
User’s Manual

FoCs
Formal Checkers - a Productivity
Tool

Version 1.0
with Sugar2 support (EDL flavor)

Formal Methods and Technologies Group
IBM Research Lab in Haifa
April 2003

Notices

FoCs User’s Manual
Date modified April 2002
For information regarding FoCs, contact:Gil Shapir (shapir@il.ibm.com)

Tel: +972-4-8296258

International Business Machines Corporation provides this publication “as is” without warranty of any kind, either express or
implied. Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore this statement
may not apply to you.
This publication may contain technical inaccuracies or typographical errors. While every precaution has been taken in the
preparation of this document, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/
or changes in the product(s) and/or the program(s) described in this publication at any time.
It is possible that this publication may contain references to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, programming, or services in your country.
All trademarks and service marks are trademarks of their respective owners.

 Copyright IBM Research Lab in Haifa 2000-2003. All rights reserved.

3

Table of Contents

 CHAPTER 1 Introduction...5

1.1 Overview... 5
1.2 About This Manual ... 6

 CHAPTER 2 Installation and Setup ...8

2.1 Installation .. 8
2.2 Running FoCs ... 9

 CHAPTER 3 Linking Checkers with your Design.. 11

3.1 Introduction... 11
3.2 Signal Mapping... 12
3.3 Linkage ... 17

 CHAPTER 4 Tutorial ..21

4.1 Introduction... 21
4.2 Design Description ... 21
4.3 The Rules File... 22
4.4 Initial Setup for a Working Environment ... 25
4.5 Generating Checkers... 25

 CHAPTER 5 Customizing FoCs Settings ..29

5.1 Overview... 29
5.2 Main Tab ... 29
5.3 Clock and Reset Tab ... 30
5.4 Checker Generation Style Tab .. 32
5.5 Reporting Tab ... 34
5.6 Signal Mapping Tab.. 48

 CHAPTER 6 The Sugar Specification Language ...50

6.1 Introduction... 50
6.2 Getting Started with Sugar.. 51
6.3 The Building Blocks of a Sugar Formula ... 59
6.4 Writing a Rules File .. 64
6.5 State Machines... 70

4

 CHAPTER 7 Using FoCs for Functional Coverage Analysis 82

7.1 Functional Coverage ... 82

 CHAPTER 8 Defining Bugspray Events .. 84
8.1 Introduction.. 84
8.2 Syntax... 84
8.3 Events... 85

 CHAPTER 9 FoCs for RuleBase Users ... 90

9.1 Tips for Users of RuleBase ... 90

 CHAPTER 10 Appendix A - Checker Code Examples 92
10.1 Examples of Checker Code in Verilog and VHDL.............................. 92
10.2 Checker Code in Verilog.. 92
10.3 Checker Code in VHDL... 94

 CHAPTER 11 Appendix B - Common Error Messages 102

11.1 Common FoCs Error Messages ... 102

FoCs: Formal Checkers 5

CHAPTER 1 Introduction

1.1 Overview
FoCs (short for Formal Checkers, pronounced “fox”) is a productivity tool that greatly
aids design and verification engineers in the complex, costly task of developing
simulation test benches.

FoCs automatically generates simulation checkers, also known as monitors, from
properties specified in the language Sugar 2.0†. These properties, also called “rules”
or “assertions”, describe the legal behaviors of the design under test. Typically, the
user of FoCs derives properties from the design specification documents where they
are written informally in English, and writes them as Sugar formulas. Using FoCs,
these properties are translated into checker code in the desired target language—
Verilog or VHDL‡. The checker code is then connected to the simulation
environment. During simulation, the checkers track and report violations of the
properties.

†. “Sugar” is an industry-standard language for assertion-based verification. It was selected as a basis for
an IEEE standard by Accellera on April 22, 2002.

‡. In the future, FoCs will also generate checkers in C/C++.

 CHAPTER 1

6 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

As an example of the power of FoCs, consider an arbiter which must abide by the
following property: upon the completion of five consecutive cycles where the request
signal is asserted and the acknowledge signal not asserted, the busy signal should be
asserted.

The Sugar formulation for this property is:

• {[*]; {request & ! acknowledge}[5]}|-> {busy_flag}

Once this property is fed into FoCs, the tool produces a corresponding VHDL or
Verilog checker that can be integrated into a simulation environment and monitor the
design behavior on a cycle-by-cycle basis for violation of the property. It is often the
case that a one-line or two-line Sugar property is automatically translated by FoCs to a
checker which spans hundreds of lines of HDL code†. The benefit—in terms of
programmer time that would have otherwise been spent in manually coding the
checker—is evident. There are other benefits to using FoCs—such as reduced
debugging time, portability, and reuse of properties. The checking code produced by
FoCs is synthesizable, so this code can be used in emulation as well. By virtue of these
advantages, FoCs increases engineering productivity in a very notable manner.

A complimentary application of FoCs is the generation of coverage monitors for
coverage analysis. When FoCs is used for this purpose, the user specifies
combinations and/or sequences of events which he or she wants covered in simulation.
FoCs then automatically generates a checker to track the occurrence of these events
during simulation.

For further information on FoCs, see the FoCs website at

 www.haifa.il.ibm.com/projects/verification/focs/index.html

1.2 About This Manual
This manual is intended to serve as a guide for using FoCs (including the definition of
design properties using Sugar). The manual is organized as follows:
• Chapter 1 Introduction – introduces the FoCs tool.

†. The checker produced by FoCs for the above Sugar property is included, for reference, in Appendix
A.

www.haifa.il.ibm.com/projects/verification/focs/index.html

Introduction

FoCs: a Formal Checker Tool 7

• Chapter 2 Installation and Setup – explains how to install and set up the FoCs
tool.

• Chapter 3 Linking the Checkers with your Design – explains how to link the
checkers with the design you are testing.

• Chapter 4 Tutorial – guides you through a short example, where you can get
hands-on experience in creating checkers using FoCs.

• Chapter 5 Sugar – provides details on how to start using the Sugar and EDL spec-
ification languages to specify the design properties, including the structure of the
rules file, creating formulas, expressions, and satellites. This chapter also presents
examples of real-life formulas that can be used with FoCs.

• Chapter 6 Customizing FoCs Settings – describes the settings and tabs that can
be customized for your use.

• Chapter 7 Using FoCs for Functional Coverage – explains how to enhance the
quality of tests by providing a means for measuring test coverage.

• Chapter 8 Defining Bugspray Events – for users who want to use FoCs with
Bugspray instrumentation. Explains how to define Bugspray events in the FoCs
rules file.

• Chapter 9 FoCs for RuleBase Users – explains the methodology of working with
FoCs with properties used for Formal Verification.

• Appendix A – Shows examples of checker code in VHDL and Verilog.
• Appendix B – Documents and explains common error messages.

FoCs: Formal Checkers 8

CHAPTER 2 Installation and Setup

2.1 Installation
This section explains how to install the FoCs tool and get it up and running.

If FoCs is not already installed on your computer or network, proceed as follows:
1. Create a new directory and copy the installation file focs.tar.gz into the directory.
2. Type the command gzip -d focs.tar and press Enter.
3. Type the command tar xvf focs.tar and press Enter.
4. Type the command rm focs.tar and press Enter.

This will unzip the tar file and copy the installation files into their appropriate
location.

2.1.1 Personal Setup
To customize FoCs for your individual environment, you need to set an environment
variable and create an alias for FoCs.

The environment variable FOCS_DIR should point to the FoCs installation directory.
In csh: setenv FOCS_DIR the_installation_directory
In ksh: export FOCS_DIR=the_installation_directory

Installation and Setup

FoCs: Formal Checkers 9

Create an alias “focs” for $FOCS_DIR/focs as follows:
In csh: alias focs ‘$FOCS_DIR/focs’

or
add $FOCS_DIR to your search path.

2.2 Running FoCs
The following sections provide tips on how to begin working with FoCs.

2.2.1 Checker Generation
Before you begin, you should create a working directory from which you run FoCs.To
begin using the FoCs tool:
1. Type the command: focs
2. If this is your first FoCs session in this directory, you have to set up FoCs for your

project. Click Settings to open the Settings dialog.
3. Select the target language (VHDL or Verilog), the target simulator (only for

VHDL), the clock signal name, and the reset signal name (unless you ask FoCs to
generate an internal reset).

4. Select the rules file—the file in which you write your rules. The language in which
you specify rules (Sugar) is described in Chapter 4 of this guide.

5. You can browse through the other Settings tabs and fields if you want to have more
control over the generation process. Use the tool-tips to see short field descriptions.

6. When you are done, close the Settings dialog and return to the main window.
7. Select a rule to be translated into a checker and click Generate. Errors are reported

in the Messages window below. If generation is successful, the checker filename
will appear in the Messages window.

8. If you wish to translate several rules into one checker file, select these rules (using
control/mouse-button or shift/mouse-button or the All button) and press Generate.
You will be asked to provide a name for the checker file, and for the entity name if
the generated checker is in VHDL.

 CHAPTER 2

10 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

2.2.2 Batch Mode
Checkers can also be generated by the command line without invoking the GUI. To
generate a checker for a specific rule, you must type in the command line: focs -
batch <rule name>. To generate a checker for all rules in the rules file, you must type
in the command line: focs -batch all. To generate several rules, you must type in the
command line: focs -batch <rules names>. In this case, the settings for the generated
checker are those defined in the file focs.setup. The best way to update this file is by
defining the settings through the GUI. When exiting FoCs, the settings are saved to
this file. You can also use the following flags in the batch mode:

focs -batch <rule name or rules names or all> -rule file> -o <output_file_name>

-s <setup_file_name>.

Flag Explanation

-r This flag reads the rule file from the command line instead of
reading the rule file from the setup file

-o This flag gives a specific name for the output file (checker
name).

 -s This flag reads the setup file from the command line instead
of reading the default setup file focs.setup (from the current
directory).

FoCs: Formal Checkers 11

CHAPTER 3 Linking Checkers with your
Design

3.1 Introduction
In order to monitor design behavior during simulation, the generated checkers must
become part of the simulated model. This occurs through the following three steps:
1. Linkage

The checker module (in Verilog) or entity/architecture (in VHDL) must be
compiled and linked to the design under test. The actual commands are specific to
the compilation/simulation environment, and are not within the scope of this
document.

2. Instantiation
A call to the module (in Verilog) or instantiation of the entity (in VHDL) must
(usually) be included in the design. FoCs assists in this step by generating the
calling statements.

3. Signal Connection
The checker signals must be connected to the real design signals. The solution
depends on the language and on the simulation environment. FoCs provides a
standard language solution for port mapping, and specific signal-connection
solutions for several simulations.

 CHAPTER 3

12 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

In the following sections, we describe the mapping method and linkage.

3.2 Signal Mapping
To keep your formulas simple and readable, you can use short and meaningful signal
names. You can then map these simple names to the real signal names. FoCs will map
those signals to real ports if an instantiation statement was created, when a mapping
for MTI is defined, or when Bugspray is used.

For example, use the name request rather than BXX_ARB_REQ. You can create a
mapping file in your working directory and let FoCs map the aliases to the real names.
The basic format of the mapping file is a list of pairs of signal names, one pair in each
line.

alias1 realname1
alias2 realname2
...

For example:
request BXX_ARB_REQ
signal1 /MY_DESIGN/BLOCK1/BLOCK11/SIGNAL1

You should define the deliminators according to your mapping option, for example,
dots for port mapping or slashes for MTI Signal Spy.

The mapping file should be pointed to by Settings/SignalMapping/MappingFile.

3.2.0.1 Nested Design Signals

If design signals are nested and all signals are declared in the same entity, it is possible
to define the Design Signals Prefix parameter in the settings options, under Signal
Mapping. The value of this field is added to every design signal that appears in the
mapping file. In case of Automatic Mapping, where the port name is considered to be
the corresponding design signal name, the Design Signals Prefix is added to all port
names that appear in the checkers entity (see Section 3.2.0.2 on page 14).

For example:

Design Signals Prefix is defined to: design.buf

Linking Checkers with your Design

FoCs: Formal Checkers 13

content of file mapping.dat :

 clk clock
 rec receive
 trans transmit

Is equivalent to:

 clk design.buf.clock;
 rec design.buf.receive;
 trans design.buf.transmit;
To map ports to signals that appear in different parts of the design (the signals are
nested, but the path is different from signal to signal), the following syntax exists in
the file mapping.dat:

 #path < path for the signal >

All of the signals that appear after this line, and until the next line with the same
syntax, will receive the string in arrow brackets (<>) as a subpath, in addition to the
global path defined by a environment variable. It is possible to use this syntax without
defining a global path.

Example 1:

Design Signals Prefix is defined to: design

content of file mapping.dat:
 #path buf_1
 clk clock
 rec receive
 #path buf_2
 trans transmit

Is equivalent to:

 clk design.buf_1.clock;
 rec design.buf_1.receive;

 CHAPTER 3

14 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 trans design.buf_2.transmit;
Example 2:

Design signals Prefix is undefined.

content of file mapping.dat:

 #path design.buf_1
 clk clock
 rec receive
 #path design.buf_2
 trans transmit
Is equivalent to:
 clk design.buf_1.clock;
 rec design.buf_1.receive;
 trans design.buf_2.transmit;

3.2.0.2 Automatic Signal Mapping

There is one more possibility to map a port signal. If the port signals have the same
names as the signals in the design and are not nested or have the common path, they
can be mapped by defining Warn Incomplete Mapping to No (in the Settings options,
under Signal Mapping), and defining Design Signals Prefix to the path needed.

In this case, every port name in the checker that does not appear in the mapping file
(or if a mapping file does not exist at all) will be mapped to the signal with the same
name and with the path defined by Design Signals Prefix. A mapping that is defined in
a mapping file, overrides the Automatic Mapping. As before, defining the path is
optional.

Example 1:

Warn Incomplete Mapping No

Design Signals Prefix design

content of mapping.dat

 #path buf
 clk clock

Linking Checkers with your Design

FoCs: Formal Checkers 15

 checker ports : clk, rec, trans
Is equivalent to:

 clk design.buf.clock;
 rec design.rec;
 trans design.trans;

Example 2:

Warn Incomplete Mapping No

Design signals Prefix is undefined

file mapping.dat doesn’t exist

checker ports : clk, rec, trans

Is equivalent to:
 clk clk;
 rec rec;
 trans trans;

Example 3:

File mapping.dat doesn’t exist

Warn Incomplete Mapping No

Design signals Prefix design

Is equivalent to:
 clk design.clk;
 rec design.rec;
 trans design.trans;

 CHAPTER 3

16 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

3.2.0.3 Using Hierarchical Signal Names

It is possible to use hierarchical signal names when writing Sugar formulas. For such
signals, FoCs will automatically create a unique, non hierarchal signal name, and map
it to the hierarchical name.

For example, it is possible to write the formula:

formula
{

always(u1.u2.aa)
}

In this case, FoCs will generate a checker signal named focs_u1_u2_aa, and a
mapping between it and u1.u2.aa.

If a design signal prefix is defined, it will be added to the signals mapping. In the
previous example, if we had design signal prefix set to main we would get the
mapping:

focs_u1_u2_aa => main..u1.u2.aa

For this kind of mapping, “Automatic Mapping” should be chosen, i.e., “Warn
Incomplete Mapping” should be set to “No”.

It is possible to override the default mapping that is created by defining a different
mapping for the signal name that was created in the mapping.dat file.

In the above example, it is possible to define in the file mapping.dat the following
mapping:
focs_u1_u2_aa "design.my_block.aa"

3.2.0.4 Mapping Vectors

When a checker port is a vector, the signal that will be mapped to it should also be a
vector. In the file mapping.dat, the syntax for vector is:
vector_name(index1..index2)

Linking Checkers with your Design

FoCs: Formal Checkers 17

This is a syntax only for design signals because the range of a checker port is known
(the size of design vector has to correspond to the appropriate checker port).

Example:

content of file mapping.dat:
 #path buf_1
 clk clock
 rec "receive"
 #path buf_2
 trans transmit
 bus "vector(10..41)"

Where “bus” is the port in the checker which is vector 0..31, the above is equivalent
to:
 clk buf_1.clock;
 rec buf_1.receive;
 trans buf_2.transmit;
 bus buf_2.vector(10..41);

If the range of the vector is not defined, the range of the checker port will be used. All
the options that were discussed in the previous subsections are relevant for both
vectors and signals.

3.3 Linkage
The following sections discuss linkage, which describes how to link the generated
checkers with the design for several simulation environments.

3.3.1 Verilog
By default, two files are generated—the checker module and a file that contains a call
to this module. You should embed the call statement in the design. The actual
parameters in the call statement are the design signal names mentioned in the

 CHAPTER 3

18 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

formulas. If a name is mapped, as described in the Signal Mapping section above, the
post-mapping name will be used as an actual parameter in the call statement.

You can choose to generate a bare Verilog by using Settings/GenerationStyle/
GenerateModule=NO. In this case, the checker will not be encapsulated in a module
and you will have to embed its body in the design.

3.3.2 Pure VHDL
By default, three files are generated—the checker entity+architecture, a file that
contains a component statement, and a file that contains an instantiation statement.
You should embed the latter two statements in the design (automatically, if possible).
The actual parameters in the port map of the instantiation statement are the design
signal names mentioned in the formulas. If a name is mapped, as described in the
Signal Mapping section above, the post-mapping name will be used in the
instantiation.

3.3.3 Bugspray (IBM only)
The generated checker contains instrumentation directives that help Bugspray link the
checker to the design and connect the checker signals to the design signals. The
component and instantiation statements are not required and are not generated.
Settings/GenerationStyle/DesignEntityName must specify the design entity to which
the checkers refer. Port mapping names are used in Bugspray “ --!! inputs” section.

3.3.4 Model Sim®
Three files are generated—the checker entity+architecture, a file that contains a
component statement and a file that contains an instantiation statement. You should
embed the latter two statements in the design.

There are three possible signal mapping methods, controlled by Settings/
SignalMapping/MappingMethod. If you choose None, the generated checker will be
regarded as a Pure VHDL checker and linked to the design as such (see above). We
recommend that you choose None. If force freeze or signal spy is used, appropriate
mapping directives will be added to the generated checker. In the case of force-freeze,
the directives are written to a separate file, with the extension “mon” (shortcut for
monitor). When using signal spy, every design signal name must be double quoted

Linking Checkers with your Design

FoCs: Formal Checkers 19

except for generic ports, described in the next section. This is because signal spy
mapping deals with strings.

3.3.4.1 Signal Spy Mapping Using Generic Ports

It is possible to define a mapping from signals to generic ports.

To map a signal to a generic port, simply write the name of the generic port, in the
mapping file, without double quotes. It is also possible to use a concatenation of
strings, using generic ports (exactly as you do when applying signal spy on your
VHDL).

For example:

 aa,bb,cc are checker ports.

 /main/u1/aa, main/u2/bb, main/u2/cc are design-under-test signals

 to which we want to map checker ports (correspondingly).

Two examples of possible mappings FoCs can generate:

 a. without generic ports:

 init_signal_spy("aa", "/main/u1/aa");
 init_signal_spy("bb", "/main/u2/bb");
 init_signal_spy("cc", "/main/u2/cc");
 b. with generic ports:

 generic (
 x : STRING := "";
 y : STRING := "") ;

 init_signal_spy("aa", "/main/u" & x & "/aa");
 init_signal_spy("bb", "/main/u" & y & "/bb");
 init_signal_spy("cc", "/main/u" & y & "/cc");
It is the user’s responsibility to set x to be “1” and y to be “2” in checker
instantiation.

 CHAPTER 3

20 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

* Note: two mappings are give the same result under condition x = "1" and y =
"2".

Mapping file for (a) - without generic ports:

 aa "/main/u1/aa"
 bb "/main/u2/bb"
 cc "/main/u2/cc"

Mapping file for (b) - with generic ports:

 aa "/main/u" & x & "/aa"
 bb "/main/u" & y & "/bb"
 cc "/main/u" & y & "/cc"
* Note: x and y appear in mapping file without double quotes so that they are
interpreted by FoCs as generic ports.

For more information about force freeze and signal spy, see the MTI documentation.
The directives are derived from the mapping mechanisms described in the Signal
Mapping section above. This means that you have to provide a mapping file and/or
use the Design Signal Prefix option.

If the mapping method is something other than None, the generated entity, component,
and instantiation have an almost empty port map because the actual signal hooking is
done through the special directives. Only the clock and reset signals are explicitly
referenced.

FoCs: Formal Checkers 21

CHAPTER 4 Tutorial

4.1 Introduction
This chapter guides you through an example of a simple design and how FoCs can be
used to enhance its verification productivity. The tutorial presents a small design
named BUF and a list of rules which the design must abide by, and shows you how to
generate checkers from these rules.

4.2 Design Description
BUF is a design block that buffers a word of data (32 bits) sent by a sender to a
receiver. It has two control inputs, two control outputs, and a data bus on each side, as
shown in the block diagram below:

 CHAPTER 4

22 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

Communication (on both sides) takes place by means of a four-phase handshaking as
follows:

When the sender has data to send to the receiver, it initiates a transfer by putting the
data on the data bus and asserting StoB_REQ (server to buffer request). If BUF is
free, it reads the data and asserts BtoS_ACK (buffer to server acknowledge). Otherwise,
the sender waits. After seeing BtoS_ACK, the sender may release the data bus and
deassert StoB_REQ. To conclude the transaction, BUF deasserts BtoS_ACK.
When BUF has data, it initiates a transfer to the receiver by putting the data on the
data bus and asserting BtoR_REQ (buffer to receiver request). If the receiver is ready, it
reads the data and asserts RtoB_ACK (receiver to buffer acknowledge). Otherwise,
BUF waits. After seeing RtoB_ACK, BUF may release the data bus and deassert
BtoR_REQ. To conclude the transaction, the receiver deasserts RtoB_ACK.

4.3 The Rules File
For the tutorial, a rules file with some rules regarding the BUF design has already
been created, and can be found at: $FOCS_DIR/tutorial/rules.

The rules are written in Sugar. See Chapter CHAPTER 6: The Sugar Specification
Language for more details.

The rules file contains the following rules:
vunit ack_interleaving {
 assert "No overflow: RTOB_ACK is asserted between any two BTOS_ACK
assertions"

BUF ReceiverSender

DI(0..31) DO(0..31)

StoB_REQ

BtoS_ACK

BtoR_REQ

RtoB_ACK

Tutorial

FoCs: Formal Checkers 23

 { [*] ; !RST & rose(BTOS_ACK) ; true }(rose(RTOB_ACK) before
rose(BTOS_ACK));

 assert "No underflow: BTOS_ACK is asserted between any two RTOB_ACK
assertions"
 { [*] ; !RST & rose(RTOB_ACK) ; true }(rose(BTOS_ACK) before
rose(RTOB_ACK));

}

vunit four_phase_handshake_left{
 assert "A request can not be raised when ack is high "
 never{ [*] ; !STOB_REQ & BTOS_ACK ; STOB_REQ };

 assert "A request can not be lowered when ack is low"
 never{ [*] ; STOB_REQ & !BTOS_ACK ; !STOB_REQ };

 assert "An acknowledge can not be raised when req is low"
 never{ [*] ; !BTOS_ACK & !STOB_REQ ; BTOS_ACK };

 assert "An acknowledge can not be lowered when req is high"
 never{ [*] ; BTOS_ACK & STOB_REQ ; !BTOS_ACK };

}

 CHAPTER 4

24 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

vunit four_phase_handshake_right{

 assert "A request can not be raised when ack is high"
 never{ [*] ; !BTOR_REQ & RTOB_ACK ; BTOR_REQ };

 assert "A request can not be lowered when ack is low"
 never{ [*] ; BTOR_REQ & !RTOB_ACK ; !BTOR_REQ };

 assert "An acknowledge can not be raised when req is low"
 never{ [*] ; !RTOB_ACK & !BTOR_REQ ; RTOB_ACK };

 assert "An acknowledge can not be lowered when req is high"
never{ [*] ; RTOB_ACK & BTOR_REQ ; !RTOB_ACK };

}

vunit checking_data{
 VAR tmp(0..31):boolean;
 ASSIGN init(tmp(0..31)) := 0;
 ASSIGN next(tmp(0..31)) :=
 if rose(BTOS_ACK) then DI(0..31)
 else tmp(0..31)
 endif;

Tutorial

FoCs: Formal Checkers 25

 assert "The data sent to the receiver is the same data received
from the sender in the last write"
 { [*] ; !RST & rose(RTOB_ACK) }(DO(0..31) = tmp(0..31));

}

4.4 Initial Setup for a Working Environment
If you are running FoCs for the first time:
1. Add the following setting to your .cshrc file (or the shell with which you are work-

ing):

setenv FOCS_DIR location_of_focs_executable

alias focs $FOCS_DIR/focs

2. Create a directory called focs_tutorial.
3. Copy $FOCS_DIR/tutorial/rules into your focs_tutorial directory.

The rules file includes four rules about BUF.
4. Invoke the FoCs GUI by typing focs.

4.5 Generating Checkers
The FoCS GUI has three different windows:
• Rules window – displays a list of rule names from the rule file (select rule file

from the settings window).
• Formulas window – displays all formulas from the selected rules in the rules win-

dow.
• Messages window – displays all relevant messages from FoCs.

The following is a screenshot from the tutorial.

 CHAPTER 4

26 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

To display the Settings window:
1. Click Settings.
2. Update the Clock Name and Reset Name in the Clock/Reset Tab.

You can browse through the other Settings tabs and fields if you want to have more
control over the generation process. Use the tool-tips to see short field descriptions.

3. Choose the target language: VHDL/Verilog
When you open FoCS for the first time, all settings are set to their default values.

4. Click OK. This saves your settings and closes the Settings window.

Tutorial

FoCs: Formal Checkers 27

To generate a checker from one rule:
1. Select rule ack_interleaving

The Formulas window displays two formulas.
2. Click Generate.

One of the following messages (according to the target language) appears in the
Message window:

Generating ...

Done: VHDL checker written to ../ack_interleaving.vhd
or
Done: Verilog checker written to ../ack_interleaving.v

You can open the file (ack_interleaving.vhd or ack_interleaving.v) created in your
current directory, and see the checker that was generated.

To generate a checker from several rules:
1. Select rule ack_interleaving.
2. Press the Ctrl button and select rule checking data.

The Formulas window displays all of the formulas for these two rules.
3. Click Generate.

The Choose an output filename window will open.
4. Enter the name of the desired checker (checker.vhd or checker.v) and click OK.

The following message appears in the Messages window:

Generating ...

Done: VHDL checker written to ../checker.vhd
or
Done: Verilog checker written to ../checker.v

To generate a checker from all rules:
1. Click All from the Rules window.

This selects all rules in this window.

 CHAPTER 4

28 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

2. Click Generate.
The Choose an output filename window opens.

3. Enter the name of the desired checker (all.vhd or all.v) and click OK.
The following message appears in the Messages window:

Generating ...

Done: VHDL checker written to ../checker.vhd
or
Done: Verilog checker written to ../checker.v

FoCs: Formal Checkers 29

CHAPTER 5 Customizing FoCs Settings

5.1 Overview
FoCs can be customized using the Settings dialog box. The Settings dialog box
consists of several tabs—Main, Clock and Reset, Checker Generation Style,
Reporting, and Signal Mapping—each of which contains several options. When you
give an option a new value, the new value is active as soon as you set it. The value
remains active for the rest of the session. When you quit FoCs, your settings are saved
and used the next time you run FoCs. The options are written to the file focs.setup.

5.2 Main Tab
The following sections describe the options available within the Main tab.

5.2.1 Rules File
In this file, you write the specification—the properties to be checked. For information
on the specification language, see CHAPTER 6: The Sugar Specification Language.

 CHAPTER 5

30 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

5.2.2 Target Language
This option allows you to select the target language for the automatically generated
checkers.
• VHDL
• Verilog

Future versions of FoCs may include more target languages, e.g., C and/or C++.

5.2.3 Target Simulator (VHDL only)
Some simulation environments only support a subset of the VHDL language. Some
environments include special instrumentation for linking the checkers with the unit
under test (UUT). If your simulation environment appears below, select it. Otherwise,
use Pure VHDL and tailor the checkers with the UUT to suit your needs.
• Pure VHDL
• MTI - FoCs generates a “spy” file used for linking checker names with UUT

names. See Section 3.2 on page 12.
• Mvlsim/Bugspray - FoCs generates the checkers in a Bugspray file that are to be

included in the simulation build process.

5.2.4 Output File Name
This is the name of the resulting checker file. By default, the rule name is used with
the extension v (verilog) or vhd (VHDL). If you select User Defined, you will be
asked to provide a name each time a checker is generated.
• Use rule name – the rule name will be used as the file name.
• Use entity name (VHDL only) – the entity name will be used as the file name.
• Use module name (Verilog only) – the module name will be used as the file name.
• User defined – you will be asked to provide a name during translation.

5.3 Clock and Reset Tab
The following sections describe the options available within the Clock and Reset tab.

Customizing FoCs Settings

FoCs: a Formal Checker Tool 31

5.3.1 Clock Name
This is the design clock that drives the checker’s clock (mandatory). Currently only a
single clock is supported.

5.3.2 Clock Polarity
This is the clock edge in which signals are sampled during simulation.
• Rising edge
• Falling edge
• Both edges

5.3.3 Simulation Delay (Verilog only)
This option allows you to add a delay of n nano-seconds between the active edge of
the clock and the sampling of signals.
• No
• Yes

5.3.4 Reset Mode
This option allows you to provide an external reset to the checker or ask for an
internally-generated reset.
• External – the reset signal will be provided as an input to the checker.
• Internal – the reset signal will be generated internally.

It is mandatory to either define the external reset signal name or to choose the option
of an internal reset signal.

5.3.5 Checker Reset Name (External Only)
If you choose “External” for the Reset Mode option, you should provide the reset
signal name (mandatory).

5.3.6 Number of Reset Cycles (Internal Only)
If you choose “Internal” for the Reset Mode option, you may select the number of
cycles during which the internal reset signal remains active at the beginning of

 CHAPTER 5

32 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

simulation. The default is one cycle.

5.3.7 Reset Polarity
• Active high
• Active low

5.4 Checker Generation Style Tab
The following sections describe the options available within the Checker Generation
Style tab.

5.4.1 Checker Entity Name (VHDL Only)
This is the entity name of the resulting checkers. By default, the rule name is used.
You can select User Defined and provide a name.
• Use rule name – the rule name will be used as the entity name.
• User defined – you will be asked to provide a name during translation.

5.4.2 Checker Module Name (Verilog Only)
This is the module name of the resulting checker. By default, the rule name is used.
You can select User Defined and provide a name.
• Use rule name – the rule name will be used as the module name.
• User defined – you will be asked to provide a name during translation.

5.4.3 Generate Module (Verilog only)
This option allows you to choose whether or not to encapsulate the checker within a
module.
• Yes
• No

Customizing FoCs Settings

FoCs: a Formal Checker Tool 33

5.4.4 Produce Instantiation Code
• FoCs can provide automatic generation of instantiation statements—Component

and Instance in VHDL, Call in Verilog. The instantiation code is produced
according to the defined Mapping Options (see CHAPTER 3: Linking Checkers
with your Design).

• Yes
• No

5.4.5 Interface Filename
By default, FoCs regards signals that are only referenced (not assigned) in the rules as
design signals. The file defined as "Interface Filename" can be used to add signals that
you want to regard as design signals. If the signal has auxiliary EDL definitions in the
rules file, they will be ignored. This option is useful when using the rule file for both
model-checking and checker generation. The file is either a VIM/DEF file or list of
lines, one signal name in each line.

5.4.6 Design Entity Name (Mvlsim/Bugspray Simulation Only)
This option allows you to define the design entity to which the checkers refer. This is
mandatory when using Bugspray.

(It produces the Bugspray code “--!! design entity <name>”.)

5.4.7 Vector Direction
This option allows you to define the bit order in which FoCs generates vectors. All
vectors in the checker are written in the same way.
• Ascending – [0..n]
• Descending – [n..0]

5.4.8 Logic Signal Type (VHDL only)
This option allows you to choose the standard logic support package to use.
• std_logic
• std_ulogic

 CHAPTER 5

34 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

5.5 Reporting Tab
The following sections describe the options available within the Reporting tab.

5.5.1 Severity of Assertion (VHDL Only)
This option allows you to define the severity of the generated VHDL assertion.
• Note
• Warning
• Error
• Failure

5.5.2 Report Template File Mechanism (Verilog and VHDL-93 full)

5.5.2.1 Report template file

In order to configure the checker output, you can write a report template file. In this
file, write the VHDL / Verilog commands you want executed when the formula fails
(report template).

You can define different sets of commands for different formula types. You can write
the report template file in the following style:

 VHDL Verilog

 IF (focs_formula_type = ERROR) THEN if (focs_formula_type==‘ERROR)
 <VHDL code> <Verilog code>
 ELSEIF (focs_formula_type = COVER) THEN
 < VHDL code> else if (focs_formula_type == ’COVER)
 END IF; <Verilog code>

This style is only a recommendation. Every legal VHDL / Verilog code is allowed,
because this code is simply copied to the checker. Note that there is no previous

Customizing FoCs Settings

FoCs: a Formal Checker Tool 35

syntactical or semantical checking done on this code, so that every error in it will be
determined only when compiling the checker with the VHDL / Verilog compiler.

Both in VHDL and Verilog, two additional commands with special treatment can be
used—printf and fprintf. Their semantics and usage in the report template file are
defined later in this document. Verilog commands $display and $fdisplay have the
same treatment as printf and fprintf and can be used for checkers generated in VHDL
as well as Verilog (FoCs will create equivalent code in the checker’s language).

The content of the report template file is copied to the checker inside the IF statement
used instead of assertion, as shown in the pseudo-code example below:

 IF(formula failed) THEN
 focs_formula_type <= ERROR / COVER
 report template file content
 END IF;

5.5.2.2 Formula type definition

 You can define the type of every formula as follows:

 #type = ERROR# / COVER#.
 If no type is defined, the default type value is ERROR.

 Example:

 formula {
 "#type = COVER# Standard formula description"

 {formula body}

 }

When generating checker code, FoCs adds a variable named “focs_formula_type” for
every formula that contains the value ERROR or COVER, according to the type
defined in the formula description. ERROR and COVER are integer constants whose
definition is implicitly generated by FoCs.

You may choose not to use this mechanism, by means of not mentioning the

 CHAPTER 5

36 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

formula type in the report template file.

The only side effect of this mechanism is the definition of the variables ERROR and
COVER in the checker, which implies that redefining these variables is forbidden.

5.5.2.3 Usage and semantics of printf / $display and fprintf / $fdisplay

The syntax and semantics of the $display and $fdisplay commands are similar to those
of printf and fprintf, respectively.

Syntax: printf (“format”, parameters) or fprintf (fp, “format”, parameters). (The
explanation for “fp” -file pointer appears below.)

The purpose of these commands is to configure the output which is written during the
simulation to the log (file or stdout). The semantics are like the C semantics of these
commands. FoCs will identify these commands and generate VHDL / Verilog code
which will write output to the output stream defined in print command.

The syntax of the format is like C syntax—every parameter should be defined in
format by its prototype (%d, %s, etc.) and every string can be written in the format.
The only difference from C is that there is no need to add a backslash before special
characters (like quotation marks), and the use of double quotation marks ("") and “%”.

Allowed prototypes, inside the format string, are %s - string, %d - integer, %b -
boolean, and %l - std_logic. Print commands should start at the new line, cannot be
broken by the new line in the middle, and must not end with a semi-colon (“;”).
Among the parameters, there are two parameter names with special semantics—
rule_name and desc (description), both of which are strings. When FoCs finds these
parameters in the printf command, the following is performed:
1. rule_name will be replaced in the format string by the appropriate rule name.
2. desc will be replaced in the format string by the description of the appropriate

formula. In the formula description, you can define signals whose values you want
outputted when the formula fails. The syntax is: < <signal_name> >. Every
signal which appears in the formula description in <> brackets is replaced by its
current value in the simulation output when the formula fails.

For example:

Formula description:

 formula {

Customizing FoCs Settings

FoCs: a Formal Checker Tool 37

 "#type = COVER# Values of signals : foo1 = <foo1>"

 { formula body}

 }

FoCs finds the signals in <> brackets in the description, and adds them to the
parameters list of the printf command. If the signal is not a checker signal (neither a
checker port nor checker internal signal), its type is assumed to be std_logic in VHDL,
or boolean in Verilog.

Note: The use of the special names rule_name and desc is optional.

5.5.2.4 Writing output to the file streams

There are two options for defining file descriptors:

Option 1: The user controls file opening and closing outside the checker. There is no
special definition for file descriptors—FoCs finds them in the fprintf commands and
adds them to the checker ports (as port of type FILE in VHDL or port of type
reg[31:0] in Verilog). In this option, the user opens and closes the files, and maps the
file descriptors to the appropriate checker ports.

Option 2: Implicit file opening and closing within the checker. In this option, the user
defines the file descriptors connections in the file section of the report template.

The syntax of the file section:

 #FILES
 <file descriptor> <file name on disk>
 <file descriptor> <file name on disk>
 #END
i.e, every line in the file section consists of the file descriptor, which can be used in
print commands as described above, and the file associated with it. For example:

 #FILES
 error_fd /proj/simout/error_file
 cover_fd /proj/simout/cover_file
 #END

 CHAPTER 5

38 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

FoCs generates the VHDL / Verilog code for opening and closing files and connecting
them to their descriptors. There is no need to predefine standard output stream. The
commands printf and $display create the code which writes output to stdout according
to the HDL subset.

When using implicitly-generated opening/closing of files, FoCs generates the port
“focs_finish_signal”.

The user must connect this port to the signal which gets the value “1” when the
simulation ends. The purpose of this port in the checker is to tell the checker when to
close the files.

5.5.2.5 Including files, libraries, and packages

When describing the use of file descriptors, the term file section was mentioned.
There are three special sections which can be defined in report templates: the library
section, the use section, and the file section. This paragraph will describe the use of
the library section and the use section.

Syntax: library section

 #LIBRARY
 <library 1>
 <library 2>
 #END
Syntax: use section

 #USE
 <package 1>
 <package 2>
 #END

In VHDL, the library section contains libraries, which the user wants defined in the
final VHDL code by the “library” clause (like ieee), while the use section contains the
full package names, including the appropriate library name (for example,
ieee.std_logic_1164.all). In the use section in Verilog, the user must write Verilog file
names which he wants included in the final Verilog code by using the Verilog

Customizing FoCs Settings

FoCs: a Formal Checker Tool 39

compiler directive “include”. The library section is ignored in Verilog.

The main purpose for including external libraries in checker code is to allow the use of
functions and variables defined in these libraries. If the function was defined in the
external package (file in Verilog) and the package was included, the user can use this
function in his/her report template.

FoCs does not perform syntactical or semantical checks on the included user packages
(files), so if the package contains errors, or if the parameters to the function call in the
report template are not checker signals or predefined signals in included packages
(files), FoCs will not report any error, but the created checker will fail during the
compilation.

For VHDL users only: the only libraries which should not be defined in the library
sections are ieee, ibm, work, modelsim_lib, and std. These libraries are included in the
checker automatically. The packages which are included automatically are:
ieee.std_logic_1164.all, modelsim_lib.util.all, ibm.std_logic_support.all, and
std.textio.all. Each library / package is included according to FoCs settings, so that not
all these packages are included in every checker.

The use of the libraries section, the use section, and the files section is optional. You
can write as many library/package/file sections as you wants. Every new library/
package/file descriptor name should appear on a new line. The report template
directives (#LIBRARY, #USE, #FILE, #END) should also appear on a new line. All
text outside these special sections is treated as report template, and is copied to the
checker.

Comments

Lines which starts with “--” are treated as comments and thus are ignored by FoCs
(either in the report template or in the special sections).

5.5.2.6 Examples
1. The following is an example for output configuration using the report template

file and formula description:

VHDL example:

Report template file:

 CHAPTER 5

40 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 #LIBRARY
 utils1 Libraries section

 utils2

 #END

 #USE
 utils1.print_functions_package1.all Use section

 utils2.print_function_package2.all
 #END

 #FILES
 cover_file /proj/simulation_output/cover File section
 #END

Template body:

 IF (focs_formula_type = ERROR) THEN
 printf (" ERROR in %s at cycle %d : %s ", rule_name, cycle, desc)
cycle is signal defined by user in one of the packages

 error_func(); error_func is the function written in one
of the predefined packages
 ELSEIF (focs_formula_type = COVER)
 fprintf (cover_file," COVERAGE EVENT : rule %s at cycle %d : %s
", rule_name, cycle, desc)
 END IF;

Formula description:

 formula {

Customizing FoCs Settings

FoCs: a Formal Checker Tool 41

 "#type = COVER# Values of signals : foo = <foo>"

 formula body

 }

Generated code:

Assuming that the rule name is CheckRule and foo is of type std_logic, the VHDL
code generated by FoCs will be:

 .
 . other libraries
 .
 library utils1; Library section
 library utils2;
 .
 . other packages
 .
 use utils1.print_functions_package1.all; Use section
 use utils2.print_function_package2.all;

 ENTITY ...
 PORT (

 .
 . checker ports
 .
 foo :IN std_logic;
 focs_finish_signal :IN std_logic); Special port added for

 CHAPTER 5

42 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

file commands
 END ...

 ARCHITECTURE ...

 TYPE focs_ftype is (ERROR,COVER);

 .
 . checker internal signals
 .
 FILE cover_file : TEXT;
 SHARED VARIABLE focs_string_0 : STRING(1 TO 10) := " ERROR in ";
 SHARED VARIABLE focs_string_1 : STRING(1 TO 10) := " at cycle ";
 SHARED VARIABLE focs_string_2 : STRING(1 TO 3) := " : ";
 SHARED VARIABLE focs_string_3 : STRING(1 TO 1) := " ";
 SHARED VARIABLE focs_string_4 : STRING(1 TO 23) := " COVERAGE EVENT
: rule" ;
 SHARED VARIABLE focs_string_5 : STRING(1 TO 10) := " at cycle ";
 SHARED VARIABLE focs_string_6 : STRING(1 TO 3) := " : ";
 SHARED VARIABLE focs_string_7 : STRING(1 TO 1) := " ";
 SHARED VARIABLE focs_checkrule : STRING(1 TO 9) := "checkrule";
 SHARED VARIABLE focs_string_8 : STRING(1 TO 27) := "Values of
signals : foo = "
 ;
 SIGNAL focs_file_handle_enable_0 : std_logic;
 SIGNAL focs_file_open : std_logic := i2l(1);
 .

Customizing FoCs Settings

FoCs: a Formal Checker Tool 43

 . checker internal signals
 .

 BEGIN
 PROCESS Process for files opening / closing

 BEGIN
 WAIT UNTIL clk’EVENT AND clk = ’1’;
 IF (focs_file_open = ’1’) THEN
 focs_file_open <= ’0’;
 file_open(cover_file,"/proj/simulation_output/cover",WRITE_MODE);
 focs_file_handle_enable_0 <= ’1’;
 END IF;
 WAIT UNTIL focs_finish_signal = ’1’;
 IF (focs_file_open = ’0’) THEN
 focs_file_handle_enable_0 <= ’0’;
 file_close(cover_file);
 END IF;
 END PROCESS;

 PROCESS
 .
 . other process variables
 .
 VARIABLE focs_line_1 : LINE;
 VARIABLE focs_formula_type : focs_ftype;
 BEGIN

 CHAPTER 5

44 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 .
 . VHDL checker body
 .
 focs_formula_type := COVER;
 IF (< formula failure condition>) THEN Report template

 IF (focs_formula_type = ERROR) THEN
 WRITE(focs_line_1,focs_string_0); Translation of print
command
 WRITE(focs_line_1,focs_checkrule);
 WRITE(focs_line_1,focs_string_1);
 WRITE(focs_line_1,cycle);
 WRITE(focs_line_1,focs_string_2);
 WRITE(focs_line_1,focs_string_8);
 WRITE(focs_line_1,to_bit(foo));
 WRITELINE(OUTPUT,focs_line_1);
 error_func();
 ELSEIF (focs_formula_type = COVER)
 WRITE(focs_line_1,focs_string_4);
 WRITE(focs_line_1,focs_checkrule);
 WRITE(focs_line_1,focs_string_5);
 WRITE(focs_line_1,cycle);
 WRITE(focs_line_1,focs_string_6);
 WRITE(focs_line_1,focs_string_8);
 WRITE(focs_line_1,to_bit(foo));
 WRITELINE(cover_file,focs_line_1);
 END IF;
 END IF;
 END PROCESS;
 END ...

Customizing FoCs Settings

FoCs: a Formal Checker Tool 45

Verilog example:

Report template file:

 #USE
 print.v
 #END

 #FILES
 cover_file /proj/simulation_log/cover
 #END

 if (focs_formula_type == ‘ERROR) begin
 $display (" ERROR in %s at time %d : %s ", rule_name, $time, desc)

 end
 else
 if (focs_formula_type == ‘COVER) begin
 $fdisplay(cover_file," COVERAGE EVENT : rule %s at time %d : %s ",
rule_name,

 $time,desc)
 end

Formula description:

 CHAPTER 5

46 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 formula {
 "#type = COVER# Values of signals : foo = <foo>"

 formula body

 }

Generated code:

Assuming that the rule name is CheckRule and foo1 is of type boolean
The Verilog code generated by FoCs will be:

 module ... (
 .
 . checker ports
 .
 foo,
 focs_finish_signal
);
 .
 . checker signals
 .
 input foo;
 reg focs_file_handle_enable_0;
 input focs_finish_signal;

 ‘include "print.v"
 ‘define ERROR 1
 ‘define COVER 2
 initial

Customizing FoCs Settings

FoCs: a Formal Checker Tool 47

 begin
 cover_file=$fopen("/proj/simulation_log/cover");
 if (cover_file==0)
 begin
 $monitor("Fatal error : Can’t open file /proj/simulation_log/
cover");
 $finish;
 end
 focs_file_handle_enable_0 <= 1’d1;
 wait (focs_finish_signal);
 focs_file_handle_enable_0 <= 1’d0;
 $fclose(cover_file);
 end
 .
 . checker body
 .
 if (< formula fail condition>) begin :assert0
 integer focs_formula_type = ‘COVER;
 if (focs_formula_type == ‘ERROR) begin
 $display(" ERROR in CheckRule at time %0d : Values of signals :
foo1 = %b",$time,foo);
 end
 else
 if (focs_formula_type == ‘COVER) begin
 $fdisplay(cover_file," COVERAGE EVENT : rule CheckRule at time
%0d : Values of signals : foo = %b",$time,foo);
 end
 end
 endmodule

 CHAPTER 5

48 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

2. VHDL Example: counting events and stopping the simulation, using report
template file:

Report template file:

 #library
 utils
 #end
 #use
 utils.countevents.all
 --Package utils.countevents contains definition of integer
counter with initial value 0

 --and the definition of constant STOP_VALUE
 #end
 IF (focs_formula_type = ERROR) THEN
 counter <= counter + 1;
 IF (counter = STOP_VALUE) THEN
 < stop the simulation >

 END IF;
 END IF;

5.5.3 Maximal Number of Fails
This option allows you to limit the number of reported errors for one formula (during
run time), inactivating the relevant part of the checker. Moreover, the formula will be
disabled after the defined number of fails.

5.6 Signal Mapping Tab
The following sections describe the options available within the Signal Mapping tab.

Customizing FoCs Settings

FoCs: a Formal Checker Tool 49

5.6.1 Mapping File
It is possible to define a mapping file, that defines a mapping between checker ports
and the actual design signals. For more details, see Section 3.2 on page 12.

5.6.2 Mapping Method (VHDL – MTI Simulator only)
Selecting a Mapping Method allows you to select which method to use for mapping
checker signals to design signals.
• Signal spy
• MTI- force freeze
• None

5.6.3 Design Signals Prefix
If design signals are nested and there is a common path for all signals, it is possible to
define the common path here. In the mapping of checker ports to design signals, this
path will be added as a prefix to the names of design signals. See examples in
CHAPTER 3: Linking Checkers with your Design.

5.6.4 Checker Signals Prefix (MTI – force-freeze only)
When using force-freeze, specify the location of the checker relative to the monitor
file.

5.6.5 Warn Incomplete Mapping
FoCs can supply warnings about checker ports that do not have a mapping defined in
the mapping file, or complete these values itself by mapping such checker signals to
signals with the same name (with the design signals prefix if such was defined).
• Yes – FoCs will warn about signals that do not have a mapping defined for them.
• No – FoCs will create a default mapping for signals that do not have a mapping

defined for them.

FoCs: Formal Checkers 50

CHAPTER 6 The Sugar Specification
Language

6.1 Introduction
Sugar is the specification language used by FoCs. It is used to describe properties that
are required to hold in the design under test (DUT). FoCs can very easily create
powerful checkers from Sugar properties using only a small number of Sugar
constructs.

In this document, the term 'property' refers to a specification, described in informal
English, that must hold true for the design under simulation. The term 'formula' refers
to the coded representation of properties in Sugar†.This chapter introduces Sugar in a
way that allows FoCs users to start describing properties in Sugar and generating
checkers from those properties simply.

The chapter is organized as follows:

Section 5.2: Getting Started with Sugar – introduces the basic Sugar constructs. This is
an informal description of these constructs, designed to give you the notion of how to
describe the required design behaviors using Sugar.

†. In the Sugar documentation, the term 'property' refers to both the coded representation and the infor-
mal English statement. For the sake of clarification, in this book the term 'property' refers to the infor-
mal English statement, and the term 'formula' refers to the coded formulation of the Sugar property.

The Sugar Specification Language

FoCs: Formal Checkers 51

Section 5.3: The Building Blocks of a Sugar Formula – this is a more precise
description of the Sugar properties building blocks.

Section 5.4: Writing a Rules File – describes the notion and structure of the Rules File,
from which FoCs reads Sugar properties to create checkers.

Section 5.5: State Machines – this section describes how to use a larger subset of the
Sugar language and gain further expressive power, for defining complex properties.

6.2 Getting Started with Sugar
The Sugar specification language lets you describe properties to which the design
under simulation must adhere. Many properties can be easily described using the
following constructs.

6.2.1 Always (p)
This Sugar construct enables you to assert that some property p is true on every cycle
of the simulation. P can be any boolean expression composed of signal names,
constants, and operators.

For example, you may want to check that signals grant1 and grant2 are not asserted
together. This property can be expressed in Sugar by the following formula:
always (!(grant1 & grant2))
which states that at every cycle of a simulation, it is never the case that both grant1
and grant2 are asserted.

The following are more examples of properties that can be expressed using always(p):
• The property “Whenever ack is asserted, req was asserted in the previous cycle,”

can be expressed as
always (ack->prev(req))
prev(x) is a built-in function, which is true if x was true in the previous cycle. A
list of built-in functions you can use appears in Section 6.3.3 on page 64.

• "Variables state1 and state2 never have the same value."
always (state1 != state2)
“!=” denotes inequality. A list of relational operators appears in Table 2.

• "If busy is true then working is also true"

 CHAPTER 6

52 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

always (busy -> working)
"->" denotes "implies".
"At most one of the signals x, y, or z is 1 (mutual exclusion)."
always (x+y+z <=1)
A list of mathematical operators appears in Section 6.3.1 on page 59.

• "If the head pointer of a queue is equal to the tail pointer, queue_empty must be
true":
always((head(0..3)=tail(0..3)-> queue_empty))
Both head and tail are 4-bit arrays and the expression head(0..3)=tail(0..3)
denotes equality of arrays. The symbol ".." denotes a range of array bits.
head(0..3) denotes bits 0 through 3 in the array head. You can refer either to a
range of entries of an array head (0..3) or to one entry of an array (e.g.,
head(2)). A reference to a whole vector should explicitly include its range
(vec1(0..16) rather than vec1).

• "The bitwise and of vectors vec(0..7) and mask(0..7) has at least one bit set":
always((vec(0..7) & mask(0..7)) != 00000000b)
We need the parentheses around vec(0..7) & mask(0..7) because “!=” has a
higher precedence than “&”. Table 1 shows the operators precedence.

6.2.2 never (p)
The construct never(p) allows us to specify conditions that should never hold. For
example, to express that the signals enable1 and enable2 are mutually exclusive, it is
possible to write
never (enable1 &enable2)

6.2.3 The next operators

It is possible to define that some property should hold at some next cycle. This is done
by defining the following formula:
• next (p) - the property p should hold at the next cycle

The Sugar Specification Language

FoCs: Formal Checkers 53

• next [N] (p) - the Number N indicates at which next cycle the property p
should hold, that is for Number i the property holds at the ith cycle.

For Example:
• always (request -> next(acknowledge))

States that a request is always followed by an acknowledge on the next cycle.
• always (request -> next[3](acknowledge))

States that a request is always followed by an acknowledge after 3 cycles.

It is possible to define that a property holds at all cycles of a range of cycles by
defining:
• next_a [i : j] (p) - property p holds at all cycles between ith and

jth next cycles, inclusive.

It is also possible to specify that a property holds at least once in a range of future
cycles.
• next_e [i : j] (p) - property p holds at least once between ith and

jth next cycles, inclusive.

6.2.4 Sugar Extended Regular Expression – SERE
The construct always(p) can refer only to an expression that spans one cycle.
Sometimes we want to check events that span over a period of time, and not just one
cycle.

To this end, we can express properties of multi-cycle traces using Sugar Extended
Regular Expressions—SEREs. SEREs can be used to describe sequences of boolean
expressions over time.

For example, a SERE describing any occurrence of start,ready,ready can be
written as: {[*];start;ready;ready}.

The [*] at the start of the sequence is an event that denotes “skip any number of
cycles”; start between two semi-colons (;start;) means a cycle in which start is
asserted, and in the following two cycles, ready is asserted. So this sequence
represents many possible traces. For example:
• traces in which start is asserted at the beginning and then followed by two ready:

start,ready,ready,...

 CHAPTER 6

54 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

• traces in which start happens at the second step and then followed by two ready:
true,start,ready,ready (true represents “skip one cycle”), etc.

 If we omit [*], the sequence would describe only traces that start with
start,ready,ready. It is important to write [*] at the beginning of the sequence
because we usually want to refer to any occurence of start,ready,ready in the trace,
and not just at the beginning of the execution.

Writing SEREs is an extension to writing regular expressions. Regular expressions are
simple to write but still very expressive. Defining a regular expression is very
intuitive, when keeping the desired timing diagram in mind.

6.2.4.1 The constructs {SERE} |-> {SERE} and {SERE} |=>{SERE}

SERE’s can be used to described properties that span several cycles. For example, the
property “whenever the sequence start, ready, ready appears, the second ready
after start is accompanied by result = ok and followed by done” can be written as
{[*]; start; ready; ready} |->{result=ok ;done}
The meaning of this construct is as follows: if the sequence on the left side is
encountered during simulation, then the right side should be true, starting at the last
cycle of this sequence.

It is possible to use two kinds of implication operators. Using |-> between the two
sequences means that the right hand sequence must begin at the last cycle of the left
hand side. Using |=> means that the right hand side sequence must begin one cycle
after the left hand side.

The following are examples of properties that can be expressed using SEREs
implication:
• {[*];start; busy[*]; end}|->{success; done}

states that if signal start is asserted, at the next cycle or later in the future, signal
end is asserted, and in the interim signal busy holds, then success is asserted with
end, and at the next cycle done is asserted.

• {[*];request}|=>{request[*]; grant}
states that if there is a request, than it must remain active until grant.

The Sugar Specification Language

FoCs: Formal Checkers 55

• All properties in the form of {SERE} |-> {SERE} and {SERE} |=> {SERE}, can
be described in English as “If the right side occurs, then the left side must occur.”
For example, the property “If during get tag=1, then in the next get tag=2 and
in the next get tag=3,” is expressed by:
{ [*] ; get&tag=1 }|=>{ !get[*]; get&tag=2; !get[*] ; get&tag=3 }
And the property “If during get tag=1 and in the next get tag=2 then in the next
get tag=3,” is expressed by:
{ [*]; get&tag=1; !get[*]; get&tag=2}|=>{ !get[*]; get&tag=3 }

• When we want to express that a signal p is asserted at least once, we can use the event p[+].
For example, {[*]; start; busy[+]; end}|->{success; done}
states that if signal start is asserted, signal busy is asserted for one or more
cycles, and finally signal end is asserted, then success is asserted with end, and
followed by done.

• Instead of writing true[+], you can write [+].
{[*]; start; [+]; end}|->{success}
states that if signal start is asserted, and two or more cycles later signal end is
asserted, then success is asserted with end, followed by done.

• There is a special way to describe an exact number of consecutive repetitions. For
example, writing ready[*8] expresses eight consecutive cycles in which ready is
asserted.
{[*]; start; ready[*8]}|->{result=ok}
states that if start is followed by eight consecutive cycles in which ready is
asserted, then at the eighth ready result=ok.
To say that ready is asserted at most eight consecutive cycles we write
ready[*..8].
{[*]; start; ready[*..8]; !ready}|->{ok} states that if start was asserted,
and starting the next cycle, ready was asserted for at most eight cycles until ready
was false, then ok is asserted with !ready. The other types of consecutive
repetitions are listed in Table 2.

• Assume we want to write “the second ready after start should be accompanied
with success.” Here we want to check also executions in which the start and the
ready signals are not necessarily consecutive. This can be expressed by
{[*]; start; !ready[*]; ready; !ready[*]; ready}
|->{success}

 CHAPTER 6

56 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

The expression !ready[*] means zero or more consecutive steps in which ready is
false.

• There is a special shorthand for non-consecutive repetition. For example, the prop-
erty "Whenever we see eight non-consecutive data transfers between
start_trans and end_trans, the signal error is not asserted with end_trans"
can be described by:
{[*];start_trans;data[=8];end_trans}|->{!error}
The event data[=8] represents eight non-consecutive repetitions of data.

6.2.4.2 Subsequences

A sequence may contain a subsequence in curly braces.
• For example the sequence

{[*]; {start; [*]; end}[*]} describes a trace in which there are zero or more
occurrences of the scenario in which start is asserted and in the next cycle or later
end is asserted.

• The other consecutive repetitions can also be applied to subsequences. For exam-
ple:
{[*]; {start; [*]; end}[+]} describes a trace in which the subsequence
{start,[*],end} occurs at least once.

• {[*]; {start; [*]; end}[*8]} describes a trace in which the subsequence
{start; [*]; end} occurs exactly eight times.

• {[*]; {start; [*]; end}[*..8]} describes a trace in which the subsequence
{start; [*]; end} occurs at most eight times.

The following are examples that use subsequences:
• After start, if we see 8 gets (not necessarily consecutive) and there is no abort

during this period, then one cycle after the last get must begin 8 puts (not neces-
sarily consecutive before done (done may not come at all)
{ [*]; start; {!get&!abort[*]; get&!abort}[*8] }|=>{ {!put&!done[*];
put&!done}[*8] }

• If req1 is active, it will be granted (gnt1) within no more than 7 gnts
{ [*]; req1 }|->{ {!gnt[*]; gnt&!gnt1}[*0..6]; !gnt[*]; gnt&gnt1 }

• p is true in cycle 0 and every fifth cycle
{ true; {true[*4]}[*] }=>{ p }

The Sugar Specification Language

FoCs: Formal Checkers 57

For details on all subsequence options, see Section 6.3.2.2 on page 62.

6.2.4.3 The | and && operators

It is possible to define an AND and OR relation between subsequences, using the | and
&&, respectively.
• For example, to express the property:

“If there is a request that is followed either by read and no cancel_read or write
and no cancel_write until done, then ok is asserted with done”
it is possible to write:
{[*]; request; {read; !cancel_read; !done[*]}|{write; !cancel_write;
!done[*]}; done} |-> {ok}

Writing an or between two subsequences means that only one of them must happen for
the sequence to hold. The subsequences may be of different length.
• To express the property:

“If there is no abort during {start; a; b; c[*]; d; end}, success will be
asserted with end”
it is possible to write:
{[*]; {start; a; b; c[*]; d; end}&&{!abort[*]}}|->{success}

The subsequences that have a && operator between them occur simultaneously. This
means that they begin and end together, and must have a non-contradicting length.

The && operator cannot appear in the right side sequence.

6.2.4.4 Applying never to SERE’s

We can use a sequence to check that a bad trace never happens. This is done by
applying the never operator to the forbidden sequence.

Examples:
• If request is asserted it will remain active until (inclusive) grant.

never{[*]; ,request& !grant; !grant[*]; !request}
• If request is asserted, it will remain active until (not inclusive) grant:

never{[*]; request; !grant[*]; !request & !grant}

 CHAPTER 6

58 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

• If grant is active, and there is no retry in the next cycle, busy must become active
two cycles after grant:
never {[*]; grant; !retry; !busy}

6.2.4.5 Counting Boolean events

It is possible to count boolean events that are not necessarily consecutive. This is
particularly useful when combined with &&.

Examples:
• Request will be serviced within the 5 coming acknowledges

never{[*]; req; ack[=5]&&serv[=0]}
• It is forbidden to have 15 writes during which there are less then 2 reads.

never{[*]; write[=15]&&read[<2]}

6.2.5 Suffix Implication {SERE}()
It is possible to combine SEREs with temporal properties. This form of writing means
that starting from the last cycle of the sequence, the temporal property must hold.

6.2.5.1 {SERE}(p until q)
Using this construct, it is possible to check that some signal holds until another signal
is asserted. For example: "Between a request and its acknowledge the busy signal
must remain asserted" can be described by
{[*]; req; true}(busy until ack)
{SERE} (a until b) means a should be true on the last cycle of the sequence and
continue to be true until (but not including when) b is true. a and b are boolean
expressions, and b may never happen.

{SERE} (a until_ b) means a should be true on the last cycle of the sequence, and
continue to be true until (and including when) b is true. a and b are boolean
expressions, and b may never happen.

For example:

The Sugar Specification Language

FoCs: Formal Checkers 59

• {[*]; req; !retry; !retry}(busy until end)
states that for every request (assertion of signal req) that is not retried (signal
retry is not retried in the next two cycles), signal busy must be asserted until sig-
nal end is asserted.

6.2.5.2 The Construct {SERE} (p before q)
If we want to describe that a specific signal must be asserted before another signal, we
can use the before operator. For example: "Always if req then ack will happen before
the next req".

{ [*]; req; true}(ack before req)
{SERE} (a before b)

expresses the requirement that on the last cycle of all traces that match SERE, the first
occurrence of a must happen before the first occurrence of b. There is no requirement
that b eventually happen.

{SERE} (a before_ b)
expresses the requirement that on the last cycle of all traces that match SERE, the first
occurrence of a must happen before or together with the first occurrence of b. There is
no requirement that b eventually happen.

For example:
• If start is activated, it must not be active again before stop is activated.

{ [*]; start; true }(stop before start)

The true at the end of the sequence skips one cycle because we want to check the
property on the cycle after start.

6.3 The Building Blocks of a Sugar Formula

6.3.1 Boolean Expressions
The basic building blocks of a Sugar formula are Boolean expressions. A Boolean

 CHAPTER 6

60 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

expression consists of signal names of the design under verification, numbers,
constants, and operators.

6.3.1.1 Signal Names

For integers i and j, the following are the signal names:
• a simple name: signal_name
• A bit of a vector: signal_name(i) (bit i of signal signal_name)
• signal_name(i..j) (bits i through j of signal signal_name)
• signal_name(b: i..j) (bit b of signal signal_name, where the range is given by

i and j. b must be an integer, and the relevant signal must be defined in the rules
file)

6.3.1.2 Numbers
• A decimal number has only decimal digits and no suffix (e.g., 1276)
• A binary number consists of binary digits and ends with ‘B’ (e.g., 1011B)
• A hexadecimal number begins with a decimal digit, has less than eight hexadeci-

mal digits, and ends with ‘H’ (e.g., 7FFFH, 0FFH)

A reference to a whole vector should explicitly include its range (vec1(0..16) rather
than vec1).

6.3.1.3 Operators

The operators appearing in boolean expressions in decreasing precedence are
described below.

The Sugar Specification Language

FoCs: Formal Checkers 61

TABLE 1. Operators

Examples:
• request is a boolean expression asserting that the environment signal request is

set.
• op=READ | op=WRITE is a boolean expression asserting that the design signal op

currently has either the value READ or the value WRITE.
• (counter>32) <-> queue_is_full is a boolean expression asserting that the

user-defined signal counter has a value greater than 32, if and only if the design-
signal queue_is_full is asserted.

6.3.2 Temporal Properties

6.3.2.1 Temporal Constructs

The temporal constructs of Sugar used by FoCs are summarized below. These
constructs provide for the definition of temporal behavior across multiple cycles.

() parentheses
! not
* / multiplication and division
+ - addition and subtraction
= != > < >= <= relational operators
& Boolean and
| Boolean or
xor Boolean xor
<-> Boolean implication
<< >> vector shift; the right operand should be an

integer

 CHAPTER 6

62 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

• always (p) – p is true on every cycle
• never(p) - p is forbidden on every cycle.
• next(p) - p should hold on the next cycle.
• next[i](p) - p should hold on the ith next cycle.
• next_a[i:j](p) - p should hold between the next i to j cycles, iclusive.
• next_e[i:j](p) -property holds at least once between ith and jth next

cycles, inclusive
• {SERE} |-> {SERE} – if the left side sequence occurs, the right side sequence

must hold, starting from its last cycle.The formula does not require that the second
SERE will conclude.

• {SERE} |=> {SERE} – if the left hand side sequence occurs, the right hand side
sequence must hold, starting from the following cycle. The formula does not
require that the second SERE will conclude.

• never{SERE} – The sequence may never occur.
• {SERE} (p until q) – Starting at the last cycle of the sequence, p must hold until q

occurs, not including the cycle q is asserted. The formula does not require that q
must eventually occur (in that case, p must be true forever).

• {SERE} (p until_ q) – Starting at the last cycle of the sequence, p must hold until q
occurs, including the cycle q is asserted. The formula does not require that q must
eventually occur (in that case, p must be true forever)

• {SERE} (p before q) – Starting at the last cycle of the sequence, p must happen
before the first q. The formula does not require that q eventually happen.

• {SERE} (p before_ q) – Starting at the last cycle of the sequence, p must happen
before or together with the first q. The formula does not require that q eventually
happen.

For the full Sugar 2.0 documentation, see http://www.haifa.il.ibm.com/projects/
verification/sugar/fp_lrm_0912.pdf.

6.3.2.2 Sequence Operators

The building blocks of sequences are boolean expressions and operations on them.
The following tables summarize the possible operators.

Using b to represent a boolean expression, Table 2 lists legal operators and their
meaning.

http://www.haifa.il.ibm.com/projects/verification/sugar/fp_lrm_0912.pdf
http://www.haifa.il.ibm.com/projects/verification/sugar/fp_lrm_0912.pdf

The Sugar Specification Language

FoCs: Formal Checkers 63

TABLE 2. Simple Operators

TABLE 3. Subsequence Operators

If sere, sere1, and sere2 represent sequences, then the below are possible operators:

b[*] b occurs in 0 or more consecutive cycles
b[+] b occurs in one or more consecutive cycles
b[*i] b occurs in exactly i consecutive cycles
b[*i..j] b occurs in at least i consecutive cycles, but in no more than j

cycles
b[*i..] b occurs in i or more consecutive cycles
b[*..i] b occurs in no more than i consecutive cycles
[*] Zero or more cycles are skipped
[+] One or more cycles are skipped
[*i] i cycles are skipped
[*i..j] At least i cycles, but no more than j cycles, are skipped
[*i..] At least i cycles are skipped
[*..i] At most i cycles are skipped
b[=i]
b[=i..j]
b[=i..]
b[=..i]

A sub-sequence in which b occurs the number of times indicated
(not necessarily consecutively).

Operator Name Description
sere1&&sere2 And Both sere 1 and sere2 occur simultaneously
sere1|sere2 Or Either sere1 occurs or sere2 occurs
sere[*] Any repetition sere occurs 0 or more times.
sere[+] Positive repetition sere occurs one or more times.
sere[*i] Exact repetition sere occurs exactly i times.
sere[*i..j] Range repetition sere occurs at least i times, but not more

than j times.

 CHAPTER 6

64 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

6.3.3 Built-in Functions
Sugar has several built-in functions, which are described below:

fell(expr) is true if expr is 0, and was 1 on the previous cycle.

rose(expr) is true if expr is 1, and was 0 on the previous cycle.

prev(x) is true if x was true in the previous cycle.

next (x) is true if x is true in the next cycle. This construct can not be used in rules,
since rules shouldn’t relate to the future. It can be used when defining auxiliary
variables and behaviors, as is explained in section 5.5.

6.4 Writing a Rules File
FoCs is rules (now called vunit) oriented. A vunit is the basic component for which
FoCs can generate a checker. A vunit defines a group of related properties,
represented as Sugar formulas, which are translated into one checker. (It is possible to
translate multiple rules into one checker.) It is also possible to define auxiliary
variables and state machines by defining Finite State Machines (FSMs), as explained
in Section 5.5, and to include macro definitions, as explained in Section 5.4.3.

6.4.1 The Structure of the Rules File
Before beginning, you should plan the hierarchical structure of the rules files and how
it can best represent the design properties.

A rules file consists of a set of verification units (vunits), where each verification unit
may include one or more assertions (at least one assertion), macros, and FSM
statements. An assertion is a Sugar formulation of a property of the design at hand.
Macros and FSM statements can be used to define auxiliary variables and state
machines that ease expressing properties.

The structure of the rules file is:
vunit vunit_name1 {

sere[*i..] At least repetition sere occurs i or more times.
sere[*..i] At most repetition sere occurs no more than i times.

Operator Name Description

The Sugar Specification Language

FoCs: Formal Checkers 65

 <Macro definitions (#define,%if,%for)>
 <FSM statements (var, assign, define, module, instance)>

 assert
 “textual description”
 Sugar-formalation ;

 assert
 “textual description”
 Sugar-formalation ;
 ...

}

vunit vunit_name2 {
 ...
}
...

The vunit names are any meaningful names that begin with a letter and consist of
letters, digits, or underscores. The textual description is text delimited within double
quotes that describes the property in informal English†. Every assertion may have a
textual description associated to it. This description must appear after the assert
keyword. The description is followed by the Sugar formulation of the property, that
ends with a semicolon (“;”).The syntax of the FSM statements and the macros are
defined in the following sections of this chapter.

The rule syntax is as follows:
vunit name {
 <Macro definitions (#define,%if,%for)> (optional)
 <FSM statements (var, assign, define, module, instance)>
(optional)

†. Textual description in double quotes is currently only supported for Sugar 2.0. for FoCs, and is not
part of the language definition.

 CHAPTER 6

66 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 assert “textual description” Sugar-formulation ;
 assert “textual description” Sugar-formulation ;
 ...

 }

A vunit must contain at least one assertion. All the other parts are optional. The order
of statements in a vunit is unimportant, and each type of a statement may appear
several times. It is important to fill in the textual description of formulas. It is possible
to have this description displayed when the checker generated from this formula
detects an error during simulation.

6.4.2 A Methodology for Writing Rules Files
When designing a rules file, you should consider both readability and efficiency
issues.
• Go over the block outputs, one by one, and write (in English) all the things you can

check on that signal—its shape, its valid values, its relations with other signals, etc.
• From a methodological standpoint, it is useful to divide rules into three levels:

Level 1: Every signal to itself (e.g., pulse, constant zero...).
Level 2: Relations between signals at the same interface (e.g., request, ack).
Level 3: Cross-design signals or very complex rules.

• Write an English explanation for every verification unit, specifying exactly what
you are checking. If you have an English documentation of the verification units—
use the same description for both, and write the rule names in the relevant places in
the documentation as well.

• Keep your rules file as readable and simple as possible—you’ll return to them
when you don’t expect it! Using advanced mechanisms such as “module” and
“%for” is not always the most readable approach.

• Write your verification units short as well—A long/complex verification unit can
be easily fragmented. It’s good for generic reasons and also for readability.

• Partitioning your verification units into several files will make it easier to work
with when you have dozens of them.

• Use special naming conventions for auxiliary variables defined by FSM statements
to distinguish them from signals of the design.

The Sugar Specification Language

FoCs: Formal Checkers 67

6.4.3 Comments, Macros, and Preprocessing Directing
There are two types of comments that can be written in the rules files:

1) Text beginning with “--” and ending at the end of line.

2) Text beginning with “/*” and ending with “*/”.

Comment text is ignored by FoCs A comment can be inserted anywhere a space is
legal (except in text strings).

Before processing the rules file, FoCs calls a standard preprocessor, cpp, to filter these
files. The mechanisms provided by cpp can be used to facilitate the development of
environment models. The most useful mechanisms are macros, conditional
compilation (#ifdef, #if, #endif, etc.) and #include. See “man cpp” on your unix
system for more details.

FoCs provides additional preprocessing abilities in addition to cpp. These are the%for
and %if constructs described below.

 %for

The %for construct replicates a piece of text a number of times, with the possibility of
each replication receiving a parameter. The syntax of the %for construct is as follows:
%for <var> in <expr1> .. <expr2> do
...
%end
 or:
%for <var> in <expr1> .. <expr2> step <expr3> do
...
%end
 -- step can be negative

or:
%for <var> in { <item> , <item> , ... , <item> } do
...
%end
where <item> is either a number, an identifier, or a string in double-quotes.When the
value of an item is substituted into the loop body (see below), the double quotes will

 CHAPTER 6

68 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

stripped.

Be aware that %for generates a formula for each iteration of the %for loop.

In the first case, the text inside the %for-%end pairs will be replicated expr2-
expr1+1 times (assuming that expr2>=expr1). In the second case, the text will be
replicated (|expr2-expr1|+1)/expr3 times (if both |expr2-expr1| and expr3 are
positive, or both are negative). In the third case, the text will be replicated according to
the number of items in the list.

During each replication of the text, the loop variable value can be substituted into the
text as follows. Suppose the loop variable is called “ii”. Then, the current value of the
loop variable can be accessed from the loop body using the following three methods:

The current value of the loop variable can be accessed using simply “ii” if “ii” is a
separate token in the text. For example:

%for ii in 0..3 do
 define aa(ii) := ii > 2;
%end

is equivalent to:

define aa(0) := 0 > 2;
define aa(1) := 1 > 2;
define aa(2) := 2 > 2;
define aa(3) := 3 > 2;

If “ii” is part of an identifier, it can be accessed using %{ii} as follows:

%for ii in 0..3 do
 define aa%{ii} := ii > 2;
%end

is equivalent to:

define aa0 := 0 > 2;
define aa1 := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

The Sugar Specification Language

FoCs: Formal Checkers 69

If “ii” needs to be used as part of an expression, it can be accessed using %{<expr>}
as follows:

%for ii in 1..4 do
 define aa%{ii-1} := %{ii-1} > 2;
%end

is equivalent to:

define aa0 := 0 > 2;
define aa1 := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

The following operators can be used in pre-processor expressions:

= != < > <= >= - + * / %

In the current version, operators work only on numeric values (i.e., it’s OK to write the
following):
%for i in 0..3 do
 i %if i != 3 %then + %end
%end
But it is not possible to write
%for command in {read, write} do
...
 %if command = read %then-- doesn’t work!
...
 %if
The %if construct is similar to the #if construct of the cpp preprocessor. However,
%if must be used when <expr> refers to variables defined in an encapsulating %for.
The syntax of the %if construct is as follows:
%if <expr> %then

 CHAPTER 6

70 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

...
%end
or:
%if <expr> %then
...
%else
...
%end

6.5 State Machines
Although Sugar increases expressiveness capabilities, there are still properties that
cannot be expressed, and others that are too complicated to formulate. State machines
may provide solutions in many of these cases. The state machine records events that
occur in the design under verification. Sugar Formulas can then refer to these events
by accessing the state machine’s internal state. State machines do not affect the design
because information flows only from the design to the state machine. In this section,
we describe the special statements for writing state machines.

For example, assume that a queue of depth k reads data on one side and writes it on the
other side. Assume that we want to prove that the queue never contains more than k
data items. Formulation of this property in Sugar is difficult, but it becomes easy with
a satellite. An up/down counter is defined, with a range of 0 to k, and which is
incremented on reads and decremented on writes.

It is now necessary only to verify that the counter never exceeds k.We can use the
same counter to check for an underflow; its value should never be less than 0.

Some properties might have become easier if one could talk about past events.
Assume we want to state that “if p occurs, then at that time q should be active since the
last occurrence of r.” We can define a state-machine inside the rule that will help us
express this property as follows:
vunit if_p_then_q_since_r{
 var state:boolean; -- defining a boolean variable state

The Sugar Specification Language

FoCs: Formal Checkers 71

 assign init(state):= 0 -- initialising the variable
 assign next(state):= -- assigning a value to state in the next
 case -- cycle
 !q :0; -- if q is false then next(state) is false
 q & r :1; -- if q and r are true then next(state) is true
 else :state; -- if the above conditions are false then state
 esac; -- does not change.
 define q_since_r :=(q & r)|(q & state); -- q_since_r means q is
 -- active since the last occurance of r.
 assert
 "If p occurs, then at that time q should be active since the last
occurrence of r"
 {always (p ->q_since_r)}
}

6.5.1 Additional Expressions Used in State Machines
State machines may include boolean expressions, if-then-else expressions, and case
expressions.

6.5.1.1 if and case Expressions

There are two constructs which express a choice between two or more expressions.
They are the case and if expressions, described below.

The case expression has the following format:
case
 condition1 : expr1 ;
 condition2 : expr2 ;
 ...
 else : exprn ;
esac
A case expression is evaluated as follows: condition1 is evaluated first. If it is true,

 CHAPTER 6

72 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

expr1 is returned. Otherwise, condition2 is evaluated. If it is true, expr2 is returned,
and so forth. The else part is essential FoCs—in order to define the behavior as
deterministic, it is advisable to the behavior as the default entry if you are not certain
that the other conditions cover all the cases. Falling through the end of a case
statement may have unpredictable results. Notice that from the description of the case
expression above, it follows that an earlier condition takes precedence over a later
one. That is, if two conditions are true, the first takes precedence.

The if expression is shorthand for a case with two entries, and it has the following
format:
if condition then exprA else exprB endif
In the above if expression, exprA is returned if condition is true, and exprB is returned
if condition is false.

6.5.2 Statements for State Machines – FSM Statements
The following statements are required for defining auxiliary variables writing state
machines:

var

define

assign next, assign init

module, instance

The order of the statements is unimportant. We now describe each of these statements
in detail.

6.5.2.1 The var Statement

A var statement declares auxiliary variables required for the state-machine and the
formulas in a rule, and has the following format:

var name, name, ... : type; name, name, ... : type; ...

The type can be one of the following:

boolean

{ enum1, enum2, ... }

The Sugar Specification Language

FoCs: Formal Checkers 73

number1 .. number2 (range between integers)

For instance, the following are legal var statements:
var request, acknowledge: boolean;
var state: {idle, reading, writing, hold};
var counter: {0, 1, 2, 3};
var length: 3 .. 15;
The first statement declares two variables, “request” and “acknowledge”, to be of type
boolean. The second statement declares a variable called “state” which can take on
one of four enumerated values: “idle”, “reading”, “writing”, or “hold”. The third
statement declares a variable called “counter” which can take on the values 0, 1, 2, or
3. The fourth statement declares a variable called “length” which can take on any of
the values between 3 and 15, inclusive.

We can also define arrays using the var statement:

An array of state variables is defined as follows:
var name (index1 .. index2) : type ;
It actually defines (|index2-index1|+1) state variables named name(index1), ...,
name(index2), where index1 can be either greater or less than index2.

Examples:
var
 addr(0..7) : boolean; -- 8 boolean variables, addr(0), addr(1), ... ,

A var statement only declares auxiliary variables. The assign and define statements,
described below, define the behavior of these variables. FoCs does not allow non-
determinism—the value of a variable at each cycle should be explicitly defined using
the assign and define statements.

6.5.2.2 The Assign Statement

An assign statement assigns a value to a state variable declared with a var statement.
It has one of the following formats:
assign init(name) := expression;
assign next(name) := expression;

 CHAPTER 6

74 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

assign name := expression;

The first statement assigns an initial value to an auxiliary variable. The second
statement defines the value of an auxiliary variable in the next cycle. The third
statement assigns a value to a variable in the current cycle.

The following are examples of legal assign statements:
assign init(state) := idle;
assign next(state) :=
 case
 reset : idle1;
 state=idle & !start : idle;
 state=idle & start : busy;
 state=busy & done : { idle };
 else : state;
 esac
The keyword assign may be omitted for the second and following consecutive assign
statements. Thus, the following:
assign var1 := xyz;
 init(var2) := abc;
 next(var2) := qrs;
is equivalent to:
assign var1 := xyz;
assign init(var2) := abc;
assign next(var2) := qrs;

6.5.2.3 The Define Statement

A define statement is used to give a name to a frequently-used expression, much like a
macro in other programming or hardware description languages. The define statement
has the following format:
define name := expression;

The Sugar Specification Language

FoCs: Formal Checkers 75

For instance, the following are legal define statements:
define adef := (q | r) & (t | v);
define bb(0) := q & t; cc := 3;
As with the assign statement, the keyword define may be omitted in second and
following consecutive define statements.

assign must refer to a variable defined with var.

define must NOT refer to a variable defined with var.

6.5.2.4 The Module and Instance Statements

A module statement is used to group together the statements of a state machine.
Instead of writing them directly inside the rule, this module can be instantiated inside
the rule using the instance statement.

For instance, the following is a legal module statement:
module since(e1,e2)(e1_since_e2)
{
var state:boolean;
assign next(state):=
case
!e1 :0;
e1 &e2 :1;
else :state;
esac;
define e1_since_e2 :=(e1 &e2)|(e1 &state);
}
This module can be defined in the rules file (outside a rule) and instantiated and used
in a rule as follows:
vunit if_p_then_q_since_r{
instance i1 :since(q,r)(q_since_r);
assert

 CHAPTER 6

76 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

“If p occurs, then at that time q should be active since the last occurrence of r.”
 {always (p ->q_since_r)}
}

A module statement is used to define a module which can be instantiated a number of
times, as in hardware description languages. It has the following format:

module module_name (inputs) (outputs)
{
 statement;
 statement;
 ...
}

where inputs is a list of formal parameters passed to the module, outputs is a list of
formal parameters produced by the module, and statements is any sequence of var,
assign, define and instance statements. The input/output parameters can be thought
of as input/output signals. Input parameters are produced elsewhere, and they drive
the module, while output parameters are produced by the module itself and can be
used elsewhere. A signal that appears as an output parameter of a module must be
defined and assigned a value in that module (var or define or instance output). If a
signal that appears as an input parameter of a module is not used in that module, FoCs
will issue a warning.

Modules cannot be declared inside rules or other modules but they can be used
(instantiated) by rules and other modules.

A module statement is only a definition—it has no effect until it is instantiated
(called). The instance statement instantiates a module using the following format:

instance instance_name : module_name (inputs) (outputs);
where:
instance_name is the name of the specific instance (one module can be multiply
instantiated)
module_name is the name of the module being instantiated
inputs is a list of expressions passed as inputs to this instance
outputs is a list of output parameters, actually connecting the instance outputs to real
signals of the design. An instance name is optional.

The Sugar Specification Language

FoCs: Formal Checkers 77

6.5.2.5 Advanced Operations on Arrays

It is often convenient to apply operations to entire arrays or to ranges of indices.
Boolean arrays are the only arrays supported by FoCs. These arrays are commonly
used for buses and bundles.

6.5.2.6 Defining Arrays

An array of state variables is defined as follows:
var name (index1 .. index2) : boolean ;
An array can also be defined with a define statement:
define name(index1 .. index2) := <expr>;
For example:
define masked_sig(0..3) := sig(0..3) & mask(0..3);

6.5.2.7 Operations on Arrays

Reference:

The simplest operation on an array is a reference to a bit or a bit range. One bit of an
array is referenced as array_name(N) where N is a constant. A range of bits is
referenced as array_name(M..N). It is always necessary to specify the bit range when
referencing an array.

Other operations that can be used with arrays are:

:= != if case & | ^ ! -> <->

Example: aa(0..7) := if bb(0..2)=cc(0..2) then dd(0..7) else ee(1..8)
endif;

In boolean operands, both operands must be of the same width (unless one of them is
constant). The result will have the same width as the vector operands.

Example: v(0..7) := x(0..7) & y(0..7) | !z(0..7);

 CHAPTER 6

78 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

Relational: < > <= >=

Both operands must be of the same width (unless one of them is constant). The result
will be a scalar boolean value.

Examples: c := v(0..7) > x(0..7); d := v(0..7) <= 16;

Arithmetic (unsigned): + - *

Both operands must be of the same width (unless one of them is constant). The result
will have the same width as the vector operands.

Examples:

 define cc1(0..7) := aa(0..7) + bb(0..7);
 cc2(0..7) := aa(0..7) + 1;
 cc3(0..7) := 10 * aa(0..7);

In order not to lose the most significant bits of the result, pad the operands with zeroes
on the left. For example:

 define aa(0..7) := zeroes(4) ++ bb(0..3) * zeroes(4) ++ cc(0..3);
 co++sum(0..7) := 0++a(0..7) + 0++b(0..7);
(++ is the concatenation operator, described below. zeroes(4) is a vector of four
zeroes)

 Shift: >> <<

The first operand must be a boolean vector and the second operand must be an integer
constant or variable. The result is a boolean vector of the same width as the first
operand. These operations perform the logical shift (i.e., vacated bit positions are
filled with zeroes).

Examples:

 define cc(0..7) := aa(0..7) << 2;
 var shift_amount: 0..5;
 define dd(0..7) := bb(0..7) >> shift_amount;
 ee(0..8) := 0++ff(0..7) << 1;

The Sugar Specification Language

FoCs: Formal Checkers 79

Conversion of Bit Vectors to Integers and Vice Versa

The following are built-in functions for converting bit vectors to integers and vice
versa.

Bit vector to integer:
bvtoi(a_vector)
Integer to bit vector:
itobv(an_integer)
Example:
always (Addr(0..31) = itobv(256) -> bvtoi(data(0..3)) = 9)
Note that constant integers are converted to bit vectors implicitly. There is no need to
apply itobv.

Construction of Bit Vectors from Bits or Sub-vectors

The concatenation operator (++) is used to make bit vectors out of bits or smaller
vectors:
expr ++ expr
Example:
define wide(0..5):= narrow(2..3) ++ bit1 ++ bit2 ++
another_narrow(0..1);

If expr is a constant, it should be either 0 or 1. Wider constant vectors should be split
into separate bits.
define x(0..5):= y(0..2)++1++0++z; -- allowed
define x(0..5) := y(0..2)++10B++z; -- not allowed

The concatenation operator can also appear on the left-hand-side of an assign or
define statement. For instance, the following statement:
define a ++ b ++ c(0..2) := d ++ 1 ++ 0 ++ e(0..1);
is equivalent to the following four statements:

 CHAPTER 6

80 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

define a := d; b := 1; c(0) := 0; c(1..2) := e(0..1);
The built-in construct rep(expr,N) can help to construct arrays of repeated elements:

For example, defining an array of 8 1’s
assign arr(0..7) := rep(1,8);

Shorthands:

 zeroes(N) is equivalent to rep(0,N)

 ones(N) is equivalent to rep(1,N)

6.5.2.8 Array Notes

The exact range must be specified in the operation. “a = b” is not equivalent to
“a(0..3) = b(0..3)”. b(0..3) represents variables b(0) through b(3), while b represents
one variable with no index.

Operands can take any ranges, provided that their widths are compatible. For example,
“a(0..3) & b(1..4)” is legal, but “a(0..3) & b(0..4)” is not.

If one of the operands is a boolean vector and the other is a numeric constant, the
constant is considered an array of bits. For example, “a(0..1) = 10B” is equivalent to
“a(0)=1 & a(1)=0” and “a(1..0) = 10B” is equivalent to “a(1)=1 & a(0)=0”.

If you write “#define N 7” and later “a(0..N)”, leave a space around the two dots:
a(0 .. N). Otherwise the standard preprocessor (cpp) used by FoCs will identify ..N as
a token and will not replace N by 7.

6.5.2.9 More Array Examples
var a(0..3), b(0..8), c(0..2) : boolean;
define d(0..3) := b(5..8);-- different sub-ranges
define e(0..2) := b(0..2) & c(0..2);-- different directions

var x_state(0..2), y_state(0..2): {s1, s2, s3 };
define same_state := x_state(0..2) = y_state(0..2);

The Sugar Specification Language

FoCs: Formal Checkers 81

var nda(0..2): boolean;
assign init(a(0..2)) := 0
assign next(a(0..2)) :=
 case
 reset : 0;
 a(0..2) = b(0..2) : c(1..3);
 a(0..1) = 10B : d(0..2);
 else : a(0..2);
 esac;

var counter(0..7) : boolean;
assign
 init(counter(0..7)) := 0;
 next(counter(0..7)) := counter(0..7) + 1;

FoCs: Formal Checkers 82

CHAPTER 7 Using FoCs for Functional
Coverage Analysis

7.1 Functional Coverage
FoCs can be easily used to automatically generate monitors for tracking user-defined
coverage events. The only difference between a functional checker and a coverage
checker is in the interpretation of the “error” message in simulation. For coverage
purposes, the message is a positive indication that the desired event happened.

We recommend using the following formula styles for coverage analysis with FoCs:

1) always !(b)
The boolean expression b can never be true.

2) never{ [*]; event1; event2; ..., eventn }(

The sequence of events can never happen.

In the checker which FoCs generates, a message indicates that the event, or sequence
of events, did happen.

Examples:

Using FoCs for Functional Coverage Analysis

FoCs: a Formal Checker Tool 83

 vunit requestWithFullQueue {
 assert “a request comes when the queue is full”
 always !(request & queue_full) }

 vunit coverRWR {
 assert “read and later write and later read again
 never{ [*]; read,; [*]; write; [*]; read }

 assert “read and later write and later read again,
 and there was no other read between the two reads”
 never { [*]; read; !read[*]; !read & write; !read[*]; read }

More coverage options, such as event counting, will be added to FoCs in the future.

FoCs: Formal checkers 84

CHAPTER 8 Defining Bugspray Events†

†. For IBM users only

8.1 Introduction
When using Bugspray, it is possible to define events of type fail, count, and harvest. It
is possible to associate a Bugspray event to every Sugar assertion. The definition is
made in the description of the assertion.

8.2 Syntax
The description of the Sugar assertion starts with the Bugspray definition. A Bugspray
definition is separated from a standard description by “--!!” at the beginning and a
semicolon (“;”) at the end:

 assert
 “--!!<Event type(fail,count,harvest)> <Special flags>;
 standard assertion description “
 Sugar formulation ;

Defining Bugspray Events

FoCs: Formal checkers 85

If no bugspray definition is used, the formula will be a fail event.

The following are special flags used by Bugspray. All special flags are optional.

8.3 Events

8.3.1 Fail Events
Syntax:
assert
“--!!fail; standard assertion description”
 Sugar formulation ;
will be translated in checker to :
--!!fail outputs
 --!! 1:

Flag Explanation

 -t In count events, this flag defines a trigger signal (a signal that
says when to increase a counter for event). If no signal name
is defined (in this case there is no need for writing -t in special
flags), the keyword “no_trigger” is used as the trigger signal.

 -Tp This flag denotes whether to use the keyword “TracePoint”
for a count event.

-vn This flag allows you to specify a variable name for count and
harvest events.

-cn This flag allows you to specify a class name for count events.

-c This flag denotes whether to use the keyword “Cycle” for a
harvest event.

 CHAPTER 8

86 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 .
 .
 --!! i: “standard formula description”;
 .
 --!!end fail outputs;
Standard formula description is used for error message string.

8.3.2 Count Events
Syntax:
assert
“--!!count <-t signal name> <-Tp><-cn class name><-vn variable name>;”
 Sugar formulation ;
Note: <xxx> is used for optional values supplied by the user.

For each count event, if the class or variable name are not defined by the user, the
checker automatically produces a class name and a variable name using the name of
checker’s entity:

class name : count_class_<checker entity name>
variable name : count_<checker entity name>_i, where i is an index of the count
event

Examples for possible definitions: (assuming checker entity name is “chkr”)
formula
“--!!count;”
{ Sugar formula }
will be translated to :
--!!count outputs
--!! 1
 .
 .

Defining Bugspray Events

FoCs: Formal checkers 87

--!! i: count_class_chkr count_chkr_i no_trigger;
 .
--!!end count outputs;

assert
 “--!!count -t clk -cn user_class_name;”
 Sugar formulation ;
will be translated to :
 --!!count outputs
 --!! 1:
 .
 .
 --!! i: user_class_name count_chkr_i clk;
 .
 --!!end count outputs;

assert
“--!!count -t clk -Tp -cn user_class_name -vn user_var_name;”
 Sugar formulation ;
will be translated to :
 --!!count outputs
 --!! 1:
 .
 .
 --!! i: user_class_name user_var_name clk, TracePoint;
 .
 --!!end count outputs;

assert

 CHAPTER 8

88 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

“--!!count -Tp;”
 Sugar formulation ;
will be translated to :
--!!count outputs
--!! 1:
 .
 .
 --!! i: count_class_chkr count_chkr_i no_trigger, TracePoint;
 .
--!!end count outputs;

8.3.3 Harvest Events
Syntax :
assert
“--!!harvest <-c> <-vn variable name>; standard formula description”
 Sugar formulation ;
Note: <xxx> is used for optional values supplied by the user.

For each harvest event, if the variable name is not defined by the user, the checker
automatically produces a variable name using the name of checker’s entity:

variable name : harvest_<checker entity name>_i;
Examples for possible definitions : (assuming checker entity name is "chkr")
assert
“--!!harvest; standard formula description”
 Sugar formulation ;
will be translated to :
--!!harvest outputs
--!! 1:
 .

Defining Bugspray Events

FoCs: Formal checkers 89

 .
--!! i: harvest_chkr_i “standard formula description”;
 .
--!!end harvest outputs;

assert
“--!!harvest -c -vn user_var_name; standard formula description”
 Sugar formulation
will be translated to :
--!!harvest outputs
--!! 1:
 .
 .
--!! i: user_var_name “standard formula description”, Cycle;
 .
--!!end harvest outputs;

In all types of events, indexes are assigned automatically.

FoCs: Formal Checkers 90

CHAPTER 9 FoCs for RuleBase Users

9.1 Tips for Users of RuleBase
RuleBase is an industrial-strength formal verification (FV) tool, developed by the
IBM Haifa Research Laboratory. RuleBase is especially applicable for verifying the
control logic of hardware designs, and uses Sugar for design specification. There are
several advantages to using FoCs-generated checkers in the simulation of designs
which were formally verified against the same Sugar properties.
• Often, the input constraints (a.k.a. “the environment model”) defined for formal

verification are more restricted than the real environment modeled in simulation.
Thus, in simulation, one can exercise the design against inputs whose effect on the
design has not been explored by FV. It follows that the enhanced checking capabil-
ity of FoCs provides better coverage and confidence in verification quality.

• FoCs checkers can help find problems in the input constraints defined for FV. For
example, if the results of FV and simulation—relative to the same properties—do
not agree, it is likely that the input constraints have not been defined correctly.

• Using FoCs, one can validate the assumptions made in the FV process. These
assumptions can be formulated as Sugar properties, translated by FoCs into check-
ers, and checked during simulation.

It is possible to use the same rules file for both RuleBase and for FoCs; however, FoCs
only allows deterministic signal definitions. The RuleBase rules file may include non-

FoCs for RuleBase Users

FoCs: a Formal Checker Tool 91

deterministic definitions that are relevant for environment definitions. These
definitions are irrelevant for the generated checker, which receives its input from the
simulation inputs. For FoCs to ignore such definitions, you must set the Interface
Filename (in Settings, under Generation Style) to your VIM DEF file, located in your
vimdbase/DEF directory. Using this file, FoCs knows what signals are actual design
inputs.

FoCs: Formal Checkers 92

CHAPTER 10 Appendix A - Checker Code
Examples

10.1 Examples of Checker Code in Verilog
and VHDL
Below is the checker code generated by FoCs for the Sugar rule:
vunit check_busy_flag{
assert
 {[*]; {request&!acknowledge}[*5]} |-> {busy_flag}

}

10.2 Checker Code in Verilog
The following is the FoCs checker code in Verilog:
module check_busy_flag (
 clk,
 rst,
 request,
 acknowledge,

Appendix A - Checker Code Examples

FoCs: a Formal Checker Tool 93

 busy_flag
);
 input clk;
 input rst;
 input request;
 input acknowledge;
 input busy_flag;
 reg focs_enable_0;
 reg focs_ok_0;
 reg [0:6] focs_v_0;
 reg [0:6] focs_vout_0;

 initial
 begin
 end
 always @(posedge clk)
 if (rst) begin
 focs_enable_0 <= 1’d1;
 focs_ok_0 <= 1’d1;
 focs_v_0[0:6] <= 7’b1110000;
 end
 else
 if (focs_enable_0) begin
 focs_ok_0 <= !((focs_v_0[6] & ((request &
!(acknowledge))
 & !(busy_flag))));
 focs_vout_0[0:6] = {1’d0, (focs_v_0[1] & 1’b1),
(focs_v_0[2
] & (request & !(acknowledge))), (focs_v_0[3] & (request & !(
 acknowledge))), (focs_v_0[4] & (request & !(acknowledge))),
(focs_v_0

 CHAPTER 10

94 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 [5] & (request & !(acknowledge))), (focs_v_0[6] & ((request & !(
 acknowledge)) & !(busy_flag)))};
 focs_v_0[0:6] <= {focs_vout_0[0], (focs_vout_0[0] |
 focs_vout_0[1]), (focs_vout_0[0] | focs_vout_0[1]),
focs_vout_0[2],
 focs_vout_0[3], focs_vout_0[4], focs_vout_0[5]};
 if (!((!(clk) | ((!(focs_enable_0) | focs_ok_0) | rst))
)) begin
 $display("formula 1");
 $finish;
 end
 end
endmodule

10.3 Checker Code in VHDL
The following is the FoCs checker code in VHDL:
library ieee;
library ibm;
use ieee.std_logic_1164.all;
use ibm.std_logic_support.all;
ENTITY check_busy_flag IS
 PORT (
 clk :IN std_logic;
 rst :IN std_logic;
 request :IN std_logic;
 acknowledge :IN std_logic;
 busy_flag :IN std_logic);
END check_busy_flag ;

Appendix A - Checker Code Examples

FoCs: a Formal Checker Tool 95

ARCHITECTURE checker OF check_busy_flag IS
 SIGNAL focs_enable_0 : std_logic;
 SIGNAL focs_ok_0 : std_logic;
 SIGNAL focs_v_0 : std_logic_vector(0 TO 6);

 function i2l (src: integer)
return std_logic is
variable R: std_logic;
 begin
if src = 0 then
 R := ’0’;
else
 R := ’1’;
end if;
return R;
 end i2l;

 function l2i (src: std_logic)
return integer is
variable R: integer;
 begin
if src = ’0’ then
 R := 0;
else
 R := 1;
end if;
return R;
 end l2i;

 CHAPTER 10

96 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 function b2l (src: boolean)
return std_logic is
variable R: std_logic;
 begin
if src then
 R := ’1’;
else
 R := ’0’;
end if;
return R;
 end b2l;

 function l2b (src: std_logic)
return boolean is
variable R: boolean;
 begin
if (src = ’1’) then
 R := true;
else
 R := false;
end if;
return R;
 end l2b;

 function b2i (src: boolean)
return integer is
variable R: integer;
 begin

Appendix A - Checker Code Examples

FoCs: a Formal Checker Tool 97

if src then
 R := 1;
else
 R := 0;
end if;
return R;
 end b2i;

 function i2b (src: integer)
return boolean is
variable R: boolean;
 begin
if src = 0 then
 R := false;
else
 R := true;
end if;
return R;
 end i2b;

 function reverse (arg: std_Logic_vector) return std_Logic_vector is
 variable result : std_Logic_vector(arg’range);
 begin
 for i in arg’range loop
 result(result’right - i + result’left) := arg(i);
 end loop;
 return (result);
 end reverse;

 CHAPTER 10

98 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 -- convert an integer to an STD_LOGIC_VECTOR

 function i2vl(ARG: INTEGER; SIZE: INTEGER) return STD_LOGIC_VECTOR
is
 variable result: STD_LOGIC_VECTOR (SIZE-1 downto 0);
 variable temp: integer;
 -- synopsys built_in SYN_INTEGER_TO_SIGNED
 begin
 -- synopsys synthesis_off
 temp := ARG;
 for i in SIZE-1 downto 0 loop
 if (temp mod 2) = 1 then
 result(i) := ’1’;
 else
 result(i) := ’0’;
 end if;
 if temp > 0 then
 temp := temp / 2;
 else
 temp := (temp - 1) / 2; -- simulate ASR
 end if;
 end loop;
 return result;
 -- synopsys synthesis_on
 end i2vl;

 -- convert a boolean to an STD_LOGIC_VECTOR

 function b2vl(ARG: BOOLEAN; SIZE: INTEGER) return STD_LOGIC_VECTOR
is

Appendix A - Checker Code Examples

FoCs: a Formal Checker Tool 99

 variable result: STD_LOGIC_VECTOR (SIZE-1 downto 0);
 begin

 if (ARG = false) then
 result(SIZE-1) := ’0’;
 else
 result(SIZE-1) := ’1’;
 end if;
 if (SIZE = 1) then
 return result;
 end if;
 for i in SIZE-2 downto 0 loop
 result(i) := ’0’;
 end loop;
 return result;
 end b2vl;

-- convert a logic vector to integer
function vl2i (src: STD_LOGIC_VECTOR)
return integer is
 variable R : integer;
 variable mult : integer;
begin
 R := 0;
 mult := 1;
 for i in src’high downto src’low loop
 if src(i) = ’1’ then
 R := R + mult;
 end if;

 CHAPTER 10

100 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

 mult := mult * 2;
 end loop;
 return R;
end vl2i;

BEGIN
 PROCESS
 VARIABLE focs_vout_0 : std_logic_vector(0 TO 6);
 BEGIN
 WAIT UNTIL clk’EVENT AND clk = ’1’;
 IF (l2b(rst)) THEN
 focs_enable_0 <= ’1’ ;
 focs_ok_0 <= ’1’ ;
 focs_v_0(0 TO 6) <= "1110000";
 ELSIF (l2b(focs_enable_0)) THEN
 focs_ok_0 <= NOT((focs_v_0(6) AND ((request AND NOT(
acknowledge)
) AND NOT(busy_flag))));
 focs_vout_0(0 TO 6) := ((((((’0’ & (focs_v_0(1) AND
’1’))
 & (focs_v_0(2) AND (request AND NOT(acknowledge))))
& (
 focs_v_0(3) AND (request AND NOT(acknowledge)))) & (
 focs_v_0(4) AND (request AND NOT(acknowledge)))) & (
 focs_v_0(5) AND (request AND NOT(acknowledge)))) & (
 focs_v_0(6) AND ((request AND NOT(acknowledge)) AND
NOT(
 busy_flag))));

Appendix A - Checker Code Examples

FoCs: a Formal Checker Tool 101

 focs_v_0(0 TO 6) <= ((((((focs_vout_0(0) & (
focs_vout_0(0) OR
 focs_vout_0(1))) & (focs_vout_0(0) OR focs_vout_0(1)))
&
 focs_vout_0(2)) & focs_vout_0(3)) & focs_vout_0(4)) &
 focs_vout_0(5));
 END IF;
 END PROCESS;
 ASSERT (NOT(((NOT(clk) OR ((NOT(focs_enable_0) OR
focs_ok_0) OR
 rst)) = ’0’))
)
 REPORT " FAILURE EVENT: rule: CHECK_BUSY_FLAG, formula: 1 :
formula 1"

 SEVERITY NOTE;
END checker ;

FoCs: Formal Checkers 102

CHAPTER 11 Appendix B - Common Error
Messages

11.1 Common FoCs Error Messages
Below are some common error messages and their meanings:

11.1.1 Settings Errors
Fatal error: In “Settings” clock name must be supplied

Defining the Clock in the Settings is obligatory.

Fatal error: In “Settings” reset name must be supplied

Defining the reset signal, when reset is defined as External, is obligatory.

Fatal error: In Bugspray mode, the name of the design must be specified

When selecting Target simulator to be "Bugspray", defining the design entity name is
obligatory.

Appendix B - Common Error Messages

FoCs: a Formal Checker Tool 103

11.1.2 Sugar Errors and Warnings
Warning: Assertion 1: Assertion does not begin with “always”

When an assertion begins with always, or a sequence begins with [*], it is checked at
every cycle. Otherwise, it is checked only at the first cycle. Such a message is likely to
appear if there is a formula with {e1,e2,...}. This assertion doesn’t start with [*],
and therefore will only be checked on the first cycle.

Warning: Assertion 1: Operation AF cannot run in Safety on-the-fly mode

Warning: Assertion 1: Running this assertion with OnTheFly = No.

Warning: Assertion is not safety. Translation failed. Check if there is no use of AF
or ECTL operators in the formula

Assertion not on-the-fly

If one or more of the above messages appears, it means that the Sugar assertion is not
supported by FoCs. Since checkers run during simulation, and the properties are
checked at each cycle, only properties that can be verified at each cycle can be written.
Such properties are called Safety properties.

Properties that refer to “sometime in the future”, such as “liveness” properties, that
ensure the occurrence of some event, can not be verified during simulation, and
therefore cannot be used in FoCs.

See Sugar_v1.4 -with FoCs notes for further explanation on unsupported Sugar
operators.

Fatal error : Nondeterministic operator is used
Since the Sugar properties are translated to HDL code, it is forbidden to use non-
determinism in the assertions and state machines. Such a message may mean that there
is a variable that has received a non-deterministic value.

Fatal error: Environment is nondeterministic: behaviour of signal x is undefined

In this case, there must be some variable that was defined but not assigned.

 CHAPTER 11

104 IBM Haifa Research Laboratory
 Provided by special agreement with IBM

Fatal error: Environment is nondeterministic : in signal x next state is defined
without init state
This means that there is an assign statement for variable x, but no init statement. This
is forbidden, because behaviour must be deterministic.

Fatal error : Nondeterministic environment - case without else in file...

A case statement must always contain an else part (even if all cases are covered),
Otherwise the behaviour is considered as non deterministic.

Index

Symbols
#path 13
$display 35, 36
$fdisplay 35, 36
%end 68
%for 67
%if 69

A
Accellera 5
alias 8
always 51, 62
AND 57
arrays 52, 77

array operations 77
boolean vectors 77
concatenation 79
defining 77
ones() 80
operations on 77
rep() 80
zeroes() 80

arrow brackets 13
assign 73
automatic mapping 12
auxiliary variables 72

B
backslash 36
before 59, 62
benefits of FoCs 6
boolean events 58
boolean vectors 77
Bugspray 18, 84

flags 85
syntax 84

bvtoi() 79

C
case 71
checkers

batch mode 10
generation 9

all rules 27
one rule 27
several rules 27

libraries 39
module name 32
name 32
output 34
simulation 90

clock 30, 31
comments 39, 67
concatenation 79
constructs 51

See also Sugar-constructs
count 86
count event 86
COVER 35
coverage 82, 83

D
define 74
design signals 12

E
else 72
entity 11
ERROR 35
error

clock 102
design name 102
messages 102
nondeterministic 103
reset 102
See also warning

F
fail 48, 85
fell 64
flags 10
formula 66

type 35
values 35

fprintf 35, 36
FSM statements

assign 73
define 74
instance 75
module 75
var 72

FSMs 64, 65
See also state machines

functions 39, 64
See also Sugar-functions

G
generation 9
getting started 9
GUI 25

H
harvest 88
harvest event 88
HDL code 6

I
if 71, 72
implication 54, 58
init 73
input 76
installation 8
instance 75, 76
instantiation 11, 33
itobv() 79

L
linkage 11, 17
logic 33

M
macros 64, 65, 67
mapping

incomplete 14, 49
override 14, 16
vectors 16

mapping file 12
module 11, 75, 76

N
never 52, 62
next 64, 73
numbers 60

O
ones() 80
operators 61, 63

mathematical 60
relational 62

OR 57
output 36, 37, 76

configure 36

P
polarity 32
port mapping 11, 14
preprocessing 67
prev 64
printf 35, 36
properties 5, 50, 65

Q
quotation marks 36

R
rep() 80
repetitions

consecutive 55
non-consecutive 56

report template file 34
report templates

library 38
use 38

reset 30, 31
external 31
internal 31

rose 64
rule 65
RuleBase 90
rules file 22, 29, 64

partitioning 66
writing 66

S
semantics 36

SERE 62
Settings 9, 29
settings 10

checker generation style 32
clock and reset 30
language 30
main 29
output 30
reporting 34
rules file 29
signal mapping 48
simulation 30

signal connection 11
signal names 16

hierarchical 16
signal spy 18, 19
signals 60
simulation 6
state machines

expressions 71
See also FSMs
writing 70

state variable 72
subsequences 56, 63
Sugar

constructs 51
always 51
before 59
functions 64
never 52, 57
SERE 53
temporal 61
until 58

formulas 50
functions 64
properties 51, 54, 55, 65

syntax 36, 65

T
tar file 8
trigger 85

U
until 58, 62

V
var 72
variables 39
vectors 33, 52

range 17
Verilog 5, 9, 11, 30

checker code 92
linkage 17

VHDL 5, 9, 11, 30
assertion level 34
checker code 94
linkage 18

vunit 65

W
warnings

always 103
incomplete mapping 49
on-the-fly 103

website 6

Z
zeroes() 80

	FoCs
	Notices
	Table of Contents
	CHAPTER 1 Introduction
	1.1 Overview
	1.2 About This Manual

	CHAPTER 2 Installation and Setup
	2.1 Installation
	2.1.1 Personal Setup

	2.2 Running FoCs
	2.2.1 Checker Generation
	2.2.2 Batch Mode

	CHAPTER 3 Linking Checkers with your Design
	3.1 Introduction
	3.2 Signal Mapping
	3.2.0.1 Nested Design Signals
	3.2.0.2 Automatic Signal Mapping
	3.2.0.3 Using Hierarchical Signal Names
	3.2.0.4 Mapping Vectors

	3.3 Linkage
	3.3.1 Verilog
	3.3.2 Pure VHDL
	3.3.3 Bugspray (IBM only)
	3.3.4 Model Sim®
	3.3.4.1 Signal Spy Mapping Using Generic Ports

	CHAPTER 4 Tutorial
	4.1 Introduction
	4.2 Design Description
	4.3 The Rules File
	4.4 Initial Setup for a Working Environment
	4.5 Generating Checkers

	CHAPTER 5 Customizing FoCs Settings
	5.1 Overview
	5.2 Main Tab
	5.2.1 Rules File
	5.2.2 Target Language
	5.2.3 Target Simulator (VHDL only)
	5.2.4 Output File Name

	5.3 Clock and Reset Tab
	5.3.1 Clock Name
	5.3.2 Clock Polarity
	5.3.3 Simulation Delay (Verilog only)
	5.3.4 Reset Mode
	5.3.5 Checker Reset Name (External Only)
	5.3.6 Number of Reset Cycles (Internal Only)
	5.3.7 Reset Polarity

	5.4 Checker Generation Style Tab
	5.4.1 Checker Entity Name (VHDL Only)
	5.4.2 Checker Module Name (Verilog Only)
	5.4.3 Generate Module (Verilog only)
	5.4.4 Produce Instantiation Code
	5.4.5 Interface Filename
	5.4.6 Design Entity Name (Mvlsim/Bugspray Simulation Only)
	5.4.7 Vector Direction
	5.4.8 Logic Signal Type (VHDL only)

	5.5 Reporting Tab
	5.5.1 Severity of Assertion (VHDL Only)
	5.5.2 Report Template File Mechanism (Verilog and VHDL-93 full)
	5.5.2.1 Report template file
	5.5.2.2 Formula type definition
	5.5.2.3 Usage and semantics of printf / $display and fprintf / $fdisplay
	5.5.2.4 Writing output to the file streams
	5.5.2.5 Including files, libraries, and packages
	5.5.2.6 Examples

	5.5.3 Maximal Number of Fails

	5.6 Signal Mapping Tab
	5.6.1 Mapping File
	5.6.2 Mapping Method (VHDL – MTI Simulator only)
	5.6.3 Design Signals Prefix
	5.6.4 Checker Signals Prefix (MTI – force-freeze only)
	5.6.5 Warn Incomplete Mapping

	CHAPTER 6 The Sugar Specification Language
	6.1 Introduction
	6.2 Getting Started with Sugar
	6.2.1 Always (p)
	6.2.2 never (p)
	6.2.4 Sugar Extended Regular Expression – SERE
	6.2.4.1 The constructs {SERE} |-> {SERE} and {SERE} |=>{SERE}
	6.2.4.2 Subsequences
	6.2.4.3 The | and && operators
	6.2.4.4 Applying never to SERE’s
	6.2.4.5 Counting Boolean events

	6.2.5 Suffix Implication {SERE}()

	6.3 The Building Blocks of a Sugar Formula
	6.3.1 Boolean Expressions
	6.3.1.1 Signal Names
	6.3.1.2 Numbers
	6.3.1.3 Operators

	6.3.2 Temporal Properties
	6.3.2.1 Temporal Constructs
	6.3.2.2 Sequence Operators

	6.3.3 Built-in Functions

	6.4 Writing a Rules File
	6.4.1 The Structure of the Rules File
	6.4.2 A Methodology for Writing Rules Files
	6.4.3 Comments, Macros, and Preprocessing Directing

	6.5 State Machines
	6.5.1 Additional Expressions Used in State Machines
	6.5.1.1 if and case Expressions

	6.5.2 Statements for State Machines – FSM Statements
	6.5.2.1 The var Statement
	6.5.2.2 The Assign Statement
	6.5.2.3 The Define Statement
	6.5.2.4 The Module and Instance Statements
	6.5.2.5 Advanced Operations on Arrays
	6.5.2.6 Defining Arrays
	6.5.2.7 Operations on Arrays
	6.5.2.8 Array Notes
	6.5.2.9 More Array Examples

	CHAPTER 7 Using FoCs for Functional Coverage Analysis
	7.1 Functional Coverage

	CHAPTER 8 Defining Bugspray Events
	8.1 Introduction
	8.2 Syntax
	8.3 Events
	8.3.1 Fail Events
	8.3.2 Count Events
	8.3.3 Harvest Events

	CHAPTER 9 FoCs for RuleBase Users
	9.1 Tips for Users of RuleBase

	CHAPTER 10 Appendix A - Checker Code Examples
	10.1 Examples of Checker Code in Verilog and VHDL
	10.2 Checker Code in Verilog
	10.3 Checker Code in VHDL

	CHAPTER 11 Appendix B - Common Error Messages
	11.1 Common FoCs Error Messages
	11.1.1 Settings Errors
	11.1.2 Sugar Errors and Warnings

	Index

