CS 594: SCIENTIFIC
COMPUTING
FOR ENGINEERS

PERFORMANCE ANALYSIS TOOLS: PART III

Gabriel Marin
gmarin@eecs.utk.edu

Includes slides from John Mellor-Crummey

icLor

INNOVATIVE

COI\/IPUTING LABORATORY
ue UNIVERSITY of TENNESSEE

P NSNS S -————
OUTLINE

= Partlli
- HPCToolkit: Low overhead, full code profiling using hardware
counters sampling

- MIAMI: Performance diagnosis based on machine-independent
application modeling

CHALLENGES FOR COMPUTATIONAL SCIENTISTS

« Execution environments and applications are rapidly evolving
« Architecture

 rapidly changing multicore microprocessor designs, increasing scale of
parallel systems, growing use of accelerators

« Applications

« adding additional scientific capabilities to existing applications, MPI
everywhere to threaded implementations

« Steep increase in application development effort to attain
performance, evolvability, and portability

« Application developers need to
« Assess weaknesses in algorithms and their implementations
« overhaul algorithms & data structures as needed
« Adapt to changes in emerging architectures
* Improve scalability of executions within and across nodes

« Complex architectures are hard to use efficiently
« Multi-level parallelism: multi-core, ILP, SIMD instructions
« Multi-level memory hierarchy
« Result: gap between typical and peak performance is huge

« Complex applications present challenges
 For measurement and analysis
« For understanding and tuning

(Performance tools can play an important role as a guide J

HPCToolkit DESIGN PRINCIPLES

« Employ binary-level measurement and analysis
« observe fully optimized, dynamically linked executions
« support multi-lingual codes with external binary-only libraries

« Use sampling-based measurement (avoid instrumentation)
« controllable overhead
* minimize systematic error and avoid blind spots
« enable data collection for large-scale parallelism

» Collect and correlate multiple derived performance metrics
« diagnosis typically requires more than one species of metric

« Associate metrics with both static and dynamic context
* loop nests, procedures, inlined code, calling context

« Support top-down performance analysis
« natural approach that minimizes burden on developers

HPCToolkit WORKFLOW

call stack
profile

compile & link

app.
source

app.
source

HPCToolkit WORKFLOW

|compi|e_& link |

« For dynamically-linked executables on stock Linux
compile and link as you usually do: nothing special needed

call stack

profile

» For statically-linked executables (e.g. for Blue Gene, Cray)
add monitoring by using hpclink as prefix to your link line

. uses “linker wrapping” to catch “control” operations
« process and thread creation, finalizatiOjesss

—GED—
or

app.
source

HPCToolkit WORKFLOW

compile & link

profile
execution

[hpcrun]

« Measure execution unobtrusively
launch optimized application binaries
« dynamically-linked applications: launch with hpecrun to measure

call stack

profile

program
structure

collect statistical call path profiles of events of interest

presentation

[hpcviewer/

hpctraceviewer]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

HPCToolkit WORKFLOW

profile
execution

call stack
profile

compile & link
app.
source

« Analyze binary with hpestruct: recover program structure
« analyze machine code, line map, debugging information
« extract loop nesting & identify inlined procedures
« map transformed loops and procedures to source

interpret profile
database correlate w/ source
) [hpcprof/hpcprof-mpi]

[hpcrun]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

—'

app.
source

HPCToolkit WORKFLOW

compile & link

« Combine multiple profiles

call stack

profile

program
structure

multiple threads; multiple processes; multiple executions

database

« Correlate metrics to static & dynamic program structure

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

app.
source

 Presentation

HPCToolkit WORKFLOW

profile
execution

call stack
profile

compile & link

[hpcrun]

program
structure

explore performance data from multiple perspectives
- rank order by metrics to focus on what' s important
« compute derived metrics to help gain insight

 e.g. scalability losses, waste, CPI, bandwidth
graph thread-level metrics for contexts
explore evolution of behavior over time

[hpcviewer/

presentation interpret profile
database correlate w/ source
) [hpcprof/hpcprof-mpi]

hpctraceviewer]

 ———————EEE——
ANALYZING RESULTS WITH hpcv:l.ewer

‘i mbperf_iMesh.cpp &3 'ﬁTypeSequenceManager hpp &2 ‘i stl_tree.h = 8

22 * Define less-than comparison for EntitySequence [
23 * of the entity handles in the pointed-to Entity COStS for

20 %/
26 pablice boot g inlined procedures
' |00p§ ence* b) const

26 public: bool ntitySequence*
27 { return a--start_handle();
function caIIs in full context

28 1i
[& &6 W]

Scope | PAPI_L1_DCM (¥ PAPI_TOT CYC()
¥ main ‘8.63e+08 100 a‘ 1.13e+11 100 §
¥ [B testB(void*, int, double const*, int const*) g€.35e+08 96.7% 1.10e+l1ll 97.6%
¥|inlined from mbperf_iMesh.cpp: 261 ‘ 6.8le+08 7 . .5%
¥| loop at mbperf_iMesh.cpp: 280-313 | _ 3.43e+08 .9%
¥ [imesh_getvtxarrcoords_ ‘3.20e+08 - .10e .3%
¥ [MBCore:get_coords(unsigned long const*, int, double*) c¢ 3.20e+08 37.1% 2.16e+10 19.1%
¥ |loop at MBCore.cpp: 681-693| ‘3.20e+08 37.1% | 2.16e+10 19.1%
v 2.04e+08 23.7% 9.38e+09 8.33
v 2.04e+08 23.6% 9.37e+09 8.3%
¥ [inlined from TypeSequenceManager.hpp: 27 JL- 78e+08 20.6% 8.56e+09 7-6%\;
TypeSequenceManager.hpp: 27 1.78e+08 20.6% 8.56e+09 7.6%
—— KIS

- Calling context tree view - “top-down” (down the call chain)

associate metrics with each dynamic calling context
high-level, hierarchical view of distribution of costs
example: quantify initialization, solve, post-processing

- Caller’ s view - “bottom-up” (up the call chain)

apportion a procedure’ s metrics to its dynamic calling contexts
understand costs of a procedure called in many places
example: see where PGAS put traffic is originating

* Flat view - ignores the calling context of each sample point

aggregate all metrics for a procedure, from any context
attribute costs to loop nests and lines within a procedure

example: assess the overall memory hierarchy performance within a
critical procedure

 E————————,—,
HPCToolkit DOCUMENTATION

http://hpctoolkit.org/documentation.html

« Comprehensive user manual:
http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf

* Quick start guide
« essential overview that almost fits on one page

« Using HPCToolkit with statically linked programs
» a guide for using hpctoolkit on BG/P and Cray XT

« The hpcviewer user interface

« Effective strategies for analyzing program performance with HPCToolkit
« analyzing scalability, waste, multicore performance ...
 HPCToolkit and MPI

« HPCToolkit Troubleshooting
- why don’ t | have any source code in the viewer?

 Installation guide

14 m@w

- Add hpctoolkit’ s bin directory to your path
- Download, build and usage instructions at http://hpctoolkit.org
« Installed on ICL machines in “/iclscratchl/homes/hpctoolkit”

« Perhaps adjust your compiler flags for your application

sadly, most compilers throw away the line map unless -g is on the
command line. add -g flag after any optimization flags if using
anything but the Cray compilers/ Cray compilers provide attribution to
source without -g.

« Decide what hardware counters to monitor

- dynamically-linked executables (e.g., Linux)
« use hpcrun -L to learn about counters available for profiling
« use papi_avalil
- you can sample any event listed as “profilable”

Profile execution:

- hpcrun —e <event1@period1> [-e <event2@period2> ...] <command>
[command-arguments]

 Produces one .hpcrun results file per thread

Recover program structure
« hpcstruct <command>
« Produces one .hpcstruct file containing the loop structure of the binary

Interpret profile / correlate measurements with source code

« hpcprof [-S <hpcstruct_file>] [-M thread] [-o0 <output _db_name>]
<hpcrun_files>

- Creates performance database
Use hpcviewer to visualize the performance database

« Download hpcviewer for your platform from hitps://
outreach.scidac.gov/frs/?group _id=22

HANDS-ON DEMO

« Recall the matrix-multiply example compiled with two different
compilers from Part | of the class

void compute(int reps) {
register int i, j, k, r;
for (r=0 ; r<reps ; ++r) {
for (i = 0; i < N; i++) {
for (j = 0; J < N; Jj++) {
for (k = 0; k < N; k++) {
C(i,J) += A(i,k) * B(k,J):
}
}
}
}

}
« Performance questions

« What is causing performance to vary with matrix size?
- What factors are limiting performance for each binary?
« The more efficient version runs at < 50% of peak FLOPS

HANDS-ON DEMO: MAT-MUL PERFORMANCE

64

===Arch2_compl

R aEel 3
32 —=*Arch2_com
==Peak FLOPS

N

[EE
(e)]

4
/ Why the
E g —/ difference?
= m.x_)@gﬂ S Siiam
< 4
8 N\
Er N

f
=
|
\

[EE

’_LWhy the gap?

0.5

0.25
8 24 40 56 72 88 120 152 184 216 280 344 408 504 632 760 888 1016 1272 1528 1784 2040

Matrix Size

HANDS-ON DEMO: USING HPCToolkit

- Recall performance inefficiencies from Part |
« Some native performance events for AMD K10

CPU_CLK UNHALTED — CPU clock cycles / CPU time

RETIRED INSTRUCTIONS — # instructions retired

RETIRED MISPREDICTED BRANCH INSTRUCTIONS - # mispredicted branches
DATA CACHE ACCESSES — # accesses to Ll

DATA CACHE MISSES — L1 D-cache misses

DATA CACHE REFILLS:ALL — L1 cache refills (L1 misses)

DATA CACHE REFILLS FROM SYSTEM:ALL — L1 refills from system (L3+memory)

L1 DTLB MISS AND L2 DTLB HIT:ALL — L1 DTLB misses that hit in L2 DTLB
L1 DTLB AND L2 DTLB MISS:ALL — L2 DTLB misses

DATA PREFETCHES:ATTEMPTED — prefetches initiated by the DC prefetcher
REQUESTS TO L2:DATA — redquests to L2 from the L1 data cache (includes
L1l misses and DC prefetches)

REQUESTS TO L2:HW PREFETCH FROM DC — requests to L2 from the DC
prefetcher

L2 CACHE MISS:DATA — L2 data cache misses

HANDS-ON DEMO: USING HPCToolkit

INSTRUCTION CACHE FETCHES — accesses to L1 I-cache
INSTRUCTION CACHE MISSES — L1 I-cache misses
INSTRUCTION CACHE REFILLS FROM L2 — L1 I-cache refills from L2
INSTRUCTION CACHE REFILLS FROM SYSTEM — L1 I-cache refills from system

L1 ITLB MISS AND L2 ITLB HIT — L1 ITLB misses that hit in L2 ITLB
L1l ITLB MISS AND L2 ITLB MISS:ALL — L2 ITLB misses

INSTRUCTION FETCH STALL — CPU cycles when instruction fetch stalled
DECODER_EMPTY — CPU cycles when decoder is idle

DISPATCH STALLS — CPU cycles when dispatched was stalled

DISPATCH STALL FOR REORDER BUFFER FULL — dispatch stalled due to full ROB
DISPATCH STALL FOR RESERVATION STATION FULL — dispatch stalled due to
full reservation station

DISPATCH STALL FOR FPU FULL
DISPATCH STALL FOR LS FULL — dispatch store due to LS buffer full

MEMORY CONTROLLER REQUESTS:READ REQUESTS — read memory requests

MEMORY CONTROLLER REQUESTS:WRITE REQUESTS — write memory requests
MEMORY CONTROLLER REQUESTS:PREFETCH REQUESTS — memory prefetch requests
L3 CACHE MISSES:ANY READ — data reads that miss in L3

P NSNS S -————
PERFORMANCE ANALYSIS CHALLENGES

« Current tools measure performance effects
« How much time is spent and how many cache misses are in a loop / routine

* Pinpoint hotspots
« Do not tell you if what you see is good or bad

« User must determine what factors are limiting performance

MIAMI OVERVIEW

« Performance modeling tool

« MIAMI: Machine Independent Application Models for performance Insight

« Automatically extract application features
« Works on fully-optimized binaries

* No performance effects are measured directly

« Separately model target architecture

« Done manually once per machine

« Compute application performance from first order principles

22

P NSNS S -————
WHAT IT SOLVES

» |dentifies performance limiting factors
 Enables “what if” analysis

* Reveals performance improvement potential

 Useful for prioritizing work and for understanding if “fixing” is worth the
effort

MIAMI DIAGRAM

CSV files / XML performance database EWl

Binutils
SymtabAPI

MIAMI DIAGRAM

T

iagnose utilization of CPU }s Diagnose cache reuse
cores B
| Understand data reuse
* Model CPU back-end .+ ateach memory level
« ldentify instruction O . |dentify memory access
schedule inefficiencies 4 patterns with poor locality
* Understand potential for — < Understand what code
improvement fj and data layout
® transformations are
| needed
\= 8
\ 4 L 4 4 \ 4
CFGs, LPIN|MIAMI code IR inXED| | Machine model
edge counts | |uop / registers (MDL)

!

!

\J
S

= 1 P = e

=

Diagnose stream
prefetching perf.

* Understand data
streaming behavior and
number of concurrent
streams

* ldentify memory access
patterns unfriendly to the
hardware prefetchers

x86 object code

25

MACHINE DESCRIPTION LANGUAGE (MDL)

Construct a model of the target architecture

 Enumerate back-end CPU resources
« Baseline performance limited by the back-end

« Describe instruction execution templates & resource
usage

» Scheduling constraints between resources

 |diom replacement

« Account for differences in ISAs, micro-architecture features /
optimizations

 Memory hierarchy characteristics
« Other machine features

26

P NSNS S -————
UNDERSTAND CPU CORES UTILIZATION

« Recover application CFG and understand execution frequency of
paths in CFG

 Decode native x86 instructions to MIAMI IR

« Map application micro-ops to target machine resources
« |dentify the factors limiting schedule length
» Application: insufficient ILP, instruction mix, SIMD
 Architecture: resource contention, retirement rate

« |dealize the limiting constraints to understand the maximum potential for
improvement

MATRIX MULTIPLY
HANDS-ON DEMO

INSIGHT FROM MIAMI

« Understand losses due to insufficient ILP
« Utilization of various machine resources
e Instruction mix

« Understand if vector instructions are used

« Contention on machine resources

* Few options from an application perspective, must change
Instruction mix

« Contention on load/store unit -> improve register reuse

29

« Performance tools help us understand application performance
- HPCToolkit: low overhead, full-code profiler
« Uses hardware counter sampling through PAPI
- Maps performance data to functions, loops, calling contexts
« Intuitive viewer
« Enables top-down analysis

« Custom derived metrics enable quick performance analysis at loop
level

« MIAMI: performance diagnosis based on performance modeling
« Uses profiling and static analysis of full application binaries
- Models CPU back-end to understand the main performance inefficiencies

- Data reuse and data streaming analysis reveal opportunities for
optimization

« |t is a research tool, not publicly available yet

