

The University of Texas at Austin

EE460M Lab Manual
Dept. of Electrical and Computer Engg.

EE 460M Digital Systems Design Using VHDL Lab Manual

Table of Contents

ABOUT THE MANUAL 3

LABS AT A GLANCE 4

LAB POLICIES 5

FREQUENTLY ASKED QUESTIONS 6

LAB ASSIGNMENT #0 16

LAB ASSIGNMENT #1 18

LAB ASSIGNMENT #2 21

LAB ASSIGNMENT #3 27

LAB ASSIGNMENT #4 5

LAB ASSIGNMENT #5 4

LAB ASSIGNMENT #6A 13

LAB ASSIGNMENT #6B 21

LAB ASSIGNMENT #7A 25

LAB ASSIGNMENT #7B 37

EE 460M Digital Systems Design Using VHDL Lab Manual

About the manual

This document was created by consolidation of the various lab documents being used for EE460M

(Digital Design using VHDL). It is intended to serve as a lab manual for students enrolled in EE460M at

the University of Texas at Austin.

The creation process started towards the end of Spring 2011 and was accomplished by Aman Arora

(TA, EE460M) under the guidance of Prof. Lizy John. In its present form, this document includes

several changes (additions, deletions and modifications) incorporated over three semesters – Spring

2011, Fall 2011 and Spring 2012.

Several important modifications include:

1. Re-organization of Lab#1 and Lab#2 to remove several unimportant and quaint problems

2. Consolidation of tutorials which were spread over Lab#1 and Lab#2 into Lab#0

3. Addition of Lab#6B, which caters to design for test (DFT) concepts

4. Changes in values/design parameters in various labs

5. Re-organization of Lab#5 into three parts

6. Introducing ChipScope

7. Adding the ARM processor lab and the bowling score keeper lab in the appendix

8. Addition of several important details to improve clarity

a. Mostly answers to students doubts

b. Several diagrams

c. Additional explanations

This document is currently maintained by Aman Arora. He can be contacted through email at

aman.kbm@mail.utexas.edu. Please write to him in case of any questions or concerns or suggestions.

Important: Do not print this entire document. This document will be updated during the semester.

EE 460M Digital Systems Design Using VHDL Lab Manual

Labs at a glance

S.No. Brief Description Objective Duration Points Possible

0 Tutorials – ModelSim and

Xilinx ISE & ChipScope and

Nexys2 Board

Introduction to digital design using

FPGAs. Introduction to simulation

and synthesis.

1 week 50

1 Subtractor and ALU Simple combinational circuit design 1 week 100

(40+40+20)

2 Excess-3 code converter and

BCD counter

Simple sequential circuit design 1 week 100

(40+30+30)

3 Package sorter and

Traffic Light Controller

More digital design. Introduction to

testbenches.

1.5 weeks 120

(20+50+50)

4 Parking Meter Advanced digital design. Interfacing

with 7-segment display and push

buttons.

2 weeks 150

5 A basic SNAKE game Interfacing with PS/2 Keyboard and

VGA display

2 weeks 180

(50+50+80)

6a Stack Calculator Using Block RAMs on FPGAs 1 week 100

6b Memory BIST Understanding JTAG and BIST 1 week 100

7a MIPS Processor TEXTIO in VHDL 1 week 100

7b MIPS Processor extension Basic microprocessor design 1 week 100

Important: Please check the schedule sheet on Blackboard for the lab due dates

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Policies

1. You will (have access to and) work in the lab in ENS 302. This is also where TA office hours will be held.

2. This document, available on Blackboard, will serve as the lab manual for the entire semester. The

document contains all the lab information you need to do the labs (except for few codes in labs 6 and 7).

You can work on your own pace throughout the semester, but you have to follow the due dates for

submission (listed in the schedule document) and the check out procedures.

3. All communication will be done through Blackboard. So, please keep checking Blackboard for notifications

and updates. Important information will also be emailed.

4. 15-minute lab discussion sessions will be held at appropriate dates (listed in the schedule document)

before the lecture. These will be conducted by the TAs. It is advisable to read about that lab from the lab

manual before coming to the class, so that you are better prepared to ask questions and resolve doubts.

5. Labs 0, 1 and 2 are to be done individually. Labs 3 through 7 can be done in groups of two. Also, working in

groups does not mean that you work on separate parts of the lab. Both the group members are supposed

to know and answer questions about all parts of the lab. You can switch partners whenever you want.

6. Grading will occur in two parts: submission and demo (checkout).

7. For submission, upload all relevant files (specified with each lab under the ‘Submission Details’ section) via

Blackboard. One of the members from each group should log into Blackboard and go to “Labs/Submission”

section and then upload all the necessary files under the appropriate link.

8. Lab due dates (submission dates) are specified in the course schedule document on Blackboard.

9. After you submit your files, you have to demonstrate your designs to one of the TA’s in the ENS 302 lab.

Once the lab is submitted, DO NOT make changes! You must demo with the code you submitted. In the

event you decide to change the code for the demo, the day of the demo will be considered the turn-in

date, and the appropriate late penalty will be applied.

10. A checkout sign-up sheet is available on Blackboard. After every lab due date, the TAs will email the class

to sign-up for a checkout slot. Put your name in that sign-up sheet and reserve a time-slot for your check

out. Please reach the lab atleast 5 minutes before your slot. In case of group labs (lab 3 and above), only

one member of the group should submit the files but both members of a group must checkout together.

So, the entries in the checkout slot registration sheet should contain two names.

11. In case you miss your check out slot, you can check out for that lab during office hours anytime before the

next lab’s due date. In other words, the TA’s will not entertain requests for checking out labs older than

the previous lab.

12. The possible points for each lab are mentioned in the ‘Labs at a glance’ section of this manual. Late

submissions (not late checkouts) will lead to penalty according to the following rules:

a. One day late submission – less 10% of your normal score

b. Two day late submission – less 20% of your normal score

c. Three day late submission – less 30% of your normal score

Submissions late by more than 3 days will not be accepted and you will be marked zero (unless you have

taken permission from the professor).

13. Sundays are not counted for late submissions. So, if a lab is due on Saturday and you submit it on Monday,

it will be considered 1-day late submission.

EE 460M Digital Systems Design Using VHDL Lab Manual

Frequently Asked Questions

MODELSIM

Q. In ModelSim 6, when I click the message saying x errors in the transcript window, the window that pops

up does not show me any errors?

This is because you file name (complete path) has spaces in it. While using ModelSim, please make sure that

the file name doesn't have any white spaces. In other words, do not have your programs saved on a path like

"xyz\Documents and Settings\user1\lab 1\file.vhd". Please make a folder on the C: drive of the computer you

work on and keep your project/source files there.

Q. When I click on ModelSim, it gives me an error saying failed to checkout license.

In case invoking ModelSim shows a licensing error on the lab computers, please run the Licensing Wizard first

(Start->Programs->ModelSim->Licensing Wizard), and then launch ModelSim.

Q. How do I create and run a do-file?

The ModelSim tutorial talks about creating a file of commands in the end (called a do-file), but does not

explain how to do it clearly. Here is how you can do this: Basically, the commands like force, run, etc that you

provide on the transcript window can be saved in a file and that file is called a "do-file". The benefit of having

a do-file is to be able to re-run all the commands by just a single click, rather than typing them again and

again. For example, if you have your do-file ready during the checkout, you can just execute it instead of

typing the individual commands all over again.

There are two ways of creating a do-file.

1. You can manually write those commands in a file using a text editor and save it with a ".do" extension.

2. You can type the commands on the transcript window, and then have ModelSim create the file for you.

For this, type the commands in the transcript window (keep the transcript window selected). Then go

to "File->Save As", and then provide the name of the file with a .do extension.

To execute the commands in the do-file, make sure the transcript window is active. Then, go to "File -> Load"

and then provide your do-file to the tool.

Q. Can I view variables on waveforms?

Viewing variables on the waves is just like viewing signals (of course, you should be simulating your design to

view the waves). The ‘Objects’ window shows you the signals in a design. Similarly, the “Locals” window shows

the variables in the selected entity/process. For seeing variables, go to the ‘View’ menu and click on ‘Locals’. A

‘Locals’ window will appear.

When you are simulating, you can see that a “Sim” pane appears near to your “Project” and “Library” panes.

Click on the “Sim” pane and it will show you the design hierarchy. You can click on any entity or a line number

of a process statement whose variables you want to see. Now, in the “Locals” window, you can click on

variables and then drag to the waveform window.

EE 460M Digital Systems Design Using VHDL Lab Manual

Q. Some signals in my design are not visible in the “Objects” window, and so I can’t view their waveforms.

This is because ModelSim performs a series of optimizations on your design and can get rid of some signals.

The ‘optimized out’ signals can not be seen in the “Objects” window. You can disable optimization in two

ways:

1. While starting simulation, instead of just double clicking on the entity name in the “Library” window,

right click and say “Simulate without Optimization”.

2. On the transcript window, append “ –novopt” to the “vsim” command

Q. Can I view waveforms of signals inside the design hierarchy (entities other than the top module)

When you are simulating a design, you can see that a “Sim” pane appears near to your “Project” and “Library”

panes. Click on the “Sim” pane and it will show you the design hierarchy. You can click on any entity in the

design. When you click on an entity, the “Objects” window shows the signals in that entity. Now, in the

“Objects” window, you can click on signals and then drag to the waveform window (or you can right click a

signal and say Add->To Wave->Selected Signals).

Q. How can I change the way signals are shown on the waveforms (To change viewing 000101 to 5)

Right on the signal in the “Waves” window, got to “Radix” and select the one you want.

Q. How can I create a clock using the force statements in ModelSim during simulation?

To create/generate a clock, you can use the following command:

force clk 0 0 ns, 1 10 ns –repeat 20 ns

This command creates a clock of period 20 ns with 50% duty cycle as shown below:

You can change the period and duty cycle as you want by modifying the force statement appropriately.

Q. I used the ‘force’ command to force a signal. Now I want the design to drive it. But it is just stuck to that

value.

A force statement forces the specified value onto the specified signal at the specified time and then that value

remains on that signal for the entire simulation. It can only be changed by another force statement.

Adding "-deposit" option to the "force" command puts the specified value on the specified signal at the

specified time, but lets it change anytime after that (if another driver wants to modify/override it; for example

an assignment statement in the design).

For example, let’s assume that you have an output that you want to initialize to 0 at the beginning of the

simulation. Assuming also that you have not initialized this output to 0 in your code, you may simply type:

force Z 0 0 ns. You will note after running the simulation that Z never changes. To overcome this problem,

change the above statement to: force –deposit Z 0 0 ns. The deposit will simply deposit the value of 0 to Z at

0ns instead of freezing it at 0.

The "-cancel" option cancels the force on a signal at a specified time.

0ns 10ns 20ns 30ns 40ns

EE 460M Digital Systems Design Using VHDL Lab Manual

You can look into more options of the force statement by going to "Help -> PDF Documentation -> Reference

Manual" in ModelSim.

Q. ModelSim 10 is showing me errors if I use the code from the book.

The code from the book has been tested on ModelSim 6. There might be some code snippets which don’t

work in ModelSim 10. So far, the following issues have been observed. The following codes won’t work in

ModelSim 10:

1. Output <= A(2 downto 0) & A(3);

where Output and A are unsigned(3 downto 0)

Instead use the rol/ror operators, or switch to ModelSim 6

2. Output <= A(2 downto 0) & '0'

Instead use Output <= A(2 downto 0) & "0", or switch to ModelSim 6

XILINX ISE

Q. Xilinx ISE is so slow! What should I do?

It is recommended, in general, to work on files in the local directories (C: drive, for example) while working

with Xilinx ISE and ModelSim in the lab. Your desktop is a networked drive and these tools work really slow

when they have to fetch files over the network. But since the files in local directories get cleaned up when you

log out, make sure you make a copy somewhere before you logout.

Q. What is a UCF File? Can I hand write it instead of using the PACE window?

The UCF file is the file which tells Xilinx ISE to map the inputs and outputs of your design to specific pins on the

FPGA. The file also has other things like clock constraints etc, but we are not going to be concerned about

them in this lab. The PACE tool helps you graphically create the UCF file. However, you can manually write a

UCF file too (it is just a text file with a specific format). This may sometime be required if the PACE tool does

not work. Assuming the the PACE tool works in your first lab, to view the UCF generated by it, click on the UCF

filename in the Design Hierarchy panel. Now, in the processes panel, expand ‘User Constraints’ by clicking on

the ‘+’ sign. Now double click, ‘Edit Constraints’. This will open the UCF file in the right hand side of the

window. The syntax is self-explanatory. So, if PACE doesn’t work in any lab, open the UCF from a previous

project, copy it to the current project and modify it manually for the current project’s constraints.

EE 460M Digital Systems Design Using VHDL Lab Manual

VHDL

Q. Can I model combinational logic using process statements? How?

Ideally, concurrent statements are used to model combinational logic and process statements are used to

model sequential logic (flip flops and latches). However, process statements are not restricted to that. You can

model combinational logic using them. But it is important to note that when using a process statement to

make combinational logic, the sensitivity list of the process statement should contain all the signals which are

being ‘read’ in that process. In other words, to synthesize combinational logic using a process, all inputs must

appear in the sensitivity list.

For example, if you were to model a mux, you would say:
process(a,b,sel)

begin

 if sel = 1 then z <= a;

 else z <=b;

 end if;

end process;

Using a process statement to model combinational logic is handy because statements like if, case, etc (which

are very useful and intuitive) can only be written inside process statements.

Q. What care should I take when using the process statement to write sequential logic?

When using a process statement to model sequential logic, the only thing in the sensitivity list of the process

statement should be the clock (or a reset signal, if it is an asynchronous reset). And there should be an ‘if’

statement inside the process which has clk=’0’ (clk=’1’) and clk’event. This is because flip-flops are edge

triggered elements.

Flip-flop without a reset
process(clk)

begin

 if clk = ‘1’ and clk’event then --positive edge triggered

 q <= d;

 end if;

end process;

Flip-flop with an async reset
process(clk, rst)

begin

 if rst = ‘0’ then --active low reset

 q <= ‘0’;

 elsif clk = ‘1’ and clk’event then --positive edge triggered

 q <= d;

 end if;

end process;

Flip-flop with a sync reset
process(clk)

begin

 if clk = ‘0’ and clk’event then --negative edge triggered

 if rst = ‘1’ then --active high reset

 q <= ‘0’;

EE 460M Digital Systems Design Using VHDL Lab Manual

 else

 q <= d;

 end if;

 end if;

end process;

On the other hand, a latch is a level triggered element. A resettable latch can be modeled as:
process(en, rst, d)

begin

if (rst = ‘0’) then

 q <= ‘0’;

elsif (en = ‘1’) then

 q <= d;

end if;

end process;

Q. Why can I not use a ‘port map’ statement inside an ‘if’ statement (or a process statement, for that

matter)?

It is important to realize that a ‘port map’ statement is not like ‘calling’ a function in C. It is an instantiation of

an entity. Therefore, it cannot be conditional. If you have to instantiate a block in your design, it will be always

present there.

Let us take an example. Say you have an adder and a subtractor. You design’s specifications say that when the

input MODE is ‘1’, the design should work as an adder, while when the MODE is ‘0’, the design should work as

an subtractor. Now, this does not mean that you can have something like this:

 process(…)

 if(MODE = ‘1’) then

 adder_inst: adder port map (…);

 else

 subt_inst: subtractor port map (…);

 end if;

 end process;

Since we are modeling hardware, we cannot say that if MODE is 1, Adder is ‘called’ and when MODE is 0,

subtractor is ‘called’. This is a wrong way of thinking.

Instead you should think of this as: Adder and Subtractor are always present. The output of the design can be

driven by either the Adder or the Subtractor depending on MODE. So you should have something like this:

 adder_inst: adder port map (…,add_out);

 subt_inst: subtractor port map (…,sub_out);

 process(…)

 if(MODE = ‘1’) then

 output <= adder_out;

 else

 output <= sub_out;

 end if;

 end process;

EE 460M Digital Systems Design Using VHDL Lab Manual

GENERAL

Q. What tests should the ‘do’ file that I submit on blackboard contain?

It is always better to submit a do-file which has sufficient number of input combinations (not just the ones

given in the lab description).

Q. I am getting a multiple drivers error. What should I do?

A multiple driver error is because there is more than one thing driving a signal. This can happen if you are

driving a signal from two sources: like one process statement and one concurrent statement, or two process

statements. Realistically, it is not possible to do so (without having contention, which we are staying away

from). There is nothing you can do to get rid of this, other than changing your design.

Q. My design compiles successfully in ModelSim. When I simulate, I get weird errors (like entity not bound,

error loading design, etc) and I can’t simulate.

The compilation process looks at individual modules (entity-architecture pairs) in your design and checks for

syntactical and semantic correctness. Simulation lets you apply inputs and observe outputs. Between

compilation and simulation, is a step called elaboration (which is usually hidden from you, and happens when

you start simulation in ModelSim). During this step the design hierarchy is generated. Connections between

various entities, matches between entity and component declarations, search for entities referenced as

components in a design, etc are done at this stage. If there is a problem at this stage (for example, there is a

component declaration in your top module but the entity-architecture pair for that component is missing),

they are reported just before simulation. So, now you know where to look for when you get errors just when

you start simulation.

Q. Will setup and hold time be met in my simulation? Or If I add some logic between two stages in my

design, will the delay affect the output? Or should I force my input sometime before the clock edge to

satisfy setup and hold time constraints?

Remember that the simulations that you are doing in the lab are all RTL simulations. They are zero-delay

simulations (assuming you are not modeling delays using ‘after’ statements). Therefore, there is no concept of

delays of gates or setup-hold time of flip-flops. If we were doing post-synthesis simulations, then we would

have concerned timing issues.

Q. I have “library ieee; use ieee.numeric_bit.all” written at the top of my file. But I am still getting errors like

‘unsigned is not a recognized type’, etc.

This error should not pop up if there is just one entity-architecture pair in a VHDL file. The ‘library’ and ‘use’

statements have to be written separate for each entity-architecture pair you have in a file. So, if you have

multiple entity-architecture pairs in a single file, use the ‘library’ and ‘use’ statements before each entity.

EE 460M Digital Systems Design Using VHDL Lab Manual

GOOD DESIGN PRACTISES

Q. Are there any general ‘good’ design practices that I should follow?

1. Writing VHDL feels like writing software. But it is a good idea to think ‘hardware’ while writing code!

2. Do not use ‘after’ statements in your designs in the lab. Testbenches may use these. Eg. To generate a

clock signal in a testbench you can say “clk <= not clk after 20 ns;”

3. A state machine can be designed using either a single process statement (like Figure 2.56 in the text) or

using two process statements (like Figure 2.54 in the text). Both ways are correct. However, it is easier

to design it using a single process statement. Generally, the single process statement partakes less

debugging effort.
4. Stay away from ‘variables’ unless you are absolutely sure.

5. Concurrent statements are continuous drivers. Do not use them for initializations.

6. It is a good idea to have a reset signal in your design (even if not mentioned in the lab description). Use

this signal to reset all the things you want to. Do not rely on the initialization statements (like signal a:

bit_vector(3 downto 0) := “0001”;). These are honored in simulation, but may not be honored in

synthesis.

7. While simulating your design, it is always a good idea to stagger your inputs with respect to the active

clock edge. For example, if your active clock edge is occurring at 10ns, apply your inputs sometime

before 10ns, say at 8ns. This ensures that when your design was clocked, the input was successfully

read. If your active edge occurs at 10ns and your input also changes at 10ns, then it becomes hard to

see whether the input was successfully captured by the clock edge or not. Debugging becomes harder

if you have your inputs like that.

8. Don’t limit your testing to the input sequences mentioned with the problem statement. During the

checkouts, the TAs will apply several input combinations to test your design. So, make sure to do a

thorough testing of your design using sufficient number of inputs.

9. Generally, we tend to ignore warnings from the tools. But make sure you look at all the warnings after

the synthesis process is completed. Sometimes there are problems in your design like missing

connections, latches, etc. Such issues make the tool infer your design differently from what you want

or expect it to be. These warnings might contain the reason why your design does not work on the

board.

Q. My design works in simulation. But it does not work on the board. What should I do?

There is no one sentence answer to this question. You can try the following things to help you debug your

problem:

1. Follow the good design principles discussed above.

2. Look for any warnings in the synthesis report.

3. Make sure there are no latches in the synthesized output.

4. Use ChipScope to perform in-circuit debug.

5. Follow the synthesis-friendly code guidelines discussed in the next question

Q. My design works in simulation. But Xilinx ISE throws an error during synthesis, saying “Bad Synchronous

Description”. What am I doing wrong?

The one line answer to this question is that you are not writing synthesizable code. Here are a few tips:

1. 'event should only be used on clocks

EE 460M Digital Systems Design Using VHDL Lab Manual

2. a process statement to model sequential logic should only have clock (and reset, if you need one) in

the sensitivity list, and a process statement to model combinational logic should not have clock in the

sensitivity list. (this is illustrated in detail below)

3. a signal cannot change on both negative and positive edges of clock (This is specific to the design you

do in the lab because the FPGA hardware does not have dual edge triggered flops. This is true for most

industrial design also. However, there may be some very high end designs which use dual edge

triggered flops, in which case this constraint on your code gets removed.)

4. make sure the tool is able to decipher the value of each signal under each condition.

Synthesis friendly ‘process’ statements

A. If you use process statement for a combinational logic, make sure the sensitivity list contains all inputs. And

the clock should not be amongst those inputs! If you feel like you need the clock, it means you want to write

sequential logic. Think again!

B. All processes other than the ones used for combinational logic will have a structure similar to this:
process(clk, rst)

begin

 if rst = ‘0’ then

 --initializations

 elsif clk = ‘1’ and clk’event then --positive edge triggered

 --actual stuff

 end if;

end process;

C. So, any process in your design should fall into either of the following categories:
process(clk, rst) --model sequential logic -async reset

begin

 if rst = ‘0’ then --this is for asynchronous reset

 --initializations

 elsif clk = ‘1’ and clk’event then

 --actual stuff

 end if;

end process;

process(clk) --model sequential logic -sync reset

begin

 if clk = ‘1’ and clk’event then

 if (rst = ‘0’) then --this is for sync. reset

 --initializations

 else

 --actual stuff

 end if;

 end if;

end process;

process(clk) --model sequential logic -no reset

begin

 if clk = ‘1’ and clk’event then

 --actual stuff

 end if;

end process;

EE 460M Digital Systems Design Using VHDL Lab Manual

process(a,b,c) --model combo logic --donot have clock in the list

begin

--logic

end process;

Q. Xiinx ISE reports there are latches in my design. Where am I going wrong?

Latches are caused when you forget an ‘else’ block in an ‘if’ or ‘case’ statement in a process statement

intended to make combinational logic. Look at your design and find such cases.

Example:

The following process statement was intended to make do some selection. It was expected that a mux will be

generated for both f and g.
process (sel, a, b, c, d)

begin

 case sel is

 when 000 => f <= a; g <= c;

 when 001 => f <= b; g <= d;

 when 010 => f <= a; g <= c;

 when 011 => f <= b;

 when 101 => f <= a; g <= b;

 when 110 => f <= b; g <= d;

 when 111 => f <= a; g <= b;

 end case;

end process;

But notice that the assignment to ‘g’ was missed in one case. And one case (100) was not mentioned.

Therefore, latches were inferred for both ‘g’ and ‘f’. Here is the correct way to write this:
process (sel, a, b, c, d)

begin

 case sel is

 when 000 => f <= a; g <= c;

 when 001 => f <= b; g <= d;

 when 010 => f <= a; g <= c;

 when 011 => f <= b; g <= d;

 when 101 => f <= a; g <= b;

 when 110 => f <= b; g <= d;

 when 111 => f <= a; g <= b;

 when others => f <= a; g <= d;

 end case;

end process;

Also, in a process statement used to model combinational logic, if you forget to assign all signals under all

conditions, you will end up with latches. So, to synthesize combinational logic using a process statement, all

signals must be assigned under all conditions.

Example:
process (state, a, b, c, d, e)

begin

 case state is

 when IDLE =>

 if a = '0' then

 next_state <= INITIAL;

 end if;

 when INITIAL =>

EE 460M Digital Systems Design Using VHDL Lab Manual

 if a = '1' then

 next_state <= ERROR_FLAG;

 else

 next_state <= SCANNING;

 end if;

Since ‘next_state’ is not assigned when a is ‘1’, a latch is inferred. To avoid unwanted latches, a good way is to

make sure you assign all signal under all possible conditions.
process (state, a, b, c, d, e)

begin

 case state is

 when IDLE =>

 if a = '0' then

 next_state <= INITIAL;

 else

 next_state <= IDLE;

 end if;

 when INITIAL =>

 if a = '1' then

 next_state <= ERROR_FLAG;

 else

 next_state <= SCANNING;

 end if;

But an easier (sometimes; depends on functionality) way can be to create a default assignment for all the

variables in the process.

process (state, a, b, c, d, e)

begin

 --default assignment

 next_state <= IDLE;

 case state is

 when IDLE =>

 if a = '0' then

 next_state <= INITIAL;

 end if;

 when INITIAL =>

 if a = '1' then

 next_state <= ERROR_FLAG;

 else

 next_state <= SCANNING;

 end if;

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #0

This lab is a tutorial lab. You don’t have to design anything in this lab, just go through the tutorials and

perform them on the lab computers individually. In this course, in almost all the labs we will be doing the

following steps:

Step 1: Writing VHDL code of the circuit we want to implement

Step 2: Simulating the VHDL code using a simulator (ModelSim) to check if the intended functionality has been

achieved

Step 3: Synthesizing the VHDL code using a tool form Xilinx called ISE so that it can be programmed onto an

FPGA

Step 4: Programming the FPGA (a Spartan3E series FPGA from Xilinx) on the lab board (called Nexys2 board)

using a tool called Adept

Step 5: Applying inputs to and observing outputs from our circuit using the peripherals (like switches, buttons,

LEDs, etc) on the Nexys2 board

To be able to do all this, we need to learn how to use ModelSim and Xilinx ISE tools, and we also need to

understand the capabilities of the Nexys2 board and how can we program the Xilinx Spartan3E FPGA on it

using Adept. The following activities will help you go through all the steps so you can learn and use the

concepts in the upcoming labs.

Activity 1: ModelSim tutorial
Mentor Graphic’s Modelsim tool will be used to perform the functional simulation of our VHDL code for the

course. This software is available in all of the ENS labs. Modelsim is also available as a free download with

Xilinx’s Webpack software so you can install it on your own computer..

Go through the “Modelsim Tutorial” posted on Blackboard under “Course/Labs/Lab Info”. This tutorial goes

through the basic steps in compiling and simulating within the Modelsim environment using a simple D-flipflop

as an example.

Activity 2: Xilinx ISE tutorial
The XILINX ISE tool is used to synthesize circuits and place & route them for a particular FPGA. Then, a BIT file

needs to be generated (we use the Digilent Adept tool for that) which can be programmed onto the FPGA so

that the FPGA now contains the circuit you designed. Go over the XILINX tutorial that has been posted on

Blackboard. You may also visit www.xilinx.com and browse the Spartan 3e manuals for help.

Go through the “Xilinx ISE tutorial” posted on Blackboard under “Course/Labs/Lab Info”.

Activity 3: Nexys2 board tutorial
Read through the Nexys2 Board User Manual on Blackboard under “Course/Labs/Lab Info” to understand the

features and capabilities of the board to be used in all the labs. Then go through Nexys2 Board Configuration

manual under “Course/Assignments/Lab Info”. This document describes how to program the FPGA on the

board.

EE 460M Digital Systems Design Using VHDL Lab Manual

Activity 4: Xilinx ChipScope tutorial
The XILINX ChipScope tool is used for debugging FPGA based designs. It is a software based logic analyzer that

allows monitoring the status of selected signals in a design in order to detect possible design errors. The basic

concept is that you generate some components (called cores) using a tool (called Core Generator), add these

cores to your design, synthesize it and then put it on the board. Then you open up a tool on your computer

(called ChipScope Analyzer) and you can observe the signals of your design on the screen. Which signals you

want to observe is declared when you integrate the cores in your design.

Go through the “Xilinx ChipScope tutorial” posted on Blackboard under “Course/Labs/Lab Info”.

Questions
You should be able to answer (almost all of) the following questions after going through these tutorials:

1. What is the ModelSim? What is the role of the transcript window which appears on the bottom of the

main ModelSim window?

2. What is a delta cycle in a VHDL simulator like ModelSim?

3. How do you create a do-file of commands entered in the transcript window in ModelSim?

4. Describe the roles and functionality of the following tools in the Xilinx ISE suite: Project Navigator, RTL

schematic viewer, and PACE.

5. What is the purpose of using the Adept software?

6. What two devices appear in the Adept programming interface? In what situations might we wish to

program one over the other?

7. Is it possible to display two digits using the 7SEG LEDs at the same time on the Nexys2 boards? Note

there are only 7 pins corresponding to a single 7-segment digit.

8. If we want to use the push buttons on the board reliably, what should we do first to the incoming

signal into the FPGA? How do we implement this in VHDL?

Submission and Checkout details
Submit a text/doc/pdf file containing the answers to the questions given above on Blackboard. Name the file

“your_last_name.extension”. You need to demonstrate that you performed the tutorials during the checkout.

Also, you will be asked questions about various aspects covered in the tutorial. Your ability to answer them

and your demonstration will decide your score.

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #1

Guideline
This lab is to be done individually. Each person does his/her own assignment and turns it in.

Objective
To learn designing basic combinational circuits in VHDL and implementing them on an FPGA.

Problem 1: Subtractor Design
a. Write VHDL code for a 1-bit full subtractor using logic equations (Difference = A-B-Bin). If you use delays, make sure

to simulate for long enough to see the final result.

b. Write VHDL code for a 4-bit subtractor using the module defined in part (a) as a component. If you use delays, make

sure to simulate for long enough to see the final result. Test it for the following input combinations:

1. A = 1001, B = 0011, Bin = 1

2. A = 0011, B = 0110, Bin = 1

Verify that your design works correctly by using the “force” and “run” commands in the transcript window to provide

inputs and observe outputs on the waveform window.

Problem 2: ALU Design
Design an Arithmetic and Logic Unit (ALU) that implements 8 functions as described in Table 1. Table 1 also illustrates

the encoding of the control input.

The 4-bit ALU has the following inputs:

• A: 4-bit input

• B: 4-bit input

• Cin: 1-bit input

• Output: 4-bit output

• Cout: 1-bit output

• Control: 3-bit control input

Table 1: ALU Instructions

Control Instruction Operation

000 Add Output <= A + B + Cin; Cout contains the carry

001 Sub Output <= A – B - Cin; Cout contains the borrow

010 Or Output <= A or B

011 And Output <= A and B

100 Shl Output <= A(2 downto 0) & ‘0’

101 Shr Output <= ‘0’ & A(3 downto 1)

110 Rol Output <= A(2 downto 0) & A(3)

111 Ror Output <= A(0) & A (3 downto 1)

EE 460M Digital Systems Design Using VHDL Lab Manual

The following points should be taken care of:

• Use a case statement (or a similar ‘combinational’ statement) that checks the input combination of “Code” and

acts on A, B, and Cin as described in Table 1.

• The above circuit is completely combinational. The output should change as soon as the code combination or

any of the input changes.

• You can use arithmetic and logical operators to realize your design.

Simulate this circuit by using the “force” and “run” statements in the transcript window to provide inputs and observe

outputs on the waveform window.

Problem 3: Synthesizing and implementing the subtractor on the FPGA
Create a new project in Xilinx ISE. Use the code for the 4-bit subtractor that you wrote in Problem 1. Synthesize and

implement the design on the Spartan3E FPGA on Nexys2 board. Use the following pin assignments for creating the UCF

file:

A Switches[7->4]

B Switches[3->0]

Bin BTN0

Diff LED[3->0]

Bout LED4

Download the design onto the board and make sure it works as expected. Include the design_name.bit file that you

download to the board in your Blackboard submission.

Useful Information
1. For problem 2, you can use the subtractor block from problem 1 for doing the subtraction (although just

using the arithmetic operators will make your design easier). If you use the subtractor from problem 1,

remember that we are designing hardware. So, doing something like the following is incorrect:

architecture xyz of abc is

process(…)

case control is

when “001” => sub_inst : four_bit_sub port map (in1,in2,bin,output);

……

First of all, it is important to realize that a ‘port map’ statement is not like ‘calling’ a function in C. It is an

instantiation of an entity. Therefore, it cannot be conditional. It is always present. So, you sould do

something like this:

architecture xyz of abc is

sub_inst : four_bit_sub port map (in1,in2,bin,sub_out)

process(…)

case control is

when “001” => output <= sub_out

EE 460M Digital Systems Design Using VHDL Lab Manual

……

2. Make sure that your designs work by testing them sufficiently thoroughly. You should not just use the test

inputs in the lab description. Also, it is always better to submit a do-file which has sufficient number of input

combinations (not just the ones given in the lab description).

3. Do not use ‘after’ statements in your design for providing delays in your design.

X <= A or B after 15 ns;

 In fact, you should never use the ‘after’ statement in the lab during the semester.

Submission Details
All parts of this lab will be submitted on Blackboard only. You will not need to submit anything as a hard copy. For each

problem, please zip all relevant files into a single folder with the following naming scheme: Lastname_Problem#.zip

Problem Submission Requirements

1 • VHDL file(s)

• Do-file

2 • VHDL file(s)

• Do-file
3 • Bit-file

• UCF File

Checkout Details
You will be expected to describe briefly the codes for problems 1 and 2, simulate and show waveforms in Modelsim, and

answer verbal questions. Also, for the last problem you will have to demonstrate that your circuit works on the board.

 Adder

 Subtractor

.

.

add_out

sub_out

 Logic

 Logic

output
Inputs

(A,B,Cin)

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #2

Guideline
This lab is to be done individually. Each person does his/her own assignment and turns it in.

Objective
To learn designing basic sequential circuits in VHDL and implementing them on an FPGA.

Problem 1: Excess-3 code converter design
In this problem, you will be designing an FSM using three different styles of VHDL coding: behavioral, dataflow, and

structural. The following is the problem for which you will be designing the FSM:

A sequential circuit has one input (X), a clock input (CLK), and two outputs (S and V). X, S and V are all one-bit signals. X

represents a 4-bit binary number N, which is input least significant bit first. S represents a 4-bit binary number equal to

N + 3, which is output least significant bit first. At the time the fourth input occurs, V = 1 if N + 3 is too large to be

represented by 4 bits; otherwise, V = 0. The value of S should be the proper value, not a don’t care, in both cases. The

circuit always resets after the fourth bit of X is received. Assume the sequential circuit is implemented with the following

state table. The outputs are (S,V). All state changes occur on the falling edge of the clock pulse.

Present State Next State Output

 X=0 X=1 X=0 X=1

S0 S1 S2 1,0 0,0

S1 S3 S4 1,0 0,0

S2 S4 S4 0,0 1,0

S3 S5 S5 0,0 1,0

S4 S5 S6 1,0 0,0

S5 S0 S0 0,0 1,0

S6 S0 S0 1,0 0,1

a. Write a behavioral VHDL description using the state table shown above. Compile and simulate your code using the

following test sequence:

 X = 1011 1100 1101 �

The first input bit is at the far right. This is the LSB of the first 4-bit value. Therefore, you will be adding 3 to 13, then

to 12, and then to 11. While simulating, keep the period of the CLK to be 10ns. Change X 1/4 clock period after the

rising edge of the clock.

b. Write a data flow VHDL description using the next state and output equations to describe the state machine. You

can use Logic Aid to derive the logic equations. Assume the following state assignment:

S0 = 000, S1 = 010, S2 = 001, S3 = 101, S4 = 011, S5 = 100, S6=111

Compile and simulate your code using the same test sequence and timing as (a).

c. Write a structural model of the state machine in VHDL that contains the interconnection of gates and D flip-flops.

Compile and simulate your code using the same test sequence and timing as (a).

EE 460M Digital Systems Design Using VHDL Lab Manual

Problem 2: BCD Counter Design
Implement a 1 digit BCD (binary coded decimal) counter. It should be a synchronous (4-bit) up/down decade counter

with output Q that works as follows: All state changes occur on the rising edge of the CLK input, except the

asynchronous clear (CLR). When CLR = 0, the counter is reset regardless of the values of the other inputs. You can keep

the time period of the CLK signal to 10ns for simulating your design.

 If the LOAD = ENABLE = 1, the data input D is loaded into the counter.

 If LOAD = 0 and ENABLE = UP = 1, the counter is incremented.

 If LOAD = 0, ENABLE = 1, and UP = 0, the counter is decremented.

 If ENABLE = 1 and UP = 1, the carry output (CO) = 1 when the counter’s value is 9.

 If ENABLE = 1 and UP = 0, the carry output (CO) = 1 when the counter’s value is 0.

a. Write a VHDL description of the counter. You may implement your design in any style you wish. It will be easier to

use a behavioral description which can be either written in the algorithmic way (eg. Count <= Count + 1 – Figure 2.46

in the text) or a state machine way (eg. State <= Next_State – Figure 2.54/2.56 in the text). You may also use

dataflow or structural descriptions, although that will be more work. Use the following simulation for your

waveforms:

1. Load counter with 6

2. Increment counter four times. You should get 9 and then 0.

3. Decrement counter once. You should get 9.

4. Clear the counter.

b. Write a VHDL description of a decimal counter that uses two of the above counters to form a two-decade decimal

up/down counter that counts up from 00 to 99 or down from 99 to 00. In other words, instantiate (port map) two

single digit counters in a top module (the two-digit counter). You may need some extra logic in the top module too

other than these instantiations. The top module will have these inputs and outputs: CLR, CLK, ENABLE, LOAD, UP,

D1, D2, Q1, D2, CO. Use the following simulation for your waveforms:

 1. Load counter with 97

 2. Increment counter five times.

 3. Do nothing for 2 clock periods

 3. Decrement counter four times.

 4. Clear the counter.

BCD Counter

D

ENABLE

LOAD

UP

CLR

CO

Q

EE 460M Digital Systems Design Using VHDL Lab Manual

Problem 3: Synthesizing and implementing the BCD counter on the FPGA
Use the code for the single digit BCD counter that you wrote in Problem 2a. Before you synthesize it and implement it on

the board, you will have to modify your code a little bit. This is because the CLK signal available on the board is a high

frequency signal (50 MHz). If you use this high frequency for your circuit, you will not be able to give proper inputs or

see proper outputs to your design.

So, you need to add a clock divider to your VHDL description. Create two more entities in your design. Call one as top

and another as divider. Make connections as shown in the following figure. Look at the codes given in the end of this

document, understand them and see how they can be used as clock dividers.

Ensure that there are no latches in your design. Xilinx ISE will report these in the Synthesis report. You need to eliminate

such warnings. You may want to read the synthesis guidelines “Tips for writing synthesizable code” available on

Blackboard.

To look for latches in your synthesized design, open the synthesis report generated by ISE by clicking “View Synthesis

Report” under the “Synthesize-XST” option. In the synthesis report, look for “Macro Statistics” and see if any latches are

being shown. Alternatively, you can look for “cell usage” in the report and there should not be any cells under “Flip

Flops/Latches” having names starting with “L”.

Also, after adding the counter/clock divider block to your design, simulate the top entity in Modelsim before directly

synthesizing using ISE to ensure that the counter/divider works. And while simulating, reduce the large values (like

5000000) in the counter to small values (say 50), so that simulation takes less time and the waveforms are legible. Don't

forget to switch to the correct (large) value before synthesizing.

Synthesize the top module (which includes the divider and the 1-digit bcd counter) and use the following pin

assignments. Download the design onto the board and make sure it works as expected.

LOAD BTN0

D SW[3:0]

ENABLE SW4

UP SW5

CLK B8

COUNT LED[3:0]

CO LED4

TOP

BCD

Counter

Divider

Other

inputs

CLK

input

(connect it

to 50MHz

clock –

B8)

Slow

clock

Outputs

EE 460M Digital Systems Design Using VHDL Lab Manual

CLR SW6

Useful Information
1. Don’t limit your testing to the input sequences mentioned with the problem statement. During the checkouts,

the TAs will apply several input combinations to test your design. So, make sure to do a thorough testing of your

design using sufficient number of inputs.

2. While simulating your design, it is always a good idea to stagger your inputs with respect to the active clock

edge. For example, if your active clock edge is occurring at 10ns, apply your inputs sometime before 10ns, say at

8ns. This ensures that when your design was clocked, the input was successfully read. If your active edge occurs

at 10ns and your input also changes at 10ns, then it becomes hard to see whether the input was successfully

captured by the clock edge or not.

3. A state machine can be designed using either a single process statement (like Figure 2.56 in the text) or using

two process statements (like Figure 2.54 in the text). Both ways are correct. However, it is easier to design it

using a single process statement. Generally, the single process statement partakes less debugging effort. This is

good guideline to observe during the entire semester.

Submission Details
All parts of this lab are to be submitted on Blackboard. No hard-copy submission is needed. For each problem, please zip

all your files into a single folder with the following naming scheme: Lastname_Problem#.zip

Problem Submission Requirements

1 • VHDL file(s)

• Do-file
2 • VHDL file(s)

• Do-file
3 • VHDL file(s)

• Bit-file and UCF File

Checkout Details
During your checkout you will be expected to demonstrate each of the problems in the assignment and answer verbal

questions about the assignment.

0ns 10ns 20ns 30ns 40ns

Force inputs here

EE 460M Digital Systems Design Using VHDL Lab Manual

Example 1

library IEEE;

use IEEE.numeric_bit.ALL;

entity simpleCounter is

 Port (clk50Mhz : in bit;

 led : out bit);

end simpleCounter;

architecture Behavioral of simpleCounter is

signal counter: unsigned (26 downto 0);

signal cnt_temp: bit_vector(26 downto 0);

begin

process (clk50Mhz)

begin

 if clk50MHZ = '1' and clk50Mhz'event then

 counter <= counter + 1; --increment counter every 20 ns (1/ 50 Mhz) cycle.

 end if;

end process;

cnt_temp <= bit_vector(counter);

led <= cnt_temp(26); -- (2^26 / 50E6) = 1.34 seconds

end Behavioral;

Example 2

library IEEE;

use IEEE.numeric_bit.ALL;

entity complex is

 Port (clk50Mhz : in bit;

 led : inout bit

);

end complex;

architecture Behavioral of complex is

signal counter: integer range 1 to 50000000;

begin

process (clk50Mhz)

begin

 if clk50MHZ = '1' and clk50Mhz'event then

 if counter = 50000000 then counter <= 1; led <= not led;

 else counter <= counter + 1;

 end if;

 end if;

EE 460M Digital Systems Design Using VHDL Lab Manual

end process;

end Behavioral;

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #3

Guideline
This lab can be done with a partner. In fact, partnership is encouraged.

Objective
1. Understanding the ASIC/FPGA design flow

2. More digital design - sequential and combinational circuits.

3. Learn writing and using testbenches in VHDL

4. Implementing circuits on FPGA

Problem 1: ASIC/FPGA Design Flow
The following figure shows the design flow as described in chapter 2 of the text. Annotate each box in this figure with

the answers to the following questions:

a. What is the function of each box (answer in one line)?

b. Which tool do you use in the lab to perform this step? If a step is not performed in the lab, mark it.

c. What inputs are needed at each stage and what outputs are delivered at each stage?

EE 460M Digital Systems Design Using VHDL Lab Manual

Grp6(7:0)

Problem 2: Package Sorter (simulation only – using a testbench)
Design a package sorter to classify packages based on their weights and to keep track of packages of different

categories. The sorter has an active high asynchronous reset and will keep track of packages since the last reset.

Packages should be classified into 6 groups:

Spring 2012: Use configuration 2

Configuration #1

i) between 1 and 200 grams

ii) between 201 and 500 grams

iii) between 501 and 800 grams

iv) between 801 and 1000 grams

v) between 1000 and 2000 grams

vi) greater than 2000

Configuration #2

i) between 1 and 250 grams

ii) between 251 and 500 grams

iii) between 501 and 750 grams

iv) between 751 and 1500 grams

v) between 1501 and 2000 grams

vi) greater than 2000

You need to decode weight measurements and classify them into various groups. The input to the circuit will be a 12-bit

unsigned binary number (indicating the weight of the package), a clock signal, and a reset. One of the outputs will be

currentGrp, a 3-bit unsigned number representing the current group number. There will also be six 8-bit unsigned

outputs Grp1-Grp6 representing the number of items weighed in each category since the last reset. The reset line is

provided as input to allow these counts to be cleared.

The output lines have the following functionality:

currentGrp[2:0]: Outputs the group number for the weight currently being applied to the sorter. When a weight of zero

is applied, it should output a zero. This should update as soon as a package weight changes and may not necessarily

reflect the last group that a package was assigned to.

Grp1-Grp6[7:0]: Outputs the number of objects that have been weighed in each group since the last reset. These

outputs should be zero when reset=’1’.

Sorter

clk

weight(11:0)

reset

Grp1(7:0)
Grp2(7:0)
Grp3(7:0)
Grp4(7:0)

currentGrp(2:0)

Grp5(7:0)

EE 460M Digital Systems Design Using VHDL Lab Manual

Notice that the functionality of the two outputs is such that the description of currentGrp will be purely combinational

since it does not depend on any previous inputs. But the description of Grp1-Grp6 will be sequential since it depends not

just on the current input but also on the previous inputs.

Any sequential output should change on the falling edge of the clock. Notice that the clk signal will be significantly faster

than the duration of the weight signal. As such, you must ensure that the count is only updated once for a given input

weight. Secondly, new objects can only be detected and sorted if the weight is allowed to go to zero. This is to ensure

that any fluctuations in the weight after it has been sampled are not considered new items. Only the first weight after 0

updates a group count.

Test your design by using a VHDL testbench similar to Fig. 2-68 in the text. The testbench should use arrays (to set the

inputs, to store the expected group counts and currentGrp values). Do not just use the example input. It is for illustrating

the desired functionality. You are responsible for adequately testing your design, so make sure you test everything

described for this problem.

Example input sequence

For Configuration 1

Reset � Put 250grams on � Take off � Put on 300 grams � Take off � Put on 501grams � Put 512 grams more

[In your waveforms, this input sequence will look like this: reset -> 250 -> 0 -> 300 -> 0 -> 501 -> 1013]

At the end of this sequence, the outputs should be:

grp1 = grp4 = grp5 = 0x00

grp2 = 0x02

grp3 = 0x01

currentGrp = 0x5

Note that after 501 grams is sampled in grp3, adding 512 grams only updates the current group and not the grp5 count.

For Configuration 2

Reset � Put 270grams on � Take off � Put on 300 grams � Take off � Put on 501grams � Put 512 grams more

[In your waveforms, this input sequence will look like this: reset -> 270 -> 0 -> 300 -> 0 -> 501 -> 1013]

At the end of this sequence, the outputs should be:

grp1 = grp4 = grp5 = 0x00

grp2 = 0x02

grp3 = 0x01

currentGrp = 0x04

Note that after 501 grams is sampled in grp3, adding 512 grams only updates the current group and not the grp5 count.

EE 460M Digital Systems Design Using VHDL Lab Manual

Problem 3: Traffic Light Controller (implementation – on an FPGA)
Design a traffic light controller for an intersection with a main street, a side street, and a pedestrian crossing.

Traffic light A consists of three lights: Green (Ga), Yellow (Ya), and Red (Ra).

Similarly, traffic light B consists of three lights: Green (Gb), Yellow (Yb), and Red (Rb).

Lastly, the walk indicator consists of two lights: Green (Gw) and Red (Rw).

The normal sequence of operation is as follows: Ga Rb Rw, Ya Rb Rw, Ra Gb Rw, Ra Yb Rw, Ra Rb Gw, Ra Rb Rw, Ga Rb

Rw… (repeat). The timings are as follows:

Spring 2012 : Use configuration 2

Configuration 1

Main (A) Street:

• Green: lasts 4 seconds.

• Yellow: lasts 2 seconds.

• Red: lasts 10 seconds.

Side (B) Street:

• Green: lasts 3 seconds.

• Yellow: lasts 1 seconds.

• Red: lasts 12 seconds.

Pedestrian Crossing:

• Green: lasts 2 second.

• Red: Flashes 4 seconds at 1Hz, then solid for 10 seconds

Maintenance mode:

• RST=1: Ra, Rb, and Rw all flash at 1Hz

• RST=0: Traffic lights should resume operation with Ga,Rb,Rw as initial state

Configuration 2

Main (A) Street:

• Green: lasts 3 seconds.

• Yellow: lasts 2 seconds.

• Red: lasts 8 seconds.

Side (B) Street:

• Green: lasts 3 seconds.

• Yellow: lasts 1 seconds.

• Red: lasts 9 seconds.

Pedestrian Crossing:

• Green: lasts 2 second.

• Red: Flashes 2 seconds at 2Hz, then solid for 9 seconds

Maintenance mode:

EE 460M Digital Systems Design Using VHDL Lab Manual

• RST=1: Ra, Rb, and Rw all flash at 1Hz

• RST=0: Traffic lights should resume operation with Ga,Rb,Rw as initial state

The above mentioned delays can be obtained through the use of counters, just like you divided 50MHz clock to generate

a 1Hz (1 sec period) in Lab#2.

Your design steps are listed below:

1. Start by designing a state graph for the controller. You do not need to derive any equations, since you can model the

state graph using behavioral VHDL code. Note that on designing your state graph, you will transition from one state

to the other when the appropriate time has elapsed.

2. Write behavioral VHDL code that represents your state graph. For purposes of checking the functionality of your

code, reduce the counter time to a small number during simulation, otherwise you may have to simulate your code

through several simulation pages.

3. Once your code simulates properly, proceed to synthesizing it and implementing it on the FPGA. Follow the

synthesis guidelines “Tips for writing synthesizable code” that are available on Blackboard. Read through the FAQs

at the beginning of this manual to understand and clarify doubts about how to use process statement to make

combinational logic and sequential logic, and how to avoid latches. The following table gives the IO connections for

implementing the traffic light controller:

Green Light street A: LED2

Yellow Light street A: LED1

Red Light street A: LED0

Green Light street B: LED7

Yellow Light street B: LED6

Red Light street B: LED5

Green Light Ped Xing: LED3

Red Light Ped Xing: LED4

Rst (Maintenance mode) SW0

There is something else that you need to do as well for this part of the lab. You need to generate three reports while

implementing your design:

1. The synthesis report – to find out the digital elements used by your design

2. The Place and Route report – to find out the number of slices of the FPGA used by your design

3. The Static Timing report – to find out the critical path in your design

To view these reports, go to the “Design Summary” tab in the Xilinx ISE window. The synthesis report can be seen by

double-clicking “Synthesis Report” under “Detailed Reports”. You can locate the digital elements (like gates, flops and

latches) used by your design in this report. Of course, to be able to see this report, you should have synthesized your

design. Ensure that there are no latches in your design. In the synthesis report, look for “Macro Statistics” and see if any

EE 460M Digital Systems Design Using VHDL Lab Manual

latches are being shown. Alternatively, you can look for “cell usage” in the report and there should not be any cells

under “Flip Flops/Latches” having names starting with “L”.

The Place and Route Report will be located in the “Design Summary” tab under Detailed Reports -> Place and Route

Report. The Static Timing Report should be in the same tab under “Detailed Reports” -> “Static Timing Report”. For you

to be able to see these reports, you should have run the “Implement Design” step. If the Post-PAR Static Timing Report is

not generated, expand the “Implement Design” entry under the “Processes” window. Then expand the “Place & Route”

entry and run the “Generate Post-Place & Route Static Timing” process. In the place and route report, circle or otherwise

note the number of slices used by your design, and in the static timing report, circle or otherwise note the critical delay

of your design. Please note that Xilinx Timing Reports are sorted in 3-4 groups.

i. Path from input port to register, reported in Setup/Hold to clock CLK group.

ii. Path from register to output port, reported in Clock CLK to Pad group.

iii. Path from register to register, reported in Clock to setup on destination clock CLK group.

iv. Path from input port to output port, reported in Pad to Pad group.

For finding the critical delay in your design you need to look for the longest delay within each of these four groups.

EE 460M Digital Systems Design Using VHDL Lab Manual

Useful Information
1. For the reports (STA, PAR and SYNTH), just copy the entire reports into text/doc files and highlight the parts

which contain relevant information (like cell count, path delays, etc)

2. Sometimes Xilinx ISE does not show all the paths in the timing report. It will show just one or two paths. This

is okay. Probably there is a bug in the tool. Just submit whatever you got.

Submission Details
All parts of this lab are to be submitted on Blackboard. No hard-copy submission is needed.

• Problem 1

o Text file/Word document containing the answers

• Problem 2

o Typed VHDL Code (.vhd file)

o Typed Testbench Code (.vhd file)

• Problem 3

o Typed VHDL Code (.vhd file)

o Synthesis report (.txt or .doc file)

o Place and Route Report with number of slices noted (.txt or .doc file)

o Post-Place and Route Static Timing Report with critical delay noted (.txt or .doc file)

o [filename].bit file from compilation

o UCF file

Checkout Details
During your checkout you will be expected to demonstrate each of the problems (both simulation and implementation if

required for the problem) in the assignment and answer verbal questions about the assignment.

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #4

Guideline
This lab can be done with a partner.

Objective
Your objective in this lab is to design (code, simulate and implement) a parking meter much like the ones around Austin.

It should be able to simulate coins being added and show the appropriate time remaining. Also, it should flash slowly

when less than 200 seconds are remaining and flash quickly when time has expired.

Description
You will design a finite state machine that will simulate the operation of a traffic meter. The buttons on the board will

represent different coin denominations and the seven segment LED display will output the total amount of seconds

remaining before the meter expires.

Spring 2012 : Use configuration 2

Configuration 1

Button 0 Add 30 seconds

Button 1 Add 120 seconds

Button 2 Add 180 seconds

Button 3 Add 300 seconds

Switch 0 Reset time to 15 seconds

Switch 1 Reset time to 185 seconds

As soon as a button is pushed, the time should be added immediately. When less than 180 seconds remain, the display

should flash with period 2 seconds and duty cycle 50% (on for 1 sec and off for 1 sec; so you will see alternate counts on

the display eg- 185,blank,183,blank,181…). When time has expired, the display should flash with period 1 sec and duty

cycle 50% (on for 0.5 sec and off for 0.5 sec).

For example, when the board starts, it should be in the 0 time remaining state and be flashing 0000 at a 0.5 second rate.

If button 3 is then pushed, the display should read 300 seconds and begin counting down. When the time counts down

to 200 seconds and button 2 is pushed, the display should then read 380 seconds (200 + 180). If switch 0 goes high, then

the time should change to 15 seconds and flash accordingly.

Configuration 2

Button 0 Add 50 seconds

Button 1 Add 150 seconds

Button 2 Add 200 seconds

Button 3 Add 500 seconds

Switch 0 Reset time to 10 seconds

EE 460M Digital Systems Design Using VHDL Lab Manual

Switch 1 Reset time to 205 seconds

As soon as a button is pushed, the time should be added immediately. When less than 200 seconds remain, the display

should flash with period 2 seconds and duty cycle 50% (on for 1 sec and off for 1 sec; so you will see alternate counts on

the display like 200,blank,198,blank,196,…). Make sure you blink such that even values show up and odd values are

blanked out. When time has expired, the display should flash with period 1 sec and duty cycle 50% (on for 0.5 sec and

off for 0.5 sec).

For example, when the board starts, it should be in the 0 time remaining state and be flashing 0000 at a 0.5 second rate.

If button 3 is then pushed, the display should read 500 seconds and begin counting down. When the time counts down

to 180 seconds and button 2 is pushed, the display should then read 380 seconds (200 + 180). If switch 0 goes high, then

the time should change to 10 seconds and flash accordingly.

The max value of time will be 9999 and any attempt to increment beyond 9999, should result in the counter defaulting

to 9999 and counting down from there.

From a structural perspective, your circuit will consist of three parts:

• The input module, which takes the input from the buttons on the board,

• The output module, which displays the output on the 7-segment display, and

• The controller

Although it is not mandatory to follow this structural hierarchy, it is recommended that you implement the input and

output parts in separate modules (entities) and make sure they are working correctly before putting the whole design

together. You need to implement a de-bouncing circuit to make the input module work. The best way to this is to read,

understand, and then implement the de-bouncing circuitry described in the textbook. For the output module you need

to read the board manual and understand how to correctly drive the multi-digit 7-segment display. In the controller

module, you will need to add the time count whenever a button is pushed and subtract the time count every second.

You can design in a way such that you use all BCD operations (by having BCD addition and subtraction like the one

shown in the following figure). However, you can also keep your counts in binary and then convert binary numbers to

multiple digit BCD numbers before you send them to the output module. However, please note that you cannot divide

by 10 using the Spartan 3E FPGA hardware. If you use the division operator in your VHDL, it will not synthesize to

anything. Therefore, you CANNOT use any binary-to-BCD conversion methods that rely on dividing by 10.

EE 460M Digital Systems Design Using VHDL Lab Manual

Useful Information
1. Debouncer and Single Pulser circuitry is explained in section 4.7 of the text.

2. BCD Adder is described in section 4.2 of the text. If you don't want to use a BCD adder, you can use an

approach similar to problem 4.13 (in the text) for binary to bcd conversion

3. BCD to 7-segment decoder is described in section 4.1 of the text. However, note that the polarities of signals

(anodes and cathodes) are not the same as the ones in the text. Please refer to the board’s manual for

proper polarities.

4. Make sure you go through the Nexys board manual to understand how to multiplex the 7-segment displays.

5. Check for the overflow condition (saturation at 9999) in your code and make sure it works.

6. If you make the BCD Adder and Decrementer as a single process running on 50MHz clock, your design might

become easy. However, it is up to you to make them as two separate processes or separate entities.

7. It is recommended that you simulate the design using either a test bench or by using the force & run

commands from the transcript window.

8. In case your design does not work on the board, submit the testbench VHDL file and/or the .do file, and

show the simulation during checkout for partial credit.

9. Ensure that there are no latches in your design when you implement it.

Submission Details
All parts of this lab are to be submitted on Blackboard. No hard-copy submission is needed.

1. All VHDL code

2. Any testbench code or do-files that you use

3. Bit file and UCF file

EE 460M Digital Systems Design Using VHDL Lab Manual

Checkout Details
During checkout you will demonstrate the parking meter working on the board as well as in simulation. Also, you will be

judged on how well you understand your code and other concepts like de-bouncing, multiplexing 7-segments and BCD

addition.

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #5

Guideline
This lab can be done with a partner.

Objective
To develop a basic SNAKE game by interfacing a PS/2 Keyboard and VGA display with theboard

Reading
Before you start working on this lab, please read pages 7-12 of the Nexys2 Board User Manual.

More info on the PS/2 protocol: http://pcbheaven.com/wikipages/The_PS2_protocol/

More info on the VGA Standard: http://www.ece.msstate.edu/~reese/EE4743/lectures/displays/displays.pdf

Description
In this lab you will be required to create a simple keyboard controller and a VGA controller. The keyboard controller will

enable communication from the keyboard. The VGA controller will be used to display some simple graphic patterns on

the computer monitor attached to the board.

For the entire lab, keep in mind “How can I test this during early design and simulation stages?” It is recommended that

you simulate the core components of your design to ensure the basic logic works correctly. After this, you can use the

hardware to begin testing your design. Debugging through a relatively opaque hardware interface is difficult (e.g., trying

to debug a graphics controller if the monitor doesn’t display anything). Try to make your design very clear, simple, and

modular. This allows you to relatively quickly diagnose problems and create potential solutions.

Submission details
Submit the following things on Blackboard:

• VHDL codes (design and testbenches/dofiles) for each part

• Waveforms for part (b)

• Bit files and UCF files for each part

Checkout details
Demonstrate the each part during the checkout to the TA.

EE 460M Digital Systems Design Using VHDL Lab Manual

Part A: Keyboard interface design

In this part of the lab, you will be designing an interface for accepting values from the keyboard. In previous labs, we

have been limited to accepting inputs from the 8 switches or the 4 buttons. In this lab, we will expand the input

functionality by implementing a PS2 keyboard interface. The values sent from the keyboard will be displayed on the

seven segment display on the Nexys2 board.

The PS2 protocol is a simple two-wire scheme that uses serial transmission to transmit the data to the board. While the

two-wire bus is bi-directional in design, we will only be using it as an input to the FPGA. [Typically writing to the

keyboard is used to reset, turn on the various indicator lights, etc.]

When a key is pressed, a sequence of bytes is sent serially over the two-wire bus. Each key on the keyboard is given a

unique “scancode” (see Nexys2 board user manual). In order to detect when keys are initially pressed and then released,

the keyboard will send a sequence of bytes for each key press. The first byte sent by the keyboard is typically called the

“make code” and it represents the key that is pressed. The final byte sent by the keyboard is the “break code” which

represents the key that was released.

For example, consider the situation where a user presses the letter ‘a’:

1) User presses the ‘a’ key

2) Keyboard sends “make code” (which is ‘1C’ for the ‘a’ key) serially. The keyboard keeps sending the “make code”

every 100ms until the user releases the key.

3) User releases the ‘a’ key

4) Keyboard sends the “key up” code ‘F0’serially

5) Keyboard sends the “break code” (which is ‘1C’ for the ‘a’ key) serially

We will only need to look for the “break code” bytes. So we can simply monitor the bits for the “key up” scan code

which indicates that the key has been released. When this byte has been sent, the “break code” for the released key will

be sent.

To transmit the sequence of bytes, the keyboard first forces the DATA line low to create the start bit. Bits are

transmitted using the falling edge of CLK for synchronization. This is illustrated in Figure 1. The DATA signal changes

state when the CLK signal is high, and DATA is valid for reading on the falling edge of CLK.

Keyboard

FPGA containing

the keyboard

controller circuit

Seven Segment

and LEDs

 PS2

connector

EE 460M Digital Systems Design Using VHDL Lab Manual

Figure 1. Device to Host Communication

So the basic operation of your design is as follows:

• On the falling edge of CLK, use a shift register to capture each bit of data

• When all 11 bits have been sent (start, scancode, parity, stop), you can look at the scancode and decide what to do

• If the scancode is a “key up” i.e. ‘F0’, you know that the next data sequence sent by the keyboard is the final

scancode that you need.

• Capture the final scancode by following the same steps as above and output this value from your keyboard

controller.

Display the lower 2 hex digits of the scancode received by the controller on the lower two seven segment displays (Note

that some keys scan codes have 2 digits and some have 4 digits, see Fig. 14 on page 9 of the Board User Manual). You

should also have a strobe signal to indicate that the keyboard controller is outputting a new keypress. A strobe signal is a

short pulse on one of the board LEDs.

Useful Information
1. Some keyboards in the LAB have a problem with the SPACE bar (probably the ones from HP). So, don't panic if

your code breaks when you hit the SPACE bar. Just change the keyboard, and everything will be fine.

2. The 7-segment display should show the keycode of a key until a new key is pressed, at which time it starts to

show the keycode of the new key.

3. The strobe signal’s duration can be as much as you wish unless it is visible to us with naked eye.

4. There is an easy way of implementing the keyboard interface by using a 22-bit shift register in your design. Think

about it! Talk to the TAs about it.

5. Some keys on the keyboard (like the arrow keys) are special in the sense that they send an additional code “E0”

ahead of the scan code. Such keys are called extended keys. When an extended key is released and “E0 F0” code

is sent followed by the scan code. So, irrespective of the type of key, the last two chunks of data when a key is

released will be “F0” and the scan code.

6. The Nexys2 Board Manual shows the keycode for the key “z” as “1Z”. This is a typo, the actual code is “1A”.

7. For this design you should use the keyboard clock as an input to your module. Disregard what the Nexys2 Board

Manual says.

8. Although the keyboard data signal is birectional, we will only be using it as an input for this lab.

9. In case you are getting an error related to the keyboard clock during the Place & Route step in Xilinx ISE (which

says something like "Clock IOB/ clock component is not..."), please add the following line to your UCF file and

then re-run the Place & Route step again.

 NET "KCLK" CLOCK_DEDICATED_ROUTE = FALSE;

where KCLK is the name of keyboard clock signal in your design. To edit your UCF file, click on the UCF file name

in the ‘Sources’ part of the window in Xilinx ISE. Now expand the “User constraints” in the “Processes” part of

the window. Now double-click on “Edit Constraints”. Now the UCF file will be loaded in the right side of the

window. Edit the file as a normal text file and hit “Save”.

EE 460M Digital Systems Design Using VHDL Lab Manual

Part B: VGA Interface Design

In this part of the lab you will design a VGA controller to output graphics to the computer monitor connected to the

Nexys2 board. In previous labs, we were limited to either the seven-segment display or the LEDs. In this lab, we expand

on this functionality to allow graphical images to be displayed from the FPGA board.

A VGA monitor operates using an electron beam that scans the screen row by row, starting at the upper left corner and

ending at the lower-right corner. This beam moves using two synchronization signals, called hsync (horizontal

synchronization), and vsync (vertical synchronization). The hsync signal tells the beam when to move to the next row.

The vsync signal tells the beam when to move to back to the top of the screen. To display a picture on the screen, we

simply generate these synchronization signals and provide the pixel color to display on the screen.

In this lab, you are required to create a 640 pixel x 480 pixel screen display. A pixel clock operating at 25 MHz will be

used. To get 640 pixels horizontally, a horizontal synchronization frequency of approximately 31.5 KHz is required. This

corresponds to approximately 800 clock periods of the pixel clock. During the first 640 clock periods of the pixel clock

for a row, visible pixels can be displayed; however, the last 160 clock periods for the row are called the “retrace period”

or “blanking region” where nothing is displayed while the beam retraces back to the left of the screen. To get 480 pixels

vertically, a vertical synchronization frequency of 60 Hz is required. This corresponds to approximately (800x)525 clock

periods of the pixel clock. This can be thought of as generating 480 visible rows followed by 45 blank rows during which

the beam retraces back to the top of the screen. This is illustrated in Fig. 2.

Figure 3 shows the timing of the hsync signal. It is made low starting on the 659th pixel clock period for the row and

made high again on the 755th pixel clock period. During the first 640 pixel clock periods, visible pixels are generated.

During the last 160 pixel clock periods, nothing is generated on the screen.

Figure 4 shows the relationship between the vsync signal and the hsync signal. The digits represent the line count. As

stated earlier, the first 480 lines are displayed while the last 45 lines correspond to the retrace period for the beam to

get back to the top left corner of the screen.

Switches

FPGA containing

the VGA

controller circuit

VGA display

(screen)

 VGA

connector

EE 460M Digital Systems Design Using VHDL Lab Manual

Figure 2. Display Regions

Figure 3. Horizontal Sync Timing

Figure 4. Vertical Sync Timing

Visible Region:
640 width (columns)

480 height (rows)

Horizontal

Blanking:

160 width

(columns)

480 height (rows)

Vertical Blanking:
800 width (columns)

45 height (rows)

H Sync
0 639

 755 659

 640 799 0 639

 755 659

 640 799

New Row Retrace

One row Another

Blanking Time

Video

HCount

0 479

 494 493

 480 524 0 479

 494 493

 480 524

New Screen Retrace VCount

 Display

V Sync

EE 460M Digital Systems Design Using VHDL Lab Manual

So the basic operation of the design you implement is as follows:

• Use 2 counters to store the values of hcount and vcount

• Generate a 25MHz pixel clock by dividing the 50MHz clock

• On the rising edge of the pixel clock, increment the hcount. Increment vcount when hcount has reached the end

of the row.

• Generate the hsync signal based on the value of hcount as illustrated in Fig. 3. vsync is generated in a similar

fashion as illustrated in Fig. 4.

• Generate a signal to determine whether the pixel is in the visible region as illustrated in Figure 2.

• When in the visible region, output the pixel color value {R, G, B}, otherwise when in the blanking region, output

{0, 0, 0}.

• Finally, put all of the outputs {R, G, B, hsync, vsync} thru flip-flops to ensure no combinational logic delays will

interfere with the output display

The VGA controller that you design in this part of the lab will take as inputs the 25 MHz pixel clock and the pixel_color to

display each clock cycle. The 25Mhz will be generated from the 50Mhz clock and the pixel_color will come from which

switch is ON. The following table shows the color of the screen for each switch. The VGA controller will generate as an

output the hsync, vsync, R, G, and B signals. It will also output the current horizontal coordinate (0-799) and vertical

coordinate (0-524). The screen will display the color depending on which switch is ON (complete screen filled with one

color).

Switch Color on the VGA display

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

None Black

 (Don’t consider the cases when more than one switch is ON.)

Important: It is mandatory to simulate this part before synthesizing and downloading to the FPGA. You can either use a

testbench or the commands (like force, etc) directly.

Useful Information
1. You must follow the VGA protocol exactly as mentioned in this document. Do not change the numbers for

generating hsync and vsync.

2. To generate different colors, you can refer to the 8-bit VGA color codes where each R, G and B are encoded

in 8 bits. http://cloford.com/resources/colours/namedcol.htm You can develop color codes (total RGB = 8

bits, which is what you need for this lab) using that.

EE 460M Digital Systems Design Using VHDL Lab Manual

Part C: Snake game

In this part of the design, you will implement the master controller which receives input from the keyboard controller

and uses the VGA controller to output the appropriate pixels to the monitor. You will implement a simple snake game in

this part.

The screen is blank in the beginning. Pressing ‘S’ on the keyboard starts the snake game- a ‘snake’ graphic at the left

edge of the screen that automatically starts scrolling right as shown in the figure below.

This scrolling graphic will respond to arrow key pushes in the following way:

Original Orientation Change

Horizontal

Up arrow Flip vertical and scroll up

Down arrow Flip vertical and scroll down

Left arrow No change

Right arrow No change

Vertical

Up arrow No change

Down arrow No change

Left arrow Flip horizontal and scroll left

Right arrow Flip horizontal and scroll right

The following figures show the change in the graphic due to a few arrow key pushes:

Keyboard

FPGA containing

the SNAKE game

circuit

VGA

display

 PS2

connector

 VGA

connector

EE 460M Digital Systems Design Using VHDL Lab Manual

Note that the snake turns from its front head instead of the tail. Pressing the button ‘P’ on the keyboard pauses the

game (freezes the screen) and pressing ‘R’ resumes the game from its paused state. Pressing ‘ESC’ exits from the game

(blanks out the screen).

Other game properties:

• The width of the snake, the color of the snake, the background color of the screen and the scrolling speed of the

snake that you need to keep are given at the end of this lab description.

• On a game over, make sure that only the required part of the snake is visible. For example, if the snake is moving

towards the right direction very close to the top edge, and the user presses an up-arrow key, the game will end and

only a part of the snake should be visible.

• When the snake touches any edge of the screen, the entire screen should freeze and no longer respond to arrow

pushes or R/P presses. But it should still respond to ‘ESC’ and ‘S’ presses.

• Pressing ‘R’ in the unpaused state does nothing. Pressing ‘P’ in the paused state does nothing. Pressing ‘ESC’

anytime exits the game (blanks out the screen) and pressing ‘S’ anytime starts the game.

A block diagram for the complete design is shown in Figure 5.

Figure 5. Block Diagram for Complete Design

TOP Level Design

VGA Controller:

Inputs: pixel_in, clk

Outputs: Hsync,Vsync, R, G, B

XCoord, YCoord

Master Controller

Takes inputs from keyboard controller,

processes the ketstrokes to decide what

to do and generates the pixels for the

VGA display.

Inputs: keycode, newKeyStrobe,

XCoord, YCoord, clk

Outputs: pixel_out
Keyboard Controller:

Inputs: clk, data

Outputs: keycode, newKeyStrobe

EE 460M Digital Systems Design Using VHDL Lab Manual

Parameters of the Snake Game

Background color of the screen White

Color of the snake Blue

Length and width of the snake 40 x 10

Speed of the snake 50pixels per second

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #6A

Guideline
This lab can be done with a partner.

Objectives
• To implement a stack calculator.

• To get more familiar with block RAMs on an FPGA and understand memory interfacing

• To understand how to model buses in VHDL.

Description
In this lab, you will write VHDL code to implement a stack calculator using a memory module (block RAM on the FPGA)

and the board I/O.

A stack calculator stores its operands in a stack structure and performs operations (e.g. addition, subtraction, etc) on the

top two values of the stack. The operands are popped off the stack and the result is pushed back on the top of the

stack, so the stack is one element less than it was before the operation. The output of the calculator is always the value

at the top of the stack. The stack may contain more than two operands at any time, but operations are only performed

on the top two values. This is similar to the Reverse Polish Notation (RPN) used by old TI calculators.

You will implement a simple stack calculator using Xilinx BlockRAM as the storage for the stack. We will provide you with

code to implement/model a memory using the BlockRAM. The memory supplied is byte-addressable and 8 bits (1 byte)

wide. Please check the synthesis report to make sure that Xilinx ISE is synthesizing your design using a BlockRAM and not

distributed LUT-RAM. If it is not BlockRAM, then you need to change it to BlockRAM under synthesis properties. Right-

click “Synthesize-XST” and click on “Properties”. In the dialog box that appears, click “HDL Options”. Select “Block RAM”

from the drop-down menu for the “RAM Style” option.

We will also provide you the code for top block which integrates the controller, memory along with the data bus. You

will need to modify the supplied code to implement the bus interface to memory and the controller. This will involve

using tri-state buffers. Through tri-state buffers, we will be able to ensure that only one driver drives the data bus at a

time. Since the numeric_bit library provides for only two-level logic (0 and 1), we will use the std_logic library to be able

to get X (contention) and Z (floating) values.

You will also need to implement a master controller for the calculator. This controller contains three registers, a stack

pointer (SPR), a display address register (DAR), and a display value register (DVR). The SPR will contain the address of the

next free address past the top of the stack. The DAR will hold the address of the data that should be displayed on the

output. Whenever the SPR is updated, the DAR should be updated to SPR plus 1. The DVR contains the value that should

be displayed on the output. The content of the DVR is the value stored at the memory location pointed to by the DAR.

This should be updated every time the DAR changes by reading from the memory location contained in the DAR. The

memory will be 128 bytes total giving a 7-bit address. So the SPR and DAR will both be 7 bits wide and the DVR will be 8

bits wide. The master controller will be responsible for taking in the inputs, updating its registers accordingly, as well as

performing the operations of the calculator and displaying the outputs. Before use, a reset/clear operation should be

used to initialize the calculator. The SPR should be initialized to 0x7F, the DAR to 0x00, and the DVR to 0x00 (don’t read

EE 460M Digital Systems Design Using VHDL Lab Manual

from memory this time). As data is pushed on to the stack, the SPR will decrement. In other words, the stack will grow

towards decreasing addresses.

EE 460M Digital Systems Design Using VHDL Lab Manual

The calculator will use all of the inputs/outputs on the Xilinx board. The seven segment displays will show the contents

of the DVR (only two of them will be used because the data size is 8 bits). Values will be entered, 8 bits at a time, using

the switches on the board (SW0 maps to the LSB). LED[6:0] show the contents of the DAR bits 6 down to 0 and LED[7]

will map to an ‘EMPTY’ flag. If the stack is empty (the SPR contains 0x7F), the EMPTY flag (LED[7]) will be set to ‘1’.

The buttons will provide the operational inputs to the controller. Each button will implement a function as defined in the

table below:

Mode BTN3 BTN2 BTN1 BTN0

Push/Pop 0 0 Delete/Pop Enter/Push

Add/Subtract 0 1 Subtract Add

Clear/Top 1 0 Clear/RST Top

Dec/Inc 1 1 Dec Addr Inc Addr

• Enter/Push: Reads the value from switches on the board and pushes it on the top of the stack. To do this, keep

BTN3 and BTN2 at 0 (ie. unpressed) and press BTN0

• Delete/Pop: Pops and discards the 8-bit value on the top of the stack. To do this, keep BTN3 and BTN2 at 0 (ie.

unpressed) and press BTN1

• Add: Pops the top two 8-bit values on the stack, adds them, and pushes the 8-bit result on the top of the stack,

discarding the carry bit. To do this, keep BTN3 at 0 (unpressed) and BTN2 at 1 (pressed) and press BTN0

• Subtract: Pops the top two 8-bit values on the stack, subtracts them, and pushes the 8-bit result on the top of

the stack, discarding the borrow bit (High Addr minus Low Addr). To do this, keep BTN3 at 0 (unpressed) and

BTN2 at 1 (pressed) and press BTN1

• Clear/RST: Resets the SPR to 0x7F, the DAR to 0x00, and the DVR to 0x00. The stack should be empty now

(EMPTY flag should be set to 1). To do this, keep BTN3 at 1 (pressed) and BTN2 at 0 (unpressed) and press BTN1

• Top: Sets the DAR to the top of the stack (SPR+1; will cause the DVR to update). To do this, keep BTN3 at 1

(pressed) and BTN2 at 0 (unpressed) and press BTN0

• Dec Addr: Decrements the DAR by 1. To do this, keep BTN3 1 (pressed) and BTN2 at 1 (pressed) and press BTN1

• Inc Addr: Increments the DAR by 1. To do this, keep BTN3 1 (pressed) and BTN2 at 1 (pressed) and press BTN0

The following figure shows the block diagram of your design:

Stack

Calculator

Controller

Top-Level Design

Memory

Address

Data Bus

EE 460M Digital Systems Design Using VHDL Lab Manual

Useful Information
1. Note that the overflow, underflow, and pushing both BTN0 and BTN1 at the same time are not considered in this

lab. In general you can assume the calculator will be used as described, i.e. you do not have to worry about the error

conditions like POPing without having pushed anything, decrementing DAR beyond the lowest address. Keep it

simple.

2. All data on the stack should be considered unsigned.

3. Also note that the INC and DEC commands affect the DAR and DVR. They don't modify SPR. INC and DEC are just to

be able to see the contents of various locations on the stack. Similarly, the POP/PUSH/ADD/SUBTRACT will use the

SPR (however, they will update the DAR and DVR as well).

4. Simulation is NOT a requirement to get full credit if your design works perfectly on the board. If it does not work on

the board, please have simulation ready for partial credit.

5. The simplest way to approach the design of the controller is to use a large state machine. The first state will be state

will waits for inputs from the user. You will jump from this state to others depending on the inputs.

6. The memory works on 50MHz, but has single cycle latency. This means that when reading from the memory, if you

make WE 0 in one clock cycle (in other words, in one state of the controller), you should read data from the data bus

in the next clock cycle (in other words, in the next state of the controller). Similarly, when writing to the memory,

you should make WE 1 in one clock cycle and wait for one clock cycle to let the memory write the data.

7. The controller can use as many cycles (states) as it wishes to perform the tasks (like POP, PUSH, ADD, etc). Since the

clock frequency is 50MHz, even if the controller takes 10 cycles (say) to perform an operation, the user won’t be

able to see the lag with the naked eye.

8. If you need, you can modify the ports of the modules given to you. But we would want you to not change the

memory module at all.

Submission Details
Submit the following files through Blackboard. No hard copy submission is required.

• Typed VHDL Code (.vhd files)

• [filename].bit file

• [filename].ucf file

• Synthesis report showing that your final design does not contain any latches and that block RAM has been used

in the design

Checkout Details
Demonstrate the calculator working on the board to the TA during checkout.

Example

Suppose you want to add 0x92 (binary form: 10010010) and 0x25 (binary form: 00100101). You should first push these

two numbers on the top of the stack (the stack at this time can contain other numbers). Perform the following sequence

to enter 0x92 and then 0x25 into the stack:

0. Reset the calculator, hold BTN3 and push BTN1. At this point, LED[7:0]=1_0000000 and 7-seg are 00

1. Set the switches (SW7 downto SW0) to 10010010.

2. Push BTN0. At this point, LED[7:0] are 0_1111111 and the 7-segs are 92.

3. Set the switches (SW7 downto SW0) to 00100101.

4. Push BTN0. At this point, LED[7:0] are 0_1111110 and the 7-segs are 25.

EE 460M Digital Systems Design Using VHDL Lab Manual

5. Hold BTN2 and push BTN0. At this point, LED[7:0] are 0_1111111 and the 7-segs are B7.

6. After steps 2 or 4, you can pop (delete) the numbers you have entered by pressing BTN1.

EE 460M Digital Systems Design Using VHDL Lab Manual

Starter Code

Top Module

library IEEE;

use IEEE.numeric_std.all;

use IEEE.std_logic_1164.all;

entity top is

 port(clk: in std_logic; btns: in unsigned (3 downto 0);

 swtchs: in unsigned(7 downto 0);

 leds, segs: out unsigned(7 downto 0); an: out unsigned(3 downto 0));

end entity;

architecture blocks of top is

 component memory

 port(clock, cs, we: in std_logic;

 address: in unsigned(6 downto 0);

 data_in: in unsigned(7 downto 0);

 data_out: out unsigned(7 downto 0));

 end component;

 component controller

 port(clk: in std_logic; cs, we: out std_logic;

 address: out unsigned(6 downto 0);

 data_in: in unsigned(7 downto 0);

 data_out: out unsigned(7 downto 0);

 btns: in unsigned (3 downto 0);

 swtchs: in unsigned(7 downto 0);

 leds, segs: out unsigned(7 downto 0);

 an: out unsigned(3 downto 0));

 end component;

 signal cs, we: std_logic;

 signal addr: unsigned(6 downto 0);

 signal data_out_mem, data_out_ctrl, data_bus: unsigned(7 downto 0);

 begin

 --CHANGE THESE TWO LINES

 data_bus <= 1; -- 1st driver of the data bus -- tri state switches

 -- function of we and data_out_ctrl

 data_bus <= 1; -- 2nd driver of the data bus -- tri state switches

 -- function of we and data_out_mem

 ctrl: controller port map(clk, cs, we,

 addr, data_bus,

 data_out_ctrl,

 btns, swtchs,

 leds, segs, an);

 mem: memory port map(clk, cs, we,

 addr, data_bus,

 data_out_mem);

end blocks;

EE 460M Digital Systems Design Using VHDL Lab Manual

Controller

library IEEE;

use IEEE.numeric_std.all;

use IEEE.std_logic_1164.all;

entity controller is

 port(clk: in std_logic; cs, we: out std_logic;

 address: out unsigned(6 downto 0);

 data_in: in unsigned(7 downto 0);

 data_out: out unsigned(7 downto 0);

 btns: in unsigned (3 downto 0);

 swtchs: in unsigned(7 downto 0);

 leds, segs: out unsigned(7 downto 0);

 an: out unsigned(3 downto 0));

end entity;

architecture test of controller is

begin

 -- WRITE THE ARCHITECTURE OF THE CONTROLLER

end test;

EE 460M Digital Systems Design Using VHDL Lab Manual

Memory

library IEEE;

use IEEE.numeric_std.all;

use IEEE.std_logic_1164.all;

entity memory is

 port(clock, cs, we: in std_logic; address: in unsigned(6 downto 0);

 data_in: in unsigned(7 downto 0); data_out: out unsigned(7 downto 0));

end memory;

architecture internal of memory is

 type RAM_ARRAY is array(0 to 127) of unsigned(7 downto 0);

 signal RAM: RAM_ARRAY := (others => (others => '0'));

begin

 process (clock)

 begin

 if (clock'event and clock = '0') then

 if (we = '1' and cs = '1') then

 RAM(to_integer(address(6 downto 0))) <= data_in(7 downto 0);

 end if;

 data_out <= RAM(to_integer(address(6 downto 0)));

 end if;

 end process;

end internal;

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #6B

Guideline
This lab can be done with a partner.

Objective
1. To introduce you to JTAG

2. To introduce you to DFT, in particular Memory BIST

Description
In this lab, we will add a memory BIST engine to the memory module we had in Part A. The memory BIST engine will test

the memory in your design. It will be operated by a register which will be programmed by a JTAG interface.

JTAG is a 4 pin serial protocol. It is an IEEE standard. (The 4 pins have standard names and functions. 5th pin –TRST – is

optional). The most common use of JTAG (in fact, the reason why it was developed) is boundary scan, which you would

have read in class. But JTAG finds its use in several other places. E.g. the programming of the FPGA on the lab board is

done using a JTAG interface. Another common example of JTAG application is to perform testing.

The basic concept that makes JTAG so versatile is that it is comprises of a state machine (called TAP controller) which

can be used to program a register (or many registers). These registers can be used for any purpose in the design. For the

boundary scan purposes, the register that is programmed is called the Boundary Scan Register. For memory BIST, say,

you can have a memory BIST register. For some other purpose, you may have any other register.

The merit of JTAG is that it lets you achieve a lot by just using 4/5 pins (this is the general advantage of any serial

protocol). Let us take an example of a testing scenario. Let’s say that for testing a particular aspect of your chip, you

need to control 10 signals in your design and you need to observe 15 signals in your design. If you use the simplest

possible approach, you can add 25 pins on the top level of the chip and your work is done. But it is not justified to add so

many pins (let us say the chip overall has 50 pins; then adding 25 pins is 50% overhead) just for the purposes of test. If

you have JTAG in your design (which a state-of-the-art will definitely have for certain other reasons), you can use the 4/5

JTAG pins to control and observe as many signals as you like in the design, by just adding an extra register.

A simplified diagram of JTAG is given below. Refer to section 10.4 of text for details.

EE 460M Digital Systems Design Using VHDL Lab Manual

And the TAP state machine is also given here. The states are annotated with numbers which are used in the lab code.

EE 460M Digital Systems Design Using VHDL Lab Manual

Let us take some time to understand what memory BIST is. The purpose of memory BIST is to be able to test an on-chip

memory (just like we have in our stack calculator design in lab 6a) by designing a testing engine which resides on the

chip itself. So, during the normal operation of the chip (called the functional or system mode), the design works

normally, as if nothing else is present. In our case, the stack calculator controller accesses the memory normally. But

when we have to test the memory (ie. when we are in the test mode or the memory BIST mode, to be specific), this

testing engine grabs the control of the memory interface and tests it. The muxing logic used to grab the control of the

memory ports is called ‘BIST Collar’.

Testing a memory involves very sophisticated algorithms (the most common one being the MARCH algorithm), which

are beyond the scope of this lab. But the simplest memory tests work like this. We write some data to an address and

then read it back. If we obtain the same data, it means the memory is fine. Otherwise the memory is bad. We will use a

similar testing approach for this lab.

In this lab, we will use JTAG to program a memory BIST register. By using 5 top level pins (TCK, TRST, TMS, TDI, TDO), we

will program a register (we will call it MBIST register) via the JTAG protocol. This register will have four bits:

Bit 3 (MSB) Bit 2 Bit 1 Bit 0 (LSB)

MBIST_PASS MBIST_DONE MBIST_START MBIST_ENABLE

The first two bits will control the MBIST test engine in the design, and the last two bits will observe the results of the

test. MBIST_ENABLE lets the BIST engine take control of the memory ports (address, data, we, cs etc). MBIST_START

starts the testing operation (writing to an address, reading it back, writing to the next address and so on). MBIST_DONE

is an ‘observe’ signal. It tells if the testing operation is complete. MBIST_PASS is also an ‘observe’ signal which tells

whether the test passed or not. So, overall the top level design will look like this:

Memory

Test Engine

Or

BIST Controller

Actual Design

(E.g. the Stack

Calculator)

Memory

Controls

like

Address,

Data,

WE, CS,

etc

BIST Enable

or

Test Mode

EE 460M Digital Systems Design Using VHDL Lab Manual

In our case, because the memory has a special interface, the top level would look like this:

So, just to re-iterate the entire flow of the design:

Stack

Calculator

Controller

Top-Level Design

Memory
Address

Data Bus

Memory

BIST

Controller

or

BIST Engine

bist_enable

JTAG

Controller

Functional

Logic

or

System

Logic

Memory

Memory

BIST

Controller

or

Test Logic

JTAG

Controller

MBIST_ENABLE

MBIST_START

MBIST_DONE

MBIST_PASS

TCK TDI TDO TMS TRST

Top-Level Design

EE 460M Digital Systems Design Using VHDL Lab Manual

JTAG controller sends and receives signals from the BIST controller. The BIST controller controls the memory in TEST

mode, while the stack calculator controls the memory in FUNCTIONAL mode. The following steps discuss this in a little

more detail:

1. User programs the MBIST register to being BIST

a. User selects the MBIST register in the JTAG controller (TAP IR branch)

b. User programs the MBIST register (TAP DR branch)

2. MBIST controller receives the START signal (the START bit in the register is SET in step 1b) and the MBIST collar

receives the ENABLE signal (the ENABLE bit in the register is SET in step 1b).

3. MBIST controller starts testing the memory – writing to and reading from memory locations based on the

algorithms which were incorporated while designing the controller

4. When the entire memory is tested, the MBIST controller makes the DONE signal HIGH. Also, the PASS signal

reflects whether the test passed or failed. These signals are connected to the MBIST register

5. User shifts out the results of the test

a. User selects the MBIST register in the JTAG controller (TAP IR branch)

b. User shifts out the MBIST register (TAP DR branch)

Important Information
 This lab is a simulation-only lab. We have given you most of the files you will need for this lab. You need to fill in the

areas marked with *****. You will need to design the other parts.

Your tasks
1. Design the Memory BIST controller

Our memory BIST controller will be simple random testing logic. You will have to write two LFSRs – one of data and

one for address. Refer to section 10.5 in the text for details on designing LFSRs. The address LFSR should be maximal

length so that all addresses are tested. The data LFSR will be 8 bits long while the address LFSR will be 7 bits long.

The controller will essentially be a small state machine. It will write to a random address (generated by the address

LFSR) in the memory, a random data (generated by the data LFSR). Then it will read the data from the memory and

compare it with what was written. Then it will move on to the next random address and so on. Finally it will end

when 128 addresses have been generated. Keep in mind that the LFSR cannot generate an all zero number. Thus,

the 0th address will remain untested. You can add testing the 0th address for a bonus of 10 points. You don’t need to

have separate entities for the LFSRs. They can just be incorporated in one state of the BIST engine.

2. Integrate and develop the TOP module

The JTAG controller is being given to you as an IP. Integrate the given JTAG controller and the Memory BIST

controller you developed in (1) with other parts as shown in the figure above. Also write the logic which lets the BIST

controller gain access to the memory in the BIST test mode.

3. Complete the testbench

The testbench given to you contains code for selecting the IDCODE register and shifting it out. You need to extend it

such that in addition to what it does already, it should do the following operations:

1. Program IR to select the mbist register.

EE 460M Digital Systems Design Using VHDL Lab Manual

2. Program mbist register to set these bits: mbist_enable and mbist_start.

3. Wait for the number of cycles you expect MBIST to run (you can wait for more cycles).

4. Program IR to select mbist register.

5. Shift out mbist register to confirm that mbist_done is set. Check mbist_pass bit. It should be ‘1’.

4. Now run the testbench for appropriate time using ModelSim. You should be able to observe MBIST_DONE and

MBIST_PASS. Now restart simulation, from the transcript window in ModelSim, force address 0x23 with 0x00,

and re-run the testbench. This time mbist_pass should be 0.

Submission Details
Submit all VHDL code through Blackboard. No hard copy submission is required.

Checkout Details
Demonstrate the MBIST operation (both a passing and a failing case) to the TA during checkout.

Useful Information
1. The TAP state machine has two main parts: the Instruction Register (IR) side and the Data Register (DR) side. [It is

important to note that there is one IR but there can be multiple DRs in the design – like IDCODE Register, Boundary Scan

Register, Bypass Register, MBIST register etc]. When using the TAP state machine, the first thing is to program the

instruction register. This step uses the IR side of the TAP state machine. Programming the instruction register instructs

the TAP to select a particular register as the data register (for example, we would want to select the MBIST register as

the data register in our case). Then we can program (or read out) the contents of the selected data register. This step

will use the DR side of the TAP state machine.

To move through the state machine, we have to wiggle the pins TMS and TCK of the design. To shift data in and out of

the registers (whether IR or the DRs), we have to use the TDI and TDO pins. The TRST pin is used as an async. reset.

Let’s look at how we can program the instruction register.

Step1: Keep TMS high and give more than 5 TCK cycles. This will bring the TAP machine in reset.

Step2: Make TMS 0 and pulse TCK. This takes the machine to Run-Test-Idle.

Step3: Make TMS 1 and pulse TCK. This takes the machine to Select-DR-Scan

Step4: Make TMS 1 and pulse TCK. This takes the machine to Select-IR-Scan

Step5: Make TMS 0 and pulse TCK. This takes the machine to Capture IR

Step6: Make TMS 0 and pulse TCK. This takes the machine to Shift IR. When you are in Shift IR, you must remain

in Shift IR for N number of cycles (where N is the width of the IR) by keeping TMS 0. For these N cycles, you

should drive TDI (at or just before posedge of TCK) with the value that you want to program into the IR, one bit

at a time.

Step7: Make TMS 1 and pulse TCK. This takes the machine to Exit1-IR.

Step8: Make TMS 1 and pulse TCK. This takes the machine to Update-IR.

Step9: Make TMS 0 and pulse TCK. This takes the machine to Run-Test-Idle.

Now you have successfully programmed the IR. Let us say you programmed the IR to select the IDCODE register as the

data register. Now lets us look at the steps which we need to observe the value of the IDCODE register. [You should not

reset the machine by going to the Test-Logic-Reset state after having programmed the IR]

Step1: (We are in the Run-Test-Idle state). Make TMS 1 and pulse TCK. This takes the machine to Select-DR-Scan

Step2: Make TMS 0 and pulse TCK. This takes the machine to Capture DR

EE 460M Digital Systems Design Using VHDL Lab Manual

Step3: Make TMS 0 and pulse TCK. This takes the machine to Shift DR. When you are in Shift DR, you must

remain in Shift DR for N number of cycles (where N is the width of the data register which you had selected

when you programmed the IR) by keeping TMS 0. For these N cycles, you should observe TDO (at or just after

negedge of TCK). The bits on TDO are the value of the data register.

Step4: Make TMS 1 and pulse TCK. This takes the machine to Exit1-DR.

Step5: Make TMS 1 and pulse TCK. This takes the machine to Update-DR.

Step6: Make TMS 0 and pulse TCK. This takes the machine to Run-Test-Idle.

A similar set of operations has been done in the VHDL testbench given to you. You have to modify it to get program the

MBIST register and read out the same register after the BIST operation is complete.

2. It is a good idea to approach the design in parts. Get the MBIST Engine working first. Simulate just the BIST Engine

with the memory to see if the BIST Engine is working properly. Then put in the JTAG controller.

3. If we assume that 0 is a data that will never be generated by the Data LFSR, forcing 0 on the data at an address in the

memory should lead to BIST_PASS=0. Also, since the LFSR is maximal length, each address in the memory is being tested

and hence, forcing only one of the addresses to 0 should lead to BIST_PASS=0. To force the data at a particular address

to 0, after starting simulation, click on the memory entity (MEM) in the “Sim” window. Now in the objects window, the

signals in that entity will appear. Click on the memory array (RAM1) and drag it to the “Wave” window. Now expand

RAM1, go to the address you want to force, right click and select “Force”. On this window, give the value “00000000”

and say “Okay”. Now carry on with rest of your simulation.

4. You do not need to create separate entities for LFSRs (this complicates the design). Just create an LFSR like this:

fb <= addr(1) xor addr(5); --this is just an example

addr <= addr(5 downto 0) & fb;

5. You can make BIST_DONE=1 and BIST_PASS=0 the moment you see the first failure. You do not need to test the

complete memory in that case.

EE 460M Digital Systems Design Using VHDL Lab Manual

----TESTBENCH

---YOU HAVE TO ADD CODE TO THIS MODULE

library IEEE;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_1164.ALL;

entity testbench is

end testbench;

architecture behavioral of testbench is

 component top

 port(tdi, tck, tms, trst_b: in bit;

 tdo: out bit;

 stack_calc_clk: in bit := '0';

 swtchs:in unsigned(7 downto 0);

 btns:in unsigned(3 downto 0);

 segs,leds:out unsigned(7 downto 0);

 an: out unsigned(3 downto 0));

 end component;

 signal tdi, tck, tms, trst_b, tdo, mbist_done, mbist_pass, mbist_start, mbist_enable

: bit;

 signal idcode_inst :bit_vector(3 downto 0) := "0011";

 signal mbist_inst :bit_vector(3 downto 0) := "0010";

 signal mbist_reg :bit_vector(3 downto 0) := "1111";

 signal finish: bit := '0';

begin

 --***** add the instantiation (port map) of the DUT (top)

 tck <= not tck after 100 ns;

 process

 begin

 tms <= '1';

 trst_b <= '0';

 wait for 200 ns; --reset the design

 trst_b <= '1';

 wait until tck'event and tck = '0';

 --start traversing the tap state machine

 tms <= '1';

 wait until tck'event and tck = '0';

 tms <= '1'; --remain in test logic reset

 wait until tck'event and tck = '0';

 tms <= '1'; --remain in test logic reset

 wait until tck'event and tck = '0';

 tms <= '0'; --takes to run test / idle

 wait until tck'event and tck = '0';

 tms <= '1'; --takes to select dr scan

 wait until tck'event and tck = '0';

EE 460M Digital Systems Design Using VHDL Lab Manual

 tms <= '1'; --takes to select ir scan

 wait until tck'event and tck = '0';

 tms <= '0'; --takes to capture ir

 wait until tck'event and tck = '0';

 --shift in the idcode instruction through the tdi

 for i in 0 to 3 loop

 tms <= '0';

 wait until tck'event and tck = '0';

 tdi <= idcode_inst(i);

 end loop;

 tms <= '1'; --takes to exit1 ir

 wait until tck'event and tck = '0';

 tms <= '1'; --takes to update ir

 wait until tck'event and tck = '0';

 tms <= '1'; --takes to select dr scan

 wait until tck'event and tck = '0';

 tms <= '0'; --takes to capture dr

 wait until tck'event and tck = '0';

 for i in 0 to 3 loop

 --this is when the idcode is being shiftes out bit by bit on tdo

 tms <= '0'; --takes to shift dr

 wait until tck'event and tck = '0';

 end loop;

 tms <= '1'; --takes to exit 1 dr

 wait until tck'event and tck = '0';

 tms <= '1'; --takes to update dr

 wait until tck'event and tck = '0';

 tms <= '0'; --takes to idle

 wait until tck'event and tck = '0';

 --***** add code here for

 --***** 1. selecting the mbist register

 --***** 2. making the start and enable bits '1'

 --***** 3. waiting till bist done becomes '1'

 wait until finish = '1';

 end process;

end Behavioral;

EE 460M Digital Systems Design Using VHDL Lab Manual

----TOP LEVEL DESIGN

----YOU HAVE TO ADD CODE TO THIS MODULE

library IEEE;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_1164.ALL;

entity top is

port(tdi, tck, tms, trst_b: in bit;

 tdo: out bit;

 stack_calc_clk: in bit := '0';

 swtchs:in unsigned(7 downto 0);

 btns:in unsigned(3 downto 0);

 segs,leds:out unsigned(7 downto 0);

 an: out unsigned(3 downto 0));

end entity;

architecture structural of top is

--*****components

----jtag_controller

----memory

----bist_engine

----stack_calc_controller

--*****internal signals

begin

--*****bist collar muxes for address, we , cs

--*****tristates for data bus

--*****port maps for the components

end architecture;

EE 460M Digital Systems Design Using VHDL Lab Manual

----BIST ENGINE

----YOU HAVE TO ADD CODE TO THIS MODULE

library IEEE;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_1164.ALL;

entity bist_engine is

 port(clk, start:in bit;

 cs, we: out bit;

 address: out unsigned(6 downto 0);

 data_in: in unsigned(7 downto 0);

 data_out: out unsigned(7 downto 0);

 pass:out bit; done:out bit);

end entity;

architecture bhv of bist_engine

--**** write the architecture of the bist engine

--**** you dont need to have lfsr's as separate entities

end architecture;

EE 460M Digital Systems Design Using VHDL Lab Manual

----STACK CALCULATOR CONTROLLER

----YOU MAY USE YOUR LAB6A MODULE HERE OR JUST LEAVE THIS AS IS

library IEEE;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_1164.ALL;

entity stack_calc_controller is

 port(clock: in bit;

 swtchs:in unsigned(7 downto 0);

 btns:in unsigned(3 downto 0);

 segs,leds:out unsigned(7 downto 0);

 an: out unsigned(3 downto 0);

 cs, we: out bit;

 data_in: in unsigned(7 downto 0);

 data_out: out unsigned(7 downto 0);

 address: out unsigned(6 downto 0));

end entity;

architecture structural of stack_calc_controller is

begin

end architecture;

EE 460M Digital Systems Design Using VHDL Lab Manual

----MEMORY

----USE THIS CODE AS IS

library IEEE;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_1164.ALL;

entity memory is

 port(clock, cs, we: in bit; address: in unsigned(6 downto 0);

 data_in: in unsigned(7 downto 0); data_out: out unsigned(7 downto 0));

end memory;

architecture internal of memory is

 type RAM_TYPE is array(0 to 127) of unsigned(7 downto 0);

 signal RAM: RAM_TYPE := (others => (others => '0'));

begin

 process (clock)

 begin

 if (clock'event and clock = '0') then

 if (we = '1' and cs = '1') then

 RAM(to_integer(address(6 downto 0))) <= data_in(7 downto 0);

 end if;

 data_out <= RAM(to_integer(address(6 downto 0)));

 end if;

 end process;

end internal;

EE 460M Digital Systems Design Using VHDL Lab Manual

----YOU SHOULD NOT NEED TO MODIFY ANY MODULES THAT FOLLOW
----JTAG CONTROLLER

library IEEE;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_1164.ALL;

entity jtag_controller is

port(tdi, tck, tms, trst_b: in bit;

 tdo: out bit;

 mbist_done, mbist_pass: in bit;

 mbist_start,mbist_enable: buffer bit);

end entity;

architecture structural of jtag_controller is

 component tap_cntl

 port (tms, tck, trst_b :in bit;

 instr_sel: out bit;

 update_dr, update_ir : out bit;

 shift_dr, shift_ir : out bit;

 capture_dr, capture_ir: out bit);

 end component;

 component instruction_reg

 port(tck,trst_b,tdi: in bit;

 capture_ir, shift_ir, update_ir: in bit;

 inst_tdo: out bit;

 mbist_reg_en, idcode_reg_en, bypass_reg_en: out bit);

 end component;

 component mbist_reg

 port(tck, trst_b, tdi: in bit;

 capture_dr, update_dr, shift_dr: in bit;

 mbist_pass, mbist_done: in bit;

 mbist_start,mbist_enable: buffer bit;

 mbist_tdo: out bit;

 mbist_reg_en: in bit);

 end component;

 component idcode_reg

 port(tck, trst_b, tdi: in bit;

 capture_dr, update_dr, shift_dr: in bit;

 idcode_tdo: out bit;

 idcode_reg_en: in bit);

 end component;

 component tdo_select

 port(inst_reg_sel, idcode_reg_sel, mbist_reg_sel,

 inst_tdo, mbist_tdo, idcode_tdo: in bit;

 tdo: out bit);

 end component;

 signal instr_sel: bit;

 signal update_dr, update_ir: bit;

 signal capture_dr, capture_ir: bit;

 signal shift_dr, shift_ir: bit;

EE 460M Digital Systems Design Using VHDL Lab Manual

 signal inst_tdo, mbist_tdo, idcode_tdo: bit;

 signal idcode_reg_sel, mbist_reg_sel: bit;

begin

 i_tap: tap_cntl port map(tms,tck,trst_b,instr_sel,

 update_dr, update_ir,

 shift_dr, shift_ir,

 capture_dr, capture_ir);

 i_instruction_reg: instruction_reg port map(tck,trst_b,tdi,

 capture_ir, shift_ir, update_ir,

 inst_tdo, mbist_reg_sel, idcode_reg_sel, open);

 i_mbist_reg: mbist_reg port map(tck,trst_b,tdi,

 capture_dr, update_dr, shift_dr,

 mbist_pass, mbist_done,

 mbist_start, mbist_enable,

 mbist_tdo, mbist_reg_sel);

 i_idcode_reg: idcode_reg port map(tck,trst_b,tdi,

 capture_dr, update_dr, shift_dr,

 idcode_tdo, idcode_reg_sel);

 i_tdo_select: tdo_select port map(instr_sel, idcode_reg_sel, mbist_reg_sel, inst_tdo,

mbist_tdo, idcode_tdo,tdo);

end architecture;

EE 460M Digital Systems Design Using VHDL Lab Manual

----TAP CONTROLLER

library IEEE;

use IEEE.numeric_std.all;

entity tap_cntl is

port (tms, tck, trst_b :in bit;

 instr_sel: out bit;

 update_dr, update_ir : out bit;

 shift_dr, shift_ir : out bit;

 capture_dr, capture_ir: out bit);

end entity tap_cntl;

architecture behavioral of tap_cntl is

 signal state: unsigned(3 downto 0);

 signal next_state: unsigned(3 downto 0);

 signal state_rst_b: bit;

 constant EXIT2_DR_STATE : unsigned(3 downto 0) := X"0";

 constant EXIT1_DR_STATE : unsigned(3 downto 0) := X"1";

 constant SHIFT_DR_STATE : unsigned(3 downto 0) := X"2";

 constant PAUSE_DR_STATE : unsigned(3 downto 0) := X"3";

 constant SELECT_IR_SCAN_STATE : unsigned(3 downto 0) := X"4";

 constant UPDATE_DR_STATE : unsigned(3 downto 0) := X"5";

 constant CAPTURE_DR_STATE : unsigned(3 downto 0) := X"6";

 constant SELECT_DR_SCAN_STATE : unsigned(3 downto 0) := X"7";

 constant EXIT2_IR_STATE : unsigned(3 downto 0) := X"8";

 constant EXIT1_IR_STATE : unsigned(3 downto 0) := X"9";

 constant SHIFT_IR_STATE : unsigned(3 downto 0) := X"a";

 constant PAUSE_IR_STATE : unsigned(3 downto 0) := X"b";

 constant IDLE_STATE : unsigned(3 downto 0) := X"c";

 constant UPDATE_IR_STATE : unsigned(3 downto 0) := X"d";

 constant CAPTURE_IR_STATE : unsigned(3 downto 0) := X"e";

 constant RESET_STATE : unsigned(3 downto 0) := X"f";

begin

--next state logic

process (tck, trst_b)

begin

 if(trst_b='0') then

 state <= RESET_STATE;

 elsif(tck'event and tck='1') then

 state <= next_state;

 end if;

end process;

--control lines

process (tck,trst_b)

begin

 if(trst_b='0') then

 update_ir <= '0';

 update_dr <= '0';

 capture_ir <= '0';

 capture_dr <= '0';

 state_rst_b <= '0';

EE 460M Digital Systems Design Using VHDL Lab Manual

 shift_ir <= '0';

 shift_dr <= '0';

 elsif (tck='0' and tck'event) then

 case state is

 when EXIT2_DR_STATE | EXIT1_DR_STATE | SELECT_IR_SCAN_STATE |

SELECT_DR_SCAN_STATE | EXIT2_IR_STATE | EXIT1_IR_STATE | PAUSE_IR_STATE | IDLE_STATE |

PAUSE_DR_STATE =>

 update_ir <= '0';

 update_dr <= '0';

 capture_ir <= '0';

 capture_dr <= '0';

 state_rst_b <= '1';

 shift_ir <= '0';

 shift_dr <= '0';

 when CAPTURE_DR_STATE =>

 update_ir <= '0';

 update_dr <= '0';

 capture_ir <= '0';

 capture_dr <= '1';

 state_rst_b <= '1';

 shift_ir <= '0';

 shift_dr <= '0';

 when CAPTURE_IR_STATE =>

 update_ir <= '0';

 update_dr <= '0';

 capture_ir <= '1';

 capture_dr <= '0';

 state_rst_b <= '1';

 shift_ir <= '0';

 shift_dr <= '0';

 when SHIFT_DR_STATE =>

 update_ir <= '0';

 update_dr <= '0';

 capture_ir <= '0';

 capture_dr <= '0';

 state_rst_b <= '1';

 shift_ir <= '0';

 shift_dr <= '1';

 when SHIFT_IR_STATE =>

 update_ir <= '0';

 update_dr <= '0';

 capture_ir <= '0';

 capture_dr <= '0';

 state_rst_b <= '1';

 shift_ir <= '1';

 shift_dr <= '0';

 when UPDATE_DR_STATE =>

 update_ir <= '0';

 update_dr <= '1';

 capture_ir <= '0';

 capture_dr <= '0';

 state_rst_b <= '1';

 shift_ir <= '0';

 shift_dr <= '0';

EE 460M Digital Systems Design Using VHDL Lab Manual

 when UPDATE_IR_STATE =>

 update_ir <= '1';

 update_dr <= '0';

 capture_ir <= '0';

 capture_dr <= '0';

 state_rst_b <= '1';

 shift_ir <= '0';

 shift_dr <= '0';

 when RESET_STATE =>

 update_ir <= '0';

 update_dr <= '0';

 capture_ir <= '0';

 capture_dr <= '0';

 state_rst_b <= '0';

 shift_ir <= '0';

 shift_dr <= '0';

 when others =>

 update_ir <= '0';

 update_dr <= '0';

 capture_ir <= '0';

 capture_dr <= '0';

 state_rst_b <= '1';

 shift_ir <= '0';

 shift_dr <= '0';

 end case;

 end if;

end process;

process(state,tms)

begin

 case state is

 when EXIT2_DR_STATE =>

 if(tms='1') then

 next_state <= UPDATE_DR_STATE;

 else

 next_state <= SHIFT_DR_STATE;

 end if;

 when EXIT1_DR_STATE =>

 if (tms='1') then

 next_state <= UPDATE_DR_STATE;

 else

 next_state <= PAUSE_DR_STATE;

 end if;

 when SHIFT_DR_STATE =>

 if (tms='1') then

 next_state <= EXIT1_DR_STATE;

 else

 next_state <= SHIFT_DR_STATE;

 end if;

 when PAUSE_DR_STATE =>

 if (tms='1') then

 next_state <= EXIT2_DR_STATE;

 else

 next_state <= PAUSE_DR_STATE;

 end if;

 when SELECT_IR_SCAN_STATE =>

EE 460M Digital Systems Design Using VHDL Lab Manual

 if (tms='1') then

 next_state <= RESET_STATE;

 else

 next_state <= CAPTURE_IR_STATE;

 end if;

 when UPDATE_DR_STATE =>

 if (tms='1') then

 next_state <= SELECT_DR_SCAN_STATE;

 else

 next_state <= IDLE_STATE;

 end if;

 when CAPTURE_DR_STATE =>

 if (tms='1') then

 next_state <= EXIT1_DR_STATE;

 else

 next_state <= SHIFT_DR_STATE;

 end if;

 when SELECT_DR_SCAN_STATE =>

 if (tms='1') then

 next_state <= SELECT_IR_SCAN_STATE;

 else

 next_state <= CAPTURE_DR_STATE;

 end if;

 when EXIT2_IR_STATE =>

 if (tms='1') then

 next_state <= UPDATE_IR_STATE;

 else

 next_state <= SHIFT_IR_STATE;

 end if;

 when EXIT1_IR_STATE =>

 if (tms='1') then

 next_state <= UPDATE_IR_STATE;

 else

 next_state <= PAUSE_IR_STATE;

 end if;

 when SHIFT_IR_STATE =>

 if (tms='1') then

 next_state <= EXIT1_IR_STATE;

 else

 next_state <= SHIFT_IR_STATE;

 end if;

 when PAUSE_IR_STATE =>

 if (tms='1') then

 next_state <= EXIT2_IR_STATE;

 else

 next_state <= PAUSE_IR_STATE;

 end if;

 when IDLE_STATE =>

 if (tms='1') then

 next_state <= SELECT_DR_SCAN_STATE;

 else

 next_state <= IDLE_STATE;

 end if;

 when UPDATE_IR_STATE =>

 if (tms='1') then

 next_state <= SELECT_DR_SCAN_STATE;

 else

 next_state <= IDLE_STATE;

 end if;

EE 460M Digital Systems Design Using VHDL Lab Manual

 when CAPTURE_IR_STATE =>

 if (tms='1') then

 next_state <= EXIT1_IR_STATE;

 else

 next_state <= SHIFT_IR_STATE;

 end if;

 when RESET_STATE =>

 if (tms='1') then

 next_state <= RESET_STATE;

 else

 next_state <= IDLE_STATE;

 end if;

 when others =>

 next_state <= RESET_STATE;

 end case;

end process;

 process(state)

 begin

 if ((state = EXIT2_IR_STATE) or (state = EXIT1_IR_STATE) or

 (state = SHIFT_IR_STATE) or (state = PAUSE_IR_STATE) or

 (state = UPDATE_IR_STATE) or (state = CAPTURE_IR_STATE) or

 (state = IDLE_STATE) or (state = RESET_STATE)) then

 instr_sel <= '1';

 else

 instr_sel <= '0';

 end if;

 end process;

end architecture behavioral;

EE 460M Digital Systems Design Using VHDL Lab Manual

----INSTRUCTION REGISTER

library IEEE;

use IEEE.numeric_std.all;

entity instruction_reg is

 port(tck,trst_b,tdi: in bit;

 capture_ir, shift_ir, update_ir: in bit;

 inst_tdo: out bit;

 mbist_reg_en, idcode_reg_en, bypass_reg_en: out bit);

end entity instruction_reg;

architecture behavioral of instruction_reg is

 signal shift_reg : bit_vector(3 downto 0);

 signal instruction_reg: bit_vector(3 downto 0);

begin

 --shift register

 process(tck,trst_b)

 begin

 if (trst_b='0') then

 shift_reg <= "0000";

 elsif (tck='1' and tck'event) then

 if (capture_ir='1') then

 shift_reg <= instruction_reg;

 elsif (shift_ir='1') then

 shift_reg <= tdi & shift_reg(3 downto 1);

 end if;

 end if;

 end process;

 --instruction register

 process(tck,trst_b)

 begin

 if (trst_b='0') then

 instruction_reg <= "0000";

 elsif (tck='0' and tck'event) then

 if (update_ir='1') then

 instruction_reg <= shift_reg;

 end if;

 end if;

 end process;

 --tdo flop

 process(tck,trst_b)

 begin

 if(trst_b='0') then

 inst_tdo <= '0';

 elsif (tck='0' and tck'event) then

 inst_tdo <= shift_reg(0);

 end if;

 end process;

 mbist_reg_en <= '1' when ((instruction_reg = "0010") and (trst_b = '1')) else '0';

 idcode_reg_en <= '1' when ((instruction_reg = "0011") and (trst_b = '1')) else '0';

 bypass_reg_en <= '1' when ((instruction_reg = "1111") and (trst_b = '1')) else '0';

EE 460M Digital Systems Design Using VHDL Lab Manual

end architecture;

EE 460M Digital Systems Design Using VHDL Lab Manual

----IDCODE REGISTER

library IEEE;

use IEEE.numeric_std.all;

entity idcode_reg is

 port(tck, trst_b, tdi: in bit;

 capture_dr, update_dr, shift_dr: in bit;

 idcode_tdo: out bit;

 idcode_reg_en: in bit);

end entity;

architecture behavioral of idcode_reg is

signal idcode: bit_vector(3 downto 0);

signal shift_reg :bit_vector (3 downto 0);

begin

 idcode <= "0101";

 --shift register

 process(tck,trst_b)

 begin

 if (trst_b='0') then

 shift_reg <= "0000";

 elsif (tck='1' and tck'event) then

 if (capture_dr='1') then

 shift_reg <= idcode;

 elsif (shift_dr='1') then

 shift_reg <= tdi & shift_reg(3 downto 1);

 end if;

 end if;

 end process;

 --tdo flop

 process(tck,trst_b)

 begin

 if(trst_b='0') then

 idcode_tdo <= '0';

 elsif (tck='0' and tck'event) then

 idcode_tdo <= shift_reg(0);

 end if;

 end process;

 --idcode register

 process(tck,trst_b)

 begin

 if(trst_b='0') then

 --do nothing

 elsif (tck='0' and tck'event) then

 if((idcode_reg_en='1') and (update_dr='1')) then

 --do nothing

 end if;

 end if;

 end process;

end architecture;

EE 460M Digital Systems Design Using VHDL Lab Manual

----MBIST REGISTER

--mbist_reg(0) -> mbist_enable

--mbist_reg(1) -> mbist_start

--mbist_reg(2) -> mbist_done

--mbist_reg(3) -> mbist_pass

library IEEE;

use IEEE.numeric_std.all;

entity mbist_reg is

 port(tck, trst_b, tdi: in bit;

 capture_dr, update_dr, shift_dr: in bit;

 mbist_pass, mbist_done: in bit;

 mbist_start,mbist_enable: buffer bit;

 mbist_tdo: out bit;

 mbist_reg_en: in bit);

end entity;

architecture behavioral of mbist_reg is

 signal mbist_reg: bit_vector(3 downto 0);

 signal shift_reg : bit_vector(3 downto 0);

begin

 mbist_reg <= mbist_pass & mbist_done & mbist_start & mbist_enable;

 --shift register

 process(tck,trst_b)

 begin

 if (trst_b='0') then

 shift_reg <= "0000";

 elsif (tck='1' and tck'event) then

 if (capture_dr='1') then

 shift_reg <= mbist_reg;

 elsif (shift_dr='1') then

 shift_reg <= tdi & shift_reg(3 downto 1);

 end if;

 end if;

 end process;

 --tdo flop

 process(tck,trst_b)

 begin

 if(trst_b='0') then

 mbist_tdo <= '0';

 elsif (tck='0' and tck'event) then

 mbist_tdo <= shift_reg(0);

 end if;

 end process;

 --mbist register

 process(tck,trst_b)

 begin

 if(trst_b='0') then

 mbist_start <= '0';

 mbist_enable <= '0';

 elsif (tck='0' and tck'event) then

EE 460M Digital Systems Design Using VHDL Lab Manual

 if((mbist_reg_en='1') and (update_dr='1')) then

 mbist_start <= shift_reg(1);

 mbist_enable <= shift_reg(0);

 end if;

 end if;

 end process;

end architecture;

EE 460M Digital Systems Design Using VHDL Lab Manual

----TDO SELECT

library IEEE;

use IEEE.numeric_std.all;

entity tdo_select is

 port(inst_reg_sel, idcode_reg_sel, mbist_reg_sel,

 inst_tdo, mbist_tdo, idcode_tdo: in bit;

 tdo: out bit);

end entity;

architecture behavioral of tdo_select is

begin

 process(inst_reg_sel,idcode_reg_sel,mbist_reg_sel,inst_tdo,idcode_tdo,mbist_tdo)

 begin

 if(inst_reg_sel='1') then

 tdo <= inst_tdo;

 elsif (idcode_reg_sel='1') then

 tdo <= idcode_tdo;

 elsif (mbist_reg_sel='1') then

 tdo <= mbist_tdo;

 end if;

 end process;

end architecture;

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #7A

Guideline
This lab can be done with a partner.

Objective
1. Become familiar with the MIPS ISA

2. Synthesize and implement a basic MIPS processor on the Nexys2 board

3. Learn how to use VHDL Text-IO to initialize a memory image for simulation

Reading
Please read chapter 9 of you textbook Digital Systems Design Using VHDL for background on the MIPS ISA and the basic

MIPS implementation.

Summary of tasks
You will use a model of a MIPS processor that handles a subset of the MIPS instructions. This model is provided for you

in the book. You will write a testbench for this model that uses the VHDL text-IO package to initialize the instruction

memory. Once the processor is verified in simulation using this testbench, you will synthesize and implement it on the

board and run a simple MIPS program to light up some of the board LEDs.

Description
Figure 9-9 in the book gives the code for the complete MIPS model. This model consists of the MIPS processor and

memory. The code for the MIPS processor can be found in Figure 9-8, and the code for the MIPS memory can be found

in Figure 9-7. The MIPS processor also uses a Register File, whose code can be found in Figure 9-6. All of this code is

appended at the end of the lab description and will be provided on Blackboard as well.

Here are your tasks:

1. Take the complete MIPS model presented in Figure 9-9 and compile it in Modelsim. You will need to include the

MIPS processor, memory, and register file as supporting modules (either as separate entities in the same file, or as

separate entities in separate files).

2. Modify the above model by adding code to interface it to the input switches and LEDs on the Nexys2 board. Your

interface must be able to halt operation of the MIPS processor and display the lower 8 bits of register $1 on eight

LEDs. Your interface must also divide the prototyping board’s internal clock to provide the model with a slow clock.

a. You should add a new ‘Halt’ port to the MIPS toplevel. When Halt is high your processor should complete

the current instruction and not proceed to the next instruction. When halt goes back to zero you should

keep executing the normal flow of instructions starting from the next instruction.

b. Map switches SW0 and SW1 to Reset and Halt, respectively.

c. Make necessary changes to your register file so that you can use register $1 as a top-level output and map it

to LEDs [7:0].

d. The slow clock can be used to execute instructions in a manner that makes your outputs visible (when you

implement this on the board). You may choose the frequency of the slow clock. Using a 50 MHz clock will

make any program outputs on the LEDs a blur.

EE 460M Digital Systems Design Using VHDL Lab Manual

3. Write a testbench to test your modified MIPS model. You will use a testbench similar to the skeleton testbench

provided in Figure 1 of this document (next page). You will have to fill out the sections marked with **** in order to

complete the functionality of the testbench. The idea here is to get you familiar with using the VHDL text-IO

package. The testbench will use text-IO to initialize the memory with a set of instructions that you will provide in a

text file (called the instruction text file hereafter). After initializing the memory with your instructions, the testbench

will run the processor for as many cycles as you need to see your program working. You have to edit the ‘wait for’

statement at the end of the testbench to extend its run length.

4. Write a program in MIPS assembly to create a rotating light on the LED outputs. The light rotates from one LED to

the next. This rotation should not stop. So, if a number denotes a specific LED being lit, the result should be like

0,1,2,3,4,5,6,7,0,1,2,3,… In other words, the LED rotation should happen indefinitely.

5. Translate this program to machine code and put it in your instruction text file. Run the testbench and analyze the

processor outputs using the Modelsim Waveform Viewer. Verify that the correct values are being written to register

$1 and that they are showing up on your LED outputs. Also verify that reset and halt are working.

6. Synthesize your modified MIPS model and implement it on the Nexys2 board.

a. You will not need to synthesize the testbench.

b. The memory should be initialized with your instructions by hard-coding values into the array in the memory

module (see figure 2 of this document for an example). Xilinx will correctly instantiate block RAM and

initialize them with these values for you.

c. Correctly map the switches and LEDs.

Useful Information
1. To read instructions from a file you can use the following options:

i. Store the instruction file in INTEGER format. Use the following statements:

Library: use std.textio.all;

readline(file_handle, buff); -- buffer is a variable of type line

read(buff, data); -- data is a variable of type integer

mem_bus <= to_unsigned(data,32); -- mem_bus is of type unsigned

ii. Store the instruction file in HEX format. Use the following statements:

Library: use IEEE.std_logic_textio.all;

readline(file-handle, rdline); -- rdline is a variable of type line

hread(rdline, hex); -- hex is a variable of type std_logic_vector

mem_bus <= unsigned(hex); -- mem_bus is of type unsigned

iii. Store the instruction file in BINARY format. Use the following statements:

Library: use std.textio.all;

readline(file_handle, buff); -- buffer is a variable of type line

read(buff, data); -- data is a variable of type bit_vector

mem_bus <= unsigned(to_stdlogicvector(data)); -- mem_bus is of type unsigned

EE 460M Digital Systems Design Using VHDL Lab Manual

2. The testbench code has a FOR loop which reads instructions from the instruction file. The loop runs ‘W’ lines, where

W is the number of lines in the instruction file. You can either hardcode the value of W in your testbench, or you can

get rid of the FOR loop and use a WHILE loop instead:

while not endfile(file_pointer) loop

--stuff

end loop;

3. Since the memory size is very large and you will have a small number of instructions, you can use the following

syntax to fill the rest of the unused locations to zero:

signal RAM : RAMTYPE := (“0011”, “0010”, “0100”, others=>(others=>’0’));

Submission details
Submit the following things on Blackboard:

• VHDL codes (modified MIPS and testbenches/dofiles)

• MIPS assembly program

• Instruction text file containing the machine code of your program

• Bit file and UCF file, if any

Checkout details
The following things will be checked during check-out:

• Your modifications to the code and the testbench

• Correct functionality of the program on the board

• Simulation waveforms showing functionality of the program in Modelsim

EE 460M Digital Systems Design Using VHDL Lab Manual

Figure 1: Skeleton Testbench
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity MIPS_Testbench is

end MIPS_Testbench;

architecture test of MIPS_Testbench is

-- **** modify these components to include the new interfaces you added ****

 component MIPS

 port(CLK, RST: in std_logic;

 CS, WE: out std_logic;

 ADDR: out unsigned (31 downto 0);

 Mem_Bus: inout unsigned(31 downto 0));

 end component;

 component Memory

 port(CS, WE, CLK: in std_logic;

 ADDR: in unsigned(31 downto 0);

 Mem_Bus: inout unsigned(31 downto 0));

 end component;

-- **** Declare any extra signals or variables as needed ****

 signal CS, WE, CLK: std_logic := '0';

 signal Mem_Bus, Address, AddressTB, Address_Mux: unsigned(31 downto 0);

 signal RST, init, WE_Mux, CS_Mux, WE_TB, CS_TB: std_logic;

begin

-- **** modify these instantiations to reflect the new components ****

 CPU: MIPS port map (CLK, RST, HALT, CS, WE, Address, Mem_Bus, Reg1_Out);

 MEM: Memory port map (CS_Mux, WE_Mux, CLK, Address_Mux, Mem_Bus);

 CLK <= not CLK after 10 ns;

 Address_Mux <= AddressTB when init = '1' else Address;

 WE_Mux <= WE_TB when init = '1' else WE;

 CS_Mux <= CS_TB when init = '1' else CS;

 process

 begin

 rst <= '1';

 wait until CLK = '1' and CLK'event;

 --Initialize the memory with instructions from an external file

 init <= '1'; -- enable initialization phase

 -- test bench variables used during init only (see

 -- WE_Mux and CS_MUX above)

 CS_TB <= '1'; WE_TB <= '1';

 for i in 1 to W loop

 wait until CLK = '1' and CLK'event;

 -- **** This is where you will add your file IO capability ****

 -- the code added here should read the input file line-by-line and

 -- pass the instructions to the memory module. You will use

 -- AdressTB and Mem_bus signals to pass values to the memory

 end loop;

 -- end initialization phase

EE 460M Digital Systems Design Using VHDL Lab Manual

 wait until CLK = '1' and CLK'event;

 Mem_Bus <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

 CS_TB <= '0'; WE_TB <= '0';

 init <= '0';

 wait until CLK = '1' and CLK'event;

 -- driving reset low here puts processor in normal operating mode

 rst <= '0';

 -- **** you can add in a 'Halt' signal here as well to test Halt operation ****

 -- **** Edit this 'wait for' value to contain whatever value

 -- you need to see your program complete

 -- you will be verifying your program operation using the

 -- waveform viewer rather than self-checking operations

 wait for 1000 ns;

 end process;

end test;

EE 460M Digital Systems Design Using VHDL Lab Manual

Figure 2: Memory Initialization
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity Memory is

 port(CS, WE, Clk: in std_logic;

 ADDR: in unsigned(31 downto 0);

 Mem_Bus: inout unsigned(31 downto 0));

end Memory;

architecture Internal of Memory is

 type RAMtype is array (0 to 127) of unsigned(31 downto 0);

 -- **** initialize your memory array here ****

 -- two entries are currently shown (not real instructions)

 signal RAM1: RAMtype := (X"01234567", X"76543210" ,others=>(others=>'0'));

 signal output: unsigned(31 downto 0);

begin

 Mem_Bus <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" when CS = '0' or WE = '1'

 else output;

 process(Clk)

 begin

 if Clk = '0' and Clk'event then

 if CS = '1' and WE = '1' then

 RAM1(to_integer(ADDR(6 downto 0))) <= Mem_Bus;

 end if;

 output <= RAM1(to_integer(ADDR(6 downto 0)));

 end if;

 end process;

end Internal;

EE 460M Digital Systems Design Using VHDL Lab Manual

Complete MIPS (Figure 9-9 of the textbook)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity Complete_MIPS is

 port(CLK, RST: in std_logic;

 A_Out, D_Out: out unsigned(31 downto 0));

end Complete_MIPS;

architecture model of Complete_MIPS is

 component MIPS is

 port(CLK, RST: in std_logic;

 CS, WE: out std_logic;

 ADDR: out unsigned(31 downto 0);

 Mem_Bus: inout unsigned(31 downto 0));

 end component;

 component Memory is

 port(CS, WE, Clk: in std_logic;

 ADDR: in unsigned(31 downto 0);

 Mem_Bus: inout unsigned(31 downto 0));

 end component;

 signal CS, WE: std_logic;

 signal ADDR, Mem_Bus: unsigned(31 downto 0);

begin

 CPU: MIPS port map (CLK, RST, CS, WE, ADDR, Mem_Bus);

 MEM: Memory port map (CS, WE, CLK, ADDR, Mem_Bus);

 A_Out <= Addr;

 D_Out <= Mem_Bus;

end model;

EE 460M Digital Systems Design Using VHDL Lab Manual

Memory (Figure 9-7 of the textbook)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity Memory is

 port(CS, WE, Clk: in std_logic;

 ADDR: in unsigned(31 downto 0);

 Mem_Bus: inout unsigned(31 downto 0));

end Memory;

architecture Internal of Memory is

 type RAMtype is array (0 to 127) of unsigned(31 downto 0);

 signal RAM1: RAMtype := (others => (others => '0'));

 signal output: unsigned(31 downto 0);

begin

 Mem_Bus <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" when CS = '0' or WE = '1'

 else output;

 process(Clk)

 begin

 if Clk = '0' and Clk'event then

 if CS = '1' and WE = '1' then

 RAM1(to_integer(ADDR(6 downto 0))) <= Mem_Bus;

 end if;

 output <= RAM1(to_integer(ADDR(6 downto 0)));

 end if;

 end process;

end Internal;

EE 460M Digital Systems Design Using VHDL Lab Manual

Processor (Figure 9-8 of the textbook)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity MIPS is

 port(CLK, RST: in std_logic;

 CS, WE: out std_logic;

 ADDR: out unsigned (31 downto 0);

 Mem_Bus: inout unsigned(31 downto 0));

end MIPS;

architecture structure of MIPS is

 component REG is

 port(CLK: in std_logic;

 RegW: in std_logic;

 DR, SR1, SR2: in unsigned(4 downto 0);

 Reg_In: in unsigned(31 downto 0);

 ReadReg1, ReadReg2: out unsigned(31 downto 0));

 end component;

 type Operation is (and1,or1,add,sub,slt,shr,shl,jr);

 signal Op, OpSave: Operation := and1;

 type Instr_Format is (R, I, J); -- (Arithmetic, Addr_Imm, Jump)

 signal Format: Instr_Format := R;

 signal Instr, Imm_Ext: unsigned (31 downto 0);

 signal PC, nPC, ReadReg1, ReadReg2, Reg_In: unsigned(31 downto 0);

 signal ALU_InA, ALU_InB, ALU_Result: unsigned(31 downto 0);

 signal ALU_Result_Save: unsigned(31 downto 0);

 signal ALUorMEM, RegW, FetchDorI, Writing, REGorIMM: std_logic := '0';

 signal REGorIMM_Save, ALUorMEM_Save: std_logic := '0';

 signal DR: unsigned(4 downto 0);

 signal State, nState : integer range 0 to 4 := 0;

 constant addi: unsigned(5 downto 0) := "001000"; -- 8

 constant andi: unsigned(5 downto 0) := "001100"; -- 12

 constant ori: unsigned(5 downto 0) := "001101"; -- 13

 constant lw: unsigned(5 downto 0) := "100011"; -- 35

 constant sw: unsigned(5 downto 0) := "101011"; -- 43

 constant beq: unsigned(5 downto 0) := "000100"; -- 4

 constant bne: unsigned(5 downto 0) := "000101"; -- 5

 constant jump: unsigned(5 downto 0) := "000010"; -- 2

 alias opcode: unsigned(5 downto 0) is Instr(31 downto 26);

 alias SR1: unsigned(4 downto 0) is Instr(25 downto 21);

 alias SR2: unsigned(4 downto 0) is Instr(20 downto 16);

 alias F_Code: unsigned(5 downto 0) is Instr(5 downto 0);

 alias NumShift: unsigned(4 downto 0) is Instr(10 downto 6);

 alias ImmField: unsigned (15 downto 0) is Instr(15 downto 0);

begin

 A1: Reg port map (CLK, RegW, DR, SR1, SR2, Reg_In, ReadReg1, ReadReg2);

 Imm_Ext <= x"FFFF" & Instr(15 downto 0) when Instr(15) = '1'

 else x"0000" & Instr(15 downto 0); -- Sign extend immediate field

 DR <= Instr(15 downto 11) when Format = R

 else Instr(20 downto 16); -- Destination Register MUX (MUX1)

 ALU_InA <= ReadReg1;

 ALU_InB <= Imm_Ext when REGorIMM_Save = '1' else ReadReg2; -- ALU MUX (MUX2)

 Reg_in <= Mem_Bus when ALUorMEM_Save = '1' else ALU_Result_Save; -- Data MUX

 Format <= R when Opcode = 0 else J when Opcode = 2 else I;

EE 460M Digital Systems Design Using VHDL Lab Manual

 Mem_Bus <= ReadReg2 when Writing = '1' else

 "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; -- drive memory bus only during writes

 ADDR <= PC when FetchDorI = '1' else ALU_Result_Save; --ADDR Mux

 process(State, PC, Instr, Format, F_Code, opcode, Op, ALU_InA, ALU_InB,

 Imm_Ext)

 begin

 FetchDorI <= '0'; CS <= '0'; WE <= '0'; RegW <= '0'; Writing <= '0';

 ALU_Result <= "00000000000000000000000000000000";

 npc <= pc; Op <= jr; REGorIMM <= '0'; ALUorMEM <= '0';

 case state is

 when 0 => --fetch instruction

 nPC <= PC + 1; CS <= '1'; nState <= 1;

 FetchDorI <= '1';

 when 1 =>

 nState <= 2; REGorIMM <= '0'; ALUorMEM <= '0';

 if Format = J then

 nPC <= "000000" & Instr(25 downto 0); nState <= 0; --jump, and finish

 elsif Format = R then -- register instructions

 if F_code = "100000" then Op <= add; -- add

 elsif F_code = "100010" then Op <= sub; -- subtract

 elsif F_code = "100100" then Op <= and1; -- and

 elsif F_code = "100101" then Op <= or1; -- or

 elsif F_code = "101010" then Op <= slt; -- set on less than

 elsif F_code = "000010" then Op <= shr; -- shift right

 elsif F_code = "000000" then Op <= shl; -- shift left

 elsif F_code = "001000" then Op <= jr; -- jump register

 end if;

 elsif Format = I then -- immediate instructions

 REGorIMM <= '1';

 if Opcode = lw or Opcode = sw or Opcode = addi then Op <= add;

 elsif Opcode = beq or Opcode = bne then Op <= sub; REGorIMM <= '0';

 elsif Opcode = andi then Op <= and1;

 elsif Opcode = ori then Op <= or1;

 end if;

 if Opcode = lw then ALUorMEM <= '1'; end if;

 end if;

 when 2 =>

 nState <= 3;

 if OpSave = and1 then ALU_Result <= ALU_InA and ALU_InB;

 elsif OpSave = or1 then ALU_Result <= ALU_InA or ALU_InB;

 elsif OpSave = add then ALU_Result <= ALU_InA + ALU_InB;

 elsif OpSave = sub then ALU_Result <= ALU_InA - ALU_InB;

 elsif OpSave = shr then ALU_Result <= ALU_InB srl to_integer(numshift);

 elsif OpSave = shl then ALU_Result <= ALU_InB sll to_integer(numshift);

 elsif OpSave = slt then -- set on less than

 if ALU_InA < ALU_InB then ALU_Result <= X"00000001";

 else ALU_Result <= X"00000000";

 end if;

 end if;

 if ((ALU_InA = ALU_InB) and Opcode = beq) or

 ((ALU_InA /= ALU_InB) and Opcode = bne) then

 nPC <= PC + Imm_Ext; nState <= 0;

 elsif opcode = bne or opcode = beq then nState <= 0;

 elsif OpSave = jr then nPC <= ALU_InA; nState <= 0;

 end if;

 when 3 =>

 nState <= 0;

 if Format = R or Opcode = addi or Opcode = andi or Opcode = ori then

EE 460M Digital Systems Design Using VHDL Lab Manual

 RegW <= '1';

 elsif Opcode = sw then CS <= '1'; WE <= '1'; Writing <= '1';

 elsif Opcode = lw then CS <= '1'; nState <= 4;

 end if;

 when 4 =>

 nState <= 0; CS <= '1';

 if Opcode = lw then RegW <= '1'; end if;

 end case;

 end process;

 process(CLK)

 begin

 if CLK = '1' and CLK'event then

 if rst = '1' then

 State <= 0;

 PC <= x"00000000";

 else

 State <= nState;

 PC <= nPC;

 end if;

 if State = 0 then Instr <= Mem_Bus; end if;

 if State = 1 then

 OpSave <= Op;

 REGorIMM_Save <= REGorIMM;

 ALUorMEM_Save <= ALUorMEM;

 end if;

 if State = 2 then ALU_Result_Save <= ALU_Result; end if;

 end if;

 end process;

end structure;

EE 460M Digital Systems Design Using VHDL Lab Manual

Register File (Figure 9-6 of the textbook)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity REG is

 port(CLK: in std_logic;

 RegW: in std_logic;

 DR, SR1, SR2: in unsigned(4 downto 0);

 Reg_In: in unsigned(31 downto 0);

 ReadReg1, ReadReg2: out unsigned(31 downto 0));

end REG;

architecture Behavioral of REG is

 type RAM is array (0 to 31) of unsigned(31 downto 0);

 signal Regs: RAM := (others => (others => '1')); -- set all reg bits to '1'

begin

 process(clk)

 begin

 if CLK = '1' and CLK'event then

 if RegW = '1' then

 Regs(to_integer(DR)) <= Reg_In;

 end if;

 end if;

 end process;

 ReadReg1 <= Regs(to_integer(SR1)); --asynchronous read

 ReadReg2 <= Regs(to_integer(SR2)); --asynchronous read

end Behavioral;

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #7B

Guideline
This lab can be done with a partner.

Objective
Extend the MIPS ISA by adding ARM-like instructions

Description
In this part of the lab, you will extend the basic MIPS processor you implemented in Part A so that it can execute new

instructions. The following table contains a summary of the new instructions you will be required to execute. Details of

each instruction and their encodings appear towards the end of this document.

Instruction Description

JAL Jump and Link

LUI Load Upper Immediate

MULT Multiply Word

MFHI Move from special register HI

MFLO Move from special register LO

ADD8 Byte-wise addition

RBIT Reverse bits in a word

REV Reverse bytes in a word

SADD Saturating ADD

SSUB Saturating Subtract

You will be modifying your processor to execute these instructions and testing your modifications using a test program

that is provided (the assembly language version of the test program is available at the end of this lab’s description and

also on Blackboard). The test program uses three switches and two buttons from the board to perform certain

operations and show certain results on the 7 segment display. The following table summarizes the functions and display

modes of the test program.

SW3 SW2 SW1 Task BTN1 BTN0 Value to Display on 7 segment

0 0 0
MULT $4, $5
MFLO $2
MFHI $3

0 0 lower 16 bits of $2

0 1 upper 16 bits of $2

1 0 lower 16 bits of $3

1 1 upper 16 bits of $3

0 0 1 ADD8 $2, $4, $5
0 0 lower 16 bits of $2

0 1 upper 16 bits of$2

0 1 0 LUI $2, imm
0 0 lower 16 bits of $2

0 1 upper 16 bits of$2

0 1 1 RBIT $2, $5
0 0 lower 16 bits of $2

0 1 upper 16 bits of$2

1 0 0 REV $2, $4
0 0 lower 16 bits of $2

0 1 upper 16 bits of$2

1 0 1 SADD $2, $4, $5 0 0 lower 16 bits of $2

EE 460M Digital Systems Design Using VHDL Lab Manual

Summary of Test Program
Three input switches from the board will be used to load a value into register $1. The assembly program will be running

in a loop and will be constantly looking at the value in $1. When the value in $1 changes, the program will jump to a

subroutine that performs the Task indicated in Table 2. The program will use JAL to jump to subroutines, so you should

make sure this instructions works perfectly. The subroutines use $4 and $5 which will be loaded with some constant

values. At the end of the subroutine, the program will continue looping, waiting for a change in $1. While the program is

looping, you should be able to press BTN1 and BTN0 in the appropriate combinations to display the value in the result

register $2 or $3 on the 7 segment display. The constants that are loaded into $4 and $5 for the computations will be

changed during checkouts to make sure your implementation works.

Your tasks
1. Modify your processor model from Part A – extend its functionality so that it can execute the instructions

summarized in Table 1 (and detailed in Table 3)

2. In order to run the test program, you have to interface three board switches to one of the registers in the register

file. Modify your processor such that SW2, SW1, and SW0 map to the LSB three bits of register $1. You are not

restricted to the MIPS interfaces when doing this. Register $1 will be used to branch to various sub-routines that will

test the new instructions.

3. In order to view the results from the test program, you need to interface two registers to the 7 segment display. As

shown in Table 2, register $2 is used for output in most cases except for the HI part of the multiply result. You should

write some code that takes BTN1 and BTN0 as inputs and then displays the upper or lower bytes of $2 or $3 on the

7-segment display as required.

4. Once you have made the necessary modification to your MIPS modules, you will translate the provided assembly

language test program to machine code.

5. Initialize your memory using the machine code

6. Synthesize the design and implement it on the board

Useful Information
This part of the lab has only an implementation requirement. However, simulation is recommended to debug your

design. If you are unable to implement, be ready with simulation waveforms/do-file/testbench for partial credit.

Submission Details
1. All your code

2. The machine language translation of the test assembly program

3. Bit file and UCF file, if any

Checkout details
1. Your modifications to the basic MIPS implementation will be looked at.

2. Run the test program that you have loaded into your memory and check that all the switches and buttons give

the expected result on the 7-segment display.

3. Change the constants in your test program and re-run the test.

0 1 upper 16 bits of $2

1 1 0 SSUB $2, $5, $4
0 0 lower 16 bits of $2

0 1 upper 16 bits of $2

EE 460M Digital Systems Design Using VHDL Lab Manual

EE 460M Digital Systems Design Using VHDL Lab Manual

Details of New Instructions

JAL Encoding

Format JAL Target

Description JAL is used for procedure calls. JAL Target puts the return address (PC+1) in the

register $31 and then goes to Target for the next instruction.

Operation $31 = PC + 1
New_PC = (PC & 0xf0000000) | (Target);

LUI Encoding

Format LUI $t, imm

Description The immediate value is shifted left 16 bits and stored in the register. The lower 16 bits

are zeroes.

Operation $t = imm << 16

MULT Encoding

Format MULT rs, rt

Description The 32-bit word value in reg rt is multiplied by the 32-bit value in reg rs, treating both

operands as signed values, to produce a 64-bit result. The low-order 32-bit word of

the result is placed into special register LO, and the high-order 32-bit word is placed

into special register HI.

Operation prod = rs[31:0] * rt[31:0]
LO = prod[31:0]
HI = prod[63:32]

MFHI Encoding

Format MFHI rd

Description The contents of special register HI are stored in the GPR rd

Operation rd � HI

EE 460M Digital Systems Design Using VHDL Lab Manual

MFLO Encoding

Format MFLO rd

Description The contents of special register LO are stored in the GPR rd

Operation Rd � LO

ADD8 Encoding

Format ADD8 rd, rs, rt

Description This perform byte-wise addition as illustrated below

Operation rd[31:24] = rs[31:24]+rt[31:24]
rd[23:16] = rs[23:16]+rt[23:16]
rd[15:8] = rs[15:8]+ rt[15:8]
rd[7:0] = rs[7:0]+ rt[7:0]

RBIT Encoding

Format RBIT rs, rt

Description Reverse the bits in a word

Operation for(i=0;i<32;i++){
rs[i]=rt[31-i]}

REV Encoding

Format REV rs, rt

Description Reverse the bytes in a word

Operation rs[31:24]=rt[7:0]
rs[23:16]=rt[15:8]
rs[15:8]=rt[23:16]
rs[7:0]=rt[31:24]

EE 460M Digital Systems Design Using VHDL Lab Manual

SADD Encoding

Format SADD rd, rs, rt

Description Saturating addition

Operation If ((rs + rt) > 2^32 – 1), then rd = 2^32 – 1;
else rd = rs + rt;

SSUB Encoding

Format SSUB rd, rs, rt

Description Saturating Subtraction

Operation if ((rs - rt)< 0) then rd = 0;
else rd = rs - rt;

EE 460M Digital Systems Design Using VHDL Lab Manual

Test Program

start:

 addi $6, $1, 0

 andi $8, $8, 0

 lui $4, 28672

 lui $5, 32767

 ori $8, $8, 11

loop:

 beq $6, $1, loop

 addi $6, $1, 0

 sll $7, $1, 1

 add $7, $8, $7

 jr $7

 j loop

call_table:

 jal operation0

 j loop

 jal operation1

 j loop

 jal operation2

 j loop

 jal operation3

 j loop

 jal operation4

 j loop

 jal operation5

 j loop

 jal operation6

 j loop

operation0:

 mult $4,$5

 mflo $2

 mfhi $3

 jr $31

operation1:

 add8 $2, $4, $5

 jr $31

operation2:

 lui $2, 4096

 jr $31

operation3:

 rbit $2, $5

 jr $31

operation4:

 rev $2, $4

 jr $31

operation5:

 sadd $2, $4, $5

 jr $31

operation6:

 ssub $2, $5, $4

 jr $31

EE 460M Digital Systems Design Using VHDL Lab Manual

APPENDIX

This section contains the lab documents which were created but are not currently being used. Some time in

future these may be needed.

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment – ARM Processor

Guideline
This lab is to be done individually. Each person does his/her own assignment and turns it in.

Introduction
In this lab, you will implement a basic ARM processor. ARM (Advanced RISC Machines) microprocessors are very popular

in the embedded systems market. The ARM is a 32-bit RISC architecture and features the main characteristics of such

systems:

• Large number of registers

• Load-store model of data processing

• Small number of addressing modes

• Uniform fixed length instructions

In addition, ARM provides some additional features:

• A Shifter on one input to the ALU

• Conditional execution of instructions

Pipeline: The ARM pipeline also consists of basically five stages: Fetch, Decode, Execute, MemoryAccess, RegisterWrite.

This is very similar to the MIPS pipeline.

Registers: There are 16 user registers (R0 through R15) and a status register (PSR), each 32 bits in size, in an ARM

machine. R0 through R12 are general purpose registers, while R13, R14 and R15 are special purpose. R13 is the stack

pointer (SP), R14 is the link register (LR) and R15 is the program counter (PC). The status register (PSR) contains the

condition code flags (like negative, zero, carry and overflow). The PC stores the address of the instruction to be executed

next. The LR stores the address of the instruction to return to, after completing a branch to a subroutine.

Instructions: There are several kinds of instructions in the ARM ISA, ranging from data movement instructions to logical

& arithmetic instructions to flow control instructions. But for this lab you will be implementing only a subset of the

instructions of the ARM ISA.

Objective
1. To design the given subset of an ARM ISA in VHDL and implement it on the lab board. [You are required to do

both simulation and synthesis for this lab.]

2. To convert the given assembly program (which uses the given subset of instructions) into its machine code,

initialize the processor memory with the program and execute the program on the processor on the board.

Background
Please briefly read through the ARM architecture manual and/or the ARM instruction set manual before proceeding, to

get an idea of the ARM architecture and instructions. One such document is available on Blackboard under “Labs ->

EE 460M Digital Systems Design Using VHDL Lab Manual

Other documents/files”.

EE 460M Digital Systems Design Using VHDL Lab Manual

Instructions to be implemented

Conditional Execution

The ARM instruction set is unique in that it allows the conditional execution of all the instructions (not just branch

instructions). All instructions contain a “condition field” which determines whether the CPU will execute them. The

general format of an ARM machine-language instruction is:

<Condition> <Opcode> <Operands>

The following figure shows the condition fields used by the ARM instruction set. You will only have to implement three

conditions: EQ, NE, AL for each instruction.

So, basically when executing each instruction, the processor checks for the flags in the PSR against the condition field in

the instruction. For example, if PSR has the ZERO flag set, then an instruction with a condition “NE” will not execute.

The following image gives the location of the flag bits in the PSR register.

 Branch

1 B

2 BL

Arithmetic &

Shift

3 ADD

4 ADD8

5 SADD

6 SSUB

 Comparisons

7 TEQ

 Movement

8 MOV

9 LDR

10 STR

 Others

11 SWP

12 RBIT

13 CLZ

EE 460M Digital Systems Design Using VHDL Lab Manual

Instruction Details
1. B (Branch) and BL (Branch and Link)

B

Format B{cond} label

Description Branch to label; This is used for jumps.

Operation PC = PC + sign_ext(Offset *4)

BL

Format BL{cond} label

Description Branch to label, save PC+4 in link register; This is used for subroutine calls.

Operation PC = PC + sign_extend(Offset *4)

LR = PC + 4

EE 460M Digital Systems Design Using VHDL Lab Manual

2. ADD, ADD8, SADD, SSUB, MOV, TEQ, RBIT, CLZ

Another interesting feature in the ARM architecture is the way shifts are handled. The ARM has a shifter on one of the

input paths to the ALU. There are no dedicated shift instructions. Shifting is done by providing a shift in the second

operand. You will implement logical left shift (LSL) and logical right shift (LSR). For example, the following ADD operation

shifts R1 left by 2, adds it to R2 and stores the result in R0:

ADD R0, R2, R1, LSL #2

EE 460M Digital Systems Design Using VHDL Lab Manual

The shift can be specified either as an immediate value or in a register. Implementing the shift feature is not mandatory,

but will earn you a bonus of 5%. You have to implement the shift only for ADD and MOV instructions.

ADD

Format ADD{cond}{S} Rd,Rn,Op2

Description Add two operands and store results in a register

Operation Rd = Rn+Op2

ADD8

Format ADD8{cond}{S} Rd, Rn, Op2

Description This perform byte-wise addition as illustrated below

Operation Rd[31:24] = Rn[31:24]+ Op2[31:24]

Rd[23:16] = Rn [23:16]+ Op2[23:16]

Rd[15:8] = Rn [15:8]+ Op2[15:8]

Rd[7:0] = Rn [7:0]+ Op2[7:0]

SADD

Format SADD{cond}{S} Rd, Rn, Op2

Description Saturating addition

Operation If ((Rn + Op2) > 232 – 1), then Rd = 232 – 1;

else Rd = Rn + Op2;

SSUB

Format SSUB{cond}{S} Rd, Rn, Op2

Description Saturating Subtraction

Operation if ((Rn – Op2) < 0) then Rd = 0;

else Rd = Rn – Op2;

MOV

Format MOV{cond}{S} Rd, Op2 (Note that Operand 1 is not used here)

Description Move data from Op2 to Rd

Operation Rd = Op2

TEQ

Format TEQ{cond}{S} Rd, Op2 (Note that Operand 1 is not used here)

Description Compare Rd and Op2

Operation PSR set based on (Rd == Op2)

RBIT

Format RBIT Rd, Op2 (Note that Operand 1 is not used here)

Description Reverse the bits in a word

Operation for(i=0;i<32;i++){

Rd[i]=Op2[31-i]}

EE 460M Digital Systems Design Using VHDL Lab Manual

CLZ

Format CLZ Rd, Op2 (Note that Operand 1 is not used here)

Description Count the leading zeros in a word

Operation Rd = number of leading zeros in Op2;

3. LDR and STR

LDR

Format LDR{cond} Rd, [Rn]

Description Load value from memory into Rd. The memory address is contained in a

register.

Operation Rd = mem[Rn]

STR

Format STR{cond} Rd, [Rn]

Description Store value in Rd into memory. The memory address is contained in a register.

Operation mem[Rn] = Rd

EE 460M Digital Systems Design Using VHDL Lab Manual

You don’t have to implement shift in the Load and Store instructions. Also, you don’t have to implement the

functionality of the Write Back bit. Implementing the functionality of the Byte/Word bit, Post/Pre indexing bit and

Up/Down bit is not mandatory (and if you don’t, the Offset part of the instruction is not used), but will earn you 5%

bonus. Look into the ARM manual on Blackboard for details of these.

EE 460M Digital Systems Design Using VHDL Lab Manual

4. SWP

SWP

Format SWP{cond} Rd, Rm, [Rn]

Description Swap contents of memory location pointed to by Rn with value in Rd.

Operation temp = mem[Rn];

mem[Rn] = Rm;

Rd = temp;

This implements actual SWAP if you make Rd=Rm

 You don’t have to implement the functionality of the B bit

Test program
You will test your VHDL model of the ARM processor using a test program that is provided (the assembly language

version of the test program is available on Blackboard). The test program uses three switches and two buttons from the

board to perform certain operations and show certain results on the 7 segment display. Table 2 summarizes the

functions and display modes of the test program.

SW

4

SW

3

SW

2

SW

1
Task BTN1 BTN0 Value to Display on 7 segment

0 0 0 0
ADD R2, R4, R5

ADD R3, R2, R4, LSL #4

0 0 lower 16 bits of R2

0 1 upper 16 bits of R2

1 0 lower 16 bits of R3

1 1 upper 16 bits of R3

0 0 0 1 ADD8 R2, R4, R5
0 0 lower 16 bits of R2

0 1 upper 16 bits of R2

0 0 1 0
SADD R2, R4, R5

SADD R3, R2, R4

0 0 lower 16 bits of R2

0 1 upper 16 bits of R2

1 0 lower 16 bits of R3

1 1 upper 16 bits of R3

0 0 1 1
SSUB R2, R5, R4

SSUB R3, R5, R4, LSR #1

0 0 lower 16 bits of R2

0 1 upper 16 bits of R2

1 0 lower 16 bits of R3

1 1 upper 16 bits of R3

EE 460M Digital Systems Design Using VHDL Lab Manual

0 1 0 0 MOV R2, R4
0 0 lower 16 bits of R2

0 1 upper 16 bits of R2

0 1 0 1 RBIT R2, R4
0 0 lower 16 bits of R2

0 1 upper 16 bits of R2

0 1 1 0 CLZ R3, R4
0 0 lower 16 bits of R3

0 1 upper 16 bits of R3

0 1 1 1

MOV R0, #0

ADD R0, R0, #1

SWP R2, R2, R0

0 0 lower 16 bits of R2

0 1 upper 16 bits of R2

1 0 0 0
STR R0, [R5]

LDR R2, [R5]

0 0 lower 16 bits of R2

0 1 upper 16 bits of R2

Four switches from the board will be used to load a value into register R1. The assembly program will be running in a

loop and will be constantly looking at the value in R1. When the value in R1 changes, the program will jump to a

subroutine that performs the Task indicated in the table above. The program will use BLEQ to jump to subroutines, so

you should make sure this instruction works perfectly. At the end of the subroutine, the program will continue looping,

waiting for a change in R1. While the program is looping, you should be able to press BTN1 and BTN0 in the appropriate

combinations to display the value in the result registers R2 or R3 on the 7 segment display. The constants that are

loaded into R4 and R5 for the computations should be chosen carefully to prove the functionality of the instructions you

implement.

Your tasks for this lab
7. Write a VHDL model for an ARM processor capable of executing the instructions listed in this document.

8. Convert the assembly language program into machine language. Then add these machine codes to the “memory”

block in your design (ie. initialize the memory of ARM with the test program).

9. Add a 7-segment display” block in your design (you can reuse this block from the previous labs). This block will take

BTN1 and BTN0 as inputs and then displays the upper or lower bytes of R2 or R3 on the 7-segment display as

required.

10. Modify the “register” block in your design to expose certain registers.

a. Map any four switches to the lower 4 bits of R1.

b. Expose R2 and R3 to the “7-segment display” block.

11. Simulate the model using ModelSim and observe the outputs on the waveforms.

12. Synthesize the design and implement it on the board.

Submission details
Submit the following things on Blackboard:

• VHDL codes

• Machine code of the assembly program

• Bit file and UCF file, if any

EE 460M Digital Systems Design Using VHDL Lab Manual

Checkout details
The following things will be checked during check-out:

• Correct functionality of the program on the board

• Your VHDL code

Some helpful explanations
1. You may not have the PSR implemented as a part of the register file. It can be just a signal/variable in the ARM

program.

2. The registers R13,R14 and R15 are the same as SP, LR and PC. You can keep these registers outside the register file, in

which case, the register file will only have 13 registers - R0 through R12.

3. The condition bits are different from the PSR flags. The condition bits (4 in number) are a part of the op-code of each

instruction. Their values will either be 0000 (for EQ), 0001 (for NE) or 1111 (for AL).

The PSR flags are the most significant 4 bits of the register called PSR. They are status flags and are by instructions. Also,

they are checked by the instructions depending on the condition bits in the instruction. There are four flags: N

(negative), Z (zero), C (carry), V(overflow).

4. The condition flags work like this:

Let us say that the assembly instruction is : ADDEQ R1, R2, R3

The machine code for this instruction will have the condition bits (bits 31 thru 28) as "0000". When the processor

encounters this instruction, it sees the condition bits. Since they are "0000", it needs to check for an equality condition.

So, it checks the PSR "Z" bit. If the "Z" bit is 1 (meaning that some instruction prior to this instruction resulted in a ZERO),

then the processor executes the ADD instruction (R1 <= R2 + R3). If the "Z" bit is "0", then the processor does not

execute the ADD instruction.

5. The "S" bit works like this:

Let us say that the assembly instruction is : ADDS R1, R2, R3

The machine code for this instruction will have the S bit set [Also, the condition bits (bits 31 thru 28) will be "1111"

because the instruction is expected to run unconditionally]. When the processor encounters this instruction, it sees the

condition bits. Since they are "1111", it decides that it has to execute the instruction without looking at the PSR. Then, it

executed the ADD instruction (R1 <= R2 + R3). And then it sets the PSR accordingly (ie. if the ADD instruction results in a

zero value, it sets the "z" bit in the PSR. if the ADD instruction results in an overflow, it sets the "V" bit in the PSR. and so

on).

6. While choosing the values in the test program, use the values that actually test the behavior of an instruction. For

example, for SADD, don’t use smaller numbers whose sum does not overflow. Use large numbers. Since you can not

directly move very large numbers into registers, add some instructions in the test code. For example, you can move 0x01

in a register and apply RBIT instruction on it. This will make its magnitude huge.

EE 460M Digital Systems Design Using VHDL Lab Manual

7. For branch instructions, you need to consider your arguments to be signed. For all other instructions, you may use

unsigned numbers to operate on. Specifically, for the SADD and the SSUB instructions, the operands should be assumed

to be UNSIGNED. So, there are no negative numbers. The bounds are 0 to ((2^32) - 1).

8. You may choose not to simulate in this lab. If your code works fine on the board, you will get full credit. But if you

want partial credit for something that does not work, please be ready with simulation waveforms during checkout. Also,

if you plan to do simulation only, then you may get rid of the seven segment display block in your design.

9. This lab is slightly open ended. Please make sure you understand what is required and what is not. Do not implement

any unnecessary features. Do not get into managing error conditions. Keep it simple. You can start from the MIPS code

from Lab 7a and modify it by adding some extra states. You may modify the given test program according to your needs.

10. Many ARM features have been modified for the purpose for creating this lab. For example, it uses different opcodes

from an actual ARM processor. Please follow the descriptions used in this document. You can use other documents to

help improve understanding of your concepts.

11. You may choose not to increment PC by 4 to move to the next instruction. You can increment it by 1, if that is easier.

But it is important to understand that an actual ARM would always do PC=PC+4.

12. For the SWP instruction, you will swap the contents of a memory location with the contents of a register. Since the

memory contains your instructions (machine level program code) and you don’t want to corrupt a memory with some

arbitrary data (from a register), you can use a memory address where there are no instructions. For example, if your

instructions are upto address 105, increase the size of the memory to say 106 and in the SWP instruction, swap the

contents of location 106 with a register’s contents.

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment – Bowling Score Keeper

Objective:

Design a digital system to keep score for a bowling game. The score should be displayed on a 10-bit register in

BCD form rather than in binary. You need to use a testbench to test your design in Modelsim. Also, you are

not required to implement your code on the board.

Problem:

The digital system shown below will be used to keep score for a bowling game. The score keeping system will

score the game according to the following (regular) rules of bowling: A game of bowling is divided into ten

frames. During each frame, the player gets two tries to knock down all of the bowling pins. At the beginning of

a frame, ten pins are set up. If the bowler knocks all ten pins down on his or her first throw, then the frame is

scored as a strike. If some (or all) of the pins remain standing after the first throw, the bowler gets a second

try. If the bowler knocks down all of the pins on the second try, the frame is scored as a spare. Otherwise, the

frame is scored as the total number of pins knocked down during that frame.

The total score for a game is the sum of the number of pins knocked down plus bonuses for scoring strikes and

spares. A strike is worth 10 points (for knocking down all ten pins) plus the number of pins knocked down on

the next two throws (not frames). A spare is worth 10 points (for knocking down ten pins) plus the number of

pins knocked down on the next throw. If the bowler gets a spare on the tenth frame, then he/she gets one

more throw. The number of pins knocked down from this extra throw are added to the current score to get

the final score. If the bowler gets a strike on the last frame, then he/she gets two more throws, and the

number of pins knocked down are added to the score. If the bowler gets a strike in frame 9 and 10, then

he/she also gets two more throws, but the score from the first bonus throw is added into the total twice (once

for the strike in frame 9, once for the strike in frame 10), and the second bonus throw is added in once. The

maximum score for a perfect game (all strikes) is 300. An example of bowling game scoring follows:

EE 460M Digital Systems Design Using VHDL Lab Manual

 Frame First Second Result Score

 Throw Throw

 1 3 4 7 7

 2 5 5 spare 7 + 10 = 17

 3 7 1 8 17 + 7 (bonus for spare in 2) + 8 = 32

 87

 9 10 - strike 87 + 10 = 97

 10 10 - strike 97 + 10 (for this throw) + 10 (bonus for strike in 9)

 - 6 3 - 117 + 6 (bonus for strike in 9)

 + 6 (bonus for strike in 10)

 + 3 (bonus for strike in 10) = 132

For additional resources with respect to keeping the bowling score, please visit the following websites which

provides a java applet for keeping score.

http://www.bowlinggenius.com/

The score keeping system has the form shown above diagram (You are free to design your own system for

keeping score, not necessarily follow the structure given in the diagram). The control network has three

inputs: APD (All Pins Down), LF (Last Frame), and UPD (update). APD is 1 if the bowler has knocked all ten pins

down (in either one or two throws). LF is 1 if the frame counter is in state 9 (frame 10). UPD is a signal to the

network that causes it to update the score. UPD is 1 for exactly one clock cycle after every throw the bowler

makes. There are many clock cycles between updates.

The control network has four outputs: AD, NF, FT, and Done. N represents the number of pins knocked down

on the current throw. If AD is 1, N will be added to the score register on the rising edge of the next clock. If NF

is 1, the frame counter will increment on the rising edge of the next clock. FT is 1 when the first throw in a

frame is made. Done should be set to 1 when all ten frames and bonus throws, if applicable, are complete.

Use a 10-bit score register and keep the score in BCD form rather than in binary. That is, a score of 197 would

be represented as 01 1001 0111 . When ADD = 1 and the register is clocked, N should be added to the

register. N is a 4-bit binary number in the range 0 through 10. Use a 4-bit BCD counter module for the middle

BCD digit. Note that in the lower four bits, you will add a binary number to a BCD digit to give a BCD digit and a

carry.

IMPORTANT NOTE: In the real bowling game, you should ideally display the correct score at the end of every

throw. However, we only require you to get the final score right (after all 10 throws + bonus throws are done).

So you don’t have to display the perfect score after every throw except the last possible one.

Simulate your code with the following test scenario (test bench) as shown in the table below:

EE 460M Digital Systems Design Using VHDL Lab Manual

Frame -> 1 2 3 4 5 6 7 8 9 10 Bonus Total

Score

=

201

First Throw 10 10 7 9 9 10 7 10 9 10 10

Second Throw - - 3 1 0 3 1 7

Score 27 47 66 85 94 114 134 154 174 201

Create your own additional test benches. We will be testing with other test benches also. So you need to

make sure all corner cases are covered.

Online Submission:

You must submit the VHDL source code, testbench and waveforms (showing the above test scenario) in

Blackboard. If you have implemented the design on the board, then we also require you to submit the place

and route report as well.

Demo Submission:

1. Annotated simulation waveform showing all the pins down in every throw.

2. All source code.

