG_ST tCPTConfig;

Appendix A: Standard Host functions • upConfigService

71

UP_MF_CONFIG_ST tMFConfig;
UP_TONEGEN_CONFIG_ST tToneGenConfig;
UP_RTP_SEND_CONFIG_ST tRtpSendConfig;
UP_RTP_RECV_CONFIG_ST tRtpRecvConfig;
UP_T38_CONFIG_ST tT38Config;
UP_T1E1ALARM_CONFIG_ST tT1E1AlarmConfig;
UP_CAS_CONFIG_ST tCasConfig;
UP_PACKET_BUILDER_CONFIG_ST tPBConfig;
UP_PACKET_PARSER_CONFIG_ST tPPConfig;
UP_IOPINITCONFIG_ST tIopInitData;

} UP_CONFIG_SVC_UT;

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the service is configured.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified service
is not configured.

UP_FAILURE
General failure.

TASK-6000 software reference guide

72

upConfigServiceGlobal
Configures a specified service based on service type for all channels.

Syntax

UP_ERROR_ET upConfigServiceGlobal(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
UP_SERVICE_ET eService,
UP_GLOBALCONFIGDATA_UT *puCfg

)

Parameters

lSlot The resource card unit number.

lUnit Specifies:

• For most services: the DSP unit number.

• For IOP-based services such as stCAS: the framer unit number.

eService Identifies the service you want to configure:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
stJitterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic

For descriptions of available services, see Appendix F, Service descriptions.

Appendix A: Standard Host functions • upConfigServiceGlobal

73

jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

For detailed information about TASK services, see Appendix F, Service
descriptions.

puCfg A pointer to the configuration data structure:

UP_GLOBALCONFIGDATA_UT structure

typedef union {
UP_DSPINITCONFIG_ST tInitData;

} UP_GLOBALCONFIGDATA_UT;

This structure is currently only used by UPA initialization code.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

TASK-6000 software reference guide

74

UP_EVT_CONFIG_ACK
Occurs in response to this function if the service is configured.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified service
is not configured.

UP_FAILURE
General failure.

Appendix A: Standard Host functions • upConnectPktRecv

75

upConnectPktRecv
Creates a data path from a UDP receive port to an RTP or T.38 decoder that runs
on the specified DSP channel.

As each packet is received it is DMA’d to a FIFO in the DSP specified by lUnit.
During the DSP’s inter-frame time the packets in the FIFO are sorted by channel and
their payloads passed either to the RTP Receive/Jitter Buffer service, or to the
appropriate T.38 FIFO.

Syntax

UP_ERROR_ET upConnectPktRecv(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_PKT_RECV_CONFIG_ST *pstPktRecvConfig

);

Parameters

lSlot The resource card unit number.

lUnit The DSP unit number.

lChannel The DSP virtual channel number.

pstPktRecvConfig

A pointer to the UP_PKT_RECV_CONFIG_ST structure:

UP_PKT_RECV_CONFIG_ST structure

typedef struct {
RSYS_UINT32 ulReceivePort;
RSYS_UINT32 ulInterface;

} UP_PKT_RECV_CONFIG_ST;

ulReceivePort
The 16-bit port number of the socket which receives the
packets. You can use one of these values:

0 The port number is automatically assigned. An
appropriate port number is chosen from the range
of UP_PREALLOC_PORT_START through
(UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS) (defined as
5000–5999 in upa.h) and returned via an event.

Other You specify the port number. The number must fall
in the range of (UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS) through
(UP_PREALLOC_PORT_START +
UP_MAX_RTP_PORTS) (defined as 6000–6999 in
upa.h), and must be an even number.

TASK-6000 software reference guide

76

ulInterface

The unit number of the Ethernet interface on the IOP on
which packets are received.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the connection
is established.

UP_EVT_CONFIG_ERROR
Emitted when the port number could not be allocated (for
example, the port is already assigned or the DSP channel is
already in use).

UP_EVT_PORT_ASSIGNED
Emitted upon success to identify the UDP port number
allocated to the connection.

UP_FAILURE
General failure.

Appendix A: Standard Host functions • upConnectPktSend

77

upConnectPktSend
Creates a data path connection between an RTP or T.38 coder that runs in a
channel on a DSP and the IOP’s networking hardware.

After each packet is encoded, it is passed to the stPacketBuilder service which adds
UDP, IP, and Ethernet headers to the packet, and then adds it to the DSP’s Ethernet
Transmit FIFO. On expiration of a timer tick, the packets in the FIFO are added to
the transmit queue of the appropriate Ethernet controller.

Syntax

UP_ERROR_ET upConnectPktSend(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_PKT_SEND_CONFIG_ST *pstPktSendConfig

);

Parameters

lSlot The resource card unit number.

lUnit The DSP unit number.

lChannel The DSP virtual channel number.

pstPktSendConfig

A pointer to the UP_PKT_SEND_CONFIG_ST structure:

UP_PKT_SEND_CONFIG_ST structure

typedef struct {
RSYS_UINT32 ulInterface;
RSYS_UINT32 ulRouterAddress;
RSYS_UINT32 ulDestAddress;
RSYS_UINT32 ulDestPort;
RSYS_UINT32 ulServiceType;
RSYS_UINT32 ulSrcPort;

} UP_PKT_SEND_CONFIG_ST;

ulInterface
The unit number of the Ethernet interface on which packets
should be sent.

ulRouterAddress
The 32-bit IP address, in host order, of a router on the same
network as the IOP which should be used to forward packets
to ulDestAddress. If ulDestAddress is on the same network
as the IOP and no router should be used, then ulDestRouter
should be set to ulDestAddress.

ulDestAddress
The 32-bit IP address, in host order, of the RTP or T.38
packets’ destination.

TASK-6000 software reference guide

78

ulDestPort
The 16-bit UDP port number of the RTP or T.38 packets’
destination.

ulServiceType
An 8-bit value used to specify the precedence, delay,
throughput, and reliability of a message. This is used in
making quality of service decisions in the delivery of a packet.

ulSrcPort The optional 16-bit UDP port number that identifies the RTP
or T.38 source application peer. If the source port is not
provided, the values of ulUnit and lChannel passed with the
function are used to find the corresponding port ID registered
to the inbound fast packet channel established through
upConnectPktRecv. This approach assumes that
upConnectPktSend is preceded by upConnectPktRecv, and
that each path makes up one part of full-duplex connection
on a specified DSP and channel. A source port ID of 0 is
assigned if the user does not specify a source port in their call
to upConnectPktSend and if an upConnectPktRecv was not
successfully executed prior to calling upConnectPktSend on
the specified DSP and Channel numbers.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the connection
is established.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if an ARP of the
ulDestRouter (destination IP address) fails.

UP_FAILURE
General failure.

Appendix A: Standard Host functions • upDisableService

79

upDisableService
Disables a specified service based on service type for a specific channel.

Other services not dependent on this service are not affected. Major services
(codecs, echo canceller), when disabled this way, consume no DSP resources. Minor
services (tone detectors and generators, and so on) still load but do not run,
reducing their resource load to a minimum, but not zero.

Syntax

UP_ERROR_ET upDisableService(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_SERVICE_ET eService

);

Parameters

lSlot The resource card unit number.

lUnit Specifies:

• For most services: the DSP unit number.

• For IOP-based services such as stCAS: the framer unit number.

lChannel Specifies:

• For most services: the virtual channel number.

• For IOP-based services such as stCAS: the timeslot number.

eService Identifies the service you want to disable:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or

• Enabling the stCodec service disables the stTdmToneGen and stPktToneGen
services.

• For descriptions of available services, see Appendix F, Service descriptions.

TASK-6000 software reference guide

80

R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
stJitterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Return values

UP_SUCCESS
Successful completion.

Appendix A: Standard Host functions • upDisableService

81

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the service is disabled.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified service
remains enabled.

UP_FAILURE
General failure.

TASK-6000 software reference guide

82

upDisconnectPktRecv
Stops the forwarding of packets from an IP socket to a DSP channel and
de-allocates all associated IOP and DSP resources.

Syntax

UP_ERROR_ET upDisconnectPktRecv(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel

);

Parameters

lSlot The resource card unit number.

lUnit The DSP unit number.

lChannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_FAILURE
General failure.

Appendix A: Standard Host functions • upDisconnectPktSend

83

upDisconnectPktSend
Stops the forwarding of packets from a DSP channel to an IP socket and deallocates
all associated IOP and DSP resources.

Syntax

UP_ERROR_ET upDisconnectPktSend(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel

);

Parameters

lSlot The resource card unit number.

lUnit The DSP unit number.

lChannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_FAILURE
General failure.

TASK-6000 software reference guide

84

upEnableChannel
Enables transmit and receive paths the specified channel.

Syntax

UP_ERROR_ET upEnableChannel(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
RSYS_INT32 lTxEnable,
RSYS_INT32 lRxEnable

);

Parameters

lSlot The resource card unit number.

lUnit The DSP unit number.

lChannel The DSP virtual channel number.

lTxEnable Controls a channel’s transmit path processing.

TRUE Enables transmit path processing.

FALSE Disables transmit path processing.

lRxEnable Controls a channel’s receive path processing.

TRUE Enables receive path processing.

FALSE Disables receive path processing.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK
Occurs in response to this function if the channel is enabled.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified
channel is not enabled.

UP_FAILURE
General failure.

UP_INVALID_ARG
Invalid argument.

Appendix A: Standard Host functions • upEnableChannel

85

Comments

lTxEnable and lRxEnable may be used to separately control the transmit and
receive path processing for a channel, e.g., a channel which generates tones may not
need receive path processing. However, while this way the DSP processing time
associated with transmit or receive algorithms, it does not eliminate the overhead of
loading the algorithm into DSP memory. Only when lTxEnable and lRxEnable are
both false is the channel entirely disabled, which removes its overhead entirely.

TASK-6000 software reference guide

86

upEnableService
Enables a specified service based on the service type for a specific channel, and also
implicitly enables a service when it is configured.

Syntax

UP_ERROR_ET upEnableService(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_SERVICE_ET eService

);

Parameters

lSlot The resource card unit number.

lUnit Specifies:

• For most services: the DSP unit number.

• For IOP-based services such as stCAS or stT1E1Alarm: the framer
unit number.

lChannel Specifies:

• For most services: the virtual channel number.

• For IOP-based services such as stCAS: the timeslot number.

eService Identifies the service you want to enable:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

For descriptions of available services, see Appendix F, Service descriptions.

Appendix A: Standard Host functions • upEnableService

87

stRtpEncode
Performs RTP Packetization and, when used with the
stJitterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ACK

TASK-6000 software reference guide

88

Occurs in response to this function if the service is enabled.

UP_EVT_CONFIG_ERROR
Occurs if the function fails, for instance if the specified service
is not enabled.

UP_FAILURE
General failure.

Appendix A: Standard Host functions • upQueryQOSReport

89

upQueryQOSReport
Causes the specified DSP to send a Quality of Service report as an
UP_EVT_STATISTICS_RPT event.

An RTCP stack may use the provided information to create Sender and Receiver
Reports.

Syntax

UP_ERROR_ET upQueryQOSReport(
RSYS_INT32 lSlot,
RSYS_INT32 lUnit,
RSYS_INT32 lChannel

);

Parameters

lSlot The resource card unit number.

lUnit The DSP number.

lChannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion. The function requests this event:

UP_EVT_STATISTICS_RPT
Contains the statistics report requested by this function. The
statistics are contained in the UP_STATISTICS_ST structure.

UP_FAILURE
General failure.

UP_INVALID_ARG
Invalid argument.

TASK-6000 software reference guide

90

upSetEventHandler
Sends notification of DSP events.

Events can include tone detection, peripheral state changes such as hook and other
CAS signals, and any other events any service generates, to
EventHandlerFunc(UP_EVENT_DATA_ST*).

Syntax

UP_ERROR_ET upSetEventHandler(
void (*eventHandlerFunc)(

UP_EVENT_DATA_ST*
)

);

Parameters

UP_EVENT_DATA_ST

Receives notification of DSP events such as tone detection, peripheral
state changes such as hook and other CAS signals, and any other events
any service generates.

Return values

UP_SUCCESS
The handler was installed.

Appendix A: Standard Host functions • upSetUserMsgHandler

91

upSetUserMsgHandler
The MsgHandlerFunc is called whenever a TASK user message is received by the
host with a msgType not used by UPA.

Currently, UPA uses only message type 80 (decimal).

Syntax

void upSetUserMsgHandler (
void (*MsgHandlerFunc)(

IN long src,
IN long msgType,
IN ulong msgSzW,
IN long *pBuf

)
);

Parameters

MsgHandlerFunc

A pointer to the message handler.

src The message handler, in this format:

Device | DeviceNum

Device Enter either TASK_IOP or TASK_DSP.

DeviceNum Enter the device number.

Examples:

To invoke a handler from the second IOP, use (TASK_IOP | 2) as
the destination.

To invoke a handler from the third DSP, use (TASK_DSP | 3)
as destination.

msgType The message type. You can use any positive integer.

msgSzW The number of words in the message.

pBuf The buffer that contains the message.

Return values

None.

TASK-6000 software reference guide

92

upStart
Initializes the Universal Port subsystem

To perform necessary system initialization, call this function once before calling any
other UPA function on the Host. A controlling Host application populates the
UP_IOPSYSCONFIG_ST structure when making its initial call to upStart.

To reconfigure network adapters or change VOIP control characteristics, call
upStart again during runtime.

upStart also signals a change of control from a primary to a secondary Host
Controller. This is a natural fit since the Host Controller’s IP address is passed as
part of the information that travels from Host Controller to the IOP. Under this
model, a new controlling Host application simply has to call upStart to each IOP to
inform it of the new IP address to use for control.

Syntax

UP_ERROR_ET upStart(
UP_IOPSYSCONFIG_ST *ptIOPSysConfig

)

Parameters

ptIOPSysConfig

A pointer to a structure that configures the board during UPA
initialization. This structure has the following format:

UP_IOPSYSCONFIG_ST structure

typedef struct {

RSYS_UINT32 aulNICAddress[UP_MAX_SLOTS][MAX_NICS];

RSYS_UINT32 ulHostIPAddress;

UP_ENABLE_ET etCommandAck;

UP_ENABLE_ET etEventForwarding;

UP_LAN_CONTROL_ET etLanControl;

} UP_IOPSYSCONFIG_ST;

aulNICaddress

An array element that carries the IP addresses (host byte
ordered) to associate with Ethernet adapters of the installed
IOPS. The IOP number serves as an index to de-reference the
two installed Ethernet adapters (fei 0 and 1). You can enter
one of these:

0 for either interface 0 or 1
Indicates that you do not want UPA software to
configure the Ethernet adapter and bind an IP
address to it.

Other Causes UPA on the associated IOP to perform a
vxWork’s usrNetInit to initialize the adapter and
a hostAdd to make a representative hostname to
IP address mapping in the host table.

Appendix A: Standard Host functions • upStart

93

ulHostIPAddress

Identifies the IP Address assigned to each NIC. This informs
an IOP of its controlling host’s IP address. An IOP uses this
IP address to establish a communication link to the host for
event forwarding when either TCP or UDP based control is
configured.

ulHostIPAddress
The IP Address of the controlling host.

etCommandAck
A flag that specifies whether UPA acknowledges each UPA
command request with an asynchronous notification. You
can select one of these:

enumDisabled

Commands are issued by an IOP based
application.

enumEnabled
A host based application requires positive
confirmation of command processing.

etEventForwarding

A flag that specifies whether the system forwards all events
from each IOP to the host. You can select one of these:

enumDisabled

Events are forwarded from each IOP to the host.

enumEnabled
Events are not forwarded to the host. If you select
this option, then a user application must be
present on each IOP to receive most events.

etLanControl

A flag that specifies the transport to use for communicating
control messages between a controlling host and an IOP. You
can select one of these:

enumNoLanControl

The PCI bus communicates control messages
between host and IOP. This limits host control to
IOPs located within the same shelf.

Return values

UP_SUCCESS
Successful completion.

UP_FAILURE
General failure.

TASK-6000 software reference guide

94

hostGetNWPktBuf

Advanced Receives the next buffer of packets from the DSP.

Syntax

int hostGetNWPktBuf (
IN long dspNum,
IN long *pBuf

)

Parameters

dspNum The DSP number.

pBuf A pointer to the buffer that receives network packets.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Comments

The buffer contains one or more packets in the following format:

• Total buffer length

• Channel number (one word)

• Packet length (one word)

• One or more words of packet data

For details about the packet buffer contents, see hostSendNWPktBuf on page 97.

Appendix A: Advanced Host functions • hostJitterControl

95

hostJitterControl
Updates jitter control parameters.

Syntax

int hostJitterControl (
IN long dspNum,
IN long ChnlNum,
IN t_jitterParam *pJitter

)

Parameters

dspNum The DSP number.

ChnlNum The channel number.

pJitter A pointer to a structure contains jitter parameters:

t_jitterParam structure

typedef struct {
long nJitterBuf;

} t_jitterParam;

nJitterBuf

The number of jitter buffers between the Host and IOP/DSP.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

96

hostReadIop
Reads memory space from an IOP.

Syntax

int hostReadIop(
UCHAR boardNum,
long *iopSrcAddr,
long *hstDstAddr,
ULONG uCountW

Parameters

iopNum The number of the IOP you want to read memory from.

iopSrcAddr

The IOP external memory space address to read from.

hstDstAddr

The Host buffer address that stores read memory.

uCountW The number of words to read from the DSP.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix A: Advanced Host functions • hostSendNWPktBuf

97

hostSendNWPktBuf
Sends network packets to the DSP. The packets are organized in the buffer
as follows:

Syntax

int hostSendNWPktBuf (
IN long dspNum,
IN long *pBuf

)

Parameters

dspNum The number of the DSP to which you want to send packets.

pBuf A buffer that consists of one or more network packets, as shown in
Figure A-1.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Figure A-1. Packet organization buffer

All numbers and sizes are in 32-bit words

Total length excluding length word =
L(32-bit words)

Channel number = x

Channel data length (excluding length word) =
dl_x(32-bit words)

Channel x data

Channel data length (excluding length word) =
dl+y(32-bit words)

Channel y data

L+1

L

dl_x+1

dl_x

dl_y+1

dl_y

1

1

1

Channel number = y 1

1

TASK-6000 software reference guide

98

hostSendMsg
Sends a message from the Host to the specified IOP or DSP. If the message is not
delivered to the IOP within the specified time, the function returns failure.

Syntax

int hostSendMsg (
IN long dst,
IN long msgType,
IN ulong msgSzW,
IN long *pBuf,
IN long waitTimeMsec

)

Parameters

dst The message’s destination, in this format:

Device | DeviceNum

Device Enter either TASK_IOP or TASK_DSP.

DeviceNum Enter the device number.

Examples:

To send a message to the second IOP, use (TASK_IOP | 2) as
the destination.

To send a message to the third DSP, use (TASK_DSP | 3) as destination.

msgType Message type. You can use any positive integer value.

msgSzW The number of words in a message.

pBuf The buffer that contains the message.

waitTimeMsec

The number of milliseconds that elapse before determining a message’s
delivered status.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix A: Advanced Host functions • hostSetNWNotify

99

hostSetNWNotify
Identifies the handler to invoke to notify the arrival of network packets from the
DSP. The handler must take the DSP number as the argument.

Syntax

void hostSetNWNotify(
IN void (* NWNotifyHndlr) (IN long dspNum)

)

Parameters

NWNotifyHndlr

A pointer to the handler that notifies the Host application of the arrival
of network packets from the DSP.

dspNum The number of the DSP from which network packets were sent.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

100

hostWriteIop
Writes to the IOP memory space.

Syntax

int hostWriteIop(
UCHAR boardNum,
long *hstSrcAddr,
long *iopDstAddr,
ULONG uCountW

)

Parameters

iopNum The number of the IOP board to write memory from.

hstSrcAddr

A pointer to host buffer you want to write to.

iopDstAddr

The IOP destination address.

uCountW The number of words to write to the IOP.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix A: Advanced Host functions • hostSetPollPeriod

101

hostSetPollPeriod
Specifies the number of milliseconds that elapse before the host polls all IOPs for
received network packets.

Syntax

int HostSetPollPeriod(
ulong ulPollPeriod

)

Parameters

ulPollPeriod

The number of milliseconds that elapse before the host polls all IOPs for
received network packets. The default is 10 ms.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

102

hostSendPriorityMsg
Sends a message from the Host to the specified IOP or DSP. If the message is not
delivered to the IOP within the specified time, the function returns failure.

The message advances to the first position in the queue of messages destined for
each IOP, and therefore pre-empts any other messages waiting in the queue.

Syntax

int hostSendPriorityMsg (
IN long dst,
IN long msgType,
IN ulong msgSzW,
IN long *pBuf,
IN long waitTimeMsec

)

Parameters

dst The message’s destination, in this format:

Device | DeviceNum

Device Enter either TASK_IOP or TASK_DSP.

DeviceNum Enter the device number.

Examples:

To send a message to the second IOP, use (TASK_IOP | 2) as
the destination.

To send a message to the third DSP, use (TASK_DSP | 3) as destination.

msgType Message type. You can use any positive integer value.

msgSzW The number of words in a message.

pBuf The buffer that contains the message.

waitTimeMsec

The number of milliseconds that elapse before determining a message’s
delivered status.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

103

B IOP functions

The IOP API provides a control interface for the allocation, configuration, and
execution of IOP resources. The function prototypes and definitions for this API are
contained in the header filexyz.h.

You develop IOP applications by linking with the IOP API library.

This appendix lists function descriptions alphabetically within the following groups:

• Standard functions: Includes Control and Message APIs.

• Advanced functions: Includes functions you use only in unusual, special-
purpose circumstances.

You can find a function in this appendix either by locating it alphabetically within
its group, or by using Table B-1 on the next page, which groups like functions
together.

Overview

Message API
You use these functions to configure UPA to transparently forward packets between
an Ethernet interface and an RTP or T.38 transport service that runs on a RadiSys
SPIRIT board’s DSP.

The implementation of this functionality is very high performance, capable of
moving many thousands of packets per second while consuming only a fraction of
the i960 I/O processor’s time. In brief, this is accomplished by bypassing the
VxWorks TCP/IP stack and processing the majority of the Ethernet, IP, and UDP
layers on the DSP.

The caveat is that no full IP stack proceses these packets, so “unusual” cases are not
supported. For instance:

• Fragmentation/reassembly is not supported. Fragmented packets are
silently discarded.

• Buffer sizes are based on typical RTP voice packets. Packets larger than a
predefined maximum (initially 350 bytes) are silently discarded.

• VxWorks routing tables are not used; only a simple default route is currently
supported.

TASK-6000 software reference guide

104

Function list
Use this table to identify the IOP functions you want to use. Use the function
description later in this appendix to obtain detailed information, including syntax
and parameter values.

Table B-1. IOP functions

Function Description
Standard functions

iopControlPeripheral Configures specified peripheral.
getBoardInfo Provides a board’s information structure, as

defined by the IOP monitor’s
SP6K_BOARD_INFO_T structure.

iopInit Initializes the IOP API.
Control API

upStart Initializes the Universal Port subsystem.
upEnableChannel Enables transmit and receive paths of a

specified channel.
upEnableService Enables a specified service based on service

type for the specified channel. upConfigService
also implicitly enables a service when it is
configured.

upDisableService Disables a specified service based on service
type for a specific channel.

upConfigService Configures a specified service based on service
type for a specific channel.

upConfigServiceGlobal Configures a specified service based on service
type for all channels.

upSetEventHandler Passes information received from DSPs to the
event handler.

upQueryQOSReport Causes the specified DSP specified to send a
Quality of Service report as an
UP_EVT_STATISTICS_RPT event.

Message API You use these functions to configure UPA to
transparently forward packets between an
Ethernet interface and an RTP or T.38 transport
service that runs on a RadiSys SPIRIT board’s
DSP.

upConnectPktSend Creates a data path between an RTP or T.38
coder running on a DSP channel and the IOP’s
Ethernet driver.

upConnectPktRecv Creates a data path from a UDP receive socket
to an RTP or T.38 decoder running on a DSP
channel.

Appendix B: IOP functions • Function list

105

upDisconnectPktSend Stops the forwarding of packets from a DSP
channel to an IP socket and de-allocates all
associated IOP and DSP resources.

upDisconnectPktRecv Stops the forwarding of packets from an IP
socket to a DSP channel and de-allocates all
associated IOP and DSP resources.

Advanced functions
iopGetNWPktBuf Receives the next buffer of packets from the

DSP.
iopJitterControl Updates the IP network buffer control

parameters.
iopSendNWPktBuf Sends network packets to the DSP.
iopSendMsg Sends a message from the Host to the specified

IOP or DSP.
iopSetNWNotify Sets handler to be invoked for notifying arrival

of network packets from the DSP.
upSetUserMsgHandler MsgHandlerFunc is called whenever a TASK

user message is received by the IOP with a
msgType not used by UPA.

Table B-1. IOP functions

Function Description

TASK-6000 software reference guide

106

getBoardInfo

Standard Provides a board’s information structure, as defined by the IOP monitor’s
SP6K_BOARD_INFO_T structure.

This function reports the extents of the system by identifying the number and type
of processors, T1/E1 framers, HDLC codecs, and TDM switches on the board.
Also, you can use hostGetSystemInfo to determine the number and type of SPIRIT
boards in the system.

For more information, see the sp6k_board_info_tsp6k.h file.

Syntax

int getBoardInfo(
INOUT SP6K_BOARD_INFO_T *pBoardInfo

)

Parameters

pBoardInfo

A pointer to SP6K_BOARD_INFO_T, the structure that stores
board information:

SP6K_BOARD_INFO_T structure

typedef struct {
UINT32 post_results;
UINT32 free_zone;
UINT32 flash_size;
UINT32 memory_size;
UCHAR board_revision;
UCHAR num_dsps;
UCHAR hmic_present;
UCHAR board_type;
UINT32 error_code;
C6X_INFO_T dsp_info[MAX_DSPS];

} SP6K_BOARD_INFO_T;

post_results

POST results.

free_zone Address of host free memory zone.

flash_size

Flash ROM size.

memory_size

Memory size.

board_revision

Board revision.

num_dsps The number of DSPs in the configuration.

hmic_present

HMIC/T8100 presence. The lower nibble identifies the
installed T810x, and the upper nibble identifies the installed

Appendix B: Standard IOP functions • getBoardInfo

107

option card, if one exists.

Since all deliverable SPIRIT boards have a T810x (HMIC)
installed, this field is not used for additional information.
The lower nibble identifies the type of T810x installed. The
upper nibble identifies the type of option card (if any)
installed.

board_type

Specifies the board type. You can select one of these:

Single

Dual

Quad

error_code

Error code storage (for IOPDRV).

dsp_info[MAX_DSPS]
DSP POST results and memory sizes.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

108

iopControlPeripheral
Configures specified peripheral.

Syntax

int iopControlPeripheral (
IN int peripheral,
IN int cmd,
IN t_configArg *pArg

)

Parameters

peripheral

The peripheral. You can select one of these values:

TASK_E1

TASK_T1

TASK_T8100

cmd Command to send to the peripheral. You can use one of these values:

CONFIG_E1
Instructs the framer to use E1 line protocol.

CONFIG_T1
Instructs the framer to use T1 line protocol.

CONFIG_T8100_DEFAULT
Reserved.

CONFIG_T8100_SWITCHING
A pointer to the structure that specifies T8100 switching:

t_T8100SwitchConfig structure

typedef struct {

ulong number_of_connections;

t_T8100Connection *connections;

} t_T8100SwitchConfig;

number_of_connections
The number of T8100 connections to be made.
The maximum connections per call is 256.

*connections

Pointer to a list that contains
number_of_connections connections.

CONFIG_T8100_CLOCKS
A pointer to the structure that specifies the clock the TDM
switch uses:

Appendix B: Standard IOP functions • iopControlPeripheral

109

t_T8100ClockConfig structure

typedef struct {

t_ref_clk reference_clk_select;

t_netref_clk netref_select;

t_fallback_clk allback_clk_select;

BOOL32 netref_enable;

BOOL32 netref2_enable;

BOOL32 frame_clk_a_enable;

BOOL32 frame_clk_b_enable;

BOOL32 compat_clks_enable;

BOOL32 fallback_enable;

} t_T8100ClockConfig;

reference_clk_select
Specifies the primary clock source to be used by
the T8100.

netref_select

Specifies the clock source used by the T8100 to
generate its output CT_NETREF signal.

fallback_clk_select

Specifies the fallback clock source used by the
T8100. That is, the clock used when the primary
clock source selected via reference_clk_select
fails.

netref_enable

Enables the CT_NETREF signal, generated by the
T8100, onto the CT Bus.

netref2_enable

Enables the CT_NETREF_2 signal, generated by
the T8100, onto the CT Bus.

framer_clk_a_enable

Enables the CT_C8_A (clock) and
CT_FRAME_A (frame sync) signals, generated by
the T8100, onto the bus.

framer_clk_b_enable

Enables the CT_C8_B (clock) and CT_FRAME_B
(frame sync) signals, generated by the T8100,
onto the bus.

compat_clks_enable

Enables the MVIP and SCSA compatibilty clock
and strobe signals, generated by the T8100, onto
the bus.

TASK-6000 software reference guide

110

fallback_enable

Enables clock fallback. When a clock error occurs
on the current clock reference, the T8100 will fall
back to fallback_clk_select.

CONFIG_T8100_STREAMS
A pointer to the structure that specifies the T8100
stream parameters:

t_T8100StreamConfig structure

typedef struct {
t_stream_rate dsp_bsp0_rate;
t_stream_rate dsp_bsp1_rate;
t_stream_rate e1t1_rate;
t_stream_rate ct_bus_03_00_rate;
t_stream_rate ct_bus_07_04_rate;
t_stream_rate ct_bus_11_08_rate;
t_stream_rate ct_bus_15_12_rate;
t_stream_rate ct_bus_19_16_rate;
t_stream_rate ct_bus_23_20_rate;
t_stream_rate ct_bus_27_24_rate;
t_stream_rate ct_bus_31_28_rate;

} t_T8100StreamConfig;

dsp_bsp0_rate

Specifies the TDM stream rate for Buffered Serial
Port 0 of the DSPs. Currently this value must be
the same as dsp_bsp1_rate.

dsp_bsp1_rate

Specifies the TDM stream rate for Buffered Serial
Port 1 of the DSPs. This value must be the same
as dsp_bsp0_rate.

e1t1_rate Specifies the TDM stream rate for the E1/T1
framers. Under most conditions, this rate should
be 2MHz.

ct_bus_03_00_rate
Specifies the TDM stream rate for CT bus streams
0 through 3.

ct_bus_07_04_rate
Specifies the TDM stream rate for CT bus streams
4 through 7.

ct_bus_11_08_rate
Specifies the TDM stream rate for CT bus streams
8 through 11.

ct_bus_15_12_rate
Specifies the TDM stream rate for CT bus streams
12 through 15.

ct_bus_19_16_rate

Appendix B: Standard IOP functions • iopControlPeripheral

111

Specifies the TDM stream rate for CT bus streams
16 through 19.

ct_bus_23_20_rate
Specifies the TDM stream rate for CT bus streams
20 through 23.

ct_bus_27_24_rate
Specifies the TDM stream rate for CT bus streams
24 through 27.

ct_bus_31_28_rate
Specifies the TDM stream rate for CT bus streams
28 through 31.

pArg A pointer to the union of configuration structure. This union contains
structures that have peripheral control information:

t_configArg structure

typedef union {
t_T1_user_config_struct t1Config;
t_E1_user_config_struct e1Config;
t_T8100ClockConfig t8100ClkCfg;
t_T8100SwitchConfig t8100SwitchCfg;
t_T8100StreamConfig t8100StreamCfg;

} t_configArg;

t_T1_user_config_struct

Configuration structure for T1.

t_E1_user_config_struct

Configuration structure for e1.

t_T8100ClockConfig

Configuration structure for t8100 clock.

t_T8100SwitchConfig

Configuration structure for t8100 switch.

t_T8100StreamConfig

Configuration structure for t8100 stream.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

112

iopInit
Initializes the IOP API.

Syntax

int iopInit (void)

Parameters

None.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix B: Standard IOP functions • upConfigService

113

upConfigService
Configures a specified service based on service type for a specific channel.

Also enables the service after configuration.

Syntax

UP_ERROR_ET upConfigService(
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_SERVICE_ET eService,
UP_CONFIG_SVC_MSG_UT *putConfigService

);

Parameters

lUnit Specifies:

• For most services: the DSP unit number.

• For IOP-based services such as stCAS: the framer unit number.

lChannel Specifies:

• For most services: the virtual channel number.

• For IOP-based services such as stCAS: the timeslot number.

eService Identifies the service you want to configure:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

• Enabling the stCodec service disables the stTdmToneGen and stPktToneGen
services.

• For descriptions of available services, see Appendix F, Service descriptions.

TASK-6000 software reference guide

114

stRtpEncode
Performs RTP Packetization and, when used with the
stJitterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

For detailed information about TASK services, see Appendix F, Service
descriptions.

putConfigService

A pointer to the configuration data structure:

UP_CONFIG_SVC_UT structure

typedef union {
UP_CODEC_CONFIG_ST tCodecConfig;
UP_ECHO_CONFIG_ST tEchoCancConfig;
UP_AGC_CONFIG_ST tAGCConfig;
UP_DTMF_CONFIG_ST tDTMFConfig;
UP_CPT_CONFIG_ST tCPTConfig;
UP_MF_CONFIG_ST tMFConfig;
UP_TONEGEN_CONFIG_ST tToneGenConfig;

Appendix B: Standard IOP functions • upConfigService

115

UP_RTP_SEND_CONFIG_ST tRtpSendConfig;
UP_RTP_RECV_CONFIG_ST tRtpRecvConfig;
UP_T38_CONFIG_ST tT38Config;
UP_T1E1ALARM_CONFIG_ST tT1E1AlarmConfig;
UP_CAS_CONFIG_ST tCasConfig;
UP_PACKET_BUILDER_CONFIG_ST tPBConfig;
UP_PACKET_PARSER_CONFIG_ST tPPConfig;
UP_IOPINITCONFIG_ST tIopInitData;

} UP_CONFIG_SVC_UT;

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

P_EVT_CONFIG_ERROR
The new channel or service configuration is invalid.

UP_EVT_CONFIG_ACK
(for debugging) acknowleges each configuration action.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

TASK-6000 software reference guide

116

upConfigServiceGlobal
Configures a specified service based on service type for all channels.

Syntax

UP_ERROR_ET upConfigServiceGlobal(
RSYS_INT32 lUnit,
UP_SERVICE_ET eService,
UP_GLOBALCONFIGDATA_UT *putConfigGlobal

)

Parameters

lUnit Specifies:

• For most services: the DSP unit number.

• For IOP-based services such as stCAS: the framer unit number.

service Identifies the service you want to configure:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
stJitterBuf service, depacketization.

For descriptions of available services, see Appendix F, Service descriptions.

Appendix B: Standard IOP functions • upConfigServiceGlobal

117

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

For detailed information about TASK services, see Appendix F, Service
descriptions.

putConfigGlobal

A pointer to the configuration data structure:

UP_GLOBALCONFIGDATA_UT structure

typedef union {
UP_DSPINITCONFIG_ST tInitData;

} UP_GLOBALCONFIGDATA_UT;

This structure is currently only used by UPA initialization code.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

TASK-6000 software reference guide

118

UP_INVALID_ARG
Invalid argument.

Appendix B: Standard IOP functions • upConnectPktRecv

119

upConnectPktRecv
Creates a data path from a UDP receive socket to an RTP or T.38 decoder running
on a DSP channel.

As each packet is received it will be DMA’d to a FIFO in the DSP specified by lUnit.
During the DSP’s inter-frame time the packets in the FIFO are sorted by channel and
their payloads are passed either to the RTP Receive/Jitter Buffer service, or to the
appropriate T.38 FIFO.

An asynchronous UP_EVT_PORT_ASSIGNED event will be emitted on success to
identify the UDP port number that was allocated to the connection. A
UP_EVT_CONFIG_ERROR shall be emitted in situations where to port number
could not be allocated (port already assigned or DSP channel already in use).

Syntax

UP_ERROR_ET upConnectPktRecv(
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_PKT_RECV_CONFIG_ST *pstPktRecvConfig

);

Parameters

lUnit The DSP unit number

lChannel The DSP virtual channel number

pstPktRecvConfig

A pointer to the UP_PKT_RECV_CONFIG_ST structure:

UP_PKT_RECV_CONFIG_ST structure

typedef struct {
RSYS_UINT32 ulReceivePort;
RSYS_UINT32 ulInterface;

} UP_PKT_RECV_CONFIG_ST;

ulReceivePort
The 16-bit port number of the socket which will receive the
packets. If this number is specified as zero an appropriate port
number will be chosen from the range of
UP_PREALLOC_PORT_START through
UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS (defined as 5000 – 5999 in
upa.h) and returned via an event. If this number is specified
manually it must fall in the range through
UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS through
UP_PREALLOC_PORT_START + UP_MAX_RTP_PORTS
(defined as 6000 – 6999 in upa.h) and must be even.

TASK-6000 software reference guide

120

ulReceivePort
The 16-bit port number of the socket which receives the
packets. You can use one of these values:

0 An appropriate port number is chosen from the
range of UP_PREALLOC_PORT_START
through (UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS) (defined as
5000–5999 in upa.h) and returned via an event.

Other The number must fall in the range of
(UP_PREALLOC_PORT_START +
UP_PREALLOC_RTP_PORTS) through
(UP_PREALLOC_PORT_START +
UP_MAX_RTP_PORTS) (defined as 6000–6999
in upa.h), and must be an even number.

ulInterface
The unit number of the Ethernet interface on which to
send packets.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_EVT_CONNECT_RECV

UP_EVT_PORT_ASSIGNED

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

UP_DSP_ERR
DSP channel assignment error—fast packet.

Appendix B: Standard IOP functions • upConnectPktSend

121

upConnectPktSend
Creates a data path between an RTP or T.38 coder running on a DSP channel and
the IOP’s Ethernet driver.

As each packet is encoded by the codec, it will be passed to the stPacketBuilder
service which will add UDP, IP, and Ethernet headers to the packet and then add it
to a DSP->IOP FIFO. On the expiration of a timer tick the packets in the fifo will
be added to the transmit queue of the appropriate Ethernet controller and
transmitted to the network addressable device specified by the Ethernet frame’s
destination MAC address.

An asynchronous UP_EVT_CONFIG_ACK event will occur in response to this
function if the connection is established. A UP_EVT_CONFIG_ERROR will occur
if the function fails; for instance if an ARP of ulDestRouter (destination IP address)
fails.

Syntax

UP_ERROR_ET upConnectPktSend(
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_PKT_SEND_CONFIG_ST *pstPktSendConfig

);

Parameters

lUnit The DSP unit number

lChannel The DSP virtual channel number

pstPktSendConfig

A pointer to the UP_PKT_SEND_CONFIG_ST structure:

UP_PKT_SEND_CONFIG_ST structure

typedef struct {
RSYS_UINT32 ulInterface;
RSYS_UINT32 ulRouterAddress;
RSYS_UINT32 ulDestAddress;
RSYS_UINT32 ulDestPort;
RSYS_UINT32 ulServiceType;
RSYS_UINT32 ulSrcPort;

} UP_PKT_SEND_CONFIG_ST;

ulInterface
The unit number of the Ethernet interface on which packets
should be sent.

ulRouterAddress
The 32-bit IP address, in host order, of a router on the same
network as the IOP which should be used to forward packets
to ulDestAddress. If ulDestAddress is on the same network
as the IOP and no router should be used, then ulDestRouter
should be set to ulDestAddress.

TASK-6000 software reference guide

122

ulDestAddress
The 32-bit IP address, in host order, of the RTP or T.38
packets’ destination.

ulDestPort
The 16-bit UDP port number of the RTP or T.38 packets’
destination.

ulServiceType
An 8-bit value used to specify the precedence, delay,
throughput, and reliability of a message. This is used in
making quality of service decisions in the delivery of a packet.

ulSrcPort The optional 16-bit UDP port number that identifies the RTP
or T.38 source application peer. If the source port is not
provided, the values of ulUnit and lChannel passed with the
function are used to find the corresponding port ID registered
to the inbound fast packet channel established through
upDisconnectPktRecv. This approach assumes that
upDisconnectPktSend is preceded by upConnectPktRecv, and
that each path makes up one part of full-duplex connection
on a specified DSP and channel. A source port ID of 0 is
assigned if the user does not specify a source port in their call
to upConnectPktSend and if an upConnectPktRecv was not
successfully executed prior to calling upConnectPktSend on
the specified DSP and Channel numbers.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_EVT_CONNECT_SEND

UP_FAILURE
General failure.

UP_INVALID_ARG
Invalid argument.

Appendix B: Standard IOP functions • upDisableService

123

upDisableService
Disables a specified service based on service type for a specific channel.

Services not dependent on this service are not be affected. Major services (codecs,
echo canceller) when disabled this way consume no DSP resources. Minor services
(tone detectors and generators, etc.) still load but don’t run, reducing their resource
load to a minimum but not zero.

Syntax

UP_ERROR_ET upDisableService(
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_SERVICE_ET eService

);

Parameters

lUnit Specifies:

• For most services: the DSP unit number.

• For IOP-based services such as stCAS: the framer unit number.

lChannel Specifies:

• For most services: the virtual channel number.

• For IOP-based services such as stCAS: the timeslot number.

eService Identifies the service you want to disable:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

• Enabling the stCodec service disables the stTdmToneGen and stPktToneGen
services.

• For descriptions of available services, see Appendix F, Service descriptions.

TASK-6000 software reference guide

124

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stRtpEncode
Performs RTP Packetization and, when used with the
stJitterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG

Appendix B: Standard IOP functions • upDisableService

125

Invalid argument.

TASK-6000 software reference guide

126

upDisconnectPktRecv
Stops the forwarding of packets from an IP socket to a DSP channel and
de-allocates all associated IOP and DSP resources.

Syntax

UP_ERROR_ET upDisconnectPktRecv(
RSYS_INT32 lUnit,
RSYS_INT32 lChannel

);

Parameters

lUnit The DSP unit number.

lChannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

UP_DSP_ERR
DSP channel assignment error—fast packet.

Appendix B: Standard IOP functions • upDisconnectPktSend

127

upDisconnectPktSend
Stops the forwarding of packets from a DSP channel to an IP socket and
de-allocates all associated IOP and DSP resources.

Syntax

UP_ERROR_ET upDisconnectPktSend(
RSYS_INT32 lUnit,
RSYS_INT32 lChannel

);

Parameters

lUnit The DSP unit number.

lChannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

TASK-6000 software reference guide

128

upEnableChannel
Enables transmit and receive paths of a specified channel.

lChannel does not display in messages returned via upGetNWMsg or forwarded to
an RTP socket unless the channel is enabled via this function.

Syntax

UP_ERROR_ET upEnableChannel(
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
RSYS_INT32 lTxEnable,
RSYS_INT32 lRxEnable

);

Parameters

lUnit The DSP unit number.

lChannel The DSP virtual channel number.

lTxEnable Controls a channel’s transmit path processing.

TRUE Enables transmit path processing.

FALSE Disables transmit path processing.

lRxEnable Controls a channel’s receive path processing.

TRUE Enables receive path processing.

FALSE Disables receive path processing.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

Appendix B: Standard IOP functions • upEnableChannel

129

Comments

lTxEnable and lRxEnable may be used to separately control the transmit and
receive path processing for a channel, e.g., a channel which generates tones may not
need any receive path processing. However, while this reduces the DSP processing
time associated with transmit or receive algorithms, it does not eliminate the
overhead of loading the algorithm into DSP memory. Only when lTxEnable and
lRxEnable are both false is the channel entirely disabled, which removes its
overhead entirely.

TASK-6000 software reference guide

130

upEnableService
Enables a specified service based on service type for the specified channel.
upConfigService also implicitly enables a service when it is configured.

Syntax

UP_ERROR_ET upEnableService(
RSYS_INT32 lUnit,
RSYS_INT32 lChannel,
UP_SERVICE_ET eService

);

Parameters

lUnit Specifies:

• For most services: the DSP unit number.

• For IOP-based services such as stCAS or stT1E1Alarm: the framer
unit number.

lChannel Specifies:

• For most services: the virtual channel number.

• For IOP-based services such as stCAS: the timeslot number.

eService Identifies the service you want to enable:

stCodec Converts voice, fax, or modem data between TDM and a
packetized form.

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s
output from its input stream.

stAGC Provides Automatic Gain Control for TDM input data.

stTdmDTMFDet
Performs DTMF detection on TDM input data.

stPktDTMFDet
Performs DTMF detection on decompressed packet data
before it is output to a TDM stream.

stCPTDet Performs Call Progress Tone detection on TDM input data.

stMFDet Performs MF Tone detection on TDM input data for R1 or
R2 signaling.

stPktToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

• Enabling the stCodec service disables the stTdmToneGen and
stPktToneGen services.

• For descriptions of available services, see Appendix F, Service descriptions.

Appendix B: Standard IOP functions • upEnableService

131

stRtpEncode
Performs RTP Packetization and, when used with the
stJitterBuf service, depacketization.

stRtpDecode
Implements both RTP decode functionality and a dynamic
jitter buffer that feeds compressed frames to a codec for
decompression on a strict schedule regardless of input
variations.

stTdmToneGen
Generates tones or tone-pairs to a TDM output with
programmable cadence and cadence count.

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer,
and allows control of the LEDs associated with each span.

stCAS Implements Channel Associated Signaling on T1 and E1 lines
which are attached locally to framers control by the I/O
Processor.

stPacketBuilder
This is an embedded service controlled by the
upConnectPktSend function.

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO,
checksums headers and data as appropriate, strips headers,
and passes the payload to the next module, usually
stRtpDecode or stT38, in TASK2.

stEthernetAlarm
Detects Ethernet Link status changes and generates
UP_EVT_ETHERNET_ALARM events, which notify a user
application of the change.

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

For detailed information about TASK services, see Appendix F, Service
descriptions.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

UP_FAILURE
General failure.

UP_INVALID_ARG
Invalid argument.

TASK-6000 software reference guide

132

UP_RTP_ERR
RTP port assignment error—fast packet.

UP_DSP_ERR
DSP channel assignment error—fast packet.

UP_START_TIMEOUT
A timeout occurred on a blocking call to upStart.

UP_HDLC_PORT_ERR
HDLC port configuration error.

UP_HDLC_CHAN_ENABLE_ERR
HDLC channel enable error.

UP_HDLC_CHAN_CONFIG_ERR
HDLC channel configuration error.

Appendix B: Standard IOP functions • upQueryQOSReport

133

upQueryQOSReport
Causes the specified DSP specified to send a Quality of Service report as an
UP_EVT_STATISTICS_RPT event.

An RTCP stack can use the provided information to create Sender and Receiver
Reports.

Syntax

UP_ERROR_ET upQueryQOSReport(
RSYS_INT32 lUnit,
SYS_INT32 lChannel

);

Parameters

lUnit The DSP number.

lChannel The DSP virtual channel number.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_EVT_STATISTICS_RPT
UP_STATISTICS_ST

typedef struct {
RSYS_UINT32 sender_packet_count;
RSYS_UINT32 sender_octet_count;
RSYS_UINT32 frac_lost;
RSYS_UINT32 cum_packet_lost_count;
RSYS_UINT32 cum_late_packet_count;
RSYS_UINT32 ext_hi_seq_recv;
RSYS_UINT32 interarrival_jitter;
RSYS_INT32 lSilencePercentTx;
RSYS_INT32 lSilencePercentRx;
RSYS_UINT32 recv_packet_count;
RSYS_UINT32 recv_octet_count;
RSYS_UINT32 pkt_p_no_pkt_count;
RSYS_UINT32 pkt_p_fifo_err1_count;
RSYS_UINT32 pkt_p_fifo_err2_count;
RSYS_UINT32 pkt_p_len_err_count;
RSYS_UINT32 pkt_p_ip_cksum_count;
RSYS_UINT32 pkt_p_udp_cksum_count;
RSYS_UINT32 pkt_b_error_count;
RSYS_UINT32 rtp_unsupport_pt_count;
RSYS_UINT32 rtp_jb_resync_count;

TASK-6000 software reference guide

134

RSYS_UINT32 rtp_seq_dup_count;
RSYS_UINT32 rtp_jb_full_count;
RSYS_UINT32 rtp_ssrc_change_count;

RSYS_UINT32 ulSysCycle;
RSYS_UINT32 ulThreadAvg;
RSYS_UINT32 ulThreadMax;
RSYS_UINT32 ulUsage;

} UP_STATISTICS_ST;

Parameters

sender_packet_count
The number of packets sent by the RTP encoder

sender_octet_count
The number of bytes of payload sent by the RTP
encoder

frac_lost
The ratio packets_lost/packets_expected as an 8-
bit fraction

cum_packet_lost_count

The count of packets which were not available to
play when required

cum_late_packet_count
The count of packets which were not available to
play when required but which subsequently
arrived and were discarded

ext_hi_seq_recv

The highest sequence number received thus far in
an RTP session

interarrival_jitter

The jitter in packet arrival times, computed
according to H.225

lSilencePercentTx

A number from 0 to 100 indicating the percentage
silence suppression transmitted since the last
upConfigService(stRTP,…)

lSilencePercentRx

A number from 0 to 100 indicating the percentage
silence suppression received since the last
upConfigService(stRTP,…)

recv_packet_count
The number of packets received by the RTP
decoder

recv_octet_count

The number of bytes of payload received by the
RTP decoder

Appendix B: Standard IOP functions • upQueryQOSReport

135

ulSysCycle
The timer count of DSP system cycle

ulThreadAvg
The timer counter in average spent by TDM
thread

ulThreadMax
The maximum timer counter spent by TDM
thread since the DSP is loaded.

ulUsage A number from 0 to 100 indicating ulThreadMax/
ulSysCycle.

All the other members of the structure are reserved for Radisys internal
use only.

UP_CONFIG_ERR
Configuration error.

UP_INVALID_ARG
Invalid argument.

TASK-6000 software reference guide

136

upSetEventHandler
Passes information received from DSPs to the event handler.

Syntax

UP_ERROR_ET upSetEventHandler(
void (*eventHandlerFunc)(UP_EVENT_DATA_ST*)

);

Parameters

EventHandlerFunc(UP_EVENT_DATA_ST*)

Receives notification from the UP_EVENT_DATA_ST structure of DSP
events such as tone detection, peripheral state changes such as hook and
other CAS signals, and any other events any service generates.

UP_EVENT_DATA_ST structure

typedef struct
{

UP_SERVICE_ET eService;
UP_EVENT_ET eEventNum;
RSYS_UINT32 ulSlot;
RSYS_UINT32 ulUnit;
RSYS_UINT32 ulChannel;
RSYS_UINT32 ulEventDataLength;
union
{

UP_DTMF_DETECTED_DATA_ST sDtmfDetectedData;
UP_CPT_DETECTED_DATA_ST sCptDetectedData;
UP_MF_DETECTED_DATA_ST sMfDetectedData;
UP_RTP_PT_CHANGE_DATA_ST sRtpPtData;
UP_RTP_SSRC_CHANGE_DATA_ST sRtpSsrcData;
UP_CAS_CHANGE_DATA_ST sCasChangeData;
UP_STATISTICS_ST sStatistics;
UP_CONNECT_SEND_RPT_ST sConnectSendRpt;
UP_ERROR_ET etErrorCode;
RSYS_INT32 lRtpPortID;
UP_START_DSP_REPLY_ST tStartReply;
UP_T1E1_ALARM_DATA_ST tT1E1AlarmData;
UP_ETHERNET_ALARM_DATA_ST tEthernetAlarmData;
UP_STREAM_CONNECT_DATA_ST tStreamConnectData;
UP_HDLC_REPORT_DATA_ST tHdlcReportData;

} uEventData;
} UP_EVENT_DATA_ST;

eService The service (from t_UP_SERVICE enum) which sent
the event.

eEventNum The event from this service.

ulUnit The device unit number (i.e. for a DSP-based service this
holds the DSP number).

ulChannel The channel or timeslot within device unit.

Appendix B: Standard IOP functions • upSetEventHandler

137

ulEventDataLength
The length of the associated data.

uEventData
Further information about the event, when the event requires
more than eEventNum to describe it.

Return values

UP_SUCCESS
Successful completion.

If the function cannot return an error in real time (for example, the
function sends a message to another processor to implement a
configuration change), the function returns this value, indicating that
the message was sent properly. The processor implementing the function
returns one of these values:

UP_EVT_CONFIG_ERROR

UP_EVENT_ET

typedef enum {
UP_EVT_GENERAL_DSP_FAILURE = 1,
UP_EVT_CONFIG_ERROR,
UP_EVT_STATISTICS_RPT,
UP_EVT_CONNECT_SEND,

UP_EVT_CONNECT_RECV,
UP_EVT_CONFIG_ACK,

UP_EVT_TDM_DTMF_DETECTED,
UP_EVT_PKT_DTMF_DETECTED,

UP_EVT_CPT_DETECTED,
UP_EVT_MF_DETECTED,

UP_EVT_RTP_PT_CHANGE,
UP_EVT_RTP_SSRC_CHANGE,

UP_EVT_T1E1_ALARM
UP_EVT_CAS_CHANGE
UP_EVT_PORT_ASSIGNED,
UP_EVT_FAILURE,
UP_EVT_DSP_RUNNING,
UP_EVT_ETHERNET_ALARM,
UP_EVT_IOP_RUNNING,
UP_EVT_ETHERNET_CONFIGURED,
UP_EVT_STREAM_CONNECTED,
UP_EVT_STREAM_FAILURE,
UP_EVT_HDLC_REPORT

} UP_EVENT_ET;

UP_ERROR_ET
An enumerated data type passed in a UP_EVT_FAILURE
event that contains the specific source of the UPA command
processing failure.

TASK-6000 software reference guide

138

P_START_DSP_REPLY_ST
A structure type passed in a UP_EVT_START_REPLY event
that contains the FIFO address locations to use for setting up
Fast Packet services. Receipt of the UP_EVT_START_REPLY
event signals successful initialization of a loaded DSP.

UP_START_DSP_REPLY_ST structure

typedef struct {
RSYS_UINT32 ulSendFifoAddr;
RSYS_UINT32 ulSendFifoSize;
RSYS_UINT32 ulRecvFifoAddr;
RSYS_UINT32 ulRecvFifoSizePerChannel;
RSYS_UINT32 ulRecvFifoChannels;
RSYS_UINT32 ulAltSendFifoAddr;

} UP_START_DSP_REPLY_ST;

Appendix B: Standard IOP functions • upStart

139

upStart
Initializes the Universal Port subsystem.

To perform necessary system initialization, call this function once before calling any
other UPA function from the IOP. At this early stage of IOP initialization,
IOP-based applications typically do not have access to information in the
UP_IOPSYSCONFIG_ST structure. Therefore. IOP implementation typically pass a
NULL pointer to upStart and allow the Host component, when making its call to
upStart, to populate the contents of the UP_IOPSYSCONFIG_ST structure.

Syntax

UP_ERROR_ET upStart(
UP_IOPSYSCONFIG_ST *ptIOPSysConfig

)

Parameters

ptIOPSysConfig

Points to the UP_IOPSYSCONFIG_ST structure, which configures the
board during UPA initialization:

UP_IOPSYSCONFIG_ST structure

typedef struct {
RSYS_UINT32 aulNICAddress[UP_MAX_SLOTS][MAX_NICS];
RSYS_UINT32 ulHostIPAddress;
UP_ENABLE_ET etCommandAck;
UP_ENABLE_ET etEventForwarding;
UP_LAN_CONTROL_ET etLanControl;

} UP_IOPSYSCONFIG_ST;

aulNICaddress

Carries the IP addresses (host byte ordered) to associate with
Ethernet adapters of installed IOPS. The IOP number is used
as an index to de-reference the two Ethernet adapters (fei 0
and 1) installed. An IP address setting of zero for either
interface 0 or 1 indicates that the user does not want UPA
software to configure the Ethernet Adapter and bind an IP
address to it. A non-zero entry causes UPA on the associated
IOP to perform a vxWork’s usrNetInit to initialize the
adapter and a hostAdd to make a representative hostname to
IP address mapping in the host table.

ulHostIPAddress

This element informs an IOP of its controlling host’s IP
address. This IP address is used by an IOP to establish a
communication link to the host for event forwarding when
either TCP or UDP based control has been configured.

etCommandAck

This enumeration specifies whether UPA should acknowledge
each UPA command request with an asynchronous
notification. This enumeration should be set to

TASK-6000 software reference guide

140

‘enumDisabled’ when commands are issued by an IOP based
application and should only be set to ‘enumEnabled’ when a
host based application wants positive confirmation of
command processing.

etEventForwarding

This enumeration specifies whether UPA should forward
events emanating from an IOP to the Host. This forwarding
is useful in determining the success or failure of an UPA
command when issued from the host.

etLanControl

A flag that specifies the transport to use for communicating
control messages between a controlling host and an IOP. You
can select one of these:

enumNoLanControl

The PCI bus communicates control messages
between host and IOP. This limits host control to
IOPs located within the same shelf.

Return values

UP_SUCCESS
Successful completion.

UP_CONFIG_ERR
Configuration error.

Appendix B: Advanced IOP functions • iopGetNWPktBuf

141

iopGetNWPktBuf

Advanced Receives the next buffer of packets from the DSP.

The buffer contains one or more packets in the following format:

• Total buffer length

• Channel number (one word)

• Packet length (one word)

• One or more words of packet data

For details about the packet buffer contents, see iopSendNWPktBuf on page 143.

Syntax

int iopGetNWPktBuf (
IN long dspNum,
IN long *pBuf

)

Parameters

dspNum The DSP number.

pBuf A pointer to the buffer that receives network packets.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

142

iopJitterControl
Updates the IP network buffer control parameters.

Syntax

int iopJitterControl (
IN long dspNum,
IN long ChnlNum,
IN t_jitterParam *pJitter

)

Parameters

dspNum The DSP number.

ChnlNum The channel number.

pJitter A pointer to the structure that contains jitter parameters:

t_jitterParam structure

typedef struct {
long nJitterBuf;

} t_jitterParam;

nJitterBuf

The number of jitter buffers between Host and IOP/DSP.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix B: Advanced IOP functions • iopSendNWPktBuf

143

iopSendNWPktBuf
Sends network packets to the DSP.

The packets are organized in the buffer as follows:

Syntax

int iopSendNWPktBuf (
IN long dspNum,
IN long *pBuf

)

Parameters

dspNum The number of the DSP to which you want to send packets.

pBuf A buffer that consists of one or more network packets, as shown in
Figure B-1.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Figure B-1. Packet organization buffer

All numbers and sizes are in 32-bit words

Total length excluding length word =
L(32-bit words)

Channel number = x

Channel data length (excluding length word) =
dl_x(32-bit words)

Channel x data

Channel data length (excluding length word) =
dl+y(32-bit words)

Channel y data

L+1

L

dl_x+1

dl_x

dl_y+1

dl_y

1

1

1

Channel number = y 1

1

TASK-6000 software reference guide

144

iopSendMsg
Sends a message from the Host to the specified IOP or DSP.

If the message is not delivered to the IOP within the specified time, the function
returns failure.

Syntax

int iopSendMsg (
IN long dst,
IN long msgType,
IN ulong msgSzW,
IN long *pBuf,
IN long waitTimeMsec

)

Parameters

dst The destination, in this format:

Device | DeviceNum

Device Enter either TASK_IOP or TASK_DSP.

DeviceNum Enter the device number.

Examples:

To invoke a handler from the second IOP, use (TASK_IOP | 2) as
the source.

To invode a handler from the third DSP, use (TASK_DSP | 3) as source.

msgType The message type. You can use any positive integer.

msgSzW The number of words in the message.

pBuf The buffer that contains the message.

waitTimeMsec

The number of milliseconds that elapse before determining
message status.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix B: Advanced IOP functions • iopSetNWNotify

145

iopSetNWNotify
Sets handler to be invoked for notifying arrival of network packets from the DSP.

The handler must take the DSP number as the argument.

Syntax

void iopSetNWNotify (
IN void (* NWNotifyHndlr) (IN long dspNum)

)

Parameters

NWNotifyHndlr

A pointer to the handler that notifies the Host application of the arrival
of network packets from the DSP.

dspNum The DSP number from which network packets were sent.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

146

upSetUserMsgHandler
MsgHandlerFunc is called whenever a TASK user message is received by the IOP
with a msgType not used by UPA.

UPA currently uses only message type 80.

Syntax

void upSetUserMsgHandler (
void (*MsgHandlerFunc)(

IN long src,
IN long msgType,
IN ulong msgSzW,
IN long *pBuf

)
);

Parameters

MsgHandlerFunc

A pointer to the message handler.

src The message handler, in this format:

Device | DeviceNum

Device Enter either TASK_IOP or TASK_DSP.

DeviceNum Enter the device number.

Examples:

To invoke a handler from the second IOP, use (TASK_IOP | 2) as
the source.

To invode a handler from the third DSP, use (TASK_DSP | 3) as source.

msgType The message type. You can use any positive integer.

msgSzW The number of words in the message.

pBuf The buffer that contains the message.

Return values

None.

147

C HDLC driver library

This appendix describes the HDLC driver library.

When reading this file online, you can immediately view information about any
topic by placing the mouse cursor over a test name and clicking.

Overview
The HDLC Status and Control API is the interface to the HDLC driver.

The HDLC driver provides the software interface to the HDLC controller of the
LAN/WAN option card. The driver works under the VxWorks Real-Time operating
system. The driver is not a “true” VxWorks driver in the sense that it is not built as
part of the kernel. It does however make use of VxWorks system calls and therefore
requires the O/S.

The driver provides control and monitoring of the HDLC controller of the
LAN/WAN option card. The controller is a Siemens Munich128X. This document
assumes that the reader has some understanding of the operation of the device.

The driver consists of these main parts:

• ISR (Interrupt Service Routine)

• IST (VxWorks Interrupt Service Task)

• Status and control API

Driver internals, data structures, and resources
This section describes some internal workings of the driver and issues related
to resources.

Unlike the T1/E1 and T8100 drivers, which provide only control and status
functionality, the HDLC driver includes data path functionality. That is, it is also
responsible for the transmission and reception of data to and from the user
application. Because of this, the HDLC driver requires board resources well beyond

For information about... Go to this page...
Overview... 147

Driver internals, data structures, and resources ... 147
Sample HDLC driver sequence.. 150
Function list... 151

Functions .. 153
Type definitions ... 171
Structures.. 172

TASK-6000 software reference guide

148

what is used by the T1/E1 and T8100 drivers. The resources of concern are
memory, on-board PCI bandwidth and processor power. These topics are discussed
in great detail in the Munich128X documentation and are summarized here to
illustrate how the driver code relates to the hardware.

Data structures
The HDLC driver maintains numerous data structures required by the HDLC
controller to transmit and receive data. Of greatest interest are the transmit and
receive descriptors and buffers and the interrupt queues.

• Control Configuration Block (CCB): The primary data structure for the
controller, the CCB is a relatively small block of data which contains setup
information for the controller as well a table of pointers to transmit and receive
descriptors. Each port and channel has one or more associated transmit and
receive descriptors. The driver currently implements 32 descriptors per channel.
Therefore with a maximum of 4 ports and 32 channels per port, there are a
total of 4 * 32 * 32 = 4096 descriptors. The 32 descriptors per channel are
configured as a circular chain. Each descriptor points to a data buffer as well as
the next link in the chain. The data buffers are currently set to 512 bytes each.
512 was selected since it is sufficient to store the largest LAPD message.

• Interrupt queues: Another important data structure, the interrupt queues—one
for transmit and one for receive—are used by the controller to store information
on transmit and receive events. Each time a complete packet is sent or received
or a transmit or receive error is detected, an entry or entries are written to the
queue. These entries are later processed by the driver based on the mode (see
mode description below).

Processing modes
Transmission and reception of packets requires various processing to be performed
by the I/O processor (IOP). The following paragraphs describe the processing flow
for transmission and reception as well as some of the build options (#define’s)
which are available to modify the driver operation to tailor it to the user’s
application. There are four modes in which the driver can work. These modes differ
in the number of interrupts which are generated and the way in which Tx and Rx
buffers are processed. Three of the four modes use polling for transmit, receive or
both. Polling in this case refers to timer based polling in which an interrupt is
generated by the Munich128X timer, and the transmit and receive descriptors are
read (polled) in response to this timer interrupt. The interrupt/timer interval is a
build option controlled by the HDLC_POLLING_INTERVAL #define.

• Mode 1 (Fully interrupt driven): In this mode interrupts are generated for every
packet which is transmitted and received. For applications which transmit many
packets per second over many channels this mode results in high interrupt
overhead and should not be used.

• Mode 2 (Mixed mode 1—Tx polled): In this mode, packet transmission does
not result in any interrupts but receive packets continue to generate interrupts.
This mode generates approximately half the interrupts as compared to the first
mode and still maintains very low latency on receive packets. It should be noted

Appendix C: HDLC driver library • / Processing packet transmission and reception

149

that polling for completed packet transmission does NOT increase transmission
latency. It does however increase the time before which the buffer for a
transmitted packet is available for reuse by another packet. This gives the
appearance of reducing the number of transmit buffers.

• Mode 3 (Mixed mode 2—Rx polled): This mode is the opposite of the second
mode. In this mode, interrupts are generated for transmitted packets while
polling is used for receive packets.

• Mode 4 (Fully polled): In this mode, no interrupts are generated as a result of
transmitted or received packets. Timer based polling is used to determine when
a packet has been transmitted and when one has been received. For applications
which process many packets per second, this mode provides the least amount of
processing overhead, however, the application must be able to tolerate the
latency on receive packets. If this latency cannot be tolerated, Mode 2 should
be used.

Processing packet transmission and reception
The descriptions below assume that the device, it ports and its channels are properly
configured via the appropriate API calls.

Transmission of data begins with a call to the HDLCSendPacket function. This
function takes the user data and copies it to the next available buffer associated
with the next available descriptor for the port and channel being specified. Once the
data has been copied to the buffer, it is marked as available for transmission. If the
HDLC controller is idle, this wakes up the controller and begins transmission of the
packet. If the controller is working on other links in the chain, marking the buffer
ensures that the newly filled link gets transmitted after the others are completed.
The HDLCSendPacket function returns immediately after the data is copied and the
buffer is marked. It does NOT wait for transmission to begin.

When a packet has been completely transmitted, an interrupt is generated if the
driver has been configured for Mode 1 or Mode 3 operation. As described
previously, this interrupt results in a message to the driver task which picks up the
message and processes the interrupt event. In this case, the processing involves
reading the transmit interrupt queue, checking for any transmission errors and
freeing the descriptor and buffer which held the packet that was transmitted. If
Mode 2 or Mode 4 is used, no transmit interrupt is generated and the descriptor
and buffer remains unavailable until the timer interrupt. When the timer interrupt
occurs, the transmit interrupt queue is parsed and all descriptors and buffers
associated with transmitted packets are freed. Note that although no per-packet
transmit interrupt is generated for Modes 2 and 4, the controller continues to make
entries in the interrupt queue for each packet.

During transmit packet processing, if the user has registered transmit handlers, the
user is called back on two events. These events are a transmit error condition and/or
a complete error-free packet transmission. Although not required, the later callback
can be used to send another packet to the driver. Note that these callbacks occur in
the context of the interrupt service task.

Once fully configured (device, port and channel), the controller constantly monitors
the receive data stream awaiting a packet. When a packet is completely received, an

TASK-6000 software reference guide

150

interrupt is generated if the driver was configured for Mode 1 or Mode 2 operation.
As described previously, this interrupt with result in a message to the driver task
which picks up the message and processes the interrupt event. In this case, the
processing involves reading the receive interrupt queue, checking for any receive
errors and marking the descriptor and buffer as having valid receive data. If Mode 3
or Mode 4 is used, no receive interrupt is generated and the descriptor and buffer
remains unmarked until the timer interrupt. When the timer interrupt occurs, the
receive interrupt queue is parsed and all descriptors and buffers associated with
received packets are marked.

During receive packet processing, if the user has registered receive handlers, the user
is be called back on two events. These events are a receive error condition and/or a
complete error-free packet reception. In the error-free case, the user may call the
HDLCGetPacket function to retrieve the received packet or as an alternative, the
user can signal another task to read the packet. The user may also use a polling
method to detect packet reception. In this case, the user can periodically poll for
received packets using HDLCGetPacket. The function returns an indication if no
packet is available, or copies the data to the user’s space if a packet is available.
HDLCGetPacket does not block when no packet is available. As in the interrupt
versus polling case for the driver, polling for packet reception in this manner
introduces additional latency. In either case, when HDLCGetPacket returns a valid
packet, it copies the data to the user’s space and frees the receive descriptor and
buffer. As in the transmit case, the callbacks occur in the interrupt task context.

Since the HDLC controller user I/O processor memory for all its structures, memory
bus and PCI bandwidth is also a consideration. This topic is discussed in detail in
the device datasheets and user’s manuals.

Sample HDLC driver sequence
Initialize the device and driver:

HDLCInit()

Set device-wide event handler:

HDLCSetDeviceErrorHandler(…….)

Setup port-wide event handlers.

HDLCSetTxPacketHandler(…….)
HDLCSetRxPacketHandler(…….)
HDLCSetTxErrorHandler(…….)
HDLCSetRxErrorHandler(…….)

Configure the port(s). Called for each port to be used.

HDLCConfigPort(….…)

Configure the channel(s). Called for each channel of each port to be used.

HDLCConfigChannel(….…)

Enable the channel(s). Called for each channel of each port to be used.

HDLCEnableChannel(….…)

Channels are now enabled for transmission and reception of packets.

Appendix C: HDLC driver library • / Processing packet transmission and reception

151

Transmit packets using:

HDLCSendPacket(…….)

Receive packets using:

HDLCGetPacket(…….)

This function may be used to poll for receipt of a packet or may be called in the user
supplied callback function.

Close the driver before exiting the application

HDLCCloseDriver()

Function list
This appendix lists function descriptions alphabetically. You can find a function in
this appendix either by locating it alphabetically within its group, or by using Table
C-1 below, which groups like functions together.

Use this table to identify the HDLC driver functions you want to use. Use the
function description later in this appendix to obtain detailed information, including
syntax and parameter values.

Table C-1. HDLC driver functions

Type Function Description
Configuration Configures each port and channel of the

HDLC controller.
HDLCInit Initializes the HDLC hardware and software.
HDLCReset Resets the device and driver.
HDLCCloseDriver Shuts down the HDLC controller and

device driver.
HDLCClosePort Shuts down an HDLC controller port.
HDLCConfigPort Specifies the configuration of any HDLC

controller port, primarily mapping a port’s
timeslots to data channels.

HDLCConfigChannel Specifies the configuration of any channel of
any HDLC controller port.

HDLCEnableChannel Enables a channel for operation.
HDLCDisableChannel Disables all status (interrupts and data)

received from the specified channel.
HDLCResetChannel Resets the specified channel.

Packet transmission and reception Queues packets for transmission and to read
received packets.

HDLCSendPacket Sends an HDLC packet on the specified channel.
HDLCGetPacket Gets an HDLC packet from the driver.

Status monitoring Polls the status of the controller and of
each channel.

TASK-6000 software reference guide

152

Function prototypes and type definitions for the interface are contained in this
header file:

iop_to_hdlc.h

This document uses the term “Port” to refer to any one of the four TDM streams
(ports) of the Siemens Munich128X HDLC controller. Ports are numbered 0 to 3.
Each port consists of 32 64Kbps timeslots which are assigned to up to 32
“Channels”. The term “Channel” refers to logical (virtual) data channels of the
HDLC controller. A channel consists of one or more bits from one or more TDM
timeslots on a port. Therefore, each channel can have a data rate from 8Kbps to
2048Kbps. Each port is independent, so channels and timeslots of one port have no
relationship or connection to channels and timeslots of another port. No two
channels can share data from the same timeslot.

HDLCGetDeviceStatus Returns the status of the HDLC device
and driver.
Note: This function is not currently
implemented.

HDLCGetChannelStatus Returns the status of the specified channel of
the specified port.
Note: This function is not currently
implemented.

Interrupt/event control Specifies handlers (callback functions) to call
when an event occurs.

HDLCSetTxPacketHandler Specifies the user handler to call when packet
transmission is complete.

HDLCSetRxPacketHandler Specifies the user handler to call when packet
reception is complete.

HDLCSetDeviceErrorHandler Specifies the user handler to call when a device
error is detected.

HDLCSetTxErrorHandler Specifies the user handler to call when a
transmission error occurs.

HDLCSetRxErrorHandler Specifies the user handler to call when a
message reception error occurs.

Table C-1. HDLC driver functions

Type Function Description

Appendix C: HDLC driver library • Functions / HDLCInit

153

Functions

HDLCInit

Functions Initializes the HDLC hardware and software.

Syntax

UINT32 HDLCInit(void)

Parameters

None.

Return values

HDLC_INIT_COMPLETE_32X
The device is 32X; initialization succeeded.

HDLC_INIT_COMPLETE_128X
The device is 128X; initialization succeeded.

HDLC_INIT_FAILURE
An unspecified failure occurred.

HDLC_INIT_FAILURE_NO_DEV
No device was found.

HDLC_INIT_INTR_FAILURE
The device interrupt failed.

HDLC_INIT_CONFIG_FAILURE
Reserved for future use.

HDLC_INIT_INTR_CONNECT_FAIL
Failed to set the VxWorks interrupt handler.

HDLC_INIT_RESET_FAIL
Cannot reset the device.

Call this function before using any other HDLC driver functions.

TASK-6000 software reference guide

154

HDLCReset
Resets the device and driver.

Syntax

UINT32 HDLCReset(
IN const UINT32 reset_type

)

Parameters

reset_type

Specifies the type of reset. You can use one of these values:

HDLC_HARD_RESET
Resets the device (equivalent to a hardware reset).

HDLC_SOFT_RESET
Resets only the driver.

In the current driver implementation, both reset types result in a
hard reset.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix C: HDLC driver library • Functions / HDLCCloseDriver

155

HDLCCloseDriver
Shuts down the HDLC controller and device driver.

Syntax

UINT32 HDLCCloseDriver(void)

Parameters

None.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Call this function prior to exiting the user application to properly quiesce the
device.

TASK-6000 software reference guide

156

HDLCClosePort
Shuts down an HDLC controller port.

If multiple ports are in use, this function can shut down a port that generates
excessive errors while keeping the remaining ports active.

This function is currently not implemented.

Syntax

UINT32 HDLCClosePort(IN const UINT port)

Parameters

port The HDLC controller port.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix C: HDLC driver library • Functions / HDLCConfigPort

157

HDLCConfigPort
Specifies the configuration of any HDLC controller port, primarily mapping a port’s
timeslots to data channels.

Syntax

UINT32 HDLCConfigPort(
IN const UINT32 port,
IN const t_HDLC_port_config *port_config

)

Parameters

port The HDLC controller port.

*port_config

For a detailed description of configuration options, see the data type
section of the t_HDLC_port_config structure description.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

158

HDLCConfigChannel
Specifies the configuration of any channel of any HDLC controller port.

Configuration includes parameters such as interframe time-fill character, CRC type,
enable/disabling CRC checking and channel loopbacks.

The current implementation of the driver does not support loopbacks.

Syntax

UINT32 HDLCConfigChannel(
IN const UINT32 port,
IN const UINT32 channel,
IN const t_HDLC_channel_config *channel_config

)

Parameters

port The HDLC controller port.

channel The HDLC channel.

channel_config

For a detailed description of configuration options, see the data type
section of the t_HDLC_channel_config structure description.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix C: HDLC driver library • Functions / HDLCEnableChannel

159

HDLCEnableChannel
Enables a channel for operation.

The port and channel must be already configured. Once enabled, a channel can
receive and accept packets for transmission.

Syntax

UINT32 HDLCEnableChannel(
IN const UINT32 port,
IN const UINT32 channel

)

Parameters

port The HDLC controller port.

channel The HDLC channel.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

160

HDLCDisableChannel
Disables all status (interrupts and data) received from the specified channel.

Syntax

UINT32 HDLCDisableChannel(
IN const UINT32 port,
IN const UINT32 channel

)

Parameters

port The HDLC controller port.

channel The HDLC channel.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix C: HDLC driver library • Functions / HDLCResetChannel

161

HDLCResetChannel
Resets the specified channel.

A soft reset occurs on the channel, and the channel is disabled. Channel
configuration resets and all allocated memory for that channel is deallocated within
the driver.

Syntax

UINT32 HDLCResetChannel(
IN const UINT32 port,
IN const UINT32 channel

)

Parameters

port The HDLC controller port.

channel The HDLC channel.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

162

HDLCSendPacket
Sends an HDLC packet on the specified channel.

Syntax

UINT32 HDLCSendPacket(
IN const UINT32 port,
IN const UINT32 channel,
IN const UINT8 *data_ptr,
IN const UINT32 length

)

Parameters

port The HDLC controller port.

channel The HDLC channel.

data_ptr A pointer to the data.

length The number of bytes in the data. The current maximum packet length is
512 bytes.

Return values

SUCCESS Successful completion.

FAILURE Returns an error if the driver does not have sufficient memory to queue
the message or if an invalid channel or port is specified.

Appendix C: HDLC driver library • Functions / HDLCGetPacket

163

HDLCGetPacket
Gets an HDLC packet from the driver.

The user was notified of the packet arrival by specifying a handler for received
packets via HDLCSetRxPacketHandler. You can also use this function to poll for
receipt of packet in which case the function returns a HDLC_NO_RX_DATA
indication if no packet is available. The function does not wait for a packet, but
instead returns immediately when no packet is available. This function returns only
valid packets, that is, packets received without any errors (such as CRC).

Syntax

UINT32 HDLCGetPacket(
IN const UINT32 port,
IN const UINT32 channel,
IN const UINT8 *data_ptr,
OUT UINT32 *length

);

Parameters

port The HDLC controller port.

channel The HDLC channel.

data_ptr A pointer to the buffer from which to receive data.

length The number of bytes in the buffer.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

164

HDLCGetDeviceStatus
Returns the status of the HDLC device and driver.

Syntax

UINT32 HDCLGetDeviceStatus(void *status_ptr)

Parameters

status_ptr

No information available.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

This function is currently not implemented.

Appendix C: HDLC driver library • Functions / HDLCGetChannelStatus

165

HDLCGetChannelStatus
Returns the status of the specified channel of the specified port.

Syntax

UINT32 HDLCGetChannelStatus(
IN const UINT32 port,
IN const UINT32 channel,
OUT t_HDLC_channel_status *status_ptr

)

Parameters

port The HDLC controller port.

channel The HDLC channel.

status_ptr

A pointer to the t_HDLC_channel_status structure. For details about this
structure, see t_HDLC_channel_status on page 176.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

This function is currently not implemented.

TASK-6000 software reference guide

166

HDLCSetTxPacketHandler
Specifies the user handler to call when packet transmission is complete.

Although not required, this can be used by the user code to send the next message.
The current version of the driver queues up to 32 packets per channel. To disable
this callback, the function can be called with a NULL function pointer.

Syntax

UINT32 HDLCSetTxPacketHandler(
IN const UINT32 port,
IN void (*UserHDLCTxPacketHandler) (UINT32 channel, UINT32 status)

)

Parameters

port The HDLC controller port.

UserHDLCTxPacketHandler

The user function that handles the event of packet transmission
completion.

channel The HDLC channel.

status The HDLC transmission status.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix C: HDLC driver library • Functions / HDLCSetRxPacketHandler

167

HDLCSetRxPacketHandler
Specifies the user handler to call when packet reception is complete.

When the driver performs the callback, the user may then call HDLCGetPacket to
retrieve the data. Alternately the user may choose to poll for packet reception via
repeated calls to HDLCGetPacket, or set a flag in the handler and read the packet at
a later time. It is up to the user code to service the packet reception in a timely
manner as to prevent overruns. The driver queues up to 32 received packets per
channel. To disable this callback, the function can be called with a NULL function
pointer.

Syntax

UINT32 HDLCSetRxPacketHandler(
IN const UINT32 port,
IN void (*UserHDLCRxPacketHandler) (UINT32 channel, UINT32 status)

)

Parameters

port The HDLC controller port.

UserHDLCRxPacketHandler

The user function that handles the event of packet receive completion.

channel The HDLC channel.

status The HDLC transmission status.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

168

HDLCSetDeviceErrorHandler
Specifies the user handler to call when a device error is detected.

Device errors can occur on events such are loss of frame sync or the device not being
able to read IOP (i960) memory in a timely manner. To disable this callback, the
function can be called with a NULL function pointer.

Syntax

UINT32 HDLCSetDeviceErrorHandler(
IN const UINT32 port,
IN void (*UserHDLCDeviceErrorHandler) (UINT32 error_code)

)

Parameters

port The HDLC controller port.

UserHDLCDeviceErrorHandler

The user function that handles device errors.

error_code

The HDLC error code.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix C: HDLC driver library • Functions / HDLCSetTxErrorHandler

169

HDLCSetTxErrorHandler
Specifies the user handler to call when a transmission error occurs.

To disable this callback, the function can be called with a NULL function pointer.

Syntax

UINT32 HDLCSetTxErrorHandler(
IN const UINT32 port,
IN void (*UserHDLCTxErrorHandler) (UINT32 channel, UINT32 status)

)

Parameters

port The HDLC controller port.

UserHDLCTxErrorHandler

The user function that handles transmission errors.

channel The HDLC channel.

status The HDLC channel status.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

170

HDLCSetRxErrorHandler
Specifies the user handler to call when a message reception error occurs.

To disable this callback, the function can be called with a NULL function pointer.

Syntax

UINT32 HDLCSetRxErrorHandler(
IN const UINT32 port,
IN void (*UserHDLCRxErrorHandler) (UINT32 channel, UINT32 status)

)

Parameters

port The HDLC controller port.

UserHDLCRxErrorHandler

The user function that handles receive errors.

channel The HDLC channel.

status The HDLC channel status.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix C: HDLC driver library • Functions / HDLCSetRxErrorHandler

171

Type definitions
(from IOP_TO_HDLC.H)

/* device limits */
#define HDLC_MAX_PORTS 4
#define HDLC_MAX_CHANNELS_PER_PORT 32
#define HDLC_MAX_TIMESLOTS_PER_PORT32

/* reset types */
#define HDLC_HARD_RESET 1
#define HDLC_SOFT_RESET 2

/* channel specifications */
#define HDLC_CHANNEL_NORMAL_MODE 1
#define HDLC_CHANNEL_LOOPBACK_INT 2
#define HDLC_CHANNEL_LOOPBACK_EXT 3

#define HDLC_IFTF_IS_7E0
#define HDLC_IFTF_IS_FF1

#define HDLC_FLAG_ADJUST_OFF 0 /* see Munich datasheet for */
#define HDLC_FLAG_ADJUST_ON 1 /* description of this mode */

#define HDLC_CRC_TYPE_16_BIT 0
#define HDLC_CRC_TYPE_32_BIT 1

#define HDLC_CRC_ENABLE 0
#define HDLC_CRC_DISABLE 1

#define HDLC_DONT_INVERT_DATA 0
#define HDLC_INVERT_DATA 1

/* code returned to device error handler */
#define HDLC_CMD_ERROR_NO_ACK 1
#define HDLC_CMD_ERROR_ACK_FAIL 2
#define HDLC_TX_SYNC_ERROR 3
#define HDLC_RX_SYNC_ERROR 4
#define HDLC_UNKNOWN_ERROR 5
#define HDLC_TX_BUFFER_ERROR 6

/* initialization return values */
#define HDLC_INIT_COMPLETE_32X 1 /* device is 32X, init successful */
#define HDLC_INIT_COMPLETE_128X 2 /* device is 128X, init successful */
#define HDLC_INIT_FAILURE3
#define HDLC_INIT_FAILURE_NO_DEV 4
#define HDLC_INIT_INTR_FAILURE 5
#define HDLC_INIT_CONFIG_FAILURE 6
#define HDLC_INIT_INTR_CONNECT_FAIL7
#define HDLC_INIT_RESET_FAIL 8

/* return status from HDLCGetPacket */
#define HDLC_NO_RX_DATA 1
#define HDLC_RX_DATA_RETURNED 2

/* return status from HDLCSendPacket */
#define HDLC_TX_CHAN_NOT_CONFIGURED1
#define HDLC_NO_TX_BUFFER_AVAIL 2
#define HDLC_PACKET_QUEUED 3

/* status word for Rx error handler */
#define HDLC_RX_BUFFER_ERROR 1

/* used in xx_channel_assignment field to indicate unassign timeslots */
#define HDLC_UNASSIGNED_TIMESLOT 0xff

TASK-6000 software reference guide

172

Structures

Structures Use this table to identify the HDLC driver structures. Use the structure description
later in this appendix to obtain detailed information, including syntax and
parameter values.

Table C-2. HDLC structures

Call Description
t_HDLC_port_config Specifies a port’s configuration.
t_HDLC_channel_config Specifies the configuration for each channel.
t_HDLC_channel_status Specifies a channel’s status.

Note: This structure is not currently implemented.

Appendix C: HDLC driver library • Structures / t_HDLC_port_config

173

t_HDLC_port_config
Specifies a port’s configuration.

Syntax

typedef struct {
UINT8 tx_channel_assignment[HDLC_MAX_TIMESLOTS_PER_PORT];
UINT8 tx_enabled_bits[HDLC_MAX_TIMESLOTS_PER_PORT];
UINT8 rx_channel_assignment[HDLC_MAX_TIMESLOTS_PER_PORT];
UINT8 rx_enabled_bits[HDLC_MAX_TIMESLOTS_PER_PORT];
bool update_channel_assignments;
bool enable_port_loopback;
bool enable_frame_length_check;
UINT32 max_frame_length;

} t_HDLC_port_config;

Parameters

tx_channel_assignment
tx_enabled_bits

Specifies the timeslot-to-data channel mapping for the port. The element
indices correspond with timeslot numbers. These fields are an array of
length 32. tx_channel_assignment specifies the data channel to which a
timeslot belongs, while tx_enabled_bits is a bitmask that determines
which bits in a timeslot are enabled.

Examples

tx_channel_assignment[5] = 7
Indicates that timeslot 5 belongs to data channel 7.

tx_channel_assignment[5] = 7

tx_enabled_bits[5] = 0xFF

Indicates that all 8 bits in timeslot 5 belong to data channel 7 forming a
64Kbps data channel.

tx_channel_assignment[5] = 7

tx_enabled_bits[5] = 0x03

Indicates that the first 2 bits of timeslot 5 belong to data channel 7, thus
forming a 16Kbps channel.

rx_channel_assignment

rx_enabled_bits

Specifies the timeslot-to-data channel mapping for the port. The element
indices correspond to timeslot numbers. These fields are an array of
length 32. rx_channel_assignment specifies the data channel to which a
timeslot belongs, while rx_enabled_bits is a bitmask that determines
which bits in a timeslot are enabled.

Examples

rx_channel_assignment[5] = 7
Indicates that timeslot 5 belongs to data channel 7.

TASK-6000 software reference guide

174

rx_channel_assignment[5] = 7

rx_enabled_bits[5] = 0xFF

Indicates that all 8 bits in timeslot 5 belong to data channel 7 forming a
64Kbps data channel.

rx_channel_assignment[5] = 7

rx_enabled_bits[5] = 0x03

Indicates that the first 2 bits of timeslot 5 belong to data channel 7, thus
forming a 16Kbps channel.

update_channel_assignments

Indicates whether to process this structure’s first four fields
(channel/timeslot assignments and enables). You can select one of these:

FALSE The first four fields are ignored and the structure’s remaining
fields are processed.

TRUE The first four fields are valid and processed along with the
structure’s other fields.

enable_port_loopback

Not available. The current release of the driver does not support
loopbacks. Loopback functionality can be accomplished by controlling
the T8100 Timeslot switch on the SPIRIT board, to which all HDLC
controller ports are connected.

enable_frame_length_check

Determines whether to use maximum frame length checking.

max_frame_length

Determines the maximum length for maximum frame length checking.
The maximum length should not exceed 1024 in this version of the driver.

Appendix C: HDLC driver library • Structures / t_HDLC_channel_config

175

t_HDLC_channel_config
Specifies the configuration for each channel.

Syntax

typedef struct {
UINT8 channel_mode;
UINT8 interframe_timefill_char;
UINT8 crc_type;
UINT8 crc_enable;
UINT8 invert_data;
UINT8 protocol;
UINT8 flag_adjust;

} t_HDLC_channel_config;

Parameters

channel_mode

Specifies whether a channel is in normal or loopback mode. This version
of the driver only supports normal mode.

interframe_timefill_char

Specifies the octet to use for interframe time-fill (IFTF). You can select
one of these:

HDLC_IFTF_IS_7E (IFTF = 0x7E)

HDLC_IFTF_IS_FF (IFTF = 0xFF)

crc_type Specifies whether the size of the CRC. You can select one of these:

16 bits (HDLC_CRC_TYPE_16_BIT)

32 bits (HDLC_CRC_TYPE_32_BIT)

crc_enable

Enables and disables CRC checking (Rx) and generation (Tx).

invert_data

Inverts transmitted and received data.

protocol Specifies the type of formatting protocol to use. The current driver
supports only HDLC formatting and therefore this field is ignored

flag_adjust

Adjusts the number of transmitted interframe time-fill characters. You
can select one of these:

HDLC_FLAG_ADJUST_OFF
Uses a minimum of three interframe time-fill characters
between two consecutive frames.

HDLC_FLAG_ADJUST_ON
Reduces the number of interface time-fill characters by 1/8
the number of zero insertions. See Munich128X datasheet for
a complete description of this mode.

TASK-6000 software reference guide

176

t_HDLC_channel_status
Specifies a channel’s status.

Syntax

typedef struct {
} t_HDLC_channel_status;

This function is currently not implemented.

177

D T1/E1 library

This appendix describes the T1/E1 driver library.

When reading this file online, you can immediately view information about any
topic by placing the mouse cursor over a test name and clicking.

Overview
The T1/E1 Status and Control API is the user’s interface to the T1/E1 driver.

The T1/E1 driver provides the software interface to the T1/E1 spans of the
LAN/WAN option card. The driver is designed to work under the VxWorks Real-
Time Operating System. The driver is not a “true” VxWorks driver in the sense that
it is not built as part of the kernel. It does however make use of VxWorks system
calls and therefore requires the O/S.

The driver provides control and monitoring of the two or four T1/E1 ports of the
LAN/WAN option card. The ports use a Seimens Quad FALC LIU/Framer as their
interface device. You do not need a working knowledge of this device to use T1/E1
functions.

The driver includes:

• Interrupt handling tools

• Function list

For information about... Go to this page...
Overview... 177

Sample startup sequence .. 178
Function list... 179

Functions .. 183
Structures.. 201

TASK-6000 software reference guide

178

Sample startup sequence
T1E1initCard(&board_config);

Initializes the T1 card and driver. Not required if iopInit is being called.

setT1Config(&config_struct);

Sets the configuration of the T1 line.

setT1Signaling(&signaling_struct);

Sets the initial state of the transmitted signaling bits. Not required if signaling
has not been enabled.

setT1SignalingHandler(&userT1SignalingHandler);

Sets a callback function for receive signaling bit changes.

setT1StatusHandler(&userT1StatusHandler);

Sets a callback function for receive line state/status changes.

Appendix D: T1/E1 library • / Function list

179

Function list
This appendix lists function descriptions alphabetically. You can find a function in
this appendix either by locating it alphabetically within its group, or by using Table
D-1 below, which groups like functions together.

Use this table to identify the T1/E1 driver functions you want to use. Use the
function description later in this appendix to obtain detailed information, including
syntax and parameter values:

Table D-1. T1/E1 functions

Type Function Description
Configuration Configure each port for T1 or E1 operation and

configure the appropriate line parameters (line
coding, framing mode, buildout, etc.). In
addition, these functions allow for controlling of
outbound robbed bit signaling, alarm
generation, idle code insertion and loop-
up/loop-down codes.

T1E1initCard Initializes the driver and initialize the framers on
the option card.

T1E1getBoardConfig Gets information about the installed option
card without performing the initialization done
by T1E1initCard.

T1E1setLeds Controls the LEDs associated with each port of
the card.

setT1Config Sets the card in T1 mode and sets the
configuration of a specified port.

setT1Signaling Sets the values of the transmitted robbed bit
signaling bits.

setT1Command Transmits “commands” over the specified T1
port.

setT1ClearChannels Specifies which timeslots (DS0s) on the
specified T1 port are clear channel (64Kbps)
and which use robbed bit signaling and are
therefore 56Kbps channels.

setT1IdleChannels Specifies which timeslots (DS0s) on the
specified T1 port transmit the idle code and
which transmit data “normally”.

setT1ChannelConfig Configures individual timeslots (DS0s) on the
specified T1 port.

setE1Config Sets the card in E1 mode and set the
configuration of a specified port.

setE1Signaling Sets the values of the transmitted CAS (channel
associated signaling) bits.

TASK-6000 software reference guide

180

Function prototypes and type definitions for the driver interface are contained in
the following header files.

• iop_to_t1.h

• iop_to_e1.h

• iop_to_t1e1.h

• t1e1_common_types.h

The functions and their data types are described in the pages that follow. The
descriptions use the terms port, framer, span, line and DS1 interchangeably to
indicate 1 of 4 T1/E1 connections available on the I/O board.

Functions which contain “T1E1” in their name are used for either T1 or E1
operation. Currently the driver does not support mixed operation on a single option
card. Functions with only “T1” in their name are T1 specific while functions with
only “E1” are E1 specific. Basic selection between T1 and E1 operating modes is
made with the setT1Config or setE1Config API calls. These mutually exclusive

Status monitoring Polls the status of the framer and of each T1/E1
span. This status includes alarm conditions,
loop code receipt and robbed bit signaling.
These functions can also be used to collect
status following the receipt of an interrupt
event.

getT1Signaling Reads the values of the received robbed bit
signaling bits on the specified T1 port.

getT1Status Reads the current receive and transmit status of
a specified T1 port.

getT1SignalingRaw Reads the values of the received robbed bit
signaling bits on the specified T1 port.

getE1Signaling Reads the values of the received CAS (channel
associated signaling) bits on the specified
E1 port.

Interrupt/event controls Turns on and off alarm and signaling interrupt
generation and allow the user to specify
handlers (callback functions) to be called when
the event occurs.

setT1SignalingHandler Specifies the event handler to call after
detecting a change in receive T1
signaling state.

setT1StatusHandler Specifies the event handler to call after
detecting a change in receive line state.

setE1SignalingHandler Specifies the event handler to call after
detecting a change in receive E1
signaling state.

Table D-1. T1/E1 functions

Type Function Description

Appendix D: T1/E1 library • / Function list

181

functions will configure the card for either T1 or E1 operation and must be called
prior to calling other T1 or E1 specific functions.

Limitations

• E1 support: The API currently provides limited support for E1. Support is
provided for span configuration and signaling generation and detection only. T1
support is much more comprehensive, however the T1 ESF Facility Data Link
functionality is not supported.

• Time slot assignments for T1 and E1 interfaces: There are differences in the
mapping of T8100 time slots depending on the interface used, as illustrated by
the following table. The developer should be aware of these differences when
assigning DSP data channel resources to time slots using the T8100 peripheral.

Table D-2. Time slot numbers

T8100 T1 E1
0 1 (data 0) 0 (signaling 0)
1 2 (data 1) 1 (data 0)
2 3 (data 2) 2 (data 1)
3 4 (data 3) 3 (data 2)
4 5 (data 4) 4 (data 3)
5 6 (data 5) 5 (data 4)
6 7 (data 6) 7 (data 6)
7 8 (data 7) 7 (data 6)
8 9 (data 8) 8 (data 7)
9 10 (data 9) 9 (data 8)
10 11 (data 10) 10 (data 9)
11 12 (data 11) 11 (data 10)
12 13 (data 12) 12 (data 11)
13 14 (data 13) 13 (data 12)
14 15 (data 14) 14 (data 13)
15 16 (data 15) 15 (data 14)
16 17 (data 16) 16 (signaling 1)
17 18 (data 17) 17 (data 15)
18 19 (data 18) 18 (data 16)
19 20 (data 19) 19 (data 17)
20 21 (data 20) 20 (data 18)
21 22 (data 21) 21 (data 19)
22 23 (data 22) 22 (data 20)
23 24 (data 23) 23 (data 21)
24 N/A 24 (data 22)
25 N/A 25 (data 23)

TASK-6000 software reference guide

182

26 N/A 26 (data 24)
27 N/A 27 (data 25)
28 N/A 28 (data 26)
29 N/A 29 (data 27)
30 N/A 30 (data 28)
31 N/A 31 (data 29)

Table D-2. Time slot numbers

T8100 T1 E1

Appendix D: T1/E1 library • Functions / T1E1initCard

183

Functions

T1E1initCard

Functions Initializes the driver and initialize the framers on the option card.

The function accepts a pointer to a structure and fills the structure with information
about the installed card. You must call this function before using any other driver
functions, however, the you do not need to call this function if iopInit is called, since
iopInit also makes the call. As the name implies, this function is not specific to T1
or E1 operations.

Syntax

void T1E1initCard(
t_T1E1_BoardConfig *board_config

)

Parameters

board_config

A pointer to the t_T1E1_BoardConfig structure. For more information
about this structure, see t_T1E1_BoardConfig on page 207.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

184

T1E1getBoardConfig
Gets information about the installed option card without performing the
initialization done by T1E1initCard.

Syntax

void T1E1getBoardConfig(
t_T1E1_BoardConfig *board_config

)

Parameters

board_config

A pointer to the t_T1E1_BoardConfig structure. For more information
about this structure, see t_T1E1_BoardConfig on page 207.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix D: T1/E1 library • Functions / T1E1setLeds

185

T1E1setLeds
Controls the LEDs associated with each port of the card.

See the Type Definition section for a complete description of possible LED states.

Syntax

void T1E1setLeds(
IN const t_T1E1_framer_id framer_id,
IN const t_T1E1_led_state led_state

)

Parameters

framer_id A pointer to the t_T1E1_framer_id structure. For more information
about this structure, see t_T1E1_framer_id on page 203.

led_state A pointer to the structure.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

186

setT1Config
Sets the card in T1 mode and sets the configuration of a specified port.

You must call this function after calling T1E1initCard (for T1 operation).

Syntax

void setT1Config(
IN const t_T1_user_config_struct *config_struct

)

Parameters

config_struct

A pointer to the t_T1_user_config_struct structure. For more
information about this structure, see t_T1_user_config_struct on
page 211.

Configuration includes:

• Line coding

• Framing mode

• Line buildout

• Idle channel and loopback specifications

• Enabling/disabling robbed bit signaling

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix D: T1/E1 library • Functions / setT1Signaling

187

setT1Signaling
Sets the values of the transmitted robbed bit signaling bits.

To transmit the bits, robbed bit signaling must be enabled via setT1Config. The
changed_bits field of the signaling_struct determines which channel’s (DS0’s) bits
are updated.

A 1 in Bit 0 of changed_bits corresponds to the first timeslot of the DS1 line. Bit 23
of changed_bits corresponds to the last timeslot of the DS1 line.

For details about each field, see the t_T1_user_signaling_data structure description.

Syntax

void setT1Signaling(
IN const t_T1_user_signaling_data *signaling_struct

)

Parameters

signaling_struct

A pointer to the t_E1_user_signaling_data structure. For more
information about this structure, see t_T1_user_signaling_data
t_T1_signaling_data on page 213.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

188

setT1Command
Transmits “commands” over the specified T1 port.

Syntax

void setT1Command(
IN const t_T1_user_command_data *command_struct

)

Parameters

command_struct

A pointer to the t_T1_user_command_data structure. For more
information about this structure, see t_T1_user_command_data on
page 214

You can select one of these:

Transmit AIS

Transmit yellow (remote) alarm

Transmit loop up code

Transmit loop down code

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix D: T1/E1 library • Functions / setT1ClearChannels

189

setT1ClearChannels
Specifies which timeslots (DS0s) on the specified T1 port are clear channel (64Kbps)
and which use robbed bit signaling and are therefore 56Kbps channels.

By default, channels are assigned to be non-clear channel (56Kbps). For any
channels to be used for robbed bit signaling, the robbed_bit_signaling_enable
field in the t_T1_user_config_struct configuration command sent via setT1Config
must be set to TRUE. If it is set to FALSE, all channels are clear, regardless of the
configuration specified through this function.

Syntax

void setT1ClearChannels(
IN const t_T1_user_clear_channel_data clear_channels_struct

)

Parameters

clear_channels_struct

A pointer to the t_T1_user_clear_channel_data structure. For more
information about this structure, see t_T1_user_clear_channel_data on
page 216.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

190

setT1IdleChannels
Specifies which timeslots (DS0s) on the specified T1 port transmit the idle code and
which transmit data “normally”.

By default, channels are assigned as non-idle. The function also specifies the 8-bit
idle code.

Syntax

void setT1IdleChannels(
IN const t_T1_user_idle_struct *idle_channels_struct

)

Parameters

idle_channels_struct

A pointer to the t_T1_user_idle_struct structure. For more information
about this structure, see t_T1_user_idle_struct on page 217.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Idle code data overwrites robbed bit signaling bits.

Appendix D: T1/E1 library • Functions / setT1ChannelConfig

191

setT1ChannelConfig
Configures individual timeslots (DS0s) on the specified T1 port.

You can specify these parameters:

• Insertion/removal of idle code

• Clear channel mode

• ABCD robbed bits (supervision)

Syntax

void setT1ChannelConfig(
IN const t_T1_user_channel_config *channel_config

)

Parameters

channel_config

A pointer to the t_T1_user_channel_config structure. For more
information about this structure, see t_T1_user_channel_config on
page 218.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

192

setE1Config
Sets the card in E1 mode and set the configuration of a specified port.

Configuration includes line coding, framing mode, line buildout, idle channel and
loopback specifications and enabling/disabling channel associated signaling. This
function must be called after calling T1E1initCard (for E1 operation).

Syntax

void setE1Config(
IN const t_E1_user_config_struct *config_struct

)

Parameters

config_struct

A pointer to the t_E1_user_config_struct structure. For more information
about this structure, see t_E1_user_config_struct on page 226.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix D: T1/E1 library • Functions / setE1Signaling

193

setE1Signaling
Sets the values of the transmitted CAS (channel associated signaling) bits.

To transmit the bits, CAS must be enabled via setE1Config. The changed_bits field
in signaling_struct determines which channel’s (DS0’s) bits to update. A 1 in Bit 0 of
changed_bits corresponds to the first timeslot of the E1 line. Bit 31 of
changed_bits corresponds to the last timeslot of the E1 line.

See t_E1_user_signaling_data structure description for details on each of the fields.

Syntax

void setE1Signaling(
IN const t_E1_user_signaling_data *signaling_struct

)

Parameters

signaling_struct

A pointer to the t_E1_user_signaling_data structure. For more
information about this structure, see t_E1_user_signaling_data on
page 228.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

194

getT1Signaling
Reads the values of the received robbed bit signaling bits on the specified T1 port.

To receive bits, robbed bit signaling must be enabled via setT1Config. When
signaling is read in this fashion, the changed_bits and timestamp fields of the
signaling_struct are invalid and not updated.

Syntax

void getT1Signaling(
INOUT t_T1_user_signaling_data *signaling_struct

)

Parameters

signaling_struct

A pointer to the t_E1_user_signaling_data structure. For more
information about this structure, see t_T1_user_signaling_data
t_T1_signaling_data on page 213.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix D: T1/E1 library • Functions / getT1Status

195

getT1Status
Reads the current receive and transmit status of a specified T1 port.

Status consists of the currently transmitted “commands” and the current receive
conditions (alarms and errors).

Syntax

void getT1Status(
INOUT t_T1_user_status_data *status_struct

)

Parameters

status_struct

A pointer to the t_T1_user_status_struct structure. For more information
about this structure, see t_T1_user_status_struct on page 215.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

196

getT1SignalingRaw
Reads the values of the received robbed bit signaling bits on the specified T1 port.

This function differs from the getT1Signaling function in the format in which data
is presented to the user. This function is specifically designed for users who want to
poll signaling bits rather than use an interrupt based method.

Syntax

void getT1SignalingRaw(
INOUT t_T1_user_raw_signaling_struct *signaling_struct

)

Parameters

signaling_struct

A pointer to the t_T1_user_raw_signaling_struct structure. For more
information about this structure, see t_T1_user_raw_signaling_struct on
page 220.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix D: T1/E1 library • Functions / getE1Signaling

197

getE1Signaling
Reads the values of the received CAS (channel associated signaling) bits on the
specified E1 port.

To receive the bits, CAS must be enabled via setE1Config. When signaling is read in
this fashion, the changed_bits and timestamp fields of signaling_struct are
invalid and not updated.

Syntax

void getE1Signaling(
INOUT t_E1_user_signaling_data *signaling_struct

)

Parameters

signaling_struct

A pointer to the t_E1_user_signaling_data structure. For more
information about this structure, see t_E1_user_signaling_data on
page 228.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

198

setT1SignalingHandler
Specifies the event handler to call after detecting a change in receive T1
signaling state.

This function “hooks” in the user’s event handler and enables signaling
event generation.

Syntax

void setT1SignalingHandler(
T1SignalingHandler userT1SignalingHandler

)

Parameters

userT1SignalingHandler

You can select one of these:

Event handler name
A user-specified signaling event handler. For more
information about this event handler, see
T1SignalingHandler on page 222.

NULL Disables status event generation.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix D: T1/E1 library • Functions / setT1StatusHandler

199

setT1StatusHandler
Specifies the event handler to call after detecting a change in receive line state.

This function “hooks” in the user’s event handler and enables status
event generation.

Syntax

void setT1StatusHandler(
T1StatusHandler userT1StatusHandler

)

Parameters

userT1StatusHandler

A pointer to the structure. For more information about this structure, see
t_T1E1_BoardConfig on page 207.

You can select one of these:

Event handler name
Passes a pointer to t_T1_user_status_data that indicates
which framer had a state change or changes, which state bits
changed value, the value of each state bit, and a timestamp
that indicates when the change took place.

For more information about this event handler, see
T1StatusHandler on page 221.

NULL Disables status event generation.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Comments

Detected receive-line state changes include:

• AIS

• Yellow alarm

• LOF (Loss of frame sync)

• LOS (Loss of signal)

TASK-6000 software reference guide

200

setE1SignalingHandler
Specifies the event handler to call after detecting a change in receive E1
signaling state.

This function “hooks” the user’s event handler and enables signaling event.

Syntax

void setE1SignalingHandler(
E1SignalingHandler userE1SignalingHandler

)

Parameters

userE1SignalingHandler

You can select one of these:

Event handler name
A user-specified signaling event handler. For more
information about this event handler, see
E1SignalingHandler on page 229.

NULL Disables status event generation.

Outputs

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix D: T1/E1 library • Functions / setE1SignalingHandler

201

Structures
Use this table to identify the E1/T1 driver structures. Use the structure description
later in this appendix to obtain detailed information, including syntax and
parameter values.

Table D-3. E1/T1 structures

Type Call Description
Common (E1 and T1) definitions

t_T1E1_framer_id Specifies a framer (port) for functions which
can operate on any port.

t_T1E1_card_type Identifies the type of card installed.
t_T1E1_led_state Controls the LEDs for each port/span.
t_T1E1_user_signaling_data
t_T1E1_BoardConfig Indicates the installed card type.

T1 definitions
t_T1_line_coding Specifies the line coding for a framer (port).
t_T1_framing_mode Specifies the line framing for a framer

(port).
t_T1_line_buildout Specifies the line buildout for a framer

(port).
t_T1_user_config_struct Specifies the complete configuration for a

framer (port).
t_T1_user_signaling_data
t_T1_signaling_data

Reads and writes signaling data.

t_T1_user_command_data Sends alarm and loop up or down codes
over the T1 line.

t_T1_user_status_struct Provides line status.
t_T1_user_clear_channel_data Indicates which channels are clear channels

(64Kbps) and which are not (56Kbps).
t_T1_user_idle_struct Transmits an idle code on a selected DS0.
t_T1_user_channel_config Controls the configuration of a specified

DS0 on a specified framer/port.
t_T1_user_raw_signaling_struct Reads the signaling bit (supervision bit)

values for each channel on the specified
T1 port.

E1 definitions
t_E1_line_coding Enumerate the line coding for a framer

(port).
t_E1_signaling_mode Enumerates the signaling mode for a framer

(port).
t_E1_line_buildout Enumerates the line buildout for a framer

(port).

TASK-6000 software reference guide

202

t_E1_user_config_struct Specifies the complete configuration for a
framer (port).

t_E1_user_signaling_data Reads and writes signaling data.

Table D-3. E1/T1 structures

Type Call Description

Appendix D: T1/E1 library • Structures / t_T1E1_framer_id

203

t_T1E1_framer_id

Structures Specifies a framer (port) for functions which can operate on any port.

Syntax

typedef enum {
framer_1 = 0,
framer_2 = 1,
framer_3 = 2,
framer_4 = 3

} t_T1E1_framer_id;

Elements

framer_1 The first port on the framer.

framer_2 The second port on the framer.

framer_3 The third port on the framer.

framer_4 The fourth port on the framer.

TASK-6000 software reference guide

204

t_T1E1_card_type
Identifies the type of card installed.

Syntax

typedef enum {
E1,
T1

} t_T1E1_card_type;

Elements

E1 The E1 card.

T1 The T1 card.

Appendix D: T1/E1 library • Structures / t_T1E1_led_state

205

t_T1E1_led_state
Controls the LEDs for each port/span.

Each port has two associated LEDs. Each LED is bi-colored, with one LED either
yellow or green, and the other either red or green.

Syntax

typedef enum {
leds_off,
leds_normal,
leds_yellow_alarm,
leds_red_alarm,
leds_loopback,
leds_line_fault,
leds_gr_yellow,
leds_red_gr,
leds_off_gr,

} t_T1E1_led_state;

Elements

leds_off Sets both LEDs to off.

leds_normal

Sets one LED to off and sets the other to green.

leds_yellow_alarm

Sets one LED to off and sets the other to yellow.

leds_red_alarm

Sets one LED to off and sets the other to red.

leds_loopback

Sets both LEDs to green.

leds_line_fault

Sets one LED to red and sets the other to yellow.

leds_gr_yellow

Sets one LED to green and sets the other to yellow.

leds_red_gr

Sets one LED to red and sets the other to green.

leds_off_gr

Sets one LED to off and sets the other to green.

TASK-6000 software reference guide

206

t_T1E1_user_signaling_data
A type definition for a function pointer that points to a user handler that will
receive a t_T1E1_user_signaling_data structure pointer as a parameter.

Syntax

typedef void
(*T1E1SignalingHandler)
(t_T1E1_user_signaling_data *signaling_struct);

Elements

T1E1SignalingHandler

A pointer to the T1/E1 signaling handler.

signaling_struct

A pointer to a t_T1E1_user_signaling_data structure.

Appendix D: T1/E1 library • Structures / t_T1E1_BoardConfig

207

t_T1E1_BoardConfig
Indicates the installed card type.

Calls to T1E1initCard and T1E1getBoardConfig fill in this structure.

Syntax

typedef struct {
boolinit_passed;
t_T1E1_card_typecard_type;
ucharnumber_of_ports;

} t_T1E1_BoardConfig;

Elements

init_passed

Determines whether to send AIS. You can select one of these:

TRUE Initialization was successful.

FALSE The board was not intialized.

card_type

Identifies the type of card installed. For more information, see
t_T1E1_card_type on page 204.

number_of_ports

The number of T1 or E1 ports on the board.

TASK-6000 software reference guide

208

t_T1_line_coding
Specifies the line coding for a framer (port).

Syntax

typedef enum {
AMI,
B8ZS

} t_T1_line_coding;

Elements

AMI AMI (alternate mark inversion) line coding.

B8ZS B8ZS (binary 8 zeros substitution) line coding.

Appendix D: T1/E1 library • Structures / t_T1_framing_mode

209

t_T1_framing_mode
Specifies the line framing for a framer (port).

Syntax

typedef enum {
D4_SF,
ESF

} t_T1_framing_mode;

Elements

D4_SF D4 super frame.

ESF Extended super frame.

TASK-6000 software reference guide

210

t_T1_line_buildout
Specifies the line buildout for a framer (port).

Syntax

typedef enum {
DSX1_0_to_133_ft,
DSX1_133_to_266_ft,
DSX1_266_to_399_ft,
DSX1_399_to_533_ft,
DSX1_533_to_655_ft,
CSU_minus7p5_db,
CSU_minus15_db,
CSU_minus22p5_db

} t_T1_line_build_out;

Elements

DSX1 Sets line buildout to short-haul mode.

CSU Sets line buildout to long-haul mode.

Appendix D: T1/E1 library • Structures / t_T1_user_config_struct

211

t_T1_user_config_struct
Specifies the complete configuration for a framer (port).

Syntax

typedef struct {
t_T1E1_framer_id framer_id;
t_T1_line_coding line_coding;
t_T1_framing_mode framing_mode;
t_T1_line_build_out line_build_out;
uchar idle_code;
ulong idle_channels;
BOOL32 payload_loopback_enable;
BOOL32 framer_loopback_enable;
BOOL32 local_loopback_enable;
BOOL32 remote_loopback_enable;
BOOL32 robbed_bit_signaling_enable;

} t_T1_user_config_struct;

Elements

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

line_coding

Specifies the line coding for a framer (port). For more information, see
t_T1_line_coding on page 208.

framing_mode

Specifies the line framing for a framer (port). For more information, see
t_T1_framing_mode on page 209.

line_build_out

Specifies the line buildout for a framer (port). For more information, see
t_T1_line_buildout on page 210.

idle_code Specifies the pattern to inject into transmitted data.

idle_channels

The lower 24 bits specify the channels to inject the pattern specified in
idle_code into.

A 1 in any bit indicates that the pattern is to be injected. Bit 0 is associated
with the first DS0 of the DS1 line while bit 23 is associated with the
last DS0.

payload_loopback_enable

Instructs the framer to perform a line-side loopback. Setting any field to
TRUE enables the loopback.

framer_loopback_enable

Instructs the framer to perform a system-side loopback. Setting any field
to TRUE enables the loopback.

TASK-6000 software reference guide

212

local_loopback_enable

Instructs the framer to perform a system-side loopback. Setting any field
to TRUE enables the loopback.

remote_loopback_enable

Instructs the framer to perform a line-side loopback. Setting any field to
TRUE enables the loopback.

robbed_bit_signaling_enable

Turns on and off the robbed bit signaling. You can select one of these:

Disabled The T1 line operates in clear channel mode.

Enabled Robbed bit signaling bits are inserted into and extracted from
the T1 data stream.

Appendix D: T1/E1 library • Structures / t_T1_user_signaling_data t_T1_signaling_data

213

t_T1_user_signaling_data
t_T1_signaling_data

Reads and writes signaling data.

The first five fields of t_T1_signaling_data are bit masks where the 24 low-order
bits represent the 24 DS0s of a DS1 line. These bits either provide status of
(setT1Signaling or user callback) or allow control over the signaling bits
(setT1Signaling). Bit 0 is used for timeslot 1, Bit 1 for timeslot 2 and so on to bit 23
which is used for timeslot 24.

Syntax
typedef struct {

t_T1E1_framer_idframer_id;
t_T1_signaling_datasignaling_data;

} t_T1_user_signaling_data;

typedef struct {
ulong changed_bits;
ulong a_bits;
ulong b_bits;
ulong c_bits;
ulong d_bits;
ulong timestamp;

} t_T1_signaling_data;

Elements

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

signaling_data

Reads and writes signaling data. For more information, see
t_T1_user_signaling_data t_T1_signaling_data on page 213.

changed_bits

Indicates which bits have changed or need to change state. When setting
signaling bits, this mask indicates which bits should be updated. When
reading signaling bits, this mask indicates which bits have changed state
since the previous change. Any bit set to 1 indicates that a change has
taken (or needs to take) place.

a_bits Rrepresents the 24 A signaling bits of the DS1 line.

b_bits Represents the 24 B signaling bits of the DS1 line.

c_bits Represents the 24 C signaling bits of the DS1 line. If the line is configured
for D4/SF framing, these bits are not used.

d_bits Represents the 24 D signaling bits of the DS1 line. If the line is configured
for D4/SF framing, these bits are not used.

timestamp A 1µS granularity (LSB=1=µS) timestamp that indicates when the
signaling change took place. This field is useful when forwarding
signaling information to other systems which may be interpreting
signaling bit changes. The rollover value for this field is 0x07C1F080.
This field is not used when setting signaling bits.

TASK-6000 software reference guide

214

t_T1_user_command_data
Sends alarm and loop up or down codes over the T1 line.

Setting any field to TRUE sends the alarm or code. These fields are mutually
exclusive.

Syntax

typedef struct {
t_T1E1_framer_idframer_id;
BOOL32send_AIS;
BOOL32send_yellow_alarm;
BOOL32send_loop_up;
BOOL32send_loop_down;

} t_T1_user_command_data;

Elements

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

send_AIS Determines whether to send AIS. You can select one of these:

TRUE Sends an AIS (unframed all 1s signal) alarm.

FALSE Does not send and AIS alarm.

send_yellow_alarm

Determines whether to send yellow alarms. You can select one of these:

TRUE Sends yellow alarms.

FALSE Does not send yellow alarms.

send_loop_up

Determines whether to send loop up. You can select one of these:

TRUE Sends loop up.

FALSE Does not send loop up.

send_loop_down

Determines whether to send loop down. You can select one of these:

TRUE Sends loop down.

FALSE Does not send loop down.

Appendix D: T1/E1 library • Structures / t_T1_user_status_struct

215

t_T1_user_status_struct
Provides line status.

Status is provided via one of these methods:

• Call getT1Status: The framer_id is specified by the caller and the timestamp and
change_word fields are invalid.

• Use a callback function specified through setT1StatusHandler: A change in
receive line status results in a callback to the user specified handler. In this case
all four fields of t_T1_user_status_struct are valid.

Syntax

typedef struct {
t_T1E1_framer_idframer_id;
ulong state_word;
ulong change_word;
ulong timestamp;

} t_T1_user_status_data;

Elements

framer_id Identifies the framer that changed state.

state_word

A bit mask which indicates the current transmit commands and receive
line status. It indicates the current line state (same as in the “get” case).
The bit definitions for this field are contained in iop_to_t1.h.

change_word

A bit mask which indicates which bit (or bits) in state_word caused the
event to occur.

timestamp A 1=µS granularity time value indicating when the state change
took place.

TASK-6000 software reference guide

216

t_T1_user_clear_channel_data
Indicates which channels are clear channels (64Kbps) and which are not (56Kbps).

Syntax

typedef struct {
t_T1E1_framer_idframer_id;
ulong clear_channels;

} t_T1_user_clear_channel_data;

Elements

framer_id Specifies the framer or port to configure.

clear_channels

A bit mask with the 24 lower bits representing the 24 DS0s.

1 (in any bit) configures that DS0 for clear channel operation.

0 (in any bit) configure that DS0 for non-clear channel.

Bit 0 is associated with the first DS0 of the DS1 line while bit
23 is associated with the last DS0.

Appendix D: T1/E1 library • Structures / t_T1_user_idle_struct

217

t_T1_user_idle_struct
Transmits an idle code on a selected DS0.

Syntax

typedef struct {
t_T1E1_framer_idframer_id;
uchar idle_code;
ulongidle_channels;

} t_T1_user_idle_struct;

Elements

framer_id Specifies the framer or port to configure.

idle_code An 8-bit value which represents the idle code to transmit.

idle_channels

A bit mask where the 24 lower bits represent the 24 DS0s.

1 (in any bit) configures that DS0 to transmit the idle_code.

0 (in any bit) configures that DS0 to transmit data received
from the on-board TDM switch.

Bit 0 is associated with the first DS0 of the DS1 line while bit
23 is associated with the last DS0.

TASK-6000 software reference guide

218

t_T1_user_channel_config
Controls the configuration of a specified DS0 on a specified framer/port.

Syntax

typedef struct {
t_T1E1_framer_idframer_id;
ulongchannel;
BOOL32enable_idle_code;
BOOL32disable_idle_code;
BOOL32enable_clear_channel;
BOOL32disable_clear_channel;
BOOL32update_supervision;
BOOL32a_signaling_bit;
BOOL32b_signaling_bit;
BOOL32c_signaling_bit;
BOOL32d_signaling_bit;

} t_T1_user_channel_config;

Elements

framer_id Specifies the framer/port to configure.

channel Specifies the DS0 to configure (zero based).

enable_idle_code

You can select one of these:

TRUE Enables transmission of the idle code on the selected channel.

FALSE If both this field and disable_idle_code contain this value,
transmission remains at its previous state.

disable_idle_code

You can select one of these:

TRUE Disables transmission of the idle code on the selected channel.

FALSE If both this field and enable_idle_code contain this value,
transmission remains at its previous state.

enable_clear_channel

You can select one of these:

TRUE Configures the channel for eith 64Kbps (clear channel) or
56Kbps (non clear channel).

Do not set both this field and disable_idle_code to
this value.

Do not set both this field and enable_idle_code to this
value.

Do not set both this field and disable_clear_channel
to this value.

Appendix D: T1/E1 library • Structures / t_T1_user_channel_config

219

FALSE If both this field and disable_clear_channel contain this
value, the channel’s clear/not-clear configuration remains at
its previous state.

disable_clear_channel

You can select one of these:

TRUE Configures the channel for eith 64Kbps (clear channel) or
56Kbps (non clear channel).

FALSE If both this field and disable_clear_channel contain this
value, the channel’s clear/not-clear configuration remains at
its previous state.

update_supervision

You can select one of these:

TRUE Specifies the transmitted robbed bit signaling bits
(supervision bits) by changing the ABCD bit values specified
in x_signaling_bit.

FALSE Supervision for the selected channel remains unchanged.

x_signaling_bit

You can select one of these:

TRUE Sets the signaling bit to 1.

FALSE Sets the signaling bit to 0.

Do not set both this field and enable_clear_channel
to this value.

Do not set both this field and enable_clear_channel
to this value.

Do not set both this field and enable_clear_channel
to this value.

TASK-6000 software reference guide

220

t_T1_user_raw_signaling_struct
Reads the signaling bit (supervision bit) values for each channel on the specified
T1 port.

Use in conjunction with the getT1SignalingRaw function.

Syntax

typedef struct {
t_T1E1_framer_idframer_id;
ucharsignaling_bits[12];

} t_T1_user_raw_signaling_struct;

Elements

framer_id

Specifies which framer or port to read.

signaling_bits

An array of 12 bytes, each of which contain the signaling bits for
two DS0s.

Example

The high-order nibble of each byte contains the signaling bits for the lower
numbered channel. For example:

signaling_bits[0] bit 7 = DS0-0 A bit
signaling_bits[0] bit 6 = DS0-0 B bit
signaling_bits[0] bit 5 = DS0-0 C bit
signaling_bits[0] bit 4 = DS0-0 D bit
signaling_bits[0] bit 3 = DS0-1 A bit
signaling_bits[0] bit 2 = DS0-1 B bit
signaling_bits[0] bit 1 = DS0-1 C bit
signaling_bits[0] bit 0 = DS0-1 D bit
signaling_bits[11] bit 7 = DS0-22 A bit
signaling_bits[11] bit 6 = DS0-22 B bit
signaling_bits[11] bit 5 = DS0-22 C bit
signaling_bits[11] bit 4 = DS0-22 D bit
signaling_bits[11] bit 3 = DS0-23 A bit
signaling_bits[11] bit 2 = DS0-23 B bit
signaling_bits[11] bit 1 = DS0-23 C bit
signaling_bits[11] bit 0 = DS0-23 D bit

Appendix D: T1/E1 library • Structures / T1StatusHandler

221

T1StatusHandler
A type definition for a function pointer that points to a user handler that will
receive a t_T1_user_status_data structure pointer as a parameter.

Syntax

typedef void
(*T1StatusHandler)
(t_T1_user_status_data *status_struct);

Elements

status_struct

Provides line status. For more information, see
t_T1_user_status_struct on page 215.

TASK-6000 software reference guide

222

T1SignalingHandler
A type definition for a function pointer that points to a user handler that will
receive a t_T1_user_signaling_data structure pointer as a parameter.

Syntax

typedef void
(*T1SignalingHandler)
(t_T1_user_signaling_data *signaling_struct);

Elements

signaling_struct

Reads and writes signaling data. For more information, see
t_T1_user_signaling_data t_T1_signaling_data on page 213.

Appendix D: T1/E1 library • Structures / t_E1_line_coding

223

t_E1_line_coding
Enumerate the line coding for a framer (port).

Syntax

typedef enum {
NON_HDB3
HDB3

} t_E1_line_coding;

Elements

NON_HDB3 The framer uses non-HDB3 line coding.

HDB3 The framer uses HDB3 line coding.

TASK-6000 software reference guide

224

t_E1_signaling_mode
Enumerates the signaling mode for a framer (port).

Syntax

typedef enum {
CAS,
CCS

} t_E1_signaling_mode;

Elements

CAS Channel Associated Signaling.

CCS Common Channel Signaling.

Appendix D: T1/E1 library • Structures / t_E1_line_buildout

225

t_E1_line_buildout
Enumerates the line buildout for a framer (port).

Syntax

typedef enum {
BUILDOUT_75_OHM,
BUILDOUT_120_OHM

} t_E1_line_build_out;

Elements

BUILDOUT_75_OHM

Sets the framer (specifically the LIU portion) to 75OHM operation.

BUILDOUT_120_OHM

Sets the framer (specifically the LIU portion) to 120OHM operation.

TASK-6000 software reference guide

226

t_E1_user_config_struct
Specifies the complete configuration for a framer (port).

Syntax

typedef struct {
t_T1E1_framer_id framer_id;
t_E1_line_coding line_coding;
t_E1_signaling_mode signaling_mode;
BOOL32 crc4_enable;
t_E1_line_build_out line_build_out;
uchar idle_code;
ulong idle_channels;
BOOL32 framer_loopback_enable;
BOOL32 local_loopback_enable;
BOOL32 remote_loopback_enable;

} t_E1_user_config_struct;

Elements

The first three fields and the line line_build_out field are described above in the
type definitions.

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

line_coding

Specifies the line coding for a framer (port). For more information, see
t_E1_line_coding on page 223.

signaling_mode

Enumerates the signaling mode for a framer (port). For more
information, see t_E1_signaling_mode on page 224.

crc4_enable

Sets the CRC4 multiframe mode. A value of TRUE sets the mode.

line_build_out

Specifies the line buildout for a framer (port). For more information, see
t_E1_line_buildout on page 225.

idle_code Specifies the pattern to inject into transmitted data.

idle_channels

The lower 32 bits specify the channels to inject the pattern specified in
idle_code into.

A 1 in any bit indicates that the pattern is to be injected. Bit 0 is associated
with the first DS0 of the E1 line while bit 31 is associated with the
last DS0.

framer_loopback_enable

Instructs the framer to perform a system-side loopback. Setting any field
to TRUE enables the loopback.

Appendix D: T1/E1 library • Structures / t_E1_user_config_struct

227

local_loopback_enable

Instructs the framer to perform a system-side loopback. Setting any field
to TRUE enables the loopback.

remote_loopback_enable

Instructs the framer to perform a line-side loopback. Setting any field to
TRUE enables the loopback.

TASK-6000 software reference guide

228

t_E1_user_signaling_data
Reads and writes signaling data.

This structure is identical to t_T1_user_signaling_data since the
t_E1_signaling_data field is typedef’ed to t_T1_signaling_data. See description of
the corresponding T1 structures. The only difference is that the E1 structure makes
use of all 32 bits where as the T1 structure uses only 24, 1 per DS0.

Syntax

typedef struct {
t_T1E1_framer_id framer_id;
t_E1_signaling_data signaling_data;

} t_E1_user_signaling_data;

Elements

framer_id Specifies a framer (port) for functions which can operate on any port. For
more information, see t_T1E1_framer_id on page 203.

signaling_data

Reads and writes signaling data. For more information, see
t_T1_user_signaling_data t_T1_signaling_data on page 213.

Appendix D: T1/E1 library • Structures / E1SignalingHandler

229

E1SignalingHandler
Type definition for user-specified signaling event handler.

Syntax

typedef void
(*E1SignalingHandler)
(t_E1_user_signaling_data *signaling_struct);

Elements

signaling_struct

Reads and writes signaling data. For more information, see
t_E1_user_signaling_data on page 228.

TASK-6000 software reference guide

230

231

E T8100 library

This appendix describes the T8100 driver library. This appendix assumes that you
have a working understanding of the T8100 device family and of the
H.100/H.110 Bus.

When reading this file online, you can immediately view information about any
topic by placing the mouse cursor over a test name and clicking.

Overview
The T8100 Status and Control API is the interface to the T8100 driver.

The T8100 driver provides the software interface to the Lucent T8100 Time Slot
Interchange device of the SPIRIT platform. The driver works under the VxWorks
real-time OS. The driver is not a “true” VxWorks driver as it is not built as part of
the kernel. It does use VxWorks system functions, and therefore requires the OS.

The driver controls and monitors the T8100. More specifically, the driver supports
these devices in the T8100 family:

• T8100

• T8100A

• T8105

The driver consists of:

• Interrupt handling tools

• Function list

Making and breaking connections
setT8100SwitchConfig allows the user application to configure switching for one or
all timeslots within the T8100. The function’s parameter’s structure type,
t_T8100SwitchConfig, and its associated sub-types are defined in iop_to_t8100.h
and were shown above for reference. Using this function, the user can specify
local-to-local, local-to-CT-bus, and CT-bus-to-CT-bus connections.

For information about... Go to this page...
Overview... 231

Making and breaking connections .. 231
Sample startup sequence .. 234
Function list... 235

Functions 237
Structures 246

TASK-6000 software reference guide

232

Connections are specified with a source (input) and destination (output) for the
connection. Sources and destinations are specified in terms of resources (DSP, T1,
E1, HDLC, CT-Bus, etc), ports within those resources (for multiple port devices)
and timeslot numbers. The range of timeslot values varies based on the stream rate
for that resource’s port.

Due to the T8100’s limited number of CT-Bus connections (256 for T8100 and
T8100A, 512 for T8105(5)) versus the number of switching combinations, the user
application must assign each CT-Bus related(4) connection a unique connection
number, ctbus_connect_num, in the range of 0..255 (0..511 for T8105). This
number is used to identify the connection in the event that a connection must first
be broken to make room for a new connection. In this case, the connection using
the specified connection number is broken, then the newly specified connection is
made and assigned its number. Connections not using the CT-Bus as either the
source or destination of the connection need not specify a connection number.

Three special “resources” exist to support breaking connections and outputting
patterns:

• T8100_CT_BUS_DISCONNECT: The source and destination resource for
connections which are to be broken. The ctbus_connect_num field is used to
specify the connection.

• T8100_LOCAL_DISCONNECT: The source resource to break a local
connection. The port and timeslot fields associated with this resource are not
used. However, the destination must be the actual resource, port and timeslot of
the connection to be broken.

• T8100_PATTERN: A connection source resource when outputting a pattern to
a destination resource timeslot. When T8100_PATTERN is specified as the
source resource, the source timeslot field is used to specify the 8-bit pattern to
be output on the destination resource, port and timeslot.

Broadcasting
The T8100 supports broadcasting of timeslots, that is, data from one input timeslot
can be sent to multiple output timeslots. There are four possible broadcast paths:

• One (1) Local/On-board input to N Local/On-Board outputs

• One (1) Local/On-board input to N CT-Bus outputs

• One (1) CT-Bus input to N Local/On-Board outputs

• One (1) CT-Bus input to N CT-Bus outputs

For broadcast connections which do not involve the CT-Bus (case 1 above),
commanding a broadcast connection to N output timeslots is identical to
commanding N standard connections. To broadcast a timeslot to N outputs, specify
N connections in which the source resource, port and timeslot for each connection
is identical. The destination resources, ports, and timeslots must be unique.

For broadcast connections which involve CT-Bus timeslots (cases 2, 3 and 4 above)
as either the source or destination of the connection, programming is slightly
different from both the CT-Bus non-broadcast case and the Local-to-Local

Appendix E: T8100 library • / Broadcasting

233

broadcast case. For non-broadcast CT-Bus connections, specify a unique connection
number for each connection. For a CT-Bus broadcast, specify the same connection
number for each connection which is part of the broadcast. Like the Local-to-Local
broadcast case, the source resource, port, and timeslot is fixed for each broadcast
connection element.

The following code samples show broadcast connections for the Local-to-Local and
CT-Bus cases.

Example 1: Local-to-local broadcast 1 local timeslot
(T1 port 0, timeslot 0) to 4 local timeslots (DSP A, port 0, timeslots 0..3)

configStruct.t8100SwitchCfg.number_of_connections = 4;
configStruct.t8100SwitchCfg.connections = //ptr to connection array

(t_T8100Connection *)connections;

for(i=0;i<4;++i) {
connections[i].connect_src.resource = T8100_T1;
connections[i].connect_src.port = 0;
connections[i].connect_src.timeslot = 0; // fixed
connections[i].connect_dest.resource = T8100_DSP;
connections[i].connect_dest.port = T8100_DSP_A_SP_0;
connections[i].connect_dest.timeslot = i; // incrementing
// ctbus_connect_num field for local-local connections is not used

}

hostControlPeripheral(uIopNum, TASK_T8100, CONFIG_T8100_SWITCHING,
&configStruct);

Example 2: Local-to-CT-Bus broadcast 1 local timeslot
(T1 port 0, timeslot 0) to (applies to cases 2, 3, and 4) 4 CT-Bus timeslots
(Stream 5, timeslots 0..3)

configStruct.t8100SwitchCfg.number_of_connections = 4;
configStruct.t8100SwitchCfg.connections = //ptr to connection array

(t_T8100Connection *)connections;

for(i=0;i<4;++i) {
connections[i].connect_src.resource = T8100_T1;
connections[i].connect_src.port = 0;
connections[i].connect_src.timeslot = 0; // fixed
connections[i].connect_src.ctbus_connect_num = 0; // fixed
connections[i].connect_dest.resource = T8100_CT_BUS;
connections[i].connect_dest.port = 5;
connections[i].connect_dest.timeslot = i; // incrementing
connections[i].connect_dest.ctbus_connect_num = 0; // fixed

}
hostControlPeripheral(uIopNum, TASK_T8100, CONFIG_T8100_SWITCHING,
&configStruct);

(4) Either the source or destination (or both) of the connection is the CT-BUS

The ctbus_connect_num for each of the broadcast members must be the
same. However, this number must be different from the ctbus_connect_num of
any other active connections.

TASK-6000 software reference guide

234

(5) This number represents the maximum number of CT-BUS related connections
assuming that the source and destination of the connection are not both either even
numbered CT-BUS streams or odd number CT-BUS streams. If all CT-BUS
connections were to connect even streams to even streams or odd streams to odd
streams, the number of connections would be reduced in half.

Sample startup sequence
void initT8100(void)

Initialize the T8100 card and driver. Not required if iopInit is being called.

int setT8100Handler(void (*UserT8100Handler) (int status))

Set a callback function for errors/state changes.

void setT8100ClockConfig(IN const t_T8100ClockConfig *T8100ClockConfig)

Set the configuration of the T8100 reference and bus clocks.

void setT8100StreamConfig(IN const t_T8100StreamConfig *T8100StreamConfig)

Set the rates for the on-board and CT-Bus streams.

void setT8100SwitchConfig(IN const t_T8100SwitchConfig
*T8100SwitchConfig)

Make timeslot connections, both on-board and CT-Bus.

Appendix E: T8100 library • / Function list

235

Function list
This appendix lists function descriptions alphabetically. You can find a function in
this appendix either by locating it alphabetically within its group, or by using Table
E-1 below, which groups like functions together.

Use this table to identify the T8100 driver functions you want to use. Use the
function description later in this appendix to obtain detailed information, including
syntax and parameter values:

Function prototypes and type definitions for the driver interface are contained in
the following header file:

iop_to_t8100.h

The functions and their data types are described in the pages that follow. The
descriptions use the terms H.100 Bus, H.110 Bus and CT-Bus interchangeably.

Limitations

Time slot assignments for T1 and E1 interfaces: There are differences in the
mapping of T8100 time slots depending on the interface used, as illustrated by the
following table. The developer should be aware of these differences when assigning
DSP data channel resources to time slots using the T8100 peripheral.

Table E-1. T8100 functions

Type Function Description
Configuration Configures the T8100.

initT8100 Initializes the driver and the T8100, and
identifies the installed device (T8100, T8100A,
or T8105).

setT8100ClockConfig Configures the clocking of the T8100.
setT8100StreamConfig Sets the T8100’s stream rates.
setT8100SwitchConfig Sets the T8100’s switching.
clearT8100ClockFault Clears a clock fault in the T8100.
clearT8100MemoryFault Clears a memory (CAM) fault in the T8100.
setT8100ClockFaultMask Disables the monitoring of clock faults.

Status monitoring Polls and reads the status of the T8100.
getT8100ErrorStatus Reads the status of the T8100 error status

registers: SYSERR, CLKERR1, CLKERR2, and
CLKERR3.

Interrupt/event controls Specifies a handler (callback function) to call
when an interrupt event occurs.

setT8100Handler Specifies the event handler to call when
detecting a T8100 interrupt.

TASK-6000 software reference guide

236

Table E-2. Time slot numbers

T8100 T1 E1
0 1 (data 0) 0 (signaling 0)
1 2 (data 1) 1 (data 0)
2 3 (data 2) 2 (data 1)
3 4 (data 3) 3 (data 2)
4 5 (data 4) 4 (data 3)
5 6 (data 5) 5 (data 4)
6 7 (data 6) 7 (data 6)
7 8 (data 7) 7 (data 6)
8 9 (data 8) 8 (data 7)
9 10 (data 9) 9 (data 8)
10 11 (data 10) 10 (data 9)
11 12 (data 11) 11 (data 10)
12 13 (data 12) 12 (data 11)
13 14 (data 13) 13 (data 12)
14 15 (data 14) 14 (data 13)
15 16 (data 15) 15 (data 14)
16 17 (data 16) 16 (signaling 1)
17 18 (data 17) 17 (data 15)
18 19 (data 18) 18 (data 16)
19 20 (data 19) 19 (data 17)
20 21 (data 20) 20 (data 18)
21 22 (data 21) 21 (data 19)
22 23 (data 22) 22 (data 20)
23 24 (data 23) 23 (data 21)
24 N/A 24 (data 22)
25 N/A 25 (data 23)
26 N/A 26 (data 24)
27 N/A 27 (data 25)
28 N/A 28 (data 26)
29 N/A 29 (data 27)
30 N/A 30 (data 28)
31 N/A 31 (data 29)

Appendix E: T8100 library • Functions / initT8100

237

Functions

initT8100

Functions Initializes the driver and the T8100, and identifies the installed device (T8100,
T8100A, or T8105).

This function must be called before using any other driver functions, however, the
user need not call this function if iopInit is being called, since the iopInit function
makes the call. Following this function call, the T8100 and the CT-Bus are in the
following state:

• No CT-Bus timeslots are driven, all connections are broken.

• All CT-Bus bus clocks are turned off, CT-Bus stream rates set to 8.192MHz.

• The T8100 reference clock is set to be the on-board oscillator.

• All local/on-board connections are broken.

• The local/on-board streams are set to a 2.048MHz rate (32 timeslots).

• On-board device clocks are set to a 2.048MHz rate (DSP clocks, framer clocks).

Syntax

void initT8100(void)

Parameters

None.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

238

setT8100ClockConfig
Configures the clocking of the T8100.

This includes selecting reference clocks for normal and fallback operation as well as
determining which (if any) clocks to drive onto the bus. This function is typically
called first following initT8100.

Syntax

void setT8100ClockConfig(
IN const t_T8100ClockConfig *T8100ClockConfig

)

Parameters

T8100ClockConfig

A pointer to the t_T8100ClockConfig structure. For more information
about this structure, see t_T8100ClockConfig on page 250.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix E: T8100 library • Functions / setT8100StreamConfig

239

setT8100StreamConfig
Sets the T8100’s stream rates.

You can configure stream rates for the three on-board stream groups as well as the
CT-Bus. The 32 streams of the CT-Bus are broken up into eight groups of four
streams each. Each group can be independently configured.

Available rates include:

• 8.192MHz

• 4.096MHz

• 2.048MHz

• 0MHz (off)

Syntax

void setT8100StreamConfig(
IN const t_T8100StreamConfig *T8100StreamConfig

)

Parameters

T8100StreamConfig

A pointer to the t_T8100StreamConfig structure. For more information
about this structure, see t_T8100StreamConfig on page 253.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Call this function prior to making timeslots connections. Changing stream rates
results in reconfiguration of T8100 internal switch memory and may result in
undesired connectivity.

TASK-6000 software reference guide

240

setT8100SwitchConfig
Sets the T8100’s switching.

The function is passed the number of connections to make (or break), and the end
points for those connections. These connections can be of any type: local-to-local,
local-to-CT-Bus or CT-Bus to CT-Bus.

Syntax

void setT8100SwitchConfig(
IN const t_T8100SwitchConfig *T8100SwitchConfig

)

Parameters

T8100SwitchConfig

A pointer to the t_T8100SwitchConfig structure. For more information
about this structure, see t_T8100SwitchConfig on page 258.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix E: T8100 library • Functions / clearT8100ClockFault

241

clearT8100ClockFault
Clears a clock fault in the T8100.

Syntax

int clearT8100ClockFault(void)

Parameters

None.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

242

clearT8100MemoryFault
Clears a memory (CAM) fault in the T8100.

Syntax

int clearT8100MemoryFault(void)

Parameters

None.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

Appendix E: T8100 library • Functions / setT8100ClockFaultMask

243

setT8100ClockFaultMask
Disables the monitoring of clock faults.

This function allows you to disable monitoring of known bad clocks.

Syntax

int setT8100ClockFaultMask(
IN const int clock_mask

)

Parameters

clock_mask

The lower 8 bits of clock_mask are inverted and and’ed with the contents
of the T8100’s CKW register. For the T8100A and T8105, bit 9 of
clock_mask is inverted and and’ed with the LSB of the CLKERR3 register.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

244

getT8100ErrorStatus
Reads the status of the T8100 error status registers: SYSERR, CLKERR1,
CLKERR2, and CLKERR3.

Syntax

int getT8100ErrorStatus(void)

Parameters

None.

Return values

SUCCESS Return data is formatted as follows:

Bits 07–00 SYSERR

Bits 15–08 CLKERR1

Bits 23–16 CLKERR2

Bits 31–24 CLKERR3 (T8100A & T8105 only)

FAILURE No information available.

Appendix E: T8100 library • Functions / setT8100Handler

245

setT8100Handler
Specifies the event handler to call when detecting a T8100 interrupt.

The value passed to the function is identical to the return parameter of
getT8100ErrorStatus. setT8100Handler can be called with a NULL handler in
order to disable callbacks.

Syntax

int setT8100Handler(
void (*UserT8100Handler) (int status)

)

Parameters

UserT8100Handler

The user call to handle T8100 interrupt events.

Return values

SUCCESS Successful completion.

FAILURE Unsuccessful completion.

TASK-6000 software reference guide

246

Structures
Use this table to identify the T8100 driver structures. Use the structure description
later in this appendix to obtain detailed information, including syntax and
parameter values.

Table E-3. T8100 structures

Call Description
t_ref_clk Selects the primary reference of the T8100.
t_fallback_clk Selects the fallback reference of the T8100.
t_netref_clk Selects the clock reference used to generate the

CT-NETREF bus clocks.
t_T8100ClockConfig Used by the setT8100ClockConfig function to control

the clocking of the T8100.
t_stream_rate Selects the CT-BUS rate.
t_T8100StreamConfig Used by the setT8100StreamConfig function to control

the stream rates of the T8100.
t_source_dest Specifies a connection’s endpoint (source or

destination).
t_T8100Connection Specifies a single connection.
t_T8100SwitchConfig Specifies a series (one or more) connections to make

(or break).

Appendix E: T8100 library • Structures / t_ref_clk

247

t_ref_clk

Structures Selects the primary reference of the T8100.

Syntax

typedef enum {
REF_LOCAL= 0,
REF_CT_NETREF= 1,
REF_CT_C8_A= 2,
REF_CT_C8_B= 3,
REF_MVIP= 4,
REF_HMVIP= 5,
REF_SCSA_2M= 6,
REF_SCSA_4_8M= 7,
REF_T1E1_1= 8,
REF_T1E1_2= 9,
REF_T1E1_3= 10,
REF_T1E1_4= 11,
REF_CT_NETREF2= 12

} t_ref_clk;

TASK-6000 software reference guide

248

t_fallback_clk
Selects the fallback reference of the T8100.

Syntax

typedef enum {
FB_LOCAL= 0,
FB_CT_C8_A= 1,
FB_CT_C8_B= 2,
FB_CT_NETREF= 3,
FB_T1E1_1= 4,
FB_T1E1_2= 5,
FB_T1E1_3= 6,
FB_CT_NETREF2= 7

} t_fallback_clk;

Appendix E: T8100 library • Structures / t_netref_clk

249

t_netref_clk
Selects the clock reference used to generate the CT-NETREF bus clocks.

Syntax

typedef enum {
NETREF_LOCAL= 0,
NETREF_T1E1_1= 1,
NETREF_T1E1_2= 2,
NETREF_T1E1_3= 3,
NETREF_T1E1_4 = 4,
NETREF_CT_NETREF= 5,
NETREF_CT_NETREF2= 6

} t_netref_clk;

TASK-6000 software reference guide

250

t_T8100ClockConfig
Used by the setT8100ClockConfig function to control the clocking of the T8100.

Syntax

typedef struct {
t_ref_clkreference_clk_select;
t_netref_clknetref_select;
t_fallback_clkfallback_clk_select;
bool netref_enable;
bool netref2_enable;
bool frame_clk_a_enable;
bool frame_clk_b_enable;
bool compat_clks_enable;
boolfallback_enable;

} t_T8100ClockConfig;

Elements

reference_clk_select
Selects the primary reference clock for the T8100. The T8100 will lock
to this clock (under non-fallback conditions) and generate both its
internal references as well as any external clocks, based on this clock.
This clock can be either the on-board reference, any of the H.100/110 bus
clocks or one of the E1 or T1 loop timing clocks(1).

netref_select

Selects the reference clock for generation of the CT_NETREF signal. This
field selects the reference but does not enable the output.

fallback_clk_select

Selects the reference clock to which the T8100 will switch when an error
is detected on the signal used as the reference_clk_select. Fallback
must be enabled for this to occur.

netref_enable

Determines whether the T8100’s CT_NETREF output goes onto the
H.100/110 bus. You can select one of these:

TRUE CT_NETREF output goes onto the H.100/110 bus.

FALSE CT_NETREF output does not go onto the H.100/110 bus.

netref2_enable

Determines whether the T8100’s CT_NETREF_2 output goes onto the
H.100/110 bus. You can select one of these:

TRUE CT_NETREF_2 is available only for H.110 applications.

FALSE CT_NETREF_2 is not available for H.110 applications.

Appendix E: T8100 library • Structures / t_T8100ClockConfig

251

frame_clk_a_enable
Determines whether the T8100’s CT_C8_A and /CT_FRAME_A outputs
go onto the H.100/110 bus. You can select one of these:

TRUE CT_C8_A and /CT_FRAME_A output goes onto the
H.100/110 bus.

FALSE CT_C8_A and /CT_FRAME_A output does not go onto the
H.100/110 bus.

frame_clk_b_enable
Determines whether the T8100’s CT_C8_B and /CT_FRAME_B outputs
go onto the H.100/110 bus. You can select one of these:

TRUE CT_C8_B and /CT_FRAME_B output goes onto the
H.100/110 bus.

FALSE CT_C8_B and /CT_FRAME_B output does not go onto the
H.100/110 bus.

compat_clks_enable
Determines whether the T8100’s compatibility clocks and frame strobes
go onto the H.100/110 bus. These signals include
/FR_COMP,SCLK,SCLKx2,C2,/C4,/C16+,/C16-(2). You can select one
of these:

TRUE Compatibility clocks and frame strobes go onto the
H.100/110 bus.

FALSE Compatibility clocks and frame strobes do not go onto the
H.100/110 bus.

fallback_enable
Determines whether to engage the T8100’s fallback (switch) mode. You
can select one of these:

(1) Enables the fallback mode. The T8100 will fallback (switch)
to the reference clock specified in fallback_clk_select
when an error is detected on the primary reference clock
specified in reference_clk_select. Select this option if E1 or
T1 option card is installed.

(2) Disables the fallback mode. Only SCLK, SCLKx2 and
/FR_COMP are defined for use in H.110 systems.

TASK-6000 software reference guide

252

t_stream_rate
Selects the CT-BUS rate.

Syntax

typedef enum {
TWO_MHZ= 0,
FOUR_MHZ= 1,
EIGHT_MHZ= 2,
DISABLE_GROUP= 3

} t_stream_rate;

Appendix E: T8100 library • Structures / t_T8100StreamConfig

253

t_T8100StreamConfig
Used by the setT8100StreamConfig function to control the stream rates of
the T8100.

On-board/local stream rates are controlled in groups:

• BSP 0: DSP Buffered Serial Port (BSP) 0 group.

• BSP 1: DSP Buffered Serial Port (BSP) 1 group.

• E1/T1: SPIRIT board’s option card site group

For the H.100/110 bus, each group is a set of four consecutive H.100/110 streams.
The streams rates correspond to 32, 64 and 128 timeslots respectively.

Syntax

typedef struct {
t_stream_rate dsp_bsp0_rate;
t_stream_rate dsp_bsp1_rate;
t_stream_rate e1t1_rate;
t_stream_rate ct_bus_03_00_rate;
t_stream_rate ct_bus_07_04_rate;
t_stream_rate ct_bus_11_08_rate;
t_stream_rate ct_bus_15_12_rate;
t_stream_rate ct_bus_19_16_rate;
t_stream_rate ct_bus_23_20_rate;
t_stream_rate ct_bus_27_24_rate;
t_stream_rate ct_bus_31_28_rate;

} t_T8100StreamConfig;

Elements

dsp_bsp0_rate
Sets the stream rate for the streams which are connected to BSP 0 of
each DSP.

dsp_bsp1_rate
Sets the stream rate for the streams which are connected to BSP 1 of
each DSP.

e1t1_rate
Sets the stream rate for the streams which are connected to the SPIRIT
board’s option card site. You can set the rate to one of these:

2.048MHzSets the stream rate to 2.048MHz. If the RadiSys E1 or T1
option card is being used, you must select this option.

4.096MHzSets the stream rate to 4.096MHz.

8.192MHzSets the stream rate to 8.192MHz.

Disabled Disables the stream.

ct_bus_yy_xx_rate
Sets the stream rates for the H.100/110 streams xx thru yy.

TASK-6000 software reference guide

254

Restrictions

The H.100/110 streams rates can be configured without restriction, that is, any
combination of rates is allowed. The on-board/local streams have the following
restrictions:

• If e1t1_rate is set to EIGHT_MHZ, the other 2 on-board/local stream groups
(the DSP BSP streams) are disabled.

• If dsp_bsp1_rate is set to EIGHT_MHZ, the on-board/local stream connected
to BSP 0 of each DSP are disabled.

In general the following must hold true:

8*TSE1T1 + 4*TSDSPBSP1 + 4*TSDSPBSP0 <=1024

Where:

• TSE1T1 is the number of timeslots for the E1T1 streams(3)

• TS DSPBSP1 is the number of timeslots for the DSP BSP1 streams

• TS DSPBSP0 is the number of timeslots for the DSP BSP0 streams

2.048MHz rate = 32 timeslots
4.096MHz rate = 64 timeslots
8.192MHz rate = 128 timeslots

• When a group is disabled via the DISABLE_GROUP command, its rate is still
considered to be 2.048MHz, although the T8100's output for that group is
disabled.

/* list of all possible TDM resources on a SPIRIT board */
#define T8100_DSP0
#define T8100_T11
#define T8100_E12
#define T8100_HDLC3
#define T8100_CODEC4
#define T8100_CT_BUS5
#define T8100_CT_BUS_DISCONNECT6
#define T8100_LOCAL_DISCONNECT7
#define T8100_PATTERN8

/* constants used to specify DSP and it serial port in the port field of the*/
/* t_source_dest structure */
#define T8100_DSP_A_SP_0 0x0/* DSP A (0) Serial port 0 */
#define T8100_DSP_A_SP_1 0x1/* DSP A (0) Serial port 1 */
#define T8100_DSP_B_SP_0 0x4/* DSP B (1) Serial port 0 */
#define T8100_DSP_B_SP_1 0x5/* DSP B (1) Serial port 1 */
#define T8100_DSP_C_SP_0 0x8/* DSP C (2) Serial port 0 */
#define T8100_DSP_C_SP_1 0x9/* DSP C (2) Serial port 1 */
#define T8100_DSP_D_SP_0 0xC/* DSP D (3) Serial port 0 */
#define T8100_DSP_D_SP_1 0xD/* DSP D (3) Serial port 1 */

#define T8100_DSP_E_SP_0 0x2/* DSP E (4) Serial port 0 - future use */
#define T8100_DSP_E_SP_1 0x3/* DSP E (4) Serial port 1 - future use */
#define T8100_DSP_F_SP_0 0x6/* DSP F (5) Serial port 0 - future use */
#define T8100_DSP_F_SP_1 0x7/* DSP F (5) Serial port 1 - future use */
#define T8100_DSP_G_SP_0 0xa/* DSP G (6) Serial port 0 - future use */
#define T8100_DSP_G_SP_1 0xb/* DSP G (6) Serial port 1 - future use */

Appendix E: T8100 library • Structures / t_T8100StreamConfig

255

#define T8100_DSP_H_SP_0 0xe/* DSP H (7) Serial port 0 - future use */
#define T8100_DSP_H_SP_1 0xf/* DSP H (7) Serial port 1 - future use */

#define T8100_CONNECT_CONST_DELAY0 /* used to specify constant delay */
#define T8100_CONNECT_MIN_DELAY1 /* used to specify minimum delay */

TASK-6000 software reference guide

256

t_source_dest
Specifies a connection’s endpoint (source or destination).

Syntax

typedef struct {
unsigned int mode;
unsigned int resource;
unsigned int port;
unsigned int timeslot;
unsigned int ctbus_connect_num

} t_source_dest;

Elements

mode Specifies the connection to be either constant delay or minimum delay.

resource Specifies the connection’s resource number. For example: CT-Bus, DSP,
T1, or HDLC.

Most resources have multiple ports. In the case of the CT-Bus, each
stream is a port. In the case of an E1 or T1 card, the port corresponds to
the framer.

port Specifies the connection’s port number. For example: CT-Bus, DSP, T1, or
HDLC.

timeslot Specifies the connection’s timeslot number. The maximum value for this
field is a function of the stream rate selected.

ctbus_connect_num

Used for CT-Bus connection only and is described in the “Making and
Breaking Connections” section

Appendix E: T8100 library • Structures / t_T8100Connection

257

t_T8100Connection
Specifies a single connection.

Syntax

typedef struct {
t_source_dest connect_src;
t_source_dest connect_dest;

} t_T8100Connection;

Elements

connect_src

The connection’s source.

connect_dest

The connection’s destination.

TASK-6000 software reference guide

258

t_T8100SwitchConfig
Specifies a series (one or more) connections to make (or break).

Syntax

typedef struct {
ulongnumber_of_connections;
t_T8100Connection*connections;

} t_T8100SwitchConfig;

Elements

number_of_connections
Indicates the total number of connections to be made or broken. The
maximum value is 512 (256 for T8100 and T8100A), but is further
limited by the maximum number of connections supported by the device.

*connections
A pointer to number_of_connections number of connections, each of
type t_T8100Connection. Each of these connections is made up of a
connect_src and connect_dest. Each connect_src and connect_dest is in
turn made up of a mode, resource, port, timeslot and ctbus_connect_num
(CT-BUS Connections only)

259

F Service descriptions

This appendix describes TASK services.

This appendix lists structures in the order listed in the table below. Use this table to
identify the service or services you want to use. Use the service description later in
this appendix to obtain detailed information, including syntax and parameter
values.

For information about... Go to this page...
Codec ... 260

stCodec... 260
Echo cancellation.. 263

stEchoCanc ... 263
Tone generation .. 264

stTdmToneGen.. 264
stPktToneGen.. 265

Tone detection .. 266
stTdmDTMFDet .. 266
stPktDTMFDet .. 267
stCPTDet... 268
stMFDet .. 270

RTP packetization ... 272
stRtpEncode.. 272
stRtpDecode ... 274

Signaling... 276
stCAS.. 276
stQDS0Hdlc .. 277

Alarming... 278
stEthernetAlarm .. 278
stT1E1Alarm... 278

Audio processing... 278
stAGC ... 281

Internal ... 282
stPacketBuilder.. 282
stPacketParser ... 283

TASK-6000 software reference guide

260

Codec

stCodec
Converts voice, fax, or modem data between TDM and a packetized form.

In the voice case, it takes a frame (often 10ms) of TDM audio data, compresses it
according to one of the voice codecs such as G.711, G.723, G.729 etc., and outputs
the compressed result. In the reverse direction it takes a compressed packet
corresponding to an audio frame and decompresses it into the full data frame for
playout via a TDM channel. In addition to the standard compression/decompression
functions, some codecs also support Voice Activity Detection and Comfort Noise
Generation, which allows suppression of packetized data during periods of silence.

Config
data

UP_CODEC_CONFIG_ST

typedef struct
{

UP_CODEC_ET eCodec;
UP_CODEC_PARAM_UT tCodecParams;

} UP_CODEC_CONFIG_ST;

eCodec The codec to enable and configure.

tCodecParams

The parameters for this codec; may be NULL for codecs which are
not configured.

UP_CODEC_ET

typedef enum {
ctG729A = 1,
ctG723,
ctG711Mu,
ctG711A,
ctG726_32,
ctG3Fax,
ctV90,
ctNoCoder, /* disable codec (used internally) */
ctG729,
ctGSM

} UP_CODEC_ET;

UP_CODEC_PARAM_UT

typedef union
{

UP_CODEC_G711_PARAM_ST tG711Param;
UP_CODEC_G729_PARAM_ST tG729Param;
UP_CODEC_G723_PARAM_ST tG723Param;

} UP_CODEC_PARAM_UT;

upEnableService and upConfigService disables the stTdmToneGen service, if it
is currently running on the same channel.

Appendix F: Service descriptions • Codec / stCodec

261

UP_CODEC_G711_PARAM_ET

typedef struct {
enum
{

enumMULAW=0,
enumALAW

} eLaw;
UP_ENABLE_ET eVadEnable;
RSYS_INT32 lVadLowSigThreshold;
UP_ENABLE_ET eBfmEnable;

} UP_CODEC_G711_PARAM_ST;

eLaw Selects between G.711 µ-Law and A-Law versions. You can select one
of these:

enumMULAW Selects µ-Law coding.

enumALAW Selects A-Law coding.

eVadEnable
Allows the Voice Activity Detector to suppress packet generation on the
encoder side. You can select one of these values:

enumEnabled

Enables VAD.

enumDisabled

Always generates packets.

lVadLowSigThreshold

VAD noise threshold in dBm.

eBfmEnable

Enables and disables bad frame masking.

UP_CODEC_G729_PARAM_ET

typedef struct {
UP_ENABLE_ET eVadEnable;

} UP_CODEC_G729_PARAM_ST;

eVadEnable
Allows the Voice Activity Detector to suppress packet generation on the
encoder side. You can select one of these:

enumEnabled

Enables VAD.

enumDisabled

Always generates packets.

TASK-6000 software reference guide

262

UP_CODEC_G723_PARAM_ST

typedef struct {
enum {

enumRate63=0,/* 6300 bps*/
enumRate53/* 5300 bps*/

} eRate;
UP_ENABLE_ET UseHp;/* High pass filter enable*/
UP_ENABLE_ET UsePf;/* Post filter enable*/
UP_ENABLE_ET UseVx;/* VAD enable*/

} UP_CODEC_G723_PARAM_ST;

UseVx Allows the Voice Activity Detector to suppress packet generation on the
encoder side. You can select one of these:

enumEnabled

Enables VAD.

enumDisabled

Always generates packets.

Events There are no events associated with this service.

Appendix F: Service descriptions • Echo cancellation / stEchoCanc

263

Echo cancellation

stEchoCanc
Tries to remove time-delayed versions of a TDM channel’s output from its input
stream.

These echoes are typically introduced when the TDM channel is translated into a
two-wire analog line somewhere outside the gateway. The echo canceller uses an
adaptive filter with a 32 millisecond buffer to eliminate near-end echoes.

Config
data

UP_ECHO_CONFIG_ST

typedef struct {
RSYS_INT32lNlpThreshold;/* Non-Linear Processor Threshold*/
enum {

TL8ms = 1,
TL16ms,
TL24ms,
TL32ms

} eTapLength;
UP_ENABLE_ET lSlowAdaptation;
UP_ENABLE_ET lFreezeAdaptation;
UP_ENABLE_ET lNLPDisable;

} UP_ECHO_CONFIG_ST;

Events There are no events associated with this service.

The echo canceller’s initial version includes:
• A fixed lNlpThreshold value; this flag currently has no effect.
• A fixed eTapLength value of 32ms; this flag currently has no effect.

TASK-6000 software reference guide

264

Tone generation

stTdmToneGen
Generates tones or tone-pairs to a TDM output with programmable cadence and
cadence count.

While a cadence is in progress, this service overrides the decompression side of any
codec concurrently enabled on the same channel. Once the cadence ends the
channel automatically reverts to the codec output.

Config
data

UP_TONEGEN_CONFIG_ST

typedef struct {
RSYS_INT32 lFreq1;
RSYS_INT32 lFreq2;
RSYS_INT32 lAmplitudedB1;
RSYS_INT32 lAmplitudedB2;
RSYS_INT32 lCadenceOn;
RSYS_INT32 lCadenceOff;
RSYS_INT32 lRepeat;

} UP_TONEGEN_CONFIG_ST;

lFreq1 The primary tone’s frequency in Hz.

lFreq2 The secondary tone’s frequency in Hz, or zero if no secondary tone
is required.

lAmplitudedB1 and lAmplitudedB2
Each tone’s amplitude. If both tones are used, the total amplitude is the
sum of the two individual amplitudes.

lCadenceOn
The tone or tone-pair’s on-time, in ms. This number is rounded up to the
nearest frame, i.e. 30ms. CadenceOn=0 means leave the tone on forever, or
until the tone generator is reconfigured or disabled.

lCadenceOff
The tone or tone-pair’s off-time, in ms, rounded up to the nearest frame.

lRepeat The number of times to repeat the cadence; –1 means repeat forever.

Events There are no events associated with this service.

Appendix F: Service descriptions • Tone generation / stPktToneGen

265

stPktToneGen
Generates tones or tone-pairs to the input of a codec with programmable cadence
and cadence count.

While a cadence is in progress the stTdmToneGen service overrides the TDM
channel’s input. Once the cadence ends the codec input automatically reverts to the
TDM input.

Config
data

UP_TONEGEN_CONFIG_ST

typedef struct {
RSYS_INT32 lFreq1;
RSYS_INT32 lFreq2;
RSYS_INT32 lAmplitudedB1;
RSYS_INT32 lAmplitudedB2;
RSYS_INT32 lCadenceOn;
RSYS_INT32 lCadenceOff;
RSYS_INT32 lRepeat;

} UP_TONEGEN_CONFIG_ST;

lFreq1 The primary tone’s frequency in Hz.

lFreq2 The secondary tone’s frequency in Hz, or zero if no secondary tone is
required.

lAmplitudedB1 and lAmplitudedB2
Each tone’s amplitude. If both tones are used, the total amplitude is the
sum of the two individual amplitudes.

lCadenceOn
The tone or tone-pair’s on-time, in ms. This number is rounded up to the
nearest frame, i.e. 30ms. CadenceOn=0 means leave the tone on forever, or
until the tone generator is reconfigured or disabled.

lCadenceOff
The tone or tone-pair’s off-time, in ms, rounded up to the nearest frame.

lRepeat The number of times to repeat the cadence; –1 means repeat forever.

Events There are no events associated with this service.

TASK-6000 software reference guide

266

Tone detection

stTdmDTMFDet
Performs DTMF detection on TDM input data.

It generates UP_EVT_DTMF_DETECTED events to alert the application of the
digit detected.

Config
data

UP_DTMF_CONFIG_ST

typedef struct {
RSYS_INT32 lLowSigThreshold;
*UP_ENABLE_ET supressOnToneDet;

} UP_DTMF_CONFIG_ST;

lLowSigThreshold

Absolute low-signal threshold.

supressOnToneDet

Supress audio during DTMF.

Events UP_EVT_TDM_DTMF_DETECTED

UP_DTMF_DETECTED_DATA_ST

typedef struct {
RSYS_UINT32 ulTimeStamp;
RSYS_INT32 lDigit;

} UP_DTMF_DETECTED_DATA_ST;

ulTimeStamp

Contains the RTP timestamp when the digit was detected.

lDigit Contains the ASCII code for the digit detected {’0’-’9’,’A’-’D’, ‘*’, ‘#’} or
zero when tone detection ends.

Appendix F: Service descriptions • Tone detection / stPktDTMFDet

267

stPktDTMFDet
Performs DTMF detection on decompressed packet data before it is output to a
TDM stream.

It generates UP_EVT_DTMF_DETECTED events to alert the application of the
digit detected.

Config
data

UP_DTMF_CONFIG_ST

typedef struct {
RSYS_INT32 lLowSigThreshold;
UP_ENABLE_ET supressOnToneDet;

} UP_DTMF_CONFIG_ST;

lLowSigThreshold

Absolute low-signal threshold.

supressOnToneDet

Supress audio during DTMF.

Events UP_EVT_PKT_DTMF_DETECTED

UP_DTMF_DETECTED_DATA_ST

typedef struct {
RSYS_UINT32 ulTimeStamp;
RSYS_INT32 lDigit;

} UP_DTMF_DETECTED_DATA_ST;

ulTimeStamp

Contains the RTP timestamp when the digit was detected.

lDigit Contains the ASCII code for the digit detected {’0’-’9’,’A’-’D’, ‘*’, ‘#’} or
zero when tone detection ends.

DTMF’s initial version:
• Includes a fixed lLowSigThreshold value; this flag currently has no effect.
• Does not incorporate the supressOnToneDet feature; this flag currently has

no effect.

TASK-6000 software reference guide

268

stCPTDet
Performs Call Progress Tone detection on TDM input data.

It generates UP_EVT_CPT_DETECTED events to alert the application of the call
progress indication detected.

Config
data

UP_CPT_CONFIG_ST

typedef struct {
RSYS_INT32 lLowSigThreshold;
RSYS_UINT32 ulDetFlags;

} UP_CPT_CONFIG_ST;

lLowSigThreshold

Absolute low-signal threshold.

ulDetFlags A bit field that designates which call progress tones are detected. In this
field, tone 0 detection is enabled by bit 0, tone 1 by bit 1, etc. Set this
field to 0xffffffff to enable all 32 possible tone/cadence detections,
though only 22 are currently defined. See UP_CPM_TONES_ET in
section 3.4.3.1 for the tone number definitions.

Events UP_EVT_CPT_DETECTED
UP_CPT_DETECTED_DATA_ST

typedef enum {
enumCptDial = 0,/* 0th combination (350+440Hz dial tone) */
enumCptRecallDial = 1, /* 1st combination (350+440Hz Recall Dial tone) */
enumCptConfirm = 2, /* 2nd combination (350+440Hz Conformation tone) */
enumCptStutterDial = 3, /* 3rd combination (350+440Hz Stutter Dial tone)*/
enumCptBusy = 4, /* 4th combination (480+620Hz Busy tone) */
enumCptReorder = 5, /* 5th combination (480+620 Reorder tone) */
enumCptRing = 6, /* 6th combination (440+480 Audible ring tone) */
enumCptSpecialRing = 7, /* 7th comb (440+480Hz Special Audible ring tone) */
enumCptCallWaiting = 8, /* 1st single (440Hz Call Waiting tone) */
enumCptBusyVerify = 9, /* 2nd single (440Hz Busy Verification tone) */
enumCptExecOverride = 10,/* 3rd single (440Hz Executive Override tone) */
enumCptIntercept440 = 11,/* 4th single tone (440Hz Intercept tone) */
enumCptIntercept620 = 12,/* 5th single tone (620Hz Intercept tone) */
enumCptOffHook1040 = 13,/* 6th single tone (1400Hz Off Hook) */
enumCptOffHook2060 = 14,/* 7th single tone (2060Hz Off Hook) */
enumCptOffHook2450 = 15,/* 8th single tone (2450Hz Off Hook) */
enumCptOffHook2600 = 16,/* 9th single tone (2600Hz Off Hook) */
enumCptFaxTx = 17, /* 10th single tone (1100Hz fax TX tone) */
enumCptFaxRx = 18, /* 11th single tone (2100Hz fax rx tone) */
enumCptDataModem = 19, /* 12th single tone (2100Hz data modem tone) */
enumCptLineTest = 20, /* 13th single tone (1004Hz line test tone) */
enumCptSS7 = 21 /* 14th single tone (2010Hz SS7 tone) */

} UP_CPM_TONES_ET;

CPT’s initial version has a fixed lLowSigThreshold value; this flag currently has
no effect.

Appendix F: Service descriptions • Tone detection / stCPTDet

269

typedef struct {
RSYS_UINT32 ulTimeStamp;
UP_CPM_TONES_ET eTone;

} UP_CPT_DETECTED_DATA_ST;

ulTimeStamp
Contains the RTP timestamp when the tone was detected. This denotes
when the required cadence for this tone was established, not when the
tone began.

eTone The detector value for the detected tone. Note that the listed enumerated
tones are valid only for the CPM module’s default configuration. The
CPM module may be configured to detect many other combinations and
cadences of tones and tone-pairs and the tone value simply reflects the
entry matched in the CPM module’s configuration.

TASK-6000 software reference guide

270

stMFDet
Performs MF Tone detection on TDM input data for R1 or R2 signaling.

It generates UP_EVT_MF_DETECTED events to alert the application of the
digit/signal detected. Since the tone sets overlap, you must configure this service for
the expected signaling type.

Config
data

UP_MF_CONFIG_ST

typedef struct {
RSYS_INT32 lLowSigThreshold;
enum {

R1 = 1,
R2F,
R2R

} eMfTones;
} UP_MF_CONFIG_ST;

lLowSigThreshold

Absolute low-signal threshold.

R1 R1 signaling.

R2F R2 forward signaling.

R2R R2 reverse signaling.

eMfTones

The set of tones to detect.

Events UP_EVT_MF_DETECTED

For details about MF tone detector operation, see the Line/Register Signaling
(R1/R2 MF) for TMS320C6201 User’s Manual.

typedef enum {
/* MF tones for R1 signaling by function */
MFR1_LINE, MFR1_KP, MFR1_1, MFR1_2, MFR1_3,
MFR1_4, MFR1_5, MFR1_6, MFR1_7, MFR1_8, MFR1_9,
MFR1_0, MFR1_ST, MFR1_ST1, MFR1_ST2, MFR1_ST3,
/* MF tones for R2 forward signaling by register */
MFR2F1, MFR2F2, MFR2F3, MFR2F4, MFR2F5, MFR2F6,
MFR2F7, MFR2F8, MFR2F9, MFR2F10, MFR2F11, MFR2F12,
MFR2F13, MFR2F14, MFR2F15,
/* MF tones for R2 reverse signaling by register */
MFR2R1, MFR2R2, MFR2R3, MFR2R4, MFR2R5,MFR2R6,
MFR2R7, MFR2R8, MFR2R9, MFR2R10, MFR2R11, MFR2R12,
MFR2R13, MFR2R14, MFR2R15

} UP_R1R2_TONES_ET;

MF’s initial version has a fixed lLowSigThreshold value; this flag currently has
no effect.

Appendix F: Service descriptions • Tone detection / stMFDet

271

UP_MF_DETECTED_DATA_ET

typedef struct {
RSYS_UINT32 ulTimeStamp;
UP_R1R2_TONES_ET eTone;

} UP_MF_DETECTED_DATA_ST;

ulTimeStamp
Contains the RTP timestamp when the tone or tone-pair was detected.

eTone Contains the enumerated value for the tone, or -1 when the end of the
tone is detected.

TASK-6000 software reference guide

272

RTP packetization

stRtpEncode
Performs RTP Packetization and, when used with the stJitterBuf service,
depacketization.

The stRTP service accumulates a specified number of codec frames into a payload
before wrapping them with an RTP header. This service also keeps statistics that an
RTCP stack can use to generate Sender Reports.

Config
data

RTP_HEADER_ST

typedef struct {
RSYS_UINT32 version;
RSYS_UINT32 p;
RSYS_UINT32 x;
RSYS_UINT32 cc;
RSYS_UINT32 m;
RSYS_UINT32 pt;
RSYS_UINT32 seq;
RSYS_UINT32 ts;
RSYS_UINT32 ssrc;
RSYS_UINT32 csrc[15];

} RTP_HEADER_ST;

version Protocol version (2 bits).

p Padding type (1 bit).

x Header extension (1 bit).

cc CSRC count (4 bits).

m Marker bit (1 bit).

pt Payload type (7 bits).

seq Sequence number (16 bits).

ts Time stamp.

ssrc Synchronization source.

csrc Optional CSRC list.

UP_RTP_SEND_CONFIG_ST

typedef struct {
RTP_HEADER_ST stRtpSendHeader;
RSYS_UINT32 ulPaddingLen;
RSYS_UINT32 ulPayloadInterval;
RSYS_UINT32 ulTimeElapsedForEachFrame;
UP_RTP_SEND_CFG_FLAG_ET ulInitConfig;

} UP_RTP_SEND_CONFIG_ST;

stRtpSendHeader

The RTP sender header.

Appendix F: Service descriptions • RTP packetization / stRtpEncode

273

ulPaddingLen

Desired length of the RTP packet. Set the padding bit in stRtpHeader
appropriately. You can select one of these:

0 No padding.

Other The number of bits in the RTP packet.

ulPayloadInterval

The interval, in milliseconds, for payload duration. For example, if the
ulPayloadInterval is 15ms, each RTP packet carries 15ms of voice.
ulPayloadInterval must be chosen based on the codec in use.
Frame-based codecs (G.723.1, G.729, etc.) require that the payload
interval be an integer multiple of the codec frame size. Sample-based
codecs (G.711) require that the payload interval be an integer number of
milliseconds.

ulTimeElapsedForEachFrame

The frame duration of the codec in use, in samples. G.711, G.729, and
G.729A encode 10ms frames, so this element should be set to 80. G.723
encodes 30ms frames, so this element should be set to 240.

ulInitConfig

Specifies whether the service is being setup for the first time within a call
or whether it is a modification to a previously configured
UP_RTP_SEND_CONFIG_ST.

For details regarding the RTP Header structure’s content, see RFC 1899.

Events There are no events associated with this service.

TASK-6000 software reference guide

274

stRtpDecode
Implements both RTP decode functionality and a dynamic jitter buffer that feeds
compressed frames to a codec for decompression on a strict schedule regardless of
input variations.

The RTP decoder places the packet’s payload into the proper position in the jitter
buffer according to the RTP timestamp The jitter buffer can accommodate packet
streams with missing, silence suppressed, and out-of-order packets.

The stRtpDecode service also keeps statistics that an RTCP stack can use to
generate Receiver Reports and to control the jitter buffer’s automatic size
adjustment.

Config
data

UP_RTP_RECV_CONFIG_ST

typedef struct {
RSYS_UINT32 ulAutoAdjustable;
RSYS_UINT32 ulMaxJitterBufferDly;/* Maximum jitter buf depth in ms*/
RSYS_UINT32 ulTargetJitterBufferDly;/* Target jitter buffer depth in ms*/
RSYS_UINT32 ulMaxFrameSizeInBytes;/* user expected max frame size*/

/* in jitter buf*/
RSYS_UINT32 ulExtractDataLength;/* Number of samples output*/
RSYS_UINT32 ulInitConfig;/* Indicate init config or update config*/

} UP_RTP_RECV_CONFIG_ST;

ulAutoAdjustable

You can use one of these values:

FALSE Controls the jitter buffer’s target delay through the
ulTargetJitterBufferDly element of the configuration
structure.

TRUE Overrides the ulTargetJitterBufferDly element and
automatically controls target jitter buffer delay based on the
jitter measurements of arriving packets.

Note: This element is not currently implemented. Jitter does not
automatically adjust, regardless of the value you enter; the jitter buffer’s
target delay is always controlled through the ulTargetJitterBufferDly
element of the configuration structure.

ulMaxJitterBufferPDly
The play-out jitter buffer’s maximum length, in RTP packets. The jitter
buffer induced delay can never exceed this number. The maximum
usable value for this number depends on the memory allocated to the
Jitter Buffer in the DSP application and the payload size of the codec in
use; the standard maximum is 120ms of G.711 data.

ulTargetJitterBufferDly
The play-out jitter buffer’s target length, in milliseconds. Over long time
periods, the jitter buffer tries to average this many ms of delay, and so can
cope with this many milliseconds of packet arrival time jitter. For best
results this element should be set to an integer multiple of the codec frame
size—30mS for G.723, and 10ms otherwise.

Appendix F: Service descriptions • RTP packetization / stRtpDecode

275

ulInitConfig
Specifies whether the service is being setup for the first time within a call
or whether it is a modification to a previously configured
UP_RTP_RECV_CONFIG_ST.

Events UP_EVT_RTP_PT_CHANGE
UP_RTP_PT_CHANGE_DATA_ST

typedef struct {
RSYS_UINT32 ulTimeStamp;
RSYS_UINT32 ucNewPTValue;

} UP_RTP_PT_CHANGE_DATA_ST;

ulTimeStamp
Contains the RTP timestamp in the packet where the change
was detected.

ucNewPTValue
Contains the new 6-bit PT value

UP_EVT_RTP_SSRC_CHANGE
UP_RTP_SSRC_CHANGE_DATA_ST

typedef struct {
RSYS_UINT32 ulTimeStamp;
RSYS_UINT32 ucNewSsrcValue;

} UP_RTP_SSRC_CHANGE_DATA_ST;

ulTimeStamp
Contains the RTP timestamp in the packet where the change was
detected.

ucNewSsrcValue
Contains the new SSRC value.

TASK-6000 software reference guide

276

Signaling

stCAS
Implements Channel Associated Signaling on T1 and E1 lines which are attached
locally to framers control by the I/O Processor.

It allows control of two-bit SF or four-bit ESF CAS on the framer’s transmission side
and, if configured to do so, generates UP_EVT_CAS_CHANGE events whenever
received bit values change.

Config
data

UP_CAS_CONFIG_ST

typedef struct {
RSYS_INT32 lABCD;
RSYS_INT32 lEventFlag;

} UP_CAS_CONFIG_ST;

lABCD The four-bit value to assign to the timeslot, with a in bit 3. In SF mode
only a and b are used; b and c are ignored.

lEventFlag
Non-zero means generate an event each time the received bits for this
channel change.

Events UP_EVT_CAS_CHANGE
UP_CAS_CHANGE_DATA_ST

typedef struct {
RSYS_UINT32 ulTimeStamp;
RSYS_INT32 lABCD;

} UP_CAS_CHANGE_DATA_ST;

ulTimeStamp
Contains the microsecond timestamp when the change was detected.
This timestamp value rolls over at 0x07C1F080.

lABCD Holds the ABCD bits’ four-bit value with A in bit 3 to indicate the current
CAS data for this channel. In SF framing only the A and B bits are valid.

When upEnableService, upDisableService, or upConfigService is called for the
stCas service, the dsp and channel arguments are used as framer unit number
and timeslot number, respectively.

Appendix F: Service descriptions • Signaling / stQDS0Hdlc

277

stQDS0Hdlc
Concatenates four sub-rate HDLC channels into a full DS0.

DSP virtual channels 16 through 31 are reserved for Quarter DS0 support, with a
maximum of 16 Quarter DS0 channels per DSP. The starting channel must be
either 16, 20, 24, or 28. Enabling the first channel in this block concatenates that
channel with the remaining three channels in the block, and output the results in the
last channel of the block.

For example, the following concatenates channels 20, 21, 22, and 23 into
channel 23:

UP_ERROR_ET upEnableService(lSlot, lUnit, 20, stQDS0Hdlc);

Channels 16 through 31 are reserved for Q-DS0 traffic to prevent the user from
accidently interleaving voice channels with Q-DS0 channel groups. This service
enforces the reservation and checks that the first channel within the grouping
(‘ulChannel’) is a factor of 4 (e.g. 16, 20, 24, 28).

Config
data

There are no data structures associated with this service.

Events There are no events associated with this service.

TASK-6000 software reference guide

278

Alarming

stEthernetAlarm
Detects Ethernet Link status changes and generates UP_EVT_ETHERNET_ALARM
events, which notify a user application of the change.

A ‘UP_EVT_ETHERNET_ALARM’ event with a link status of ‘enumEthernetUp’ is
emitted when the Ethernet Adapter is in an active state and detects a valid LAN
connection. This state occurs when the Ethernet Adapter is first initialized when
connected to a network or after initialization following reconnection to the
network.

A ‘UP_EVT_ETHERNET_ALARM’ event with a link status of
‘enumEthernetDown’ is also emitted when the Ethernet Adapter becomes inactive
or is disconnected from the network.

Config
data

There are no data structures associated with this service.

Events UP_EVT_ETHERNET_ALARM
UP_ETHERNET_ALARM_DATA_ST

A structure type passed in a UP_EVT_ETHERNET_ALARM event containing state
change information associated with a specific adapter located on a specific IOP.

typedef enum {
enumEthernetUp = 1,/* This ethernet link is available */
enumEthernetDown/* This ethernet link is unavailable */

} UP_ETHERNET_ALARM_ET;

typedef struct {
RSYS_UINT32 ulTimeStamp;
UP_ETHERNET_ALARM_ET eEthernetState;

} UP_ETHERNET_ALARM_DATA_ST;
UP_EVT_ETHERNET_ALARM

enumEthernetUp

enumEthernetDown

Appendix F: Service descriptions • Alarming / stT1E1Alarm

279

stT1E1Alarm
Notifies the user of an alarm signaled by a T1 or E1 framer, and allows control of
the LEDs associated with each span.

Config
data

UP_T1E1ALARM_CONFIG_ST

typedef enum {
enumLedsOff= 0x05,/* both LEDs are off */
enumLedsNormal= 0x07,/* one LED is off, other is green */
enumLedsYellowAlarm= 0x04,/* one LED is off, other is yellow */
enumLedsRedAlarm= 0x01,/* one LED is off, other is red */
enumLedsLoopback= 0x0f,/* both LEDs are green */
enumLedsLineFault= 0x00,/* one LED is red, other is yellow */

/* Other possible combinations */
enumLedsGrYellow= 0x0c,/* one LED is green, other is yellow */
enumLedsRedGr= 0x03,/* one LED is red, other is green */
enumLedsOffGr= 0x0d/* one LED is off, other is green */

} UP_T1E1_LED_STATE_ET;

typedef enum {
enumSendNothing = 0,
enumSendAIS,
enumSendYellowAlm,
enumSendLoopUp,
enumSendLoopDown

} UP_T1E1_SEND_CMD_ET;

typedef struct {
UP_T1E1_LED_STATE_ETtLedState;
UP_T1E1_SEND_CMD_ETtSendCmd;
RSYS_INT32lEventFlag;

} UP_T1E1ALARM_CONFIG_ST;

tLedState Controls the display of LEDs for this span.

tSendCmd Causes the specified state to be sent on the span. Set this to
enumSendNothing for normal operation.

lEventFlag
Non-zero means generate a UP_EVT_T1E1_ALARM event each time the
alarm status of this span changes.

Since the T1/E1 alarm status is per span rather than per channel, the lChannel
argument is ignored when a function enables, disables, or configures this service,
and has no meaning in a received alarm event message.

Events UP_EVT_T1E1_ALARM
UP_T1E1_ALARM_DATA_ST

typedef struct {
RSYS_UINT32 ulTimeStamp;
RSYS_UINT32 ulStateWord;
RSYS_UINT32 ulChangeWord;

} UP_T1E1_ALARM_DATA_ST;

The user application must cause the LEDs to reflect the alarm status of
the span.

TASK-6000 software reference guide

280

ulTimeStamp
Contains the microsecond timestamp when the status change was
detected. This timestamp value rolls over at 0x07C1F080.

ulStateWord
Indicates which bits of ulStateWord changed since the last notification.

ulChangeWord
May be interpreted bit by bit according to the following macros,
provided in iop_to_t1.h:

#define T1_RX_AIS_BIT(1<<0)/* bit 0 of T1 status is Rx AIS state*/
#define T1_RX_YELLOW_BIT(1<<1)/* bit 1 of T1 status is Rx yellow*/

/* alarm state*/
#define T1_RX_LOS_BIT(1<<2)/* bit 2 of T1 status is Rx loss of*/

/* signal state*/
#define T1_RX_LOF_BIT(1<<3)/* bit 3 of T1 status is Rx loss of*/

/* frame state*/

#define T1_TX_AIS_BIT(1<<16)/* bit 16 of T1 status indicates */
/* AIS transmission*/

#define T1_TX_YELLOW_BIT(1<<17)/* bit 17 of T1 status indicates */
/* yellow alm transmission */

#define T1_TX_LOOP_UP_BIT(1<<18)/* bit 18 of T1 status indicates */
/* loop up code transmission */

#define T1_TX_LOOP_DOWN_BIT(1<<19)/* bit 19 of T1 status indicates */
/* loop down code transmission */

Appendix F: Service descriptions • Audio processing / stAGC

281

Audio processing

stAGC
Provides Automatic Gain Control for TDM input data.

It normalizes input data to the level specified in the service configuration.

Config
data

UP_AGC_CONFIG_ST

typedef struct {
RSYS_INT32 lTargetValdB;/* AGCTargetvalue in dB*/
RSYS_INT32 lInScaleFact;/* absolute scalefactor for input*/
RSYS_INT32 lOutScaleFact;/* absolute scalefactor for output*/

} UP_AGC_CONFIG_ST;

Events There are no events associated with this service.

TASK-6000 software reference guide

282

Internal
These are services which are implemented in one part of the system for the internal
use of other parts of the system.

stPacketBuilder
This is an embedded service controlled by the upConnectPktSend function.

It takes the output of the stT38 or stRTP service, adds UDP, IP, and Ethernet
headers, and submits the result to the DSP’s Ethernet Transmit Queue.

Config
data

UP_PACKET_BUILDER_CONFIG_ST

typedef struct {
RSYS_UINT32 ulDestAddress;
RSYS_UINT32 ulDestPort;
RSYS_UINT32 ulSrcAddress;
RSYS_UINT32 ulSrcPort;
RSYS_UINT32 ulRouterEtherAddr[2];
RSYS_UINT32 ulDestEtherAddr[2];
RSYS_UINT32 ulServiceType;

} UP_PACKET_BUILDER_CONFIG_ST;

Elements

ulDestAddress

The destination IP address.

ulDestPortThe destination UDP port.

ulSrcAddress

The source IP address.

ulSrcPort The source UDP port.

ulRouterEtherAddr

The router Ethernet address.

ulDestEtherAddr

The destination Ethernet address.

ulServiceType;
A bit that indicates priority, delay, thruput and reliability.

This structure is internally used by UPA on the IOP to configure the stPacketBuilder
on a particular DSP channel. This structure is not directly accessed by the user but
is populated with the contents of a UP_PKT_SEND_CONFIG_ST passed as an
argument to the upConnectPktSend function.

Events There are no events associated with this service.

Appendix F: Service descriptions • Internal / stPacketParser

283

stPacketParser
Takes an IP/UDP packet from the Ethernet->DSP FIFO, checksums headers and
data as appropriate, strips headers, and passes the payload to the next module,
usually stRtpDecode or stT38, in TASK2.

This is an embedded service controlled by the upConnectPktRecv function.
Generally, user applications should not directly access this service.

Config
data

UP_PACKET_PARSER_CONFIG_ST

typedef struct {
RSYS_UINT32 ulReceivePort;
RSYS_UINT32 ulInterface;
UP_SERVICE_ET eService;

} UP_PACKET_PARSER_CONFIG_ST;

This structure is internally used by UPA on the IOP to configure the stPacketParser
on a particular DSP channel. This structure is not directly accessed by the user but
is populated with the contents of a UP_PKT_RECV_CONFIG_ST passed as an
argument to the upConnectPktRecv function.

Events There are no events associated with this service.

TASK-6000 software reference guide

284

285

Glossary

Address A number that identifies the location of a word in memory. Each word in a memory
storage device or system has a unique address.

AGC (Automatic Gain Control) An electronic circuit or software algorithm used to
maintain signal level.

ANSI (American National Standards Institute) An organization dedicated to advancement
of national standards related to product manufacturing.

BFM (Bad Frame Masking) A software algorithm that hides transmission losses in a
packetized voice communication system where the input signal is encoded and
packetized at a transmitter, sent over a network, and received at a receiver that
decodes the packet and plays out the output.

BIOS Basic Input/Output System) Firmware in a PC-compatible computer that runs when
the computer is powered up. The BIOS initializes the computer hardware, allows the
user to configure the hardware, boots the operating system, and provides standard
mechanisms that the operating system can use to access the PC’s peripheral devices.

Bit A binary digit.

Boot The process of starting a microprocessor and loading the operating system from a
powered down state (cold boot) or after a computer reset (warm boot). Before the
operating system loads, the computer performs a general hardware initialization and
resets internal registers.

Boot Device The storage device from which the computer boots the operating system.

Byte A group of 8 bits.

CAS 1. (Channel Associated Signaling) Repetitively sending one or more bits of signaling
status associated with the specified circuit to indicate circuit state.

2. (Column Address Strobe) An input signal from the DRAM controller to an
internal DRAM latch register specifying the column at which to read or write
data. The DRAM requires a column address and a row address to define a
memory address. Since both parts of the address are applied at the same DRAM
inputs, use of column addresses and row addresses in a multiplexed array allows
use of half as many pins to define an address location in a DRAM device as
would otherwise be required.

CNG (Comfort Noise Generator) A software algorithm that creates a background audio
signal to replace the silence created by some software CODECs during the time no
speech data is transmitted over the telephone line.

CODEC (COder/DECoder) Converts voice signals from analog form to digital signals
acceptable to modern digital PBXs and digital transmission systems. It then converts

TASK-6000 software reference guide

286

those digital signals back to analog so that you can hear and understand what the
other person is saying.

COFF (Common Object File Format)

CPT (Call Progress Tones) Call Progress is a tonal-signaling standard used to acquire
connections between subscribers in telephone network systems. Call Progress Tones
indicate a call’s status. CPT signals consist of single frequency and dual frequency
combinations of sinusoidal signals with specific ON-OFF patterns.

CPU (Central Processing Unit) A semiconductor device which performs the processing of
data in a computer. The CPU, also referred to as the microprocessor, consists of an
arithmetic/logic unit to perform the data processing, and a control unit which
provides timing and control signals necessary to execute instructions in a program.

COM Port A bi-directional serial communication port which implements the
RS-232 specification.

CSMA/CD (Carrier-Sense Multiple Access with Collision Detect) A method whereby
workstations on a network listen for transmission in progress (carrier sense) before
starting to transmit (multiple access). If two or more workstations transmit at the
same time, each workstation stops transmitting (collision detection) for a different
amount of time before trying to transmit again.

CSU (Channel Service Unit) A device to terminate a digital channel on a customer’s
premises. It performs certain line coding, line-conditioning and equalization
functions, and responds to loopback commands sent from the central office.

CT bus (Computer Telephony Bus) An auxiliary bus used in computer systems. This bus is
dedicated to carrying telecom data between the system components.

Default The state of all user-changeable hardware and software settings as they are originally
configured before any changes are made.

Driver A software component of the operating system which directs the computer interface
with a hardware device. The software interface to the driver is standardized such that
application software calling the driver requires no specific operational information
about the hardware device.

DRAM. (Dynamic Random Access Memory) Semiconductor RAM memory devices in which
the stored data does not remain permanently stored, even with the power applied,
unless the data are periodically rewritten into memory during a refresh operation.

DSP (Digital Signal Processor) A high-speed computer chip that performs real-time signal
manipulation. DSPs are used extensively in telecommunications for tasks such as
echo cancellation, audio and video processing.

DSX (Digital System Cross-connect Frame) A bay or panel to which T-1 lines and DS1
circuit packs are wired and that permits cross-connections by patch cords and plugs.
A DSX panel is used in small office applications where only a few digital trunks
are installed.

DSX-1 (Digital Signal Cross-connect Level 1) The set of parameters for cross connecting
DS-1 lines.

Glossary

287

DTMF (Dual-Tone Multi-Frequency) Push button or Touchtone dialing, where touching a
button on a push button pad makes two tones, one high frequency and one low
frequency.

EEPROM (Electrically Erasable Programmable ROM) EPROMs that can be erased electrically
as compared to other erasing methods.

EDO (Extended Data Out) A type of DRAM that allows higher memory system
performance since the data pins are still driven when CAS# is de-asserted. This
allows the next DRAM address to be presented to the device sooner than with Fast
Page Mode DRAM.

ESF (Extended Super Frame or Extended Superframe Format) A T-1 format that uses the
193rd bit as a framing bit. ESF provides frame synchronization, cyclic redundancy
checking and data link bits. Frames consist of 24 bits instead of the previous standard
12 bits as in the D4 format. The standard allows error information to be stored and
retrieved easily, facilitating network performance monitoring and maintenance.

Flash
Memory

A fast EEPROM semiconductor memory typically used to store firmware such as the
computer BIOS. Flash memory also finds general application where a semiconductor
non-volatile storage device is required.

Flash
Recovery

A process whereby an existing, corrupt BIOS image in the flash boot device is
overwritten with a new image. Also referred to as a flash recovery.

Flash
Update

A process whereby an existing, uncorrupted BIOS image in the flash boot device is
overwritten with a new image. Also referred to as a flash update.

FPM (Fast Page Mode) A “standard” type of DRAM that is lower performance than EDO.

FPGA (Field Programmable Gate Array) A large, general-purpose logic device that is
programmed at power-up to perform specific logic functions.

Framers A device used in digital communication systems to create parellel data frames from
a serial data stream.

GB or GByte (Gigabyte) Approximately one billion (US) or one thousand million (Great Britain)
bytes. 2^30 = 1,073,741,824 bytes exactly.

Hang A condition where the system microprocessor suspends processing operations due to
an anomaly in the data or an illegal instruction.

HDLC (High Level Data Link Control) An ITU-TSS link layer protocol standard for point-
to-point and multi-point communications.

Header A mechanical pin and sleeve style connector on a circuit board. The header may exist
in either a male or female configuration. For example, a male header has a number
and pattern of pins which corresponds to the number and pattern of sleeves on a
female header plug.

h (Hexadecimal) A base 16 numbering system using numeric symbols 0 through 9 plus
alpha characters A, B, C, D, E, and F as the 16 digit symbols. Digits A through F are
equivalent to the decimal values 10 through 15.

IMI (Initial Memory Image) A structure in memory the i960 core requires to initialize
internal registers before normal operation.

TASK-6000 software reference guide

288

INT (Interrupt Request) A software-generated interrupt request.

IOP (Input/Output Processor) A processing element on intelligent adapter boards used to
off-load a host processor.

I/O (Input/Output) The communication interface between system components and
between the system and connected peripherals.

IRQ (Interrupt Request). In ISAbus systems, a microprocessor input from the control bus
used by I/O devices to interrupt execution of the current program and cause the
microprocessor to jump to a special program called the interrupt service routine. The
microprocessor executes this special program, which normally involves servicing the
interrupting device. When the interrupt service routine is completed, the
microprocessor resumes execution of the program it was working on before the
interruption occurred.

ISR (Interrupt Service Routine) A program executed by the microprocessor upon receipt
of an interrupt request from an I/O device and containing instructions for servicing
of the device.

Jumper A set of male connector pins on a circuit board over which can be placed coupling
devices to electrically connect pairs of the pins. By electrically connecting different
pins, a circuit board can be configured to function in predictable ways to suit
different applications.

KB or KByte (Kilobyte) Approximately one thousand bytes. 210 = 1024 bytes exactly.

LIU (Line Interface Unit)

Logical
Address

The memory-mapped location of a segment after application of the address offset to
the physical address.

MAC (Media Access Controller) A media-specific access control protocol within IEEE 802
specifications for the lower half of the data link layer (layer 2) that defines topology
dependent access control protocols for IEEE LAN specifications.

MB or
MByte

(Megabyte) Approximately one million bytes. 2^20 = 1,048,576 bytes exactly.

Memory A designated system area to which data can be stored and from which data can be
retrieved. A typical computer system has more than one memory area.

Memory
shadowing

Copying information from an extension ROM into DRAM and accessing it in this
alternate memory location.

Offset The difference in location of memory-mapped data between the physical address and
the logical address.

PAL (Programmable Array Logic) A semiconductor programmable ROM which accepts
customized logic gate programming to produce a desired sum-of-products
output function.

PCI (Peripheral Component Interconnect) A popular microcomputer bus standard used
extensively in personal computer architecture. This 32-bit local bus, used inside PCs,
was designed by Intel.

Peripheral
Device

An external device connected to the system for the purpose of transferring data into
or out of the system.

Glossary

289

PHY (Physical Layer) An ATM layer whose functionality loosely corresponds to the OSI
physical layer (Layer 1). ATM Physical Layer functionality includes the Physical
Medium sublayer (PM) and the Transmission Convergence (TC) sublayer.

PLL (Phase-Locked Loop) A semiconductor device which functions as an electronic
feedback control system to maintain a closely regulated output frequency from an
unregulated input frequency. The typical PLL consists of an internal phase
comparator or detector, a low pass filter, and a voltage controlled oscillator which
function together to capture and lock onto an input frequency. When locked onto
the input frequency, the PLL can maintain a stable, regulated output frequency
(within bounds) despite frequency variance at the input.

Physical
Address

The address or location in memory where data is stored before it is moved as memory
remapping occurs. The physical address is that which appears on the computer’s
address bus when the CPU requests data from a memory address. When remapping
occurs, the data can be moved to a different memory location or logical address.

Pinout A diagram or table describing the location and function of pins on an
electrical connector.

PMC (PCI Mezzanine Card) A new standard form factor for PCI add-in modules. PMCs
mate with their respective connectors on the motherboard and are secured with screws.

POST (Power On Self Test) A diagnostic routine which a board runs at power up. Along
with other testing functions, this comprehensive test initializes the system chipset and
hardware, resets registers and flags, performs ROM checksums, and checks disk
drive devices and the keyboard interface.

PQFP (Plastic Quad Flat Pack) A popular package design for integrated circuits of
high complexity.

Program A set of instructions a computer follows to perform specific functions relative to user
need or system requirements. In a broad sense, a program is also referred to as a
software application, which can actually contain many related, individual programs.

PSTN (Public Switched Telephone Network) The worldwide voice telephone networks and
services accessible to all who have telephones and access privileges.

R1/R2 Multi-frequency signaling for PSTN trunk lines. R1/R2 signaling consists of register
signaling for address signals, and line signaling for line and supervisory signals.

RAM (Random Access Memory) Memory in which the actual physical location of a
memory word has no effect on how long it takes to read from or write to that
location. In other words, the access time is the same for any address in memory. Most
semiconductor memories are RAM.

ROM (Read Only Memory) A broad class of semiconductor memories designed for
applications where the ratio of read operations to write operations is very high.
Technically, a ROM can be written to (programmed) only once, and this operation
is normally performed at the factory. Thereafter, information can be read from the
memory indefinitely.

Reflashing The process of replacing a BIOS image, in binary format, in the flash boot device.

TASK-6000 software reference guide

290

Register An area typically inside the microprocessor where data, addresses, instruction codes,
and information on the status on various microprocessor operations are stored.
Different types of registers store different types of information.

Reset A signal delivered to the microprocessor by the control bus, which causes a halt to
internal processing and resets most CPU registers to 0. The CPU then jumps to a
starting address vector to begin the boot process.

RS-232 A popular asynchronous bi-directional serial communication protocol. Among other
things, the RS-232 standard defines the interface cabling and electrical
characteristics, and the pin arrangement for cable connectors.

RAS (Row Address Strobe) An input signal to an internal DRAM latch register specifying
the row at which to read or write data. The DRAM requires a row address and a
column address to define a memory address. Since both parts of the address are
applied at the same DRAM inputs, use of row addresses and column addresses in a
multiplexed array allows use of half as many pins to define an address location in a
DRAM device as would otherwise be required.

RTOS (Real Time Operating System) An operating system that performs tasks at
specified times.

Sample rate
generator

Software or firmware that the number of times per second that an analog signal is
measured and converted to a binary number -- the purpose being to convert the
analog signal to a digital analog. The most common digital signal—PCM—samples
voice 8,000 times a minute.

SBSRAM Synchronous Burst Static Random Access Memory.

Serial Port A physical connection with a computer for the purpose of serial data exchange with
a peripheral device. The port requires an I/O address, a dedicated IRQ line, and a
name to identify the physical connection and establish serial communication between
the computer and a connected hardware device. A serial port is often referred to as
a COM port.

SF (Super Frame) A DS1 framing format in which 24 DSO timeslots plus a coded
framing bit are organized into a frame which is repeated 12 times to form the
ssuperframe.

Shadow
Memory

RAM in the address range 0xC000h through 0xFFFFFh used for shadowing.
Shadowing is the process of copying BIOS extensions from ROM into DRAM for the
purpose of faster CPU access to the extensions when the system requires frequent
BIOS calls. Typically, system and video BIOS extensions are shadowed in DRAM to
increase system performance.

SODIMM (Small Outline Dual Inline Memory Module) A new form factor for memory
modules that is smaller and denser than SIMMs.

Standoff A mechanical device, typically constructed of an electrically non-conductive
material, used to fasten a circuit board to the bottom, top, or side of a
protective enclosure.

SRAM (Static Random Access Memory) A semiconductor RAM device in which the data
remains permanently stored as long as power is applied, without the need for
periodically rewriting the data into memory.

Glossary

291

Symmetrically
Addressable
SIMM

A SIMM, the memory content of which is configured as two independent banks.
Each 16-bit wide bank contains an equal number of rows and columns and is
independently addressable by the CPU via twin row address strobe registers in the
DRAM controller.

TDM (Time Division Multiplex) A technique originated in satellite communications to
interweave multiple conversations into one transponder so as to appear to get
simultaneous conversations. This technicque is used on the H.110 bus and the
internal DSP serial buses.

TSI Time-slot interchange. A way of temporarily storing data bytes so they can be sent
in a different order than they were received. TSI is a way to switch calls.

UART (Universal Asynchronous Receiver/Transmitter) A device, usually an integrated
circuit chip, that converts digital data to transmit from parallel to serial, and
transmitted digital data from serial to parallel. The UART converts incoming serial
data from the device connected to the serial port (typically a modem) into the parallel
form that your computer handles. UART also converts the computer’s parallel data
into serial data suitable for asynchronous transmission on phone lines.

VAD (Voice Activity Detector) A signal classifier used to distinguish between active voice
and inactive voice (silence and background noise).

VoIP (Voice over Internet Protocol) A protocol that enables devices of disparate
manufactures to support voice communication over packet networks such as the
Internet.

Wait State A period of one or more microprocessor clock pulses during which the CPU suspends
processing while waiting for data to be transferred to or from the system data or
address buses.

TASK-6000 software reference guide

292

293

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

A
addresses

defined 285.
logical, defined 288.
physical, defined 289.

ANSI, defined 285.
API 7.
application distribution

Host and IOP 2.
IOP 1.

Application Programming Interface (API) 7.
applications

DSP 1., 6.
Host

initializing the Host driver 30.
initializing UPA structures 30.
loading and running applications 30.
sample code 36.
setting up message handlers 30.

IOP
configuring services 32.
creating data paths 32.
initializing the IOP driver 31.
sample code 39.
setting up message handlers 31.

B
BIOS, defined 285.
boot device, defined 285.
broadcasting 232.

C
callback functions 11.
channels

defined 7.
groups 8.
physical 8.
virtual 8.

clearT8100ClockFault 241.
clearT8100MemoryFault 242.
command messages 10.
communication, inter-processor 10.
components, TASK 3.
configuring services 32.

connections, making and breaking 231.
conventions, notational ii.
creating data paths 32.

D
data path services 9.
data structures, HDLC 148.
developing

Host applications 30.
IOP applications 31.

device drivers
libraries, peripheral 5.
NT Kernel Mode 4.

dispatchers
event 5.
message 4.

driver sequence, sample 150.
driver, defined 286.
DSP application 6.
DSP applications 1.
Dynamic Random Access Memory (DRAM),

defined 286.

E
E1/T1 functions

E1 and T1
T1E1getBoardConfig 184.
T1E1initCard 183.
T1E1setLeds 185.

E1 only
getE1Signaling 197.
setE1Config 192.
setE1Signaling 193.
setE1SignalingHandler 200.

T1 only
getT1Signaling 194.
getT1SignalingRaw 196.
getT1Status 195.
setT1ChannelConfig 191.
setT1ClearChannels 189.
setT1Command 188.
setT1Config 186.
setT1IdleChannels 190.
setT1Signaling 187.
setT1SignalingHandler 198.

TASK-6000 software reference guide

294

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

setT1StatusHandler 199.
E1/T1 library 5.

function list 179.
sample startup sequence 178.
structures 201.

E1/T1 structures
E1 only

E1SignalingHandler 229.
t_E1_line_buildout 225.
t_E1_line_coding 223.
t_E1_signaling_mode 224.
t_E1_user_config_struct 226.
t_E1_user_signaling_data 228.

T1 and E1
t_T1E1_BoardConfig 207.
t_T1E1_card_type 204.
t_T1E1_framer_id 203.
t_T1E1_led_state 205.
t_T1E1_user_signaling_data 206.

T1 only
t_T1_framing_mode 209.
t_T1_line_buildout 210.
t_T1_line_coding 208.
t_T1_signaling_data 213.
t_T1_user_channel_config 218.
t_T1_user_clear_channel_data 216.
t_T1_user_command_data 214.
t_T1_user_config_struct 211.
t_T1_user_idle_struct 217.
t_T1_user_raw_signaling_struct 220.
t_T1_user_signaling_data 213.
t_T1_user_status_struct 215.
T1SignalingHandler 222.
T1StatusHandler 221.

E1SignalingHandler 229.
EDO DRAMs, defined 287.
e-mail address, RadiSys ii.
event dispatcher 5.
event messages 10.

F
fast packet router 5.
Fast Page Mode DRAMs, defined 287.
Flash

recovery, defined 287.
functions

callback 11.
E1/T1 function list 179.
HDLC function list 151.
Host function list 48.
T8100 function list 235.

G
getE1Signaling 197.
getT1Signaling 194.
getT1SignalingRaw 196.
getT1Status 195.
getT8100ErrorStatus 244.
glossary 285.

H
hbus.sys 4.
HDLC functions

HDLCCloseDriver 155.
HDLCClosePort 156.
HDLCConfigChannel 158.
HDLCConfigPort 157.
HDLCDisableChannel 160.
HDLCEnableChannel 159.
HDLCGetChannelStatus 165.
HDLCGetDeviceStatus 164.
HDLCGetPacket 163.
HDLCInit 153.
HDLCReset 154.
HDLCResetChannel 161.
HDLCSendPacket 162.
HDLCSetDeviceErrorHandler 168.
HDLCSetRxErrorHandler 170.
HDLCSetRxPacketHandler 167.
HDLCSetTxErrorHandler 169.
HDLCSetTxPacketHandler 166.

HDLC library 5.
data structures 148.
function list 151.
overview 147.
processing modes 148.
processing packet transmission and reception

149.
sample driver sequence 150.
structure list 172.
type definitions 171.

HDLC structures
t_HDLC_channel_config 175.
t_HDLC_channel_status 176.
t_HDLC_port_config 173.

HDLCCloseDriver 155.
HDLCClosePort 156.
HDLCConfigChannel 158.
HDLCConfigPort 157.
HDLCDisableChannel 160.
HDLCEnableChannel 159.
HDLCGetChannelStatus 165.
HDLCGetDeviceStatus 164.
HDLCGetPacket 163.
HDLCInit 153.

Index

295

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

HDLCReset 154.
HDLCResetChannel 161.
HDLCSendPacket 162.
HDLCSetDeviceErrorHandler 168.
HDLCSetRxErrorHandler 170.
HDLCSetRxPacketHandler 167.
HDLCSetTxErrorHandler 169.
HDLCSetTxPacketHandler 166.
header, defined 287.
help ii.
Host and IOP application distribution 2.
Host applications, developing 30.

initializing the Host driver 30.
initializing UPA structures 30.
loading and running applications 30.
setting up message handlers 30.

Host applications,sample code 36.
Host files

Hot Swap
hbus.sys 4.
Host library 4.
hsmgrint.dll 4.

i960rp.sys 4.
taskhost.dll 3.

host functions
function list 48.
hostControlPeripheral 50.
hostExit 54.
hostGetBoardInfo 55.
hostGetNWPktBuf 94.
hostGetSystemInfo 57.
hostInit 59.
hostJitterControl 95.
hostLoadDsp 60.
hostLoadIop 61.
hostReadIop 96.
hostResetBoard 62.
hostResetDsp 63.
hostRunDsp 64.
hostRunLoadedIop 65.
hostSendMsg 98.
hostSendNWPktBuf 97.
hostSetEventHandler 66.
hostSetHotSwapHandler 67.
hostSetNWNotify 99.
hostSetPeripheralDataHandler 68.
hostWriteIop 100.
upConfigService 69.
upConfigServiceGlobal 72.
upConnectPktRecv 75.
upConnectPktSend 77.
upDisableService 79.

upDisconnectPktRecv 82.
upDisconnectPktSend 83.
upEnableChannel 84.
upEnableService 86.
upQueryQOSReport 89.
upSetEventHandler 90.
upSetUserMsgHandler 91.
upStart 92.

Host runtime library 3.
host structures

REPORTBOARDINFO 57.
SP6K_BOARD_INFO_T 55.
t_configArg 53.
t_T8100StreamConfig 52.
t_T8100SwitchConfig 50.
UP_CONFIG_SVC_UT 70.
UP_GLOBALCONFIGDATA_UT 73.
UP_PKT_RECV_CONFIG_ST 75.

hostControlPeripheral 50.
hostExit 54.
hostGetBoardInfo 55.
hostGetNWPktBuf 94.
hostGetSystemInfo 57.
hostInit 59.
hostJitterControl 95.
hostLoadDsp 60.
hostLoadIop 61.
hostReadIop 96.
hostResetBoard 62.
hostResetDsp 63.
hostRunDsp 64.
hostRunLoadedIop 65.
hostSendMsg 98.
hostSendNWPktBuf 97.
hostSetEventHandler 66.
hostSetHotSwapHandler 67.
hostSetNWNotify 99.
hostSetPeripheralDataHandler 68.
hostWriteIop 100.
Hot Swap 4.

hbus.sys file 4.
hsmgrint.dll file 4.

Hot Swap files
hsmgrint.dll 4.

hsmgrint.dll 4.

I
i960rp.sys 4.
initialize the Host driver 30.
initialize the IOP driver 31.
initializing UPA structures 30.
initT8100 237.

TASK-6000 software reference guide

296

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

interfaces 6.
Application Programming Interface (API) 7.
Internet Protocol (IP) 6.
PSTN 7.

Internet Protocol 6.
inter-processor communication 10.
interrupt

request (IRQ), defined 288.
IOP application distribution 1.
IOP applications, developing

initializing the IOP driver 31.
setting up message handlers 31.

IOP applications,configuring services 32.
IOP applications,creating data paths 32.
IOP applications,sample code 39.
IOP functions

iopControlPeripheral 108.
iopGetNWPktBuf 141.
iopInit 112.
iopJitterControl 142.
iopSendMsg 144.
iopSendNWPktBuf 143.
iopSetNWNotify 145.
upConfigService 113.
upConfigServiceGlobal 116.
upConnectPktRecv 119.
upConnectPktSend 121.
upDisableService 123.
upDisconnectPktRecv 126.
upDisconnectPktSend 127.
upEnableChannel 128.
upEnableService 130.
upQueryQOSReport 133.
upSetEventHandler 136.
upSetUserMsgHandler 146.
upStart 139.

IOP runtime library 4.
IOP structures

SP6K_BOARD_INFO_T 106.
t_configArg 111.
t_jitterParam 142.
t_T8100ClockConfig 109.
t_T8100StreamConfig 110.
t_T8100SwitchConfig 108.
UP_CONFIG_SVC_UT 114.
UP_EVENT_DATA_ST 136.
UP_GLOBALCONFIGDATA_UT 117.
UP_IOPSYSCONFIG_ST 139.
UP_PKT_RECV_CONFIG_ST 119.
UP_PKT_SEND_CONFIG_ST 121.
UP_START_DSP_REPLY_ST 138.

IopAppLoader.c 30., 36.
iopControlPeripheral 108.

iopGetNWPktBuf 141.
iopInit 112.
iopJitterControl 142.
iopSendMsg 144.
iopSendNWPktBuf 143.
iopSetNWNotify 145.
IP 6.

J
jumpers

defined 288.

L
libraries

E1/T1 5.
HDLC 5.
Hot Swap Host 4.
peripheral device driver 5.
TDM switch 5.

loading and running applications 30.
logical address, defined 288.

M
memory

random access, defined 289.
message dispatcher 4.
messages

callback functions 11.
command 10.
event 10.

N
notational conventions ii.
NT Kernel Mode device driver 4.

O
objects 7.

channels 7.
slot 7.
unit 7.

offset, defined 288.
operating system, defined 290.

P
packets

fast packet router 5.
transmission and reception, HDLC 149.

peripheral device driver libraries 5.
physical address, defined 289.
physical channels 8.
POST 289.
Power-On Self Test (POST), defined 289.

Index

297

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

processing modes, HDLC 148.
protocols

Internet Protocol (IP) 6.
PSTN 7.
Public Switch Telephone Network (PSTN) 7.

R
RadiSys, contacting ii.
RAM, defined 289.
Random Access Memory (RAM), defined 289.
README file ii.
reflashing, defined 289.
REPORTBOARDINFO structure 57.
requests

IRQ, defined 288.
reset, defined 290.
rmondb.exe 6.
router, fast packet 5.
runtime libraries

Host 3.
IOP 4.

S
sample code

Host application 36.
IOP application 39.

services 8.
data path 9.
stAGC 281.
stCodec 260.
stCPTDet 268.
stEchoCanc 263.
stMFDet 270.
stPacketBuilder 282.
stPacketParser 283.
stPktDTMFDet 267.
stPktToneGen 265.
stRtpDecode 274.
stRtpEncode 272.
stT1E1Alarm 279.
stTdmDTMFDet 266.
stTdmToneGen 264.

setE1Config 192.
setE1Signaling 193.
setE1SignalingHandler 200.
setT1ChannelConfig 191.
setT1ClearChannels 189.
setT1Command 188.
setT1Config 186.
setT1IdleChannels 190.
setT1Signaling 187.
setT1SignalingHandler 198.
setT1StatusHandler 199.

setT8100ClockConfig 238.
setT8100ClockFaultMask 243.
setT8100Handler 245.
setT8100StreamConfig 239.
setT8100SwitchConfig 240.
setting up message handlers on an IOP 31.
setting up message handlers on the Host 30.
SIMMs

symmetrically addressable, defined 291.
slot, defined 7.
SP6K_BOARD_INFO_T structure 55., 106.
sp6k_util.exe 6.
stAGC 281.
startup sequence, E1/T1 178.
startup sequence, T8100 234.
stCodec 260.
stCPTDet 268.
stEchoCanc 263.
stMFDet 270.
stPacketBuilder 282.
stPacketParser 283.
stPktDTMFDet 267.
stPktToneGen 265.
stRtpDecode 274.
stRtpEncode 272.
structure list, HDLC 172.
structures

E1/T1 201.
E1SignalingHandler 229.
REPORTBOARDINFO 57.
SP6K_BOARD_INFO_T 55., 106.
t_configArg 53., 111.
t_E1_line_buildout 225.
t_E1_line_coding 223.
t_E1_signaling_mode 224.
t_E1_user_config_struct 226.
t_E1_user_signaling_data 228.
t_fallback_clk 248.
t_jitterParam structure 142.
t_netref_clk 249.
t_ref_clk 247.
t_source_dest 256.
t_stream_rate 252.
t_T1_framing_mode 209.
t_T1_line_buildout 210.
t_T1_line_coding 208.
t_T1_signaling_data 213.
t_T1_user_channel_config 218.
t_T1_user_clear_channel_data 216.
t_T1_user_command_data 214.
t_T1_user_config_struct 211.
t_T1_user_idle_struct 217.
t_T1_user_raw_signaling_struct 220.

TASK-6000 software reference guide

298

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

t_T1_user_signaling_data 213.
t_T1_user_status_struct 215.
t_T1E1_BoardConfig 207.
t_T1E1_card_type 204.
t_T1E1_framer_id 203.
t_T1E1_led_state 205.
t_T1E1_user_signaling_data 206.
t_T8100ClockConfig 51., 109., 250.
t_T8100Connection 257.
t_T8100StreamConfig 52., 110., 253.
t_T8100SwitchConfig 50., 108., 258.
T1SignalingHandler 222.
T1StatusHandler 221.
T8100 structure list 246.
UP_CONFIG_SVC_UT 70., 114.
UP_EVENT_DATA_ST 136.
UP_GLOBALCONFIGDATA_UT 73., 117.
UP_IOPSYSCONFIG_ST 139.
UP_PKT_RECV_CONFIG_ST 75., 119.
UP_PKT_SEND_CONFIG_ST 121.
UP_START_DSP_REPLY_ST 138.

stT1E1Alarm 279.
stTdmDTMFDet 266.
stTdmToneGen 264.
support ii.
Symmetrically Addressable SIMM, defined 291.

T
t_configArg structure 53., 111.
t_E1_line_buildout 225.
t_E1_line_coding 223.
t_E1_signaling_mode 224.
t_E1_user_config_struct 226.
t_E1_user_signaling_data 228.
t_HDLC_channel_config 175.
t_HDLC_channel_status 176.
t_HDLC_port_config 173.
t_jitterParam structure 142.
t_T1_framing_mode 209.
t_T1_line_buildout 210.
t_T1_line_coding 208.
t_T1_signaling_data 213.
t_T1_user_channel_config 218.
t_T1_user_clear_channel_data 216.
t_T1_user_command_data 214.
t_T1_user_config_struct 211.
t_T1_user_idle_struct 217.
t_T1_user_raw_signaling_struct 220.
t_T1_user_signaling_data 213.
t_T1_user_status_struct 215.
t_T1E1_BoardConfig 207.
t_T1E1_card_type 204.

t_T1E1_framer_id 203.
t_T1E1_led_state 205.
t_T1E1_user_signaling_data 206.
t_T8100ClockConfig structure 51., 109.
t_T8100StreamConfig structure 52., 110.
t_T8100SwitchConfig structure 50., 108.
T1E1getBoardConfig 184.
T1E1initCard 183.
T1E1setLeds 185.
T1SignalingHandler 222.
T1StatusHandler 221.
T8100 functions

clearT8100ClockFault 241.
clearT8100MemoryFault 242.
getT8100ErrorStatus 244.
initT8100 237.
setT8100ClockConfig 238.
setT8100ClockFaultMask 243.
setT8100Handler 245.
setT8100StreamConfig 239.
setT8100SwitchConfig 240.

T8100 library
broadcasting 232.
function list 235.
making and breaking connections 231.
sample startup sequence 234.

T8100 structure list 246.
T8100 structures

t_fallback_clk 248.
t_netref_clk 249.
t_ref_clk 247.
t_source_dest 256.
t_stream_rate 252.
t_T8100ClockConfig 250.
t_T8100Connection 257.
t_T8100StreamConfig 253.
t_T8100SwitchConfig 258.

TASK
application distribution, Host and IOP 2.
application distribution, IOP 1.
interfaces 6.
objects 7.
runtime libraries

Host 3.
IOP 4.

software components 3.
taskhost.dll 3.
TDM switch library 5.
technical support ii.
Tornado 4.
troubleshooting ii.
type definitions, HDLC 171.

Index

299

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

U
unit, defined 7.
UP_CONFIG_SVC_UT structure 70., 114.
UP_EVENT_DATA_ST structure 136.
UP_GLOBALCONFIGDATA_UT structure 73.,

117.
UP_IOPSYSCONFIG_ST structure 139.
UP_PKT_RECV_CONFIG_ST structure 75., 119.
UP_PKT_SEND_CONFIG_ST structure 121.
UP_START_DSP_REPLY_ST structure 138.
UpaIopApp.c 31., 39.
upConfigService 69., 113.
upConfigServiceGlobal 72., 116.
upConnectPktRecv 75., 119.
upConnectPktSend 77., 121.
upDisableService 79., 123.
upDisconnectPktRecv 82., 126.
upDisconnectPktSend 83., 127.
upEnableChannel 84., 128.

upEnableService 86., 130.
upQueryQOSReport 89., 133.
upSetEventHandler 90., 136.
upSetUserMsgHandler 91., 146.
upStart 92., 139.
URL, RadiSys ii., iv.
utilities

rmondb.exe 6.
sp6k_util.exe 6.

V
virtual channels 8.
VxWorks 4.

W
World-Wide Web URLs

RadiSys iv.
World-Wide Web, accessing RadiSys ii.

	TASK-6000™ software reference guide
	Before you begin
	About this guide
	Contents
	Notational conventions

	Where to get more information
	About TASK�6000
	About related RadiSys products
	TASK software algorithms
	SPIRIT™ boards

	About other related products
	TI tools

	Contents
	Figures
	Tables

	Chapter 1: Introducing TASK-6000 software
	Product configurations

	Chapter 2: Understanding TASK-6000 software architecture
	Components
	TASK Host runtime library
	taskhost.dll
	NT Kernel Mode device driver (i960rp.sys)
	Hot Swap Host library

	TASK IOP runtime library
	VxWorks†-based library
	Peripheral device driver libraries

	DSP application
	Utilities
	sp6k_util.exe
	rmondb.exe

	Interfaces
	Internet Protocol (IP)
	Public Switched Telephone Network (PSTN)
	Application Programming Interface (API)
	Objects
	Services
	Inter-processor communication

	Chapter 3: Installing and configuring TASK-6000 software
	Requirements
	Before you begin
	Running the install program
	Uninstalling TASK software
	Automatic uninstall (recommended)
	Uninstalling Hot Swap

	Manual uninstall procedure

	TASK-6000 files
	Hot Swap
	Runtime kit
	Development kit
	DSP development kit

	Chapter 4: Developing Host and IOP applications
	Developing the Host application (IopAppLoader.c)
	Initialize the Host driver
	Set up message handlers
	Initialize UPA structures
	Load and run applications

	Developing the IOP application (UpaIopApp.c)
	Initialize the IOP driver
	Set up message handlers
	Configure services
	Create data paths

	Building Host and IOP applications
	Naming conventions
	Host application development
	IOP application development
	Special note for IOP applications

	Sample code: Host application (IopAppLoader.c)
	Initializing the host driver
	Setting up message handlers
	Initializing UPA structures
	Loading and running applications
	Retrieving system information
	Loading the VxWorks image on IOPs
	Waiting for IOP response
	Loading mulcoder.out

	Sample code: IOP application (UpaIopApp.c)
	Initializing the IOP drive
	Calling iopInit
	Calling upStart
	Configuring on-board peripherals

	Setting up message handlers
	Installing event handlers (callback functions)
	Connecting the TDM to IOPs
	Enabling bi-directional voice data flow to and from the DSP

	Configuring services
	Configuring DSP services for outbound direction (toward the IP cloud)

	Creating data paths
	Creating a data path between an outgoing RTP channel running on a DSP and the IOP driver’s networ...
	Enabling the receive direction on the channel
	Initializing the RTP decoder
	Creating a data path between an inbound RTP channel running on a DSP and the IOP driver’s network...

	Appendix A: Host functions
	Overview
	Message API
	Function list
	hostControlPeripheral
	hostExit
	hostGetBoardInfo
	hostGetSystemInfo
	hostInit
	hostLoadDsp
	hostLoadIop
	hostResetBoard
	hostResetDsp
	hostRunDsp
	hostRunLoadedIop
	hostSetEventHandler
	hostSetHotSwapHandler
	hostSetPeripheralDataHandler
	upConfigService
	upConfigServiceGlobal
	upConnectPktRecv
	upConnectPktSend
	upDisableService
	upDisconnectPktRecv
	upDisconnectPktSend
	upEnableChannel
	upEnableService
	upQueryQOSReport
	upSetEventHandler
	upSetUserMsgHandler
	upStart
	hostGetNWPktBuf
	hostJitterControl
	hostReadIop
	hostSendNWPktBuf
	hostSendMsg
	hostSetNWNotify
	hostWriteIop
	hostSetPollPeriod
	hostSendPriorityMsg

	Appendix B: IOP functions
	Overview
	Message API
	Function list
	getBoardInfo
	iopControlPeripheral
	iopInit
	upConfigService
	upConfigServiceGlobal
	upConnectPktRecv
	upConnectPktSend
	upDisableService
	upDisconnectPktRecv
	upDisconnectPktSend
	upEnableChannel
	upEnableService
	upQueryQOSReport
	upSetEventHandler
	upStart
	iopGetNWPktBuf
	iopJitterControl
	iopSendNWPktBuf
	iopSendMsg
	iopSetNWNotify
	upSetUserMsgHandler

	Appendix C: HDLC driver library
	Overview
	Driver internals, data structures, and resources
	Data structures
	Processing modes
	Processing packet transmission and reception

	Sample HDLC driver sequence
	Function list
	Functions
	HDLCInit
	HDLCReset
	HDLCCloseDriver
	HDLCClosePort
	HDLCConfigPort
	HDLCConfigChannel
	HDLCEnableChannel
	HDLCDisableChannel
	HDLCResetChannel
	HDLCSendPacket
	HDLCGetPacket
	HDLCGetDeviceStatus
	HDLCGetChannelStatus
	HDLCSetTxPacketHandler
	HDLCSetRxPacketHandler
	HDLCSetDeviceErrorHandler
	HDLCSetTxErrorHandler
	HDLCSetRxErrorHandler

	Type definitions
	Structures
	t_HDLC_port_config
	t_HDLC_channel_config
	t_HDLC_channel_status

	Appendix D: T1/E1 library
	Overview
	Sample startup sequence
	Function list

	Functions
	T1E1initCard
	T1E1getBoardConfig
	T1E1setLeds
	setT1Config
	setT1Signaling
	setT1Command
	setT1ClearChannels
	setT1IdleChannels
	setT1ChannelConfig
	setE1Config
	setE1Signaling
	getT1Signaling
	getT1Status
	getT1SignalingRaw
	getE1Signaling
	setT1SignalingHandler
	setT1StatusHandler
	setE1SignalingHandler

	Structures
	t_T1E1_framer_id
	t_T1E1_card_type
	t_T1E1_led_state
	t_T1E1_user_signaling_data
	t_T1E1_BoardConfig
	t_T1_line_coding
	t_T1_framing_mode
	t_T1_line_buildout
	t_T1_user_config_struct
	t_T1_user_signaling_data t_T1_signaling_data
	t_T1_user_command_data
	t_T1_user_status_struct
	t_T1_user_clear_channel_data
	t_T1_user_idle_struct
	t_T1_user_channel_config
	t_T1_user_raw_signaling_struct
	Example

	T1StatusHandler
	T1SignalingHandler
	t_E1_line_coding
	t_E1_signaling_mode
	t_E1_line_buildout
	t_E1_user_config_struct
	t_E1_user_signaling_data
	E1SignalingHandler

	Appendix E: T8100 library
	Overview
	Making and breaking connections
	Broadcasting
	Sample startup sequence
	Function list
	Limitations

	Functions
	initT8100
	setT8100ClockConfig
	setT8100StreamConfig
	setT8100SwitchConfig
	clearT8100ClockFault
	clearT8100MemoryFault
	setT8100ClockFaultMask
	getT8100ErrorStatus
	setT8100Handler

	Structures
	t_ref_clk
	t_fallback_clk
	t_netref_clk
	t_T8100ClockConfig
	t_stream_rate
	t_T8100StreamConfig
	t_source_dest
	t_T8100Connection
	t_T8100SwitchConfig

	Appendix F: Service descriptions
	Codec
	stCodec

	Echo cancellation
	stEchoCanc

	Tone generation
	stTdmToneGen
	stPktToneGen
	UP_TONEGEN_CONFIG_ST

	Tone detection
	stTdmDTMFDet
	UP_DTMF_CONFIG_ST
	UP_EVT_TDM_DTMF_DETECTED
	UP_DTMF_DETECTED_DATA_ST

	stPktDTMFDet
	UP_DTMF_CONFIG_ST
	UP_EVT_PKT_DTMF_DETECTED
	UP_DTMF_DETECTED_DATA_ST

	stCPTDet
	UP_CPT_CONFIG_ST
	UP_EVT_CPT_DETECTED UP_CPT_DETECTED_DATA_ST

	stMFDet
	UP_MF_CONFIG_ST
	UP_EVT_MF_DETECTED
	UP_MF_DETECTED_DATA_ET

	RTP packetization
	stRtpEncode
	RTP_HEADER_ST
	UP_RTP_SEND_CONFIG_ST

	stRtpDecode
	UP_RTP_RECV_CONFIG_ST
	UP_EVT_RTP_PT_CHANGE UP_RTP_PT_CHANGE_DATA_ST
	UP_EVT_RTP_SSRC_CHANGE UP_RTP_SSRC_CHANGE_DATA_ST

	Signaling
	stCAS
	UP_CAS_CONFIG_ST
	UP_EVT_CAS_CHANGE UP_CAS_CHANGE_DATA_ST

	stQDS0Hdlc

	Alarming
	stEthernetAlarm
	UP_EVT_ETHERNET_ALARM UP_ETHERNET_ALARM_DATA_ST

	stT1E1Alarm
	UP_T1E1ALARM_CONFIG_ST
	UP_EVT_T1E1_ALARM UP_T1E1_ALARM_DATA_ST

	Audio processing
	stAGC
	UP_AGC_CONFIG_ST

	Internal
	stPacketBuilder
	UP_PACKET_BUILDER_CONFIG_ST

	stPacketParser
	UP_PACKET_PARSER_CONFIG_ST

	Glossary
	Index

