
 
 

 

  
FACILITATING THE 
MODELLING OF EMBEDDED 
GENERATION 

CONTRACT NUMBER: K/EL/00321/00/00 

URN NUMBER: 05/973 



 
 

 

 

 

 

 

 

 

 

 

 

 

    

The DTI drives our ambition of 
‘prosperity for all’ by working to 
create the best environment for 
business success in the UK.  
We help people and companies 
become more productive by 
promoting enterprise, innovation  
and creativity.  

We champion UK business at home and 
abroad. We invest heavily in  
world-class science and technology. 
We protect the rights of working 
people and consumers. And we  
stand up for fair and open markets  
in the UK, Europe and the world. 



 
 

 
 

FACILITATING THE MODELLING OF EMBEDDED 
GENERATION 

 
K/EL/00321/00/00 

URN 05/ 
 
 
 
 

Contractor 
IPSA Power Ltd 

 
 
 
 
 
 
 

The work described in this report was carried 
out under contract as part of the DTI New and 
Renewable Energy Programme, which is 
managed by Future Energy Solutions. The views 
and judgements expresses in this report are 
those of the contractor and do not necessarily 
reflect those of the DTI or Future Energy 
Solutions 

 
 
 
 
 
 
 
 
 
 
 
 
First published 2005 
Copyright IPSA Power Ltd 



 
 

 
 



  

 Page i 

 
Executive Summary 

 
Wind turbines require controllers for them to function effectively and efficiently. In 
order to plan and operate the electricity networks satisfactorily it is necessary to 
model the operation of these control systems. Some commercially available power 
system analysis packages include user modelling capabilities, however a very high 
level of programming and power system analysis ‘know how’ is often required to 
make use of them. Such a level of development effort is clearly unacceptable for the 
smaller plant sizes involved in embedded generation. 
 
The project objective was to develop computer programs to: 
 

• Provide interactive graphic facilities to enable the construction of controller 
block diagrams with the required range of transfer functions required for 
embedded and renewable generation. 

 
• Construct ‘model engines’ that can be tested ‘stand alone’ and also called by 

other analysis programs. 
 

• Integrate the model engines into an existing Grid code compliant power 
system analysis tool and develop sample wind turbine controllers and 
demonstrate their operation in the combined application. 

 
The project comprised four phases: 
 
Phase 1 developed a stand-alone block diagram modelling application to build 
controller block diagrams graphically. This was used to construct and store 
controller models for use in the engine.   
 
Phase 2 produced the controller modelling simulation engine (CMEngine) with a 
fully documented API. 
 
Phase 3 combined the graphical tool with the modelling engine developed in the 
first two phases to produce an integrated application, called UDM+. This was used 
to create controllers, and to study and validate their characteristics in isolation from 
the power system. 
 
Phase 4 integrated the engine into the IPSA+ power system application. The 
controller models were then used directly alongside the full power system model. 
Sample control schemes for wind-turbines were modelled and their operation 
verified during simulations of disturbances in the power system network. 
 
The seamless integration of the CMEngine inside IPSA+, and the combination of 
IPSA+ and the UDM+ program form a very powerful tool to develop and model 
controllers for embedded generation.  The stability simulation of the example 
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system and control models proves the viability of this approach and demonstrates 
its ease of use. 
 
The UDM+ application marks a major improvement in the ability to easily represent 
and develop controller models for new and renewable generation.  The fast 
development time means a large number of different controller variations can be 
developed and tested, not in isolation, but on real power system networks with new 
and conventional generation represented. 
 
The widespread use of IPSA+ throughout the UK DNO’s should ensure that these 
new facilities will be used effectively. The CMEngine itself is a vendor neutral 
modelling solution; it is in no way tied to IPSA+ but has the potential to be 
embedded in other projects or products. 
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1 Introduction 

Renewable and embedded generation is becoming an increasing proportion of the 
UK generation portfolio.  When this type of generation was first added to the 
electricity networks it was essentially uncontrolled; i.e. no attempt was made to vary 
the generator output (either real or reactive power) in response to network 
conditions such as voltage and frequency.  Provided that uncontrolled generation 
constitutes only a small proportion of the total this is a reasonable approach to take.  
However, as more and more of the UK generation ceases to be provided by the 
traditional large scale generation it is essential at least some of this new generation 
is controllable.  Indeed, amendments to the Grid Codes are planned to address this 
situation. 

In order to plan and operate the electricity networks satisfactorily it is necessary to 
model the operation of these control systems.  Some commercially available power 
system analysis packages include user modelling capabilities, however a very high 
level of programming and power system analysis ‘know how’ is often required to 
make use of them.  Such a level of development effort is clearly unacceptable for the 
smaller plant sizes involved in embedded generation. 

This project’s goal was to develop an easy-to-use controller modelling facility that is 
capable of handling the various types of embedded generation now being found in 
distribution networks.  It must generate ‘enginised models’ that any suitable power 
system analysis program will be able to ‘call’ from its dynamic simulation module. 
As a key requirement the system shall be usable by a reasonably competent power 
system engineer, and will not require either computer programming or control 
systems expertise. 

There are three major parts to the project: 

1. The first part is a computer program to enable a controller transfer function to 
be specified by ‘drawing’ its block diagram, and to provide off-line model 
simulation capabilities.   

2. The second part is the capability to generate ‘model engines’, i.e. computer 
code that can be called by other analysis programs and which meets the 
calculation requirements for dynamic simulation, e.g. data validation, input 
and output variables, model initialisation, numerical integration, etc.  

3. The last part is to integrate the model engines into an existing Power system 
modeling application, and to validate its use with a real system and 
controllers. 

IPSA Power Ltd was commissioned to carry out this project under the New and 
Renewable Energy Programme and supported by the Department of Trade and 
Industry (DTI). This report provides full details of the project. 
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2 Controller Modelling Program Architecture 
 
The Controller Modelling Program (CMP) consists of several subsystems: 
 
• The System stores all the data for the controller. This includes: 

• The connectivity of the controller (i.e. which blocks are connected, and how 
they are connected) 

• The position of each control block and connector, and the symbols used for 
each 

• The parameters for each control block (all the time constants, gains, etc.) 
 
• The Graphics determines how each element of the controller is displayed on the 

screen, and handles the low-level interaction between the user and the diagram, 
so that other parts of the CMP can determine which block has been selected or 
moved, for example. 

 
• The File I/O subsystem provides file reading and writing capabilities 
 
• The Engine handles all the calculation aspects of the controller, and also provides 

the interface to any dynamic simulation packages. 
 
• The Application subsystem links the other subsystems together and provides a 

graphical user interface to all of them. The interface allows the user to create, 
draw and modify controllers, to save and load them, and eventually to test them. 

 
As an example of how the subsystems interact, when the user moves the mouse on 
to part of the controller diagram and selects an item to display and modify its 
properties, the mouse movement and selection is handled by the Graphics 
subsystem, which in turn calls the Application subsection to instruct it that an item 
has been selected. The Application subsystem calls the System subsystem to get the 
parameters for the selected element and then displays a dialog allowing the user to 
view and / or modify the element data. If the data is changed the Application passes 
the altered values back to the System, and also calls the Graphics subsystem to 
redraw the item if required. 
 
2.1 Coding 
 
The System, Graphics and File I/O subsystems are C++ class libraries, which are 
linked in by the Application subsystem. The Engine subsystem is a simple C-API 
based library.  The use of C++ class libraries enables them to be easily extended and 
allows for the re-use of any or all of the components in other applications. For 
example the System subsystem classes used to store the component parameters 
are designed in such a way as to allow the parameters to be extended or modified 
with minimal impact on the rest of the application. 
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2.2 The System 
 
The System section of the Controller Modelling Program stores all the data for the 
controller. The System architecture is divided into three parts: 
 
• The Network model stores the type and connectivity of each part of the 

controller. The type is stored in the network model rather than the data model 
since the type determines how many and what sort of connections are allowed to 
a network element. 

 
• The Diagram model stores the location of the controller elements and the colours 

and symbols used to draw each type of element. 
 
• The Data model stores the parameters for each controller element. 
 
Each item in the controller will be a combination of one or more of these three 
models. 
 
2.3 System Items 
 
Controller items are broadly categorised as either Blocks or Connectors. Connectors 
have no types or parameters, other than recording the blocks that they join together. 
There are several types of Blocks, each representing a different operation performed 
on one or more input signals, and each therefore having a different set of 
parameters: 
 
2.3.1 Junctions 
 
There are three types of Junction: 
 

• Standard: A normal junction, with one input connector and up to three output 
connectors. No operation is performed on the input. 

• Input:  A point where a signal is received into the controller. The signals that 
can be received include direct, quadrature, real and imaginary voltages, field 
and terminal currents, rotor angles and slips, electrical and mechanical 
powers, and user-specified constant values. 

• Output: A point where a signal is sent from the controller. The signals that can 
be sent include field voltage, rotor current and mechanical power. 

 
2.3.2 Adders 
 
Adders are points where up to three signals are combined by either addition or 
subtraction to produce a single output. 
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2.3.3 Multipliers 
 
Multipliers are points where up to three signals are combined by multiplication to 
produce a single output. 
 
2.3.4 Operators 
 
Three types of Operator elements are provided: 

• Lag 
• Diff-lag 
• Lead-lag 

 
2.3.5 Saturation functions 
 
Two types of saturation are available: 
 

• Standard IEEE model 
• Exponential model 

 
2.3.6 Time Delays 
 
A time delay element produces an output signal proportional to the input signal 
after a specified time has elapsed. 
 
2.3.7 Limiters 
 
Limiters clip their input signal to produce an output signal. Depending upon the type 
of limiter the output of previous controller elements may also be clipped. 
 
2.3.8 Logic 
 
There are three types of Logic switch. Each has one output and up to three inputs. 
 

• Simple: Either the largest, or the smallest, of the inputs are connected to the 
output. 

• Time: Each input is connected to the output at a specified time. 
• External Control: The value of an external variable (usually the output of 

another control element) is compared to upper and lower switch limit values. 
Depending upon the type of External Control switch, and the results of the 
comparison, the output will be connected to one of the three inputs. 

 
2.3.9 User Defined 
 
User defined elements allow the user to specify a combination of common 
mathematical functions (trigonometric, hyperbolic, logarithmic, etc.) upon up to 
three input signals to produce a single output signal. 
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2.4 Diagram Model 
 
Each controller element stores its position on the diagram. This allows the controller 
drawing to be saved and loaded, and also allows the CMP to determine suitable 
points for attaching Connectors to block elements. The symbol for an Adder 
element, for example, is drawn as a circle with four quadrants. Up to three of those 
quadrants can have input signals, while the fourth quadrant has to have an output 
signal. Each quadrant can therefore only have one Connector, while the Adder as a 
whole must have one Connector “from” it (the output) and between one and three 
Connectors to it (the inputs). Similar rules apply to the other elements. 
 
2.5 The Graphics subsystem 
 
The Graphics subsytstem determines how each element of the controller is 
displayed and how the overall controller diagram is represented on the screen. 
While the System section of the Controller Modelling Program (CMP) stores the 
location and symbol type for each controller element it is the Graphics subsystem 
that actually draws the items and handles the interaction with the user, usually via 
the mouse. 
 
The Graphics architecture consists of: 
• a canvas upon which the various controller elements can be placed and moved. 
• one or more views of the canvas. 

A view determines how the canvas is displayed on the screen. Views can be 
moved by panning or scrolling around the canvas. The resolution of the view 
can be changed by zooming in or out. One canvas can potentially have several 
views, each looking at a different part of the canvas at different resolutions, 
although this capability is not used in the CMP as it is unlikely to be useful for 
most controllers. 

• canvas items, which are the representations of the controller elements such as 
limiters and logic switches. 

 
2.6 Orthogonality and Alignment 
 
Controller diagrams have Connectors that are either horizontal or vertical, with right-
angle turns. The CMP enforces right angle turns in Connectors even when the user 
does not provide them. The CMP does not enforce horizontal or vertical lines, and 
does not have a grid to which items are snapped. An alignment system is used 
instead, where selected elements can be lined up either horizontally or vertically. 
 
2.7 Resizing 
 
The canvas itself can be resized in any direction to accommodate controllers that are 
larger than initially anticipated. Resizing of the canvas is accomplished either by 
specifying new dimensions, or simply by selecting and dragging a canvas item “off” 
the canvas, which causes the CMP to automatically add extra room for drawing in 
that direction. 
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Individual canvas items display their parameter values on-screen where appropriate, 
and resize themselves to display those parameters as the parameters are changed. 
Values are not clipped to fit a “fixed size” drawing element, instead the drawing 
element grows to allow the value to be fully displayed. However, a minimum size is 
enforced on canvas items to maintain good visual presentation of the diagram. 
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3 The Application 
 
The Application subsystem links the other subsystems together and provides a 
graphical user interface (GUI) to all of them. The interface consists of the standard 
GUI elements such as windows, dialogs, menus and toolbars. The main part of the 
application display is a window that contains a view from the Graphics section upon 
the canvas used for the controller. 
 

 
 

Figure 1: Overview of Controller Modelling Program interface 
 

3.1 Toolbars and Stack Bar. 
 
Three basic toolbars have been provided: 
 
• a standard toolbar for basic operations such as starting a new controller diagram, 

printing a diagram, and so on. 
• a toolbar for controlling the view of the diagram, such as panning and zooming. 
• a drawing and selection toolbar for placing controller elements upon the 

diagram. 
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A variation on a toolbar, known as a stack bar, has been developed. This provides 
quick access to common functions, such as displaying data in tabular form or 
viewing reports. The stack bar is anchored to the side of the diagram unlike the 
toolbars, which can be dragged to new positions on the screen. All the toolbars and 
the stack bar can be individually hidden from view, increasing the available room for 
the view on the diagram. 
 

 
 

Figure 2: CMP items 
3.2 Menus 
 
Basic menu functions have been added, most of whose operations mimic elements 
of the toolbars and the stack bar. Essentially they function as an alternate way to 
perform the same operations, although in some cases there may be menu elements 
not available on any tool or stack bar. Those menu items will be options less 
commonly used and therefore not requiring GUI shortcuts. 
 
3.3 Tables 
 
Tables have been created to display and modify the parameters for all controller 
elements of a particular type e.g. the parameters for all the Time Delay type 
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elements in a controller. The parameters for each controller element are displayed in 
a single row of the table. If the number of parameters is judged to be too large then 
the parameters may be split across two tables, each displayed on its own “tab” 
page. However, in the current CMP no controller elements require this. 
Tables can be sorted by any column. Cells within the table can be selected 
individually, or as a row or column, or as a “drag-select” rectangular area. 
Selections can be copied and pasted, both within the CMP and to external programs 
such as Microsoft Word or Excel. 
 

 
 

Figure 3: Tables 
3.4 Property Dialogs 
 
Property dialogs have been created for every controller element to allow the 
parameters of individual elements to be modified simply by a double click of the 
mouse button from the diagram. The dialogs provide a more user-friendly means of 
modifying parameters than the tables, using the standard GUI features of radio 
buttons, check boxes, pull-down lists of potential settings, and so on. 
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Figure 4: Junction properties 
 

 
 

Figure 5: Logical Switch properties 
 

 
 

Figure 6: Operational element properties 
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3.5 Filing 
 
The diagram and parameters for a controller can be saved to disk and read back 
from it. For new controllers the user is prompted for a file name. If a file exists with 
the same name then the previous file is renamed to a back up and the new data 
written to the selected name. 
 
The file format is self-defining and plain text. The self-defining characteristic means 
that the first part of the file contains definitions of the structure of the records in the 
rest of the file, while the second part of the file contains the actual information on 
the controller in the specified format. By writing the file as plain text rather than 
binary the data can easily be viewed and modified by another application, although 
modifications must abide by the format definitions given in the file to be successful. 
There is some overhead in both file size and read / write time in using a plain text 
format, however given that most files are expected to be relatively small the 
advantages clearly outweigh the disadvantages. 
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Figure 7: File format 

##!IIF-IpsaPower-1.1 
# 
Header { 
    Version: "1.0+" 
    Program: "IPSA+ " 
    Type: "UDMmodel" 
    Title: "IPSA Generic Vqr - P" 
    Date: "14 Feb 2005 15:10:38" 
    Created: "jbh@fenris" 
    Format: "IPSAplus" 
} 
DefRec System { 
  Author: s "" 
  Comment: s "" 
  Version: i 1 
  ModelType: s "IndMachQAVR" 
} 
DefRec Diagram { 
  Width: d 2970, Height: d 2100 
} 
DefRec Analysis { 
  ConvergenceAccuracy: d 0.0001, DifferentialStep: d 0.0001 
  MaxIterations: i 40, SolutionType: i 1 
} 
Define UDMmodel Junction { 
  ID: i, Name: s, Type: s, SignalType: s, DblSignalValue: d, IntSignalValue: i, 
  Position: 2d 
} 
Define UDMmodel Sum { 
  ID: i, Name: s, TopConnect: i, RightConnect: i, BottomConnect: i, LeftConnect: i, 
  Position: 2d 
} 
Define UDMmodel Operational { 
  ID: i, Name: s, Type: s, Ka: d, Kb: d, Ta: d, Tb: d, Init: d, Position: 2d 
} 
Define UDMmodel Limiter { 
  ID: i, Name: s, Type: s, UpperLimit: d, LowerLimit: d, RiseRate: d, FallRate: d, 
  DeadbandRise: d, DeadbandFall: d, Position: 2d 
} 
Define UDMmodel Label { 
  ID: i, Owner: i, Position: 2d 
} 
Define UDMmodel Connector { 
  ID: i, Name: s, FromBlock: i, ToBlock: i, FromPt: 2d, ToPt: 2d, FromCount: i, 
  ToCount: i 
} 
Record UDMmodel Junction { 
  1 "Block1" "input" "Frequency" 0 0 44 227.625 
  15 "Block8" "output" "OpRotorQuadratureVoltage" 0 0 691 227.625 
  19 "Block10" "input" "TerminalVoltage" 0 0 226 272 
} 
Record UDMmodel Sum { 
  5 "Block3" 3 1 1 2 249 226.625 
  11 "Block6" 3 1 1 2 520 226.625 
} 
Record UDMmodel Multiplier { 
  7 "Block4" 325 227.625 
} 
Record UDMmodel Operational { 
  13 "Block7" "LeadLag" 5 0 0.05 1 1e-05 601 227.625 
  25 "Block13" "LeadLag" 100 -2 0 0 0 448 91 
}
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3.6 Printing 
 
A simple printing mechanism has been implemented whereby the diagram can be 
sent to the operating system’s printing system. 
 
3.7 A completed Example controller 
 
Figure 8 shows the CMP displaying a completed wind turbine control model. 
 

 
 

Figure 8: Completed controller model 
 
3.8 Simulation 
 
With the integration of the CMP Engine, the CMP modelling tool provides a facility 
to simulate the open-loop response of the controller; i.e. run in isolation from the 
power system. This is accessed either from the Test button in the Analysis section 
on the shortcut bar or from the Analysis menu. 
 
 The controller shown in Figure 8 is used to illustrate the simulation facility. 
 
Figure 9 shows the dialog used to control the simulation. The values of both the 
input and output elements are specified (excluded from constant and inputs). These 
values may be switched during the study to simulate the step-response of the 
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controller. Various study parameters, such as study time, step length and 
initialisation technique are also specified.  
 

 
 

Figure 9: Simulation test dialog 
 

 
During the simulation study the outputs of each element in the controller may be 
shown on graphs. The right hand side of the Test dialog is used to specify up to four 
graphs each potentially containing up to 15 traces each.  In this way it is possible to 
examine the response of the control model in great detail on an element-by-element 
basis. 
 
3.8.1 Running the test simulation 
 
After the OK button is clicked, the simulation begins by loading the CMP engine with 
the model parameters and topology. The Engine then checks these for validity and 
connectivity continuity. If successful the Engine returns an Engine ID, which is used 
to refer the loaded control model.  The simulation then sets the input and output 
signal values and switch times in the Engine, and calls the initialisation routine.   
 
The time simulation then commences using a fixed step trapezoidal integration 
technique. After each step the outputs of all the controller elements are retrieved 
from the CMP Engine, and those selected for plotting are displayed on the graphs 
(Figure 10). Before starting the next step the time is incremented and any defined 
switching operations are applied to the inputs. 
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This process is repeated until the time reaches the study length and the study is 
completed. 
 

 
 

Figure 10: Controller response plots 
 
Both informational  (e.g. switching operations) and error messages are displayed in 
the progress window throughout the simulation study. 
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4 Controller Modelling Engine Architecture 
 
The Controller Modelling Engine (CMEngine) has been designed with an application-
programming interface (API) through which all interactions with Engine are 
managed. This is enforced by only allowing external applications to link to the API 
not the internal routines. 
 
4.1 The Structure of the API 
 
The API is composed of a number of layers, of which only the external one is visible 
to the application programmer. The choice of language for each of these layers is a 
function of what purpose they serve. 
 
For a general API, which interfaces to most programming languages on most 
platforms, a basic C style function call is generally considered most effective.  This 
should be the only user-visible layer in the CMEngine, and should be fully 
documented for the Application programmer. The CMEngine core software was 
written in FORTRAN -77 dialect using constructs that all predate FORTRAN 90/95. 
 
The Engine consists of the following layered structure: 
 

• User visible API – written in C, language bindings in C and C++ 
• Internal private layer written in C that calls the Fortran API layer, the 

FORTRAN routine definitions expressed in C format  
• Internal private layer written in C++ that provides the external I/O section 
• Engine API layer written in FORTRAN 
• Core Engine written in FORTRAN 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: CMEngine structure 
 

                 
Internal private 
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Engine API layer – FORTRAN 
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4.1.1 Message and Error Handling 
 
The internal private API layer provides a message and error reporting function, 
allowing the CMEngine to report and store messages and errors. These can then be 
queried through the main user visible API.  
4.1.2 Types of API routines 
 
The User Visible API function calls may be broadly split into the following groups: 
 

• Initialisation routines – set up the engine ready for use 
• Data set routines – set up the models 
• Input/Output element set routines – connect the external (i.e. from the Power 

system simulation program) inputs and outputs to the internal modeling 
values 

• Model Initialisation routines – initialize the models 
• Control routines – setting the analysis parameters used during the study 
• Run routines – run the actual calculations 
• Element get routines – get the elements output values as set by the 

calculation 
• Reporting routines – get the messages, warnings and error messages 

encountered during a study 
• Reset routines – reset the Engine to be re-used. 
 

4.1.3 External I/O connection 
 
One of most critical parts of the CMEngine API is how the engine is connected to the 
external simulation tool. The I/O subsystem provides the interface between the Core 
Engine internal values and the signals to and from the calling application. The 
subsystem has been written in C++ to provide a dynamic object structure that to 
implement this linkage. This structure is automatically generated as the input and 
output elements values are specified. 
 
 
4.1.4 Packaging of the CMEngine 
 
The CM modeling routines with the API layer (the CMEngine) are packaged together 
as an object library. This has been developed on both Windows and Unix platforms, 
and is how the Engine will be linked in to the CM modeling application and other 
analysis software. The language bindings for both C and C++ are defined in the 
Engine API definition header file. This enables the main modeling application 
programs to compile in the calls to the CMEngine. 
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4.2 Main API functions 
 
Initialisation and Analysis settings: 
 

 
Engine loading: 
 

 
Running calculations: 

 

 
IcmInit() 
IcmReset() 
IcmDeleteAll() 
IcmUnloadModel() 
 

 
IcmStartDefinition() 
IcmAddInput() 
IcmAddConstInput() 
IcmAddOutput() 
IcmAddJunction() 
IcmAddSum() 
IcmAddMultiplier() 
IcmAddOperational() 
IcmAddLimiter() 
IcmAddLogical() 
IcmAddSaturation() 
IcmAddTimeDelay() 
IcmAddUserDefined() 
IcmAddConnection() 
IcmAddSignedConnection() 
IcmAddNumConnection() 
IcmEndDefinition() 
IcmLoadModel() 
IcmSetInputValue() 
IcmSetOutputValue() 
IcmSetElementValue() 
 

 
IcmInitialize() 
IcmGetElementInitialized() 
IcmSetStepLength() 
IcmSetSystemTime() 
IcmCalcIntegrationConsts() 
IcmCalcIntegrationSoln() 
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Messages: 

 
Results retrieval: 

 
State storage and retrieval: 

 
 

 
IcmGetNumMsgs() 
IcmGetNumWarnings() 
IcmGetNumErrors() 
IcmGetMsgTxt() 
IcmClearMessages() 
 

 
IcmGetInputValue() 
IcmGetOutputValue() 
IcmGetElementValue() 
 

 
IcmSaveIntegrationSoln() 
IcmRestoreIntegrationSoln() 
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5 Integration into a Power System Application 
 
Although the CMP can be used in its own right as a modelling application to 
investigate the open loop response of a controller, its use as a tool to build 
controller models for embedding in power system modelling applications is far 
more important. 
 
A Power System Application (PSA) must contain the following modelling and 
analysis features to effectively host the CMEngine models: 
 

• Dynamic stability calculation 
• Machine and wind turbine models 

 
There are a number of steps required to use CMP designed controllers inside a PSA: 
 

• Develop a means of reading CMP model files into the PSA. 
• Attach the control model to the controlled object in the power system model.  
• Embed the CMEngine inside the PSA. 
• Load the CMP models into the CMEngine. 
• Connect the PSA input and output signals to the CMEngine signals. 
• Connect the Stability calculation to the CMEngine solution routines. 
• Add reporting of CMP model results to the Stability results 

 
5.1 IPSA+ 
 
IPSA+ has been used as the PSA platform for CMP integration. IPSA+ is in 
widespread use in the UK DNO’s and provides all the facilities needed to support the 
CMP and CMEngine.  
 
The application architecture of IPSA+ is similar in concept to that of the CMP, and is 
also written in C++ using class libraries with C-API based FORTRAN analysis 
engines. 
 
  
5.2 IPSA+ Transient Stability Calculation 
 
IPSA+ uses an enginised library TSEngine to calculate the stability response of the 
system. The IPSA+ classes TsFacade and TsResultsHandler. These classes control 
the main operation and running of the calculation and the stability calculation 
results and reporting functions, respectively.  
 
Figure 12 shows the main architectural components of the IPSA+ Transient Stability 
calculation: 
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Figure 12: IPSA+ Transient stability architecture 
 
5.3 Reading CMP model files 
 
The CMP files are read and written using the CMP File I/O subsystem. This is 
arranged as a C++ class library so was easily integrated easily into IPSA+. Using the 
same class library is in both applications guarantees that whatever models are 
generated with the CMP they will be able to be used by IPSA+. The Controller Model 
itself is read into the CMP System subsystem, so this too was be added to the IPSA+ 
application. 
 
5.4 Association with IPSA+ plant objects 
 
IPSA+ uses property sheets to set the values of plant parameters. These are 
accessed directly from the network diagram in the same way as the CMP.  
 
There are currently two plant types in IPSA+ used to model Embedded Generation 
devices: 
 

• Induction Machines – with both ordinary and DFIG models 
• Synchronous machines 
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5.4.1 Induction machines 
 
For Induction machines there are potentially three controllers that may be added: 
 

• D-axis rotor voltage controllers 
• Q-axis rotor voltage controllers 
• Speed controllers 

 
Accordingly the Property sheet for Induction motors in IPSA+ has been extended: 
 

 
 

Figure 11: Induction machine property sheet in IPSA+ 
 

The CMP controllers are added by first enabling them using the appropriate 
checkboxes, and then clicking on the button. This allows the user to specify the CMP 
file using a file browser dialog. The type of the controller is checked before allowing 
the controller to be attached to the induction machine. The Edit… button provides a 
direct link to the CMP program so the model may be viewed or modified. 

 
5.4.2 Synchronous Machines 
 
Synchronous machines can have two controller associated with them: 
 

• Automatic Voltage Regulators (AVR’s) 
• Governors or speed controllers 
 

IPSA+ already has built-in (hard coded) AVR and Governor models, so there are two 
property sheets that have been adjusted. 
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Figure 11: AVR properties 
 

 
 

Figure 12: Governor properties 
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5.5 CMEngine embedding and model loading 
 
The CMEngine library provides a C-API. A new class UdmFacade has been added to 
IPSA+ to provide an interface to the engine, both for the actual calculations and to 
load it with the CMP model. This class oversees all I/O between IPSA+ and the 
CMEngine. 
 
5.6 Signal connection and linking the Stability calculation to the CMEngine 
 
The CMP models have inputs and output signals that must be connected to the 
appropriate system variables in IPSA+, i.e. to signals in the TSEngine. This needs to 
be done both at CM model initialisation time and during each step in the time 
simulation. In addition the CMEngine simulation routines also have to be run during 
each step of the Stability calculation to calculate the response of the controller.  
 
In fact because of the solution order used by the TSEngine, the values of the CMP 
control signals are required at different phases of the time step simulation. For this 
reason the TSEngine routines need to initiate actions in the CMEngine, i.e. call the 
CMEngine routines directly. The following calculation steps need to be linked: 
 

• Controller initialisation 
• Trapezoidal constant calculation 
• Trapezoidal step solution calculation 
• Solution store 
• Solution restore 
 

The solution store/restore functions save or restore the element output values on 
demand. This is required because the TSEngine uses a variable step length, and 

may restart a time step thus requiring the original values be restored. 
 
In programming terms this means the connection of the following routines: 
The routines on the left are in the TSEngine, the ones on the right in the CMEngine.  
For reasons of flexibility, rather than hard code in this linkage, the TSEngine has 
been modified to provide a decoupling layer in its API. Essentially this allows 
external routines to be registered with the TSEngine as callbacks when the above 
functions are called. If no routine is registered then no callback takes place. This 
means there are no compile time dependencies between the CMEngine and the 
TSEngine, only run time linkage takes place. 
 

 
void tsudm_init()     int IUdmInitialize() 
void tsudm_const()     int IUdmCalcIntegrationConsts() 
void tsudm_trap()      int IudmCalcIntegrationSoln() 
void tsudm_store()     int IudmSaveIntegrationSoln() 
void tsudm_restore()     int IudmRestoreIntegrationSoln() 
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Linking the signals themselves is relatively straightforward: 
 

• During initialisation all controller model input and output signals are retrieved 
from the system values in TSEngine. After the CMEngine initialises the model, 
the output signals are then fed back into the TSEngine. 

• During the step solution, all controller model input signals only are retrieved 
from the system values in TSEngine. The step solution is performed and then 
the controller output signals are fed back into the TSEngine 

 
Figure 13 shows the new IPSA+ Stability calculation architecture with the CMEngine 
fully integrated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Stability Engine integrated with CMEngine in IPSA+ 
 
 
5.7 CMP model results reporting 
 
The TsResultsHandler class controls the monitoring of individual network items 
during the study, and is responsible for retrieving the required results from the 
TSEngine. Since the TsResultsHandler forms the core of all the stability calculation 
results handling, it was sensible to include the CMEngine results handling here as 
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well. To that end TsResultsHandler calls CMEngine to get results for monitored 
items as required. This means that all the CM model results are seamlessly 
integrated into the stability calculation. So that, for example, CM model element 
outputs can be viewed as plots side-by-side with the power system network 
variables. 
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6 A real world example 
 
The main goal of this project is to produce an easy to use tool to model embedded 
generation controllers in Power System Network stability simulation studies.  A real 
example makes it clear just how simple it is to use. 
 
6.1 Sample network 
 
The following network is used as a simple example of a DFIG wind turbine 
connected to a section of distribution network.  The HV connection point (BPCC in 
the diagram below) is supplied by two parallel over-head lines.  A fault is placed 
mid-way along one of the lines.  The line fault results in the HV busbar of the wind 
turbine transformer being depressed to 30% of the nominal voltage for 150ms 
before the fault is cleared by the over-head line being switched out of service.   
 
The key issue to investigate with this simple system is to ensure that the wind 
turbine remains stable during the fault and during the network recovery once the 
fault has been cleared.  It is important to ensure that the wind turbine control action 
does not adversely affect the network performance during and post-fault. 
 

 
 

Figure 14: Sample network in IPSA+ 
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6.2 DFIG controller models 
 
For stability studies it is only necessary to represent the important characteristics of 
the DFIG.  The following controller examples only represent the primary 
characteristics for basic stability analysis.  For full system studies, additional control 
functionality will be represented. 
 
The DFIG model in the IPSA+ transient engine requires two controllers for the 
injected rotor voltage.  The injected rotor voltages from the controller can be 
specified in either a stator voltage orientated DQ reference frame, or on the system 
reference frame.  The controllers shown in Figure 15 and Figure 16 are specified on 
the stator voltage DQ reference frame.  In simple terms this means that the D-axis is 
used to control the stator reactive power and the Q-axis is used to control the stator 
active power, or rotor speed/slip. 
 
Figure 15 shows a simple reactive power controller using the D-axis rotor voltage.  
The stator reactive power is measured with input 1, this goes through a per-unit 
power base transform from the external system base of 100MVA to the local 
controller base of 2MVA.  The negative sign is to compensate for the current 
convention used in the transient stability program.  The controller is specified on the 
machine base as this greatly simplifies the representation of large wind farms using 
the single coherent machine approach.  Using this approach it is only necessary to 
adjust a parameter in the scaling block as opposed to modifying all of the controller 
parameters.  Once the reactive power input has been scaled, it is subtracted from 
the controller reference to create a reactive power error signal.  This error signal 
feeds into a Proportional-Integral (PI) controller which represents the combination of 
the rotor converter control and the rotor converter itself.  The converters used for 
DFIG’s are typically high frequency PWM converters and can be adequately 
represented in this fashion.  The reactive power set point reference is determined 
automatically by a backward solution of the controller from the inputs and outputs 
defined by the load flow solution of the transient stability network. 
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Figure 15:  Control model 1 – Reactive Power Control, D-axis 
 
Figure 16 shows a simple active power controller.  This controller has an inner stator 
power control loop controlling the Q-axis rotor voltage based on the error between 
measured active stator power and the derived active power reference from the outer 
power control.  The outer power controller constitutes a rotor speed control and a 
fault ride through strategy that reduces the active power reference during low 
voltage events.  The speed control is a quadratic curve that maps the rotor speed to 
a target active power output.  The reference input (14) is present to adjust for any 
numerical slack between this input and the transient load flow solution.  The fault 
ride through strategy implemented uses a logical switch to scale back the active 
power in the event that the stator voltage drops below 90%.  When the voltage is 
greater than 90%, the scaling factor is 1.0, when it is less than 90%, the per-unit 
stator voltage is used as the scaling factor.  The active power reference is then 
passed through a limiter to ensure power reference does not exceed the machine 
output rating.  The limiter also includes a positive ramp-rate limit that limits the 
post-fault active power recovery.   
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Figure 16:  Control model 2 – Active Power Control, Q-axis 
 
Figure 17 is an optional addition to the DFIG model detail.  This represents a two 
mass representation of the wind turbine mechanical system including a soft shaft 
with a degree of damping.  The generator mass is an integral part of the DFIG model 
in the transient stability engine.  The output of this model is the mechanical torque 
applied to the generator inertia, the inputs are the generator rotor speed and the 
aerodynamic torque.  The aerodynamic torque is represented by the reference 
variable that is automatically calculated from the transient loadflow solution. 
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Figure 17:  Control model 3 – Shaft Model, Tmech 
 

6.3 Transient Stability Study 
The transient stability study parameters are shown in Figure 18.  
 

 
 

Figure 18:  Transient Study dialog in IPSA+ 
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Figure 19 shows the selected results of the study.  The results show the branch fault 
reducing the busbar voltage to less than 30% for 150ms.  The plot of the stator 
active power shows the output dropping immediately before ramping back towards 
full output once the fault has cleared.  The oscillatory response in the stator power 
output is due to the rotor transient and the mechanical shaft oscillation.  The 
mechanical oscillation can be seen clearly in the plot of the electrical slip.  This is the 
spring reaction of the generator shaft that couples the relatively light generator to 
the heavy rotor.  The reactive power oscillates around the target of zero reactive 
power during the fault event.  The active power recovers to an output that is initially 
greater than the pre-fault output in order to decelerate generator rotor back to the 
pre-fault target speed.  It is assumed that the wind speed has not changed 
significantly during this event, which is a reasonable assumption. 
 
From the network perspective, this control strategy has resulted in no significant 
fault recovery problems that may justify a G59 style generator disconnection.  There 
is some voltage oscillation post-fault, however this is probably acceptable.   

 

 
 

Figure 19:  Study results 
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With the ease of control model development that the CMP affords, it would be 
possible to trial some of the following additional network support functions: 
 

• decoupling equations to reduce the rotor transient 
• active shaft damping to reduce the shaft oscillation 
• reactive power contribution to help voltage support 
• low or high frequency response 
• active power response to contribute to inertia 
• spinning reserve contributions 
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7 Further Development 
 
The design goals of the project have been met: 
 

• An easy to use controller modelling program has been created 
• A generic controller modelling engine has been created that can be 

embedded in Power system modelling tools 
• The modelling engine has been embedded inside a Power system-modelling 

tool and been used to successfully model embedded generation controllers. 
 

The next stage of development is to upgrade the software developed for this project 
to commercial quality, and make it available to the IPSA+ user base. The following 
tasks need to be performed to do this: 
 

• Complete the CMP  – now re-christened UDM+. It lacks tabular functions, 
licensing and a help system. 

• Test UDM+ 
• Extend the help information in IPSA+ to cover the new controller modelling. 
• Test IPSA+ 
• Create a Beta test installation of both IPSA+ and UDM+ for external testing 

 
It is anticipated that a Beta version will be released to IPSA+ users early in March 
2005. The full commercial roll-out is expected in late spring. 
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8 Conclusions 
 
A prototype Controller Modelling Program (CMP) has been developed and 
implemented. This program provides a graphical means of building control models 
using diagrammatic component symbols to create the familiar block diagram 
representation of the controller. Components are connected using orthogonal lines, 
can be aligned with each other, and can be individually viewed and edited using 
property dialogs. Tables have been created to allow the parameters of all the 
elements of a particular type to be modified. The block diagram itself can be moved, 
panned and zoomed. The controller can then be saved to and loaded from disk in a 
plain text format file. The CMP is intuitive and easy to use. 
 
The architecture, API and core analysis engine of a Controller Modelling Engine 
(CMEngine) has been developed, implemented. The API and interface layers have 
been documented. The engine has been embedded in the CMP to provide an open-
loop test facility to check the isolated operation of the controllers in response to step 
functions. 
 
The IPSA+ power analysis program has been extended to use the new CMP 
controller models, and the CMEngine has been integrated into the Transient 
Stability analysis section. The existing IPSA+ embedded generation models have 
been developed to support I/O signals to and from the new CMP control models. 
The CMEngine results have been incorporated into the main IPSA+ transient 
stability reporting process to provide full network and controller results on demand. 
Direct links have been made from IPSA+ to the CMP program itself to allow simple 
and effective access to view and modify the models as required. The CMP has been 
christened UDM+ to match the naming convention of IPSA+. 
 
The seamless integration of the CMEngine and subsystems of the CMP inside 
IPSA+, and the tight coupling of IPSA+ with the UDM+ program provides a very 
powerful toolset to develop and model controllers for embedded generation.  The 
stability simulation of the example system and control models proves the viability of 
this approach and demonstrates its ease of use. 
 
The UDM+ application marks a major improvement in the ability to easily represent 
and develop controller models for new and renewable generation.  The fast 
development time means a large number of different controller variations can be 
developed and tested, not in isolation, but on real power system networks with new 
and conventional generation represented. 
 
The widespread use of IPSA+ throughout the UK DNO’s should ensure that these 
new facilities will be used effectively once the software has been upgraded to 
commercial status later this year. 
 
The CMEngine itself is a vendor neutral modelling solution; it is in no way tied to 
IPSA+ but has the potential to be embedded in other projects or products, including 
other power system stability simulation tools 
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