
CS 594: SCIENTIFIC
COMPUTING

 FOR ENGINEERS
PERFORMANCE ANALYSIS TOOLS: PART III

Gabriel Marin

gmarin@eecs.utk.edu
Includes slides from John Mellor-Crummey

OUTLINE

§  Part III
•  HPCToolkit: Low overhead, full code profiling using hardware

counters sampling
•  MIAMI: Performance diagnosis based on machine-independent

application modeling

2

3

CHALLENGES FOR COMPUTATIONAL SCIENTISTS

•  Execution environments and applications are rapidly evolving
•  Architecture

•  rapidly changing multicore microprocessor designs, increasing scale of
parallel systems, growing use of accelerators

•  Applications
•  adding additional scientific capabilities to existing applications, MPI

everywhere to threaded implementations

•  Steep increase in application development effort to attain
performance, evolvability, and portability

•  Application developers need to
•  Assess weaknesses in algorithms and their implementations

•  overhaul algorithms & data structures as needed
•  Adapt to changes in emerging architectures
•  Improve scalability of executions within and across nodes

4

PERFORMANCE ANALYSIS CHALLENGES

•  Complex architectures are hard to use efficiently
•  Multi-level parallelism: multi-core, ILP, SIMD instructions
•  Multi-level memory hierarchy
•  Result: gap between typical and peak performance is huge

•  Complex applications present challenges
•  For measurement and analysis
•  For understanding and tuning

Performance tools can play an important role as a guide

HPCToolkit DESIGN PRINCIPLES

•  Employ binary-level measurement and analysis
•  observe fully optimized, dynamically linked executions
•  support multi-lingual codes with external binary-only libraries

•  Use sampling-based measurement (avoid instrumentation)
•  controllable overhead
•  minimize systematic error and avoid blind spots
•  enable data collection for large-scale parallelism

•  Collect and correlate multiple derived performance metrics
•  diagnosis typically requires more than one species of metric

•  Associate metrics with both static and dynamic context
•  loop nests, procedures, inlined code, calling context

•  Support top-down performance analysis
•  natural approach that minimizes burden on developers

5

6

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/hpcprof-mpi]
database

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit WORKFLOW

7

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/hpcprof-mpi]
database

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit WORKFLOW

•  For dynamically-linked executables on stock Linux
•  compile and link as you usually do: nothing special needed

•  For statically-linked executables (e.g. for Blue Gene, Cray)
•  add monitoring by using hpclink as prefix to your link line

•  uses “linker wrapping” to catch “control” operations
•  process and thread creation, finalization, signals, ...

8

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/hpcprof-mpi]
database

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit WORKFLOW

•  Measure execution unobtrusively
•  launch optimized application binaries

•  dynamically-linked applications: launch with hpcrun to measure
•  statically-linked applications: measurement library added at link time

•  control with environment variable settings
•  collect statistical call path profiles of events of interest

9

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/hpcprof-mpi]
database

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit WORKFLOW

•  Analyze binary with hpcstruct: recover program structure
•  analyze machine code, line map, debugging information
•  extract loop nesting & identify inlined procedures
•  map transformed loops and procedures to source

10

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/hpcprof-mpi]
database

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit WORKFLOW

•  Combine multiple profiles
•  multiple threads; multiple processes; multiple executions

•  Correlate metrics to static & dynamic program structure

11

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/hpcprof-mpi]
database

presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit WORKFLOW

•  Presentation
•  explore performance data from multiple perspectives

•  rank order by metrics to focus on what’s important
•  compute derived metrics to help gain insight

•  e.g. scalability losses, waste, CPI, bandwidth
•  graph thread-level metrics for contexts
•  explore evolution of behavior over time

12

ANALYZING RESULTS WITH hpcviewer!

costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display

13

PRINCIPAL VIEWS

•  Calling context tree view - “top-down” (down the call chain)
•  associate metrics with each dynamic calling context
•  high-level, hierarchical view of distribution of costs
•  example: quantify initialization, solve, post-processing

•  Caller’s view - “bottom-up” (up the call chain)
•  apportion a procedure’s metrics to its dynamic calling contexts
•  understand costs of a procedure called in many places
•  example: see where PGAS put traffic is originating

•  Flat view - ignores the calling context of each sample point
•  aggregate all metrics for a procedure, from any context
•  attribute costs to loop nests and lines within a procedure
•  example: assess the overall memory hierarchy performance within a

critical procedure

14

HPCToolkit DOCUMENTATION
   http://hpctoolkit.org/documentation.html

•  Comprehensive user manual:
   http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
•  Quick start guide

•  essential overview that almost fits on one page
•  Using HPCToolkit with statically linked programs

•  a guide for using hpctoolkit on BG/P and Cray XT

•  The hpcviewer user interface
•  Effective strategies for analyzing program performance with HPCToolkit

•  analyzing scalability, waste, multicore performance ...
•  HPCToolkit and MPI
•  HPCToolkit Troubleshooting

•  why don’t I have any source code in the viewer?

•  Installation guide

15

USING HPCToolkit
•  Add hpctoolkit’s bin directory to your path

•  Download, build and usage instructions at http://hpctoolkit.org
•  Installed on ICL machines in “/iclscratch1/homes/hpctoolkit”

•  Perhaps adjust your compiler flags for your application
•  sadly, most compilers throw away the line map unless -g is on the

command line. add -g flag after any optimization flags if using
anything but the Cray compilers/ Cray compilers provide attribution to
source without -g.

•  Decide what hardware counters to monitor
•  dynamically-linked executables (e.g., Linux)

•  use hpcrun -L to learn about counters available for profiling
•  use papi_avail

•  you can sample any event listed as “profilable”

16

USING HPCToolkit
•  Profile execution:

•  hpcrun –e <event1@period1> [-e <event2@period2> …] <command>
[command-arguments]

•  Produces one .hpcrun results file per thread

•  Recover program structure
•  hpcstruct <command>
•  Produces one .hpcstruct file containing the loop structure of the binary

•  Interpret profile / correlate measurements with source code
•  hpcprof [–S <hpcstruct_file>] [-M thread] [–o <output_db_name>]

<hpcrun_files>
•  Creates performance database

•  Use hpcviewer to visualize the performance database
•  Download hpcviewer for your platform from https://

outreach.scidac.gov/frs/?group_id=22

17

HANDS-ON DEMO
•  Recall the matrix-multiply example compiled with two different

compilers from Part I of the class

•  Performance questions
•  What is causing performance to vary with matrix size?
•  What factors are limiting performance for each binary?

•  The more efficient version runs at < 50% of peak FLOPS

void compute(int reps) {!
 register int i, j, k, r;!
 for (r=0 ; r<reps ; ++r) {!
 for (i = 0; i < N; i++) {!
 for (j = 0; j < N; j++) {!
 for (k = 0; k < N; k++) {!
 C(i,j) += A(i,k) * B(k,j);!
 }!
 }!
 }!
 }!
}!

HANDS-ON DEMO: MAT-MUL PERFORMANCE

18

Why the gap?

Why the
change?

Why the
difference?

19

HANDS-ON DEMO: USING HPCToolkit
•  Recall performance inefficiencies from Part I
•  Some native performance events for AMD K10
!
CPU_CLK_UNHALTED – CPU clock cycles / CPU time!
RETIRED_INSTRUCTIONS – # instructions retired!
RETIRED_MISPREDICTED_BRANCH_INSTRUCTIONS - # mispredicted branches!
DATA_CACHE_ACCESSES – # accesses to L1!
DATA_CACHE_MISSES – L1 D-cache misses!
DATA_CACHE_REFILLS:ALL – L1 cache refills (L1 misses)!
DATA_CACHE_REFILLS_FROM_SYSTEM:ALL – L1 refills from system (L3+memory)!
!
L1_DTLB_MISS_AND_L2_DTLB_HIT:ALL – L1 DTLB misses that hit in L2 DTLB!
L1_DTLB_AND_L2_DTLB_MISS:ALL – L2 DTLB misses!
!
DATA_PREFETCHES:ATTEMPTED – prefetches initiated by the DC prefetcher!
REQUESTS_TO_L2:DATA – requests to L2 from the L1 data cache (includes
L1 misses and DC prefetches)!
REQUESTS_TO_L2:HW_PREFETCH_FROM_DC – requests to L2 from the DC
prefetcher!
L2_CACHE_MISS:DATA – L2 data cache misses!

20

HANDS-ON DEMO: USING HPCToolkit
INSTRUCTION_CACHE_FETCHES – accesses to L1 I-cache!
INSTRUCTION_CACHE_MISSES – L1 I-cache misses!
INSTRUCTION_CACHE_REFILLS_FROM_L2 – L1 I-cache refills from L2!
INSTRUCTION_CACHE_REFILLS_FROM_SYSTEM – L1 I-cache refills from system!
!
L1_ITLB_MISS_AND_L2_ITLB_HIT – L1 ITLB misses that hit in L2 ITLB!
L1_ITLB_MISS_AND_L2_ITLB_MISS:ALL – L2 ITLB misses!
!
INSTRUCTION_FETCH_STALL – CPU cycles when instruction fetch stalled!
DECODER_EMPTY – CPU cycles when decoder is idle!
DISPATCH_STALLS – CPU cycles when dispatched was stalled!
DISPATCH_STALL_FOR_REORDER_BUFFER_FULL – dispatch stalled due to full ROB!
DISPATCH_STALL_FOR_RESERVATION_STATION_FULL – dispatch stalled due to
full reservation station!
!
DISPATCH_STALL_FOR_FPU_FULL!
DISPATCH_STALL_FOR_LS_FULL – dispatch store due to LS buffer full!
!
MEMORY_CONTROLLER_REQUESTS:READ_REQUESTS – read memory requests!
MEMORY_CONTROLLER_REQUESTS:WRITE_REQUESTS – write memory requests!
MEMORY_CONTROLLER_REQUESTS:PREFETCH_REQUESTS – memory prefetch requests!
L3_CACHE_MISSES:ANY_READ – data reads that miss in L3!
!

PERFORMANCE ANALYSIS CHALLENGES

•  Current tools measure performance effects
•  How much time is spent and how many cache misses are in a loop / routine

•  Pinpoint hotspots

•  Do not tell you if what you see is good or bad

•  User must determine what factors are limiting performance

21

MIAMI OVERVIEW

•  Performance modeling tool
•  MIAMI: Machine Independent Application Models for performance Insight

•  Automatically extract application features
•  Works on fully-optimized binaries

•  No performance effects are measured directly

•  Separately model target architecture
•  Done manually once per machine

•  Compute application performance from first order principles

22

WHAT IT SOLVES

•  Identifies performance limiting factors

•  Enables “what if” analysis

•  Reveals performance improvement potential
•  Useful for prioritizing work and for understanding if “fixing” is worth the

effort

23

MIAMI DIAGRAM

24

x86 object code

CFGs,
edge counts

PIN MIAMI code IR instr /
µop / registers

XED Machine model
(MDL)

Loop nesting structure
Dependence graph at loop level

Dependence graph customized for machine
instruction latencies, idiom replacement

Memory reuse
distance analysis

PIN

Cache miss predictions
data reuse insight

Performance predictions, performance limiters,
potential for performance improvement

map metrics to source code and data structures

Binutils
SymtabAPI

CSV files / XML performance database hpcviewer

Streaming
concurrency sim.

PIN

Prefetching
effectiveness

MIAMI DIAGRAM

25

x86 object code

CFGs,
edge counts

PIN MIAMI code IR instr /
µop / registers

XED Machine model
(MDL)

Loop nesting structure
Dependence graph at loop level

Dependence graph customized for machine
instruction latencies, idiom replacement

Memory reuse
distance analysis

PIN

Cache miss predictions
data reuse insight

Performance predictions, performance limiters,
potential for performance improvement

map metrics to source code and data structures

Binutils
SymtabAPI

CSV files / XML performance database hpcviewer

Streaming
concurrency sim.

PIN

Prefetching
effectiveness

Diagnose utilization of CPU
cores

•  Model CPU back-end

•  Identify instruction
schedule inefficiencies

•  Understand potential for
improvement

Diagnose cache reuse

•  Understand data reuse
at each memory level

•  Identify memory access
patterns with poor locality

•  Understand what code
and data layout
transformations are
needed

Diagnose stream
prefetching perf.

•  Understand data
streaming behavior and
number of concurrent
streams

•  Identify memory access
patterns unfriendly to the
hardware prefetchers

MACHINE DESCRIPTION LANGUAGE (MDL)

•  Enumerate back-end CPU resources
•  Baseline performance limited by the back-end

•  Describe instruction execution templates & resource
usage

•  Scheduling constraints between resources
•  Idiom replacement

•  Account for differences in ISAs, micro-architecture features /
optimizations

• Memory hierarchy characteristics
•  Other machine features

26

Construct a model of the target architecture

UNDERSTAND CPU CORES UTILIZATION

•  Recover application CFG and understand execution frequency of
paths in CFG

•  Decode native x86 instructions to MIAMI IR
•  Map application micro-ops to target machine resources

•  Identify the factors limiting schedule length
•  Application: insufficient ILP, instruction mix, SIMD
•  Architecture: resource contention, retirement rate

•  Idealize the limiting constraints to understand the maximum potential for
improvement

27

28

MATRIX MULTIPLY
HANDS-ON DEMO

INSIGHT FROM MIAMI
•  Understand losses due to insufficient ILP
•  Utilization of various machine resources
•  Instruction mix

•  Understand if vector instructions are used

•  Contention on machine resources
•  Few options from an application perspective, must change

instruction mix
•  Contention on load/store unit -> improve register reuse

29

SUMMARY
•  Performance tools help us understand application performance
•  HPCToolkit: low overhead, full-code profiler

•  Uses hardware counter sampling through PAPI
•  Maps performance data to functions, loops, calling contexts
•  Intuitive viewer

•  Enables top-down analysis
•  Custom derived metrics enable quick performance analysis at loop

level
•  MIAMI: performance diagnosis based on performance modeling

•  Uses profiling and static analysis of full application binaries
•  Models CPU back-end to understand the main performance inefficiencies
•  Data reuse and data streaming analysis reveal opportunities for

optimization
•  It is a research tool, not publicly available yet

30

