
©	
 Jakob	
 E.	
 Bardram	

QUALITY	
 ASSURANCE	
 &	
 TESTING	

Analysis,	
 Design,	
 &	
 So:ware	
 	

Architecture	
 (BDSA)	

Jakob	
 E.	
 Bardram	

	

©	
 Jakob	
 E.	
 Bardram	

•  Literature	

–  [OOSE]	
 ch.	
 11	

–  [SE9]	
 ch.	
 8	
 (+24)	

•  IntroducMon	
 to	
 So:ware	
 TesMng	

•  TesMng	
 Terminology	

•  TesMng	
 AcMviMes	

–  Unit	
 /	
 Component	
 TesMng	

–  IntegraMon	
 TesMng	

–  System	
 TesMng	

–  Client	
 /	
 Acceptance	
 TesMng	

•  Managing	
 TesMng	

–  Test	
 Cases	

–  Test	
 Teams	

–  Test	
 Driven	
 Development	

–  DocumenMng	
 TesMng	

This	
 Lecture	

©	
 Jakob	
 E.	
 Bardram	

Program	
 TesMng	

•  TesMng	
 is	
 	

–  intended	
 to	
 show	
 that	
 a	
 program	
 does	
 what	
 it	
 is	
 intended	
 to	
 do	
 and	
 to	
 discover	

program	
 defects	
 before	
 it	
 is	
 put	
 into	
 use.	
 	

–  the	
 process	
 of	
 finding	
 difference	
 between	
 the	
 expected	
 behavior	
 specified	
 by	

system	
 models	
 and	
 the	
 observed	
 behavior	
 of	
 the	
 implemented	
 system	

–  the	
 aZempt	
 to	
 show	
 that	
 the	
 implementaMon	
 of	
 the	
 system	
 is	
 inconsistent	
 with	

the	
 system	
 models	

•  The	
 goal	
 of	
 tesMng	
 is	
 to	

–  design	
 tests	
 that	
 exercise	
 defects	
 in	
 the	
 system	
 	

–  to	
 reveal	
 problems	

•  TesMng	
 is	
 in	
 contrast	
 to	
 all	
 other	
 system	
 acMviMes	

–  tesMng	
 is	
 aimed	
 at	
 breaking	
 the	
 system	

•  HENCE	
 :	
 tesMng	
 can	
 reveal	
 the	
 presence	
 of	
 errors	
 –	
 NOT	
 their	
 absence!	

•  TesMng	
 is	
 part	
 of	
 a	
 more	
 general	
 verificaMon	
 and	
 validaMon	
 process,	
 which	

also	
 includes	
 staMc	
 validaMon	
 techniques.	

3	

©	
 Jakob	
 E.	
 Bardram	

•  F-16 : crossing equator using autopilot
–  Result: plane flipped over
–  Reason?

•  Reuse of autopilot
software from a rocket

•  NASA Mars Climate Orbiter destroyed due to incorrect
orbit insertion (September 23, 1999)"
–  Reason: Unit conversion problem"

•  The Therac-25 accidents (1985-1987), quite possibly the
most serious non-military computer-related failure ever in
terms of human life (at least five died)"
–  Reason: Bad event handling in the GUI,"

Famous	
 Problems	

©	
 Jakob	
 E.	
 Bardram	

•  The Therac-25 was a medical
linear accelerator

•  Linear accelerators create energy
beams to destroy tumors

The	
 Therac-­‐25	

•  For shallow tissue penetration, electron beams are used
•  To reach deeper tissue, the beam is converted into x-rays
•  The Therac-25 had two main types of operation, a low

energy mode and a high energy mode:
–  In low energy mode, an electronic beam of low radiation (200 rads)

is generated
–  In high energy mode the machine generates 25000 rads with 25

million electron volts
•  Therac-25 was developed by two companies, AECL from

Canada and CGR from France
–  Newest version(reusing code from Therac-6 and Therac-20).

©	
 Jakob	
 E.	
 Bardram	

•  In 1986, a patient went into the clinic to receive his usual
low radiation treatment for his shoulder

•  The technician typed „X“ (x-ray beam), realizing the error,
quickly changed „X" into „E" (electron beam), and hit
"enter“:
–  X <Delete char> E <enter>!
–  This input sequence in a short time frame (about 8 sec) was never

tested
•  Therac-25 signaled "beam ready“ and it also showed the

technician that it was in low energy mode
•  The technician typed „B" to deliver the beam to the patient

–  The beam that actually came from the machine was a blast of 25
000 rads with 25 million electron volts, more than 125 times the
regular dose

–  The machine responded with error message “Malfunction 54”,
which was not explained in the user manual. Machine showed
under dosage.

–  Operator hit “P” to continue for more treatment. Again, the same
error message

•  The patient felt sharp pains in his back, much different from
his usual treatment. He died 3 months later.

A	
 Therac-­‐25	
 Accident	

©	
 Jakob	
 E.	
 Bardram	

•  Failure to properly reuse the old software from
Therac-6 and Therac-20 when using it for new
machine

•  Cryptic warning messages
•  End users did not understand the recurring

problem (5 patients died)
•  Lack of communication between hospital and

manufacturer
•  The manufacturer did not believe that the

machine could fail
•  No proper hardware to catch safety glitches.

Reasons	
 for	
 the	
 Therac-­‐25	
 Failure	

©	
 Jakob	
 E.	
 Bardram	

TesMng	
 Terminology	

©	
 Jakob	
 E.	
 Bardram	

•  Failure: Any deviation of the observed behavior
from the specified behavior

•  Erroneous state (error): The system is in a state
such that further processing by the system can
lead to a failure

•  Fault: The mechanical or algorithmic cause of an
error (“bug”)

•  Validation: Activity of checking for deviations
between the observed behavior of a system and
its specification.

Terminology

What is this?

A failure?

An error?

A fault?

We need to describe specified
behavior first!

Specification: “A track shall
support a moving train”

Erroneous State (“Error”)

Fault

Another possible fault: Communication problems between teams	

Or: Wrong usage of compass	

Possible algorithmic fault: Compass shows wrong reading	

Mechanical Fault

©	
 Jakob	
 E.	
 Bardram	

•  Where is the failure?
•  Where is the error?
•  What is the fault?

–  Bad use of implementation
inheritance

–  A Plane is not a rocket.

F-­‐16	
 Bug	

Rocket	

Plane	

Examples of Faults and Errors
•  Faults in the Interface

specification
–  Mismatch between

what the client needs
and what the server
offers

–  Mismatch between
requirements and
implementation

•  Algorithmic Faults
–  Missing initialization
–  Incorrect branching

condition
–  Missing test for null

•  Mechanical Faults
(very hard to find)
–  Operating temperature

outside of equipment
specification

•  Errors
–  Wrong user input
–  Null reference errors
–  Concurrency errors
–  Exceptions.

How do we deal with Errors,
Failures and Faults?

Modular Redundancy

Declaring the
Bug as a
Feature

Patching

TesMng	

©	
 Jakob	
 E.	
 Bardram	

•  Fault avoidance
–  Use methodology to reduce complexity
–  Use configuration management to prevent inconsistency
–  Apply verification to prevent algorithmic faults
–  Use reviews to identify faults already in the design

•  Fault detection
–  Testing: Activity to provoke failures in a planned way
–  Debugging: Find and remove the cause (fault) of an

observed failure
–  Monitoring: Deliver information about state and behavior

=> Used during debugging
•  Fault tolerance

–  Exception handling
–  Modular redundancy.

Another	
 View	
 on	
 How	
 to	
 Deal	
 with	
 Faults	

©	
 Jakob	
 E.	
 Bardram	

Fault	
 Handling	

Fault	
 	

Avoidance	

Fault	
 	

DetecMon	

Fault	
 	

Tolerance	

VerificaMon	

ConfiguraMon	

Management	
 Methodoloy	
 Atomic	

TransacMons	

Modular	

Redundancy	

System	
 	

TesMng	

IntegraMon	

TesMng	

Unit	

TesMng	

TesMng	
 Debugging	

©	
 Jakob	
 E.	
 Bardram	

•  It is impossible to
completely test any
nontrivial module or system
–  Practical limitations: Complete

testing is prohibitive in time
and cost

–  Theoretical limitations: e.g.
Halting problem

•  “Testing can only show the
presence of bugs, not their
absence” (Dijkstra).

•  Testing is not for free
–  Define your goals and

priorities

ObservaMons	

Edsger W. Dijkstra (1930-2002) 	

 - First Algol 60 Compiler	

 - 1968:	

 - T.H.E. 	

 - Go To considered Harmful, CACM	

 - Since 1970 Focus on Verification	

 and Foundations of Computer Science 	

 - 1972 A. M. Turing Award	

©	
 Jakob	
 E.	
 Bardram	

•  To develop an effective test, one must have:
–  Detailed understanding of the system
–  Application and solution domain knowledge
–  Knowledge of the testing techniques
–  Skill to apply these techniques

•  Testing is done best by independent testers
–  We often develop a certain mental attitude that the

program behave in a certain way when in fact it does not
–  Programmers often stick to the data set that makes the

program work
–  A program often does not work when tried by somebody

else.

TesMng	
 takes	
 creaMvity	

©	
 Jakob	
 E.	
 Bardram	

•  The Test Model consolidates all test related
decisions and components into one package
(sometimes also test package or test
requirements)

•  The test model contains tests, test driver, input
data, oracle and the test harness
–  A test driver (the program executing the test)
–  The input data needed for the tests
–  The oracle comparing the expected output with the

actual test output obtained from the test
–  The test harness

•  A framework or software components that allow to run the
tests under varying conditions and monitor the behavior and
outputs of the system under test (SUT)

•  Test harnesses are necessary for automated testing.

Test Model

©	
 Jakob	
 E.	
 Bardram	

•  There are two ways to generate the test model
–  Manually: The developers set up the test data, run the test

and examine the results themselves. Success and/or failure
of the test is determined through observation by the
developers

–  Automatically: Automated generation of test data and test
cases. Running the test is also done automatically, and
finally the comparison of the result with the oracel is also
done automatically

•  Definition Automated Testing
–  All the test cases are automatically executed with a test

harness
•  Advantage of automated testing:

–  Less boring for the developer
–  Better test thoroughness
–  Reduces the cost of test execution
–  Indispensible for regression testing.

Automated Testing

©	
 Jakob	
 E.	
 Bardram	

•  A test double is like a double in the movies („stunt double“)
replacing the movie actor, whenever it becomes dangerous

•  A test double is used if the collaborator in the system
model is awkward to work with

•  There are 4 types of test doubles. All doubles try to make
the SUT believe it is talking with its real collaborators:
–  Dummy object: Passed around but never actually used. Dummy

objects are usually used to fill parameter lists
–  Fake object: A fake object is a working implementation, but

usually contains some type of “shortcut” which makes it not
suitable for production code (Example: A database stored in
memory instead of a real database)

–  Stub: Provides canned answers to calls made during the test, but
is not able to respond to anything outside what it is programmed
for

–  Mock object: Mocks are able to mimic the behavior of the real
object. They know how to deal with sequence of calls they are
expected to receive.

Test	
 Doubles	

©	
 Jakob	
 E.	
 Bardram	

Timing

Policy

Bidding

Policy

Auction Person

«interface»

BiddingPolicy

«interface»

TimingPolicy

* *

biddersauctions

•  Let us assume we have a system model for an auction system with 2
types of policies. We want to unit test Auction, which is our SUT

MoMvaMon	
 for	
 the	
 Mock	
 Object	
 PaZern	
 	

©	
 Jakob	
 E.	
 Bardram	

Timing

Policy

Bidding

Policy

Auction Person

«interface»

BiddingPolicy

«interface»

TimingPolicy

* *

biddersauctions

MockBidding

Policy

MockTiming

Policy
Mock Person

•  Let us assume we have a system model for an auction system with 2
types of policies. We want to unit test Auction, which is our SUT

•  The mock object test pattern is based on the idea to replace the
interaction with the collaborators in the system model, that is Person,
the Bidding Policy and the TimingPolicy by mock objects

•  These mock objects can be created at startup-time (factory pattern).

MoMvaMon	
 for	
 the	
 Mock	
 Object	
 PaZern	
 	

Bridge
Pattern!

Bridge
Pattern!

Simple
Inheritance!

Mock-Object Pattern
–  In the mock object pattern

a mock object replaces the
behavior of a real object
called the collaborator and
returns hard-coded values

–  These mock objects can be
created at startup-time
with the factory pattern

– Mock objects can be used
for testing state of
individual objects as well
as the interaction between
objects, that is, to validate
that the interactions of the
SUT with collaborators
behave is as expected.

«Interface»

Collaborator

Interface

Mock

Collaborator
Collaborator

FactoryPolicy

instantiates one of

©	
 Jakob	
 E.	
 Bardram	

TesMng	
 AcMviMes	

Testing Activities and Models

Unit	

TesMng	

Acceptance	

TesMng	

IntegraMon	

TesMng	

System	

TesMng	

Developer	

 Client	

Object	

Design	

	

Client	

ExpectaMons	

Requirements	

Analysis	

	

System	

Design	

	

©	
 Jakob	
 E.	
 Bardram	

•  Unit Testing
–  Individual components

(class or subsystem) are
tested

–  Carried out by developers
–  Goal: Confirm that the

component or subsystem is
correctly coded and carries
out the intended
functionality

•  Integration Testing
–  Groups of subsystems

(collection of subsystems)
and eventually the entire
system are tested

–  Carried out by developers
–  Goal: Test the interfaces

among the subsystems.

•  System Testing
–  The entire system is tested
–  Carried out by developers
–  Goal: Determine if the

system meets the
requirements (functional
and nonfunctional)

•  Acceptance Testing
–  Evaluates the system

delivered by developers
–  Carried out by the client.

May involve executing
typical transactions on site
on a trial basis

–  Goal: Demonstrate that the
system meets the
requirements and is ready
to use.

Types of Testing

©	
 Jakob	
 E.	
 Bardram	

Unit	
 /	
 Component	
 TesMng	

Testing Activities and Models

Unit	

TesMng	

Acceptance	

TesMng	

IntegraMon	

TesMng	

System	

TesMng	

Developer	

 Client	

Object	

Design	

	

Client	

ExpectaMons	

Requirements	

Analysis	

	

System	

Design	

	

©	
 Jakob	
 E.	
 Bardram	

•  Static Analysis
–  Hand execution: Reading the source code
–  Walk-Through (informal presentation to others)
–  Code Inspection (formal presentation to others)
–  Automated Tools checking for

•  syntactic and semantic errors
•  departure from coding standards

•  Dynamic Analysis
–  Black-box testing (Test the input/output behavior)
–  White-box testing (Test the internal logic of the

subsystem or class)
–  Data-structure based testing (Data types determine

test cases)

StaMc	
 Analysis	
 vs	
 Dynamic	
 Analysis	

©	
 Jakob	
 E.	
 Bardram	

•  Focus: I/O behavior. If for any given input, we
can predict the output, then the unit passes the
test.
–  Almost always impossible to generate all possible inputs

("test cases")
•  Goal: Reduce number of test cases by

equivalence partitioning:
–  Divide inputs into equivalence classes
–  Choose test cases for each equivalence class

•  Example: If an object is supposed to accept a negative
number, testing one negative number is enough.

	
 Black-­‐box	
 TesMng	
 	

©	
 Jakob	
 E.	
 Bardram	

public class MyCalendar {

 public int getNumDaysInMonth(int month,
int year)
 throws InvalidMonthException
 { … }
}

Black	
 box	
 tesMng:	
 An	
 example	

Assume the following representations:

Month: (1,2,3,4,5,6,7,8,9,10,11,12) !
 where 1= Jan, 2 = Feb, …, 12 = Dec

Year: (1904,…,1999,2000,…,2010)!

How many test cases do we need to do a full black
box unit test of getNumDaysInMonth()?

©	
 Jakob	
 E.	
 Bardram	

•  Depends on calendar. We assume the Gregorian
calendar

•  Equivalence classes for the month parameter
–  Months with 30 days, Months with 31 days, February, Illegal

months: 0, 13, -1

•  Equivalence classes for the Year parameter
–  A normal year
–  Leap years

•  Dividable by /4
•  Dividable by /100
•  Dividable by /400

–  Illegal years: Before 1904, After 2010

Black	
 box	
 tesMng:	
 An	
 example	

12 test cases	

How many test cases do we need to do a full black box
unit test of getNumDaysInMonth()?

©	
 Jakob	
 E.	
 Bardram	

•  Focus: Thoroughness (Coverage). Every
statement in the component is executed at least
once

•  Four types of white-box testing
–  Statement Testing
–  Loop Testing
–  Path Testing
–  Branch Testing.

White-box Testing

©	
 Jakob	
 E.	
 Bardram	

•  Statement Testing (Algebraic Testing)
–  Tests each statement (Choice of operators in polynomials, etc)

•  Loop Testing
–  Loop to be executed exactly once
–  Loop to be executed more than once
–  Cause the execution of the loop to be skipped completely

•  Path testing:
–  Makes sure all paths in the program are executed

•  Branch Testing (Conditional Testing)
–  Ensure that each outcome in a condition is tested at least once
–  Example:

 How many test cases do we need to unit test this statement?

White-­‐box	
 TesMng	
 (ConMnued)	

if	
 (
 i	
 =	
 	
 TRUE)	
 prink(”Yes");	
 	
 	
 else	
 	
 prink(”No");	

©	
 Jakob	
 E.	
 Bardram	

•  We need two test cases with the following input data
 1) i = TRUE
 2) i = FALSE

•  What is the expected output for the two cases?
–  In both cases: Yes
–  This a typical beginner‘s mistake in languages, where the

assignment operator also returns the value assigned (C,
Java)

•  So tests can be faulty as wellL
•  Some of these faults can be identified with static

analysis.

Example	
 of	
 Branch	
 TesMng	

if	
 (
 i	
 =	
 	
 TRUE)	
 prink(”Yes");	
 	
 	
 else	
 	
 prink(”No");	

©	
 Jakob	
 E.	
 Bardram	

•  Compiler Warnings and Errors
–  Possibly uninitialized variable
–  Undocumented empty block
–  Assignment with no effect
–  Missing semicolon, …

•  Checkstyle
–  Checks for code guideline violations
–  http://checkstyle.sourceforge.net

•  Metrics
–  Checks for structural anomalies
–  http://metrics.sourceforge.net

•  FindBugs
–  Uses static analysis to look for bugs in Java

code
–  http://findbugs.sourceforge.net

StaMc	
 Analysis	
 Tools	
 in	
 Eclipse	

©	
 Jakob	
 E.	
 Bardram	

•  FindBugs is an open source static analysis tool,
developed at the University of Maryland
–  Looks for bug patterns, inspired by real problems in real

code
•  Example: FindBugs is used by Google at socalled

„engineering fixit“ meetings
•  Example from an engineering fixit at May 13-14,

2007
–  Scope: All the Google software written in Java

•  700 engineers participated by running FindBugs
•  250 provided 8,000 reviews of 4,000 issues

–  More than 75% of the reviews contained issues that were
marked „should fix“ or „must fix“, „I will fix“

–  Engineers filed more than 1700 bug reports
–  Source: http://findbugs.sourceforge.net/

FindBugs	

©	
 Jakob	
 E.	
 Bardram	

•  Static analysis typically finds mistakes but some
mistakes don’t matter
–  Important to find the intersection of stupid and

important mistakes
•  Not a magic bullet but if used effectively, static

analysis is cheaper than other techniques for
catching the same bugs

•  Static analysis, at best, catches 5-10% of
software quality problems

•  Source: William Pugh, Mistakes that Matter,
JavaOne Conference
–  http://www.cs.umd.edu/~pugh/MistakesThatMatter.pdf

ObservaMon	
 about	
 StaMc	
 Analysis	

©	
 Jakob	
 E.	
 Bardram	

•  White-box Testing
–  Potentially infinite number

of paths have to be tested
–  White-box testing often

tests what is done, instead
of what should be done

–  Cannot detect missing use
cases

•  Black-box Testing
–  Potential combinatorical

explosion of test cases
(valid & invalid data)

–  Often not clear whether the
selected test cases uncover
a particular error

–  Does not discover
extraneous use cases
("features")

•  Both types of testing
are needed
–  White-box testing and

black box testing are the
extreme ends of a testing
continuum.

•  Any choice of test
case lies in between
and depends on the
following:
–  Number of possible logical

paths
–  Nature of input data
–  Amount of computation
–  Complexity of algorithms

and data structures

Comparison	
 of	
 White	
 &	
 Black-­‐box	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

1.  Create	
 unit	
 tests	
 when	
 object	

design	
 is	
 completed	

–  Black-­‐box	
 test:	
 Test	
 the	

funcMonal	
 model	

–  White-­‐box	
 test:	
 Test	
 the	

dynamic	
 model	

2.  Develop	
 the	
 test	
 cases	
 	

–  Goal:	
 Find	
 effecMve	
 num-­‐	

ber	
 of	
 test	
 cases	

3.  Cross-­‐check	
 the	
 test	
 cases	
 to	

eliminate	
 duplicates	

–  Don't	
 waste	
 your	
 Mme!	

4.  Desk	
 check	
 your	
 source	
 code	

–  SomeMmes	
 reduces	
 tesMng	

Mme	

5.  Create	
 a	
 test	
 harness	
 	

–  Test	
 drivers	
 and	
 test	
 stubs	

are	
 needed	
 for	
 integraMon	

tesMng	

6.  Describe	
 the	
 test	
 oracle	

–  O:en	
 the	
 result	
 of	
 the	
 first	

successfully	
 executed	
 test	

7.  Execute	
 the	
 test	
 cases	

–  Re-­‐execute	
 test	
 whenever	
 a	

change	
 is	
 made	
 (“regression	

tesMng”)	

8.  Compare	
 the	
 results	
 of	
 the	

test	
 with	
 the	
 test	
 oracle	

–  Automate	
 this	
 if	
 possible.	

Unit	
 TesMng	
 HeurisMcs	

©	
 Jakob	
 E.	
 Bardram	

•  Traditionally after the source code is written
•  In XP/TDD before the source code is written

•  Test-Driven Development Cycle
•  Add a new test to the test model
•  Run the automated tests
 => the new test will fail
•  Write code to deal with the failure
•  Run the automated tests

 => see them succeed
•  Refactor code.

When	
 should	
 you	
 write	
 a	
 unit	
 test?	

©	
 Jakob	
 E.	
 Bardram	

IntegraMon	
 TesMng	

Testing Activities and Models

Unit	

TesMng	

Acceptance	

TesMng	

IntegraMon	

TesMng	

System	

TesMng	

Developer	

 Client	

Object	

Design	

	

Client	

ExpectaMons	

Requirements	

Analysis	

	

System	

Design	

	

©	
 Jakob	
 E.	
 Bardram	

•  The entire system is viewed as a collection of
subsystems (sets of classes) determined during
the system and object design

•  Goal: Test all interfaces between subsystems and
the interaction of subsystems

•  The integration testing strategy determines the
order in which the subsystems are selected for
testing and integration.

IntegraMon	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

•  Unit tests only test the unit in isolation

•  Many failures result from faults in the interaction of
subsystems

•  When Off-the-shelf components are used that cannot be
unit tested

•  Without integration testing the system test will be very
time consuming

•  Failures that are not discovered in integration testing will be
discovered after the system is deployed and can be very
expensive.

Why	
 do	
 we	
 do	
 integraMon	
 tesMng?	

©	
 Jakob	
 E.	
 Bardram	

•  Test	
 driver	

–  simulates	
 the	
 part	
 of	
 the	
 system	
 that	
 calls	
 the	

component	
 under	
 test	

–  a	
 component,	
 that	
 calls	
 the	
 TestedUnit
–  controls	
 the	
 test	
 cases	

•  Test	
 stub	

–  simulates	
 a	
 component	
 that	
 is	
 being	
 called	
 by	
 the	
 tested	

component	

–  provides	
 /	
 implements	
 the	
 same	
 API	
 as	
 the	
 component	

–  a	
 component,	
 the	
 TestedUnit	
 depends	
 on	

–  parMal	
 implementaMon	

–  returns	
 fake	
 values.	

Test	
 Stubs	
 and	
 Drivers	

Driver	

Tested	

Unit	

Stub	

©	
 Jakob	
 E.	
 Bardram	

Layer	
 I	

Layer	
 II	

Layer	
 III	

Spread	

SheetView	

A	

Calculator	

C	

BinaryFile	

Storage	

E	

XMLFile	

Storage	

F	

Currency	

DataBase	

G	

Currency	

Converter	

D	

Data	

Model	

B	

A	

C	

E	
 F	
 G	

D	
 B	

Spread	

SheetView	

BinaryFile	

Storage	

EnMty	

Model	

A	

E	
 F	

Currency	

DataBase	

G	

Currency	

Converter	

D	
 B	

Calculator	

C	

XMLFile	

Storage	

Example	
 –	
 3	
 layered	
 architecture	

©	
 Jakob	
 E.	
 Bardram	

A	

C	

E	
 F	
 G	

D	
 B	
 Test	
 A	

Test	
 B	

Test	
 G	

Test	
 F	

Test	
 E	

Test	
 C	

Test	
 D	

Test	
 	

A,	
 B,	
 C,	
 D,	

E,	
 F,	
 G	

Big	
 Bang	
 Approach	

©	
 Jakob	
 E.	
 Bardram	

•  The subsystems in the lowest layer of the call
hierarchy are tested individually

•  Then the subsystems above this layer are tested
that call the previously tested subsystems

•  This is repeated until all subsystems are included.

BoZom-­‐up	
 	
 TesMng	
 Strategy	

©	
 Jakob	
 E.	
 Bardram	

A	

C	

E	
 F	
 G	

D	
 B	

A	

Test	
 	

A,	
 B,	
 C,	
 D,	

E,	
 F,	
 G	

E	

Test	
 E	

F	

Test	
 F	

B	

Test	
 B,	
 E,	
 F	

C	

Test	
 C	

D	

Test	
 D,G	

G	

Test	
 G	

BoZom-­‐up	
 	
 TesMng	
 Strategy	

©	
 Jakob	
 E.	
 Bardram	

•  Test the subsystems in the top layer first
•  Then combine all the subsystems that are called

by the tested subsystems and test the resulting
collection of subsystems

•  Do this until all subsystems are incorporated into
the tests.

Top-­‐down	
 TesMng	
 Strategy	

©	
 Jakob	
 E.	
 Bardram	

Test	
 	

A,	
 B,	
 C,	
 D,	

E,	
 F,	
 G	

All	
 Layers	
 Layer	
 I	
 +	
 II	

Test	
 A,	
 B,	
 C,	
 D	

Layer	
 I	

Test	
 A	

A	

E	
 F	

B	
 C	
 D	

G	

Top-­‐down	
 TesMng	
 Strategy	

©	
 Jakob	
 E.	
 Bardram	

•  Combines top-down strategy with bottom-up
strategy

•  The system is viewed as having three layers
–  A target layer in the middle
–  A layer above the target
–  A layer below the target

•  Testing converges at the target layer.

Sandwich	
 TesMng	
 Strategy	

©	
 Jakob	
 E.	
 Bardram	

Test	
 	

A,	
 B,	
 C,	
 D,	

E,	
 F,	
 G	

Test	
 B,	
 E,	
 F	

Test	
 D,G	

Test	
 A	

Test	
 E	

Test	
 F	

Test	
 G	

Test	
 A,B,C,	
 D	

A	

E	
 F	

B	
 C	
 D	

G	

Sandwich	
 TesMng	
 Strategy	

©	
 Jakob	
 E.	
 Bardram	

Pros:
–  Test cases can be defined in terms of the functionality of the

system (functional requirements)
–  No drivers needed

Cons:
–  Stubs are needed
–  Writing stubs is difficult: Stubs must allow all possible

conditions to be tested
–  Large number of stubs may be required, especially if the

lowest level of the system contains many methods
–  Some interfaces are not tested separately.

Pros	
 and	
 Cons:	
 Top-­‐Down	
 IntegraMon	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

•  Pro
–  No stubs needed
–  Useful for integration testing of the following systems

•  Object-oriented systems
•  Real-time systems
•  Systems with strict performance requirements

•  Con:
–  Tests an important subsystem (the user interface) last
–  Drivers are needed.

Pros	
 and	
 Cons:	
 BoZom-­‐Up	
 IntegraMon	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

•  Pro:
–  Top and bottom layer tests can be done in parallel

•  Con:
–  Does not test the individual subsystems and their

interfaces thoroughly before integration

•  Solution: Modified sandwich testing strategy.

Pros	
 and	
 Cons	
 of	
 Sandwich	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

•  Do all the software components work together?
•  How much code is covered by automated tests?
•  Were all tests successful after the latest change?
•  What is my code complexity?
•  Is the team adhering to coding standards?
•  Were there any problems with the last

deployment?
•  What is the latest version I can demo to the

client?

Typical	
 IntegraMon	
 QuesMons	

©	
 Jakob	
 E.	
 Bardram	

Regression	
 tesMng	

•  Regression	
 tesMng	
 is	
 tesMng	
 the	
 system	
 to	
 check	
 that	
 changes	

have	
 not	
 ‘broken’	
 previously	
 working	
 code.	

•  In	
 a	
 manual	
 tesMng	
 process,	
 regression	
 tesMng	
 is	
 expensive	

but,	
 with	
 automated	
 tesMng,	
 it	
 is	
 simple	
 and	
 straighkorward.	

All	
 tests	
 are	
 rerun	
 every	
 Mme	
 a	
 change	
 is	
 made	
 to	
 the	

program.	

•  Tests	
 must	
 run	
 ‘successfully’	
 before	
 the	
 change	
 is	
 commiZed.	

	

66	

©	
 Jakob	
 E.	
 Bardram	

•  Risk #1: The higher the complexity of the
software system, the more difficult is the
integration of its components

•  Risk #2: The later integration occurs in a project,
the bigger is the risk that unexpected faults occur

•  Bottom up, top down, sandwich testing
(Horizontal integration strategies) don’t do well
with risk #2

•  Continous integration addresses these risks by
building as early and frequently as possible

•  Additional advantages:
–  There is always an executable version of the system
–  Team members have a good overview of the project

status.

Risks	
 in	
 IntegraMon	
 TesMng	
 Strategies	

©	
 Jakob	
 E.	
 Bardram	

ConMnuous	
 IntegraMon	
 (TesMng)	

©	
 Jakob	
 E.	
 Bardram	

Spread	

SheetView	

BinaryFile	

Storage	

Data	

Model	

ConMnuous	
 TesMng	
 Strategy	
 (VerMcal	
 IntegraMon)	

Layer	
 I	

Layer	
 II	

Layer	
 III	

A	

E	
 F	

Currency	

DataBase	

G	

Currency	

Converter	

D	
 B	

Calculator	

C	

XMLFile	

Storage	

Sheet View	

 + Cells	

+ Addition	

 + File Storage	

©	
 Jakob	
 E.	
 Bardram	

DefiniMon	
 ConMnuous	
 IntegraMon	

Continuous Integration: A software
development technique where members of a
team integrate their work frequently, usually
each person integrates at least daily, leading
to multiple integrations per day.

Each integration is verified by an automated
build which includes the execution of tests -
regres to detect integration errors as quickly
as possible.

Source: http://martinfowler.com/articles/continuousIntegration.html

©	
 Jakob	
 E.	
 Bardram	

•  Functional Requirements
–  Set up the scheduling strategy (poll, event-based)
–  Detect change
–  Execute build script when change has been detected
–  Run unit test cases
–  Generate project status metrics
–  Visualize status of the projects
–  Move successful builds into software repository

•  Components (Subsystems)
–  Master Directory: Provides version control
–  Builder Subsystem: Executes build script when a change has

been detected
–  Continuous Integration Server
–  Management Subsystem: Visualizes project status via

Webbrowser
–  Notification Subsystem: Publishes results of the build via

different channels (E-Mail Client, RSS Feed)

Modeling	
 a	
 ConMnuous	
 IntegraMon	
 System	

©	
 Jakob	
 E.	
 Bardram	

SystemAdministrator

Developer

Manager

Choose project
metrics

Create
Programmer's

Directory

Write Code/
Buildfile

Manage
Programmer's

Directory

Create Software
Repository

Set up CI Project

Set up CI Server

Set up SCM
Server

Track Progress

Visualize Build
Results

Visualize Project
Metrics

Notify Build
Status

Start CI Server

Start SCM
Server

Run Build Locally

Analysis:	
 FuncMonal	
 Model	
 for	
 ConMnuous	
 IntegraMon	

©	
 Jakob	
 E.	
 Bardram	

•  Continuous build server
•  Automated tests with high coverage
•  Tool supported refactoring
•  Software configuration management
•  Issue tracking.

Design	
 of	
 a	
 ConMnuous	
 IntegraMon	
 System	
 	

©	
 Jakob	
 E.	
 Bardram	

Design: Deployment Diagram of a
Continuous Integration System

«device»

:IntegrationBuildNode

«executionEnvironment»

Ant:Builder
«executionEnvironment»

CruiseControl:CIServer

«executionEnvironment»

SVNClient:SCMClient
SoftwareRepository

«device»

:ManagementNode

«executionEnvironment»

Safari:Webbrowser

«executionEnvironment»

Mail:EmailClient

«device»

:SCMNode

«executionEnvironment»

SVNServer:SCMServer

MasterDirectory

«device»

:DevelopmentNode

ProgrammersDirectory

«executionEnvironment»

Ant:Builder
«executionEnvironment»

Eclipse:Integrated
Development
Environment

«executionEnvironment»

SVNClient:SCMClient

* *

*

*

*

*

* *

©	
 Jakob	
 E.	
 Bardram	

•  CruiseControl and CruiseControl.NET
•  Anthill
•  Continuum
•  Hudson
•  and many more….

Examples	
 of	
 ConMnous	
 IntegraMon	
 Systems	

Feature comparison of continuous integration tools and frameworks:	

http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix	

	

©	
 Jakob	
 E.	
 Bardram	

Cruise	
 Control	
 Dashboard	

76	

Steps in Integration Testing
	
 	

.	

1. Based on the integration
strategy, select a
component to be tested.
Unit test all the classes in
the component.

2. Put selected component
together; do any
preliminary fix-up
necessary to make the
integration test operational
(drivers, stubs)

3. Test functional
requirements: Define test
cases that exercise all uses
cases with the selected
component

4. Test subsystem
decomposition: Define test
cases that exercise all
dependencies

5. Test non-functional
requirements: Execute
performance tests

6. Keep records of the test
cases and testing activities.

7. Repeat steps 1 to 7 until
the full system is tested.

The primary goal of integration

testing is to identify failures
with the (current)
component configuration.

©	
 Jakob	
 E.	
 Bardram	

System	
 TesMng	

Testing Activities and Models

Unit	

TesMng	

Acceptance	

TesMng	

IntegraMon	

TesMng	

System	

TesMng	

Developer	

 Client	

Object	

Design	

	

Client	

ExpectaMons	

Requirements	

Analysis	

	

System	

Design	

	

©	
 Jakob	
 E.	
 Bardram	

•  Functional Testing
–  Validates functional requirements

•  Performance Testing
–  Validates non-functional requirements

•  Acceptance Testing
–  Validates clients expectations

System	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

.	
 	

Goal: Test functionality of system
•  Test cases are designed from the requirements

analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

•  The system is treated as black box
•  Unit test cases can be reused, but new test cases

have to be developed as well.

FuncMonal	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

Goal: Try to violate non-functional requirements
•  Test how the system behaves when overloaded.

–  Can bottlenecks be identified? (First candidates for
redesign in the next iteration)

•  Try unusual orders of execution
–  Call a receive() before send()

•  Check the system’s response to large volumes of
data
–  If the system is supposed to handle 1000 items, try it

with 1001 items.
•  What is the amount of time spent in different use

cases?
–  Are typical cases executed in a timely fashion?

Performance	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

•  Stress Testing
–  Stress limits of system

•  Volume testing
–  Test what happens if large

amounts of data are
handled

•  Configuration testing
–  Test the various software

and hardware configurations
•  Compatibility test

–  Test backward compatibility
with existing systems

•  Timing testing
–  Evaluate response times

and time to perform a
function

•  Security testing
–  Try to violate security

requirements
•  Environmental test

–  Test tolerances for heat,
humidity, motion

•  Quality testing
–  Test reliability, maintain-

ability & availability
•  Recovery testing

–  Test system’s response to
presence of errors or loss
of data

•  Human factors testing
–  Test with end users.

Types	
 of	
 Performance	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

Acceptance	
 (Client)	
 TesMng	

Testing Activities and Models

Unit	

TesMng	

Acceptance	

TesMng	

IntegraMon	

TesMng	

System	

TesMng	

Developer	

 Client	

Object	

Design	

	

Client	

ExpectaMons	

Requirements	

Analysis	

	

System	

Design	

	

©	
 Jakob	
 E.	
 Bardram	

Client	
 tesMng	

•  Goal: Demonstrate system is ready for operational use
–  Choice of tests is made by client
–  Many tests can be taken from integration testing
–  Acceptance test is performed by the client, not by the

developer	

•  User	
 or	
 customer	
 tesMng	
 is	
 a	
 stage	
 in	
 the	
 tesMng	
 process	
 in	

which	
 users	
 or	
 customers	
 provide	
 input	
 and	
 advice	
 on	
 system	

tesMng.	
 	

•  User	
 tesMng	
 is	
 essenMal,	
 even	
 when	
 comprehensive	
 system	

and	
 release	
 tesMng	
 have	
 been	
 carried	
 out.	
 	

–  The	
 reason	
 for	
 this	
 is	
 that	
 influences	
 from	
 the	
 user’s	
 working	

environment	
 have	
 a	
 major	
 effect	
 on	
 the	
 reliability,	
 performance,	

usability	
 and	
 robustness	
 of	
 a	
 system.	
 These	
 cannot	
 be	
 replicated	
 in	
 a	

tesMng	
 environment.	

86	

©	
 Jakob	
 E.	
 Bardram	

Types	
 of	
 user	
 tesMng	

•  Alpha	
 tesMng	

–  Users	
 of	
 the	
 so:ware	
 work	
 with	
 the	
 development	
 team	
 to	
 test	
 the	

so:ware	
 at	
 the	
 developer’s	
 site.	

•  Beta	
 tesMng	

–  A	
 release	
 of	
 the	
 so:ware	
 is	
 made	
 available	
 to	
 users	
 to	
 allow	
 them	
 to	

experiment	
 and	
 to	
 raise	
 problems	
 that	
 they	
 discover	
 with	
 the	
 system	

developers.	

•  Acceptance	
 tesMng	

–  Customers	
 test	
 a	
 system	
 to	
 decide	
 whether	
 or	
 not	
 it	
 is	
 ready	
 to	
 be	

accepted	
 from	
 the	
 system	
 developers	
 and	
 deployed	
 in	
 the	
 customer	

environment.	
 Primarily	
 for	
 custom	
 systems.	

87	

©	
 Jakob	
 E.	
 Bardram	

The	
 acceptance	
 tesMng	
 process	
 	

Define
acceptance

criteria

Test
criteria

Plan
acceptance

testing

Derive
acceptance

tests

Run
acceptance

tests

Negotiate
test results

Accept or
reject

system

Test
plan

Tests Test
results

Testing
report

88	

©	
 Jakob	
 E.	
 Bardram	

Agile	
 methods	
 and	
 acceptance	
 tesMng	

•  In	
 agile	
 methods,	
 the	
 user/customer	
 is	
 part	
 of	
 the	

development	
 team	
 and	
 is	
 responsible	
 for	
 making	
 decisions	
 on	

the	
 acceptability	
 of	
 the	
 system.	

•  Tests	
 are	
 defined	
 by	
 the	
 user/customer	
 and	
 are	
 integrated	

with	
 other	
 tests	
 in	
 that	
 they	
 are	
 run	
 automaMcally	
 when	

changes	
 are	
 made.	

•  There	
 is	
 no	
 separate	
 acceptance	
 tesMng	
 process.	

•  Main	
 problem	
 here	
 is	
 whether	
 or	
 not	
 the	
 embedded	
 user	
 is	

‘typical’	
 and	
 can	
 represent	
 the	
 interests	
 of	
 all	
 system	

stakeholders.	

89	

©	
 Jakob	
 E.	
 Bardram	

Managing	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

•  Test	
 case	

–  a	
 set	
 of	
 input	
 data	
 and	
 expected	
 results	
 that	
 exercise	
 a	
 component	

Test	
 Cases	

©	
 Jakob	
 E.	
 Bardram	

Establish	
 the	
 test	
 objecMves	

Design	
 the	
 test	
 cases	

Write	
 the	
 test	
 cases	

Test	
 the	
 test	
 cases	

Execute	
 the	
 tests	

Evaluate	
 the	
 test	
 results	

Change	
 the	
 system	

Do	
 regression	
 tesMng	

Managing	
 TesMng	

©	
 Jakob	
 E.	
 Bardram	

Test	

Analyst	

Team	
 User	

Programmer	

too	
 familiar	

with	
 code	

Professional	

Tester	

ConfiguraMon	
 	

Management	

Specialist	

System	
 	

Designer	

The	
 Test	
 Team	

©	
 Jakob	
 E.	
 Bardram	

1. Select what has to be
tested
–  Analysis: Completeness of

requirements
–  Design: Cohesion
–  Implementation: Source

code
2. Decide how the testing is

done
–  Review or code inspection
–  Proofs (Design by

Contract)
–  Black-box, white box,
–  Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases
–  A test case is a set of test

data or situations that will
be used to exercise the
unit (class, subsystem,
system) being tested or
about the attribute being
measured

4. Create the test oracle
–  An oracle contains the

predicted results for a set
of test cases

–  The test oracle has to be
written down before the
actual testing takes place.

The	
 4	
 TesMng	
 Steps	

©	
 Jakob	
 E.	
 Bardram	

Test	
 Driven	
 Development	

95	

©	
 Jakob	
 E.	
 Bardram	

Test-­‐driven	
 development	

•  Test-­‐driven	
 development	
 (TDD)	
 is	
 an	
 approach	
 to	
 program	

development	
 in	
 which	
 you	
 inter-­‐leave	
 tesMng	
 and	
 code	

development.	

•  Tests	
 are	
 wriZen	
 before	
 code	
 and	
 ‘passing’	
 the	
 tests	
 is	
 the	

criMcal	
 driver	
 of	
 development.	
 	

•  You	
 develop	
 code	
 incrementally,	
 along	
 with	
 a	
 test	
 for	
 that	

increment.	
 You	
 don’t	
 move	
 on	
 to	
 the	
 next	
 increment	
 unMl	
 the	

code	
 that	
 you	
 have	
 developed	
 passes	
 its	
 test.	
 	

•  TDD	
 was	
 introduced	
 as	
 part	
 of	
 agile	
 methods	
 such	
 as	
 Extreme	

Programming.	
 However,	
 it	
 can	
 also	
 be	
 used	
 in	
 plan-­‐driven	

development	
 processes.	
 	

96	

©	
 Jakob	
 E.	
 Bardram	

Test-­‐driven	
 development	

Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

97	

©	
 Jakob	
 E.	
 Bardram	

Benefits	
 of	
 test-­‐driven	
 development	

•  Code	
 coverage	
 	

–  Every	
 code	
 segment	
 that	
 you	
 write	
 has	
 at	
 least	
 one	
 associated	
 test	
 so	

all	
 code	
 wriZen	
 has	
 at	
 least	
 one	
 test.	

•  Regression	
 tesMng	
 	

–  A	
 regression	
 test	
 suite	
 is	
 developed	
 incrementally	
 as	
 a	
 program	
 is	

developed.	
 	

•  Simplified	
 debugging	
 	

–  When	
 a	
 test	
 fails,	
 it	
 should	
 be	
 obvious	
 where	
 the	
 problem	
 lies.	
 The	

newly	
 wriZen	
 code	
 needs	
 to	
 be	
 checked	
 and	
 modified.	
 	

•  System	
 documentaMon	
 	

–  The	
 tests	
 themselves	
 are	
 a	
 form	
 of	
 documentaMon	
 that	
 describe	
 what	

the	
 code	
 should	
 be	
 doing.	
 	

98	

©	
 Jakob	
 E.	
 Bardram	

•  Test	
 Plan	

•  Test	
 Case	
 SpecificaMon	

•  Test	
 Incident	
 Report	

•  Test	
 Report	
 Summary	

Test	
 DocumentaMon	

©	
 Jakob	
 E.	
 Bardram	

Key	
 Points	
 in	
 So:ware	
 TesMng	

100	

©	
 Jakob	
 E.	
 Bardram	

Key	
 points	
 I	

•  TesMng	
 can	
 only	
 show	
 the	
 presence	
 of	
 errors	
 in	
 a	
 program.	
 	

–  It	
 cannot	
 demonstrate	
 that	
 there	
 are	
 no	
 remaining	
 faults.	

•  Development	
 tesMng	
 is	
 the	
 responsibility	
 of	
 the	
 so:ware	

development	
 team.	
 	

–  A	
 separate	
 team	
 should	
 be	
 responsible	
 for	
 tesMng	
 a	
 system	
 before	
 it	
 is	

released	
 to	
 customers.	
 	

•  Development	
 tesMng	
 includes	
 	

–  unit	
 tesMng,	
 in	
 which	
 you	
 test	
 individual	
 objects	
 and	
 methods	
 	
 	

–  component	
 tesMng	
 in	
 which	
 you	
 test	
 related	
 groups	
 of	
 objects	
 	
 	

–  system	
 tesMng,	
 in	
 which	
 you	
 test	
 parMal	
 or	
 complete	
 systems.	

101	

©	
 Jakob	
 E.	
 Bardram	

Key	
 points	
 II	

•  When	
 tesMng	
 so:ware,	
 you	
 should	
 try	
 to	
 ‘break’	
 the	
 so:ware	

–  using	
 experience	
 and	
 guidelines	
 to	
 choose	
 types	
 of	
 test	
 case	
 that	
 have	
 been	
 effecMve	
 in	

discovering	
 defects	
 in	
 other	
 systems.	

•  Wherever	
 possible,	
 you	
 should	
 write	
 automated	
 tests.	
 	

–  The	
 tests	
 are	
 embedded	
 in	
 a	
 program	
 that	
 can	
 be	
 run	
 every	
 Mme	
 a	
 change	
 is	
 made	
 to	
 a	

system.	

•  You	
 should	
 establish	
 a	
 con:nuous	
 integra:on	
 tesMng	
 setup	

•  Test-­‐first	
 development	
 is	
 an	
 approach	
 to	
 development	
 where	
 tests	
 are	

wriZen	
 before	
 the	
 code	
 to	
 be	
 tested.	
 	

•  Scenario	
 tes:ng	
 involves	
 invenMng	
 a	
 typical	
 usage	
 scenario	
 and	
 using	
 this	

to	
 derive	
 test	
 cases.	

•  Acceptance	
 tes:ng	
 is	
 a	
 user	
 tesMng	
 process	
 where	
 the	
 aim	
 is	
 to	
 decide	
 if	

the	
 so:ware	
 is	
 good	
 enough	
 to	
 be	
 deployed	
 and	
 used	
 in	
 its	
 operaMonal	

environment.	

102	

©	
 Jakob	
 E.	
 Bardram	

•  Literature	

–  [OOSE]	
 ch.	
 11	

–  [SE9]	
 ch.	
 8	
 (+24)	

•  IntroducMon	
 to	
 So:ware	
 TesMng	

•  TesMng	
 Terminology	

•  TesMng	
 AcMviMes	

–  Unit	
 /	
 Component	
 TesMng	

–  IntegraMon	
 TesMng	

–  System	
 TesMng	

–  Client	
 /	
 Acceptance	
 TesMng	

•  Managing	
 TesMng	

–  Test	
 Cases	

–  Test	
 Teams	

–  Test	
 Driven	
 Development	

–  DocumenMng	
 TesMng	

This	
 Lecture	

