
©	 Jakob	 E.	 Bardram	

QUALITY	 ASSURANCE	 &	 TESTING	

Analysis,	 Design,	 &	 So:ware	 	
Architecture	 (BDSA)	
Jakob	 E.	 Bardram	
	

©	 Jakob	 E.	 Bardram	

•  Literature	
–  [OOSE]	 ch.	 11	
–  [SE9]	 ch.	 8	 (+24)	

•  IntroducMon	 to	 So:ware	 TesMng	
•  TesMng	 Terminology	
•  TesMng	 AcMviMes	

–  Unit	 /	 Component	 TesMng	
–  IntegraMon	 TesMng	
–  System	 TesMng	
–  Client	 /	 Acceptance	 TesMng	

•  Managing	 TesMng	
–  Test	 Cases	
–  Test	 Teams	
–  Test	 Driven	 Development	
–  DocumenMng	 TesMng	

This	 Lecture	

©	 Jakob	 E.	 Bardram	

Program	 TesMng	

•  TesMng	 is	 	
–  intended	 to	 show	 that	 a	 program	 does	 what	 it	 is	 intended	 to	 do	 and	 to	 discover	

program	 defects	 before	 it	 is	 put	 into	 use.	 	
–  the	 process	 of	 finding	 difference	 between	 the	 expected	 behavior	 specified	 by	

system	 models	 and	 the	 observed	 behavior	 of	 the	 implemented	 system	
–  the	 aZempt	 to	 show	 that	 the	 implementaMon	 of	 the	 system	 is	 inconsistent	 with	

the	 system	 models	
•  The	 goal	 of	 tesMng	 is	 to	

–  design	 tests	 that	 exercise	 defects	 in	 the	 system	 	
–  to	 reveal	 problems	

•  TesMng	 is	 in	 contrast	 to	 all	 other	 system	 acMviMes	
–  tesMng	 is	 aimed	 at	 breaking	 the	 system	

•  HENCE	 :	 tesMng	 can	 reveal	 the	 presence	 of	 errors	 –	 NOT	 their	 absence!	
•  TesMng	 is	 part	 of	 a	 more	 general	 verificaMon	 and	 validaMon	 process,	 which	

also	 includes	 staMc	 validaMon	 techniques.	

3	

©	 Jakob	 E.	 Bardram	

•  F-16 : crossing equator using autopilot
–  Result: plane flipped over
–  Reason?

•  Reuse of autopilot
software from a rocket

•  NASA Mars Climate Orbiter destroyed due to incorrect
orbit insertion (September 23, 1999)"
–  Reason: Unit conversion problem"

•  The Therac-25 accidents (1985-1987), quite possibly the
most serious non-military computer-related failure ever in
terms of human life (at least five died)"
–  Reason: Bad event handling in the GUI,"

Famous	 Problems	

©	 Jakob	 E.	 Bardram	

•  The Therac-25 was a medical
linear accelerator

•  Linear accelerators create energy
beams to destroy tumors

The	 Therac-‐25	

•  For shallow tissue penetration, electron beams are used
•  To reach deeper tissue, the beam is converted into x-rays
•  The Therac-25 had two main types of operation, a low

energy mode and a high energy mode:
–  In low energy mode, an electronic beam of low radiation (200 rads)

is generated
–  In high energy mode the machine generates 25000 rads with 25

million electron volts
•  Therac-25 was developed by two companies, AECL from

Canada and CGR from France
–  Newest version(reusing code from Therac-6 and Therac-20).

©	 Jakob	 E.	 Bardram	

•  In 1986, a patient went into the clinic to receive his usual
low radiation treatment for his shoulder

•  The technician typed „X“ (x-ray beam), realizing the error,
quickly changed „X" into „E" (electron beam), and hit
"enter“:
–  X <Delete char> E <enter>!
–  This input sequence in a short time frame (about 8 sec) was never

tested
•  Therac-25 signaled "beam ready“ and it also showed the

technician that it was in low energy mode
•  The technician typed „B" to deliver the beam to the patient

–  The beam that actually came from the machine was a blast of 25
000 rads with 25 million electron volts, more than 125 times the
regular dose

–  The machine responded with error message “Malfunction 54”,
which was not explained in the user manual. Machine showed
under dosage.

–  Operator hit “P” to continue for more treatment. Again, the same
error message

•  The patient felt sharp pains in his back, much different from
his usual treatment. He died 3 months later.

A	 Therac-‐25	 Accident	

©	 Jakob	 E.	 Bardram	

•  Failure to properly reuse the old software from
Therac-6 and Therac-20 when using it for new
machine

•  Cryptic warning messages
•  End users did not understand the recurring

problem (5 patients died)
•  Lack of communication between hospital and

manufacturer
•  The manufacturer did not believe that the

machine could fail
•  No proper hardware to catch safety glitches.

Reasons	 for	 the	 Therac-‐25	 Failure	

©	 Jakob	 E.	 Bardram	

TesMng	 Terminology	

©	 Jakob	 E.	 Bardram	

•  Failure: Any deviation of the observed behavior
from the specified behavior

•  Erroneous state (error): The system is in a state
such that further processing by the system can
lead to a failure

•  Fault: The mechanical or algorithmic cause of an
error (“bug”)

•  Validation: Activity of checking for deviations
between the observed behavior of a system and
its specification.

Terminology

What is this?

A failure?

An error?

A fault?

We need to describe specified
behavior first!

Specification: “A track shall
support a moving train”

Erroneous State (“Error”)

Fault

Another possible fault: Communication problems between teams	

Or: Wrong usage of compass	

Possible algorithmic fault: Compass shows wrong reading	

Mechanical Fault

©	 Jakob	 E.	 Bardram	

•  Where is the failure?
•  Where is the error?
•  What is the fault?

–  Bad use of implementation
inheritance

–  A Plane is not a rocket.

F-‐16	 Bug	

Rocket	

Plane	

Examples of Faults and Errors
•  Faults in the Interface

specification
–  Mismatch between

what the client needs
and what the server
offers

–  Mismatch between
requirements and
implementation

•  Algorithmic Faults
–  Missing initialization
–  Incorrect branching

condition
–  Missing test for null

•  Mechanical Faults
(very hard to find)
–  Operating temperature

outside of equipment
specification

•  Errors
–  Wrong user input
–  Null reference errors
–  Concurrency errors
–  Exceptions.

How do we deal with Errors,
Failures and Faults?

Modular Redundancy

Declaring the
Bug as a
Feature

Patching

TesMng	

©	 Jakob	 E.	 Bardram	

•  Fault avoidance
–  Use methodology to reduce complexity
–  Use configuration management to prevent inconsistency
–  Apply verification to prevent algorithmic faults
–  Use reviews to identify faults already in the design

•  Fault detection
–  Testing: Activity to provoke failures in a planned way
–  Debugging: Find and remove the cause (fault) of an

observed failure
–  Monitoring: Deliver information about state and behavior

=> Used during debugging
•  Fault tolerance

–  Exception handling
–  Modular redundancy.

Another	 View	 on	 How	 to	 Deal	 with	 Faults	

©	 Jakob	 E.	 Bardram	

Fault	 Handling	

Fault	 	
Avoidance	

Fault	 	
DetecMon	

Fault	 	
Tolerance	

VerificaMon	

ConfiguraMon	
Management	 Methodoloy	 Atomic	

TransacMons	
Modular	

Redundancy	

System	 	
TesMng	

IntegraMon	
TesMng	

Unit	
TesMng	

TesMng	 Debugging	

©	 Jakob	 E.	 Bardram	

•  It is impossible to
completely test any
nontrivial module or system
–  Practical limitations: Complete

testing is prohibitive in time
and cost

–  Theoretical limitations: e.g.
Halting problem

•  “Testing can only show the
presence of bugs, not their
absence” (Dijkstra).

•  Testing is not for free
–  Define your goals and

priorities

ObservaMons	

Edsger W. Dijkstra (1930-2002) 	

 - First Algol 60 Compiler	

 - 1968:	

 - T.H.E. 	

 - Go To considered Harmful, CACM	

 - Since 1970 Focus on Verification	

 and Foundations of Computer Science 	

 - 1972 A. M. Turing Award	

©	 Jakob	 E.	 Bardram	

•  To develop an effective test, one must have:
–  Detailed understanding of the system
–  Application and solution domain knowledge
–  Knowledge of the testing techniques
–  Skill to apply these techniques

•  Testing is done best by independent testers
–  We often develop a certain mental attitude that the

program behave in a certain way when in fact it does not
–  Programmers often stick to the data set that makes the

program work
–  A program often does not work when tried by somebody

else.

TesMng	 takes	 creaMvity	

©	 Jakob	 E.	 Bardram	

•  The Test Model consolidates all test related
decisions and components into one package
(sometimes also test package or test
requirements)

•  The test model contains tests, test driver, input
data, oracle and the test harness
–  A test driver (the program executing the test)
–  The input data needed for the tests
–  The oracle comparing the expected output with the

actual test output obtained from the test
–  The test harness

•  A framework or software components that allow to run the
tests under varying conditions and monitor the behavior and
outputs of the system under test (SUT)

•  Test harnesses are necessary for automated testing.

Test Model

©	 Jakob	 E.	 Bardram	

•  There are two ways to generate the test model
–  Manually: The developers set up the test data, run the test

and examine the results themselves. Success and/or failure
of the test is determined through observation by the
developers

–  Automatically: Automated generation of test data and test
cases. Running the test is also done automatically, and
finally the comparison of the result with the oracel is also
done automatically

•  Definition Automated Testing
–  All the test cases are automatically executed with a test

harness
•  Advantage of automated testing:

–  Less boring for the developer
–  Better test thoroughness
–  Reduces the cost of test execution
–  Indispensible for regression testing.

Automated Testing

©	 Jakob	 E.	 Bardram	

•  A test double is like a double in the movies („stunt double“)
replacing the movie actor, whenever it becomes dangerous

•  A test double is used if the collaborator in the system
model is awkward to work with

•  There are 4 types of test doubles. All doubles try to make
the SUT believe it is talking with its real collaborators:
–  Dummy object: Passed around but never actually used. Dummy

objects are usually used to fill parameter lists
–  Fake object: A fake object is a working implementation, but

usually contains some type of “shortcut” which makes it not
suitable for production code (Example: A database stored in
memory instead of a real database)

–  Stub: Provides canned answers to calls made during the test, but
is not able to respond to anything outside what it is programmed
for

–  Mock object: Mocks are able to mimic the behavior of the real
object. They know how to deal with sequence of calls they are
expected to receive.

Test	 Doubles	

©	 Jakob	 E.	 Bardram	

Timing

Policy

Bidding

Policy

Auction Person

«interface»

BiddingPolicy

«interface»

TimingPolicy

* *

biddersauctions

•  Let us assume we have a system model for an auction system with 2
types of policies. We want to unit test Auction, which is our SUT

MoMvaMon	 for	 the	 Mock	 Object	 PaZern	 	

©	 Jakob	 E.	 Bardram	

Timing

Policy

Bidding

Policy

Auction Person

«interface»

BiddingPolicy

«interface»

TimingPolicy

* *

biddersauctions

MockBidding

Policy

MockTiming

Policy
Mock Person

•  Let us assume we have a system model for an auction system with 2
types of policies. We want to unit test Auction, which is our SUT

•  The mock object test pattern is based on the idea to replace the
interaction with the collaborators in the system model, that is Person,
the Bidding Policy and the TimingPolicy by mock objects

•  These mock objects can be created at startup-time (factory pattern).

MoMvaMon	 for	 the	 Mock	 Object	 PaZern	 	

Bridge
Pattern!

Bridge
Pattern!

Simple
Inheritance!

Mock-Object Pattern
–  In the mock object pattern

a mock object replaces the
behavior of a real object
called the collaborator and
returns hard-coded values

–  These mock objects can be
created at startup-time
with the factory pattern

– Mock objects can be used
for testing state of
individual objects as well
as the interaction between
objects, that is, to validate
that the interactions of the
SUT with collaborators
behave is as expected.

«Interface»

Collaborator

Interface

Mock

Collaborator
Collaborator

FactoryPolicy

instantiates one of

©	 Jakob	 E.	 Bardram	

TesMng	 AcMviMes	

Testing Activities and Models

Unit	
TesMng	

Acceptance	
TesMng	

IntegraMon	
TesMng	

System	
TesMng	

Developer	
 Client	

Object	
Design	

	

Client	
ExpectaMons	

Requirements	
Analysis	

	

System	
Design	

	

©	 Jakob	 E.	 Bardram	

•  Unit Testing
–  Individual components

(class or subsystem) are
tested

–  Carried out by developers
–  Goal: Confirm that the

component or subsystem is
correctly coded and carries
out the intended
functionality

•  Integration Testing
–  Groups of subsystems

(collection of subsystems)
and eventually the entire
system are tested

–  Carried out by developers
–  Goal: Test the interfaces

among the subsystems.

•  System Testing
–  The entire system is tested
–  Carried out by developers
–  Goal: Determine if the

system meets the
requirements (functional
and nonfunctional)

•  Acceptance Testing
–  Evaluates the system

delivered by developers
–  Carried out by the client.

May involve executing
typical transactions on site
on a trial basis

–  Goal: Demonstrate that the
system meets the
requirements and is ready
to use.

Types of Testing

©	 Jakob	 E.	 Bardram	

Unit	 /	 Component	 TesMng	

Testing Activities and Models

Unit	
TesMng	

Acceptance	
TesMng	

IntegraMon	
TesMng	

System	
TesMng	

Developer	
 Client	

Object	
Design	

	

Client	
ExpectaMons	

Requirements	
Analysis	

	

System	
Design	

	

©	 Jakob	 E.	 Bardram	

•  Static Analysis
–  Hand execution: Reading the source code
–  Walk-Through (informal presentation to others)
–  Code Inspection (formal presentation to others)
–  Automated Tools checking for

•  syntactic and semantic errors
•  departure from coding standards

•  Dynamic Analysis
–  Black-box testing (Test the input/output behavior)
–  White-box testing (Test the internal logic of the

subsystem or class)
–  Data-structure based testing (Data types determine

test cases)

StaMc	 Analysis	 vs	 Dynamic	 Analysis	

©	 Jakob	 E.	 Bardram	

•  Focus: I/O behavior. If for any given input, we
can predict the output, then the unit passes the
test.
–  Almost always impossible to generate all possible inputs

("test cases")
•  Goal: Reduce number of test cases by

equivalence partitioning:
–  Divide inputs into equivalence classes
–  Choose test cases for each equivalence class

•  Example: If an object is supposed to accept a negative
number, testing one negative number is enough.

	 Black-‐box	 TesMng	 	

©	 Jakob	 E.	 Bardram	

public class MyCalendar {

 public int getNumDaysInMonth(int month,
int year)
 throws InvalidMonthException
 { … }
}

Black	 box	 tesMng:	 An	 example	

Assume the following representations:

Month: (1,2,3,4,5,6,7,8,9,10,11,12) !
 where 1= Jan, 2 = Feb, …, 12 = Dec

Year: (1904,…,1999,2000,…,2010)!

How many test cases do we need to do a full black
box unit test of getNumDaysInMonth()?

©	 Jakob	 E.	 Bardram	

•  Depends on calendar. We assume the Gregorian
calendar

•  Equivalence classes for the month parameter
–  Months with 30 days, Months with 31 days, February, Illegal

months: 0, 13, -1

•  Equivalence classes for the Year parameter
–  A normal year
–  Leap years

•  Dividable by /4
•  Dividable by /100
•  Dividable by /400

–  Illegal years: Before 1904, After 2010

Black	 box	 tesMng:	 An	 example	

12 test cases	

How many test cases do we need to do a full black box
unit test of getNumDaysInMonth()?

©	 Jakob	 E.	 Bardram	

•  Focus: Thoroughness (Coverage). Every
statement in the component is executed at least
once

•  Four types of white-box testing
–  Statement Testing
–  Loop Testing
–  Path Testing
–  Branch Testing.

White-box Testing

©	 Jakob	 E.	 Bardram	

•  Statement Testing (Algebraic Testing)
–  Tests each statement (Choice of operators in polynomials, etc)

•  Loop Testing
–  Loop to be executed exactly once
–  Loop to be executed more than once
–  Cause the execution of the loop to be skipped completely

•  Path testing:
–  Makes sure all paths in the program are executed

•  Branch Testing (Conditional Testing)
–  Ensure that each outcome in a condition is tested at least once
–  Example:

 How many test cases do we need to unit test this statement?

White-‐box	 TesMng	 (ConMnued)	

if	 (i	 =	 	 TRUE)	 prink(”Yes");	 	 	 else	 	 prink(”No");	

©	 Jakob	 E.	 Bardram	

•  We need two test cases with the following input data
 1) i = TRUE
 2) i = FALSE

•  What is the expected output for the two cases?
–  In both cases: Yes
–  This a typical beginner‘s mistake in languages, where the

assignment operator also returns the value assigned (C,
Java)

•  So tests can be faulty as wellL
•  Some of these faults can be identified with static

analysis.

Example	 of	 Branch	 TesMng	

if	 (i	 =	 	 TRUE)	 prink(”Yes");	 	 	 else	 	 prink(”No");	

©	 Jakob	 E.	 Bardram	

•  Compiler Warnings and Errors
–  Possibly uninitialized variable
–  Undocumented empty block
–  Assignment with no effect
–  Missing semicolon, …

•  Checkstyle
–  Checks for code guideline violations
–  http://checkstyle.sourceforge.net

•  Metrics
–  Checks for structural anomalies
–  http://metrics.sourceforge.net

•  FindBugs
–  Uses static analysis to look for bugs in Java

code
–  http://findbugs.sourceforge.net

StaMc	 Analysis	 Tools	 in	 Eclipse	

©	 Jakob	 E.	 Bardram	

•  FindBugs is an open source static analysis tool,
developed at the University of Maryland
–  Looks for bug patterns, inspired by real problems in real

code
•  Example: FindBugs is used by Google at socalled

„engineering fixit“ meetings
•  Example from an engineering fixit at May 13-14,

2007
–  Scope: All the Google software written in Java

•  700 engineers participated by running FindBugs
•  250 provided 8,000 reviews of 4,000 issues

–  More than 75% of the reviews contained issues that were
marked „should fix“ or „must fix“, „I will fix“

–  Engineers filed more than 1700 bug reports
–  Source: http://findbugs.sourceforge.net/

FindBugs	

©	 Jakob	 E.	 Bardram	

•  Static analysis typically finds mistakes but some
mistakes don’t matter
–  Important to find the intersection of stupid and

important mistakes
•  Not a magic bullet but if used effectively, static

analysis is cheaper than other techniques for
catching the same bugs

•  Static analysis, at best, catches 5-10% of
software quality problems

•  Source: William Pugh, Mistakes that Matter,
JavaOne Conference
–  http://www.cs.umd.edu/~pugh/MistakesThatMatter.pdf

ObservaMon	 about	 StaMc	 Analysis	

©	 Jakob	 E.	 Bardram	

•  White-box Testing
–  Potentially infinite number

of paths have to be tested
–  White-box testing often

tests what is done, instead
of what should be done

–  Cannot detect missing use
cases

•  Black-box Testing
–  Potential combinatorical

explosion of test cases
(valid & invalid data)

–  Often not clear whether the
selected test cases uncover
a particular error

–  Does not discover
extraneous use cases
("features")

•  Both types of testing
are needed
–  White-box testing and

black box testing are the
extreme ends of a testing
continuum.

•  Any choice of test
case lies in between
and depends on the
following:
–  Number of possible logical

paths
–  Nature of input data
–  Amount of computation
–  Complexity of algorithms

and data structures

Comparison	 of	 White	 &	 Black-‐box	 TesMng	

©	 Jakob	 E.	 Bardram	

1.  Create	 unit	 tests	 when	 object	
design	 is	 completed	
–  Black-‐box	 test:	 Test	 the	

funcMonal	 model	
–  White-‐box	 test:	 Test	 the	

dynamic	 model	
2.  Develop	 the	 test	 cases	 	

–  Goal:	 Find	 effecMve	 num-‐	
ber	 of	 test	 cases	

3.  Cross-‐check	 the	 test	 cases	 to	
eliminate	 duplicates	
–  Don't	 waste	 your	 Mme!	

4.  Desk	 check	 your	 source	 code	
–  SomeMmes	 reduces	 tesMng	

Mme	

5.  Create	 a	 test	 harness	 	
–  Test	 drivers	 and	 test	 stubs	

are	 needed	 for	 integraMon	
tesMng	

6.  Describe	 the	 test	 oracle	
–  O:en	 the	 result	 of	 the	 first	

successfully	 executed	 test	
7.  Execute	 the	 test	 cases	

–  Re-‐execute	 test	 whenever	 a	
change	 is	 made	 (“regression	
tesMng”)	

8.  Compare	 the	 results	 of	 the	
test	 with	 the	 test	 oracle	
–  Automate	 this	 if	 possible.	

Unit	 TesMng	 HeurisMcs	

©	 Jakob	 E.	 Bardram	

•  Traditionally after the source code is written
•  In XP/TDD before the source code is written

•  Test-Driven Development Cycle
•  Add a new test to the test model
•  Run the automated tests
 => the new test will fail
•  Write code to deal with the failure
•  Run the automated tests

 => see them succeed
•  Refactor code.

When	 should	 you	 write	 a	 unit	 test?	

©	 Jakob	 E.	 Bardram	

IntegraMon	 TesMng	

Testing Activities and Models

Unit	
TesMng	

Acceptance	
TesMng	

IntegraMon	
TesMng	

System	
TesMng	

Developer	
 Client	

Object	
Design	

	

Client	
ExpectaMons	

Requirements	
Analysis	

	

System	
Design	

	

©	 Jakob	 E.	 Bardram	

•  The entire system is viewed as a collection of
subsystems (sets of classes) determined during
the system and object design

•  Goal: Test all interfaces between subsystems and
the interaction of subsystems

•  The integration testing strategy determines the
order in which the subsystems are selected for
testing and integration.

IntegraMon	 TesMng	

©	 Jakob	 E.	 Bardram	

•  Unit tests only test the unit in isolation

•  Many failures result from faults in the interaction of
subsystems

•  When Off-the-shelf components are used that cannot be
unit tested

•  Without integration testing the system test will be very
time consuming

•  Failures that are not discovered in integration testing will be
discovered after the system is deployed and can be very
expensive.

Why	 do	 we	 do	 integraMon	 tesMng?	

©	 Jakob	 E.	 Bardram	

•  Test	 driver	
–  simulates	 the	 part	 of	 the	 system	 that	 calls	 the	

component	 under	 test	
–  a	 component,	 that	 calls	 the	 TestedUnit
–  controls	 the	 test	 cases	

•  Test	 stub	
–  simulates	 a	 component	 that	 is	 being	 called	 by	 the	 tested	

component	
–  provides	 /	 implements	 the	 same	 API	 as	 the	 component	
–  a	 component,	 the	 TestedUnit	 depends	 on	
–  parMal	 implementaMon	
–  returns	 fake	 values.	

Test	 Stubs	 and	 Drivers	

Driver	

Tested	
Unit	

Stub	

©	 Jakob	 E.	 Bardram	

Layer	 I	

Layer	 II	

Layer	 III	

Spread	
SheetView	

A	

Calculator	

C	

BinaryFile	
Storage	

E	
XMLFile	
Storage	

F	
Currency	
DataBase	

G	

Currency	
Converter	

D	
Data	
Model	

B	

A	

C	

E	 F	 G	

D	 B	

Spread	
SheetView	

BinaryFile	
Storage	

EnMty	
Model	

A	

E	 F	
Currency	
DataBase	

G	

Currency	
Converter	

D	 B	

Calculator	

C	

XMLFile	
Storage	

Example	 –	 3	 layered	 architecture	

©	 Jakob	 E.	 Bardram	

A	

C	

E	 F	 G	

D	 B	 Test	 A	

Test	 B	

Test	 G	

Test	 F	

Test	 E	

Test	 C	

Test	 D	
Test	 	

A,	 B,	 C,	 D,	
E,	 F,	 G	

Big	 Bang	 Approach	

©	 Jakob	 E.	 Bardram	

•  The subsystems in the lowest layer of the call
hierarchy are tested individually

•  Then the subsystems above this layer are tested
that call the previously tested subsystems

•  This is repeated until all subsystems are included.

BoZom-‐up	 	 TesMng	 Strategy	

©	 Jakob	 E.	 Bardram	

A	

C	

E	 F	 G	

D	 B	

A	

Test	 	
A,	 B,	 C,	 D,	
E,	 F,	 G	

E	

Test	 E	

F	
Test	 F	

B	

Test	 B,	 E,	 F	

C	

Test	 C	

D	

Test	 D,G	

G	

Test	 G	

BoZom-‐up	 	 TesMng	 Strategy	

©	 Jakob	 E.	 Bardram	

•  Test the subsystems in the top layer first
•  Then combine all the subsystems that are called

by the tested subsystems and test the resulting
collection of subsystems

•  Do this until all subsystems are incorporated into
the tests.

Top-‐down	 TesMng	 Strategy	

©	 Jakob	 E.	 Bardram	

Test	 	
A,	 B,	 C,	 D,	
E,	 F,	 G	

All	 Layers	 Layer	 I	 +	 II	

Test	 A,	 B,	 C,	 D	

Layer	 I	

Test	 A	

A	

E	 F	

B	 C	 D	

G	

Top-‐down	 TesMng	 Strategy	

©	 Jakob	 E.	 Bardram	

•  Combines top-down strategy with bottom-up
strategy

•  The system is viewed as having three layers
–  A target layer in the middle
–  A layer above the target
–  A layer below the target

•  Testing converges at the target layer.

Sandwich	 TesMng	 Strategy	

©	 Jakob	 E.	 Bardram	

Test	 	
A,	 B,	 C,	 D,	
E,	 F,	 G	

Test	 B,	 E,	 F	

Test	 D,G	

Test	 A	

Test	 E	

Test	 F	

Test	 G	

Test	 A,B,C,	 D	

A	

E	 F	

B	 C	 D	

G	

Sandwich	 TesMng	 Strategy	

©	 Jakob	 E.	 Bardram	

Pros:
–  Test cases can be defined in terms of the functionality of the

system (functional requirements)
–  No drivers needed

Cons:
–  Stubs are needed
–  Writing stubs is difficult: Stubs must allow all possible

conditions to be tested
–  Large number of stubs may be required, especially if the

lowest level of the system contains many methods
–  Some interfaces are not tested separately.

Pros	 and	 Cons:	 Top-‐Down	 IntegraMon	 TesMng	

©	 Jakob	 E.	 Bardram	

•  Pro
–  No stubs needed
–  Useful for integration testing of the following systems

•  Object-oriented systems
•  Real-time systems
•  Systems with strict performance requirements

•  Con:
–  Tests an important subsystem (the user interface) last
–  Drivers are needed.

Pros	 and	 Cons:	 BoZom-‐Up	 IntegraMon	 TesMng	

©	 Jakob	 E.	 Bardram	

•  Pro:
–  Top and bottom layer tests can be done in parallel

•  Con:
–  Does not test the individual subsystems and their

interfaces thoroughly before integration

•  Solution: Modified sandwich testing strategy.

Pros	 and	 Cons	 of	 Sandwich	 TesMng	

©	 Jakob	 E.	 Bardram	

•  Do all the software components work together?
•  How much code is covered by automated tests?
•  Were all tests successful after the latest change?
•  What is my code complexity?
•  Is the team adhering to coding standards?
•  Were there any problems with the last

deployment?
•  What is the latest version I can demo to the

client?

Typical	 IntegraMon	 QuesMons	

©	 Jakob	 E.	 Bardram	

Regression	 tesMng	

•  Regression	 tesMng	 is	 tesMng	 the	 system	 to	 check	 that	 changes	
have	 not	 ‘broken’	 previously	 working	 code.	

•  In	 a	 manual	 tesMng	 process,	 regression	 tesMng	 is	 expensive	
but,	 with	 automated	 tesMng,	 it	 is	 simple	 and	 straighkorward.	
All	 tests	 are	 rerun	 every	 Mme	 a	 change	 is	 made	 to	 the	
program.	

•  Tests	 must	 run	 ‘successfully’	 before	 the	 change	 is	 commiZed.	
	

66	

©	 Jakob	 E.	 Bardram	

•  Risk #1: The higher the complexity of the
software system, the more difficult is the
integration of its components

•  Risk #2: The later integration occurs in a project,
the bigger is the risk that unexpected faults occur

•  Bottom up, top down, sandwich testing
(Horizontal integration strategies) don’t do well
with risk #2

•  Continous integration addresses these risks by
building as early and frequently as possible

•  Additional advantages:
–  There is always an executable version of the system
–  Team members have a good overview of the project

status.

Risks	 in	 IntegraMon	 TesMng	 Strategies	

©	 Jakob	 E.	 Bardram	

ConMnuous	 IntegraMon	 (TesMng)	

©	 Jakob	 E.	 Bardram	

Spread	
SheetView	

BinaryFile	
Storage	

Data	
Model	

ConMnuous	 TesMng	 Strategy	 (VerMcal	 IntegraMon)	

Layer	 I	

Layer	 II	

Layer	 III	

A	

E	 F	
Currency	
DataBase	

G	

Currency	
Converter	

D	 B	

Calculator	

C	

XMLFile	
Storage	

Sheet View	
 + Cells	

+ Addition	
 + File Storage	

©	 Jakob	 E.	 Bardram	

DefiniMon	 ConMnuous	 IntegraMon	

Continuous Integration: A software
development technique where members of a
team integrate their work frequently, usually
each person integrates at least daily, leading
to multiple integrations per day.

Each integration is verified by an automated
build which includes the execution of tests -
regres to detect integration errors as quickly
as possible.

Source: http://martinfowler.com/articles/continuousIntegration.html

©	 Jakob	 E.	 Bardram	

•  Functional Requirements
–  Set up the scheduling strategy (poll, event-based)
–  Detect change
–  Execute build script when change has been detected
–  Run unit test cases
–  Generate project status metrics
–  Visualize status of the projects
–  Move successful builds into software repository

•  Components (Subsystems)
–  Master Directory: Provides version control
–  Builder Subsystem: Executes build script when a change has

been detected
–  Continuous Integration Server
–  Management Subsystem: Visualizes project status via

Webbrowser
–  Notification Subsystem: Publishes results of the build via

different channels (E-Mail Client, RSS Feed)

Modeling	 a	 ConMnuous	 IntegraMon	 System	

©	 Jakob	 E.	 Bardram	

SystemAdministrator

Developer

Manager

Choose project
metrics

Create
Programmer's

Directory

Write Code/
Buildfile

Manage
Programmer's

Directory

Create Software
Repository

Set up CI Project

Set up CI Server

Set up SCM
Server

Track Progress

Visualize Build
Results

Visualize Project
Metrics

Notify Build
Status

Start CI Server

Start SCM
Server

Run Build Locally

Analysis:	 FuncMonal	 Model	 for	 ConMnuous	 IntegraMon	

©	 Jakob	 E.	 Bardram	

•  Continuous build server
•  Automated tests with high coverage
•  Tool supported refactoring
•  Software configuration management
•  Issue tracking.

Design	 of	 a	 ConMnuous	 IntegraMon	 System	 	

©	 Jakob	 E.	 Bardram	

Design: Deployment Diagram of a
Continuous Integration System

«device»

:IntegrationBuildNode

«executionEnvironment»

Ant:Builder
«executionEnvironment»

CruiseControl:CIServer

«executionEnvironment»

SVNClient:SCMClient
SoftwareRepository

«device»

:ManagementNode

«executionEnvironment»

Safari:Webbrowser

«executionEnvironment»

Mail:EmailClient

«device»

:SCMNode

«executionEnvironment»

SVNServer:SCMServer

MasterDirectory

«device»

:DevelopmentNode

ProgrammersDirectory

«executionEnvironment»

Ant:Builder
«executionEnvironment»

Eclipse:Integrated
Development
Environment

«executionEnvironment»

SVNClient:SCMClient

* *

*

*

*

*

* *

©	 Jakob	 E.	 Bardram	

•  CruiseControl and CruiseControl.NET
•  Anthill
•  Continuum
•  Hudson
•  and many more….

Examples	 of	 ConMnous	 IntegraMon	 Systems	

Feature comparison of continuous integration tools and frameworks:	

http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix	

	

©	 Jakob	 E.	 Bardram	

Cruise	 Control	 Dashboard	

76	

Steps in Integration Testing
	 	

.	

1. Based on the integration
strategy, select a
component to be tested.
Unit test all the classes in
the component.

2. Put selected component
together; do any
preliminary fix-up
necessary to make the
integration test operational
(drivers, stubs)

3. Test functional
requirements: Define test
cases that exercise all uses
cases with the selected
component

4. Test subsystem
decomposition: Define test
cases that exercise all
dependencies

5. Test non-functional
requirements: Execute
performance tests

6. Keep records of the test
cases and testing activities.

7. Repeat steps 1 to 7 until
the full system is tested.

The primary goal of integration

testing is to identify failures
with the (current)
component configuration.

©	 Jakob	 E.	 Bardram	

System	 TesMng	

Testing Activities and Models

Unit	
TesMng	

Acceptance	
TesMng	

IntegraMon	
TesMng	

System	
TesMng	

Developer	
 Client	

Object	
Design	

	

Client	
ExpectaMons	

Requirements	
Analysis	

	

System	
Design	

	

©	 Jakob	 E.	 Bardram	

•  Functional Testing
–  Validates functional requirements

•  Performance Testing
–  Validates non-functional requirements

•  Acceptance Testing
–  Validates clients expectations

System	 TesMng	

©	 Jakob	 E.	 Bardram	

.	 	

Goal: Test functionality of system
•  Test cases are designed from the requirements

analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

•  The system is treated as black box
•  Unit test cases can be reused, but new test cases

have to be developed as well.

FuncMonal	 TesMng	

©	 Jakob	 E.	 Bardram	

Goal: Try to violate non-functional requirements
•  Test how the system behaves when overloaded.

–  Can bottlenecks be identified? (First candidates for
redesign in the next iteration)

•  Try unusual orders of execution
–  Call a receive() before send()

•  Check the system’s response to large volumes of
data
–  If the system is supposed to handle 1000 items, try it

with 1001 items.
•  What is the amount of time spent in different use

cases?
–  Are typical cases executed in a timely fashion?

Performance	 TesMng	

©	 Jakob	 E.	 Bardram	

•  Stress Testing
–  Stress limits of system

•  Volume testing
–  Test what happens if large

amounts of data are
handled

•  Configuration testing
–  Test the various software

and hardware configurations
•  Compatibility test

–  Test backward compatibility
with existing systems

•  Timing testing
–  Evaluate response times

and time to perform a
function

•  Security testing
–  Try to violate security

requirements
•  Environmental test

–  Test tolerances for heat,
humidity, motion

•  Quality testing
–  Test reliability, maintain-

ability & availability
•  Recovery testing

–  Test system’s response to
presence of errors or loss
of data

•  Human factors testing
–  Test with end users.

Types	 of	 Performance	 TesMng	

©	 Jakob	 E.	 Bardram	

Acceptance	 (Client)	 TesMng	

Testing Activities and Models

Unit	
TesMng	

Acceptance	
TesMng	

IntegraMon	
TesMng	

System	
TesMng	

Developer	
 Client	

Object	
Design	

	

Client	
ExpectaMons	

Requirements	
Analysis	

	

System	
Design	

	

©	 Jakob	 E.	 Bardram	

Client	 tesMng	

•  Goal: Demonstrate system is ready for operational use
–  Choice of tests is made by client
–  Many tests can be taken from integration testing
–  Acceptance test is performed by the client, not by the

developer	

•  User	 or	 customer	 tesMng	 is	 a	 stage	 in	 the	 tesMng	 process	 in	
which	 users	 or	 customers	 provide	 input	 and	 advice	 on	 system	
tesMng.	 	

•  User	 tesMng	 is	 essenMal,	 even	 when	 comprehensive	 system	
and	 release	 tesMng	 have	 been	 carried	 out.	 	
–  The	 reason	 for	 this	 is	 that	 influences	 from	 the	 user’s	 working	

environment	 have	 a	 major	 effect	 on	 the	 reliability,	 performance,	
usability	 and	 robustness	 of	 a	 system.	 These	 cannot	 be	 replicated	 in	 a	
tesMng	 environment.	

86	

©	 Jakob	 E.	 Bardram	

Types	 of	 user	 tesMng	

•  Alpha	 tesMng	
–  Users	 of	 the	 so:ware	 work	 with	 the	 development	 team	 to	 test	 the	

so:ware	 at	 the	 developer’s	 site.	

•  Beta	 tesMng	
–  A	 release	 of	 the	 so:ware	 is	 made	 available	 to	 users	 to	 allow	 them	 to	

experiment	 and	 to	 raise	 problems	 that	 they	 discover	 with	 the	 system	
developers.	

•  Acceptance	 tesMng	
–  Customers	 test	 a	 system	 to	 decide	 whether	 or	 not	 it	 is	 ready	 to	 be	

accepted	 from	 the	 system	 developers	 and	 deployed	 in	 the	 customer	
environment.	 Primarily	 for	 custom	 systems.	

87	

©	 Jakob	 E.	 Bardram	

The	 acceptance	 tesMng	 process	 	

Define
acceptance

criteria

Test
criteria

Plan
acceptance

testing

Derive
acceptance

tests

Run
acceptance

tests

Negotiate
test results

Accept or
reject

system

Test
plan

Tests Test
results

Testing
report

88	

©	 Jakob	 E.	 Bardram	

Agile	 methods	 and	 acceptance	 tesMng	

•  In	 agile	 methods,	 the	 user/customer	 is	 part	 of	 the	
development	 team	 and	 is	 responsible	 for	 making	 decisions	 on	
the	 acceptability	 of	 the	 system.	

•  Tests	 are	 defined	 by	 the	 user/customer	 and	 are	 integrated	
with	 other	 tests	 in	 that	 they	 are	 run	 automaMcally	 when	
changes	 are	 made.	

•  There	 is	 no	 separate	 acceptance	 tesMng	 process.	
•  Main	 problem	 here	 is	 whether	 or	 not	 the	 embedded	 user	 is	

‘typical’	 and	 can	 represent	 the	 interests	 of	 all	 system	
stakeholders.	

89	

©	 Jakob	 E.	 Bardram	

Managing	 TesMng	

©	 Jakob	 E.	 Bardram	

•  Test	 case	
–  a	 set	 of	 input	 data	 and	 expected	 results	 that	 exercise	 a	 component	

Test	 Cases	

©	 Jakob	 E.	 Bardram	

Establish	 the	 test	 objecMves	

Design	 the	 test	 cases	

Write	 the	 test	 cases	

Test	 the	 test	 cases	

Execute	 the	 tests	

Evaluate	 the	 test	 results	

Change	 the	 system	

Do	 regression	 tesMng	

Managing	 TesMng	

©	 Jakob	 E.	 Bardram	

Test	

Analyst	

Team	 User	

Programmer	
too	 familiar	
with	 code	

Professional	
Tester	

ConfiguraMon	 	
Management	
Specialist	

System	 	
Designer	

The	 Test	 Team	

©	 Jakob	 E.	 Bardram	

1. Select what has to be
tested
–  Analysis: Completeness of

requirements
–  Design: Cohesion
–  Implementation: Source

code
2. Decide how the testing is

done
–  Review or code inspection
–  Proofs (Design by

Contract)
–  Black-box, white box,
–  Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases
–  A test case is a set of test

data or situations that will
be used to exercise the
unit (class, subsystem,
system) being tested or
about the attribute being
measured

4. Create the test oracle
–  An oracle contains the

predicted results for a set
of test cases

–  The test oracle has to be
written down before the
actual testing takes place.

The	 4	 TesMng	 Steps	

©	 Jakob	 E.	 Bardram	

Test	 Driven	 Development	

95	

©	 Jakob	 E.	 Bardram	

Test-‐driven	 development	

•  Test-‐driven	 development	 (TDD)	 is	 an	 approach	 to	 program	
development	 in	 which	 you	 inter-‐leave	 tesMng	 and	 code	
development.	

•  Tests	 are	 wriZen	 before	 code	 and	 ‘passing’	 the	 tests	 is	 the	
criMcal	 driver	 of	 development.	 	

•  You	 develop	 code	 incrementally,	 along	 with	 a	 test	 for	 that	
increment.	 You	 don’t	 move	 on	 to	 the	 next	 increment	 unMl	 the	
code	 that	 you	 have	 developed	 passes	 its	 test.	 	

•  TDD	 was	 introduced	 as	 part	 of	 agile	 methods	 such	 as	 Extreme	
Programming.	 However,	 it	 can	 also	 be	 used	 in	 plan-‐driven	
development	 processes.	 	

96	

©	 Jakob	 E.	 Bardram	

Test-‐driven	 development	

Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

97	

©	 Jakob	 E.	 Bardram	

Benefits	 of	 test-‐driven	 development	

•  Code	 coverage	 	
–  Every	 code	 segment	 that	 you	 write	 has	 at	 least	 one	 associated	 test	 so	

all	 code	 wriZen	 has	 at	 least	 one	 test.	

•  Regression	 tesMng	 	
–  A	 regression	 test	 suite	 is	 developed	 incrementally	 as	 a	 program	 is	

developed.	 	

•  Simplified	 debugging	 	
–  When	 a	 test	 fails,	 it	 should	 be	 obvious	 where	 the	 problem	 lies.	 The	

newly	 wriZen	 code	 needs	 to	 be	 checked	 and	 modified.	 	

•  System	 documentaMon	 	
–  The	 tests	 themselves	 are	 a	 form	 of	 documentaMon	 that	 describe	 what	

the	 code	 should	 be	 doing.	 	

98	

©	 Jakob	 E.	 Bardram	

•  Test	 Plan	
•  Test	 Case	 SpecificaMon	
•  Test	 Incident	 Report	
•  Test	 Report	 Summary	

Test	 DocumentaMon	

©	 Jakob	 E.	 Bardram	

Key	 Points	 in	 So:ware	 TesMng	

100	

©	 Jakob	 E.	 Bardram	

Key	 points	 I	

•  TesMng	 can	 only	 show	 the	 presence	 of	 errors	 in	 a	 program.	 	
–  It	 cannot	 demonstrate	 that	 there	 are	 no	 remaining	 faults.	

•  Development	 tesMng	 is	 the	 responsibility	 of	 the	 so:ware	
development	 team.	 	
–  A	 separate	 team	 should	 be	 responsible	 for	 tesMng	 a	 system	 before	 it	 is	

released	 to	 customers.	 	

•  Development	 tesMng	 includes	 	
–  unit	 tesMng,	 in	 which	 you	 test	 individual	 objects	 and	 methods	 	 	
–  component	 tesMng	 in	 which	 you	 test	 related	 groups	 of	 objects	 	 	
–  system	 tesMng,	 in	 which	 you	 test	 parMal	 or	 complete	 systems.	

101	

©	 Jakob	 E.	 Bardram	

Key	 points	 II	

•  When	 tesMng	 so:ware,	 you	 should	 try	 to	 ‘break’	 the	 so:ware	
–  using	 experience	 and	 guidelines	 to	 choose	 types	 of	 test	 case	 that	 have	 been	 effecMve	 in	

discovering	 defects	 in	 other	 systems.	

•  Wherever	 possible,	 you	 should	 write	 automated	 tests.	 	
–  The	 tests	 are	 embedded	 in	 a	 program	 that	 can	 be	 run	 every	 Mme	 a	 change	 is	 made	 to	 a	

system.	

•  You	 should	 establish	 a	 con:nuous	 integra:on	 tesMng	 setup	
•  Test-‐first	 development	 is	 an	 approach	 to	 development	 where	 tests	 are	

wriZen	 before	 the	 code	 to	 be	 tested.	 	
•  Scenario	 tes:ng	 involves	 invenMng	 a	 typical	 usage	 scenario	 and	 using	 this	

to	 derive	 test	 cases.	
•  Acceptance	 tes:ng	 is	 a	 user	 tesMng	 process	 where	 the	 aim	 is	 to	 decide	 if	

the	 so:ware	 is	 good	 enough	 to	 be	 deployed	 and	 used	 in	 its	 operaMonal	
environment.	

102	

©	 Jakob	 E.	 Bardram	

•  Literature	
–  [OOSE]	 ch.	 11	
–  [SE9]	 ch.	 8	 (+24)	

•  IntroducMon	 to	 So:ware	 TesMng	
•  TesMng	 Terminology	
•  TesMng	 AcMviMes	

–  Unit	 /	 Component	 TesMng	
–  IntegraMon	 TesMng	
–  System	 TesMng	
–  Client	 /	 Acceptance	 TesMng	

•  Managing	 TesMng	
–  Test	 Cases	
–  Test	 Teams	
–  Test	 Driven	 Development	
–  DocumenMng	 TesMng	

This	 Lecture	

