
FrameScript: A Multi-modal Scripting Language

M. McGill
mmcgill@cse.unsw.edu.au

C. Sammut
claude@cse.unsw.edu.au

J. Westendorp
jhw@cse.unsw.edu.au

W. Kadous
waleed@cse.unsw.edu.au

Abstract

This document is a user manual for the FrameScript scripting lan-
guage. FrameScript combines rule based scripts with frames [6] and an
untyped expression language. It has been developed for the purpose of
rapid prototyping of conversational, speech and multi-modal interfaces.

FrameScript uses a number of techniques to allow scripts to be modu-
larized and so simplify the task of writing them. It has also been designed
in such a way that it is easily extensible and so can be used in a variety
of applications and with a variety of technologies.

This user manual also describes MicaBot a FrameScript extension that
allows FrameScript to be used with the Mica [4, 5] agent architecture.
MicaBot allows Mica agents to be written using FrameScript.

1

Contents

1 Overview 8
1.1 MICA . 8
1.2 FrameScript . 11

2 FrameScript 12
2.1 Frames . 12

2.1.1 Slots . 13
2.1.2 Generic Frames . 13
2.1.3 Daemons . 13
2.1.4 Instance Frames . 14
2.1.5 Multiple Inheritance . 14

2.2 Scripts . 16
2.2.1 Rules . 16
2.2.2 Patterns . 16
2.2.3 Responses . 17
2.2.4 Pattern Component Numbering 18
2.2.5 Domains, Topics and Triggers 19
2.2.6 Inheritance . 21
2.2.7 Slots . 22
2.2.8 Failsafes . 22
2.2.9 Rule Ordering . 22
2.2.10 Daemons . 23
2.2.11 Abnormal Scripts . 24
2.2.12 Pattern Matching Algorithm 24

2.3 Expression Language . 26
2.3.1 Statements . 26
2.3.2 Numbers . 26
2.3.3 Strings . 26
2.3.4 Atoms . 27
2.3.5 Lists . 27
2.3.6 Expression Lists . 27
2.3.7 Patterns . 27
2.3.8 Sequences . 28
2.3.9 Alternatives . 29
2.3.10 Ripple Down Rules . 29
2.3.11 Functions . 29
2.3.12 Forall Loops . 31
2.3.13 Variables . 31

2.4 Modules . 32
2.4.1 Subroutines . 32
2.4.2 MaxModule Example . 34

3 Multi-modal Interaction 34
3.1 Multi-modal Example . 34

2

4 GUI 37
4.1 Message Dialog . 37
4.2 Question Dialog . 38
4.3 RDR Maintenance GUI . 38
4.4 Frame Browser . 39

4.4.1 Menu . 39
4.4.2 Transcript . 40
4.4.3 Generic Frames . 40
4.4.4 Instance Frames . 40
4.4.5 Functions . 41

4.5 Script Browser . 42
4.5.1 Menu . 42
4.5.2 Domains . 43
4.5.3 Scripts . 44
4.5.4 Functions . 46
4.5.5 Conversation GUI . 46

5 MicaBot 46
5.1 Speech Alternatives . 47
5.2 SimpleTextAgent . 47
5.3 MicaRunner . 47

6 Discussion 49

A BNF 52

B Built-in Subroutines 56
B.1 Operators . 56

B.1.1 + . 57
B.1.2 - . 57
B.1.3 * . 57
B.1.4 / . 57
B.1.5 mod . 58
B.1.6 < . 58
B.1.7 <= . 58
B.1.8 > . 58
B.1.9 >= . 58
B.1.10 == . 59
B.1.11 != . 59
B.1.12 = . 59
B.1.13 and . 59
B.1.14 or . 59
B.1.15 not . 60
B.1.16 of . 60
B.1.17 in . 60
B.1.18 new . 60
B.1.19 ˆ . 60
B.1.20 # . 61
B.1.21 to . 61
B.1.22 var . 61

3

B.1.23 forall . 61
B.1.24 -> . 62
B.1.25 Precedence Table . 62

B.2 General Functions . 62
B.2.1 trace . 62
B.2.2 verbose . 62
B.2.3 atom . 63
B.2.4 defined . 63
B.2.5 undefined . 63
B.2.6 set . 63
B.2.7 number . 63
B.2.8 integer . 63
B.2.9 list . 63
B.2.10 cons . 64
B.2.11 member . 64
B.2.12 head . 64
B.2.13 tail . 64
B.2.14 nth . 64
B.2.15 length . 64
B.2.16 append . 65
B.2.17 delete . 65
B.2.18 fixrdr . 65
B.2.19 rdr . 65
B.2.20 print . 66
B.2.21 error . 66
B.2.22 ask . 66
B.2.23 eval . 66
B.2.24 quote . 66
B.2.25 load . 66
B.2.26 load module . 67
B.2.27 output to file . 67
B.2.28 close output . 67
B.2.29 print as text . 67

B.3 Frame Subroutines . 67
B.3.1 frame . 68
B.3.2 generic . 68
B.3.3 instance . 68
B.3.4 instances of . 68
B.3.5 put . 68
B.3.6 replace . 69
B.3.7 remove . 69
B.3.8 destroy . 70

B.4 Script Routines . 70
B.4.1 script . 70
B.4.2 domain . 70
B.4.3 pattern . 70
B.4.4 register . 70
B.4.5 goto . 70
B.4.6 current context . 71
B.4.7 previous topic . 71

4

B.4.8 new event . 71
B.4.9 bot . 71
B.4.10 match . 72
B.4.11 failsafe . 72
B.4.12 question . 72
B.4.13 return . 73

B.5 GUIs . 73
B.5.1 dialog message . 73
B.5.2 dialog question . 73
B.5.3 frame browser . 73
B.5.4 script browser . 73
B.5.5 fix rdr gui . 74

B.6 MicaBot . 74
B.6.1 micabot . 74
B.6.2 mica connect . 75
B.6.3 mica register . 75
B.6.4 mica unregister . 76
B.6.5 mica read mob . 76
B.6.6 mica write mob . 76
B.6.7 mica delete mob . 77
B.6.8 mica query . 77
B.6.9 mica write wait for reply 78
B.6.10 get mob name . 78
B.6.11 current micabot . 78

C Utility Functions 79
C.1 Subroutine Argument Type Checking 79

C.1.1 check alternatives . 79
C.1.2 check atom . 79
C.1.3 check boolean . 80
C.1.4 check compound . 80
C.1.5 check domain . 80
C.1.6 check exprlist . 81
C.1.7 check frame . 81
C.1.8 check generic . 81
C.1.9 check instance . 82
C.1.10 check integer . 82
C.1.11 check list . 82
C.1.12 check number . 83
C.1.13 check pattern . 83
C.1.14 check rdr . 83
C.1.15 check script . 84
C.1.16 check sequence . 84
C.1.17 check string . 84

C.2 Files/Modules . 85
C.2.1 loadFile . 85
C.2.2 loadModule . 85
C.2.3 setOutput . 85
C.2.4 closeOutput . 85
C.2.5 FileNotFound . 85

5

C.2.6 evloop . 85
C.3 Miscellaneous . 85

C.3.1 compress . 85
C.3.2 getMessage . 85
C.3.3 getName . 85
C.3.4 getPattern . 85
C.3.5 sortAtomList . 85
C.3.6 IOError . 86
C.3.7 isPattern . 86
C.3.8 isUnaryPattern . 86
C.3.9 isPatternElement . 86
C.3.10 formatComment . 86
C.3.11 unformatComment . 86
C.3.12 unformatComment . 86
C.3.13 checkAllReferences . 86

D Serialisation 87

List of Figures

1 Agents communicate via MICA’s blackboard 10
2 Example Generic Frame . 13
3 Example Instance Frame . 14
4 Multiple Inheritance Example . 15
5 Script Example . 15
6 Rule Condition Example . 17
7 Rule Evaluation Condition Example 17
8 Sequence Example . 18
9 Alternatives Example . 18
10 Conditional Response Example 18
11 Match Component Example . 19
12 Component Numbering Example Non-terminals 19
13 Topic Example . 21
14 Script Inheritance Example . 21
15 Script Daemons Example . 23
16 Abnormal Script Example . 24
17 Evaluation Statements . 26
18 Function Definition Example . 30
19 Function Type Checking Example 30
20 MaxModule Example . 35
21 Example Multi-modal Script . 36
22 Message Dialog . 38
23 Question Dialog . 38
24 RDR Maintenance GUI . 39
25 Frame Browser . 40
26 Instance Frame Browser . 41
27 Function Browser . 41
28 Script Browser . 42
29 Domain Browser . 43

6

30 Script Daemon Browser . 44
31 Abnormal Script Browser . 45
32 Function Browser . 45
33 Conversation GUI . 46
34 Speech Alternative Example . 47
35 SimpleTextAgent . 48
36 MicaRunner Startup Script Example 48

List of Tables

1 Component Numbering Example 20
2 Pattern Match Examples . 25
3 Pattern Examples . 28
4 Operator precedence . 62

7

1 Overview

This document describes FrameScript, a language for creating multi-modal user
interfaces. FrameScript is a multi-paradigm language that enables rule-based
programming as well as frame representations and simple functional evaluation.
It is derived from Probot [7], a language intended solely for text-based con-
versational agents. FrameScript extends Probot in providing mechanisms for
interaction through a variety of devices; FrameScript also allows inheritance of
scripts.

FrameScript has a companion program, called MICA, that coordinates com-
munication between agents. FrameScript’s design is better understood if the
reader has some knowledge of the context in which it is intended to be uased.
Therefore, the following sections give overviews of both programs before fo-
cussing on the details of FrameScript.

Our goal is to provide easy-to-use and intuitive mechanisms for interacting
with intelligent environments. Two major software systems have been developed
for this purpose: FrameScript is a language for writing scripts that implement
multimodal user interactions. It incorporates rules for describing natural lan-
guage conversations as well as interpreting events in other modalities including
touch screens and gestures.

MICA is a system that provides a simple but powerful method for software
agents to communicate with each other. These agents may control devices in an
intelligent environment or they may provide services such as speech recognition,
natural language processing or access to resources on the internet.

The main advantage of these programs is that they make the development
of applications involving multi-modal interfaces relatively quick and easy.

1.1 MICA

MICA (Multimodal Inter-agent Communication Architecture) is a middleware
layer for pervasive computing that is especially well suited to sharing of infor-
mation between users, learning user’s preferences and interacting with the user
through many devices and modalities. It is based on the idea of a blackboard: a
global shared memory which acts as both a communication and storage mech-
anism. It uses an extremely simple API that is easy to program, but still small
enough to fit on PDAs and mobile phones.

In designing MICA, the design goals were to:

• Allow applications to be built in such a way that the interface to the ap-
plication and the application themselves are clearly separated, to support
multimodal interaction.

• Operate in heterogeneous environments, in particular, it should be able
to run on low-power and mobile devices. This also means that it should
support low-level programming languages such as C.

• Allow users to use multiple input and output modalities and devices, such
as speech, gesture, audio and video; at the same time allowing both mul-
timodal input fusion and multimodal output generation. For example,
the user should be able to begin answering an e-mail on her PDA using

8

speech, then when she gets to her office continues working on the same
e-mail on her desktop from where she left off.

• Support learning of user’s preferences and patterns of usage.

• Use a simple abstraction that developers can learn and use quickly.

• Support both security and privacy measures.

• Act as an interpersonal communication mechanism, as well as allowing all
of one person’s communication tools to communicate with each other.

MICA’s is based on the blackboard architecture [3]. Groups of agents use the
blackboard to share knowledge and communicate. When something is written
to the blackboard, each agent examines it and sees if it can make a contribution
to solving a problem. In MICA, we update the idea of a blackboard by support-
ing distributed execution and network communication, using an object-oriented
data representation and adding security and privacy mechanisms.

There are three entities used in the MICA design:

1. The blackboard is the core of MICA. It is similar to a telephone switch
with memory. All interactions between agents flow through the blackboard
in much the same way that all phone calls in a town go through a switch.
Much of the power of the blackboard comes from its ability to allow many
agents to share information. It is expected, that in use, there would be
one blackboard for each person or environment, such as a car or house.

2. Agents are entities that access and contribute to the information on the
blackboard. The two main types of agents are: interaction agents that
convey information to and from the user such as GUIs, proxies for tele-
phone connections and devices in the environment; and computational
agents that provide services such as speech recognition, web access and
e-mail. Once connected to a blackboard, agents can read, write and query
objects on the blackboard. In addition, they can register for new objects
written on the blackboard. When a new object of interest to the agent is
written to the blackboard, the agent is informed of its arrival.

3. MICA Objects (or mobs for short) are the basic unit of information in
MICA. Mobs are the things that agents actually read and write from
the blackboard. Mobs are very similar to objects in an object-oriented
framework, but also share some characteristics with frames. Each mob
has a type defined by the user - similar to a class in an object-oriented
language. In addition, mobs have slots, which are similar to fields in
object-oriented programming - each slot has a name and one or more
values. Currently, only string values are supported.

Figure 1 illustrates how agents interact through the blackboard. In this
example, a user is requesting a listing of his emails. The audio input device,
in this case a phone, posts an audio object to the blackboard. The speech
recognition agent has registered its interest in audio objects, so it is notified of
the arrival of the new object. The speech recognition system reads and processes
the audio object, posting its output, a text object, back to the blackboard.

9

F
ig

ur
e

1:
A

ge
nt

s
co

m
m

un
ic

at
e

vi
a

M
IC

A
’s

bl
ac

kb
oa

rd

10

The text object activates the natural language agent. This is a FrameScript
program that understands email requests and translates the text into an object
that represents a command to the email agent. The result of the email request
goes onto the blackboard and is translated into text by the email-to-text con-
verter. Finally, the text-to-speech agent creates the audio output that is sent
to the output device.

1.2 FrameScript

Some of the agents that connect to MICA may be generic. For example, a speech
recognition system such as Dragon Naturally Speaking (DNS) is an off-the-shelf
program that only requires the addition of a stub that allows it to be invoked by
the communication of objects through MICA. Other agents will be application
specific. An example is a conversational agent that handles dialogues specific
to the application, such as an in-car controller for non-critical devices such as
the radio or air-conditioner.

FrameScript is a language that allows developers to rapidly script domain
specific interactions for particular application. MICA and the FrameScript in-
terpreter are separate programs that may be run completely independently.
However, their usefulness is greatly enhanced when used together. Application
dependent agents can be written using FrameScript and these connect through
MICA to invoke other agents, such as DNS or to control devices. The Frame-
Script language provides a very rich set of tools for representing knowledge and
interacting with users and external devices. Its strength is that new agents
can be created quickly and easily. In this section, we briefly survey only the
most important features of FrameScript. Later sections describe the language
in detail.

Scripts provide FrameScript with rule-based processing for controlling in-
teractions with users and devices. The rule system in FrameScript is derived
from Sammut’s Probot [7]. The basic unit of a FrameScript program is the
pattern-response rule:

pattern ==> response

In stand-alone mode, rules are used to match input from the user. When
coupled with MICA, the left-hand side of a rule contains a pattern than may
match objects on the blackboard. Thus, if another agent posts a text object, a
FrameScript agent that has registered interest in text objects can read the object
and perform natural language processing to produce a response. Patterns can
also match arbitrary objects. For example, a pointing gesture may be recorded
by a location and direction in space, as well as a time stamp. A FrameScript
agent that has registered interest in these kinds of objects will read the gesture
information and match that against its rules to produce a response. Patterns
can also be mixed, allowing multi-modal interactions.

We usually want the application of rules to be confined to particular contexts.
For example, if the user says to an in-car control system, “turn it up”, this can
mean different things depending on whether the user had previously said, “turn
on the radio” or “turn on the air-conditioner”. Contexts are handled by grouping
rules into different scripts. For example:

radio_script ::

11

trigger {* radio *}

* turn * up * ==>
[I’ll turn the radio up a little. #radio_volume(+10)]

......

The trigger is a pattern that is used to determine if the user had changed the
context of the conversation. If the previous topic ha been the air-conditioner
and the user now mentions the radio, this trigger will cause a context switch.
The “*” appearing in the patterns is a wild card match. When the user says,
“turn it up”, in the radio context, the rule above is triggered and the system
invokes an action from the radio (the ’#’ symbol precedes an action) and informs
the user that the volume has been turned up. The radio volume function posts
to the blackboard an object that is intended for the radio controller agent. In
this way, a FrameScript agent can act as a device controller or intermediary to
external information sources.

When writing complex scripts that have similar behaviours, it is possible to
use inheritance to enable rules to be shared between scripts. A script can also
inherit variables that store information about the state of the interaction.

While the script is the main construct that is used to define interactions,
there is a complete programming language underlying the script mechanism.
Knowledge structures, called ”frames”, provide an object-oriented programming
paradigm. Frames were originally developed as a knowledge representation sys-
tem in Artificial Intelligence. Simple scripts will simply be a collection of rules
like the ones above. Interactions that require more complex behaviour may
use the full power of the frame representation system. For simplicity, we have
also only described very simple rules. However, the rule language can describe
complex grammars.

The remainder of this document describes the details of the language.

2 FrameScript

FrameScript is a scripting language that combines a rule-based system with a
frame implementation for data storage and retrieval, both of which are built
upon an expression language.

2.1 Frames

Frames[6] provide a way of representing and manipulating complex objects.
There are two main features of frame systems:

• Procedural Attachment: Inference in a frame system is performed on
an ad hoc basis by attaching procedures to the attributes of an object.
These procedures are triggered depending on how the attribute is accessed.

• Inheritance: Like all all object-oriented systems, instance frames can
inherit properties from generic frames in a hierarchy. In FrameScript
frames can inherit from multiple generic frames.

12

2.1.1 Slots

Slots are the attributes of a frame. They hold the attributes of instances frames
and provide points for attaching procedures to the attributes in generic frames
through daemons.

Slots can be defined as being multivalued and cache. Multivalued slots can
hold multiple values. Cached slots store the value for an instance’s slot when
the slot’s value is first computed in either an if_new or if_needed daemon,
otherwise the slot’s value is recalculated every time is is accessed.

2.1.2 Generic Frames

Generic frames define values and behaviours that are applicable to all instances
of the type, as such they act like classes in the standard OOP paradigm.

person ako object with
name :

if_needed "Anonymous"

age :
if_new 0
cache true

;;

Figure 2: Example Generic Frame

2.1.3 Daemons

Daemons are procedures that are attached to slots in generic frames. They are
executed when a frame’s slot is accessed in a given way. FrameScript currently
allows 9 daemons to be attached to a slot. These daemons are:

• if added : The if added daemon is run whenever a value is placed in a
slot.

• if destroyed : The if destroyed daemon is executed when an instance
frame is destroyed.

• if needed : The if needed daemon computes the value of a slot if the
value isn’t currently known when it is accessed.

• if new : The if new daemon is run when the instance frame is first created
to give the slot an initial value.

• if removed : The if removed daemon is run whenever a value is removed
from a frame.

• if replaced : The if replaced daemon is executed when the value of a slot
is replaced with a new value.

• range : The range daemon is used to restrict the values allowed in a slot.
It is used every time a slot’s value is added or replaced.

13

• help : The help daemon is run whenever an attempt to add a value to a
slot that is disallowed by the range daemon.

• default : The default isn’t really a daemon but a non-evaluated default
value used in the GUI for viewing/manipulating frames.

2.1.4 Instance Frames

Instance frames describe instances of generic frames, as such they are like objects
in OOP. When a slot cannot be found within an instance frame FrameScript
will search through the inheritance hierarchy for a procedure to compute the
appropriate value for the slot.

john isa person with
name : "John Doe"

age : 35
;;

Figure 3: Example Instance Frame

Defining Slots
There are four ways of giving an instance frame a value for a slot. They are:

• Define the slot as cached and provide an if_new daemon.

• Define an if_needed daemon for a generic frame from which the instance
inherits. This defines the slot for all instances of the type.

• Define a value for the slot in the instance’s declaration. (eg definition of
name in Figure 3)

• Put a value in the slot after it is instantiated.

Adding Values to Slots
There are two ways to put a value in a slot for an instance. They are:

• put(instance, slot, value) (eg. put(john, age, 7))

• slot of instance = value (eg. age of john = 7)

However be aware that both of these methods with fail if there is already a value
in the slot and it isn’t multivalued.

2.1.5 Multiple Inheritance

FrameScript allows multiple inheritance, i.e. a frame may inherit attributes
from more than one generic frame. When FrameScript looks up a value for an
item the inheritance hierarchy is searched in a depth-first, left-to-right manner.

14

simon isa person, rabbit with
name: Simon

age: 4

fur: brown
;;

Figure 4: Multiple Inheritance Example

greeting ::
domain example

init ==>
[hello]

{ hello | hi } i’m * ==>
[hi ^1]

{ hello | hi } ==>
[hi, how are you?]

{ goodbye | bye } ==>
{ bye | see you soon }

;;

Figure 5: Script Example

15

2.2 Scripts

Scripts are used to provide FrameScript with rule-based processing for control
of conversational interactions. The rule system used in FrameScript is heavily
influenced by the system used in ProBot[7]. Each script contains a list of rules
that are matched against a user’s input and used to determine the appropriate
response. In addition to their rules scripts can also make use of inheritance and
slots to allow reuse of scripts and retaining contextual information.

Because rules are used in a first come first served basis more specific rules
should be placed before more generic rules in a script.

2.2.1 Rules

The rules in FrameScript consist of patterns and responses, where each pattern
matches a user’s input and the response determines the system’s output. When
a pattern is found that matches the user’s input the associated response is
returned. Rules are of the form:

pattern ==> response

2.2.2 Patterns

Patterns can be written to match a variety of sentences. The patterns used in
FrameScript are similar to context free grammars.1

Wild-cards
FrameScript allows the use of 2 wild-cards characters in patterns. They are

* and ˜. * will match to 0 or more words/terms while ˜ will match precisely
1 word/term. In addition ˜ can be embedded into a word to match 0 or more
characters.

Alternatives
Alternatives may be used if more than one word can be accepted at a point

in a pattern (eg. synonyms). Alternatives are constructed with the form:

{ alternative 1 | alternative 2 }

Non-terminals
Non-terminals provide a way for commonly used patterns to be reused. To

use a non-terminal write the name of the non-terminal surrounded by ‘<’ and
‘>’. (eg. I am < number > years old)

While it is technically possible for any script to be a non-terminal they are
often declared as a list of alternatives followed by ;;.
Example:

number ::
{1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9};;

1 FrameScript uses a greedy matching algorithm so some patterns may not work as ex-
pected.

16

and ˆ
Some patterns may be context sensitive so FrameScript allows conditions to

be included in patterns. There are two types of conditions that FrameScript
allows ‘#’ and ‘ˆ’. ‘#’ conditions are evaluated and if they don’t evaluate to
true the pattern doesn’t match. ‘ˆ’ conditions are evaluated and the result of
the evaluation is matched against the current point of the input.

greeting ::
#(have_met_user_before) hello ==>

[hello, its good to see you again]
#(not have_met_user_before) hello ==>

[hi, its good to meet new people]
;;

Figure 6: Rule Condition Example

One interesting application of the ‘ˆ’ condition test is that if the condition
evaluates to a generic frame then any instance frame that inherits from the given
generic frame will match. This allows scripts to be written that perform actions
in response to events such as use of a touch-pad or arrival of an email as long
as the event causes an appropriate instance frame to be created and used as an
input.

email ako object with
from :

if_needed "Anonymous"
;;

new_email ::
^email ==>

[you have a new email from
^(from of ^1)]

;;

Figure 7: Rule Evaluation Condition Example

2.2.3 Responses

Responses tell the system how it is to respond to a user’s input.

Sequences
To avoid writing scripts that users may find repetitive responses can include a

sequence of responses where each response is given in turn every time the pattern
is matched. After the last response is given it returns to the first response in
the sequence.

Alternatives
Alternatives are similar to sequences except instead of responding with the

17

* ==>
[first response
| second response
| third response]

Figure 8: Sequence Example

next response in the sequence the response is selected randomly each time from
the list of all responses.

* ==>
{ a response
| another response
| yet another response }

Figure 9: Alternatives Example

#
Sometimes a response requires that the system do something not just say

something. If a ‘#’ is found in the response the following expression is evaluated
and the result discarded. This allows a response to alter the system’s state
while not burdening the user with unnecessary dialog. A common use of ‘#’ is
#goto(a_script) which moves a conversation/interaction from one context to
another.

ˆ
In a response ‘ˆ’ is similar to ‘#’ except that when the following expression is

evaluated it is inserted into the response not thrown away. The other difference
is that if ‘ˆ’ is followed by an integer then the numbered pattern component(see
2.2.4) associated with that integer is placed in the response.

Conditional Responses
Some responses may be dependent on some condition holding true. Condi-

tional responses can be constructed in the form:

* ==>
[^(condition) ->

response if true
| ^(! condition) ->

response if false]

Figure 10: Conditional Response Example

2.2.4 Pattern Component Numbering

Some pattern elements create a numbered match component when a pattern
matches. These components are segments of the input (possibly transformed)

18

hello ::
* i’m <number> years old ==>

[really? ^2 is really old]

i’m * ==>
[hi, ^1]

* ==>
[what do you mean by ^0 ?]

;;

Figure 11: Match Component Example

that can be referred to in a response using ‘ˆ’. Pattern elements that pro-
duce match components are wild-cards (*, ˜), alternatives, non-terminals, and
possibly ‘ˆ’ conditions depending on the evaluation result (eg. generic frames
do).

Component Numbering Example
Table 1 shows the match components generated for a number of inputs when

some inputs are given. These examples use some non-terminals which are given
in figure 12.

known_languages ::
{ english | french | german | italian | spanish };;

number ::
{ 1 | one } ==> 1
{ 2 | two } ==> 2
{ 3 | three } ==> 3
{ 4 | four } ==> 4
{ 5 | five } ==> 5
{ 6 | six } ==> 6
{ 7 | seven } ==> 7
{ 8 | eight } ==> 8
{ 9 | nine } ==> 9
{ 0 | zero } ==> 0;;

Figure 12: Component Numbering Example Non-terminals

2.2.5 Domains, Topics and Triggers

When an input is received from a user it is given to a domain. The domain is
then responsible for ensuring the input is matched against the correct scripts.
It is the domain that keeps track of which scripts are currently active.

Scripts can be registered as topics in a domain. By registering a script as a
topic that script is telling the domain that no matter what the current script is
when certain inputs are received the topic is to become the current script and

19

P
at

te
rn

In
p
u
t

M
at

ch
C

om
p
on

en
ts

t
r
a
n
s
l
a
t
e

*
i
n
~

t
r
a
n
s
l
a
t
e

i
l
o
v
e

y
o
u

ˆ0
:
t
r
a
n
s
l
a
t
e

i
l
o
v
e

y
o
u

i
n
t
o

f
r
e
n
c
h

<
k
n
o
w
n
_
l
a
n
g
u
a
g
e
s
>

i
n
t
o

f
r
e
n
c
h

ˆ1
:
i

l
o
v
e

y
o
u

ˆ2
:
f
r
e
n
c
h

t
r
a
n
s
l
a
t
e

i
a
m

i
n

p
a
i
n

ˆ0
:
t
r
a
n
s
l
a
t
e

i
a
m

i
n

p
a
i
n
i
n

g
e
r
m
a
n

i
n

g
e
r
m
a
n

i
n

f
r
e
n
c
h

ˆ1
:
i

a
m

i
n

p
a
i
n

ˆ2
:
g
e
r
m
a
n

*
s
k
y

*
t
h
e

s
k
y

i
s

b
l
u
e

ˆ0
:
t
h
e

s
k
y

i
s

b
l
u
e

{
r
e
d

|
b
l
u
e

|
g
r
e
e
n
}

ˆ1
:
t
h
e

ˆ2
:
i
s

ˆ3
:
b
l
u
e

*
{
i
s

|
a
r
e
}

t
h
e
r
e

i
s

a
c
a
r

ˆ0
:
t
h
e
r
e

i
s

a
c
a
r

{
a

{
c
a
r

|
t
r
u
c
k
}

|
ˆ1

:
t
h
e
r
e

<
n
u
m
b
e
r
>

{
c
a
r
s

|
t
r
u
c
k
s
}
}

ˆ2
:
i
s

ˆ3
:
c
a
r

ˆ4
:
a

c
a
r

t
h
e
r
e

a
r
e

f
o
u
r

t
r
u
c
k
s

ˆ0
:
t
h
e
r
e

a
r
e

f
o
u
r

t
r
u
c
k
s

ˆ1
:
t
h
e
r
e

ˆ2
:
a
r
e

ˆ3
:
4

ˆ4
:
t
r
u
c
k
s

ˆ5
:
f
o
u
r

t
r
u
c
k
s

T
ab

le
1:

C
om

po
ne

nt
N

um
be

ri
ng

E
xa

m
pl

e

20

foul_language_filter ::
domain example
trigger { * <swear_word> * }

* <swear_word> * ==>
[swearing is not tolerated]

;;

Figure 13: Topic Example

process the input. When a script is registered as a topic the domain uses the
script’s trigger to determine whether or not an input activates that topic. If a
topic doesn’t have a trigger any input will activate it. Triggers can be inherited.

Domains keep track of the current script/context and a history of the trig-
gered topics. When a topic’s trigger matches the input it becomes the current
context and the current topic.

2.2.6 Inheritance

person ::
age: 0

who are you ==>
[i don’t know who i am]

how old are you ==>
[i am ^age years old]

;;

john ::
inherits person
name: << john smith >>
age: 4

who are you ==>
[i am john]

;;

peter ::
inherits person
name: << peter piper >>

how old are you ==>
[i was born ^age years ago]

;;

Figure 14: Script Inheritance Example

When writing complex scripts where scripts have similar behaviours it is

21

possible to use inheritance to enable rules to be shared between scripts. Not
just rules are inherited, a script also inherits slots and daemons from it’s parents
as well.

The inheriting script is able to define new responses to patterns located in
the inherited script if needed and new values for slots.

2.2.7 Slots

Scripts can have slots defined for them. This allows scripts to store and manip-
ulate information about the state of the script and the state of the conversation.
In most respects slots in scripts behave in much the same way as slots in in-
stance frames. In fact many of the subroutines for accessing and manipulating
slots such as put, remove and replace will work with scripts as well.

The main difference between slots in scripts and slots in instance frames
is that slots in scripts don’t have daemons attached to them. This is because
scripts inherit from scripts not from generic frames. However scripts do inherit
slots from their parents. Effectively the means that a slot in a script’s parents
acts like an if_needed daemon except it is just returned not evaluated.

In Figure 14 although peter does not have a defined age he inherits age
from person so in response to the input ”how old are you” peter would return
”i was born 0 years ago”.

2.2.8 Failsafes

It is possible to define failsafes for scripts. A failsafe is another script whose
rules should be used if an input fails to match any of the rules for a script.
Failsafes may be inherited.

Domains can also be given a failsafe by using the failsafe subroutine.
Domain failsafes will only be used if an input fails to match any of the rules for
the current context, the current topic and their associated failsafes.

Failsafes can be chained together. This means that when failsafes are being
checked against an input and a failsafe(and its parents) doesn’t match against
the input the failsafe’s failsafe will be tried.

2.2.9 Rule Ordering

When an input is received by a domain that domain is responsible for deciding
which rules the input should be matched against. The order in which domains
attempt to find a match is:

1. triggers of the topics (excluding the current topic)

2. the current context

3. the failsafe of the current context

4. the current topic

5. the failsafe of the current topic

6. the failsafe for the domain

22

When an input is compared to the rules of a script the input is first compared
to the rules specifically defined by the script. If none of these rules match the
input is matched against the rules of the script’s parents. The rules of the scripts
are tried in top to bottom order.

2.2.10 Daemons

FrameScript allows daemons to be defined that are executed when moving from
one context to another. These are the on_entry and on_exit daemons. These
daemons are attached to scripts and are evaluated when the current context is
changed. The on_entry daemon for a script is run whenever the script becomes
the current context. The on_exit daemon is run when a script stops being the
current context. The on_entry and on_exit daemons run whenever the current
context changes, this could be because of a trigger firing, a goto command or a
previous_topic command.

Daemons are inherited.

normal_context ::
dictate ==> #goto(dictation_script)
* ==> #do_command()

;;

dictation_context ::
on_entry set_speech_rec_dictate(true)
on_exit set_speech_rec_dictate(false)

finished ==> [#use_saved_text() #goto(normal_context)]
* ==> #save_text(^0)

;;

Figure 15: Script Daemons Example

Figure 15 gives a small example that uses the on_entry and on_exit dae-
mons. With this example the environment is that we have a speech recogniser
that can either use rule grammars or use dictation mode. Usually the recog-
niser would use the rule grammars but on occasion it may need to use dictation.
In the example the current context would be normal_context which would re-
spond to the recognised speech from the rule grammars. But when the user says
“dictate” the current context switches to dictation_context and its on_entry
daemon is run which tells the recogniser to switch to dictation mode. Then all
of the user’s speech would be saved until the user says “finished” at which point
the saved text is used for whatever purpose and the current context switches
back to normal_context. In the course of switching back to normal_context
dictation_context’s on_exit daemon is run which switches the speech recog-
niser back to rule grammar mode.

NOTE: If the on_entry or on_exit daemon is followed by a pattern that
begins with * or any other operator then the pattern should be preceded by _
so that the parser doesn’t confuse it with a multiplication symbol. Using _ just
says that at the start of the pattern there is an empty space so in effect it does
nothing.

23

2.2.11 Abnormal Scripts

It is possible to define the rules for a script using the expression language used in
defining daemons, but for most applications it is simpler to use the standard rule-
response syntax. Using the expression language however allows more complex
rules to be written. For instance, using the expression language it is possible
to create a script that responds with the instance frame whose slot matches a
user’s input.

contact_lookup ::
--

var rval;
forall C in instances_of(contacts) :

if undefined(rval) and match(<< ^(name of C) >>) then
rval = C;

rval
;;

send_mail::
Send the email to <contact_lookup> ==>

[#send_email(email of ^1, the_email)]
;;

Figure 16: Abnormal Script Example

Abnormal Script Example
Figure 16 gives an example of an abnormal script contact_lookup that loops

through the list of all contacts to find a contact whose name matches the input.
Any matching contact found is then returned.

Then if send_mail is the current context and the user says ”Send the email
to John” the rule will match as long as there exists a contact with the name
John. It will then send the email to John.

2.2.12 Pattern Matching Algorithm

By default FrameScript uses a greedy matching algorithm without backtracking
which means some patterns may not work as expected. For many patterns that
do not work as expressed it is possible to rewrite the pattern so that it will
work. Table 2 shows some examples of patterns that do and don’t work.

A second fully back-tracked matching algorithm has been implemented for
those applications that require it but it needs to be activated.

NOTE: Due to the greedy nature of the algorithm there is an implicit * at
the end of every pattern (except when used as a non-terminal). Currently there
is no known way to get around this situation.

NOTE: * inside alternatives should be avoided where possible, especially
at the end of an alternative.

2^1 is c not c b c

24

P
at

te
rn

In
p
u
t

P
at

te
rn

M
at

ch
A

lg
or

it
h
m

M
at

ch
a

*
b

a
c

b
Y

es
Y

es
a

b
c

N
o

Y
es

a
c

b
c

b
Y

es
Y

es
2

{
a

*
b

*
}

#
u
n
d
e
f
i
n
e
d
(
^
2
)

a
c

b
Y

es
Y

es
a

b
c

N
o

N
o

a
c

b
c

b
Y

es
N

o
{

a
|

b
*

}
c

a
c

Y
es

Y
es

b
c

N
o

Y
es

{
a

c
|

b
*

c
}

a
c

Y
es

Y
es

b
c

Y
es

Y
es

{
_

|
a

}
b

a
b

Y
es

N
o

b
Y

es
Y

es
{

a
|

_
}

b
a

b
Y

es
Y

es
b

Y
es

Y
es

a
~
b

a
b

Y
es

Y
es

a
c
b

Y
es

Y
es

a
b
b

Y
es

N
o

T
ab

le
2:

P
at

te
rn

M
at

ch
E

xa
m

pl
es

25

2.3 Expression Language

In-order to attach procedures to objects a language must be defined in which
those procedures can be written. FrameScript uses a fairly simple untyped
procedural language that includes some programmatical elements inspired by
machine learning techniques. FrameScript’s untyped nature means that when
we declare a variable we don’t declare what type it is. The variable can can
take any type at anytime, it is only when we come to use the variable’s value
that the type is taken into consideration.

2.3.1 Statements

FrameScript code is written as a sequence of statements that are evaluated
in turn. There are 2 types of statements currently available in FrameScript;
definition statements and expression statements. Definition statements are used
to declare and define generic frames, instance frames and scripts. Evaluation
statements are used to define an expression that needs to be evaluated. All
statements whether definition or evaluation end with ;;.

Figures 2, 3 and 5 are examples of definition statements, while some expres-
sion statements can be found in figure 17.

1 + 2;;

"Hello world.";;

print("Hello world,");;

head([1 2 3]);;

foo(bar) = bar + 1;;

foo(2);;

a = 1;
b = 2;
a * b;;

Figure 17: Evaluation Statements

2.3.2 Numbers

Numbers in FrameScript can be either integers or real numbers. When per-
forming mathematical operations the numerical type returned depends on the
product of the operation not on the types of the operands. (eg. 3 / 2 = 1.5,
1.5 + 2.5 = 4)

2.3.3 Strings

A string is just a sequence of characters enclosed between "s. (eg. "the grass is green",
"roses are red")

26

2.3.4 Atoms

Atoms are a fairly simple type that provide FrameScript’s expression language
with a lot of flexibility and possible complexity. Atoms are essentially sequences
of non-whitespace characters. There are some restriction on the characters that
comprise an atom imposed by the parser, such as atoms cannot begin with any
of the characters ’0’-’9’ and some characters such as ’+’ refuse to associate with
others.

Atoms are used as the names of objects, such as frames or scripts,; the
names of slots; the names of variables and a values in their own right. When
an expression evaluates an atom to get its value. The atom’s value is evaluated
in a rather specific order. First if the atom is the name of a declared variable
the value of the variable is used, second if the expression being evaluated is part
of a daemon attached to a frame and the frame has a slot whose name is the
atom the value of the slot is used, third if the atom is then name of an object
the object is used, otherwise the atom itself is used as the value.

Some examples of atoms are: +, red, hello, X, X23, my_frame.

2.3.5 Lists

Lists are a compound data type that allow collections of terms to be grouped.
Lists can contain any type of term including numbers, atoms, lists, frames.
When a list is evaluated the result is a list whose elements are the evaluation
results of the corresponding element in the original list. (eg [1 + 1] evaluates
to [2])

Some examples of lists are: [], [1], [a], [1 2 3], [a 1], [1 + 1].

2.3.6 Expression Lists

Expression lists are a sequence of terms which are evaluated sequentially. The
expressions in the list are separated by ;.

The resultant value when evaluating an expression list is the result of the
last expression in the list being evaluated. (eg 1;2;3 evaluates to 3)

The following expression list shows the sequential nature of evaluating an
expression list. When it is evaluated the first expression, a = 1, is performed
setting the valued of a to 1. Then the second expression, a = a + 1, is evaluated
which increments the value of a by 1 which in this case makes a 2. Then the
third/final expression, a, is evaluated which retrieves the value of a, this final
value then is the result of evaluating the list.

a = 1;
a = a + 1;
a

When writing expression lists common practice should entail enclosing the
entire list in brackets. This is because by enclosing the list in bracket the expres-
sion list is being designated as a single expression. (eg (a = 1; b = a + 1; b + 2))

2.3.7 Patterns

Patterns are a data type used primarily in defining and processing scripts. But
they can be used virtually anywhere within FrameScript. Patterns are a sort

27

of hybrid type that results when a string crossbreeds with a list. A pattern
is a sequence of zero or more pattern elements enclosed by << and >>. (eg
<< >>, << hello world. >>) When writing scripts the << and >> are implied
for readability.

When a pattern is evaluated each pattern element is evaluated sequentially
an a resultant pattern is returned. As each element in the pattern is evaluated
it is first checked whether or not it is an atom. If it is an atom it is appended to
the resultant pattern as is without evaluation, otherwise it is evaluated. If the
evaluated value is nothing the value nothing is done with it, if it is a pattern
the evaluated pattern is appended to the end of the resulting pattern if it is any
other type of term it is simply appended to the end of the pattern.

Pattern Elements
A pattern element can be any type of term but when a pattern is parsed only

specific term types are parsed. The types read in by the parser are alternatives,
sequences, atoms, strings, numbers, ˆcommands and # commands. All other
types can be found as pattern elements however as a result of evaluation.

ˆand # Commands
When parsing pattern elements ˆand # are used as escape characters to allow

expressions to be embedded within patterns. The # character indicates that
when the pattern is evaluated the following expression should be evaluated but
its result should not be returned in the result of evaluating the pattern. The
ˆcharacter however says the following expression should be evaluated and in-
serted into the result of evaluating the pattern. The ˆcommand however has
one exception, when the expression following ˆis an integer then it gets the asso-
ciated match component for the pattern to a rule. This is fine when the pattern
being evaluated is part of the response to that rule, but at other times it will
result in an error.

Pattern Examples
The best way to demonstrate patterns is with some examples. See Table 3.

Example Evaluated Result
<< a b c >> << a b c >>
<< 1 + 2 >> << 1 + 2>>

<< ^(1 + 2) >> << 3 >>
<< #(1 + 2) >> << >>
a = 1; << a >> << a >>
a = 1; << ^a >> << 1 >>

Table 3: Pattern Examples

2.3.8 Sequences

Sequences are a list of patterns. When a sequence is evaluated the result is
that one of the patterns in the list is evaluated and returned. Each subsequent
evaluation of the sequence will result in the evaluation of the next pattern

28

in the list. When the last pattern is evaluated the sequence returns to the
beginning. Sequences are found within patterns and are enclosed by [and].
The patterns within the sequence are separated by |. (eg [a sequence],
[a pattern | another pattern])

The patterns within a sequence can have conditions. When the sequence
tries to evaluate a pattern and the pattern has a condition the condition is
tested. If it is true then the pattern is evaluated, if not the sequence tries the
next pattern in the list. The sequence will continue trying then next pattern in
the list until it finds one with no conditions or one whose condition holds true.

Example:

[^(condition) -> the condition is true |
^(not condition) -> the condition is false]

2.3.9 Alternatives

Alternatives are a list of patterns. When an alternative is evaluated the re-
sult is that a randomly selected pattern in the list is evaluated and returned.
Alternatives are found within patterns and are enclosed by { and }. The
patterns within the sequence are separated by |. (eg { an alternative },
{ a pattern | another pattern })

2.3.10 Ripple Down Rules

Ripple Down Rules(RDRs) [2, 1] are used in FrameScript to provide conditional
branching evaluation paths. They also provide a basic mechanism for knowledge
acquisition.

A very simple RDR will look like if condition then conclusion. This
RDR will evaluate and return the conclusion if the condition evaluates to true
otherwise it returns nothing.

An RDR can optionally have a cornerstone case, an exception or an alter-
native. An RDR with all 3 will look like:

if condition then
conclusion

because cornerstone_case
except exception
else

alternative

The cornerstone case is the name of the frame that represents the case that
caused the rule to be constructed. The exception is a rule constructed to handle
cases where the condition is true but due to other conditions require a different
conclusion. The alternative is an expression to be evaluated and returned if the
condition is false.

NOTE: If the condition/conclusion/alternative of an RDR is an expression
list it needs to be bracketed.

2.3.11 Functions

Functions are used in many programming languages to encapsulate computa-
tions so that programs can be written regardless of the implementation used

29

to perform the computation and the allow for the code to be reused relatively
simply.

Figure 18 shows the definition of a simple function that finds the maximum
of 2 numbers.

max(X, Y) = (
if X > Y then

X
else

Y
);;

Figure 18: Function Definition Example

As FrameScript is an untyped language the arguments to the function can
be of any type. This means that if a function requires specific types for its
parameters it must either explicitly check the types of its arguments or assume
the types that the arguments posses. Figure 19 shows the same maximising
function as Figure 18 except it explicitly checks that the parameters for X and
Y are numbers and if either isn’t a number it throws an error.

max(X, Y) = (
if number(X) then

if number(Y) then
if X > Y then

X
else

Y
else

error("Y is not a number")
else

error("X is not a number")
);;

Figure 19: Function Type Checking Example

FrameScript is implemented in Java and for some functions it may more
efficient/necessary for them to be written in Java rather than FrameScript.
Subroutines are functions that can be called like any other function from within
FrameScript but are instead written in Java. Detailed information about writing
subroutines can be found in section 2.4.1.

NOTE: If the body of a function is an expression list it needs to be brack-
eted.

Functions in FrameScript are defined by giving the function specification
and assigning it an expression that is to be evaluated whenever the function is
called. The most common way of defining a function is as a single expression
in a statement. The code that defines the function is treated by frame script
as any other expression so it can be placed in the body of a daemon or another
function.

30

2.3.12 Forall Loops

When using lists it is not uncommon to need to perform some evaluation for
each element in the list. For this reason FrameScript provides the forall loop
that will loop through the elements of a list evaluating a given expression for
each element. The forall loop looks like:

forall VARIABLE in LIST : EXPRESSION

The result of evaluating the forall loop is a list where each element is
the result of evaluating the given expression for the corresponding element in
the list argument of the forall loop. For example the result of evaluating
forall X in [1 2 3] : X + 1 is [2 3 4].

It is possible to nest forall loop. The result of evaluating nested forall
loops will be a list of lists of . . .

NOTE: If the body of a forall loop is an expression list it needs to be
bracketed.

2.3.13 Variables

When entering the body of a function or the body of a forall loop FrameScript
will define and assign the value to a local variable using the parameter name in
the function specification or forall loop. On occasion it may be necessary to
define other local variables. This can be done using the var.

A var statement can be used in the body of either a function, a forall loop
or a daemon to declare local variables. The use of a var statement necessitates
that the body be an expression list where the var statement is the first expres-
sion in the list. If a var statement is not part of an expression list or not the
first expression of the list its evaluation will result in an error.

A var statement is var followed by a non-zero comma separated list of
variable names. The variable names must be atoms.

Some valid var statements are: var X, var X, Y.
When the body of the function/forall loop/daemon is finished being eval-

uated the memory used for storing the values for the local variables is freed and
the values lost.

A simple example using local variables is:

example(X, Y) = (
var Z;
Z = X mod Y;
Y mod Z

);;

When FrameScript is evaluating a daemon is declares some common variables
that may be used in the body of the daemon. These variables are:

current object This is the instance frame/script which caused the daemon to
be run.

current slot This is the name of the slot which the daemon is assigned to.

new value When a value is being added to a slot, this is the value being added.
In the on_entry and on_exit daemons this is the context being switched
to.

31

old value When a value is being added to a slot this is the previous value of
the slot. When a value is being removed from a slot this is the value being
removed. In the on_entry and on_exit daemons this is the context being
switched from.

2.4 Modules

Modules a a way in which FrameScript can be extended to make it more flexible.
Modules can be loaded into FrameScript using the load_module function. A
standard module provided within the FrameScript distribution is sitcrc.framescript.GUI
which provides some functions for displaying GUIs for communicating with a
user. Details on the sitcrc.framescript.GUI module can be found in section 4.

Implementationally speaking a module is simply a Java class with a public
static void init() method. When the module is loaded the class is loaded
into memory and the init()— method is executed.

Commonly found within the body of the init() methods of modules are
subroutine declarations. (see 2.4.1)

An example of a module is given in section 2.4.2.

2.4.1 Subroutines

Subroutines are FrameScript functions whose implementations have been writ-
ten in Java rather than FrameScript. The most common way of adding sub-
routines to FrameScript is by creating a module that declares and defines the
subroutines desired.

To create a new subroutine in FrameScript an instance of the sitcrc.framescript.Subr
class needs to be created for each subroutine being added. The class Subr is
abstract so it cannot be instantiated directly but must first be extended. A
concrete class that extends Subr needs an implementation of the
public Term apply(Instance, Term[], StackFrame) throws FSError method.
Probably the simplest way of implementing a subroutine is in the init() method
of a module instantiating an anonymous class for each subroutine being created.
Each anonymous class would then implement the subroutine in its definition of
the apply() method. The MaxModule example(see 2.4.2) is written in this
manner.

Constructors
The sitcrc.framescript.Subr class defines 2 constructors that can be used

in instantiating a subroutine. They are:

• public Subr(String str)

• public Subr(String str, int nArgs) throws FSError

The code that links the subroutine into FrameScript is located inside these
constructors so one of them needs to be used when creating the subroutine.
Both constructors take a String argument, this is the name of the function
being created. If the my_function() subroutine were being implemented the
argument should be "my_function". Optionally the number of arguments the
function expects can be given to the constructor, FrameScript will then ensure
that the subroutine is only run when the function is called with the expected

32

number of arguments. If no expected number of arguments is given(or it is less
than 0) the subroutine will be run whenever the function is called regardless of
the number of arguments provided by the function call. If, when a subroutine
is instantiated with a given number of arguments, there already exists a sub-
routine with the same name that handles an undefined number of arguments an
exception will be thrown.

If a subroutine can expect a variable number of arguments it is possible
to instantiate a subroutine with the same name for each possible number of
arguments or to instantiate a single subroutine that takes an undefined number
of arguments and in the body of the subroutine check the number of arguments
given.

apply() Method
When during the evaluation of a term FrameScript encounters a function call

it looks up the appropriate function/subroutine to handle the call. If the appro-
priate handler is a subroutine FrameScript will call the Term apply(Instance, Term[], StackFrame)
method defined for that subroutine.

The apply() method has 3 parameters. These are:

Instance currentObject If the function call being processed is in the body of
a daemon this is the instance frame/script which caused the daemon to
run, otherwise this is null.

Term[] args This is an array that holds the arguments being passed to the
subroutine. The 1st value in the array is the name of the subroutine being
called. The actual arguments begin at index 1. (eg if the subroutine is
called with 2 arguments args.length will be 3)

StackFrame frame This is a reference to the memory in which the local vari-
ables are being stored.

The arguments in args are stored in their unevaluated form. To get the
actual values for the arguments they need to be evaluated. To evaluate an
argument you need to call the eval() method on the argument and to pass it
currentObject and frame. (eg args[1].eval(currentObject, frame))

For the vast majority of subroutines the currentObject and frame argu-
ments will only be used in the evaluation of arguments and serve no other
purpose.

If there are any problems encountered during the execution of a subroutine’s
apply() method the subroutine can elect to throw a sitcrc.framescript.FSError
exception.

Argument Type Checking
If your subroutines requires its arguments of a specific type there are some

argument type checking methods in the sitcrc.framescript.Utils class that
can help. These methods were developed to check argument types and to provide
standard error messages if the arguments are not of the correct type. If the
argument is not the correct type an FSError exception is thrown. To make
thing simpler and the error messages more detailed these argument checking
methods will evaluate the arguments for you. If the subroutine my_subroutine

33

expected an integer as its 1st argument the check_integer() method could be
used, the code would then look something like:

FSInteger i = Utils.check_integer("my_subroutine", currentObject, args, 1, frame);

There is a method in sitcrc.framescript.Utils to check the argument
type for virtually all of possible types of term in FrameScript. More details on
the argument type checking methods can be found in appendix C.

Returning Values
When returning values in the apply() method any subclass of sitcrc.framescript.Term

can be returned. If you have a numerical value being returned then FSNumber.getNumber()
can be used to create an appropriate FrameScript numerical type. If a sub-
routine isn’t really designed to return a value it is preferred that it returns
sitcrc.framescript.Atom._null rather than just null as it makes Frame-
Script less prone to unrecoverable crashes.

2.4.2 MaxModule Example

Figure 20 shows a fairly simple FrameScript module. All this module does is de-
fine 2 subroutines that can then be used in FrameScript code. These subroutines
are max() and max2().

The max2() subroutine expects 2 arguments. The first thing that it does is
to check that both of the arguments are numbers. If either of the arguments
isn’t a number the Utils.check_number function will throw an exception. Then
max2 finds the largest number and returns it. The constructor used to define the
max2() subroutine will throw an exception if, when the module is loaded, there
already exists a max2() subroutine that take an undefined number of arguments.
This exception can safely be thrown by the surrounding init() method.

The max() subroutine doesn’t define how many arguments it expects in its
declaration so it can be called with any number of arguments. The first thing
it does is to find out how many arguments it has. If there are none it throws
an exception. Otherwise it checks that the first argument is a number. Then
it loops through all of its remaining arguments checking that they are numbers
and keeping track of the largest seen so far. Once all arguments have been
checked the largest is returned.

3 Multi-modal Interaction

One of FrameScript’s strengths is its ability to use frames to represent events.
The events that can be represented could range from system events such as
receiving an email or a program finishing or a user’s input in the form of a using
a touch-pad or a making a recognised gesture. This allows FrameScript to be
used not just for conversations but also for scripting multi-modal interactions
between the system and users.

3.1 Multi-modal Example

A simple multi-modal script is given in Figure 21. The problem domain in which
the example is set is a simple street mapping program that shows houses and
roads. This example is built using a few assumptions. These assumptions are:

34

package sitcrc.framescript.examples;

import sitcrc.framescript.*;

public class MaxModule {
public static void init() throws FSError {
new Subr("max") {
public Term apply(Instance currentObject, Term[] args,

StackFrame frame) throws FSError {

if (args.length - 1 < 1)
throw new FSError("max - No arguments given.");

FSNumber max = Utils.check_number("max", currentObject,
args, 1, frame);

for (int i = 2; i < args.length; i++) {
FSNumber x = Utils.check_number("max", currentObject,

args, i, frame);
if (max.lt(x))
max = x;

}
return max;

}
};

new Subr("max2", 2) {
public Term apply(Instance currentObject, Term[] args,

StackFrame frame) throws FSError {

FSNumber x = Utils.check_number("max2", currentObject,
args, 1, frame);

FSNumber y = Utils.check_number("max2", currentObject,
args, 2, frame);

if (x.le(y))
return y;

return x;
}

};
}

}

Figure 20: MaxModule Example

35

demo ::
domain example
request: ""
a_click: ""

what is this ==>
[

#put(request, "describe")
[^(a_click != "") ->

#goto(demo, a_click)
]

]

^click ==>
[

#put(a_click, "")
[

^(request == "") ->
#put(a_click, ^1)

|
^(request == "describe") ->

#put(request, "")
#goto(describe, get_object(click))

]
]

;;

describe ::
^house ==>
[

it is a house.
#goto(demo)

]

^road ==>
[

it is a road.
#goto(demo)

]

* ==>
[

i don’t know what it is.
#goto(demo)

]
;;

Figure 21: Example Multi-modal Script

36

• That when the user clicks on an object a click event is generated.

• There exists a function get_object() that processes the click event to
determine what it was the user selected.

This example expects two types of events. Either the user will say ”what
is this” or the user will click on something. All other speech and events are
ignored.

If the user says ”what is this” the demo script stores the user’s request for a
description. It then checks if the user has clicked on something. If the user has
clicked on something then we reenter the script using the previous click as the
input.

When a click event occurs preceding clicks are deleted and the script checks
if the user has requested a description if they haven’t the click is stored in the
slot a_click. If the user has requested a description then the system changes
context to the describe context and uses the object clicked on as the input.
How the get_object() function determines what was clicked is irrelevant.

When the describe context encounters an input it checks if it is a type of
house or road. If it is neither it claims ignorance. If the input is a type of house
the script says it is a house, if it’s a road it says it’s a road. All of the rules in
the describe context switch the context back to the demo context for the next
user input.

4 GUI

The standard FrameScript distribution includes the module sitcrc.framescript.GUI
which contains several subroutines that open GUIs that can be used to facilitate
interactions with the user.

The subroutines currently included in the module are:

• dialog_message() - Opens a simple message dialog. See section 4.1.

• dialog_question() - Opens a simple input dialog. See section 4.2.

• fix_rdr_gui() - Opens a dialog for providing a description of the differ-
ence between two cases when maintaining an RDR. See section 4.3.

• frame_browser() - Opens a GUI for creating and manipulating frames.
See section 4.4.

• script_browser() - Opens a GUI for creating and manipulating domains
and scripts. See section 4.5.

4.1 Message Dialog

The subroutine dialog_message() expects a single argument. It will open a
simple dialog window to display the given argument. If the argument is a string
or a pattern the surrounding quotation characters will not be displayed. The
result of calling dialog_message("Hello world.") is given in figure 22.

37

Figure 22: Message Dialog

Figure 23: Question Dialog

4.2 Question Dialog

The subroutine dialog_question() expects a single argument. It will open a
simple dialog window that will request an input from the user. If the argument is
a string or a pattern the surrounding quotation characters will not be displayed.
The result of calling dialog_question("Are mice big or small?") is given
in figure 23.

The input dialog will accept simple expression from the user such as numbers,
atoms, strings, list, patterns, function specs/calls, and will return the first such
expression it finds in the input.

4.3 RDR Maintenance GUI

As RDR maintenance is a difficult task the fix_rdr_gui() subroutine was
implemented to somewhat simplify the process. The fix_rdr_gui() subroutine
is basically the same as the fix_rdr() subroutine except it uses a GUI to
interact with the user rather than the console. Both subroutines are designed
to be placed in the if_replaced daemon of a generic frame and to be called
when an incorrect computed value of an instance frame is replaced by a correct
value and both accept no arguments.

An example of the GUI opened by fix_rdr_gui() is shown in figure 24.
This GUI is roughly divided into 4 components:

1. Cases : The case that was used in defining the rule that gave the incorrect
value is given on the left. On the right is the new case whose value has
been corrected. All slots and their values for each of the cases is given.

2. Possible Conditions : A number of possible conditions that could ex-
plain the differences between the 2 case are listed with check boxes. As
these conditions a selected/deselected the condition to be used to for the

38

Figure 24: RDR Maintenance GUI

new rule will update. These conditions do not have to be used, they are
only given as a way indicating differences between the 2 cases.

3. Exception Condition : The condition for the exception rule. This
condition should be an expression that evaluates to true or false that
can be used to identify exceptional cases that should take the new value.

4. Accept Button : When pressed this button will perform some basic
syntax checks on the exception condition and if it’s fine close the GUI and
create the new exception rule.

If the GUI is closed without a new rule being created fix_rdr_gui() will
throw an error.

4.4 Frame Browser

The frame browser(see figure 25), which can be opened by frame_browser(),
is a GUI specifically designed to enable a user/developer to create new and
manipulate existing frames.

4.4.1 Menu

The frame browser’s menu allows a number of operation to be performed. A
summary of the operations available through the menu is:

• File

• Load - Loads a FrameScript file into memory.

• Load Module - Load a FrameScript module into memory.

• Serialise - Serialises FrameScript’s symbol table to a file.

• Unserialise - Loads the symbol table stored in a file.

• Help

39

Figure 25: Frame Browser

• Set Look & Feel - Changes the UI look and feel.

• About - Describes the frame browser.

4.4.2 Transcript

In the lower section of the frame browser is the transcript. The transcript is
essentially a block of FrameScript code to be evaluated. When the user clicks
on the ‘Eval’ button the frame browser will parse statements written in the
transcript and evaluate them. The results of the evaluation will be appended
to the end of the transcript.

The purpose of the transcript is to allow sections of FrameScript code to be
written and evaluated without having to resort to console input.

4.4.3 Generic Frames

The upper section of the frame browser has a series of tabs. The ‘Generic
Frames’ tab shows the generic frames that are currently named in the symbol
table. When a generic frame is selected from the list on the left its parents and
slots will be displayed.

The frame browser can be used to add and remove parents from a generic
frame or to rearrange the order in which parents are inherited. (FrameScript
uses depth-first searches for inheritance so this can change a frame’s behaviour)

Slots can be added to or removed from a generic frame and the daemons
attached to a slot in a generic frame can be added or removed.

The ‘New’ button below the list of generic frames can be used to create a
new generic frame.

4.4.4 Instance Frames

The ‘Instance Frames’ tab in the frame browser gives access to all the instance
frames for the known generic frames.

40

Figure 26: Instance Frame Browser

When a generic frame is select all of the instance frames that inherit from it
will be listed. When one of these instances is selected its parents and slots will
be displayed.

The frame browser can be used to add or remove the parents and slots of
instance frames and the reorder the parents of an instance frame.

The ‘New’ button below the list of instance frames can be used to create a
new instance frame that inherits from the currently selected generic frame.

4.4.5 Functions

Figure 27: Function Browser

The ‘Functions’ tab of the frame browser allows users to view/create func-
tions in FrameScript. (NOTE: this doesn’t include subroutines)

41

On the left of the ‘Functions’ tab is a tree showing all of the currently active
functions when a function is selected the parameters used in the function are
listed and the body of the function is displayed.

It is possible to add parameters/remove/swap the parameters of a function.
(NOTE: Calls to the function will need to be updated separately or they will
break) It is also possible to edit the function’s body.

The ‘New’ button below the known functions can be used to define new
functions.

4.5 Script Browser

Figure 28: Script Browser

The script browser(see figure 28), which can be opened by script_browser(),
is for the viewing and manipulation of scripts. It can be used to examine Frame-
Script’s state as a conversation progresses and to create and edit scripts.

On the left side of the script browser is a tree that displays all of the known
domains and scripts named in the symbol table and the active functions. Also
shown in the tree are the registered topics of a domain listed with the topics’
triggers.

4.5.1 Menu

The script browser’s menu allows a number of operation to be performed. A
summary of the operations available through the menu is:

• File

• New

• New Domain - Creates a new domain.
• New Script - Creates a new script.
• New Function - Creates a new function.

42

• Load File - Loads a FrameScript file into memory.

• Load Module - Load a FrameScript module into memory.

• Save Scripts - Writes out the scripts in the symbol table to a file.

• Serialise - Serialises FrameScript’s symbol table to a file.

• Unserialise - Loads the symbol table stored in a file.

• View

• View Recognition Daemon - Switches the view of a script to the
abnormal script view so that normal scripts can be made abnormal.

• Start Conversation - Opens the conversation GUI(see section 4.5.5)
using a given domain.

• Help

• Set Look & Feel - Changes the UI look and feel.

• About - Describes the script browser.

4.5.2 Domains

Figure 29: Domain Browser

When a domain is selected in the tree the details of that domain are shown
in the right side of the script browser. (See figure 29)

Shown are the domain’s current context, current topic, failsafe and the list
of topics registered for the domain.

The domain’s current context, current topic and failsafe can all be changed
using comboboxes and its topics can be added, removed or reordered.

43

4.5.3 Scripts

If a script is selected in the script browser’s tree. (Either by its name or as
a topic in a domain) That script’s details will be displayed on the right. The
script browser will display any trigger specifically defined for the script, the
script’s failsafe, the script’s parents, the script’s slots, the script’s daemons and
the rules defined in the script.

The script browser can be used to change a script’s trigger, failsafe, parents
and slots. The rules for the script can be reordered and removed and new rules
can be added. When a rule is selected the pattern and response for the rule are
shown. Both the pattern and response can be edited.

Script Daemons
The ‘Daemons’ tab for a script shows the on_entry and on_exit daemons

Figure 30: Script Daemon Browser

defined for a script and allows them to be edited.

Abnormal Scripts
Some scripts do not use the standard rule/response mechanism for processing

inputs. If such a script is selected the recognition daemon for that script will be
displayed. If a users selects ‘View Recognition Daemon’ in the menu the actual
recognition daemon that implements the rules for the script will be shown.
(Example shown in figure 31)

It is recommended that if a script is using the rule/response mechanism for
its rules that the rules are added/edited using the standard rule interface and
not using the recognition daemon interface as whenever a script is selected the
script browser checks the recognition daemon to see whether or not the normal
pattern/response rule interface can be used and writing recognition daemons
that can be displayed though this interface is not a simple task.

44

Figure 31: Abnormal Script Browser

Figure 32: Function Browser

45

4.5.4 Functions

If a user selects a function from the tree then that function’s details are shown.
Both the function’s parameters and body are shown and can be manipulated.

Beware when using this interface to add/remove/reorder parameters for a
function as all calls to the function will need to be checked to ensure that they
still correspond to the new function specification.

4.5.5 Conversation GUI

Figure 33: Conversation GUI

If a user selects ‘Start Conversation’ from the script browser’s menu they
will be asked to select a domain to manage the conversation. When a domain
is selected the conversation GUI is opened using that domain to manage a
conversation with the user. The conversation shows the conversation’s history
and at the bottom has a text field the user can use to enter their side of the
conversation. The user can use the arrow buttons of their keyboard to flip
through previously entered statements.

5 MicaBot

FrameScript is a language for scripting of verbal and multi-modal interactions.
In order for it be used in an application it needs to be able to receive speech
and events from somewhere and to be able to return its responses. The simplest
way to manage this is to extend FrameScript and in the extension to provide
an interface to whichever technology/architecture is being used to handle the
device/agent/system communications.

MicaBot is a FrameScript extension that acts as a bridge between Frame-
Script and the Mica3 agent architecture.

3Mica[4, 5] is a middle-ware layer for pervasive computing that aims to simplify commu-
nications between devices and agents and facilitate the separation of applications from their
interfaces.

46

Among the extensions provided by MicaBot are a number of subroutines
that allow the standard Mica function calls: writeMob, readMob, register, etc
. . . to be accessible in FrameScript, so that they can be used within responses.
It also has the responsibility of turning Mica mobs into utterances and events
to be parsed/processed by FrameScript.

When a MicaBot agent is first initialised it uses a TypeManager to explore
the mob inheritance hierarchy. It then recreates this hierarchy using generic
frames in FrameScript.

On initialisation MicaBot registers for ‘textFromUser’ mobs from which it
uses the utterance slot to provide the speech input to FrameScript.

5.1 Speech Alternatives

Speech recognition systems don’t just give one result when recognising speech
but instead give a list of possible statements in the order of their likely probabil-
ities. MicaBot allows these possible alternatives to be checked when processing
the response to a user’s statement. In the ‘textForUser’ mob the ‘utterance’ slot
holds the most likely alternative. If there are other possible alternatives then
they are placed in a list in the ‘alternatives’ slot of the ‘textFromUser’ mob.

failsafe ::
NOMOREALTS ==> [Sorry I didn’t understand that.]
* ==> RECOGALT

;;

Figure 34: Speech Alternative Example

The most common way to access the alternatives from within FrameScript
would then be to use a failsafe similar to Figure 34. In this example ‘RECO-
GALT’ is a simple response that tells MicaBot to use the next alternative. If
there are no more alternatives to try MicaBot will give the input ‘NOMORE-
ALTS’.

5.2 SimpleTextAgent

SimpleTextAgent is a fairly simple Mica interface agent that writes ‘textForUser’
mobs to the blackboard and displays ‘textForUser’ and ‘textFromUser’ mobs as
they arrive.

5.3 MicaRunner

If you wish to use MicaRunner to start/stop MicaBot then there are some
parameters that can be passed to the MicaBot agent. These arguments are:

domain - the name of the FrameScript domain that the MicaBot uses to define
its responses

file - the name of a script file to be loaded

init - a string used to initialise the conversation/interaction

47

Figure 35: SimpleTextAgent

<runner host="localhost" port="8500">
<blackboard>

<restore value="false" />
<debug level="information" />

</blackboard>

<agent class="sitcrc.framescript.SimpleTextAgent" />

<agent class="sitcrc.framescript.MicaBot">
<arg param="file" value="example.frs"/>
<arg param="domain" value="example"/>
<arg param="init" value="init"/>

</agent>

</runner>

Figure 36: MicaRunner Startup Script Example

48

transient - either true or false, it tells MicaBot whether or not to make its
textForUser responses transient(defaults to true)

The parameters should be used in this order: transient, file, domain, init.
A simple example startup script for MicaRunner that starts MicaBot and

SimpleTextAgent is given in Figure 36. This script will start MicaBot with
the file example.frs loaded using the example domain. It will then initialise
MicaBot by giving it ”init” as its first input.

6 Discussion

While it will never be a simple matter to write scripts for use in conversational
agents it is possible to simplify the task. FrameScript’s use of script inheritance
is such a technique. Using script it is possible to define a set of basic behaviours
in a script. It is then is a simple task to inherit these behaviours in subsequent
scripts so that these behaviours can be used or altered. This allows common
behaviours to defined only once rather than for each context in which they
occur. This greatly simplifies editing scripts as the scripter only has to apply
modification at one point and not have to search for each implementation of the
behaviour.

Abnormal scripts are also a useful tool for scripting because they allow for
the look-up of objects/frames whose characteristics match a given portion of
an input text. Not only do abnormal scripts allow the look-up of objects they
can do so in a way that means the look-up is performed as part of the function
that compares the rule to the input. Because an abnormal script can be used
to match against the characteristics of all instances of a generic frame they can
provide a basic dynamic element to scripts as long as instances of the generic
frame can be dynamically created, modified and destroyed.

Similarly because FrameScript allows not just text to be given as input but
also events (where the event is represented by an instance frame) it can respond
not only to user actions but also to system changes. For example FrameScript
could tell a user if they receive an email or if their car was exceeding the speed
limit. This could give a system a proactive feel as the system can initiate a
conversation with a user rather than always waiting for the user to initiate a
conversation. It also allows FrameScript to respond to non-verbal inputs such
as the use of a touch pad or mouse and so allow the construction of multi-modal
scripts.

Allowing daemons to be attached to scripts makes it possible for the system
to alter environmental variables as it moves between contexts. For example
the on_entry daemon for a script could be used to tell a speech recogniser
which grammar to use for a specific context. Alternative if the system enters a
‘watching movie’ context it could turn off the lights and turn on the TV, then
when it leaves it could turn the TV off and the lights back on.

For all the techniques employed in FrameScript to simplify the task of writing
of scripts, writing scripts is still not simple. The script author has to take
into account the ways a conversation can diverge and the myriad of ways that
people can say the same thing. Also, they need to understand how the same
sentence can take on different meanings depending on the current context of
the conversation. The script writer must also take into account the very real
possibility that the system may have to interact with hostile users.

49

FrameScript provides script writers with tools for creating and editing scripts
but the interfaces they provide are very simple. There are probably better
ways of visualising and editing scripts that make it easier for script writers
to understand and manipulate the progression of a conversations through the
contexts the scripts embody.

It may also be possible to create a library of scripts that provide the be-
haviours necessary for implementing the computer’s side of common interac-
tions that users have with their systems. Such interaction could include getting
a person’s address or phone number. Such a library could then be used across
a number of possible systems and so allow script writers to focus on those in-
teractions that are specific to their system.

One way to ease the burden on script writers would be to enable the scripts
adapt themselves in response to interactions with users. Doing so could result
in conversational agents that resemble Turing’s Child Machine [8] in that they
can learn by examples. A simple method of adding such a feature is the use
of rules that construct/modify other rules. Such rules are feasible for limited
domains where the patterns and responses for the new rule can be easily de-
fined using some form of template. More generalised learning is a much more
daunting problem, especially when it has to take into consideration the possible
development of new contexts and sources of information.

Much of the recent work with FrameScript has been looking at using it to
build speech interfaces to devices and programs. Very little however has been
done to examine how it can be used in multi-modal interactions. While it
can accept virtually any type of event a system can produce including events
related to any input modality, work is still needed to identify the best methods
for processing multi-modal input.

Presently work is exploring the use of FrameScript in multi-modal environ-
ments and for reporting events to a user. It is also looking at a variety of ways
of representing and manipulating the current state of a conversation.

References

[1] P. Compton, G. Edwards, B. Kang, L. Lazarus, R. Malor, T. Menzies, P. Pre-
ston, A. Srinivasan, and C. Sammut. Ripple down rules: possibilities and
limitations. In 6th Banff AAAI Knowlede Acquisition for Knowledge Based
Systems Workshop, 1991.

[2] Paul Compton and R. Jansen. A philosophical basis for knowledge acquisi-
tion. In 3rd European Knowledge Acquisition for Knowledge-Based Systems
Workshop, pages 75–89, 1989.

[3] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The hearsar-oo
speech-understanding system: Integrating knowledge to resolve uncertainty.
ACM Computing Surveys, 12(2):213–253, 1980.

[4] Mohammed Waleed Kadous and Claude Sammut. The MICA Manual, 0.1
edition, 2003.

[5] Mohammed Waleed Kadous and Claude Sammut. Mica: Pervasive mid-
dleware for learning, sharing and talking. In PerCom Workshops, pages
176–180. IEEE Computer Society, 2004.

50

[6] Marvin Minsky. A framework for representing knowledge. Technical report,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1974.

[7] Claude Sammut. Managing context in a conversational agent. Electronic
Transactions on Artificial Intelligence, 5(B):189–202, 2001.

[8] Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433–
460, October 1950.

51

A BNF

Below is a BNF grammar defining the syntax for FrameScript. The terminal
symbols atom, number and string have been left undefined.

statement :=
frame-declaration “;;”
|expression-list “;;”

frame-declaration :=
generic-frame
|instance-frame
|script

generic-frame :=
atom “ako” parent-list [“with” slot-definitions]

instance-frame :=
atom “isa” parent-list [“with” slot-values]

parent-list :=
atom [“,” parent-list]

slot-definitions :=
atom “:” [daemon-definitions]

daemon-definitions :=
daemon-definition [daemon-definitions]

daemon-definition :=
daemon-name expression-list
|slot-type “true”
|slot-type “false”

daemon-name :=
“if added” |“if destroyed”|“if new” |“if needed” |“if removed”
|“if replaced” |“default” |“range” |“help”

slot-type :=
“multivalued” |“cache”

slot-values :=
slot-value [slot-values]

slot-value
atom “:” expression

script :=
atom “::” [script-header] [script-rules |“–” expression-list]

script-header :=
script-modifier [script-header]

52

script-modifier :=
“inherits” atom
|“instanceof”4 atom
|“domain” atom
|“topic”5 atom
|“trigger” pattern-element
|“on entry” expression-list
|“on exit” expression-list
|“failsafe” atom
|atom “:” factor

script-rules :=
pattern
|script-rule [script-rules]

script-rule :=
pattern “==>” pattern-element

pattern :=
pattern-element [pattern]

pattern-element :=
sequence
|alternative
|non-terminal
|“ˆ” factor
|“#” factor
|atom 6

|number
|string

sequence :=
“[” pattern-list “]”

alternative :=
“{” pattern-list “}”

non-terminal :=
“<” atom “>”

pattern-list :=
conditional-pattern [“|” pattern-list]

conditional-pattern :=
pattern [“->” pattern]

expression-list :=
expression [“;” expression-list]

expression :=
assignment-expression

4used for regression purposes
5used for regression purposes
6Except ˆ, #, },], >>, |, ==>, ->, ;;

53

assignment-expression :=
disjunction-expression
|assignment-expression “=” disjunction-expression

disjunction-expression :=
conjunction-expression
|disjunction-expression “or” conjunction-expression

conjunction-expression :=
relational-expression
|conjunction-expression “and” relational-expression

relational-expression :=
additive-expression
|comparison-expression comparison-operator additive-expression

relational-operator :=
“<” |“<=” |“>” |“>=” |“==” |“!=” |“to” |“in”

additive-expression :=
multiplicative-expression
|additive-expression “+” multiplicative-expression
|additive-expression “-” multiplicative-expression

multiplicative-expression :=
unary-expression
|multiplicative-expression “*” unary-expression
|multiplicative-expression “/” unary-expression
|multiplicative-expression “mod” unary-expression

unary-expression :=
slot-retrieval
|“+” unary-expression
|“-” unary-expression
|“new” unary-expression
|“not” relational-expression
|“#” unary-expression
|“ˆ” unary-expression

slot-retrieval :=
factor [“of” unary-expression]

factor :=
atom
|number
|string
|list
|“(” expression-list “)”
|“<<” pattern “>>”
|rdr-expression
|forall-expression
|variable-declaration
|compound

54

list :=
“[” list-values “]”

list-values :=
expression-list [list-values]

forall-expression :=
“forall” atom “in” expression “:” expression

variable-declaration :=
“var” var-list

var-list :=
atom [“,” var-list

compound :=
atom “(” [arg-list] “)”

arg-list :
expression-list [“,” arg-list]

rdr-expression :=
“if” expression “then” expression [“because” case] [“except”
rdr-expression] [“else” expression]

case :=
atom

55

B Built-in Subroutines

In order for a scripting language to be of much use it needs to provide a number
of standard functions for performing basic operations on its basic types. As such
FrameScript provides a set of mathematical and logical operations and functions
for interacting with lists and frames.

While FrameScript is an untyped language its operations and functions often
operate on specific types of terms. The following function descriptions give the
types that each of FrameScript’s standard functions expect. If they are given
parameters of types they are not expecting they will throw an error. Below is a
list of the parameter types that the standard functions may expect.

atom - an atom

boolean - either true or false

domain - a domain

filename - the name of a file, it can be in the form of a string or an atom

generic - a generic frame

instance - an instance frame (unless otherwise specified this includes
scripts)

integer - an integer

list - a list

modulename - the name of a module, it can be in the form of a string or
an atom

number - a number

list - a list

pattern - a pattern

script - a script

slot - the name of a slot, it must be an atom that will not get evaluated

term - a term, it can be any type of term including atom, string, number,
pattern, RDR, expression list, . . .

variable - the name of a variable, it must be an atom that will not get
evaluated

B.1 Operators

FrameScript provides a number of mathematical and logic operations that can
be used within scripts and frames.

56

B.1.1 +

Usage: +number
Precedence: 10
Description: Standard unary mathematical addition operator.
Returns: number
Parameters: number numerical operand

Usage: number + number2
Precedence: 50
Description: Standard mathematical addition operator.
Returns: number
Parameters: number first numerical operand

number2 second numerical operand

B.1.2 -

Usage: -number
Precedence: 10
Description: Standard unary mathematical subtraction operator.
Returns: number
Parameters: number numerical operand

Usage: number - number2
Precedence: 50
Description: Standard mathematical subtraction operator.
Returns: number
Parameters: number first numerical operand

number2 second numerical operand

B.1.3 *

Usage: number * number2
Precedence: 40
Description: Standard mathematical multiplication operator.
Returns: number
Parameters: number first numerical operand

number2 second numerical operand

B.1.4 /

Usage: number / number2
Precedence: 40
Description: Standard mathematical division operator.
Returns: number
Parameters: number first numerical operand

number2 second numerical operand
Error: Divide by 0 error if number2 equals 0

57

B.1.5 mod

Usage: integer mod integer2
Precedence: 40
Description: Modulo operator.
Returns: integer
Parameters: integer first integral operand

integer2 second integral operand
Error: Divide by 0 error if integer2 equals 0

B.1.6 <

Usage: number < number2
Precedence: 70
Description: Less than comparison operator.
Returns: boolean
Parameters: number first numerical operand

number2 second numerical operand

B.1.7 <=

Usage: number <= number2
Precedence: 70
Description: Less than or equal to comparison operator.
Returns: boolean
Parameters: number first numerical operand

number2 second numerical operand

B.1.8 >

Usage: number > number2
Precedence: 70
Description: Greater than comparison operator.
Returns: boolean
Parameters: number first numerical operand

number2 second numerical operand

B.1.9 >=

Usage: number >= number2
Precedence: 70
Description: Greater than or equal to comparison operator.
Returns: boolean
Parameters: number first numerical operand

number2 second numerical operand

58

B.1.10 ==

Usage: term == term2
Precedence: 70
Description: Term equality check operator.
Returns: boolean
Parameters: term first operand

term2 second operand

B.1.11 !=

Usage: term != term2
Precedence: 70
Description: Term inequality check operator.
Returns: boolean
Parameters: term first operand

term2 second operand

B.1.12 =

Usage: term = term2
Precedence: 100
Description: Term assignment operator. Is right branching.
Returns: term
Parameters: term assignee

term2 value being assigned
Error: If term cannot be assigned a value.

B.1.13 and

Usage: boolean and boolean2
Precedence: 75
Description: Logical conjunction operator. If boolean evaluates to false

then boolean2 isn’t evaluated.
Returns: boolean
Parameters: boolean first operand

boolean2 second operand

B.1.14 or

Usage: boolean or boolean2
Precedence: 80
Description: Logical disjunction operator. If boolean evaluates to true

then boolean2 isn’t evaluated.
Returns: boolean
Parameters: boolean first operand

boolean2 second operand

59

B.1.15 not

Usage: not boolean
Precedence: 72
Description: Logical negation operator.
Returns: boolean
Parameters: boolean operand

B.1.16 of

Usage: slot of instance
Precedence: 5
Description: Gets the value of a slot from an instance frame or a script.

Is right branching.
Returns: term
Parameters: slot the name of the slot, must be hard coded

as it isn’t evaluated
instance the instance frame/script whose slot value

you a looking for

B.1.17 in

Usage: term in list
Precedence: 70
Description: List membership check operator.
Returns: boolean
Parameters: term the term that is a possible member

list the list that term is a possible member of

B.1.18 new

Usage: new generic
Precedence: 50
Description: Generic frame instantiation operator. Creates an instance

frame that inherits from the given type.
Returns: instance
Parameters: generic the generic frame being instantiated

B.1.19 ˆ

Usage: ^term
Precedence: 20
Description: If the unevaluated term is an integer it gets the associated

match component, otherwise it just returns the evaluated
value of term. It’s main usages are for retrieving sections of
input for analysis and for dynamically generating responses.

Returns: term
Parameters: term either the index for a match component, or

term to be evaluated

60

B.1.20 #

Usage: #term
Precedence: 20
Description: Evaluates term and returns nothing. Is is mainly used to

insert FrameScript code for execution in responses that pro-
duce no visible response. It also is used in the pattern for a
rule to provide a means of including the state of the system
in the conditions of the rule.

Returns: nothing
Parameters: term term to be evaluated

B.1.21 to

Usage: number to number2
Precedence: 70
Description: An operator to ensure that a value inserted into a slot falls

within a given range. It only works in daemons that define
new_value. (eg. range, if_added, if_replaced)

Returns: boolean
Parameters: number inclusive lower bound of the range

number2 inclusive upper bound of the range
Error: If new_value is not a number.

B.1.22 var

Usage: var [list_of_vars]
Description: Not really an operator just a reserved atom used to define

local variables in daemons/functions/forall statements.
Parameters: list_of_vars comma separated list of variable names
Error: If it is not at the top of the daemon/function/forall state-

ment.

B.1.23 forall

Usage: forall variable in list: term
Description: Not really an operator just a reserved atom used to loop

through a list. It returns the values of evaluating term for
each value in list.

Returns: list
Parameters: variable name of a variable that takes its value from

the elements in the list
list a list of values for the variable
term a term to be evaluated for each value in list

Error: If it is not at the top of the daemon/function/forall state-
ment.

61

B.1.24 ->

Usage: pattern -> pattern2
Precedence: 90
Description: An operator that allows conditional responses to rules.
Returns: pattern
Parameters: pattern condition for production of the response

(should evaluate to either << true >> or
<< false >>.)

pattern2 response to use if pattern evaluates to
<< true >>

B.1.25 Precedence Table

Precedence Operator
100 =
90 ->
80 or
75 and
72 not
70 !=, ==, <, <=, >, >=, to, in
50 +(infix), -(infix), new
40 *, /, mod
20 #, ˆ
10 +(prefix), -(prefix)
5 of

Table 4: Operator precedence

B.2 General Functions

FrameScript has a number of standard functions for testing the types of terms
and to manipulate list. It also provides mechanisms for interacting with the
user.

B.2.1 trace

Usage: trace(boolean)
Description: Enables/disables trace reporting.
Returns: boolean
Parameters: boolean true to enable trace reporting, false to disable

B.2.2 verbose

Usage: verbose(boolean)
Description: Enables/disables verbose output.
Returns: boolean
Parameters: boolean true to enable verbose output, false to disable

62

B.2.3 atom

Usage: atom(term)
Description: Tests if term is an atom.
Returns: boolean
Parameters: term term to be tested

B.2.4 defined

Usage: defined(term)
Description: Tests if term has a defined value.
Returns: boolean
Parameters: term term to be tested

B.2.5 undefined

Usage: undefined(term)
Description: Tests if term does not have a defined value.
Returns: boolean
Parameters: term term to be tested

B.2.6 set

Usage: set(atom, term)
Description: Tests if term does not have a defined value.
Returns: term
Parameters: atom name of a variable to be given a global value

term global value to be given to atom

B.2.7 number

Usage: number(term)
Description: Tests if term is a number.
Returns: boolean
Parameters: term term to be tested

B.2.8 integer

Usage: integer(term)
Description: Tests if term is an integer.
Returns: boolean
Parameters: term term to be tested

B.2.9 list

Usage: list(term)
Description: Tests if term is a list.
Returns: boolean
Parameters: term term to be tested

63

B.2.10 cons

Usage: cons(term, list)
Description: Constructs a list with term at its head followed by the values

of list.
Returns: list
Parameters: term term to be the head of the list

list the tail of the list

B.2.11 member

Usage: member(list, term)
Description: Tests if term is a member of list.
Returns: boolean
Parameters: list list whose membership is being tested

term term whose membership of list is being
tested

B.2.12 head

Usage: head(list)
Description: Gets the first value of a list.
Returns: term, nothing if list is empty
Parameters: list list of values

B.2.13 tail

Usage: tail(list)
Description: Gets the tail of a list. (ie. all values except the first)
Returns: list
Parameters: list list whose tail we want

B.2.14 nth

Usage: nth(integer, list)
Description: Gets the nth element of a list.
Returns: term
Parameters: integer index of the element (indices go from 0 to

length(list) - 1)
list list whose value is being retrieved

Error: If integer is not a valid index of list.

B.2.15 length

Usage: length(list)
Description: Gets the number of elements in a list.
Returns: integer
Parameters: list list whose elements are to be counted

64

B.2.16 append

Usage: append(list, list2)
Description: Creates a new list where list2 is appended to the end of

list.
Returns: list
Parameters: list list whose elements are to be the start of the

new list
list2 list whose elements are to be the tail of the

new list

B.2.17 delete

Usage: delete(term, list)
Description: Creates a list with the same elements as list except the

first occurrence of term.
Returns: list
Parameters: term the term to be removed from list

list the list term is being removed from

B.2.18 fixrdr

Usage: fixrdr()
Description: Used to generate the construction of an exception to a

Ripple Down Rule. (Ideally should be placed inside the
if_replaced daemon of the slot whose value was replaced
with the correct value)

Returns: RDR
Error: If no RDR has been evaluated, or the slot has no value, or

no conditions are given to explain the exception.

B.2.19 rdr

Usage: rdr(generic, slot)
Description: Loops through the instances of generic and gets the value

of their slot slot. Then it asks the user to verify the value
evaluated. If it is wrong the user is asked for the correct
value and the value of the slot slot is replaced for that
instance.

Returns: nothing
Parameters: generic a generic frame whose instances’ slots are to

be tested
slot the name of the slot where the ripple down

rule is being tested
Error: Possible IOExceptions/SyntaxErrors when communicating

with the user.

65

B.2.20 print

Usage: print(term, ...)
Description: Prints its arguments to the output stream.
Returns: term
Parameters: term term to be written to the output stream

B.2.21 error

Usage: error(term, ...)
Description: Throws an error. Uses its arguments to construct a message

for the error.
Parameters: term message to be used for the error
Error: An error with term as its message.

B.2.22 ask

Usage: ask(term)
Description: Writes term to the output stream and waits for the user to

respond with a term.
Returns: term
Parameters: term request to be written to the output stream
Error: Possible IOExceptions/SyntaxErrors when communicating

with the user.

B.2.23 eval

Usage: eval(term)
Description: Gets the value of term and evaluates it.
Returns: term
Parameters: term the value to be reevaluated

B.2.24 quote

Usage: quote(term)
Description: Returns term without evaluating it.
Returns: term
Parameters: term the value to be given

B.2.25 load

Usage: load(filename)
Description: Reads in FrameScript code from a file.
Returns: nothing
Parameters: filename name of the file to be read in
Error: If file not found or, problems reading from the file.

66

B.2.26 load module

Usage: load_module(modulename)
Description: Loads a module into memory.
Returns: nothing
Parameters: filename name of the module to be loaded
Error: Number of possible error reading the Java class file the mod-

ule is implemented in.

B.2.27 output to file

Usage: load(filename)
Description: Sets the output stream to go to a given file. Overwrites the

file.
Returns: nothing
Parameters: filename name of the file to be output to
Error: If problems writing to the file.

Usage: load(filename, boolean)
Description: Sets the output stream to go to a given file.
Returns: nothing
Parameters: filename name of the file to be output to

boolean whether or not to append to the file
Error: If problems writing to the file.

B.2.28 close output

Usage: close_output()
Description: If the output stream is going to a file it is closed and the

previous output stream is set to be the output stream.
Returns: nothing

Usage: close_output(filename)
Description: If the output stream is going to the file filename it is closed

and the previous output stream is set to be the output
stream.

Returns: nothing
Parameters: filename name of the file to stop outputting to

B.2.29 print as text

Usage: print_as_text(term)
Description: Prints a term to the output stream. If term is either a frame

or script it is written in a textual format that as much as
possible can be read back in.

Returns: term
Parameters: term term to be written to the output stream

B.3 Frame Subroutines

As FrameScript uses frames to provide structure to data it needs functions
that enable frames to be manipulated. Several of the functions below require

67

current_object which means they are intended for use in daemons and apply to
the daemon whose access/manipulation resulted in the running of the daemon.

B.3.1 frame

Usage: frame(term)
Description: Tests whether or not a term is a frame.
Returns: boolean
Parameters: term term being tested

B.3.2 generic

Usage: generic(term)
Description: Tests whether or not a term is a generic frame.
Returns: boolean
Parameters: term term being tested

B.3.3 instance

Usage: instance(term)
Description: Tests whether or not a term is an instance frame. NOTE:

As scripts are a subtype of instance frames this will return
true if term is a script.

Returns: boolean
Parameters: term term being tested

B.3.4 instances of

Usage: instances_of(generic)
Description: Gets all the instances of a generic frame.
Returns: list
Parameters: generic generic frame whose instances are desired

B.3.5 put

Usage: put(slot, term)
Description: Puts the value term into the slot slot of current_object.
Returns: term
Parameters: slot the slot the value is being put into

term the value to be added to the slot
Error: If there is no current_object, slot already has a value and

is not multivalued or an error is thrown by a daemon.

Usage: put(instance, slot, term)
Description: Puts the value term into the slot slot of instance.
Returns: term
Parameters: instance the instance frame the value of the slot is

being put into
slot the slot the value is being put into
term the value to be added to the slot

Error: If slot of instance already has a value and is not multival-
ued or an error is thrown by a daemon.

68

B.3.6 replace

Usage: replace(slot, term)
Description: Replaces the value of the slot slot of current_object with

term.
Returns: term
Parameters: slot the slot whose value is being replace

term the value to be put into the slot
Error: If there is no current_object or an error is thrown by a

daemon.

Usage: replace(instance, slot, term)
Description: Replaces the value of the slot slot of instance with term.
Returns: term
Parameters: instance the instance frame whose slot value is being

replaced
slot the slot whose value is being replace
term the value to be put into the slot

Error: If an error is thrown by a daemon.

B.3.7 remove

Usage: remove(slot)
Description: Removes the given slot from current_object.
Returns: term
Parameters: slot the slot to remove from current_object
Error: If there is no current_object or an error is thrown by a

daemon.

Usage: remove(instance, slot)
Description: Removes the given slot from instance.
Returns: term
Parameters: instance the instance frame the slot is being removed

from
slot the slot to remove

Error: If an error is thrown by a daemon.

Usage: remove(instance, slot, term)
Description: Removes a specific value from a multivalued slot in the given

instance frame.
Returns: term
Parameters: instance the instance frame the slot value is being re-

moved from
slot the slot whose value is being remove
term the value to be removed from the slot

Error: If slot of instance is not multivalued or an error is thrown
by a daemon.

69

B.3.8 destroy

Usage: destroy(instance)
Description: Destroys an instance frame. Runs if_destroyed daemons

and removes the instance from the instance lists of all it’s
parent generic frames. Does not work on scripts.

Returns: nothing
Parameters: instance the instance frame to be destroyed
Error: If instance is a script or an error is thrown by a daemon.

B.4 Script Routines

FrameScript provides a number of functions for moving from one script to an-
other. It also has some functions to initiate conversations using domains.

B.4.1 script

Usage: script(term)
Description: Tests whether or not a term is a script.
Returns: boolean
Parameters: term term being tested

B.4.2 domain

Usage: domain(term)
Description: Tests whether or not a term is a domain.
Returns: boolean
Parameters: term term being tested

B.4.3 pattern

Usage: pattern(term)
Description: Tests whether or not a term is a pattern.
Returns: boolean
Parameters: term term being tested

B.4.4 register

Usage: register(domain, script)
Description: Registers script as the dominant topic of domain.
Returns: nothing
Parameters: domain domain the script is a topic of

script script that is being registered as a topic

B.4.5 goto

Usage: goto(script)
Description: Sets the given script as the current context of the current

domain.
Returns: script
Parameters: script the script to be the current context
Error: If there is no current domain or an error is thrown by a

daemon.

70

Usage: goto(script, term)
Description: Sets the given script as the current context of the current

domain. Then gives term as an input to the domain.
Returns: script
Parameters: script the script to be the current context

term a term to be used as an input to the domain
Error: If there is no current domain or an error is thrown by a

daemon.

B.4.6 current context

Usage: current_context()
Description: Gets the current context of the current domain.
Returns: script
Error: If there is no current domain.

B.4.7 previous topic

Usage: previous_topic()
Description: Returns to the previous topic. Sets the topic as the current

context.
Returns: nothing
Error: If there is no current domain or an error is thrown by a

daemon.

Usage: previous_topic(term)
Description: Returns to the previous topic. Sets the topic as the current

context. Then gives term as an input to the domain.
Returns: nothing
Parameters: term a term to be used as an input to the domain
Error: If there is no current domain or an error is thrown by a

daemon.

B.4.8 new event

Usage: new_event(domain, term)
Description: Gives a new input to a domain to be responded to.
Returns: pattern
Parameters: domain the domain that is being given a new input

term a term to be used as an input to the domain
Error: If an error is thrown during processing of the response.

B.4.9 bot

Usage: bot(domain)
Description: Starts a simple console conversational interface using domain

as the domain for the conversation.
Returns: atom
Parameters: domain the domain that is being used to determine

the system’s responses
Error: If an error is thrown during the processing of an input.

71

Usage: bot(domain, term)
Description: Starts a simple console conversational interface using domain

as the domain for the conversation. Starts the conversation
using term as the first input.

Returns: atom
Parameters: domain the domain that is being used to determine

the system’s responses
term a term used to initialise the conversation

Error: If an error is thrown during the processing of an input.

B.4.10 match

Usage: match(term)
Description: Comparison to see if term is a valid pattern to match the

current position in the current input.
Returns: boolean
Parameters: term a term to be used as a pattern to be matched

against the current input
Error: If there is no current input.

Usage: match(term, term2)
Description: Comparison to see if term is a valid pattern that matches

term2.
Returns: boolean
Parameters: term a term to be used as a pattern to be matched

against the term2
term2 a term to matched against the pattern term

B.4.11 failsafe

Usage: failsafe(domain, script)
Description: Sets a script to be the global failsafe for a domain.
Returns: script
Parameters: domain the domain that for which the global failsafe

is being defined
script the global failsafe for the domain

B.4.12 question

Usage: question(domain, term)
Description: Initiates a conversation with the user that continues until a

value is returned.
Returns: term
Parameters: domain domain that provides the system’s side of the

conversation
term an input to be used to initiate the conversa-

tion

72

B.4.13 return

Usage: return(term)
Description: Is used to provide a return value for

question(domain, term). If used outside of a
question(domain, term) call it does nothing.

Returns: nothing
Parameters: term the value to be returned by

question(domain, term)
Error: If there is no current domain.

B.5 GUIs

In the standard FrameScript distribution is the module ’sitcrc.framescript.GUI’.
This is a small module that implements GUIs for communicating with the user
using message and input dialogs and more complex GUIs for maintaining RDRs,
frames and scripts. These GUIs are not active by default but can be enabled
by calling load_module("sitcrc.framescript.GUI").

B.5.1 dialog message

Usage: dialog_message(term)
Description: Opens a dialog box with a message for the user.
Returns: nothing
Parameters: term a term used to provide the message for the

user

B.5.2 dialog question

Usage: dialog_question(term)
Description: Opens a dialog box requesting an input from the user.
Returns: term
Parameters: term a term used to provide the input request mes-

sage
Error: If there is an error parsing the user’s input.

B.5.3 frame browser

Usage: frame_browser()
Description: Opens the frame browser user interface.
Returns: nothing

B.5.4 script browser

Usage: script_browser()
Description: Opens the script browser user interface.
Returns: nothing

73

B.5.5 fix rdr gui

Usage: fix_rdr_gui()
Description: Opens a graphical RDR maintenance interface.
Returns: nothing
Error: If there is no current_object, no RDR has been evaluated,

no conditions are given to explain the difference, no value in
the slot of current_object.

B.6 MicaBot

When using MicaBot several subroutines are loaded into FrameScript to allow
access to the mobs on Mica’s blackboard. Along with some new functions Mi-
caBot defines some new term types. Many of the new functions use these new
types. The new types are listed below.

host - the name of a machine hosting a blackboard, will usually be a
string

micabot - a MicaBot

mob - an instance frame that inherits from the mob generic frame

B.6.1 micabot

Usage: micabot(domain)
Description: Creates a new MicaBot agent that uses the specified domain.

The agent transport is configured using the current micabot.
Returns: micabot
Parameters: domain the domain the new MicaBot will use to talk

to FrameScript
Error: If there are any problems creating the new MicaBot or there

is no current MicaBot.

Usage: micabot(domain, term)
Description: Creates a new MicaBot agent that uses the specified domain.

The agent transport is configured using the current micabot.
Then it initialises the conversation with a given input.

Returns: micabot
Parameters: domain the domain the new MicaBot will use to talk

to FrameScript
term an input used to initialise the conversation

Error: If there are any problems creating the new MicaBot or there
is no current MicaBot.

74

Usage: micabot(domain, host, integer)
Description: Creates a new MicaBot agent that uses the specified domain.

The new MicaBot connects to the blackboard identified by
the host and port parameters.

Returns: micabot
Parameters: domain the domain the new MicaBot will use to talk

to FrameScript
host the host the blackboard resides on
integer the port on the host the blackboard has open

Error: If there are any problems creating the new MicaBot.

Usage: micabot(domain, term, host, integer)
Description: Creates a new MicaBot agent that uses the specified domain.

The new MicaBot connects to the blackboard identified by
the host and port parameters. Then it initialises the con-
versation with a given input.

Returns: micabot
Parameters: domain the domain the new MicaBot will use to talk

to FrameScript
term an input used to initialise the conversation
host the host the blackboard resides on
integer the port on the host the blackboard has open

Error: If there are any problems creating the new MicaBot.

B.6.2 mica connect

Usage: mica_connect(term)
Description: Disconnects the current MicaBot and reconnects with the

given name. It then registers for ’textFromUser’ mobs.
Returns: atom
Parameters: term the agent name to use when reconnecting
Error: If there are any problems reconnecting or there is no current

MicaBot.

Usage: mica_connect(micabot, term)
Description: Disconnects micabot and reconnects with the given name.

It then registers for ’textFromUser’ mobs.
Returns: atom
Parameters: micabot the micabot to disconnect and reconnect

term the agent name to use when reconnecting
Error: If there are any problems reconnecting.

B.6.3 mica register

Usage: mica_register(term)
Description: Registers the current MicaBot for the given mob type.
Returns: atom
Parameters: term the type of mob the current MicaBot is in-

terested in
Error: If there are any problems registering or there is no current

MicaBot.

75

Usage: mica_register(micabot, term)
Description: Registers micabot for the given mob type.
Returns: atom
Parameters: micabot the micabot that is interested in the mob

type
term the type of mob the MicaBot is interested in

Error: If there are any problems registering.

B.6.4 mica unregister

Usage: mica_unregister(term)
Description: Unregisters the current MicaBot for the given mob type.
Returns: atom
Parameters: term the type of mob the current MicaBot is no

longer interested in
Error: If there are any problems unregistering or there is no current

MicaBot.

Usage: mica_unregister(micabot, term)
Description: Unregisters micabot for the given mob type.
Returns: atom
Parameters: micabot the micabot that is no longer interested in

the mob type
term the type of mob the MicaBot is no longer

interested in
Error: If there are any problems unregistering.

B.6.5 mica read mob

Usage: mica_read_mob(term)
Description: Uses the current MicaBot to get the named mob.
Returns: mob or nothing
Parameters: term the name of the mob to be read
Error: If there are any problems reading the mob or there is no

current MicaBot.

Usage: mica_read_mob(micabot, term)
Description: Uses the MicaBot to get the named mob.
Returns: mob or nothing
Parameters: micabot the micabot to read the mob

term the name of the mob to be read
Error: If there are any problems reading the mob.

B.6.6 mica write mob

Usage: mica_write_mob(mob)
Description: Writes a mob using the current MicaBot.
Returns: atom
Parameters: mob the mob to be written
Error: If there are any problems writing the mob or there is no

current MicaBot.

76

Usage: mica_write_mob(micabot, mob)
Description: Writes a mob using micabot.
Returns: atom
Parameters: micabot the micabot to write the mob

mob the mob to be written
Error: If there are any problems writing the mob.

B.6.7 mica delete mob

Usage: mica_delete_mob(term)
Description: Uses the current MicaBot to delete the named mob.
Returns: nothing
Parameters: term the name of the mob to be deleted
Error: If there are any problems deleting the mob or there is no

current MicaBot.

Usage: mica_delete_mob(micabot, term)
Description: Uses the MicaBot to delete the named mob.
Returns: nothing
Parameters: micabot the micabot to delete the mob

term the name of the mob to be deleted
Error: If there are any problems deleting the mob.

B.6.8 mica query

Usage: mica_query(term)
Description: Uses the current MicaBot to get a list of mobs matching a

query.
Returns: list
Parameters: term the query that defines the mobs being re-

quested
Error: If there are any problems querying the blackboard or there

is no current MicaBot.

Usage: mica_query(micabot, term)
Description: Uses the MicaBot to get a list of mobs matching a query.
Returns: list
Parameters: micabot the micabot to query the blackboard

term the query that defines the mobs being re-
quested

Error: If there are any problems querying the blackboard.

77

B.6.9 mica write wait for reply

Usage: mica_write_wait_for_reply(mob, integer)
Description: Uses the current MicaBot to write the given mob and waits

for a reply. If no reply is received within the given time
period(in milliseconds) then it returns nothing.

Returns: mob, null if a timeout occurs
Parameters: mob the mob to be written

integer the number of miliseconds to wait for a reply
Error: If there are any problems writing or receiving the mobs.

Usage: mica_write_wait_for_reply(micabot, mob, integer)
Description: Uses the MicaBot to write the given mob and waits for a

reply. If no reply is received within the given time period(in
milliseconds) then it returns nothing.

Returns: mob, null if a timeout occurs
Parameters: micabot the micabot to write the mob and wait for a

reply
mob the mob to be written
integer the number of miliseconds to wait for a reply

Error: If there are any problems writing or receiving the mobs.

B.6.10 get mob name

Usage: get_mob_name(mob)
Description: Gets the name of a mob.
Returns: atom
Parameters: mob the mob whose name is being requested

B.6.11 current micabot

Usage: current_micabot()
Description: Gets the current MicaBot.
Returns: micabot
Error: If there is no current MicaBot.

78

C Utility Functions

TODO . . .

C.1 Subroutine Argument Type Checking

TODO . . .

C.1.1 check alternatives

Usage: check_alternatives(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is an
Alternatives.

Returns: Alternatives
Throws: FSError if the designated argument is not an Alternatives
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.2 check atom

Usage: check_atom(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is an
Atom.

Returns: Atom
Throws: FSError if the designated argument is not an Atom
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

79

C.1.3 check boolean

Usage: check_boolean(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is either
true or false.

Returns: Atom. true or Atom. false
Throws: FSError if the designated argument is not true or false
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.4 check compound

Usage: check_compound(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
Compound.

Returns: Compound
Throws: FSError if the designated argument is not a Compound
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.5 check domain

Usage: check_domain(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
Domain.

Returns: Domain
Throws: FSError if the designated argument is not a Domain
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

80

C.1.6 check exprlist

Usage: check_exprlist(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is an
ExprList.

Returns: ExprList
Throws: FSError if the designated argument is not a ExprList
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.7 check frame

Usage: check_frame(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
Frame.

Returns: Frame
Throws: FSError if the designated argument is not a Frame
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.8 check generic

Usage: check_generic(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
Generic frame.

Returns: Generic
Throws: FSError if the designated argument is not a Generic frame
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

81

C.1.9 check instance

Usage: check_instance(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
Instance frame. This check will also succeed on Scripts.

Returns: Instance
Throws: FSError if the designated argument is not a Instance frame
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.10 check integer

Usage: check_integer(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is an
integer.

Returns: FSInteger
Throws: FSError if the designated argument is not an integer
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.11 check list

Usage: check_list(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a list.
Returns: FSList
Throws: FSError if the designated argument is not a list
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

82

C.1.12 check number

Usage: check_number(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
number.

Returns: FSNumber
Throws: FSError if the designated argument is not a number
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.13 check pattern

Usage: check_pattern(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
pattern.

Returns: Pattern
Throws: FSError if the designated argument is not a pattern
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.14 check rdr

Usage: check_rdr(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is an
RDR.

Returns: RDR
Throws: FSError if the designated argument is not an RDR
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

83

C.1.15 check script

Usage: check_script(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
Script.

Returns: Script
Throws: FSError if the designated argument is not a Script
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.16 check sequence

Usage: check_sequence(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
Sequence.

Returns: Sequence
Throws: FSError if the designated argument is not a Sequence
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

C.1.17 check string

Usage: check_string(String functionName,
Instance currentObject, Term arg[], int n,
StackFrame frame)

Description: Function for checking that a argument to a function is a
string.

Returns: FSString
Throws: FSError if the designated argument is not a string
Parameters: functionName name of the function that is checking the ar-

gument
currentObject enclosing object for the code which called the

subroutine
arg array of arguments to the function
n index of the argument to check
frame StackFrame that houses variable values

84

C.2 Files/Modules

TODO . . .

C.2.1 loadFile

TODO . . .

C.2.2 loadModule

TODO . . .

C.2.3 setOutput

TODO . . .

C.2.4 closeOutput

TODO . . .

C.2.5 FileNotFound

TODO . . .

C.2.6 evloop

TODO . . .

C.3 Miscellaneous

TODO . . .

C.3.1 compress

TODO . . .

C.3.2 getMessage

TODO . . .

C.3.3 getName

TODO . . .

C.3.4 getPattern

TODO . . .

C.3.5 sortAtomList

TODO . . .

85

C.3.6 IOError

TODO . . .

C.3.7 isPattern

TODO . . .

C.3.8 isUnaryPattern

TODO . . .

C.3.9 isPatternElement

TODO . . .

C.3.10 formatComment

TODO . . .

C.3.11 unformatComment

TODO . . .

C.3.12 unformatComment

TODO . . .

C.3.13 checkAllReferences

TODO . . .

86

D Serialisation

TODO . . .

87

	Overview
	MICA
	FrameScript

	FrameScript
	Frames
	Slots
	Generic Frames
	Daemons
	Instance Frames
	Multiple Inheritance

	Scripts
	Rules
	Patterns
	Responses
	Pattern Component Numbering
	Domains, Topics and Triggers
	Inheritance
	Slots
	Failsafes
	Rule Ordering
	Daemons
	Abnormal Scripts
	Pattern Matching Algorithm

	Expression Language
	Statements
	Numbers
	Strings
	Atoms
	Lists
	Expression Lists
	Patterns
	Sequences
	Alternatives
	Ripple Down Rules
	Functions
	Forall Loops
	Variables

	Modules
	Subroutines
	MaxModule Example

	Multi-modal Interaction
	Multi-modal Example

	GUI
	Message Dialog
	Question Dialog
	RDR Maintenance GUI
	Frame Browser
	Menu
	Transcript
	Generic Frames
	Instance Frames
	Functions

	Script Browser
	Menu
	Domains
	Scripts
	Functions
	Conversation GUI

	MicaBot
	Speech Alternatives
	SimpleTextAgent
	MicaRunner

	Discussion
	BNF
	Built-in Subroutines
	Operators
	+
	-
	*
	/
	mod
	<
	<=
	>
	>=
	==
	!=
	=
	and
	or
	not
	of
	in
	new
	^
	#
	to
	var
	forall
	->
	Precedence Table

	General Functions
	trace
	verbose
	atom
	defined
	undefined
	set
	number
	integer
	list
	cons
	member
	head
	tail
	nth
	length
	append
	delete
	fixrdr
	rdr
	print
	error
	ask
	eval
	quote
	load
	load_module
	output_to_file
	close_output
	print_as_text

	Frame Subroutines
	frame
	generic
	instance
	instances_of
	put
	replace
	remove
	destroy

	Script Routines
	script
	domain
	pattern
	register
	goto
	current_context
	previous_topic
	new_event
	bot
	match
	failsafe
	question
	return

	GUIs
	dialog_message
	dialog_question
	frame_browser
	script_browser
	fix_rdr_gui

	MicaBot
	micabot
	mica_connect
	mica_register
	mica_unregister
	mica_read_mob
	mica_write_mob
	mica_delete_mob
	mica_query
	mica_write_wait_for_reply
	get_mob_name
	current_micabot

	Utility Functions
	Subroutine Argument Type Checking
	check_alternatives
	check_atom
	check_boolean
	check_compound
	check_domain
	check_exprlist
	check_frame
	check_generic
	check_instance
	check_integer
	check_list
	check_number
	check_pattern
	check_rdr
	check_script
	check_sequence
	check_string

	Files/Modules
	loadFile
	loadModule
	setOutput
	closeOutput
	FileNotFound
	evloop

	Miscellaneous
	compress
	getMessage
	getName
	getPattern
	sortAtomList
	IOError
	isPattern
	isUnaryPattern
	isPatternElement
	formatComment
	unformatComment
	unformatComment
	checkAllReferences

	Serialisation

