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OUTLINE 

§  Part III 
•  HPCToolkit: Low overhead, full code profiling using hardware 

counters sampling 
•  MIAMI: Performance diagnosis based on machine-independent 

application modeling 

2 



3 

CHALLENGES FOR COMPUTATIONAL SCIENTISTS 

•  Execution environments and applications are rapidly evolving  
•  Architecture 

•  rapidly changing multicore microprocessor designs, increasing scale of 
parallel systems, growing use of accelerators 

•  Applications 
•  adding additional scientific capabilities to existing applications, MPI 

everywhere to threaded implementations 

•  Steep increase in application development effort to attain 
performance, evolvability, and portability 

•  Application developers need to  
•  Assess weaknesses in algorithms and their implementations 

•  overhaul algorithms & data structures as needed 
•  Adapt to changes in emerging architectures 
•  Improve scalability of executions within and across nodes 
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PERFORMANCE ANALYSIS CHALLENGES 

•  Complex architectures are hard to use efficiently 
•  Multi-level parallelism: multi-core, ILP, SIMD instructions 
•  Multi-level memory hierarchy 
•  Result: gap between typical and peak performance is huge 

•  Complex applications present challenges  
•  For measurement and analysis  
•  For understanding and tuning 

Performance tools can play an important role as a guide 



HPCToolkit DESIGN PRINCIPLES 

•  Employ binary-level measurement and analysis 
•  observe fully optimized, dynamically linked executions  
•  support multi-lingual codes with external binary-only libraries 

•  Use sampling-based measurement (avoid instrumentation) 
•  controllable overhead 
•  minimize systematic error and avoid blind spots 
•  enable data collection for large-scale parallelism 

•  Collect and correlate multiple derived performance metrics 
•  diagnosis typically requires more than one species of metric 

•  Associate metrics with both static and dynamic context 
•  loop nests, procedures, inlined code, calling context 

•  Support top-down performance analysis 
•  natural approach that minimizes burden on developers 
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•  For dynamically-linked executables on stock Linux 
•  compile and link as you usually do: nothing special needed 

•  For statically-linked executables (e.g. for Blue Gene, Cray) 
•  add monitoring by using hpclink as prefix to your link line 

•  uses “linker wrapping” to catch “control” operations 
•  process and thread creation, finalization, signals, ... 
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HPCToolkit WORKFLOW 

•  Measure execution unobtrusively 
•  launch optimized application binaries 

•  dynamically-linked applications: launch with hpcrun to measure 
•  statically-linked applications: measurement library added at link time 

•  control with environment variable settings 
•  collect statistical call path profiles of events of interest 
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HPCToolkit WORKFLOW 

•  Analyze binary with hpcstruct: recover program structure 
•  analyze machine code, line map, debugging information 
•  extract loop nesting & identify inlined procedures 
•  map transformed loops and procedures to source 
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HPCToolkit WORKFLOW 

•  Combine multiple profiles 
•  multiple threads; multiple processes; multiple executions 

•  Correlate metrics to static & dynamic program structure 
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HPCToolkit WORKFLOW 

•  Presentation 
•  explore performance data from multiple perspectives 

•  rank order by metrics to focus on what’s important 
•  compute derived metrics to help gain insight 

•  e.g. scalability losses, waste, CPI, bandwidth 
•  graph thread-level metrics for contexts 
•  explore evolution of behavior over time 



12 

ANALYZING RESULTS WITH hpcviewer!

costs for 
• inlined procedures 
• loops 
• function calls in full context 

source pane 

navigation pane metric pane 

view control 
metric display 
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PRINCIPAL VIEWS 

•  Calling context tree view - “top-down” (down the call chain) 
•  associate metrics with each dynamic calling context 
•  high-level, hierarchical view of distribution of costs 
•  example: quantify initialization, solve, post-processing 

•  Caller’s view - “bottom-up” (up the call chain) 
•  apportion a procedure’s metrics to its dynamic calling contexts 
•  understand costs of a procedure called in many places 
•  example: see where PGAS put traffic is originating 

•  Flat view - ignores the calling context of each sample point 
•  aggregate all metrics for a procedure, from any context 
•  attribute costs to loop nests and lines within a procedure 
•  example: assess the overall memory hierarchy performance within a 

critical procedure 
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HPCToolkit DOCUMENTATION 
    http://hpctoolkit.org/documentation.html 

•  Comprehensive user manual: 
   http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf 
•  Quick start guide  

•  essential overview that almost fits on one page 
•  Using HPCToolkit with statically linked programs  

•  a guide for using hpctoolkit on BG/P and Cray XT  

•  The hpcviewer user interface 
•  Effective strategies for analyzing program performance with HPCToolkit  

•  analyzing scalability, waste, multicore performance ... 
•  HPCToolkit and MPI  
•  HPCToolkit Troubleshooting 

•  why don’t I have any source code in the viewer? 

•  Installation guide 
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USING HPCToolkit 
•  Add hpctoolkit’s bin directory to your path  

•  Download, build and usage instructions at http://hpctoolkit.org 
•  Installed on ICL machines in “/iclscratch1/homes/hpctoolkit” 

•  Perhaps adjust your compiler flags for your application 
•  sadly, most compilers throw away the line map unless -g is on the 

command line. add -g flag after any optimization flags if using 
anything but the Cray compilers/ Cray compilers provide attribution to 
source without -g. 

•  Decide what hardware counters to monitor  
•  dynamically-linked executables (e.g., Linux) 

•  use hpcrun -L to learn about counters available for profiling 
•  use papi_avail 

•  you can sample any event listed as “profilable” 
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USING HPCToolkit 
•  Profile execution: 

•  hpcrun –e <event1@period1> [-e <event2@period2> …] <command> 
[command-arguments] 

•  Produces one .hpcrun results file per thread 

•  Recover program structure 
•  hpcstruct <command> 
•  Produces one .hpcstruct file containing the loop structure of the binary 

•  Interpret profile / correlate measurements with source code 
•  hpcprof [–S <hpcstruct_file>] [-M thread] [–o <output_db_name>] 

<hpcrun_files> 
•  Creates performance database 

•  Use hpcviewer to visualize the performance database 
•  Download hpcviewer for your platform from https://

outreach.scidac.gov/frs/?group_id=22 
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HANDS-ON DEMO 
•  Recall the matrix-multiply example compiled with two different 

compilers from Part I of the class 

•  Performance questions 
•  What is causing performance to vary with matrix size? 
•  What factors are limiting performance for each binary? 

•  The more efficient version runs at < 50% of peak FLOPS 

void compute(int reps) {!
  register int i, j, k, r;!
  for (r=0 ; r<reps ; ++r) {!
    for (i = 0; i < N; i++) {!
      for (j = 0; j < N; j++) {!
        for (k = 0; k < N; k++) {!
           C(i,j) += A(i,k) * B(k,j);!
        }!
      }!
    }!
  }!
}!



HANDS-ON DEMO: MAT-MUL PERFORMANCE 
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Why the gap? 

Why the 
change? 

Why the 
difference? 
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HANDS-ON DEMO: USING HPCToolkit 
•  Recall performance inefficiencies from Part I 
•  Some native performance events for AMD K10 
!
CPU_CLK_UNHALTED – CPU clock cycles / CPU time!
RETIRED_INSTRUCTIONS – # instructions retired!
RETIRED_MISPREDICTED_BRANCH_INSTRUCTIONS - # mispredicted branches!
DATA_CACHE_ACCESSES – # accesses to L1!
DATA_CACHE_MISSES – L1 D-cache misses!
DATA_CACHE_REFILLS:ALL – L1 cache refills (L1 misses)!
DATA_CACHE_REFILLS_FROM_SYSTEM:ALL – L1 refills from system (L3+memory)!
!
L1_DTLB_MISS_AND_L2_DTLB_HIT:ALL – L1 DTLB misses that hit in L2 DTLB!
L1_DTLB_AND_L2_DTLB_MISS:ALL – L2 DTLB misses!
!
DATA_PREFETCHES:ATTEMPTED – prefetches initiated by the DC prefetcher!
REQUESTS_TO_L2:DATA – requests to L2 from the L1 data cache (includes 
L1 misses and DC prefetches)!
REQUESTS_TO_L2:HW_PREFETCH_FROM_DC – requests to L2 from the DC 
prefetcher!
L2_CACHE_MISS:DATA – L2 data cache misses!
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HANDS-ON DEMO: USING HPCToolkit 
INSTRUCTION_CACHE_FETCHES – accesses to L1 I-cache!
INSTRUCTION_CACHE_MISSES – L1 I-cache misses!
INSTRUCTION_CACHE_REFILLS_FROM_L2 – L1 I-cache refills from L2!
INSTRUCTION_CACHE_REFILLS_FROM_SYSTEM – L1 I-cache refills from system!
!
L1_ITLB_MISS_AND_L2_ITLB_HIT – L1 ITLB misses that hit in L2 ITLB!
L1_ITLB_MISS_AND_L2_ITLB_MISS:ALL – L2 ITLB misses!
!
INSTRUCTION_FETCH_STALL – CPU cycles when instruction fetch stalled!
DECODER_EMPTY – CPU cycles when decoder is idle!
DISPATCH_STALLS – CPU cycles when dispatched was stalled!
DISPATCH_STALL_FOR_REORDER_BUFFER_FULL – dispatch stalled due to full ROB!
DISPATCH_STALL_FOR_RESERVATION_STATION_FULL – dispatch stalled due to 
full reservation station!
!
DISPATCH_STALL_FOR_FPU_FULL!
DISPATCH_STALL_FOR_LS_FULL – dispatch store due to LS buffer full!
!
MEMORY_CONTROLLER_REQUESTS:READ_REQUESTS – read memory requests!
MEMORY_CONTROLLER_REQUESTS:WRITE_REQUESTS – write memory requests!
MEMORY_CONTROLLER_REQUESTS:PREFETCH_REQUESTS – memory prefetch requests!
L3_CACHE_MISSES:ANY_READ – data reads that miss in L3!
!



PERFORMANCE ANALYSIS CHALLENGES 

•  Current tools measure performance effects 
•  How much time is spent and how many cache misses are in a loop / routine 

•  Pinpoint hotspots 

•  Do not tell you if what you see is good or bad 

•  User must determine what factors are limiting performance 
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MIAMI OVERVIEW 

•  Performance modeling tool 
•  MIAMI: Machine Independent Application Models for performance Insight 

•  Automatically extract application features 
•  Works on fully-optimized binaries 

•  No performance effects are measured directly 

•  Separately model target architecture 
•  Done manually once per machine 

•  Compute application performance from first order principles 
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WHAT IT SOLVES 

•  Identifies performance limiting factors 

•  Enables “what if” analysis 

•  Reveals performance improvement potential 
•  Useful for prioritizing work and for understanding if “fixing” is worth the 

effort 
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MIAMI DIAGRAM 
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Diagnose utilization of CPU 
cores 

•  Model CPU back-end 

•  Identify instruction 
schedule inefficiencies 

•  Understand potential for 
improvement 

Diagnose cache reuse 

•  Understand data reuse 
at each memory level 

•  Identify memory access 
patterns with poor locality 

•  Understand what code 
and data layout 
transformations are 
needed 

Diagnose stream 
prefetching perf. 

•  Understand data 
streaming behavior and 
number of concurrent 
streams 

•  Identify memory access 
patterns unfriendly to the 
hardware prefetchers 



MACHINE DESCRIPTION LANGUAGE (MDL) 

•  Enumerate back-end CPU resources 
•  Baseline performance limited by the back-end 

•  Describe instruction execution templates & resource 
usage 

•  Scheduling constraints between resources 
•  Idiom replacement 

•  Account for differences in ISAs, micro-architecture features / 
optimizations 

• Memory hierarchy characteristics 
•  Other machine features 
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Construct a model of the target architecture 



UNDERSTAND CPU CORES UTILIZATION 

•  Recover application CFG and understand execution frequency of 
paths in CFG 

•  Decode native x86 instructions to MIAMI IR 
•  Map application micro-ops to target machine resources 

•  Identify the factors limiting schedule length 
•  Application: insufficient ILP, instruction mix, SIMD 
•  Architecture: resource contention, retirement rate 

•  Idealize the limiting constraints to understand the maximum potential for 
improvement 
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MATRIX MULTIPLY  
HANDS-ON DEMO 



INSIGHT FROM MIAMI 
•  Understand losses due to insufficient ILP 
•  Utilization of various machine resources 
•  Instruction mix 

•  Understand if vector instructions are used 

•  Contention on machine resources 
•  Few options from an application perspective, must change 

instruction mix 
•  Contention on load/store unit -> improve register reuse 
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SUMMARY 
•  Performance tools help us understand application performance 
•  HPCToolkit: low overhead, full-code profiler 

•  Uses hardware counter sampling through PAPI 
•  Maps performance data to functions, loops, calling contexts 
•  Intuitive viewer 

•  Enables top-down analysis 
•  Custom derived metrics enable quick performance analysis at loop 

level 
•  MIAMI: performance diagnosis based on performance modeling 

•  Uses profiling and static analysis of full application binaries 
•  Models CPU back-end to understand the main performance inefficiencies 
•  Data reuse and data streaming analysis reveal opportunities for 

optimization 
•  It is a research tool, not publicly available yet 
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